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A new augmented Lagrangian primal dual
algorithm for elastica regularization

Jianping Zhang1,2 and Ke Chen1,3

Abstract

Regularization is a key element of variational models in image processing. To overcome the weakness of models based on

total variation, various high order (typically second order) regularization models have been proposed and studied

recently. Among these, Euler’s elastica energy based regularizer is perhaps the most interesting in terms of both

mathematical and physical justifications. More importantly its success has been proven in applications; however it has

been a major challenge to develop fast and effective algorithms.

In this paper we propose a new idea for deriving a primal dual algorithm, based on Legendre–Fenchel transformations,

for representing the elastica regularizer. Combined with an augmented Lagrangian for-mulation, we are able to derive an

equivalent unconstrained optimization that has fewer variables to work with than previous works based on splitting

methods. We shall present our algorithms for both the image restoration problem and the image segmentation model.

The idea applies to other models where the elastica regularizer is required. Numerical experiments show that the

proposed method can produce highly competitive results with better efficiency.
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Introduction

We are primarily concerned with the challenging prob-
lem of developing effective algorithms for the Euler
elastica regularizer. The latter is often used in imaging
applications including image restoration, which is
briefly reviewed below to motivate the new work.

Image restoration is about acquiring and recovering
unknown u¼ u(x) (without any restrictions) from an
observed image by z¼ z(x), x2��R

d where � is the
bounded domain and has a Lipschitz boundary. Here
we consider planar images, i.e. d¼ 2 and x¼ (x1, x2).
All results and discussions will be applicable to d> 2
and other models. An additive image restoration model
assumes z ¼ Auþ �0 with �0 representing some
unknown Gaussian noise of mean zero and deviation
�, and A a blurring operator.1–6 The additive image
restoration model minimises the fidelity to z and leads
to the least-square problem

min
u

Z
�

jAu� zj2dx ð1Þ

according to the maximum likelihood principle.7 Here
A ¼ I for image denoising. Problem (1) is in general
ill-posed due to non-uniqueness, therefore, how to
effectively solve it becomes a fundamental task.

The classical regularization technique by Tikhonov
et. al8 is to add a smoothing regularization term into
the energy functional to derive the following minimiza-
tion problem. The resulting well-posed model admits
an unique solution. This classical model cannot pre-
serve image edges, though it is simple to use. Based
on the total variation (TV) regularizer, the Rudin-
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Osher-Fatemi (ROF)4 model preserves the image edges
by seeking solutions of piecewise constant functions in
the space of bounded variation functions (BV) and,
hence, is widely used. A variety of methods based on
TV regularization have been developed to deal with
imaging problems such as image restoration,9–12

image registration,13–15 image decomposition,3,16,17

image inpainting18–21 and image segmentation.22, 23

One disadvantage of the ROF model is that it yields
so-called blocky (staircase) effects, in restoring smooth
images in applications where edges are not the main
features.24–27 Another disadvantage of the model is
the loss of image contrast.28 It should be remarked
that the recently popular method by the iterative regu-
larization technique29 can reduce the staircasing effect
and improve on the image contrast to some extent; it
also provides fast implementation.

The elastica was discovered by Euler in 1744.30

Euler’s elastica energy function defined by

TeeVðuÞ :¼

Z
�

aþ r � nj j2
� �

jrujdx ð2Þ

was firstly used for computer vision by Mumford,31

where n ¼ ru
jruj. In some applications, often, a valid a

priori assumption is that level lines are mostly smooth
in addition to small curvature, which suggests the use of
curvature-penalizing priors, such as in image recon-
struction, inpainting,32 denoising33 or segmentation.34

Hence the curvature-dependent functionals have gained
importance during the past decade. However, few
effective methods exist for such variational problems.

The rest of this paper is organized as follows. In the
next section, we briefly review two recent models
usingl Euler’s elastica for image processing and their asso-
ciated numerical algorithms. In the section ‘‘The proposed
algorithm for Eulers elastica regularization’’ we present
our new algorithm for the models reviewed in the previ-
ous section. These are: image restoration and segmenta-
tion, respectively. The next section provides some
numerical results to illustrate the effectiveness of our
new algorithm. The final section draws some conclusions.

Previous works based on Euler’s elastica

As a regularizer, Euler’s elastica can be found in and
potentially applied to many fields of imaging models.
Below we review two models that interest us most.

Euler’s elastica denoising model33

Shen et al.32 proposed to interpolate a gray-valued
image by extending its lines of constant intensity (iso-
photes) in the inpainting domain. Their model for
image denoising takes the form

min
u

�

Z
�

aþ b �ðuÞ
�� ��2h i

jrujdxþ
1

2

Z
�

ju� zj2dx

� �
ð3Þ

where the mean curvature �ðuÞ ¼ r � ru
jruj is the key

quantity for Euler’s elastica energy. This approach is
in the spirit of the early works of Mumford31 to model
the ability of a visual system to complete edges in occlu-
sion. Equation (3) leads to a highly nonlinear fourth
order Euler-Lagrange equation which does not have
known efficient solvers. In Shen et al.32 a slow time-
marching solver was used.

