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Abstract

We give an easily handled algorithm for the word problem in each

of Artin’s braid groups, Bn, based on Garside’s methods, but framed

more directly in terms of the set of positive braids in which each pair

of strings crosses at most once.

We develop a natural partial order on each braid group defined

in terms of positive braids, and apply this to compare braids with

different powers ∆r of the fundamental half-twist braid ∆. This leads

to an improvement of Garside’s conjugacy algorithm, using a much

smaller finite subset of each conjugacy class, which we term the super

summit set, to represent the class, in place of Garside’s summit set.

Introduction

The emphasis in this paper is on the set of positive braids, those elements
of Artin’s braid group Bn which can be written as a word in positive powers
of the usual generators, σ1, . . . , σn−1. We shall regard elements of Bn as
geometric braids, given up to isotopy by an arrangement of n strings running
monotonically from top to bottom between two parallel discs. We study the
braid group in terms of the set S+

n of positive permutation braids. These are
defined to be positive braids in which each pair of strings crosses at most
once, and they are shown to be in 1-1 correspondence with the permutations
in Sn. Two canonical forms for positive braids as products of braids in S+

n

are given, a left and a right handed form, along with a readily mechanised
algorithm for writing every braid in canonical form. This is a useful technique
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for handling braids, as permutations can be dealt with very easily, and the
algorithm is capable of quick hand use in diagrammatic form for short braids.

The algorithm and related developments provide us with:

1. An easily handled approach to Garside’s solution of the word problem
in Bn.

2. An improvement of Garside’s solution of the conjugacy problem, by re-
ducing his study of the ‘summit set’ to that of a much smaller invariant
class under conjugation, the ‘super summit set’.

3. An algorithm to decide whether (∆n)k is a factor of a given positive
braid, where the fundamental braid ∆n is the positive braid in Bn in
which each pair of strings crosses exactly once. This happens if and
only if at least k of the canonical factors of the braid are equal to ∆n.

4. An algorithm to decide whether a given positive braid is a factor of
(∆n)k. This happens if and only if its canonical form has at most k
factors.

In the next section properties (3) and (4) are recast in the framework of
a natural partial order on Bn. Some features of Bn which become obvious in
this setting serve to clarify the organisation of (1) and (2).

Since a general braid can always be expressed as the product of a positive
braid and a, possibly negative, power of ∆n our study extends readily to the
general case. The algorithms as given here were originally described in [5].
The groundwork and key lemmas originate from Garside [6] via Birman [2],
while one very useful result from our point of view comes from the appendix
to Garside’s thesis [7]. The presentation and emphasis has been considerably
adapted here, and results in a much shorter conjugacy algorithm. With very
little change a more even-handed view can be given, using both positive and
negative braids with no special preference for positive; such an approach has
been recently described by Thurston [10]. We note in section 5 the minor
modifications needed to pass from one view to the other for a general non-
positive braid.

The class of links which arise as the closure of positive braids is of some
independent geometric interest. All such links are fibred [9], and they in-
clude as special cases the algebraic links, arising from isolated singularities
of polynomials in C2, and Lorenz links, which appear as orbits of a certain
dynamical system [3, 4]. The algorithms presented here can be used to tackle
questions about special classes such as the Lorenz links [5].
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1 Artin’s braid group

Artin’s classical result [1] gives a presentation for the group Bn of braids on
n strings by generators σ1, . . . , σn−1, where σi represents the geometric braid
in which strings i and i + 1 cross once only as indicated below.

i i+1

i =σ

The relations in his presentation are

1. σiσj = σjσi, |i − j| > 1,

2. σiσi+1σi = σi+1σiσi+1, 1 ≤ i ≤ n − 2.

Definition. A positive braid is an element of Bn which can be written as a
word in positive powers of the generators {σi}, without the use of the inverse
elements σ−1

i .
A positive braid word is an explicitly written word w(σ1, . . . , σn−1).

Notation. Write B+
n for the set of positive braids in Bn.

Remark. The abelianisation map defines a natural homomorphism wt :
Bn → Z, by wt(σi) = 1, which coincides with the length of a positive braid
word on B+

n .

There is an automorphism τ : Bn → Bn, which can be thought of as
‘turning over’ a braid. It is defined by τ(σi) = σn−i.

One other map suggested by symmetries of geometric braids is the ‘re-
versing’ anti automorphism rev : Bn → Bn, defined by rev(σi) = (σi). This
has the effect on a geometric braid of turning it over from top to bottom,
when it will be read as the reverse word in the braid generators.

Notation. Write ∆n ∈ Bn for the ‘fundamental braid’, described as a
geometric n-braid by imagining the strings attached to a rod which is given
a positive half-twist. It can be defined inductively by

∆n = ∆n−1σn−1σn−2 · · ·σ1

starting with ∆1 = σ1.

Although ∆n is not immediately recognisable in Bn from a group-theoretic
point of view, its square generates the centre of Bn, while it is readily shown
that the automorphism τ is conjugation by ∆n.
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Before giving details of our algorithms and their proofs we shall make
some further definitions to put our extension of Garside’s conjugacy algo-
rithm into a natural context. We shall make considerable use of comparisons
between our given braid element and powers of ∆n; our algorithms will allow
us to make these comparisons very explicitly.

We start by using the positive braids B+
n to define a partial order on Bn.

Notation. For A,B ∈ Bn write A ≤ B when B = C1AC2 for some
C1, C2 ∈ B+

n .

