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Abstract 15 

Fasciola hepatica, the liver fluke, is a trematode parasite of considerable economic importance to 16 

the livestock industry and is a re-emerging zoonosis that poses a risk to human health in F. hepatica 17 

endemic areas worldwide. Drug resistance is a substantial threat to the current and future control of 18 

F. hepatica, yet little is known about how the biology of the parasite influences the development 19 

and spread of resistance. Given that F. hepatica can self-fertilise and therefore inbreed, there is the 20 

potential for greater population differentiation and an increased likelihood of recessive alleles, such 21 

as drug resistance genes, coming together. This could be compounded by clonal expansion within 22 

the snail intermediate host and aggregation of parasites of the same genotype on pasture. 23 

Alternatively, widespread movement of animals that typically occurs in the UK, could promote high 24 

levels of gene flow and prevent population differentiation. We identified clonal parasites, with 25 

identical multilocus genotypes (MLGs) in 61 % of hosts. Despite this, 84 % of 1579 adult parasites 26 

had unique MLGs, which supports high levels of genotypic diversity within F. hepatica 27 

populations. Our analyses indicate a selfing rate no greater than 2 % suggesting that this diversity is 28 

in part due to the propensity for F. hepatica to cross-fertilise. Finally, although we identified high 29 

genetic diversity within a given host, there was little evidence for differentiation between 30 

populations from different hosts, indicating a single panmictic population. This implies that, once 31 

they emerge, anthelmintic resistance genes have the potential to spread rapidly through liver fluke 32 

populations.  33 
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1. Introduction 38 

 Fasciola hepatica is a trematode parasite that causes disease of economic importance in sheep 39 

and cattle (Bennett and Ijpelaar, 2005; Schweizer et al., 2005), with an estimated 250 million sheep 40 

and 350 million cattle at risk worldwide (Hillyer and Apt, 1997). A zoonosis, it is classed by the 41 

World Health Organisation as a neglected tropical disease endemic in human populations in parts of 42 

South America, western Europe and the Caspian (Mas-Coma, 2005; WHO, 2007; 2015).  Over the 43 

last 15 to 20 years, the diagnosis of F. hepatica infection in European livestock has increased 44 

(VIDA, 2015; Caminade et al., 2015), possibly due to changing climate, changing farming 45 

practices, including animal movement and land use and the emergence of resistance to the drug of 46 

choice, triclabendazole (van Dijk et al., 2010; Fairweather, 2011a; Fox et al., 2011; Caminade et al., 47 

2015). Resistance of F. hepatica to triclabendazole was first reported in sheep in Australia, 1995 48 

(Overend and Bowen, 1995), and is now frequently reported across Europe and South America 49 

(Daniel et al., 2012; Moll et al., 2000; Gaasenbeek et al., 2001; Álvarez-Sánchez et al., 2006; 50 

Mooney et al., 2009; Olaechea et al., 2011; Ortiz et al., 2013). It is considered to be a substantial 51 

threat to the current and future control of F. hepatica (Kelley et al., 2016).  52 

 Population genetic analyses are key to understanding the origin, evolution, and spread of 53 

resistance genes in populations and are thus a vital component of anthelmintic resistance studies 54 

(Gilleard and Beech, 2007). They allow us to identify management factors influencing the 55 

migration of resistance genes, and so help to mitigate against their spread. It is recognised that the 56 

husbandry and management of different farms have the potential to affect the population structure 57 

of parasites (Grillo et al., 2007) by influencing the movement of the definitive host and, therefore, 58 

F. hepatica parasites. Additionally, the age and production system for an animal influences the 59 

extent to which it has been exposed to F. hepatica on pasture and to what extent it may have been 60 

treated with anthelmintics.  61 



 

 
 

 A number of aspects of F. hepatica biology have the potential to influence genetic diversity and 62 

population structure and therefore impact on the spread of genes, including those responsible for 63 

anthelmintic resistance (Hodgkinson et al., 2013). Firstly, it is known that clonal expansion of F. 64 

hepatica occurs within the snail intermediate host, Galba truncatula (Thomas, 1883; Krull, 1941). 65 

Therefore, there is the potential for multiple metacercariae of the same origin and genotype to exist 66 

on pasture, and parasites with the same multilocus genotype (MLG) have been found within, and 67 

shared between, definitive hosts (Vilas et al., 2012). Secondly, as a hermaphrodite, F. hepatica can 68 

self- and cross-fertilise. Self-fertilisation is a form of inbreeding which has the potential to influence 69 

allele frequency in a population. If anthelmintic resistance is a recessive trait, a high level of self-70 

fertilisation means there is the potential for resistant alleles to spread more rapidly. Thirdly, clonal 71 

expansion in the snail, combined with low levels of infection in the snail population as a whole, 72 

could pose a bottleneck to gene flow and lead to population structuring. Finally, F. hepatica has a 73 

wide host range, infecting multiple species of domestic and wild animals (Parr and Gray, 2000; 74 

Vignoles et al., 2001; 2004; Arias et al., 2012). This may allow the flow of genes among livestock 75 

species and maintain a reservoir of genetic diversity in wild animals. In addition, adult F. hepatica 76 

in the definitive host can be long-lived (Durbin, 1952), and their reproductive capacity may be 77 

present for many years in untreated animals. 78 

An understanding of F. hepatica genetic diversity has implications for the development and 79 

validation of new methods of control. Knowledge of the provenance, infectivity, pathogenicity and 80 

resistance status of laboratory isolates is important (Hodgkinson et al., 2013). Laboratory 81 

maintained isolates of F. hepatica are frequently used in research, including in drug and vaccine 82 

trials (Fairweather, 2011b), but are not representative of field isolates. For example, the Cullompton 83 

isolate is aspermic and triploid (Fletcher et al., 2004), the Sligo isolate exhibits abnormal 84 

spermatogenesis (Hanna et al., 2008), and the Fairhurst isolate is highly homogenous (Walker et al., 85 

