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Abstract4

In this paper we consider a Markov-modulated risk model, where the premium5

rates, claim frequency and the distribution of the claim sizes vary depending on the6

state of an external Markov chain. The free reserves of the insurer are invested in a7

risky asset whose prices are modelled by a geometric Brownian motion, with param-8

eters that are also influenced according to the external Markov process. A system of9

integro-differential equations for the ruin probabilities and for the expected discounted10

penalty function is derived. Using Laplace transforms and regular variation theory,11

we investigate the asymptotic behaviour of both quantities for the case of light or12

heavy tailed claim size distributions. Specifically, within this set up (where we lose the13

strong Markov property of the risk process), we show that the ruin probabilities de-14

crease asymptotically as a power function in the case of the light tailed claims, whilst15

for the heavy tails we show that the probabilities of ruin decay either like a power16

function, depending on the parameters of the investment, or behave asymptotically17

like the tails of the claim size distributions.18

Keywords: Markov-modulated risk process, Investment, Integro-differential equa-19

tion system, Ruin probabilities, Expected discounted penalty function, Regular variation,20

Frobenius method for systems.21

1 Introduction22

The investigation of insurance risk models with stochastic return on investments has at-23

tracted a lot of attention in recent years. Stimulated by the paper of Paulsen (1993) and24
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Paulsen and Gjessing (1997), where continuous time risk processes in a stochastic eco-25

nomic environment are introduced, many researchers have studied Poisson and renewal26

risk models with risky investments. Lower and upper bounds, numerical solutions, asymp-27

totics and analytic expressions for the probability of ruin (for some individual classes of28

the aforementioned models), in the case where the wealth process of an insurance portfolio29

is invested in a stock (whose prices follow a geometric Brownian motion or are Lévy pro-30

cesses), have been derived by several authors. See for example, among others, Cai (2004),31

Cai and Xu (2006), Paulsen (1998), Paulsen (2008), Tang and Tsitsiashvili (2003), Tang32

and Tsitsiashvili (2004) and the references therein. More recently, another extension of the33

aforementioned problem, where a general two sided jump-diffusion risk model that allows34

correlation between the two Brownian motions driving the insurance risk and investment35

return, has been investigated by Yin and Wen (2013) in the presence of a constant dividend36

and a threshold barrier strategy.37

With regards to the asymptotic results of risk models with investments, Paulsen (2002)38

considers a Lévy risk process compounded by another independent Lévy process and shows39

asymptotically that, as initial capital increases the ruin probability essentially behaves as a40

power function of the initial capital. Moreover, Gaier and Grandits (2004) showed, within41

the context of the classical risk model, that when the claim sizes are regularly varying,42

then the probability of ruin is also regularly varying, whilst Wei (2009) extended these re-43

sults into the context of the renewal risk model. More recently, Hult and Lindskog (2011)44

studied the asymptotic decay of finite time ruin probabilities for an insurance portfolio in45

the presence of heavy-tailed claims when the prices of the risky investments are given by46

a quite general semimartingale. In this setting, the ruin problem corresponds to deter-47

mining hitting probabilities for the solution to a randomly perturbed stochastic integral48

equation. Additionally, Albrecher et al. (2012) considered a general class of renewal risk49

models (where the inter-arrival claim times satisfy an ordinary differential equation with50

constant coefficients) with geometrical Brownian motion investments and, using regular51

variation theory, they derived a unified analytic method for the asymptotic behaviour of52

the probability of ruin. For this general class of renewal risk models with investment,53

explicit results for the asymptotic ruin probability are given in the case of both light and54

heavy tailed claims.55

The common idea that investing in an asset with stochastic returns proves too risky for56

an insurance portfolio in the classical risk model, the renewal and the Lévy risk models,57

can be justified mathematically by all the above papers. However, once we move to non-58

renewal models (in the sense that the surplus process does not renew itself at the claim59

time epochs), the strong Markov property is lost and the problem becomes cumbersome.60

The Markov-modulated risk model was first introduced by Janssen (1980) and Reinhard61

(1984) and has since received much attention in the risk theory literature, including ap-62

plications in queueing theory, see among others Asmussen (1987), Asmussen et al. (1994)63

and Asmussen and O’Cinneide (2002). The primary motive of these papers is to enhance64

the flexibility of the models parameter setting. This is achieved by considering an exter-65
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nal Markovian environment process which influences both the claim frequencies and the66

claim severities. The examples usually given are weather conditions, where the sojourns67

of the external Markov process could be weather types, or in health insurance where the68

sojourns of the environment process could be certain types of epidemics (see Asmussen69