Instead of solving it directly, Tai et al.33

developed an augmented Lagrangian method that
avoids the complicated higher-order derivatives. First
rewrite (3) as

min
v,u,m,p,n

�

Z
�

aþ b r � nj j2
� �

jpjdxþ
1

2

Z
�

ðv� zÞ2dx

� �
s:t: v ¼ u, p ¼ ru, n ¼ m, jpj ¼ m � p, jmj 2 ½�1, 1�

ð4Þ

Second, the augmented Lagrangian method solves the
following

Lðv, u,m, p, n,�1, b2,�3, b4Þ

¼
1

2

Z
�

ðv� zÞdxþ �

Z
�

aþ b r � nj j2
� �

jpjdx

þ r1

Z
�

ðjpj � p �mÞ2dxþ

Z
�

�1ðjpj � p �mÞdx

þ r2

Z
�

jp� ruj2dxþ

Z
�

b2 � ðp� ruÞdx

þ r3

Z
�

ðv� uÞ2dxþ

Z
�

�3ðv� uÞdx

þ r4

Z
�

jn�mj2dxþ

Z
�

b3 � ðn�mÞdxþ �DðmÞ

ð5Þ

Further by alternating minimization, a series of subpro-
blems (each much simpler to solve) are formulated.
Note that, instead of the single variable u in (3), the
total number of variables in (5) is 14—a substantial
increase in complexity.

A Euler’s elastica-based segmentation model

The widely used Chan-Vese segmentation model35 min-
imizes the length (via TV) of detected objects.
Minimizing Euler’s elastica34 instead of TV leads to a
new segmentation model capable of integrating missing
or broken parts to form complete meaningful objects
and capturing objects with tiny but elongated
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structures. Their Euler’s elastica-based segmentation
model takes the following form

min
�

�

Z
�

aþ b r �
rHð�Þ

jrHð�Þj

����
����2

" #
jrHð�Þjdx

 

þ
1

2

Z
�

½Hð�Þj f� c1j
2 þ ð1�Hð�ÞÞj f� c2j

2�dx

� ð6Þ

where 	, a, b are positive parameters, and � is the level
set function whose zero level curve defines the object.

This regularization was originally proposed and used
in the famous work of segmentation with depth by
Nitzberg et al.36

Letting u¼H(�) 2{0, 1} and relaxing it to u 2 [0, 1],
the model (6) can be written as

min
u

�

Z
�

aþ b r �
ru

jruj

����
����2

" #
jrujdxþ

1

2

Z
�

uj f� c1j
2

 

þ 1� uð Þj f� c2j
2dx

! ð7Þ

which is amenable to simplification to the following
constrained minimization problem

min
u,p, n, c1, c2

 
�

Z
�

aþ b r � nj j2
� �

jpjdx

þ
1

2

Z
�

uj f� c1j
2 þ ð1� uÞj f� c2j

2dx

!

s:t: p ¼ ru, n ¼
ru

jruj
, u 2 ½0, 1�:

ð8Þ

Then the augmented Lagrangian functional

Lðv, u, p, n,m, c1, c2,�1, b2,�3, b4Þ

¼
1

2

Z
�

vj f� c1j
2 þ ð1� vÞj f� c2j

2dxÞ

þ �

Z
�

aþ b r � nj j2
� �

jpjdxþ r1

Z
�

ðjpj � p �mÞ2dx

þ

Z
�

�1ðjpj � p �mÞdxþ r2

Z
�

jp� ruj2dx

þ

Z
�

b2 � ðp� ruÞdxþ r3

Z
�

ðv� uÞ2dx

þ

Z
�

�3ðv� uÞdxþ �DðvÞ þ r4

Z
�

jn�mj2dx

þ

Z
�

b4 � ðn�mÞdxþ �DðmÞ

ð9Þ

is proposed, where �D(v) and �D(m) are the characteris-
tic functions on the sets D and R¼ {m 2 L2(�): jmj � 1
a.e. in �}. Further each subproblem can be made
simple to solve.34 However one notes that the total

number of variables (9) is 16, which is again quite
substantial.

The proposed algorithm for Euler’s
elastica regularization

We shall take a different approach to develop algo-
rithms for the above models. Our idea is to reformulate
Euler’s elastica regularization term TeeV(u) first. This is
achieved by a transformation.

Definition 1 (Legendre–Fenchel transformation). Let S

be a normed vector space and F : S! R [ fþ1g be
any functional. Then

F�ð�Þ ¼ sup
u2S

h�, ui � FðuÞ
� �

ð10Þ

is called the Legendre–Fenchel transformation of F.
The Legendre–Fenchel transformation F� : S

�
!