2007). 86 



 

 
 

Previously we have shown that the British F. hepatica population naturally infecting sheep 87 

and cattle is diploid, spermic, and predominantly reproduces by sexual reproduction (Beesley et al., 88 

2015). Here, we present the largest population genetic study to date for F. hepatica, involving the 89 

genotyping of 1579 adult parasites.  Adult F. hepatica samples were collected from three countries; 90 

Scotland, England and Wales from two definitive host species, sheep and cattle; and MLGs were 91 

produced using our panel of microsatellite markers (Cwiklinski et al., 2015a). A proportion of hosts 92 

harboured multiple, genotypically identical parasites. However, overall, we found substantial 93 

genetic variation within populations infecting a given host and high levels of genetic diversity in the 94 

liver fluke population as a whole, but little differentiation between populations infecting sheep and 95 

cattle. Our data indicate a lack of geographic or host species structuring in UK F. hepatica and high 96 

gene flow, which could promote the emergence and spread of drug resistance in a population. The 97 

results of this study may be relevant to other areas where widespread movement of livestock is 98 

practised.  99 

 100 

2. Materials and methods 101 

 102 

2.1 Populations of Fasciola hepatica 103 

 Adult F. hepatica were recovered from the livers of 44 naturally infected sheep between 104 

November 2012 and April 2013, from two abattoirs (Wales and Central England, UK). Similarly, 105 

parasites were recovered post mortem from 31 cattle livers between October 2013 and January 106 

2014, from an abattoir (Wales, UK). A total of 950 parasites were genotyped from sheep and 629 107 

from cattle (Table 1). The Rapid Analysis and Detection of Animal Related Risks (RADAR), 108 

Animal and Plant Health Agency (APHA) provided information on the origin of cattle livers. Adult 109 

parasites were isolated from the bile ducts and incubated for 2 hr at 37
o
C in 1 to 2 ml of Dulbecco’s 110 



 

 
 

Modified Eagle’s Media with 120 μgml
-1

 gentamicin and 120 μgml
-1 

amphotericin B to allow 111 

purging of intestinal contents and eggs. Parasites were snap frozen and stored at -80
o
C.  112 

 113 

2.2 Preparation of DNA template and microsatellite genotyping 114 

 A small section of each parasite, anterior to the ventral sucker, to avoid contamination with 115 

eggs or sperm, was used for DNA extraction. The tissue was divided into small pieces to ensure 116 

efficient lysis. DNA extraction was performed using a DNeasy Blood & Tissue Kit (Qiagen, 117 

Manchester, UK) as per the manufacturer’s instructions and DNA was diluted to 10 ngµl
-1

.  118 

 A panel of 15 microsatellites previously validated with 46 adult F. hepatica (Cwiklinski et al., 119 

2015a), was applied to each parasite DNA sample to generate an individual MLG. For efficiency 120 

the methodology was modified for a multiplex approach; the Type-it Microsatellite PCR kit 121 

(Qiagen) was used according to the manufacturer’s instructions (Cwiklinski et al., 2015a). The 122 

fifteen loci were grouped as follows: (1) Fh_1, Fh_6, Fh_13, Fh_15 annealing temperature 55
o
C; 123 

(2) Fh_2, Fh_3, Fh_5, Fh_8, annealing temperature 57
o
C; (3) Fh_9, Fh_10, Fh_11, Fh_14, 124 

annealing temperature 57
o
C; and (4) Fh_4, Fh_7 and Fh_12, annealing temperature 59

o
C. PCR 125 

products were visualised using SYBR Safe DNA stain (Life Technologies) on a 1.5 % agarose gel. 126 

PCR products were diluted 25-fold in HPLC water (Sigma-Aldrich), and sequenced using an ABI 127 

PRISM 3100 Genetic Analyser capillary electrophoresis system (Life Technologies; Cwiklinski et 128 

al., 2015a). Fragment sizes were determined using Peak Scanner v2.0 software (Life Technologies).  129 

 130 

2.3 Population genetic analyses  131 

 Allele frequencies were determined using CERVUS 3.0.7 (Kalinowski et al., 2007; available 132 

from www.fieldgenetics.com) and genotype frequencies were determined using GENEPOP 4.2.1 133 

(Rousset, 2008; available from http://kimura.univ-montp2.fr/~rousset/Genepop.htm). Null allele 134 

frequency was determined using CERVUS 3.0.7 (Kalinowski et al., 2007). Loci Fh_1, Fh_3, Fh_4, 135 

http://www.fieldgenetics.com/
http://kimura.univ-montp2.fr/~rousset/Genepop.htm


 

 
 

Fh_7, Fh_8 and Fh_14 were identified as having greater than 5 % frequency of null alleles, 136 

therefore these loci, along with locus Fh_9 which produced inconsistent traces, were excluded from 137 

the remaining population genetic analyses. 138 

 Average heterozygosities were determined for each locus using Arlequin 3.5.1.3 (Excoffier and 139 

Lischer, 2010). Unbiased heterozygosity was calculated using GenClone 2.0 (Arnaud-Haond and 140 

Belkhir, 2007). Heterozygosity was determined for each individual parasite based on the proportion 141 

of loci that were heterozygous. Mann-Whitney U tests were performed using Minitab 17.  142 