(1989)). Surprisingly, only a few authors have studied non-Poissonian risk models in the70

presence of an investment strategy. Kötter and Bäuerle (2006) were the first to introduce71

a Markov-modulated risk process where risk reserves, under a special investment strategy,72

can be invested into a stock index following a geometric Brownian motion. Within this73

set up, for a special class of investment policies, they derive results for the adjustment74

coefficient. A second study within the Markov-modulated framework was made by Diko75

and Usábel (2011), where they considered a risk model perturbed by diffusion in which76

the reserves are invested into an asset whose return rate and volatility are time-dependent77

Markov-modulated. For this model they used Chebyshev’s polynomial approximation and78

Laplace-Carson transforms to obtain a numerical solution for the integro-differential equa-79

tion system for the risk quantity of interest.80

In this paper, we consider a Markov-modulated risk model in which the reserves of the81

insurance portfolio are continuously invested into an asset whose prices follow a geomet-82

rical Brownian motion, which is also influenced by the external Markov chain. For the83

aforementioned model the Markov property no longer holds and thus the ruin probability84

is given in terms of an integro-differential equation system. Stimulated by Albrecher et al.85

(2012), we extend their methodology (using Frobenius method for systems - see Barkatou86

et al. (2010)) to obtain, using regular variation theory, an explicit asymptotic expression87

of the ultimate ruin probability and the expected discounted penalty function. Within this88

non-Poissonian model we are able to show that the ruin probability decreases asymptoti-89

cally as a power function in the case of the light tailed claims, whilst for the heavy tails90

we show that the probability of ruin decays either like a power function, depending on91

the parameters of the investment, or behaves asymptotically like the tails of the claim size92

distributions. The same kind of results hold for the Gerber-Shiu function. Note that the93

above matrix based analysis holds for more general non-renewal risk models, such as the94

Markov Arrival Process (MAP) risk models.95

In more details the paper is organised as follows; in Section 2 we introduce a Markov-96

modulated risk model where the reserves of the insurance portfolio are invested in a risky97

asset whose price follows a geometrical Brownian motion, in which the drift and volatility98

parameters are also influenced by the external Markov chain. In Section 3, using the99

infinitesimal generator argument, we derive an integro-differential equation system for the100

decompositions of the ruin probabilities. In Section 4, we use Laplace transforms to derive101

an individual form for the system of ruin probabilities, that will allow an asymptotic102

analysis in the later sections. In Section 5, we give the general solution for the Laplace103

system and by using the Frobenius method for matrices, Tauberian theorems and Heaviside104

principle, we derive explicit asymptotic expressions for the probabilities of ruin. Section 6105

discusses an extension of the methodology used for the ruin probabilities to more general106
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ruin-related quantities, namely the Gerber-Shiu function.107

2 Markov-modulated risk process with stochastic investment108

In this section, we introduce the Markov-modulated Poisson risk model in the presence of109

risky asset investment, where the premium rate, the claim arrival rate, the distribution of110

the claim sizes and the parameters of the return on the surplus investment are influenced111

by an external Markov chain (see also Kötter and Bäuerle (2006) and Diko and Usábel112

(2011)).113

Consider the external environment process {J(t)}t>0, which can be interpreted as the
general economic conditions that govern the state of the economy. Suppose {J(t)}t>0 is a
homogeneous, irreducible and recurrent continuous time Markov process, with finite state
space E = {1, 2, ...,m}. Let Q = (qij)

m
i,j=1, with qii = −

∑m
j 6=i qij = −qi, for i ∈ E, denote

the intensity rate matrix of {J(t)}t>0, with a stationary distribution (which exists and is
unique since {J(t)}t>0 is irreducible and has finite state space) given by

π = (π1, · · · , πm), πi > 0, i ∈ E and
∑
i∈E

πi = 1.