R [ fþ1g is convex, regardless whether or not F is
convex. For vectors y 2 R

d, the well-known equality
used in dual formualtions jyj1 ¼ maxj!j1�1 ! � y is
related to and quite different from a Legendre–
Fenchel transformation for f ðxÞ ¼ jxj1 f

�ðsÞ ¼
maxxfs

Tx� jxj1g ¼ �RðsÞ: Similarly for gðxÞ ¼
jx� x0j1, g�ðsÞ ¼ maxxfs

Tx� jx� x0j1g ¼ �RðsÞ þ sTx0.
For simple functionals, we can also compute the trans-
form explicitly, e.g. if f ð�Þ ¼ 1

2

R
� �

2ðxÞdx � 2 L2ð�Þ

f�ð�Þ ¼ sup
�2L2ð�Þ

h�, �i �
1

2

Z
�

�2dx ¼
1

2

Z
�

�2dx ð11Þ

as the minimizer �*¼� is found directly.
In this work, we shall use the Legendre–Fenchel

transformation to study TeeV(u) from (2).

Lemma 1. Based the Legendre–Fenchel transformation
of Fð�Þ ¼ 1

2

R
�
�2ðxÞdx from (11), it holds that

1

2

Z
�

r � nð Þ
2
jrujdx ¼ sup

�2L2ð�Þ

Z
�

r � nð Þ�ðxÞjrujdx

�
1

2

Z
�

j�j2jrujdx

Proof. Take � ¼ ðr � nÞ
ffiffiffiffiffiffiffiffiffi
jruj
p

. Then (11) becomes

1

2

Z
�

r � nð Þ
2
jrujdx

¼ sup
�2L2ð�Þ

Z
�

r � nð Þ
ffiffiffiffiffiffiffiffiffi
jruj

p
�ðxÞdx�

1

2

Z
�

j�j2dx
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¼ sup
�
ffiffiffiffiffiffi
jruj
p

2L2ð�Þ

Z
�

r � nð Þ
ffiffiffiffiffiffiffiffiffi
jruj

p
�ðxÞ

ffiffiffiffiffiffiffiffiffi
jruj

p
dx

�
1

2

Z
�

j�j2jrujdx

¼ sup
�2L2ð�Þ

Z
�

r � nð Þ�ðxÞjrujdx�
1

2

Z
�

j�j2jrujdx

Consequently from Lemma, we obtain a useful refor-
mulation for (2)

TeeVðuÞ ¼ sup
’2L2ð�Þ

Z
�

aþ b 2hr �
ru

jruj
, ’i � j’j2

� �
 �
jrujdx

ð12Þ

which will be used below. We give two more simple
lemmas to aid further discussion.

Lemma 2. For any vector x 2 R
d, the unit vector y ¼ x

jxj

(y¼ 0 when x¼ 0) is equivalent to Pyx ¼ x, where-
is a projection matrix.

Lemma 3. The formula for the normal vector n ¼ ru
jruj is

equivalent to ðnnT � IÞru ¼ 0.
Finally, the Euler elastica functional TeeV(u) can be

split into the following scheme

in which all terms are differentiable.

A new algorithm for image denoising

Now we are ready to present our augmented
Lagrangian-based primal dual approach based on the
Legendre–Fenchel transformation, which serves as
an alternative algorithm to (5) for the elastica based
model (3).

The approach considered here differs from existing
augmented Lagrangian approaches for the solution of
the same problem; indeed, the augmented Lagrangian
functional we use here contains only one Lagrange
multiplier (instead of three), and three associated aug-
mentation (dual) terms (instead of four).

Following equation (13), the denoising problem (3)
takes the equivalent form

min
ðu,nÞ2W

ð�P1ðu, nÞ þ
1

2

Z
�

ju� zj2dxÞ, s:t: cðu, nÞ ¼ 0 ð14Þ

We next reformulate the constrained minimization in (14)
by the method of augmented Lagrangian multipliers. This
leads to the unconstrained optimization problem

min
ðu,nÞ2W

�P1ðu, nÞ þ



2

Z
�

cðu, nÞ þ
qk




����
����
2

dxþ
1

2

Z
�

ju� zj2dx

with the multiplier update

qkþ1 ¼ qk þ 
cðu, nÞ ð15Þ

For the sake of effective computation, we use the
Legendre–Fenchel transformation (L2-transformation)
as it was done in P1ðu, nÞ-energy in the same way to
derive

min
ðu,nÞ2W

�P1ðu,nÞþ
 sup
b2L2ð�Þ

Z
�

hcðu,nÞþ
qk



,bi�

1

2
jbj2dx

� �(

þ
1

2

Z
�

ju�zj2dx




where the notation h�i is for vector operations.
Our goal is to develop a fast algorithm to seek the

saddle-point of the energy functional

Lðu, n, ’, bÞ : ¼ �

Z
�

aþ b 2hr � n, ’i � j’j2
� �� �

hru, nidx

þ 


Z
�

hcðu, nÞ þ
qk



, bi �

1

2
jbj2dx

� �

þ
1

2

Z
�

ju� zj2dx

with multiplier update (15). Since a saddle point of the
the above augmented Lagrangian functional relates to a