We then have
B ∈ B+

n ⇔ e ≤ B

and
A ≤ B ⇔ B−1 ≤ A−1.

In what follows we shall write ∆ for ∆n unless there is any danger of
ambiguity.

Lemma 1.1 Each generator σi satisfies e ≤ σi ≤ ∆.

Proof: Immediate from the inductive definition of ∆. 2

Lemma 1.2 If A ≤ ∆s then ∆s = D1A = AD2 for some D1, D2 ∈ B+
n .

Proof: Write ∆s = C1AC2 with C1, C2 ∈ B+
n . Then

∆s = τ s(C2)C1A = AC2τ
s(C1),

since ∆sC2 = τ s(C2)∆
s. 2

Similarly,

Lemma 1.3 If ∆r ≤ A then A = E1∆
r = ∆rE2 for some E1, E2 ∈ B+

n .

Garside’s original algorithms make considerable use of ‘initial braids’ and
‘final braids’, which can be expressed in our terminology as braids B with
e ≤ B ≤ ∆, using lemma 1.2. We shall show later how these braids, which
we call positive permutation braids, can be readily described geometrically,
and identified with permutations in Sn, which we exploit as a ready means
of referring to them without having to use explicit braid words.

Lemmas 1.2 and 1.3 give the immediate corollary:

Corollary 1.4 If ∆r1 ≤ B ≤ ∆s1 and ∆r2 ≤ C ≤ ∆s2 then

∆r1+r2 ≤ BC ≤ ∆s1+s2 .
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We may then place every braid somewhere between powers of ∆.

Theorem 1.5 Every B satisfies ∆r ≤ B ≤ ∆s for some r, s ∈ Z.

Proof: Write B as a word in {σ±1

i } and use corollary 1.4, and the fact that
e ≤ σi ≤ ∆ and ∆−1 ≤ σ−1

i ≤ e. 2

Notation. Write [r, s] ⊂ Bn for the subset {B ∈ Bn : ∆r ≤ B ≤ ∆s}.

We shall use the common group-theoretic notation for subsets of groups,
in which ST = {st ∈ G : s ∈ S, t ∈ T} ⊂ G where S, T are subsets of a
group G. Then [r, s] = ∆r[0, s − r], and we may study a braid by looking at
the ‘braid intervals’ in which it lies.

Clearly there will be a shortest braid interval [r, s] containing a given
braid B.

Definition. For B ∈ Bn set inf B = max{r : ∆r ≤ B} and sup B = min{s :
B ≤ ∆s}. Call ℓ(B) = sup B − inf B the canonical length of B.

It is a consequence of corollary 1.4 that ℓ(AB) ≤ ℓ(A) + ℓ(B).

Remark. In Garside’s terminology, the power of B is exactly the same as
inf B, since we have r = inf B if and only if B = ∆rB′ with e ≤ B′ and
∆ 6≤B′. This last condition is referred to by Garside as ‘B′ is coprime to ∆’.

Although he did not introduce a counterpart of supB, it may be noted
that − sup B = inf B−1 is the power of B−1 in Garside’s sense.

While the analogy with real intervals is useful, it is not close enough to
behave well under unions. However, corollary 1.4 can be read as

[r1, s1][r2, s2] ⊂ [r1 + r2, s1 + s2],

and we shall show later that this inclusion is an equality. Consequently any
B can be written as the product of ∆r with ℓ(B) braids in [0, 1], where
r = inf B. This factorisation, which can be chosen uniquely under a further
hypothesis, forms the basis of the algorithm for the word problem, and is
essentially that given by Garside.

The conjugacy problem was solved by Garside by noting that there are
only finitely many braids B′ of the same weight wt B′ with ∆r ≤ B′, so that
there is a maximum value of inf B′ among braids B′ which are conjugate to
a given braid B, called the ‘summit power’ of B. There are then finitely
many conjugates of B having this summit power, and these constitute the
‘summit set’ of B. Since two elements are conjugate if and only if they have
the same summit sets, the conjugacy algorithm is completed by an algorithm
to construct the summit set. This is done by showing that there is a chain
of conjugates leading from B to any element of its summit set in which the
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power never decreases along the chain, and successive elements are conjugate
by some element of the finite set of braids [0, 1].

We show that the same result applies to the ‘super summit set’ of a braid
B, which is the subset of the summit set consisting of braids B′ of minimal
canonical length ℓ(B′). The resulting algorithm, in constructing a smaller,
more constrained set, is then quicker and more practical.

2 Positive braids

We can study a braid B ≥ ∆r by studying the positive braid ∆−rB so this
section will concentrate on the set B+

n of positive braids. Garside works ini-
tially with positive words regarded as elements of the semigroup generated by
σ1, . . . , σn−1, with the Artin relations. This imposes an equivalence relation,
which he denotes by =

.

, on the set of positive words. While equivalent words
are equal in Bn it is conceivable that the converse does not hold. Garside
proves an embedding theorem, to show that words which are equal in Bn are
also equal in the semigroup.

We shall make use of a key lemma of Garside, which can be proved readily
for the semigroup, but relies on his embedding theorem for its application to
Bn.

Notation. Write

σi ∗ σj =











σi, i = j

σiσj, |i − j| > 1,

σiσjσi, |i − j| = 1.

Lemma 2.1 (Garside). Let P = σiP1 = σjP2 with P1, P2 ≥ e. Then P3 ≥ e,
where P = (σi ∗ σj)P3.