GenClone 2.0 (Arnaud-Haond and Belkhir, 2007) was used to identify repeated MLGs (defined as 143 

two, or more, parasites sharing the same MLG) and calculate corresponding Psex values, which were 144 

adjusted using FIS values (Parks and Werth, 1993). Animals from the same farms, or that shared 145 

repeated MLGs, were grouped when calculating Psex values.  146 

 To determine whether repeated MLGs tended to co-occur in the same host (Gregorius, 2005; 147 

Criscione et al., 2011; Vilas et al., 2012) a contingency table was created as described by Vilas et 148 

al., (2012), and Fisher’s exact test with a Monte Carlo simulation (5000 replicates) was performed 149 

using R 3.0.1 (R Core Team, 2013). All parasites were analysed together, and animals known to 150 

come from the same farm were grouped and also analysed with p-values corrected using a 151 

Bonferroni correction. The presence of repeated MLGs might make alleles appear more common 152 

and affect population genetic structure analyses. Therefore, for the remaining analyses repeated 153 

MLGs were reduced to one instance. 154 

 Deviations from Hardy-Weinberg equilibrium were calculated using GENEPOP 4.2.1 (Rousset, 155 

2008) using a two-tailed exact test with Markov Chain algorithm (10,000 dememorization, 250 156 

batches, 5000 iterations). To determine the extent of any significant deviation from Hardy-157 

Weinberg equilibrium, FIS values (Weir and Cockerham, 1984) were calculated using GENEPOP 158 

4.2.1 (Rousset, 2008).  159 



 

 
 

 All pairs of loci, with all parasites analysed together, were assessed for linkage disequilibrium 160 

using GENEPOP 4.2.1 (Rousset, 2008). Due to the number of tests, p-values were corrected and 161 

compared using (i) Bonferroni correction and (ii) false discovery rate correction (Benjamini and 162 

Hochberg, 1995), the latter performed using R 3.0.1 (R Core Team, 2013). To demonstrate the 163 

extent of linkage disequilibrium for any pair of loci with significant p-values, r
2
 values were 164 

calculated. To calculate this value, knowledge of the gametic phase is needed.  Since this is 165 

unknown here, the ELB algorithm (Excoffier et al., 2003) was used to infer the gametic phase. 166 

These calculations were performed using Arlequin 3.5.1.3 (Excoffier and Lischer, 2010). 167 

 Genotypic richness (Dorken and Eckert, 2001) was used to describe genetic diversity, 168 

calculated using GenClone 2.0 (Arnaud-Haond and Belkhir, 2007). When calculating genotypic 169 

richness, animals from the same farms, or that shared the same MLG, were grouped. Mann-Whitney 170 

U tests were performed using Minitab 17.  171 

 FIS and FST values were calculated using GENEPOP 4.2.1 (Rousset, 2008), and confidence 172 

intervals were calculated using FSTAT 2.9.3 (Goudet, 1995; available from 173 

http://www2.unil.ch/popgen/softwares/fstat.htm). The rate of self-fertilisation (s) was calculated 174 

from the FIS values using the equation FIS = s / (2 – s). Pairwise FST values were calculated using 175 

Arlequin 3.5.1.3 (Excoffier and Lischer, 2010). Principle component analysis (PCA) of these values 176 

was performed in R 3.0.1 (R Core Team, 2013), and the package ggplot2 was used to plot results. 177 

GENEPOP 4.2.1 (Rousset, 2008) was used to produce a measure for the average number of 178 

migrants between populations (Nm) using the private allele method developed by Slatkin, (1985). 179 

For this calculation, parasites were grouped according to the definitive host from which they 180 

originated.      181 

 Isolation by distance testing was possible for parasites from cattle only, as farm location was 182 

known. Parasites were grouped into populations dependent upon farm of origin. Isolation by 183 

distance was then tested using GENEPOP 4.2.1 (Rousset, 2008). A Mantel test (5000 permutations) 184 

http://www2.unil.ch/popgen/softwares/fstat.htm


 

 
 

was performed using log transformed geographic distances with the minimum geographic distance 185 

set at 0.0001. Data were plotted in R 3.0.1 (R Core Team, 2013) using the package ggplot2. 186 

 Structure 2.3.4 (Pritchard et al., 2000; available from 187 

http://pritchardlab.stanford.edu/structure.html) was used to detect population structure. To 188 

determine the ancestry of individuals, the admixture model with default settings was chosen. This 189 

allows for an individual to have mixed ancestry. For the allele frequency model, allele frequencies 190 

were correlated among populations with default settings. Burn-in length was set at 200,000 and was 191 

followed by 100,000 Markov Chain Monte Carlo repeats. K was set at 1 to 47 (the number of farms 192 

animals came from) and repeated 20 times. To determine the most appropriate value for K, ΔK was 193 

determined using the method proposed by Evanno et al., 2005, and calculated using STRUCTURE 194 

HARVESTER (Earl and vonHoldt, 2012; available from 195 

http://taylor0.biology.ucla.edu/structureHarvester/). Data were plotted in R 3.0.1 (R Core Team, 196 

2013) using the packages ggplot2 and gridExtra. 197 

 198 

2.4 Ethical Approval 199 

 Ethical approval was received from the University of Liverpool’s Veterinary Research Ethics 200 

Committee (VREC106 and VREC145).          201 

 202 

3. Results 203 

 204 

3.1 Microsatellite genotyping using a multiplex approach 205 

Summary statistics are shown for the microsatellite panel in Table 2. Eight loci (Fh_2, Fh_5, 206 