Assume that when J(t) = i ∈ E, the number of claims, namely N(t), occur according114

to a Poisson process with intensity rate λi ∈ R+. Further assume that the corresponding115

nonnegative claim amounts, {Xk}k>1, have common distribution function Fi(x), with den-116

sity fi(x) and finite mean µi < ∞. We will also assume that the premiums are received117

continuously at a rate ci > 0 during the time when {J(t)}t>0 remains in the state i ∈ E.118

Under the above set up, the corresponding risk model is known as a Markov-modulated119

Poisson process.120

Considering the above assumptions, the insurer’s surplus process can be given by

U(t) = u+

∫ t

0
cJ(s)ds−

N(t)∑
k=1

Xk, t > 0,

where u > 0 is the insurer’s initial capital. Let us propose that the insurer invests its
surplus into a risky asset, with returns process {Ri(t)}t>0, when J(t) = i ∈ E, which
is also influenced by the external Markov process, {J(t)}t>0, and satisfies the stochastic
differential equation

dRJ(t)(t) = aJ(t)dt+ σJ(t)dB(t),

where {aJ(t)}t>0 is the drift and {σJ(t)}t>0 the volatility of the randomness produced by121

the standard Brownian motion {B(t)}t>0.122

Within this framework, the surplus process under risky investment, is given by123

U(t) = u+

∫ t

0
cJ(s) ds−

N(t)∑
k=1

Xk +

∫ t

0
U(s−) dRJ(s)(s), t > 0. (2.1)
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This model extends the Markov-modulated risk process introduced by Reinhard (1984)124

and also the classical risk model, with investment, introduced by Paulsen (1993).125

The first time the surplus process of the insurance portfolio falls below zero is referred
to as the time of ruin and is denoted by

T = inf{t > 0 : U(t) < 0|U(0) = u}, (∞, otherwise).

The probability of ruin, given that the initial environment is in state i ∈ E, with initial
capital u > 0, is described by

ψi(u) = P{T <∞|U(0) = u, J(0) = i}.

Then, the ultimate ruin probability, for the stationary case, is given by126

ψ(u) =
m∑
k=1

πkψk(u), u > 0. (2.2)

3 An integro-differential equation system for the ruin127

probabilities128

The main aim of this section is to derive a system of integro-differential equations for
the auxiliary function ψi(u), i ∈ E. Before we proceed with the derivation, recall that if
{X(t)}t>0 is an Itô diffusion, with X(0) = x, satisfying a stochastic differential equation
of the form

dX(t) = α(X(t)) dt+ r(X(t)) dB(t),

then the infinitesimal generator of X(t) is the operator A, acting on suitable functions f ,129

given by130

Af(x) = lim
h→0

E [f(X(h))|X(0) = x]− f(x)

h
= α(x)

∂

∂x
f(x) +

r2(x)

2

∂2

∂x2
f(x). (3.1)

Using an intuitive infinitesimal argument and methods similar to that in Cai and Xu (2006)131

and Lu and Tsai (2007), we get the following theorem.132

133

Theorem 1. For u > 0, the ruin probabilities, ψi(u), i ∈ E, satisfy the following integro-
differential equation system

1

2
σ2
i u

2ψ′′i (u) + (aiu+ ci)ψ
′
i(u) + λiF i(u)

= (λi + qi)ψi(u)− λi
∫ u

0
ψi(u− x) dFi(x)−

m∑
j=1,j 6=i

qijψj(u), (3.2)
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with boundary conditions134

lim
u→∞

ψi(u) = 0, (3.3)

and135

ciψ
′
i(0)− (λi + qi)ψi(0) +

m∑
j=1,j 6=i

qijψj(0) + λi = 0, (3.4)

where F i(u) = 1− Fi(u), i ∈ E.136

Proof. Let137

Yi(t) = u+ cit+

∫ t

0
Yi(s−) dRi(s), i ∈ E, (3.5)

be the income process under investment, given we start in state i ∈ E and experience138

no claims up to time t > 0. In order to derive an integro-differential equation system139

for the ruin probabilities ψi(u), i ∈ E, we consider the risk process {U(t)}t>0, defined by140

equation (2.1) in an infinitesimal time interval (0, h]. Moreover, given that J(0) = i ∈ E141

and {N(t)}t>0 is a Poisson process, there are four cases that could appear in (0, h];142

1. No claim and no change in state,143

2. No change in state but a claim arrival,144

3. No claim but a change in state of the external process,145

4. Two or more events occur in the interval (0, h].146

Considering the possible events above and noticing, for the second case, it holds that
ψi(Yi(h)− x) = 1, for x > Yi(h), we have

ψi(u) =(1− λih− qih)E(ψi(Yi(h)))

+ λihE

[∫ Yi(h)

0
ψi(Yi(h)− x) dFi(x) + F i(Yi(h))

]

+ hE

 m∑
j=1,j 6=i

qijψj(Yi(h))