We shall look at factorisations of positive braids into positive factors,
drawing on this lemma to guarantee the uniqueness of our factorisation under
suitable conditions.

Definition. The starting set , S(P ) ⊂ {1, . . . , n − 1}, for a positive braid
P ≥ e, is the set

S(P ) = {i : P = σiPi, Pi ≥ e}.

Similarly the finishing set of P is

F (P ) = {i : P = Piσi, Pi ≥ e}.
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Clearly F (P ) = S(rev P ).

Definition. A positive factorisation P = AB with A,B ≥ e is a left-

weighted factorisation if S(B) ⊂ F (A), and is right-weighted if S(B) ⊃
F (A).

We want to factorise a given positive braid successively by left-weighted
factorisations P = A1P1, P1 = A2P2, . . . where the left-hand factor Ai lies in
[0, 1] in each case. Such a factorisation is the heart of Garside’s solution to
the word problem.

Lemma 2.2 Every P ≥ e has a unique left-weighted factorisation P = A1P1

with A1 ∈ [0, 1]. Every other positive factorisation P = AB, with A ∈ [0, 1],
satisfies A1 = AQ for some Q ≥ e.

Before giving the proof we discuss the braids in [0, 1] from a more geometric
viewpoint, so that their properties may be more easily recognised, and the
braids handled more readily.

For a positive geometric braid we can count the number of crossings,
which will always be in the same sense, between any chosen pair of strings.
This number is not altered by isotopy of the braid, and will not depend on
which explicit positive braid word is used to represent the braid.

Definition. A braid A ≥ e is called a positive permutation braid if it can
be drawn as a geometric braid in which every pair of strings crosses at most
once.

Notation. Write S+
n for the set of positive permutation braids.

We shall shortly show that S+
n consists exactly of the set [0, 1]. First we

show how S+
n corresponds bijectively to the set Sn of permutations.

Lemma 2.3 If the braids A1, A2 ∈ S+
n induce the same permutation on their

strings then A1 = A2. For each π ∈ Sn there is a braid Aπ ∈ S+
n which

induces that permutation.

Proof: Number the strings of each braid 1, . . . , n according to the top point
of each string. Then strings i and j have at most one crossing point, where
string j passes in front of string i if i < j. Each braid can then be drawn
in a box in which string 1 lies in a vertical plane at the furthest back level,
with the other strings in a succession of vertical planes lying further forward.
Because A1 and A2 induce the same permutation on their strings the ith
string in each braid runs to the same point at the bottom of the braid, and
one braid can be moved to the other by isotopy keeping each string in its
vertical plane.
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To construct Aπ it is enough to find a geometric braid with permutation
π in which pairs of strings cross at most once. Arrange n points at the top
and bottom of a rectangle, and draw lines in the plane joining point i at the
top to point π(i) at the bottom, so that pairs of lines cross at most once,
and only two lines cross at any one point. This is a familiar diagrammatic
way of visualising the permutation π. Convert this into a braid diagram
by separating the lines at every crossing to make a positive crossing. This
requires that the line from i crosses under the line from j if i < j. 2

Examples of two such braids, P1 with permutation (143) and P2 with permu-
tation (14), are shown below. They can be written as explicit braid words
in several ways, for example P1 = σ1σ2σ3σ1 and P2 = σ1σ3σ2σ3σ1. The great
benefit of this lemma is however that it is quite unnecessary to remember
these braids as braid words; the permutation is quite enough, and makes for
much greater ease in comparing such braids.

P1 P2

It can be seen from a diagram, for example, exactly what the starting set
of a braid in S+

n must be.

Lemma 2.4 For Aπ ∈ S+
n the following are equivalent:

1. i ∈ S(Aπ),

2. strings i and i + 1 cross in Aπ,

3. π(i + 1) < π(i).

Proof: Clearly (2) and (3) are equivalent since strings cross at most once.
If Aπ = σiA

′ with A′ ≥ e then (2) follows, since the strings cross in σi. If (2)
holds then a diagram of the permutation can be drawn in which this crossing
is the first to take place. Construction of Aπ as a braid from this diagram
gives a braid word starting with σi. 2

We can then see immediately that the two braids P1 and P2 in the figure
above have S(P1) = {1, 2}, F (P1) = {1, 3}, S(P2) = F (P2) = {1, 3}, using
lemma 2.4 applied to each braid and its reverse.

Lemma 2.5 Let A ∈ S+
n . Then σiA ∈ S+

n if and only if i /∈ S(A).
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Proof: Strings i and i+ 1 in σiA cross once if i /∈ S(A) and twice otherwise,
while all other pairs cross at most once. 2

Remark. An extension of this proof shows that if i, j /∈ S(A) then σi∗σjA ∈
S+

n , while application of proposition 2.5 to revA shows that similar results
hold for the finishing set. Calculations of the starting sets for Aπ can be made
very quickly using the factorial coordinates described in [8] when listing the
permutations π ∈ Sn.

Theorem 2.6 The subsets [0, 1] and S+
n of Bn are identical.