Fh_6, Fh_10, Fh_11, Fh_12, Fh_13 and Fh_15) were used to produce a MLG for all 1579 parasites. 207 

Only locus Fh_2 showed significant deviation from Hardy-Weinberg equilibrium, however, the FIS 208 

value at this locus was low, so the deviation was considered minor (Table 2). Each pair of loci was 209 

http://pritchardlab.stanford.edu/structure.html
http://taylor0.biology.ucla.edu/structureHarvester/


 

 
 

assessed for evidence of linkage disequilibrium. Five pairs of loci showed significant p-values (p < 210 

0.005 using false discovery rate; p < 0.00179 using Bonferroni correction) but low r
2
 values 211 

(median = 0.0001, range 0 to 0.33), indicating that the pairs of loci are closer to equilibrium than 212 

disequilibrium. 213 

 214 

3.2 Genetically identical (clonal) parasites are common in UK Fasciola hepatica infections 215 

Given that the life cycle of Fasciola spp. involves clonal expansion within the snail host, 216 

and release of genetically identical cercariae onto pasture, we tested whether multiple parasites 217 

within a liver exhibited the same MLG. Overall, 71 % of sheep and 48 % of cattle livers harboured 218 

clonal parasites (this difference was not statistically significant, X
2 

= 0.588; p = 0.4432). A total of 219 

96 parasite genotypes were represented more than once, with the majority, 65 genotypes, shared by 220 

just two parasites. Sixteen of the animals showed evidence of infection with more than two parasites 221 

of the same genotype, with a maximum of 10 clonal parasites reported in one sheep. Figure 1A and 222 

B show the number of unique and repeated MLG (defined as an MLG present more than once) 223 

within each individual sheep and cow. There were a number of animals where multiple different 224 

MLGs were shared by parasites, with a maximum of eight distinct MLGs observed in a single 225 

animal. This happened on two occasions, sheep 80 and sheep 83 (Fig. 1A).  226 

Generally, parasites with the same MLG were present within the same animal, and it was 227 

found that repeated MLGs did tend to co-occur in the same host (Fisher’s exact test with Monte 228 

Carlo simulation p = 0.0002). However, repeated MLGs were also found to be shared between 229 

individual sheep (sheep 2 and 3; sheep 9 and 10; sheep 80 and 81; sheep 82 and 84) and cattle 230 

(cattle 104 and 106), but clonal parasites were not found to be shared by both sheep and cattle. In 231 

total, 16 % of all parasites identified in sheep and cattle lacked a unique MLG and the proportion 232 

was significantly higher in sheep than cattle (Χ
2
 = 4.9052; p = 0.02678). However, this was not 233 

because parasite burdens in sheep were higher, since burdens for sheep and cattle were not 234 



 

 
 

significantly different (Mann-Whitney U test p = 0.5842). In order to determine whether those 235 

MLGs that occurred more than once in an animal represented different reproductive events or were 236 

from the same clonal lineage, Psex values, the probability that a MLG is derived from a distinct 237 

reproductive event rather than being from a clonal lineage, were calculated. All the Psex values were 238 

highly significant at n = 2 and overall ranged from 1.74 x 10
-71

 to 3.4 x 10
-4

 in parasites from sheep 239 

and from 2.97 x 10
-47

 to 2.39 x 10
-5 

in parasites from cattle. This supports the conclusion that the 240 

repeated MLGs represent parasites arising from clonal lineages. 241 

 242 

3.3 Fasciola hepatica in the UK is genetically diverse 243 

Inbreeding and clonal expansion in F. hepatica may impact on levels of genetic diversity in 244 

F. hepatica populations, hence we genotyped a large number of parasites from multiple sheep and 245 

cattle throughout the UK. The heterozygosity of individual parasites, a measure of genetic variation, 246 

ranged from 0.25 to 1, whilst the mean heterozygosity of all parasites across all loci was 0.752 (SD 247 

= 0.130), suggesting high levels of genetic variation in the overall population. In the majority of 248 

cases, 29 animals, each parasite genotyped had a unique MLG (Fig. 1A and B). Genotypic richness 249 

(R), the measure of genetic diversity that describes the number of distinct MLGs within a 250 

population, was high, R = 0.901. As with heterozygosity a range of values for R were reported 251 

within individual definitive hosts, 0.343 to 1, however, parasites in the majority of animals showed 252 

a genotypic richness of greater than 0.8 (Fig. 1C). These analyses confirmed that the UK F. 253 

hepatica population demonstrated high genetic diversity. 254 

 255 

3.4 Fasciola hepatica from sheep and cattle are not genetically distinct 256 

Given that both sheep and cattle can be infected with F. hepatica and often co-graze, we 257 

asked whether there is evidence of population structuring between the two hosts. The pairwise FST 258 

between parasites from sheep and cattle was 0.00145. Although this value was statistically 259 



 

 
 

significant (p < 0.05) given the large sample size, a value of less than 1% indicates little genetic 260 

differentiation between parasites from sheep and cattle. Furthermore, PCA analysis of pairwise FST 261 

values between the parasites within each definitive host does not reveal any clustering based on host 262 

species (Fig. 1D). No significant difference in the level of genetic variation and diversity was seen 263 

when parasites from sheep and cattle were assessed separately: heterozygosity across all loci was 264 

