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ABSTRACT 

_________________________________________________________________ 
Using the graph-based SLIC superpixels and manifold ranking technology, a novel 

automated intra-retinal layer segmentation method is proposed in this paper. Eleven 

boundaries of ten retinal layers in optical coherence tomography (OCT) images are exactly, 
fast and reliably quantified. Instead of considering the intensity or gradient features of the 

single-pixel in most existing segmentation methods, the proposed method focuses on the 

superpixels and the connected components-based image cues. The image is represented as 
some weighted graphs with superpixels or connected components as nodes. Each node is 

ranked with the gradient and spatial distance cues via graph-based Dijkstra’s method or 

manifold ranking. So that it can effectively overcome speckle noise, organic texture and 
blood vessel artifacts issues. Segmentation is carried out in a three-stage scheme to extract 

eleven boundaries efficiently. The segmentation algorithm is validated on 51 OCT images 

in a database, and is compared with the manual tracings of two independent observers. It 
demonstrates promising results in term of the mean unsigned boundaries errors, the mean 

signed boundaries errors, and layers thickness errors. 

 
_________________________________________________________________________________________________________________ 
  

1. Introduction 

Optical coherence tomography (OCT) is first 

introduced in 1991by Huang et al. [1], and it is a 

powerful, noninvasive and high resolution imaging 

modality used in the diagnosis and assessment of a 

variety of ocular diseases such as glaucoma and 

diabetic retinopathy[2-5]. Particularly, with the recent 

advancement of spectral domain optical coherence 

tomography (SD-OCT), higher resolution and more 

data have been acquired for clinical diagnosis [6]. But 

lacking fast and accurate quantification approach for 

more data, it is inconvenient for ophthalmologists or 

clinicians to directly diagnose for retinal diseases by 

calculating total retinal thickness, nerve fiber layer 

thickness, or outer plexiform layer thickness. 

Therefore, it becomes increasingly urgent to need an 

automated retinal layers segmentation approach in 

OCT images for clinical diagnosis or investigation.  

Motivated by this need, the retinal layers 

segmentation algorithms based on the single pixel’s 

intensity and gradient information have been mainly 

explored, and focused on the delineation of some 

intra-retinal layers during the last decade. Initially, 

the retinal layers segmentation mainly employed an 

image’s peak intensity and gradient methods to 

segment only a few layers and extract to retinal 

boundaries, and investigated in [7, 8]. Then, active 

contour models have been built in retinal layers 

segmentation [9, 10]. Comparisons of initial methods, 

contour algorithms appeared good performance in 

resistance to 2D noise and in error, but has the 

limitation of selecting pre-determination of the initial 

seed points that are used in the convergence of the 

optimal path. Several recent researchers have 

explored the use of pattern recognition techniques for 

retinal layers segmentation. Mayer et al. employed a 

fuzzy C-means clustering technique to segment nerve 

fiber layer [11]. Kaji´c et al. proposed a accurate and 

robust segmentation method of intraretinal layers 

with a novel statistical model [12]. Vermeer et al. 

also introduced a six retinal layers segmentation 

method based on support vector machine (SVM) 

classifiers [13]. With the application of the graph cuts 

techniques for image segmentation, and graph cuts 

techniques emerged as one of the important retinal 

layers segmentation. Combining with spatial 

constraint information, Garvin et al. used graph cuts 

to extract nine boundaries [14]. Chiu et al. employed 
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a dynamic programming techniques to extract eight 

retinal boundaries [15], and Yang et al. also used a 

dual-scale gradient information model to segment 

eight retinal layers[16].The graph search technique 

based on the single-pixel information can guarantee 

to find the global optimum, nevertheless it is 

relatively susceptible to speckle noise or artifact. 

Recently, Kafieh et al. successfully used a 

coarse grained diffusion map method to segment 

eleven retinal layers and to determine the thickness 

map [17,18], the method like super-pixels based 

approaches can reduce the effects of unavoidable 

noise in OCT images, however, it needs indirectly 

detect boundaries by single pixel, and its time-

consuming is relatively high in the coarse graining 

computation. Cha and Han also presented an 

intelligent tracking kernel method that could segment 

nine boundaries of eight retinal layers [19], but its 

processing time is also relatively long. Xinjian Chen 

and Fei Shi et al. successfully proposed a multi-

resolution graph search based surface detection 

method  to automatically segment the retinal layers in 

3-D OCT data with serous retinal pigment epithelial 

detachments [20]. 

Most existing retinal layers segmentation 

algorithms mainly focus on the single pixel or region 

based on its intensity or gradient within a local 

context, whereas there is no a algorithm focuses on 

the whole edge-based image cues to automatically 

segment the retinal layers. Besides, it is inevitable 

that some intrinsic speckle noise, organic texture and 

blood vessel artifacts make difficult to exactly 

segment retinal layers.  