Proof: Clearly ∆ ∈ S+
n as every pair of strings crosses once. It is also

immediate that if P = AB ∈ S+
n with A,B ≥ e then any pair of strings in

A can cross at most once, since they have at most one crossing in the whole
braid P . Thus A, and equally B will also lie in S+

n . Now any A ∈ [0, 1]
satisfies AB = ∆ for some B ≥ e, so A ∈ S+

n .
Conversely, suppose that A = Aπ ∈ S+

n . Let δ ∈ Sn be the permutation
of ∆, namely δ(i) = n − i. Let ρ be the permutation with πρ = δ. Then
AπAρ is a positive braid with permutation πρ = δ so it is enough to show
that it lies in S+

n to deduce that AπAρ = Aδ = ∆ and hence that Aπ ∈ [0, 1].
Now any pair of strings in AπAρ can cross at most twice. Since the resulting
permutation is δ each pair of strings crosses an odd number of times, and
hence each pair crosses exactly once. 2

The braid ∆ satisfies S(∆) = F (∆) = {1, . . . , n − 1}, since we have
shown in 1.1 that σi ≤ ∆ for each i. The converse holds, as shown in the
next lemma.

Lemma 2.7 Let A ∈ S+
n satisfy S(A) = {1, . . . , n − 1}. Then A = ∆.

Proof: Let A have permutation π. Then π(i) > π(i + 1) for each i, since
i ∈ S(A). Thus π(i) > π(j) for each i < j, so that strings i and j cross in A
for each i, j. Then A is the positive permutation braid in which every pair
of strings crosses, so A = ∆. 2

The same result follows with F (A) in place of S(A), by applying lemma 2.7
to rev A.

We now return to the proof of lemma 2.2, using the identification of the
sets [0, 1] and S+

n , and the properties of S+
n which we have just established.

Proof: Proof of lemma 2.2 We start by showing the existence of a left-
weighted factorisation P = A1P1 with A1 ∈ S+

n .
Consider all positive factorisations P = AB with A ∈ S+

n , and select
one in which wt A is maximal. If S(B) 6⊂ F (A) then we can find i ∈ S(B)
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with i /∈ F (A). By lemma 2.5 we have A′ = Aσi ∈ S+
n and B = σiB

′ with
B′ ≥ e giving another positive factorisation P = A′B′ with A′ ∈ S+

n and
wt A′ > wt A, so the selected factorisation must be left-weighted. Write this
factorisation as P = A1P1.

We now show that every other positive factorisation P = AB with A ∈ S+
n

is a subfactorisation, in the sense that A1 = AQ for some Q ≥ e. Otherwise
there exist factorisations P = CσiB

′ with Cσi ∈ S+
n such that C ∈ S+

n is
a subfactor of A1 but Cσi is not. Choose such a factorisation with largest
possible wt C, and write A1 = CQ. Now wt A1 ≥ wt Aσi > wt A, by the
maximality of wt A1, so Q 6= e. We may then choose j ∈ S(Q). Then
Cσj ≤ A1 and so Cσj ∈ S+

n . Write the resulting factorisation as P = CσjB
′′.

Apply Garside’s lemma to B = σiB
′ = σjB

′′ to see that P = C(σi ∗ σj)B
′′′

for some B′′′ ≥ e.
Now C(σi ∗ σj) ∈ S+

n , by the remark following lemma 2.5. This yields a
factorisation of P with a larger subfactor (at least containing Cσj) in common
with A1 while C(σi ∗ σj) is not itself a subfactor of A1.

It follows immediately that the left-weighted factorisation P = A1P1 is
unique, for if P = AB is another such, then we can write A1 = AQ with
Q ≥ e. Either Q = e and A = A1 as claimed, or we can find i ∈ S(Q). Then
i /∈ F (A), since Aσi ≤ A1 ∈ S+

n . However B = QP1, so i ∈ S(B) and the
factorisation P = AB is not left-weighted. 2

Corollary 2.8 Let P ≥ e have left-weighted factorisation P = A1P1, with

A1 ∈ S+
n . Then S(A1) = S(P ).

Proof: Clearly S(A1) ⊂ S(P ).
Let i ∈ S(P ). Then P = σiB with B ≥ e, so by lemma 2.2 we have

A1 = σiQ for Q ≥ e, and hence i ∈ S(A1). 2

As a result we have the left-canonical form for positive braids as follows:

Theorem 2.9 There is a unique expression for P ≥ e as P = A1A2 · · ·Ak

with Ai ∈ [0, 1], Ak 6= e and S(Ai+1) ⊂ F (Ai) for each i.

Proof: Take Pi = Ai+1 · · ·Ak, and P0 = P . Then AiPi is the unique left-
weighted factorisation of Pi−1. This follows by downward induction on i since
then S(Pi) = S(Ai+1) from corollary 2.8. 2

Remark. We can find inf P immediately from this expression for P , by
observing that P ≥ ∆ if and only if A1 = ∆. For if P ≥ ∆ then P = ∆Q
for Q ≥ e. Then S(P ) = {1, . . . , n − 1} and so, by corollary 2.8, S(A1) =
{1, . . . , n−1}. Then lemma 2.7 ensures that A1 = ∆. Using lemma 2.7 again
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we can see that if Ai = ∆ in the left-canonical form, then Aj = ∆ for all
j < i, so that

inf P = max{i : Ai = ∆}.

An extension of this result will be used in identifying sup P .

Lemma 2.10 Let P ≥ e have left-weighted factorisation P = A1P1, with

A1 ∈ [0, 1]. If B ≥ e and BP ≥ ∆ then BA1 ≥ ∆.