0.758 (SD: 0.141) in sheep and 0.745 (SD: 0.118) in cattle (Mann-Whitney U test p = 0.092) and 265 

the genotypic richness across all parasites was 0.890 in sheep and 0.918 in cattle (Mann-Whitney U 266 

test p = 0.689). Sheep and cattle share a number of common alleles and genotypes (Table 3) but 267 

private (unique) alleles were also identified for each host species, with 14.7 % and 6.0 % of all 268 

alleles unique to sheep and cattle, respectively. The most common allele at each locus was identical 269 

for both host species, with the exception of loci Fh_2 and Fh_4 (Table 3; data not available for 270 

locus Fh_1). The most common genotypes were also identical at nine loci (Fh_5, Fh_7, Fh_8, Fh_9, 271 

Fh_10, Fh_11, Fh_12, Fh_14 and Fh_15; Table 3). Therefore, parasites from sheep and cattle 272 

showed not only a similar level of genetic variation, but also largely similar alleles and genotypes. 273 

From the evidence presented in this study there does not appear to be structuring of the parasites 274 

from sheep and cattle, and F. hepatica infecting the two species of definitive host are genetically 275 

similar. 276 

 277 

3.5 High gene flow exists in UK Fasciola hepatica populations 278 

The extent of gene flow among F. hepatica populations was investigated given that 279 

widespread movement of sheep and cattle is commonly practiced in the UK. The evidence from a 280 

number of our analyses indicates that, in the UK, F. hepatica represents a single panmictic 281 

population with no geographic structuring. PCA analysis of pairwise FST from locations up to 650 282 

km apart showed there was no clustering based on the location of the definitive host (Fig. 1D). 283 

Similarly, there was also no evidence of isolation by distance (exact location information was 284 



 

 
 

available for cattle only) since the slope of the regression line was negative, and the p-value was 285 

non-significant (Fig. 2A). The mean likelihood results from Structure (Pritchard et al., 2000) did not 286 

reach an asymptote which would be expected if the population was structured (Fig. 2B). In addition 287 

the majority of ΔK values were low (Fig. 2C) indicating a single population with no structure. 288 

Finally, FST analysis between definitive hosts (across all parasites and loci) was 0.0202, which was 289 

low, supporting little genetic differentiation and low levels of population structure. This lack of 290 

genetic differentiation infers high gene flow in the population. When parasites from sheep and cattle 291 

were assessed separately, the FST values between sheep and between cattle were very similar: 292 

0.0193 and 0.0207, respectively.  Since private alleles were identified, Nm (the effective number of 293 

migrants) can be used to give an indirect estimate of gene flow. Parasites were grouped based on the 294 

definitive host from which they were collected, giving a mean sample size of 18.99. Nm across all 295 

loci was 5.59, and since this means the number of migrants per generation into the population is 296 

greater than 2, it is indicative of high gene flow (Slatkin, 1985). Similarly, when parasites from 297 

sheep and cattle were assessed separately, Nm values were 6.85 and 8.20, respectively. Therefore 298 

both the FST and Nm values support a high level of gene flow in the UK F. hepatica population.  299 

 300 

3.6 Low levels of self-fertilisation occur in UK Fasciola hepatica populations 301 

 Self-fertilisation will result in loss of genetic diversity within individual parasites, which can be 302 

estimated from Wright's FIS statistic. FIS across all loci and parasites was 0.0011, which was not 303 

significantly different from zero (95 % CI: -0.011, 0.013), and indicated a selfing rate no higher 304 

than 2 %.     305 

 306 

4. Discussion 307 

This study has provided valuable insights into aspects of F. hepatica population biology. 308 

The fact that the selfing rate was estimated to be no greater than 2 % suggests that self-fertilisation 309 



 

 
 

can occur but it is rare in the field. Clonal parasites, with identical MLGs, were identified in 61 % 310 

of definitive hosts, implying that clones are commonly found in F. hepatica infections, a finding 311 

that is consistent with earlier studies (17 of 20 animals; Vilas et al., 2012). We found parasites with 312 

identical MLGs were usually in the same host (Fig. 1A and B) and when clonal parasites were 313 

found to be shared between animals, each pair of animals was from the same geographic area and 314 

typically from the same farm. Our findings indicate that, following clonal expansion in the snail, 315 

there is aggregation of infective clonal metacercariae on pasture, with little mixing of parasites prior 316 

to ingestion by the definitive host. The life cycle of F. hepatica lends itself to clumped transmission 317 

in several ways. Firstly, a single miracidium infecting a snail produces multiple (e.g. mean 114.9; 318 

SD 80.3; Dreyfuss et al., 1999) genetically identical cercariae. Secondly, snails are known to shed 319 

multiple cercariae at the same time (Hodasi, 1972; Dreyfuss et al., 2006). Thirdly, reported levels of 320 

F. hepatica infection in G. truncatula in the UK and the Republic of Ireland can be as low as 3 % 321 

(Crossland et al., 1969; Relf et al., 2011). Finally, snail habitats tend to be small (Rondelaud et al., 322 

2011), which may concentrate metacercariae in small areas of pasture. However, it is important to 323 

appreciate that mortality can occur at every stage of the life cycle (Ollerenshaw, 1959), thus 324 

potentially limiting the survival of clonal parasites. Indeed, the maximum number of clonal adult 325 

parasites in any one host was ten out of the 36 parasites genotyped (Fig. 1A). The fact that Psex 326 

values were significant, indicated that parasites with identical MLGs arose from the same clonal 327 

lineage rather than distinct reproductive events, which would be consistent with the findings of 328 

Vilas et al., (2012). Neither our study nor Vilas et al., (2012) reported parasites with the same MLG 329 

in both sheep and cattle. Whilst it would be expected that sheep and cattle that were known to co-330 

graze might be more likely to be infected with the same clonal lineage, parasites with the same 331 

composite mitochondrial haplotypes have been reported in sheep and cattle from distinct counties of 332 