 

Fig.1. Illustrates eleven intra-retinal boundaries from top to bottom: 

boundary 1 ILM, boundary 2 NFL/GCL, boundary 3 GCL / IPL, 

boundary 4 IPL/INL, boundary 5 INL/OPL, boundary 6 OPL/ONL, 

boundary 7 ELM, boundary 8 IS/CL, boundary 9 CL/OS, boundary 
10 OS/RPE, and boundary 11 BM/Choroid. (N: nasal, T: temporal). 

In this work, inspired by superpixels, a novel 

three-stage using graph-based SLIC superpixels and 

manifold ranking approach is focused on intra-retinal 

layer segmentation of OCT images due to its eleven 

intra-retinal boundaries mainly correspond to high, 

middle or low contrast in pixels intensity, positive or 

negative vertical gradient values, and their spatial 

relationship between intra-retinal boundaries. Fig.1 

illustrates eleven intra-retinal boundaries we desired 

to find in macular spectral-domain OCT images. It is 

relative to single-pixel, the proposed approach is 

based on the superpixels and connected components 

designated as nodes, making it able to well avoid the 

intrinsic speckle noise, and to the possible presence 

of organic texture and blood vessel artifacts. The 

research demonstrates that such a proposed approach 

is able to automatically segment eleven boundaries of 

ten retinal layers in OCT images, and improve the 

accuracy, efficiency, and robustness of retinal layers 

segmentation. 

In summary, our main contributions are as 

follows: 

(a) Application of the superpixels and connected 

component, it can well avoid some disturbs from the 

intrinsic speckle noise and organic texture artifacts, 

and exactly detect boundary ILM and boundary 

IS/CL. 

(b) Application of the manifold ranking and 

connected component, it can well overcome 

discontinuity from the intrinsic speckle noise and 

blood vessel artifacts, and exactly detect the other 

nine boundaries. 

The rest of this paper is organized as follows, In 

Section 2 briefly introduces SLIC superpixels, 

manifold ranking method and the construction of the 

weighted graph, and describes the proposed intra-

retinal layers segmentation algorithm via graph-based 

SLIC superpixels and manifold ranking technology in 

detail. The experiments and results are presented in 

Section 3. Finally, Section 4 concludes the paper. 

 

2. Material and Methods 

2.1.SLIC Superpixels and Manifold Ranking 

Based on k-means clustering, Radhakrishna 

Achanta and Appu Shaji et al. successfully proposed 

a simple linear iterative clustering (SLIC) method for 

generating superpixels, which has been shown to 

outperform existing superpixel methods in image 

boundaries, memory efficiency, speed, and their 

impact on segmentation performance [21]. And the 

proposed method has achieved great success on 

image segmentation [22]. 

Zhou et al. successfully proposed a manifold 

ranking method, which exploits the intrinsic manifold 

structure of data for labeled graph [23]. Essentially, 

manifold ranking can be viewed as an one-class 

classification problem [24], that is, only positive 

examples or negative examples are required. Given a 

dataset *

1 2{ , , , } m n

nX x x x  , some data points 

are labeled queries that are assign a positive ranking 

score (such as 1), and zero to the remaining points. 

Let a ranking function : X nf R , namely, a 

weighted network is form on the dataset, then, all 

points repeatedly spread their ranking score to their 

nearby neighbors via the weighted network, finally, 

all points except queries are ranked according to their 

final ranking scores when a global stable state is 

achieved. In order to conveniently  compute the 

optimal ranking of queries, a graph G=(V, E) is 

defined for the dataset, where the nodes V are the 

dataset X and the edges E are weighted by an affinity 



matrix W=[wij]n×n, thereby, the degree matrix D is 

equal to 
11 22{ , ,..., }nndiag d d d , where 

ii ijj
d w . 

Then, similar to the PageRank and spectral clustering 

algorithms [25, 26], the optimal ranking of queries 

can be obtained by solving the following optimization 

problem: 
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Where the first and the second term are 

respectively the smoothness constraint and the fitting 

constraint whose balance can be controlled by the 

parameter µ. Namely, for a good ranking function, 

the first term should not change too much between 

nearby points and the second term should not differ 

too much from the initial query assignment. Certainly, 

the optimal solution could be conveniently computed 

by setting the derivative of the above function to be 

zero, and the optimal resulted ranking function can be 

written as Eq. 2 by using the unnormalized Laplacian 

matrix. The Eq. 2 has achieved great success on 

image saliency detection [27]. 
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2.2.  Weighted Graph Construction 