TeeVðuÞ ¼ P1ðu, nÞ :¼ sup
’2L2ð�Þ

R
�

aþ b 2ðr � nÞ’� ’2
� �� �

ðru � nÞdx,

s:t: cðu, nÞ :¼ ðnnT � IÞru ¼ 0

8<
: ð13Þ
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solution of optimization problem (14), we propose to
use a majoration minimization/maximization (MM)
approximation to define the relaxed functional asso-
ciated with (15) as follows

L
k
ðu, n, ’, bÞ :

¼ �

Z
�

aþ b 2hr � n, ’i � j’j2
� �� �

hru, nidxþ
1

2

Z
�

ju� zj2dx

þ 


Z
�

hcðu, nÞ þ
qk



, bi �

1

2
jbj2dx

� �
þ
�

2

Z
�

ju� ukj2dx

þ
�

2

Z
�

jn� nkj2dx�
�

2

Z
�

j’� ’kj2dx�
�

2

Z
�

jb� bkj2dx

We minimize/maximize the corresponding functional
for each of the variable functions u, n, ’, b by fixing
the other ones, and after the advance of all the variable
functions, we update the Lagrange multipliers accord-
ingly based on the optimization theory. The procedure
will be repeated until the variable functions are all con-
vergent, which means a saddle point of the augmented
Lagrangian functional is obtained.

The corresponding subproblems are given by

The remainder of this subsection describes in detail
each step of the process.

u-subproblem. In u-subproblem, the energy functional

�

Z
�

ha,bðn, ’Þhru, nidxþ 


Z
�

hðnnT � IÞru, bidx

becomesZ
�

hru,F�,
,a,bðn, ’, bÞidx :

¼

Z
�

hru,�ha,bðn, ’Þnþ 
ðhn, bin� bÞidx

using the integral formula by part, the left hand term
derives

Z
�

hru,F�,
,a,bðn,’, bÞidx ¼

Z
@�

ðuF�,
,a,bðn,’, bÞÞ � �dx

�

Z
�

udiv F�,
,a,bðn, ’, bÞ
� �

dx

ukþ1 ¼ argmin
u

�

Z
�

ha,bðn, ’Þhru, nidxþ
1

2

Z
�

ju� zj2dx

þ 


Z
�

hðnnT � IÞru, bidxþ
�

2

Z
�

ðu� ukÞ2 dx,

where ha,bðn, ’Þ ¼ ½aþ bð2hr � n, ’i � j’j2Þ�,

nkþ1 ¼ argmin
n

�

Z
�

h a� bj’j2
� �

ru, ni þ 2bhr � n, ’ihruT, nidx

þ 


Z
�

hnnTru, bidxþ
�

2

Z
�

jn� nkj2 dx,

’kþ1 ¼ argmin
’2L2ð�Þ

�

Z
�

aþ b 2hr � n, ’i � j’j2
� �� �

hru, nidx

�
�

2

Z
�

j’� ’kj2dx,

bkþ1 ¼ argmin
b2L2ð�Þ




Z
�

�
cðu, nÞ þ

qk



, b

�
�
1

2
jbj2dx

�
�

2

Z
�

jb� bkj2dx,

qkþ1 ¼ qk þ 
cðu, nÞ

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð17Þ
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where � is the outer normal direction along the bound-
ary @�. Choosing n � �j@� ¼ 0, b � �j@� ¼ 0 and using the
first variation, we get the solution of u-subproblem

u ¼
�

1þ �
uk þ

1

1þ �
zþ �r � ðha,bðn, ’ÞnÞ þ 
r � ðhn, bin� bÞ
� �

n-subproblem. We first consider the first-order vari-
ation of the functional �1ðnÞ :¼

R
� hr � n, ’i

hru, nidx ¼
R

� h’ru,r � nnidx:

Further the first-order variation of functional �2ðnÞ :¼R
� hnn

Tru, bidx can be derived as

lim
t!0

�2ðnþ tmÞ � �2ðnÞ

t

¼

R
�
hðnþ tmÞðnþ tmÞTru, bi � hnnTru, bi dx

t

¼

Z
�

hmnTru, bi þ hnmTru, bi dx

¼

Z
�

hðnTruÞbþ ðnTbÞru,mi dx

Since we have equipped n � �j@� ¼ 0 on boundary @�,
then the test function m should also satisfy m � �j@� ¼ 0
on boundary @�. Hence we obtain the Euler-
Lagrangian equation

� a� bj’j2
� �

ru� 2�bðr hru, ni’Þ � hr � n, ’iruð Þ

þ 
 ðnTruÞbþ ðnTbÞru
� �

þ �ðn� nkÞ ¼ 0
ð18Þ

The solutions of ’-subproblem and b-subproblem can be
easily computed by using the first variation in same way.
The minimization problems for u, ’, and b can be done
by some simple arithmetic calculations at each grid point.
There is no need to solve any equations. The

minimization problem for n needs to solve a linear equa-
tion by iterative scheme with very low cost, however such
linear equation has the closed-form solution at each grid
point. In general the following special Lemma can be
used.