Northern Ireland (Walker et al., 2007). 333 



 

 
 

Despite the presence of clonal parasites in sheep and cattle, these constituted only 16 % of 334 

the total parasite population under study as the majority of the 1579 parasites analysed had unique 335 

MLGs. Our analysis of the population as a whole indicated that the UK F. hepatica population was 336 

highly genetically diverse (Fig. 1C). Undoubtedly, one of the best ways to maintain this diversity is 337 

the capacity for F. hepatica to reproduce in the definitive host through meiosis. Our findings on low 338 

selfing rates indicate that cross-fertilisation predominates in F. hepatica. Recently, it has been 339 

observed that parasites with higher heterozygosity levels were more likely to establish in the liver 340 

following infection (Zintl et al., 2015) raising the possibility that host selection enhances the 341 

likelihood of cross-fertilisation.  342 

Of particular interest here is the fact that we sampled lambs that had grazed for only one 343 

season, yet they displayed highly diverse adult parasite populations, equivalent to those seen in 344 

cattle that had grazed over several seasons; a point which has been alluded to before by Walker et 345 

al., (2007). This suggests that the metacercariae on pasture, to which the lambs were exposed, were 346 

also highly genetically diverse. Clonal expansion and low levels of infection in snails present a 347 

potential genetic bottleneck and raise the question about how F. hepatica maintains its genetic 348 

diversity. It is known that, experimentally, snails can be infected with two miracidia four hours 349 

apart (Dreyfuss et al., 2000; Dar et al., 2011) and, in the field, snails have been found to be infected 350 

by more than one miracidium (Rondelaud et al., 2004).  If a snail can be simultaneously infected 351 

with multiple miracidia and subsequently shed cercariae of many genotypes, this could drive 352 

genetic diversity. Snail habitats can be difficult to locate, and whilst the level of infection within 353 

snails has been reported to be as low as 0.8 % (Rondelaud and Dreyfuss, 1997), it is possible that 354 

levels of infection in the snail are considerably higher. There is also evidence that F. hepatica can 355 

infect snails other than G. truncatula (Abrous et al., 1999; Rondelaud et al., 2001; Dreyfuss et al., 356 

2005; Relf et al., 2009; Caron et al., 2014). Furthermore, given that snails infected with F. hepatica 357 

have been found in areas with no ruminant contact (Dreyfuss et al., 2003) wild definitive hosts, 358 



 

 
 

such as rabbits and deer, could function as important reservoir hosts in maintaining diversity (Parr 359 

and Gray, 2000; Arias et al., 2012). Another possible way to maintain genotypic diversity is via the 360 

long-term time survival of metacercariae on pasture. Metacercariae have been reported to be both 361 

viable and infective for at least 130 days at 10
o
C (Boray, 1969), but we have no knowledge of how 362 

long metacercariae survive in the field, yet this has important implications for control. At a practical 363 

level given that efficacy of drugs and vaccines can be compromised by the presence of genetic 364 

diversity, an important understanding of this standing genetic variation is essential to the rational 365 

selection of new vaccine candidates/drug targets for F. hepatica.  366 

 There is the potential for husbandry and management practices to affect the population 367 

structure of parasites (Grillo et al., 2007). Our analysis of the UK F. hepatica population showed no 368 

evidence of structuring geographically or amongst parasites from sheep and cattle (Fig. 1D, 2B and 369 

C), indicating panmixia and high gene flow. It has been suggested that movement of the definitive 370 

host is a key factor in maintaining high levels of gene flow in F. hepatica (Semyenova et al., 2006; 371 

Bazsalovicsová et al., 2015). Livestock in the UK are frequently moved around and between 372 

countries and it is likely that the movement of livestock in the UK contributes to the high gene flow 373 

observed. Even a small amount of migration can destroy any observed population structure giving 374 

the appearance of panmixia (Wright, 1931); for example moving animals to a new farm could 375 

introduce a new population of parasites as well as exposing the definitive host to a different resident 376 

parasite population. Whilst further analysis of parasites from flocks or herds where animal 377 

movement is restricted, or ideally ‘closed’, may reveal structure not previously detected, panmixia 378 

is not merely a feature of UK F. hepatica populations, similar findings have been reported in Spain 379 

and Bolivia (Hurtrez-Boussès et al., 2004; Vázquez-Prieto et al., 2011). The results of this study 380 

may be relevant to other areas where widespread movement, or importation, of livestock is 381 

practised. In support of this, identical mitochondrial haplotypes found between fluke isolated from 382 

the Republic of Ireland and Greece was attributed to importation of animals (Walker et al., 2007). It 383 



 

 
 

would be interesting to determine the level of genetic diversity in, and genetic differentiation 384 

between, populations of F. hepatica from wild, as opposed to farmed, definitive hosts. 385 

Resistance to triclabendazole has been reported widely throughout the UK (Daniel et al., 386 