A weighted graph G=(V,E,W) is constructed to 

represent OCT image, and exploit the gradient 

information and the spatial relationship, where V 

denotes a set of nodes, E denotes a set of undirected 

edges and W is defined to the affinity matrix that 

represents the weights of the edges between two 

arbitrary nodes. In this work, each node is a 

superpixel generated by the SLIC algorithm, and is 

only connected to those nodes neighboring it (See 

Fig.2a), or a part of connected component (a true or 

false boundary) generated by the classic canny edge 

detection [28], and is not only connected to those 

nodes neighboring it, but also connected to the nodes 

with its neighboring node (See Fig.2b). By extending 

the scope of node connection, so that neighboring 

nodes are likely to take on similar appearance, and we 

effectively utilize local smoothness cues. Besides, we 

assume that it is necessary condition of these adjacent 

nodes if their corresponding gradient value is the 

same positive or negative in the same boundary. This 

gradient constraint significantly improves the 

performance of the proposed method as it effectively 

avoid the connection for some neighboring nodes, 

thereby improving the ranking results of the boundary 

detection. It is clear that the weighted graph G is a 

sparse. That is, most elements of the affinity matrix 

W are zero, which is also able to upgrade compute 

rate by sparse matrix. In this work, W is defined by 

Eq.3. and Eq.4, since eleven intra-retinal boundaries 

of the OCT image mainly correspond to low, middle 

or high contrast in pixels intensity, positive or 

negative vertical gradient values, and their spatial 

relationship between intra-retinal boundaries.

 

 
(a) (b) 

Fig.2. Our graph model. (a) Graph model based on the SLIC 
superpixels. (b) Graph model based on the connected components. 

where ( , )i i iF f g  or (
ig , 

iy ), 
if  and 

ig
 

denote respectively the sum of the connected 

component (superpixel) corresponding to a node in 

the intensity and gradient value of the pixels, 
iy
 

denotes the mean of the connected component 

(superpixel) corresponding to a node in the row-

coordinate of the pixels, Xi and Yi denote respectively 

the start and end vertex of connected component 

(superpixel) corresponding to a node in the 

coordinate of the pixels, for i, j=1,2,…,|V|. This 

matrix naturally captures texture information and 

spatial relationship information. Namely, the affinity 

value w(i, j) between nodes is increased when their 

intensity value is close or  spatial distance is 

decreased, So that w(i, j) can present texture 

information, and constraints spatial relationship well. 
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2.3. Three-Stage Boundaries Detection 

In this section, the proposed three-stage scheme 

is detailed for OCT boundaries detection using graph-

based SLIC superpixels and manifold ranking method 

with texture information, the spatial relationship. 

2.3.1 Detect the ILM and IS/CL boundaries 

Among eleven boundaries in an SDOCT retinal 

image, the ILM and IS/CL are the two most 

prominent boundaries due to their high contrast in 

pixel intensity, so our algorithm firstly detects the 

ILM and IS/CL boundaries as follows. Unfortunately, 

it is inevitable that some intrinsic speckle noise and 

organic texture artifacts make difficult to exactly 

detect their end points and them, for example, in the 

upper left and upper right corner of Fig.3a, there exist 

two organic texture artifacts. 

In order to simultaneously reduce noise and 

preserve edges, on the one hand, a classic and 

effective median filter is applied for OCT images. 

Consequently, the high contrast connected 

components can be detected by a classic canny edge 

detector with high-valued threshold (0.5*automated 

threshold), which could remove the false boundaries, 

and to highlight the significant boundaries as shown 



in Fig.3b. On the other hand, for the possible 

presence of organic texture artifacts, whose connected 

component obviously joints with ILM boundary in 

the upper left corner of Fig.3b. Firstly, superpixels 

are segmented by SLIC superfixels approach for 

filtered OCT image as shown in Fig.3c. Next, a 

weighted graph G=(V,E,W) is constructed by the 

superfixels，and its affinity matrix W is computed by 

Eq.3 and Eq.4, where ( , )i i iF f g . Then, our 

algorithm utilizes Dijkstra’s method to successively 

find the two lowest-weighted path initialized at the 

four vertices of the graph, whose gradient value are 

maximum at the two left and two right vertices of the 

graph. Fig.3d shows the two paths that can well avoid 

the distraction from intrinsic speckle noise around 

boundary ILM and boundary IS/CL. We perform 

morphological closing on the two paths with a disk 

structuring element, and Fig.3e shows the fusion 

image by the two processed paths and the main 

connected components (white) around the ILM (green) 

and IS/CL (purple) boundaries, on the one hand, the 

connected components of organic texture artifacts are 

removed, on the other hand, the own regions of 

boundary ILM and boundary IS/CL are exactly 

located. Finally, the connected components of both 

ILM and IS/CL boundaries are flawlessly detected by 

the uppermost connected components from the 

processed paths, in order to show so much smooth 

boundary, respectively, the results are enhanced by 

twenty and twelve orders polynomial smoothing as 

shown in Fig.3f. So that the other connected 

components can be restricted to successively two 

smaller search areas as shown in Fig. 4a, respectively, 

followed by the simultaneous detection of boundaries 

7, 9, 10, 11 below boundary 8, and boundaries 2, 3, 4, 

5, 6 between boundaries 1 and 8. 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 3. Images show how the ILM and IS/CL boundaries are found 
via the graph-based SLIC superfixels and manifold ranking 

approach. (a)Original OCT image. (b) High contrast connected 

components. (c) Result of applying SLIC superpixels. (d) Result 
(purple) of applying by Dijkstra’s method for Fig.3c. (e) Fusion 

image by the processed paths and the main connected components 
(white) around the ILM (green) and IS/CL (purple)boundaries (f) 

Result of the ILM (yellow) and IS/CL (red) boundaries after 

smoothing. 