+ o(h),

where o(h) is such that, o(h)/h→ 0 as h→ 0.147

Re-arranging the above equation, yields

(λi + qi)E [ψi(Yi(h))] =
E [ψi(Yi(h))]− ψi(u)

h
+ λiE

[∫ Yi(h)

0
ψi(Yi(h)− x) dFi(x) + F i(Yi(h))

]

+ E

 m∑
j=1,j 6=i

qijψj(Yi(h))

+
o(h)

h
.
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Now, letting h→ 0 in the equation above yields that148

(λi + qi)ψi(u) = Aψi(u) + λi

[∫ u

0
ψi(u− x) dFi(x) + F i(u)

]
+

m∑
j=1,j 6=i

qijψj(u), (3.6)

where A is the infinitesimal generator, defined in equation (3.1), of the process Yi(t).149

Rewriting equation (3.5) in the form of an Itô diffusion process, and using equation
(3.1), we get that the generator of Yi(t) acting on ψi(u) is given by

Aψi(u) = (ci + aiu)ψ′i(u) +
1

2
σ2
i u

2ψ′′i (u).

After substituting this form of the generator into equation (3.6), we obtain the integro-150

differential equation system (3.2). For the boundary condition (3.4), setting u = 0 in the151

integro-differential equation system (3.2), the result follows immediately.152

153

Remark 1. For m = 1, we obtain the integro-differential equation for the classical risk
model under risky investment

1

2
σ2u2ψ′′(u) + (au+ c)ψ′(u) + λF (u) = λψ(u)− λ

∫ u

0
ψ(u− x) dF (x),

as it is given in Constantinescu and Thomann (2004).154

4 Laplace transforms155

The structure of the integro-differential equation system (3.2) suggests the use of Laplace156

transforms for the asymptotic analysis of the probability of ruin. Thus, in this section,157

we will derive a matrix closed form expression for the ruin probability, that will be vital158

for our next section, where Karamata-Tauberian theorems will be applied to derive the159

asymptotic ruin results.160

Let ψ̂i(s), F̂ i(s) and f̂i(s) be the Laplace transforms of ψi(u), F i(u) and fi(u), respec-161

tively. Taking Laplace transforms on both sides of equation system (3.2), one can see that162

ψ̂i(u) satisfies a second order non-homogeneous ordinary differential equation system, for163

i ∈ E, given by164

s2σ2
i

2
ψ̂′′i (s) + [s(2σ2

i − ai)]ψ̂′i(s)

+ [σ2
i + cis− (ai + qi)− λi(1− f̂i(s))]ψ̂i(s) +

m∑
j=1,j 6=i

qijψ̂j(s)

= ciψi(0)− λiF̂ i(s),
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or in matrix form165

s2d
2~̂ψ(s)

ds2
+ sA

d
~̂
ψ(s)

ds
+ B(s)

~̂
ψ(s) = c~ψ(0)−Λ~k(s), (4.1)

with

A = diag

(
4− 2a1

σ2
1

, . . . , 4− 2am
σ2
m

)
,

~̂
ψ(s) = [ψ̂1(s), . . . , ψ̂m(s)]T ,

~ψ(0) = [ψ1(0), . . . , ψm(0)]T ,

c = diag(
2c1

σ2
1

, . . . ,
2cm
σ2
m

),

Λ = diag(
2λ1

σ2
1

, . . . ,
2λm
σ2
m

),

~k(s) = [F̂ 1(s), . . . , F̂m(s)]T ,

where the superscript, (·)T , denotes the transpose of a vector/matrix, and166

B(s) =



2
σ2
1
Z1(s) 2

σ2
1
q1,2 · · · 2

σ2
1
q1,m

2
σ2
2
q2,1

. . .
...

...
. . . 2

σ2
m−1

qm−1,m

2
σ2
m
qm,1 · · · 2

σ2
m
qm,m−1

2
σ2
m
Zm(s)