Lemma 4. Assume that 1þ 
T! 6¼ 0 and ð1þ 
T!Þ2

�j
j2j!j2 6¼ 0, then

ðIþ!
Tþ
!TÞ
�1x

¼x�

Tx

1þ
T!
!

�
ð1þ
T!Þ!Tx�j!j2
Tx
� �


þ j
j2j!j2
Tx
1þ
T! �j
j

2!tx
� �

!

ð1þ
T!Þ2�j
j2j!j2

ð19Þ

Proof. Firstly, let A be Iþ !
T, from the Sherman-

Morrison formula ðAþ 
!TÞ
�1
¼ A�1 � A�1
!TA�1

1þ!TA�1


ð1þ !TA�1
 6¼ 0Þ, one has ðAþ 
!TÞ
�1x ¼ A�1x�

A�1
!TA�1x
1þ!TA�1


, further A�1 ¼ ðIþ !
TÞ
�1
¼ I� !
T

1þ!T

.

We address the optimization problem in (16) using
an alternating iterative scheme with respect to u, ’, n, b

and multiplier q. The complete resulting image denois-
ing algorithm is summarized in Algorithm. Note that
some steps will be reused when performing more com-
plicated tasks such as image segmentation or
inpainting.

Algoritham 1 (Augmented Lagrangian Primal-Dual

method (ALPD)-elastica denoising).

Step 1. Input an observed image z. Set the initial
multiplier q0¼ 0. Given initial solutions

lim
t!0

�1ðnþ tmÞ � �1ðnÞ

t

¼

R
� hr � nþ tr �m, ’ihru, nþ tmidx�

R
� hr � n, ’ihru, nidx

t

¼

Z
�

hr �m, ’ihru, nidxþ

Z
�

hr � n,’ihru,midx

¼

Z
�

h�r hru, ni’ð Þ þ hr � n, ’iru,midxþ

Z
@�

hru, ni’ð Þðm � �Þ dx
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u0 ¼ z, n0 ¼ 0, ’0 ¼ 0, b0 ¼ 0. Set �1 ¼ �=ð1þ �Þ, where
�, 
 are regularizing parameters, � is a Lipschitz
parameter;
Step 2: for k� 0

Step 3. Stop if a given criterion is valid, otherwise go to
Step 2.

Image segmentation

Euler’s elastica as a new regularization of segmentation
contour was originally proposed and used in the
famous in-depth work by Nitzberg et al36 Recently,
Zhu et al.34 have developed a numerical method to min-
imize Euler’s elastica dependent functionals by using
the augmented Lagrangian method. In their work,
they also considered Chan-Vese’s model with the sub-
stitution of Euler’s elastica for the length term. As dis-
cussed in the introduction, the purpose of our present
work is to present some new properties and implemen-
tation of this modified Chan-Vese’s model through
numerical study with the aid of the Legendre–Fenchel
transformation.34

We know that the almost theoretical results for the
segmentation case can be obtained in the same way as

the denoising case of (16). Further, Euler’s elastica-
dependent segmentation problem (8) can be rewritten
as the following constraint optimization minimization

in the equivalent form

min
u,n, c1, c2

�P1ðu, nÞ þ

Z
�

gðu, f, c1, c2Þdx

� �
s:t: cðu, nÞ ¼ 0

ð20Þ

where gðu, f, c1, c2Þ ¼ uð f� c1Þ
2
þ ð1� uÞð f� c2Þ

2. In
order to efficiently solve the above constrained opti-
mization problem, we employ the augmented
Lagrangian functional and the Legendre–Fenchel
transformation to obtain the following problem

min
u,n, c1, c2

�P1ðu, nÞ þ

Z
�

gðu, f, c1, c2Þdx

�

þ
 sup
b2L2ð�Þ

Z
�

hcðu, nÞ þ
qk



, bi �

1

2
jbj2dx

� �)

u� subproblem :

ukþ1=2 ¼ zþ �r � ðha,bðn
k, ’kÞnkÞ

þ 
r � ðhnk, bkink � bkÞ

ukþ1 ¼ �0 u
k þ ð1� �0Þu

kþ1=2

n� subproblem : Semi-implicit iterative solution ðLemma 4Þ

nkþj=m ¼ ðIþ !kð
kÞ
T
þ 
kð!kÞ

T
Þ
�1xkþð j�1Þ=m

with !k ¼ 
=�rukþ1,
 ¼ bk, 1 � j � m � 5

where xkþð j�1Þ=m ¼ nk � �=�½ a� bj’kj2
� �

rukþ1

� 2bðr hrukþ1, nkþð j�1Þ=mi’k
� �

� hr � nkþð j�1Þ=m, ’kirukþ1Þ�

On x 2 �, if hnkþ1ðxÞ,rukþ1ðxÞi5 0, then nkþ1ðxÞ ¼ �nkþ1ðxÞ;

’� subproblem :