2.3.2. Detect the ELM and boundaries below IS/CL 

Based on the detection of boundaries 1st and 8th, 

firstly, the OCT image is aligned according to the 8th 

boundary. Which served multiple purposes: on the 

one hand, to allow for smaller image sizes in the 

segmentation step and provide for a more consistent 

shape for segmentation purposes as shown in Fig. 4a, 

on the other hand, to make visualization easier and 

conform to clinical practice[14]. Fig. 4a shows that 

the low and middle contrast connected components 

can be also detected in the aligned image by a classic 

canny edge detector with low-valued threshold 

(0.05*automated threshold), which detects the 

significant boundaries and preserves other potential 

boundaries as well. Fig. 4b shows that the second 

aligned superfixels path and above it can almost 

contain all the connected components of the 

boundaries7, 9,10, and 11. 

Next, respectively, we construct four weighted 

subgraphs G7=(V7,E7,W7) by the connected 

components, whose vertical gradient values are 

positive in a vertical search area between d71 and d72 

pixels above boundary 8, G9=(V9,E9,W9) by the 

connected components, whose vertical gradient 

values are negative in a vertical search area between 

d91 and d92 pixels below boundary 8, G10=(V10,E10,W10) 

by the connected components, whose vertical 

gradient values are positive in a vertical search area 

between d101 and d102 pixels below boundary 8, and 

G11=(V11,E11,W11) by the connected components, 
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whose vertical gradient values are negative in a 

vertical search area between d111 and d112 pixels 

below boundary 8, and their affinity matrices W7, 

W9 ,W10 , and W11 are computed successively by Eq.5, 

Eq.3, Eq.6, and Eq.7, where ( , )i i iF g y  in Eq.3, 

whose purpose is able to constraint spatial 

relationship between nodes well.  
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Fig. 4. Images show how the ELM and boundaries below IS/CL 

are found via our proposed approach. (a) The main connected 
components.(b) Fusion image by the segmented superpixels (white), 

the main positive(red) and negative (green) connected components 

around the ELM boundary. (c) Automatically selected queries of 
the boundary 7 ELM (a blue connected component), boundary 9 

CL/OS (a yellow connected component), boundary 10 OS/RPE(a 

green connected component), boundary 11 BM/Choroid (a red 
connected component). (d) Result of the connected components of 

the boundary 7 ELM (blue), boundary 9 CL/OS (yellow), boundary 

10 OS/RPE(green), boundary 11 BM/Choroid (red) with manifold 
ranking. (e) Result (yellow) of boundaries 7, 9, 10 and 11 after 

smoothing. 

 

 Wk(i, j)= W(i, j).*sgn(WG(i)).*sgn(WR(i)),  (5) 

Where WG(i)= gi, WR(i)= iy , i=1, 2, … , |V|, and 

k=2,3,4,5,6,7,9,10, and11. 
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Where s7 and s10 are equal to 1 due to vertical 

gradient values of the boundaries 7and 10 are positive, 

and conversely s9 and s11 are equal to -1 in Eq.6. The 

ix denotes the mean of connected component 

corresponding to a node in the column-coordinate of 

the pixels, for k=7, 9, 10 and 11, let bdk1( ix ) and 

bdk2( ix ) correspond to the row-coordinate of 

boundary 8 when their column-coordinates are ix , 

and d71=-10, d72=-1, d91=1, d92=10, d101=3, d102=20, 

d111=10, d112=25 in Eq.7. So that sgn(WG )can 

represent gradient information, and sgn(WR) 

constraints spatial relationship well. 

Then, all nodes are respectively ranked 

according to their final ranking scores by Eq.2, where 

queries are respectively selected one node from the 

highest gradient value of the nodes for the 7th(blue) 

and 10th(green) boundaries, and the lowest gradient 

value of the nodes for the 9th (yellow) and 11th (red) 

boundaries as shown in Fig. 4c, where the four 

connected components are successively belong to 

queries of the boundaries 7, 9, 10 and 11 from up to 

down. Fig. 4d shows the result of the connected 

components with manifold ranking, which could not 

only effectively reject some connected components of 

the other salient noise boundaries, but also well 

reserve the connected components of the four 

boundaries, relative to the Fig. 4 a. Particularly, such 

as the right end of the boundary 7 in Fig. 4d, which 

can not be detected due to its low or middle contrast 

in pixel intensity. Nevertheless, in order to the next 

smoothing step, the right end of the boundary 7 is 

defined to the mean vertical distance of the connected 

components between the detected boundary 7 and 8. 

Finally, in order to show so much smooth 

boundary, respectively, the results are enhanced by 

twenty, six, six and six orders polynomial smoothing 

as shown in Fig. 4e. 