 , (4.2)

with Zi(s) = σ2
i + cis− (ai + qi)− λi(1− f̂i(s)), i ∈ E.167

The form of the non-homogeneous matrix equation (4.1) will be used in the sequel168

so as to derive asymptotic expressions for
~̂
ψ(s) and consequently for the ultimate ruin169

probability, namely ψ(u).170

5 Asymptotic results for arbitrary claim size distributions171

In this section we analyse the asymptotic behaviour of the Laplace transform vectors,172

for the ruin probabilities, and derive asymptotic expressions using Karamata-Tauberian173

theorems and Heaviside Principle. In order to achieve this, we first need to draw the174

solution of the Laplace transform vector, satisfying equation (4.1), in the neighbourhood175

of their singularities.176
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Let us define the following m-dimensional vector
~̂
ψ(s) = ~y(s) = (y1(s), . . . , ym(s))T ,177

with d
ds
~̂
ψ(s) = ~y ′(s) and d2

ds2
~̂
ψ(s) = ~y ′′(s) denoting the first and second derivatives re-178

spectively, of every element of the vector ~y(s). Then, we can rewrite equation (4.1), as179

follows180

s2~y ′′(s) + sA~y ′(s) + B(s)~y(s) = ~h(s), (5.1)

where ~h(s) is the m-dimensional vector, given by181

~h(s) = c~Ψ(0)−Λ~k(s). (5.2)

By the general methodology of differential equations, equation (5.1) has a general solution182

of the form183

~y(s) = ~yh(s) + ~yp(s), (5.3)

where ~yp(s) is a particular solution vector and ~yh(s) is the associated homogeneous solution184

vector to the corresponding homogeneous matrix equation of (5.1).185

Remark 2. The corresponding homogeneous equation system of (4.1) has a regular sin-186

gular point at zero and will play a vital role in the formulation of its solution, while the187

extra term in the non-homogeneous system depends on the Laplace transform of the tail of188

the claim size distribution.189

For the rest of this section let us consider the analysis of the associated homogeneous190

equation system and the analysis of the particular solution to the matrix equation (5.1)191

separately. First, let us consider the associated homogeneous equation of (5.1), which has192

the form193

s2~y ′′(s) + sA~y ′(s) + B(s)~y(s) = ~0, (5.4)

where ~0 is an m-dimensional vector of zero elements. The form of the second order linear
homogeneous differential matrix equation (5.4) and the presence of the regular singular
point at s = 0, requires that the Frobenius method should be employed to determine the
solution. Thus, using similar arguments to Barkatou et al. (2010) we consider that the
vector solution to (5.4) is in a Frobenius form for systems, i.e.

~y(s, r) =
∞∑
k=0

~gk(r)s
r+k,

where ~y(s, r) = (y1(s, r), . . . , ym(s, r))T and ~gk(r) = (g1,k(r), . . . , gm,k(r))
T , k > 0, are m-194

dimensional vectors, where ~g0 is non-zero and the exponent r may be real or complex.195

Differentiating the above form of the solution vector twice, with respect to s, gives196
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~y ′(s, r) =
∞∑
k=0

(r + k)~gk(r)s
r+k−1,

~y ′′(s, r) =
∞∑
k=0

(r + k)(r + k − 1)~gk(r)s
r+k−2.

Substituting the above forms of the vectors for ~y(s, r), ~y ′(s, r)and ~y ′′(s, r) into the homo-
geneous second order matrix differential equation (5.4), yields

∞∑
k=0

(r + k)(r + k − 1)~gk(r)s
r+k

+ A
∞∑
k=0

(r + k)~gk(r)s
r+k + B(s)

∞∑
k=0

~gk(r)s
r+k = ~0.

Analysing the above equation, we can see that by dividing through by the common term197

sr and then setting s = 0, all terms with k > 0 vanish. Thus, we can deduce that r is the198

solution of the indicial matrix equation199

r(r − 1)~g0(r) + Ar~g0(r) + B(0)~g0(r) = ~0. (5.5)

Recalling the definition of B(s) and noting that f̂i(0) = 1 for all i ∈ E, we can easily see
that B(0) is an m×m matrix with constant elements, given by

B(0) =



2
σ2
1

(
σ2

1 − (a1 + q1)
)

2
σ2
1
q1,2 · · · · · · 2

σ2
1
q1,m

2
σ2
2
q2,1

...
. . .

...
... 2

σ2
m−1

qm−1,m

2
σ2
m
qm,1 · · · · · · 2

σ2
m
qm,m−1

2
σ2
m

(
σ2
m − (am + qm)

)


.