�k ¼ �=ð� þ 2�bhrukþ1nkþ1iÞ,

’kþ1 ¼ �k’k þ ð1� �kÞr � nkþ1

b� subproblem :

bkþ1=2 ¼ 
 cðukþ1nkþ1Þ þ
qk




� �
bkþ1 ¼ �0b

k þ ð1� �0Þb
kþ1=2

multiplier update :

qkþ1 ¼ qk þ 
cðukþ1, nkþ1Þ"�
��
��
��
��
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
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�
�
�
�
�
�
�
�
�
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which can be solved in a similar way by adjusting the
notation accordingly. In fact, the above optimization
problem becomes a maximization-minimization prob-
lem, the subproblems with respect to ’, n, b and multi-
plier q can be computed in the same way as described
above. Moreover for u-subproblems, we first compute
the first variation of the above functional with respect
to variant u and then obtain the Euler-Lagrangian
equation with the boundary conditions n � �j@� ¼ 0
and b � �j@� ¼ 0 as follows

ð f� c1Þ
2
� ð f� c2Þ

2
Þ � �r � ðha,bðn, ’Þn

� �
� 
r � hn,bin� bÞ þ �ðu� uk

� �
¼ 0

which simplifies to an explicit solution

u ¼ uk þ 1=� �ðð f� c1Þ
2
� ð f� c2Þ

2
� �

þ �r � ha,bðn, ’ÞnÞ þ 
r � ðhn, bin� bÞ
� �

With all the prior and likelihood information, the final
segmentation decision is drawn by some simple thresh-
olding &, i.e., �in¼ {x: u(x)� &} and �out¼ {x:
u(x)<&}. The overall segmentation algorithm is sum-
marized in Algorithm 2.

Algorithm 2 (ALPD-elastica segmentation).

Step 1. Given an initial image f, the initial multiplier
q0¼ 0. Input the initial two-phase function u0, set initial
solutions n0 ¼ 0, ’0 ¼ 0, b0 ¼ 0: Set �0 ¼ �=ð1þ �Þ �0¼
�/(1þ �), where �, 
 are regularizing parameters, � is
a Lipschitz parameter;
Step 2. for k� 0

c1, c2 �meanvalue :

ck1 ¼

R
� ukf dxR
�

uk dx
,

ck2 ¼

R
�
ð1� ukÞ f dxR

� ð1� ukÞ dx
;

u� subproblem :

ukþ1=2 ¼ uk þ 1=�ð�ðð f� ck1Þ
2
� ð f� ck2Þ

2
Þ

þ �r � ðha,bðn
k, ’kÞnkÞ þ 
r � ðhnk, bkink � bkÞÞ,

ukþ1 ¼ Proj½0,1�ðu
kþ1=2Þ;

n� subproblem : Semi-implicititerative solution ðLemma 4Þ

nkþj=m ¼ ðIþ !kð
kÞ
T
þ 
kð!kÞ

T
Þ
�1xkþð j�1Þ=m

with !k ¼ 
=�rukþ1,
 ¼ bk, 1 � j � m � 5,

where xkþð j�1Þ=m ¼ nk � �=�½ a� bj’kj2
� �

rukþ1

� 2bðr hrukþ1, nkþð j�1Þ=mi’k
� �

� hr � nkþð j�1Þ=m’kirukþ1Þ�,

On x 2 �, if hnkþ1ðxÞ,rukþ1ðxÞi5 0, then nkþ1ðxÞ ¼ �nkþ1ðxÞ

’� subproblem :

�k ¼ �=ð� þ 2�bhrukþ1nkþ1iÞ

’kþ1 ¼ �k’k þ ð1� �kÞr � nkþ1

b� subproblem :

bkþ1=2 ¼ 
ðcðukþ1nkþ1Þ þ
qk



Þ

bkþ1 ¼ �0b
k þ ð1� �0Þb

kþ1=2

multiplier update :

qkþ1 ¼ qk þ 
cðukþ1, nkþ1Þ
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Step 3. Stop if a given criterion is valid, otherwise go
to Step 2.

Numerical results

In this section, we present some numerical results from
applying our proposed algorithms. The experimental
results include two parts: surface denoising and image
segmentation. Let us first introduce the discrete setting
which we will use in the rest of this section.

Discrete setting

We consider a regular Cartesian grid of size
m	 n : fðih, jhÞ : 1 � i � m, 1 � j � ng, where h
denotes the size of the spacing and (i, j) denote the
indices of the discrete locations (ih, jh) in the image
domain �:¼ [0, 1]. Let us define the dicrete gradient
operator applied to a function u at the point (i, j)

ðruÞij ¼ ððruÞ
1
ij, ðruÞ

2
ijÞ

where

ðruÞ1ij ¼
uiþ1,j � uij if i5 n

0 if i ¼ n

�
;

ðruÞ2ij ¼
ui,jþ1 � uij if j5m

0 if j ¼ m

�

Let us define the discrete divergence operator applied to
a vector v!¼ ðv1, v2Þ at the grid point (i, j)

ðr � v!Þij ¼

ðv1Þij � ðv
1Þi�1,j if 15 i5 n

ðv1Þij if i ¼ 1

�ðv1Þi�1,j if i ¼ m

8><
>:

þ

ðv2Þij � ðv
2Þi,j�1 if 15 j5 n

ðv2Þij if j ¼ 1

�ðv2Þi,j�1 if j ¼ m

8><
>:

and define the vector inner product hsi,j, ti,ji ¼
s1ijt

1
ij þ s2ijt

2
ij for any n	m	 2 matrices s and t.