 

2.3.3.Detect the boundaries between ILM and ELM 

 Based on the above results, in order to detect 

accurately the boundaries 2, 3, 4, 5, and 6 as follows. 

Similarly, a weighted subgraph G5=(V5,E5,W5) is 

constructed by the connected components, whose 

vertical gradient values are positive in a vertical 

search area between d51 pixels below boundary 1 and 

d52 pixels above boundary 7, and its affinity matrix 

W5 is computed by Eq.5, where ( , )i i iF g y  in Eq.3, 

and s5=1 for Eq.6. Let dyij denote the mean distance 

of the row-coordinate of the ith boundary and the jth 

boundary, so d51 and d52 are respectively equal to 

0.1*dy17 and -0.3*dy17 for Eq.7, that sgn(WR) can 

constraint spatial relationship well. Then, all nodes 

are respectively ranked according to their final 

ranking scores by Eq.2, where queries (red) are 



respectively selected two nodes from the highest 

gradient value of the nodes for the left and right parts 

of the 5th boundary as shown in Fig.5a, which could 

avoid no connectivity of the boundary due to its low 

contrast in pixel intensity around macular fovea. Fig. 

5b shows the result (red) of the connected 

components with manifold ranking, which could not 

only effectively reject some connected components of 

the other salient noise boundaries, but also well 

reserve the connected components for the 5th 

boundary, relative to Fig.4a. Certainly, in Fig.5b, the 

two ends of the boundary 5 might not be also detected 

due to its low or middle contrast in pixel intensity, 

and they would be also defined to the mean vertical 

distance of the connected components between the 

detected boundary 5 and 7, so that conduces to the 

next smoothing step. Finally, the result (red) is 

enhanced by sixteen orders polynomial smoothing as 

shown in Fig. 5c. 

 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 5. Images show how the boundaries between ILM and IS/CL 

are found using our proposed approach. (a) Automatically selected 
queries of the boundary 2 NFL/GCL (two green connected 

components), boundary 3 GCL/IPL (two blue connected 

components), boundary 4 IPL/INL(two yellow connected 
components), boundary 5 INL/OPL(two red connected 

components), and boundary 6 OPL/ONL(two white connected 

components), successively. (b) Result of the connected components 
of the boundary 2 (green), boundary 3 (blue), boundary 4 (yellow), 

boundary 5 (red), and boundary 6 (white), successively. (c) Result 

of boundary 2(green), boundary 3 (blue), boundary 4 (yellow), 
boundary 5 (red), and boundary 6 (white) after final ranking. (d) 

Final segmentation for the original image after smoothing. (e) 

Original image showing referenced standard. (f) Comparison of 
computer-segmentation (yellow) and independent standard (red). 

 

For the detection of the boundaries 4, and 6, on 

the basis of the detection of the boundaries 1, 5, and 7, 

firstly, we construct two affinity subgraphs 

G4=(V4,E4,W4) by the connected components, whose 

vertical gradient values are also negative in a vertical 

search area between d41 pixels below boundary 1and 

d42 pixels above boundary 5, and G6=(V6,E6,W6) by 

the connected components, whose vertical gradient 

values are negative in a vertical search area between 

d61 pixels below boundary 5 and d62 pixels above 

boundary 7. Successively, and compute their weight 

matrices W4 and W6 by Eq.5, where s4 and s6 are all 

equal to -1 for Eq.6 since these boundaries 

correspond to connected components whose gradient 

value of the pixels should be negative. For Eq.7, both 

bd41and bd42 all correspond to the boundary 5, both 

bd61and bd62 respectively correspond to the boundary 

5 and boundary 7, d41 is equal to -0.25*dy15, and d42 is 

equal to -1, d61 is equal to 1, and d62 is equal to -1, so 

that sgn(WR) can constraint spatial relationship well. 

Then, all nodes are respectively ranked according to 

their final ranking scores by Eq.2, where queries 

(yellow and white) are respectively selected two 

nodes from the lowest gradient value of the nodes for 

the left and right parts of the boundaries 4 and 6 as 

shown in Fig. 5a. Fig. 5b shows the results (yellow 

and white) of the connected components with 

manifold ranking, which could not only effectively 

reject some connected components of the other 

salient noise boundaries, but also well reserve the 

connected components for the 4th and 6th boundaries, 

relative to Fig.4a. Certainly, if the two ends of the 

boundaries 4 or 6 might not be also detected due to its 

low or middle contrast in pixel intensity, then they 

would be also respectively defined to the mean 

vertical distance of the connected components 

between the detected boundaries 4 and 5, or 6 and 5, 

so that conduces to the next smoothing step. Finally, 

the results (yellow and white) are respectively 



enhanced by sixteen orders polynomial smoothing as 

shown in Fig. 5c. 