Alternatively, the indicial matrix equation (5.5), may be written as200

L(r)~g0(r) = ~0, (5.6)

where201

L(r) = r2I + (A− I)r + B(0), (5.7)

is an m×m matrix and I is the m-dimensional identity matrix.202

An equation of this form has non-trivial solutions, ~g0(r), only for det (L(r)) = 0, known203

as the characteristic equation. Since the determinant of L(r) gives a polynomial of degree204

2m, with leading coefficient 1, we have the following Lemma.205

206
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Lemma 1. For r ∈ C , the characteristic equation, det(L(r)) = 0, has exactly 2m solutions207

r1, r2, . . . , r2m.208

Now, referring back to Frobenius’ method, any set of fundamental solutions to the homo-209

geneous matrix equation (5.4), may be written210

~yi(s) = sri
∞∑
k=0

~gk(ri)s
k = sri~γi(s), i = 1, . . . , 2m, (5.8)

where ~yi(s) = (yi,1(s), . . . , yi,m(s))T = ~y(s, ri) and ~γi(s) = (γi,1(s), . . . , γi,m(s))T are vectors211

of holomorphic functions with ~γi(0) = ~g0(ri) 6= 0. Then, as it will be shown later, since212

the vector solutions ~yi(s) are linearly independent, the general solution to equation (5.4)213

is given by214

~yh(s) =

2m∑
i=1

ηi~yi(s) = η1s
r1~γ1(s) + . . .+ η2ms

r2m~γ2m(s), (5.9)

where ηi are constant coefficients and ri, i = 1, . . . , 2m are the solutions to the characteristic215

equation det(L(r)) = 0. The linear independence of the solution vectors will be made more216

apparent in a later section.217

In particular, the j-th element of the solution vector, ~yh(s), is given by218

yh,j(s) =
2m∑
i=1

ηiyi,j(s) = η1s
r1γ1,j(s) + . . .+ η2ms

r2mγ2m,j(s). (5.10)

Having obtained a general solution for the homogeneous solution, it remains to determine219

the contribution of the particular solution ~yp(s) of equation (5.3).220

To find the particular solution of the differential equation system (5.1), we use the
method of variation of parameters, similar to Albrecher et al. (2012). Hence, the particular
solution has the following form

~yp(s) =
2m∑
i=1

vi(s)~yi(s),

where ~yi(s), i = 1, . . . , 2m are the solution vectors to the homogeneous equation (5.4), given221

by equation (5.8), and vi(s) are scalar coefficients that need to be determined.222

By the method of variation of parameters and the use of Cramer’s rule, the variables223

vi(s), i = 1 . . . , 2m, have the following form224

vi(s) =

∫ s

s0

Wi(t)

t2W (t)
dt, (5.11)
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where s0 is a small positive constant, W (s)(6= 0) is the Wronskian (block) determinant
given by

W (s) =

∣∣∣∣ ~y1(s) ~y2(s) . . . ~y2m(s)
~y ′1(s) ~y ′2(s) . . . ~y ′2m(s)

∣∣∣∣ ,
and Wi(s) is a consequence of W (s), with the i-th column replaced with (~0,~h(s))T . For
example, for i = 1, W1(s) is given by

W1(s) =

∣∣∣∣ ~0 ~y2(s) . . . ~y2m(s)
~h(s) ~y ′2(s) . . . ~y ′2m(s)

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 y2,1 . . . y2m,1
...

... · · ·
...

0 y2,m . . . y2m,m

h1(s) y′2,1 . . . y′2m,1
...

... · · ·
...

hm(s) y′2,m . . . y′2m,m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Remark 3. W (s) 6= 0 implies the linear independence of the solutions ~yi(s).225

Equation (5.11) can be re-written as226

vi(s) =

∫ s

s0

~h(t)T
−→
Wi(t)

t2W (t)
dt, (5.12)

where ~h(s)T = (h1(s), . . . , hm(s)) is the transpose vector of that given in (5.2) and
−→
W i(s) =227

(Wi,1(s), . . . ,Wi,m(s))T is a vector of corresponding Wronskian determinants, namelyWi,j(s),228

which are a consequence of W (s), with the i-th column replaced by (0, . . . , 0, 1, 0, . . . , 0)T ,229

where the unit is in the (m+ j)-th row.230

After algebraic manipulations, the above equation can be written as231

vi(s) =

m∑
k=1

∫ s

s0

t−ri−1hk(t)
ξi,k(t)

ξ(t)
dt, (5.13)

where ξ(t) and ξi,k(t), i = 1, . . . , 2m, are holomorphic functions, with ξ(0) 6= 0 6= ξi,k(0)232