Proof: By induction on wt B. The result holds for B = e. Otherwise we
can write B = B′σi and P ′ = σiP to get B′A′

1 ≥ ∆, where A′

1 ∈ [0, 1] is
the initial left-weighted factor of P ′ = A′

1P
′

1. Now i ∈ S(P ′) so i ∈ S(A′

1),
by corollary 2.8. Write A′

1 = σiA
′′

1. Then A′′

1 ∈ [0, 1], and P = A′′

1P
′

1. From
proposition 2.2 we have A1 = A′′

1Q for some Q ≥ e. Now BA′′

1 = B′A′

1 ≥ ∆,
and hence BA1 = BA′′

1Q ≥ ∆. 2

Theorem 2.11 Let P ≥ e have left-canonical form P = A1A2 · · ·Ak. Then

supP = k.

Proof: By induction on k.
Write s = sup P . Then s ≤ k, since P ∈ [0, k] by corollary 1.4. Now

s ≥ 1, unless P = e when there is nothing to prove. We can then find B ≥ e
with BP = ∆s. Now BA1 ≥ ∆ by lemma 2.10, so that BA1 = ∆B1 with
B1 ≥ e. Then ∆s = BP = ∆B1P1, where P1 = A2 · · ·Ak, so B1P1 = ∆s−1,
and P1 ≤ ∆s−1. By induction, sup P1 = k − 1, giving k − 1 ≤ s− 1 and thus
s = k. 2

For a general braid P ≥ ∆r we may write P ′ = ∆−rP ≥ e and then
sup P = r + sup P ′ which can be calculated from the canonical form of the
positive braid P ′, as can inf P = r + inf P ′.

Having identified inf P and sup P in terms of the left-canonical form of
a suitable positive braid we now give an explicit algorithm, based on the
factorisation criterion in theorem 2.9, which will put a positive braid in left-
canonical form, and so implement Garside’s solution of the word problem.

Remark. We can also define the right-canonical form for a positive P , by
writing P = A1 · · ·Ak, with Ai ∈ [0, 1], A1 6= e and S(Ai+1) ⊃ F (Ai) for each
i, based on successive right-weighted factorisations of P . The right-canonical
factorisation is exactly the reverse (all factors and their order reversed) of
the left-canonical factorisation of revP . It follows immediately that inf P
and sup P can be calculated in a similar way from the right-canonical form,
and in particular, the number of factors will be the same in each case.
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A similar analysis can be based on S−

n = [−1, 0], the set of negative
permutation braids, to give negative canonical forms. The left-canonical
form of a positive braid P based on S+

n yields the right-canonical form of
P−1 based on S−

n .

3 The word algorithm

The aim is to start from a word P and write P = ∆rP ′ where P ′ ≥ e but
P ′ 6≥∆ and give the left-canonical form of P ′ as a sequence of permutations.
Any other word Q = P will give the same r and sequence of permutations,
by the uniqueness in theorem 2.9.

Algorithm

Suppose then that we have written P in some way as ∆rP ′, and P ′ is the
product B1B2 · · ·Bk of positive permutation braids. Find the sets F (Bi) and
S(Bi). If S(Bi+1) ⊂ F (Bi) for each i then, by theorem 2.9, we have reached
the left-canonical form for P ′, except possibly for some final factors of e.
Incorporate any initial factors of ∆ in the initial power of ∆; the remaining
terms give the left-canonical form for P . The output of the algorithm is
the power of ∆ and the sequence of permutations defining the permutation
braids.

Otherwise find the first i for which S(Bi+1) 6⊂F (Bi) and select j ∈ S(Bi+1)
with j /∈ F (Bi). Then Ci = Biσj and Ci+1 = σ−1

j Bi+1 both lie in S+
n . Use

them to replace Bi, Bi+1 in the factorisation, and continue as before. This
completes the algorithm.

Proof: The replacement gives a higher weighted sequence, in dictionary
order of weights, and there are a finite number of sequences of a fixed total
weight, so the process terminates. 2

To start the algorithm we must write the braid as the product of a power
of ∆, to take account of negative letters in the given braid word, and a
positive braid word. This can certainly be done by rewriting each σ−1

i as
∆−1σ∗

i with σ∗

i ∈ [0, 1] and then collecting all the powers of ∆ to the left,
although it is generally possible to handle consecutive negative letters more
efficiently. It remains to express the positive braid word as a product of
positive permutation braids. There is nothing to do, other than to observe
that each σi lies in [0, 1], but a more efficient start can be made by reading
the braid word from the left, and taking the longest initial subword that lies
in [0, 1] as the first permutation braid, before continuing.
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Implementation

For an algebraic implementation the most useful technique is to have a list
of the elements of Sn with a table of products of each π ∈ Sn with the
elementary transpositions τi = (i i + 1), on the left and on the right, and
a means of checking whether π(i) > π(i + 1). Given also the reverse map
rev : Sn → Sn for our listing we can then find immediately the sets S(Aπ)
and F (Aπ) for each positive permutation braid. The test for the starting and
finishing sets on adjacent permutations in the sequence can then be carried
out quickly. If the two permutation braids have to be adjusted by moving
σj from the right to the left then the new permutations can be found readily
from the left and right multiplication information in Sn.

Practical storage of the information can be arranged by following the
‘factorial coordinate’ method, [8], for listing permutations g = 1, . . . , n! in
terms of an expression g = 1+g11!+g22!+ . . . +gn−1(n−1)! with 0 ≤ gi ≤ i.
The factorial coordinates gi count the number of crossings of string i + 1
with lower numbered strings in the permutation g. When this ordering for
the permutations is used, a table for left multiplication of the permutation
g by τj can be readily constructed, and the product permutation is greater
than g if and only if the braid σjAg is again a positive permutation braid.
This provides a ready check on the set S(Ag).