For the detection of the boundary 2, on the basis 

of the detection of the boundaries 1, and 4, firstly, an 

affinity subgraph G2=(V2,E2,W2) by the connected 

components, whose vertical gradient values are 

negative in a vertical search area between d21 pixels 

below boundary 1and d22 pixels above boundary 4. Its 

affinity matrix W2 is computed by Eq.5, where s2 is all 

equal to -1 for Eq.6 since its boundary corresponds to 

connected components whose gradient value of the 

pixels should be negative. For Eq.7, both bd21and bd22 

respectively correspond to the boundaries 1 and 4, d21 

is equal to 1, and d22 is equal to -0.3*dy14, so that 

sgn(WR) can constraint spatial relationship well. Then, 

all nodes are respectively ranked according to their 

final ranking scores by Eq.2, where queries (green) 

are respectively selected two nodes from the lowest 

gradient value of the nodes for the left and right parts 

of the boundary 2 as shown in Fig. 5a. Fig. 5b shows 

the result (green) of the connected components with 

manifold ranking, which could not only effectively 

reject some connected components of the other 

salient noise boundaries, but also well reserve the 

regular connected components for the 2th boundary. 

Certainly, the two ends of the boundary 2 might not 

be also detected due to its low or middle contrast in 

pixel intensity, and they would be also respectively 

defined to the mean and max vertical distance of the 

connected components between the detected 

boundaries 1 and 2, so that conduces to the next 

smoothing step. Finally, the result (green) is 

enhanced by twenty orders polynomial smoothing as 

shown in Fig.5c. 

Based on boundaries 2 and 4, finally, for the 

detection of the boundary 3, similarly, a affinity 

weighted subgraph G3=(V3,E3,W3) is constructed by 

the connected components, whose vertical gradient 

values are positive in a vertical search area between 

d31 pixels below boundary 2 and d32 pixels above 

boundary 4, and its weight matrix W3 is computed by 

Eq.5,where s3 is equal to 1 for Eq.6 since the 

boundary 3 correspond to connected components 

whose gradient value of the pixels should be positive. 

For Eq.7, bd31and bd32 respectively correspond to the 

boundary 2 and the boundary 4, d31 and d32 are 

respectively equal to 1 and -1, so that sgn(WR) can 

constraint spatial relationship well. Then, all nodes 

are respectively ranked according to their final 

ranking scores by Eq.2, where queries (blue) are 

respectively selected two nodes from the highest 

gradient value of the nodes for the left and right parts 

of the boundary 3 as shown in Fig. 5a. Fig.5b shows 

the result (blue) of the connected components with 

manifold ranking, which could not only effectively 

reject some connected components of the other 

salient noise boundaries, but also well reserve the 

connected components for the 3th boundary. Certainly, 

the two ends of the boundary 3 might not be also 

detected due to its low or middle contrast in pixel 

intensity, and they would also respectively defined to 

the mean and max vertical distance of the connected 

components between the detected boundaries 2 and 3, 

so that conduces to the next smoothing step. Finally, 

the result (blue) is enhanced by sixteen orders 

polynomial smoothing as shown in Fig. 5c. 

Finally, for the boundaries 2, 3, 4, 5 and 6, Fig. 5 

b shows the whole results of the connected 

components with manifold ranking approach, which 

could not only effectively reject some connected 

components of the other salient noise boundaries, but 

also well reserve the connected components for these 

boundaries, relative to Fig.4a. Fig.5d shows the 

extracted results of the eleven boundaries. Fig.5e 

shows the reference standard for original image. 

Fig.5f shows their comparison of computer-

segmentation (yellow) and reference standard (red), 

demonstrates that they are almost identical, and  our 

proposed approach can well avoid the intrinsic 

speckle noise, and the possible presence of blood 

vessel and organic texture artifacts. 

The main steps of the proposed lay segmentation 

algorithm are summarized in Algorithm 1. 

____________________________________ 
Algorithm 1 

____________________________________ 
Input: An OCT image and required parameters 

Step1. Detect the ILM and IS/CL boundaries. 

Step 1.1 Enhance the input image by median filter.  
Step 1.2 Detect the high contrast connected components by 

canny edge detector for filtered image. 

Step 1.3 Segment the filtered image into superpixels, construct 
a graph G with superpixels as nodes, and compute its affinity 

matrix W by Eq3, utlize Dijkstra’s method to find the two lowest 
weighted paths, and perform morphological closing on the two 

paths with a disk structuring element.  

Step 1.4 Detect the main connected components of the 
boundaries 1 and 8 by the results of step 1.2 and 1.3, and obtain 

boundaries 1 and 8 by fitting. 

Step 2. Detect the ELM and boundaries below IS/CL 
Step 2.1 Align the filtered image according to the boundary 8. 

Step 2.2 Detect the low and middle contrast connected 

components by canny edge detector for aligned image. 
Step 2.3 Construct four graphs G7 , G9 , G10, and G11 with 

connected components as nodes, successively, and compute their 

affinity matrix W7 , W9 , W10 and W11 by Eq5, utlize manifold 
ranking method to detect their own connected components, and 

obtain boundaries 7, 9, 10 and 11 by fitting. 