(as they are linear combinations of γi,j(s), i = 1, . . . , 2m, j ∈ E and their derivatives, for233

which ~γi(0) = ~g0(ri) 6= 0 holds).234

Recalling the definition of ~h(s) from equation (5.2), we see that hk(s) has the form

hk(s) =
2

σ2
k

(
ckψk(0)− λkF̂ k(s)

)
, k ∈ E,

and thus we can write the particular solution to the non-homogeneous second order differ-
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ential equation system (5.1) as

~yp(s) =
2m∑
i=1

sri~γi(s)vi(s)

=

2m∑
i=1

sri~γi(s)

m∑
k=1

∫ s

s0

t−ri−1hk(t)
ξi,k(t)

ξ(t)
dt

=
2m∑
i=1

sri~γi(s)
m∑
k=1

2ckψk(0)

σ2
k

∫ s

s0

t−ri−1 ξi,k(t)

ξ(t)
dt

−
2m∑
i=1

sri~γi(s)
m∑
k=1

2λk
σ2
k

∫ s

s0

t−ri−1F̂ k(t)
ξi,k(t)

ξ(t)
dt. (5.14)

From this equation, we can see that the particular solution, for each element yp,j(s), j ∈ E
of ~yp(s), has the form

yp,j(s) =
2m∑
i=1

sriγi,j(s)
m∑
k=1

2ckψk(0)

σ2
k

∫ s

s0

t−ri−1 ξi,k(t)

ξ(t)
dt

−
2m∑
i=1

sriγi,j(s)

m∑
k=1

2λk
σ2
k

∫ s

s0

t−ri−1F̂ k(t)
ξi,k(t)

ξ(t)
dt. (5.15)

From the form of the above equations and using equations (5.3) and (5.10), it is clear235

that the asymptotic behaviour of ψ̂j(s), and thus of ψj(s), heavily depends on the roots236

ri, i = 1, . . . , 2m, of the characteristic equation det (L(r)) = 0, and the behaviour of237

F k(s), k ∈ E.238

Having determined the general solution of the matrix equation (5.1) (given by equa-239

tions (5.3), (5.9) and (5.14)), in the subsequent work we will perform an asymptotic analysis240

using Karamata-Tauberian theorems and the Heaviside Operational principle, for the ho-241

mogeneous solution and particular solutions respectively. We separate the cases for yh,j(s)242

and yp,j(s) and consequently ψ̂h,j(s) and ψ̂p,j(s) respectively, as follows.243

Now, since the Karamata-Tauberian theorems correspond to the asymptotic behaviour
of the Laplace-Stieltjes transform of a function, then, for the analysis of yh,j(s) similarly
to Albrecher et al. (2012), we introduce the auxiliary functions

Uj(u) =

{
0 if u < 0∫ u

0 ψh,j(x) dx if u > 0.

Let Ũj(s) be the Laplace-Stieltjes transform of Uj(u). Note that the Laplace transform

of the ruin probabilities ψh,j(u), defined as ψ̂h,j(s), is equivalent to the Laplace-Stieltjes
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transform of the function Uj(u), i.e.

ψ̂h,j(s) = L(ψh,j(u))(s) =

∫ ∞
0

e−suψh,j(u) du =

∫ ∞
0

e−su dUj(u) = Ũj(s).

The asymptotic behaviour at zero of the homogeneous solutions, given by equation (5.10),244

describes the asymptotic behaviour at zero of ψ̂h,j(s), consequently of Ũj(s). The slowest245

decaying power of this linear combination dictates the asymptotic behaviour of the solution246

as s→ 0. In general, this power can be found numerically by evaluating all roots ri, i ∈ E,247

to the characteristic equation det(L(r)) = 0, however, in order to explicitly determine the248

leading power of this equation we must restrict ourselves to the case where the drift and249

volatility parameters of the investment process are all equal, i.e. ai = a, σi = σ for all250

i ∈ E. Note that this restriction does not affect the Markov-modulated environment of251

the arrival process which is still influenced by the external environment process. Adopting252

this modification and using the following two Lemmas, we are able to show that the rate of253

decay, of the homogeneous solution, is driven by the slowest decaying power, corresponding254

to the leading power of equation (5.10), which will be determined.255

256

Lemma 2. The transition rate matrix Q has 0 as an eigenvalue and the remaining eigen-257

values have negative real parts.258

Proof. Let η be a real positive number greater than the absolute value of all entries of Q,
i.e. η > |qij |, ∀i, j ∈ E. Now, define the matrix