Image denoising

We now use numerical simulations to illustrate the
effectiveness of our denoising Algorithm 1 just devel-
oped. The numerical techniques are based on augmented
Lagrangian and Legendre–Fenchel transformation. We
follow the previous subsection and discretize the gradi-
ent and diffusion operators.

In order to demonstrate the functionality of the vari-
ant of our proposing algorithm, we applied it against a
large variety of test problems. These problems include
synthetic and natural images. For all these test prob-
lems (here all images are grayscale, and the original
images are scaled to the range [0, 1]), the values of

Figure 1. The denoising results for a synthetic image and a real image. The true and noisy images for three examples are listed in the

first row; denoised and residual images by the THC method proposed by Tai et al.33 are shown in the middle row; our results are shown

in the third row. Test examples from left to right: ‘‘Smooth,’’ ‘‘Anthony’’ and ‘‘Pepper,’’ respectively. (a) True. (b) Noise. (c) THC. (d) Error.

(e) ALPD. (f) Error. (g) True. (h) Noise. (i) THC. (j) Error. (k) ALPD. (l) Error. (m) True. (n) Noise. (o) THC. (p) Error. (q) ALPD. (r) Error.
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the noise function are uniformly distributed with mean
variation � > 0. The main compared approach is natur-
ally the Tai-Hahn-Chung (THC) method proposed by
Tai et al.33 because our method in this work is inspired
by it. Their approach is different from ours since it
implies three extra augmentation functionals and the
related Lagrange multipliers. The solution results restor-
ing the synthetic images (‘‘Smooth’’ and ‘‘Anthony’’)
natural image (‘‘Pepper’’) with the noise level � ¼ 10

255

are shown in Figure 1. One can clearly see that the
two algorithms only differ in small magnitudes around
some parts on the edges of the shapes. Our approach is
more practically efficient of eliminating noise for the very
smooth image, and obtaining a comparable denoising
quality when a natural image is tested.

In Table 1, we first compare the restoration quality
(via psnr) and efficiency (via Iters) of two approaches by
testing the above examples; in each approach four dif-
ferent image sizes are used to perform the major advan-
tage of our numerical scheme. Experimental results
show our algorithm can usually save the outer iteration
to achieve the same relative error. Besides, the subpro-
blems for the variable n in THC and ALPD require

inner iterations for the convergence, while the approxi-
mations at every node (i, j) given by our algorithm are
independent from each other instead of treating it with
global-dependent update by THC algorithm. Further
the inner iteration is only once for u-subproblem,
’-subproblem, b-subproblem and q-subproblem in
our proposed scheme. Therefore, our algorithm can
save computational cost in both inner iteration and
outer iteration, which makes it superior to the previous
algorithm.

In Figure 2, plots of objective function versus iter-
ation numbers (Iters), CPU times versus image sizes
and noise variations versus psnr are shown for the
‘‘Smooth’’ example with the size 256	 256 in Table 1.
From the third plot (see Figure 2(c)), we can see
that both algorithms produce the restored results of
good quality with similar psnr, but the objective func-
tion in (3) of the proposed algorithm reduce faster and
more stably compared to the THC algorithm (see
Figure 2(a)). Our computational cost (see Figure 2(b))
is lower compared to the THC algorithm, which dem-
onstrates that the proposed algorithm is more reliable
and efficient in practice.
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Figure 2. The first plot (a) lists the plots of objective function values versus iterations for the example ‘‘Smooth’’ using our algorithm

and the THC algorithm; the second plot (b) presents the corresponding plots of CPU times versus image sizes. The plot (c) shows the

small difference of psnr between the two algorithms restoring different variation images.

Table 1. Performance comparison of different examples and different image sizes by using our algorithm and THC algorithm.

Smooth Anthony Pepper

ALPD THC33 ALPD THC33 ALPD THC33

psnr Iters psnr Iters psnr Iters psnr Iters psnr Iters psnr Iters

64	 64 39.61 78 39.67 128 31.96 112 31.78 145 31.75 69 31.71 113

128	 128 42.52 69 42.34 104 33.17 109 33.25 138 32.51 86 32.47 129

256	 256 43.15 65 42.95 98 34.42 101 34.23 143 33.75 82 33.56 142

512	 512 43.23 77 42.91 119 36.29 85 36.13 127 34.26 75 34.15 121

THC: Tai-Hahn-Chung; ALPD: Augmented Lagrangian Primal-Dual method.
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Figure 3. The performance of our method removing the noise contained in CT medical images. (a) CT with noise. (b) Bone I with

noise. (c) Bone II with noise. (d) CT denoising. (e) Bone I denoising. (f) Bone II denoising.