Step 3. Detect the boundaries between ILM and ELM 
Step 3.1 Construct graph G5 with connected components as 

nodes on the basis of the boundaries 1 and 7, and compute its 

affinity matrix W by Eq5, utlize manifold ranking method to detect 
connected components, and obtain boundary 5 by fitting. 

Step 3.2 Construct two graphs G4 and G6 with connected 

components as nodes on the basis of the boundaries 1, 5 and 7, 
respectively, and compute their affinity matrix W4  and W6 by Eq5, 

utlize manifold ranking method to detect their own connected 

components, and obtain boundaries 4 and 6 by fitting. 

Step 3.3 Construct graph G2 with connected components as 

nodes on the basis of the boundaries 1 and 4, and compute its 

affinity matrix W2 by Eq5, utlize manifold ranking method to 
detect connected components, and obtain boundary 2 by fitting. 

Step 3.4 Construct graph G3 with connected components as 

nodes on the basis of the boundaries 2 and 4, and compute its 
affinity matrix W3 by Eq5, utlize manifold ranking method to 

detect connected components, and obtain boundary 3 by fitting. 

Output: the lay segmentation image. 

____________________________________ 



3. Experiments and Results 

The proposed algorithm was evaluated against 

the manual tracings of two independent observers 

(retinal specialists) with the use of a computer-aided 

manual segmentation procedure on one 2D-labeled 

macular OCT dataset (Cirrus, Zeiss Meditec). The 

dataset contains 51 slices with the ground truth of 

marked boundaries, and is from different human eye, 

each image had x, y dimensions of 2 × 6 mm2, 496 × 

1024 pixels sized 4.03× 5.86 μm2. The two 

independent observers did not attempt to trace some 

boundaries that they considered invisible, such as the 

GCL/IPL, CL/OS and OS/BM. The proposed 

algorithm was implemented in Matlab, the dataset 

was processed by a personal computer (CPU:Core 2, 

2.53GHz, RAM:4 GB). For comparisons, the mean 

signed and unsigned border positioning differences 

for the ILM, NFL/GCL, IPL/INL, INL/OPL, 

OPL/INL, ELM, IS/CL and BM/Choroid boundaries 

were computed. In addition, for the purpose of the 

clinical and medical analysis, the mean thickness of 

each layer was respectively computed by the 

proposed algorithm and each observer, where the 

algorithm and each observer all excluded the fovea 

area, namely, not computed the middle 30 pixels, 

since it is invisible for the some boundaries around 

fovea area. The two observers computed the mean 

thicknesses that were used as a reference standard.  

The proposed approach successfully detected all 

eleven intra-retinal boundaries in the datasets of 51 

OCT images. It took about 9.6 seconds in Matlab for 

the full ten layers segmentation for each 2D slice in 

normal segmentation processing mode. The mean 

unsigned and signed border positioning differences 

for the main boundaries are presented in Tabel 1 as 

follows. The unsigned border positioning mean errors 

between the proposed algorithm and the reference 

standard, whose overall errors 0.94 pixels was less 

than 1 pixel, ILM errors 0.66 pixels and IS/CL errors 

0.55 pixels were far less than 1 pixel, NFL/GCL 

errors 1.27 pixels was maximum error, but were 

respectively smaller than those computed between the 

observers. The signed border positioning errors 

between the proposed algorithm and the reference 

standard was 0.30 pixel, and was approximate to 

those computed between the observers, ILM errors 

0.13 pixels and IS/CL errors 0.23 pixels were far less 

than 1 pixel, IPL/INL errors -0.02 pixels and 

OPL/INL errors 0.03 pixels were approximate to zero, 

NFL/GCL errors 0.74 pixels was maximum error, but 

were respectively better than  those computed 

between the observers. Following main steps of 

proposed method, Fig.6 also illustrates that the visual 

comparison of automatic (yellow) versus the 

reference standard (red) segmentation on images with 

organic texture and blood vessel artifacts. it is 

inevitable challenge for automated segmentation 

thickness map generation [29]. In our proposed 

algorithm, an affinity matrix is incorporated 

neighboring information during manifold ranking, 

and it is effectively overcome the blood vessel 

discontinuity problem as illustrated in Fig.6. 

Fig.7 shows that the thickness differences 

between the proposed algorithm and the reference 

standard were all smaller than the axial resolution of 

3.28 μm(0.81 pixel), and were also smaller than or 

closed to those computed between the observers.  

As shown in Fig.8, respectively, we compute 

and plot the signed and unsigned border position 

differences of the main eight boundaries between the 

proposed algorithm and the reference standard in the 

dataset, when the degree N of the polynomial curve 

fitting is set from 4 to 32, 12 to 40, or 16 to 44. The 

two plots show that the signed and unsigned border 

positioning errors of all the fitting boundaries are 

only small fluctuations, namely, with increase the 

degree N of the polynomial curve fitting, these errors 

don’t change. Therefore, the result plots suggest that 

the connected components of the most boundaries are 

always continuously and perfectly extracted by our 

proposed algorithm. 