The storage that is needed can then be limited to the left multiplication
table, an array of n! × (n − 1) integers, and the reverse map, listing the
permutations rev g for each g as a further array of n! integers. These allow
for right multiplication and checking of F (Ag) by using left multiplication on
the reverse braids.

A geometric example

Where a positive braid is given geometrically, it can be surprisingly easy to
use the visual approach suggested by lemma 2.4 to arrive at its left-canonical
form.

Let P = σ1σ3σ
2
2σ3σ1σ3σ2σ3σ2. Working down this braid as in the figure

below we can partition it into permutation braids by continuing until a pair
of strings are about to cross for the second time, and then starting a new
permutation braid. Then look at adjacent pairs of permutation braids, and
see if any adjacent pair of strings crosses in the lower but not the upper braid.
If so, move it up and continue, otherwise stop.

13



= = =

The result in our example is a sequence of moves finishing with

P = (σ1σ3σ2σ1)(σ2σ1σ3σ2)(σ2)(σ2)

from which we have inf P = 0 and sup P = 4 together with a description of
the left-canonical form by a sequence of four permutations.

4 The conjugacy algorithm

As outlined in section 2, this depends on listing all the conjugates of the
given P in the interval [r, s] where r is as large as possible, and s is as small
as possible, given r. We have to show that a finite process of conjugating
with braids in [0, 1] will yield the complete list. The following ‘convexity
theorem’ provides the backing for the algorithm, and is an adaptation of a
result of Garside.

Theorem 4.1 Let P,Q ≥ ∆r be conjugate. We may suppose that A−1PA =
Q for some A ≥ e. Then A−1

1 PA1 ≥ ∆r where A1 ∈ [0, 1] is the first factor

in the left-canonical form of A.

Proof: The requirement that A ≥ e can be made without loss of generality,
for if PB = BQ we can write B = ∆2jA with A ≥ e and then PA = AQ
also.

It is enough to prove the theorem in the cases r = 0 and r=1, for we may
consider P ′ = ∆−2jP and Q′ = ∆−2jQ, when A−1P ′A = Q′.
Case 1 Given that A−1PA = Q and P,Q ≥ e we must show that P1 =
A−1

1 PA1 ≥ e. Now ∆A−1

1 = A∗

1 ∈ S+
n , so

A∗

1PA = A∗

1AQ = A∗

1A1A
′Q = ∆A′Q,

14



where A = A1A
′. Then A∗

1PA ≥ ∆, and we can apply lemma 2.10 with
A∗

1P in the role of B and A in the role of P to get A∗

1PA1 ≥ ∆, and hence
P1 = ∆−1A∗

1PA1 ≥ e.
Case 2 Now suppose that A−1PA = Q with P,Q ≥ ∆. Write P = P ′∆, Q =
Q′∆, and factorise A = A1A

′ as before. Then τ(A) = ∆−1A∆ = τ(A1)τ(A′),
giving a left-weighted factorisation of τ(A).

As above, A∗

1PA = A∗

1∆A′Q so

A∗

1P
′τ(A)∆ = ∆A′Q′∆

and thus A∗

1P
′τ(A) ≥ ∆. Apply 2.10 again to get A∗

1P
′τ(A1) ≥ ∆. Now

τ(P1) = τ(A−1

1 )τ(P )τ(A1)

= ∆−1τ(A∗

1)∆P ′τ(A1)

= A∗

1P
′τ(A1)

≥ ∆.

Hence P1 ≥ ∆ also. 2

Corollary 4.2 Let P,Q ∈ [r, s] be conjugate. Then there is a sequence P =
P0, P1, . . . , Pk = Q of braids, all in [r, s], such that each element is conjugate

to the next by an element of [0, 1].

Proof: Take A with A−1PA = Q and write A in left-canonical form as
A = A1 · · ·Ak. Set Pi = A−1

i Pi−1Ai. The result follows by induction on k
once we show that P1 ∈ [r, s]. Now P1 ≥ ∆r by theorem 4.1, so it remains
to show that P1 ≤ ∆s.

Now P−1, Q−1 ≥ ∆−s and A−1P−1A = Q−1 so by theorem 4.1 again we
have P−1

1 = A−1

1 P−1A1 ≥ ∆−s and thus P1 ≤ ∆s. 2

The general algorithm then is a procedure to construct the super summit
set of the given braid P .

Definition. The super summit set of a braid P is the set of conjugates P ′

of P with inf P ′ maximal, and sup P ′ minimal within these.

Although it is conceivable that no conjugate simultaneously achieves a
minimum for sup and a maximum for inf, we shall see from a subsidiary
algorithm that supP ′ is in fact an overall minimum on the super summit set,
so that it could equally be defined as the set of conjugates of P which have
minimal canonical length.
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Algorithm

The conjugacy problem can now be solved for P and Q by determining the
super summit set for P , finding one element of the super summit set for
Q and comparing them. All elements of the super summit set of P can be
found by conjugating repeatedly with elements of [0, 1], while discarding any
elements for which inf decreases or sup increases. Where P ∈ [r, s] there are
only finitely many conjugates of P within the interval, and these will all be
found by the algorithm, by corollary 4.2. In fact the required interval may
well be contained strictly in [r, s]; if one conjugate in a subinterval is found,
then all previous conjugates with wider bounds may be discarded in the
search, which stops when no conjugates of elements on the list by elements
of [0, 1] produce any new elements in the interval.