Figure 5. Euler’s elastica-based image segmentation: liver CT

image. (a) Original image. (b) The contour {x : u(x)¼ 0.5} by our

algorithm. (c) The contour {x : u(x)¼ 0.5} by ZTC algorithm.34

(d) Phase function u by our algorithm. (e) Phase function u by

ZTC algorithm.34

Figure 4. Euler’s elastica based image segmentation: camera-

man natural image. (a) Original image. (b) The contour

{x : u(x)¼ 0.5} by our algorithm. (c) The contour {x : u(x)¼ 0.5}

by ZTC algorithm.34 (d) Phase function u by our algorithm.

(e) Phase function u by ZTC algorithm.34
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It is well known that noise exists in computed tom-
ography (CT) images. Figure 3 shows the results
obtained while applying the implementation against
CT images with noise. We conduct two experiments
of Euler’s elastica model on real liver CT data. Three
slices of liver and bone CT images are selected from two
data sets, which are displayed at the top of Figure 3.
The restored images are shown at the bottom of
Figure 3. As illustrated by these two experiments, our
proposed scheme can successfully remove the noise in
CT images.

Image segmentation

In this subsection, we describe the application of the
proposed algorithm solving Euler’s elastica regularized
Mumford–Shah model with two-phase clustering on
real camera and medical images.

The first experiment consists of a two-phase segmen-
tation in a natural image shown in Figure 4(a). The
objective is to distinguish the cameraman and the back-
ground. Figure 4(b) and 4(d) show the segmentation
contour and the sampled regions by our proposed algo-
rithm. Figure 4(c) and 4(e) show the segmentation con-
tour and the sampled regions by Zhu-Tai-Chan
(ZTC’s) algorithm.34 In Figure 5, a liver CT image is
used to compare both algorithms. The result

demonstrates that the tissue target in Figure 5(a) is
detected without false alarm by using the proposed
algorithm and ZTC’s algorithm (see Figure 5(b)–5(e)).
We see that, with the empirically optimal parameters,
the differences in solution’s visual quality between each
algorithm is very small, though our new and primal-
dual algorithm is slightly better (more details available).
However, in Table 2, where the iteration number and
CPU times of the both algorithms are tested, our new
algorithm performs more efficiently (with fewer iter-
ations and less computation time).

In some cases, one might want to do simulations on
a sample containing trabecular bone. However, it is
notable that some of the connectivity in the trabeculae
bone is lost, which is quite important for some appli-
cations and affects the mechanical stiffness of this part.
The problem is that preserving the small feature of con-
nected complete trabeculae bone (the small feature
being the thin trabeculae) is not possible when using a
popular CV model based on total variation regulariza-
tion. To illustrate the advantage of Euler’s elastica
in integrating missing or broken parts,34 we apply our
algorithm to an image with incomplete trabeculae,
as shown in Figure 6(a). Our method gives more satis-
factory results in Figure 6 since our method works well
at connecting the missing information and preserving
more details in the bone image. It clearly shows that the

Figure 6. Euler’s elastica-based image segmentation: bone micro CT image. (a) Original image. (b) The contour {x : u(x)¼ 0.5} by our

algorithm. (c) The contour {x : u(x)¼ 0.5} by ZTC algorithm.34

Table 2. Iterations (Iters) and CPU times (CPU(s)) of different examples and different image sizes by using our Algorithm 2 and the

ZTC algorithm.

size

Camera (see Figure 4(a)) Liver-CT (see Figure 5(a)) Bone-CT (see (a))

ALPD ZTC34 ALPD ZTC34 ALPD ZTC34

Iters CPU(s) Iters CPU(s) Iters CPU(s) Iters CPU(s) Iters CPU(s) Iters CPU(s)

256	 256 58 8.47 105 25.12 45 7.78 88 22.31 66 9.06 123 27.94

512	 512 61 29.33 112 90.51 43 28.63 102 101.81 72 33.15 135 128.72

ZTC: Zhu-Tai-Chan..
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proposed method is suitable for segmentation of trabe-
culae bone.

Conclusions

A novel implementation formula solving Euler elastica
regularizer for image denoising and segmentation
is proposed in this paper. There are two novelties.
One is that a new constraint ðnnT � IÞru ¼ 0 is intro-
duced to represent the normal vector n ¼ ru

jruj, which
can reduce the singularity of variant u and computa-
tional cost. The other is the Legendre–Fenchel trans-
formations and augmented Lagrangian technique are
incorporated into the Euler elastica energy functional.
Furthermore, the proposed method is faster and
easier to implement than the other surface evolution
based and augmented Lagrangian based methods.
According to our experimental results, we find that
our approach is competitive with other state-of-the-
art algorithms.
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