 

 
Table 1  

Unsigned border position differences (mean±SD in pixel) and Signed border position differences (mean±SD in pixel) of 51 scans using our 
normal segmentation mode in Dataset 

Segmenter 

 
 

Border 

Unsigned border position differences Signed border position differences 

Obs.1 

vs.Obs.2 

Algo_Prop 

osed. vs. 
Obs.1 

Algo_Pro 

posed.vs. 
Obs.2 

Alo_Pro 

posed. vs.  
Avg.Obs. 

Obs.1 

vs.Obs.2 

Algo_Prop 

osed. vs. 
Obs.1 

Algo_Pro 

posed.vs. 
Obs.2 

Alo_Pro 

posed. vs.  
Avg.Obs. 

ILM 1.24±0.34 0.76±0.20 0.95±0.20 0.66±0.13 1.01±0.47 -0.37±0.36 0.64±0.29 0.13±0.23 

NFL/GCL 1.62±0.42 1.81±0.49 1.14±0.30 1.27±0.34 -1.15±0.56 1.31±0.66 0.16±0.49 0.74±0.51 

IPL/INL 1.46±0.39 1.36±0.27 0.97±0.19 0.94±0.18 -1.05±0.59 1.15±0.47 0.10±0.41 0.62±0.33 

INL/OPL 1.38±0.30 1.18±0.28 1.05±0.28 0.91±0.22 0.05±0.63 -0.04±0.49 0.01±0.44 -0.02±0.34 

OPL/INL 1.84±0.56 1.57±0.43 1.42±0.55 1.19±0.39 -1.15±0.91 0.60±0.78 -0.54±0.76 0.03±0.62 

ELM 1.19±0.44 0.75±0.25 1.19±0.44 0.84±0.28 0.60±0.61 -0.43±0.64 0.16±0.74 -0.14±0.62 

IS/CL 1.19±0.29 0.54±0.18 0.95±0.23 0.55±0.13 0.91±0.48 -0.22±0.30 0.69±0.34 0.23±0.21 

BM/Choroid 1.43±0.46 1.54±1.20 1.07±1.05 1.11±1.12 -1.23±0.56 1.43±1.27 0.19±1.23 0.81±1.22 

Overall 1.42±0.09 1.19±0.34 1.09±0.29 0.94±0.32 -0.25±0.14 0.43±0.31 0.18±0.31 0.30±0.33 

 

 



 

 

 

 

 
Fig. 6. Comparison of automatic (yellow) versus the reference standard (red) segmentation on images with organic texture artifacts and blood 

vessel artifacts. (row a) Original image.(row b) Detected the connected components with our proposed automatic method. (row c) Final 
segmentation with our proposed automatic method after smoothing. (row d) Final segmentation with the reference standard. (row e) 

Comparison of automatic (yellow) versus the reference standard (red). 
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Fig.7. Bar charts show mean thicknesses differences of the main 

intra-retinal layers in dataset.  
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Fig.8. The error result plots show the border position differences of 

the main eight boundaries between the proposed algorithm and the 
reference standard in dataset, when the degree N of the polynomial 

curve fitting is set from 4 to 32, 12 to 40, or 16 to 44. Up: the 

signed border position differences. Down: the unsigned border 
position differences. 

Fig.9 illustrates a segmentation result robustness 

in OCT image for the age related macular 

degeneration, and shows the detected boundaries 

accurately track all the eleven boundaries by our 

proposed algorithm, superpixels and connected 

components can effectively overcome the boundaries 

discontinuity problem as illustrated in Fig.9. 

 



 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

Fig.9. Comparison of automatic (yellow) versus manual (red) 

segmentation on image for the age related macular degeneration. (a) 

Original image. (b)Fusion image by the segmented superpixels and 
the main connected components around the ILM and IS/CL 

boundaries (c) Result of the ILM and IS/CL boundaries after 

smoothing. (d) Detected the connected components with our 
proposed automatic method (e) Original image with computer-

segmented borders. (f) Original image showing reference standard. 

(g) Comparison of computer-segmentation (yellow) and reference 

standard (red).  

 

4. Conclusion 
This paper proposes a graph-based SLIC 

superpixels and manifold ranking method to segment 

macular retinal layers in OCT images. we considers 

the superpixels and connected components as nodes, 

which incorporates gradient cues and spatial priors of 

the connected components. Based on the gradient 

sum and spatial distance of the connected 

components, we utilize a three-stage graph-based 

Dijkstra’s method and manifold ranking approach to 

extract corresponding boundaries. We evaluate the 

proposed algorithm on main boundaries error and 

layers thickness error. It demonstrates promising 

results with comparisons to the manual tracings of 

two independent observers. Furthermore, like super-

pixel method, the proposed algorithm is 

computationally efficient, and is not relatively 

susceptible to speckle noise or artifacts. The future 

work will focus on segmentation of retinal layers in 

OCT images with applications to ocular disease 

problems. 
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