The next lemma allows us to give a quick algorithm to find the ‘summit
power’ of P , i.e. the maximum value of inf on its conjugacy class. It relies on
‘cycling’ the left-canonical form of P to give a conjugate, as defined below.
If any conjugate of P has a higher power then one such will be found by
repeatedly cycling P , as shown in the next lemma.

Definition. Let P = ∆rP1P2 · · ·Pk where r = inf P and P1 · · ·Pk is the
left-canonical form of the positive braid ∆−rP . Then P1 6= ∆ and we can
form the conjugate c(P ) = ∆rP2 · · ·Pkτ

r(P1) which we say is given by cycling

P .

Notice that c(P ) may not be given in left-canonical form directly, but
application of the word algorithm shows that inf c(P ) ≥ r = inf P and
sup c(P ) ≤ k + r = sup P .

In fact inf c(P ) ≤ inf P +1 and sup c(P ) ≥ sup P −1 since if P = A−1QA
or AQA−1 with A ∈ [0, 1] and Q ∈ [r′, s′] then P ∈ [r′−1, s′ +1] by corollary
1.4.

Lemma 4.3 Suppose that P is conjugate to Q with inf Q > inf P . Then

repeated cycling will produce cj(P ) with inf cj(P ) > inf P , for some j.

Proof: Let Q = APA−1 with A ≥ e, and let inf Q > r = inf P . The proof is
by induction on wt A.

We have A∆rP ′ = QA, where P = ∆rP ′ and Q = ∆rQ′ with Q′ ≥ ∆.
Then τ r(A)P ′ = Q′A ≥ ∆, so by 2.10 τ r(A)P1 ≥ ∆, where P1 6= ∆ is the first
term in the left-canonical form of P ′. Now Aτ r(P1) ≥ ∆, and we can write
Aτ r(P1) = A′∆ where A′ ≥ e. Since τ r(P1) ≤ ∆ we can write ∆ = A′′τ r(P1)
with A′′ ≥ e. Then A = A′A′′ with wt A′ = wt A − wt A′′ < wt A by the
assumption that P1 6= ∆. Now τ r(P1)c(P ) = Pτ r(P1) by definition of c(P ),
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and so

QAτ r(P1) = APτ r(P1)

= Aτ r(P1)c(P ).

Since Aτ r(P1) = A′∆ this gives QA′∆ = A′∆c(P ). On extracting the factor
of ∆ we get τ(Q)τ(A′) = τ(A′)c(P ) so that c(P ) is conjugate to τ(Q) by the
positive braid τ(A′) with smaller weight than A. Now inf τ(Q) = inf Q, so
either inf c(P ) > inf P or, by induction on the weight, some further cycling
of c(P ) will lead to an increased value of inf. 2

Corollary 4.4 In every conjugacy class the maximum value of inf and the

minimum value of sup can be achieved simultaneously. Thus the super sum-

mit set for a braid is the subset of its conjugacy class on which the canonical

length ℓ is minimum.

Proof: Let P achieve the minimum value of sup and let Q be a conjugate with
the maximum value of inf. If inf P < inf Q then repeated cycling of P will
increase inf without increasing sup until both extreme values are achieved.2

Thus the process of repeated cycling of P will lead to the maximum
value of inf, recognised when cycling starts to repeat conjugates already
found. Notice that cycling a second time requires explicit calculation of the
canonical form for c(P ) and cannot be done immediately from the form for
P . Thurston [10] claims that if inf P is not the maximum value, then inf
increases immediately, at the first cycling, c(P ). This would give a very
quick test indeed to find the summit power, but unfortunately it is not true,
as the following example, due to Birman, shows.

Example. Let P = σ1σ
2
2σ3σ1σ

2
2. Then the left canonical form can be

readily found from the word algorithm to be P = (σ1σ2)(σ2σ3σ1σ2)(σ2),
giving inf P = 0 and sup P = 3. We have

c(P ) = (σ2σ3σ1σ2)(σ2)(σ1σ2)

= (σ2σ3σ1σ2)(σ2σ1σ2)

= (σ2σ3σ1σ2σ1)(σ2σ1).

This is now in canonical form, and still inf c(P ) = 0, although sup c(P ) =
2. However one further cycling gives c2(P ) = (σ2σ1)(σ2σ3σ1σ2σ1) = ∆σ2, so
that inf c2(P ) = 1 and sup c2(P ) = 2. Thus the change in value of inf is not
realised after the first cycling.

The value of inf will not be altered by further cycling, which will continue
to give ∆σ2.
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In general, the extreme values for inf and sup on the conjugacy class of
P can be found by cycling both P and P−1 until no new conjugates arise,
recalling that sup P = − inf P−1.

It is helpful to note that cycling P−1 for this purpose can be replaced by
‘reverse cycling’ P , where the last factor in the left-canonical form is moved
to the beginning. Explicitly, let P = ∆rP1P2 · · ·Pk where r = inf P and
P1 · · ·Pk is the left-canonical form of the positive braid ∆−rP , as above, and
define r(P ) = ∆rτ r(Pk)P1 · · ·Pk−1.

Lemma 4.5 We have (r(P ))−1 = τ(c(P−1)).

Proof: We can write
P−1 = ∆−r−kP ′

k · · ·P
′

1,

where
τ r+i−1(P ′

i )Pi = ∆ = Piτ
r+i(P ′

i ).