2012; Gordon et al., 2012; Hanna et al., 2015).  Investigation of triclabendazole resistance in fluke 387 

in laboratories worldwide has resulted in the pursuit of a number of potential candidate genes and 388 

biological pathways (reviewed by Kelley et al., 2016). The precise loci and, therefore, genes 389 

involved are still to be defined, but a genome-wide approach is currently underway to identify the 390 

major genetic determinant of triclabendazole resistance (Hodgkinson et al., 2013). Our findings 391 

have implications for the emergence and spread of anthelmintic resistance. In terms of emergence, 392 

we have shown that there is high standing genetic variation in UK F. hepatica populations, which 393 

may include rare genetic variants able to confer resistance to anthelmintics (Gilleard, 2013). This is 394 

consistent with the observation of high levels of coding variation reported within the F. hepatica 395 

genome for UK isolates (Cwiklinski et al., 2015b). While the treatment history, and thus 396 

triclabendazole resistance status, of the parasites analysed here was not known; high mitochondrial 397 

diversity has been reported in wild-type parasites that survived treatment with triclabendazole, as 398 

well as the triclabendazole resistant Oberon lab isolate (Walker et al., 2007). Although we have 399 

shown that self-fertilisation is not the norm in UK F. hepatica populations, any adult fluke with a 400 

resistant genotype that remains following drug treatment would be able to exploit this aspect of 401 

their biology to reproduce and contaminate the pasture. Thereafter, our results indicate that clonal 402 

expansion within the snail intermediate host, coupled with clumped transmission, could act to 403 

propagate these resistant genotypes within a farm and increase the likelihood of resistant genotypes 404 

mating within a host. In relation to the spread of resistance, in the UK sheep are treated with 405 

anthelmintics against F. hepatica more often than cattle and resistance to triclabendazole is more 406 

frequently reported in parasites infecting sheep (Sargison et al., 2010). However, our findings 407 

indicate that drug resistant F. hepatica from sheep could be readily be transferred to cattle. 408 



 

 
 

Furthermore, since there is no evidence of structuring either geographically or between parasites 409 

from sheep and cattle, this means anthelmintic resistance has the potential to spread around the 410 

country, compounded by the movement of animals and maintained in wildlife reservoirs.  411 

 412 

Conclusion 413 

We have used microsatellite markers to show that F. hepatica populations in the field are 414 

genetically diverse and outbred. Thus, despite the ability of F. hepatica to self-fertilise within the 415 

definitive host and to clonally multiply within the intermediate host, there is little difference 416 

between the genetic structure of F. hepatica and that of any other sexually reproducing parasite. 417 

The fact that some hosts were infected with parasites of identical MLG indicates clumped 418 

transmission to the definitive host, which may be due to aggregation of infective stages on pasture. 419 

Adult F. hepatica isolated from naturally infected sheep and cattle in the UK were found to be 420 

highly genetically diverse within the definitive host, but there was little genetic differentiation 421 

between populations. This level of genetic diversity is not a product of grazing over time, since the 422 

genetic diversity of adult parasites infecting lambs grazing for only one season was similar to that of 423 

cattle grazing over several seasons. The genetic diversity reported here implies drug resistance loci 424 

will be recombining freely within the genome, coupled with the high gene flow exhibited by F. 425 

hepatica populations, this has implications for the emergence and spread of anthelmintic resistance 426 

in F. hepatica populations. 427 
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 647 

Figure Legends 648 

Fig. 1: Representation of the number of clonal parasites (those with repeated MLGs) found within 649 

each individual sheep (A) and cattle (B) and shown as a proportion of the total number of parasites 650 

genotyped from each definitive host; numbers on the x-axis are individual animal identifiers; * 651 

indicates where more than one clone set was found in an individual host, the bar is split to 652 

distinguish the number of parasites within each clone set; ^ indicates where clone sets are shared 653 

between hosts. (C) Histogram displaying the genotypic richness values within each definitive host, 654 

separated into sheep and cattle; genotypic richness. Genotypic richness (R) is a measure of genetic 655 

diversity and is calculated as R = (G – 1) / (N – 1) where G = the number of genotypes identified in 656 

each host and N = the number of parasites genotyped; each histogram bar is of width 0.05 with the 657 

bar centred over the upper limit. (D) Principle Component Analysis for pairwise FST values between 658 
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the parasites of each definitive host. Each data point and its corresponding number represent an 659 

individual animal, and the shape and colour of the symbol represent the location and species of that 660 

animal, respectively.  661 

Fig. 2: (A) Results of isolation by distance results for cattle parasites. Each point plots the genetic 662 

difference (pairwise test statistic based on FST / [1 – FST]) against the geographical distance (on a 663 

natural logarithm scale) between each pair of populations. Each population consists of the parasites 664 

on one farm; comparisons are not made between parasites on the same farm. The regression line is 665 

shown and has the following parameters: slope = -0.00129 (95 % CI = -0.00317, 0.00142); intercept 666 

= -0.434; p-value = 0.2968. Therefore, there is no evidence of isolation by distance as the slope is 667 

negative and the p-value non-significant. (B) Structure (Pritchard et al., 2000) was used to detect 668 

population structure. K represents the number of populations assumed for each simulation and is 669 

plotted against the mean natural log probabilities. Each simulation was repeated 20 times and error 670 

bars show the standard deviations. (C) To determine the most appropriate value for K, ΔK (the rate 671 

of change in the log probability between successive K values; Evanno et al., 2005) was determined 672 

using Structure Harvester (Earl and vonHoldt, 2012). The results indicate a single population with 673 

no structure.   674 



 

 
 

Table 1: Fasciola hepatica populations collected from sheep and cattle 

Species  No. of animals Demographic information 

Median 

burden 

(range) 

No. of parasites genotyped 

(median; range per liver) 

Sheep
1 

8 Scotland 

69 

(36 – 

>200) 

288
2
 

Sheep
1
 5 Wales 180

2
 

Sheep
1
 1 England

 
36

2
 

Sheep
1
 6 England or Wales 216

2
 

Sheep
1
 24 

5 farms local to the abattoir in Wales or Central 

England 

9.5
3
 

(3 – 100) 

230 

(10.5; 2 – 18) 

Cattle 1 England
4 

Males and females, beef and 

dairy breeds, median age 8.5 

years (range 2.0 to 16.6)
4
 

19 

(1 – 

>230) 

13 

Cattle 30 

21 farms in 

Wales
4
  

616 

(18; 1 – 36) 

1.
 from lambs (approximately 6 to 12 mths old) that were exposed to F. hepatica metacercariae over a period of 3-9 mths in the summer and 

autumn 2012; 
2.