This is actually the left canonical form for P−1. It is enough to check that
S(P ′

i ) ⊂ F (Pi+1) for each i. Now if AB = ∆ with A,B ≥ e we have
F (A) ∪ S(B) = {1, . . . , n − 1} and F (A) ∩ S(B) = φ, since every pair of
strings in ∆ crosses once and once only. Then

F (Pi) ∪ S(τ r+i(P ′

i )) = {1, . . . , n − 1}

F (τ r+i(P ′

i+1)) ∪ S(Pi+1) = {1, . . . , n − 1}

while F (Pi) ∩ S(τ r+i(P ′

i )) = φ = F (τ r+i(P ′

i+1)) ∩ S(Pi+1).
Given that P is in left canonical form, we have S(Pi+1) ⊂ F (Pi). It

follows that S(τ r+i(P ′

i )) ⊂ F (τ r+i(P ′

i+1)), and so S(P ′

i ) ⊂ F (P ′

i+1).
Now we have c(P−1) = ∆−r−kP ′

k−1
· · ·P ′

1τ
r+k(P ′

k), and we can then con-
firm, by multiplication, that r(P )τ(c(P−1)) = e. 2

Then sup r(P ) = − inf τ(c(P−1)) = − inf c(P−1), and so sup rj(P ) =
− inf cj(P−1). Since we can find the largest value of inf on conjugates of P−1

by considering only cj(P−1) we will thus find the smallest value of sup on
all conjugates of P by considering only the successive reverse cycles rj(P ).
We can thus identify at least one element of the super summit set of P by
cycling and reverse cycling, until repetition occurs, without calculating the
whole super summit set.

In applying the algorithm to compare two elements P and Q we need only
use cycling and reverse cycling on Q, having found the whole super summit
set for P . Unfortunately, cycling is not enough in general to generate the
whole super summit set, for example when P = σ1 the other conjugates σi in
the super summit set will not appear by cycling. Restriction to consideration
only of the super summit set, coupled with the listing of elements by means
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of permutations does, however, give a much more effective algorithm than
Garside’s original. It should be practical to handle braids up to 6 strings
at least by this method, and we hope to make a computer implementation
shortly.

5 Concluding remarks

We have shown in corollary 1.4 that [r1, s1][r2, s2] ⊂ [r1 + r2, s1 + s2].

Lemma 5.1 We have [r1, s1][r2, s2] = [r1 + r2, s1 + s2].

Proof: It is enough to prove when r1 = r2 = 0. Let P ∈ [0, s1 + s2] and let
P have left canonical form P = A1A2 · · ·Ak. By theorem 2.11 k = sup P ≤
s1 + s2, so we can factorise P = P ′P ′′ with P ′ = A1 · · ·As1

∈ [0, s1] and
P ′′ ∈ [0, s2]. 2

A special example of this occurs where P is a general braid, neither
positive or negative. Then P ∈ [r, s] with r ≤ 0, s ≥ 0 and can be writ-
ten as a product P = P ′P ′′ of a negative and a positive braid, with P ′ ∈
[r, 0] and P ′′ ∈ [0, s]. Set k = s − r > −r > 0, and suppose that r =
inf P, s = sup P . Then P = ∆rP1P2 · · ·Pk, using the left-canonical form,
and P ′ = ∆rP1 · · ·P−r ≤ e while P ′′ = P1−r · · ·Pk. Now P ′ = Q1Q2 · · ·Q−r

where Qi = τ i−r(∆−1Pi) and Qi ∈ [−1, 0] is a negative permutation braid.
The left-weighting condition for the original decomposition of P ensures
that the representation of P ′ is the right-canonical form based on negative
permutation braids, and also at the interface between P ′ and P ′′ we have
F (P ′) ∩ S(P ′′) = φ.

Thurston notes this decomposition as a unique factorisation of P into
a product of a negative and a positive braid, in which no cancellation into
shorter braids can take place, for conversely any such factorisation, when
written in terms of the canonical forms for the two halves, can then reproduce
directly the left-canonical form for P . Similarly a unique factorisation as a
positive times a negative braid arises from the right-canonical form of P .

We noted in theorem 2.6 that braids in [0, 1] had a nice geometric char-
acterisation in terms of string crossings. There is no corresponding gener-
alisation of this to [0, s]. Any P ∈ [0, s] is a factor of ∆s in the sense that
PQ = ∆s for some Q ≥ e. It follows that each pair of strings in P cross at
most s times. This is not, however, a sufficient condition for P to lie in [0, s],
when s > 1.

For example, neither σ2
1σ

2
2 or σ2

2σ1σ3σ
2
2 lies in [0, 2] although each pair of

strings crosses no more than twice. A different combinatorial approach by
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Casson shows however that if P ≥ e and every pair of strings crosses exactly

twice then P = ∆2; this is the upper limit, as there are positive braids other
than ∆3 with exactly three crossings per pair of strings.

It was the attempt to explore the nature of the factors of ∆s, in other
words the sets [0, s], from this geometric point of view of string crossings
which led us to the formulation based on positive permutation braids, and
eventually, through studying the details of Garside’s thesis, to the algorithms
presented here. By repeated applications of lemma 5.1 we can see that the
positive factors of ∆s are exactly the products of s positive permutation
braids.

Version 2.3 June 1991, slightly amended from 2.2 of July 1990 (version 1,
June 1988). Converted to Latex June 2004.
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