 36 parasites were sampled from each animal; 
3.

 total enumeration was not performed for six animals; 
4.
 this information was 

provided through Rapid Analysis and Detection of Animal-related Risks (RADAR), Animal and Plant Health Agency  
 



 

 
 

Table 2: Summary statistics for the microsatellite panel based on 1579 parasites 

Locus 
Frequency of null 

alleles* 

No. of alleles 

exhibited 

No. of genotypes 

exhibited 
Hobs / Hnb FIS ** 

Fh_1 0.5922
^
 9^ 17^ ND ND 

Fh_2 0.0112 28 109 0.823 / 0.843 0.0299
12

 

Fh_3 0.1252 7 17 ND ND 

Fh_4 0.0753 16 83 ND ND 

Fh_5 0.0097 39 177 0.852 / 0.867 0.0199 

Fh_6 0.0098 30 178 0.885 / 0.903 0.0082 

Fh_7 0.1051 11 37 ND ND 

Fh_8 0.2255 16 55 ND ND 

Fh_9 -0.1378 2 3 ND ND 

Fh_10 0.0160 17 75 0.797 / 0.823 0.0327 

Fh_11 0.0237 15 68 0.802 / 0.840 0.0442 

Fh_12 0.0051 15 66 0.733 / 0.740 0.0061 

Fh_13 -0.0058 12 28 0.633 / 0.628 0.0006 

Fh_14 0.2794 18 75 ND ND 

Fh_15 0.0064 10 21 0.494 / 0.505 0.0198 

* calculated using CERVUS 3.0.7 (Kalinowski et al., 2007), results in bold indicate greater than 5 % null allele frequency; Hobs = observed 

heterozygosity; Hnb = unbiased heterozygosity; MLGs = multilocus genotypes; ** FIS values are given to indicate deviations from Hardy-

Weinberg equilibrium with those results in bold indicating significant p-values when using the two-tailed exact test – a Bonferroni and false 

discovery rate correction were applied 
1
 = significant when Bonferroni correction applied (p = 0.00625) 

2
 = significant when false discovery rate 

correction applied; ^ values for locus Fh_1 were determined for 720 of the parasites from sheep only; ND = not determined 



 

 
 

Table 3: Frequency and identity of the most common alleles and genotypes at each locus for parasites from sheep, cattle and all animals 

Locus 

Most common allele* (frequency) Most common genotype* (frequency) 

Parasites from 

sheep 

Parasites from 

cattle 

Parasites from sheep and 

cattle 

Parasites from 

sheep 

Parasites from 

cattle 

Parasites from sheep and 

cattle  

Fh_1 10 (0.32) ND ND 1010 (0.26) ND ND 

Fh_2 08 (0.23) 17 (0.24) 08 (0.22) 0818 (0.098) 0817 (0.11) 0817 (0.095) 

Fh_3 08 (0.50) 08 (0.47) 08 (0.49) 0708 (0.35) 0808 (0.29) 0708 (0.32) 

Fh_4 19 (0.19) 17 (0.22) 17 (0.20) 1819 (0.080) 1717 (0.086) 1819 (0.073) 

Fh_5 27 (0.23) 27 (0.20) 27 (0.22) 2427 (0.083) 2427 (0.085) 2427 (0.084) 

Fh_6 15 (0.21) 15 (0.20) 15 (0.21) 1530 (0.056) 1515 (0.048) 1530 (0.049) 

Fh_7 13 (0.41) 13 (0.44) 13 (0.42) 1313 (0.22) 1313 (0.24) 1313 (0.23) 

Fh_8 12 (0.29) 12 (0.32) 12 (0.30) 1212 (0.16) 1212 (0.18) 1212 (0.17) 

Fh_9 07 (0.62) 07 (0.64) 07 (0.63) 0607 (0.65) 0607 (0.56) 0607 (0.62) 

Fh_10 09 (0.35) 09 (0.33) 09 (0.34) 0909 (0.12)  0909 (0.14) 0909 (0.13) 

Fh_11 13 (0.28) 13 (0.32) 13 (0.30) 1313 (0.096) 1313 (0.13) 1313 (0.11) 

Fh_12 10 (0.43) 10 (0.48) 10 (0.45) 1010 (0.19) 1010 (0.25) 1010 (0.21) 

Fh_13 08 (0.55) 08 (0.50) 08 (0.53) 0808 (0.31) 0815 (0.31) 0808 (0.28) and 0815 (0.28) 

Fh_14 17 (0.24) 17 (0.27) 17 (0.25) 1717 (0.14) 1717 (0.15) 1717 (0.15) 

Fh_15 14 (0.64) 14 (0.64) 14 (0.64) 1414 (0.41) 1414 (0.41) 1414 (0.41) 

* alleles are identified by the number of repeats and are in a two-figure format (e.g. 08 indicates the most common allele has 8 repeats of the 

microsatellite), with genotypes in a four-figure format made up of two alleles (e.g. 0818 indicates the most common genotype is made up of the 

alleles 08 and 18 having 8 and 18 repeats of the microsatellite respectively) 
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