P =
1

η
Q + I,

with elements

pij =
1

η
qij + I(i=j),

where I(·) is an indicator function. Now, since∑
j∈E

pij =
∑
j∈E

(
1

η
qij + I(i=j)) =

1

η

∑
j∈E

qij +
∑
j∈E

I(i=j) = 1, i ∈ E,

and

pij =
1

η
qij > 0, i 6= j ∈ E,

pii =
1

η
qii + 1 > 1− 1

η
|qii| > 1− 1 = 0, since η > |qii|,

the matrix P is a stochastic matrix.259
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Now, note that the eigenvalues of P and Q are related as follows. If λ is an eigenvalue
of P, with right eigenvector ~y, then

P~y = λ~y,

giving that
Q~y = (ηP− ηI) ~y = ηP~y − η~y = (ηλ− η)~y = η(λ− 1)~y,

which implies that η(λ− 1) is an eigenvalue of Q. Now, by the Perron-Frobenius theorem,
we have that λmax = 1 is the maximum eigenvalue of P and the remaining eigenvalues λ
are such that |λ| < 1. Based on the connection between the eigenvalues of P and Q, for the
maximum eigenvalue, namely λmax = 1, the corresponding eigenvalue of Q is equal to 0.
Thus, in order to complete the Lemma, it remains to prove that the remaining eigenvalues
of Q have negative real parts. The remaining eigenvalues of P are λ such that |λ| < 1,
which for complex λ implies its real part has absolute value less than 1. Thus, since the
eigenvalues of Q are of the form η(λ− 1), we have

< (η(λ− 1)) = η (<(λ)− 1) < 0,

since η is real and positive.260

Lemma 3. For ai = a and σi = σ, for all i ∈ E, the characteristic equation det (L(r)) = 0261

has two roots, r1 = −1 and r2 = 2a
σ2 − 2 = ρ − 1. The remaining roots all have real parts262

that lie outside the interval determined by r1 and r2.263

Proof. In order to find the roots of the characteristic equation, det(L(r)) = 0, where
L(r) = r2I+(A−I)r+B(0), we need to rewrite L(r) in a slightly different form. Recalling
the forms of the matrices A and B(0), and after some algebraic manipulations we have
that

L(r) = α(r)I +
2

σ2
Q,

where α(r) = r2 +
(
3− 2a

σ2

)
r + 2− 2a

σ2 = (r + 1)
(
r + 2− 2a

σ2

)
.264

Recalling the indicial matrix equation (5.6), and using the above expression of L(r),
equation (5.6) may be written (

α(r)I +
2

σ2
Q

)
~g0(r) = ~0,

or equivalently265

2

σ2
Q~g0(r) = −α(r)~g0(r). (5.16)

From the above equation we see that −α(r) forms an eigenvalue with respect to the matrix
2
σ2 Q. Thus, solving

det (L(r)) = det

(
α(r)I +

2

σ2
Q

)
= 0,
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is equivalent to finding the eigenvalues of the matrix 2
σ2 Q, which are of the form −α(r).266

Using Lemma 2, and since 2/σ2 is real and positive, it follows that the matrix 2
σ2 Q also

has 0 as an eigenvalue with remaining eigenvalues having negative real parts. Now, given
that −α(r) forms an eigenvalue of 2

σ2 Q, we have for the 0 eigenvalue that

−α(r) = 0,

which implies267

α(r) = (r + 1)

(
r + 2− 2a

σ2

)
= 0, (5.17)

giving the two roots r1 = −1 and r2 = 2a/σ2− 2 = ρ− 1. Consequently, r = r1 and r = r2268

are two roots of the characteristic equation det(L(r)) = 0.269

To complete our Lemma it remains to prove that the real parts of the remaining roots270

lie outside the interval determined by r1 and r2.271

Consider that the eigenvalues of the matrix 2
σ2 Q have complex form i.e. they are given

by
−αk(r) = uk + ivk, k = 1, 2, . . . ,m, k 6= j,

where uk and vk are real numbers and −αj(r) is an individual eigenvalue corresponding to272

the 0 eigenvalue (without the loss of generality).273

Using the form of α(r) given in equation (5.17), and the fact that r1 = −1 and r2 = ρ−1
satisfy equation (5.17), then αk(r) could be written

αk(r) = (r − r1)(r − r2) = − (uk + ivk) .

Since r can also be complex, i.e. r = x+ iy, the above equation becomes

(x− r1 + iy)(x− r2 + iy) = − (uk + ivk) .

Equating the real terms gives

(x− r1)(x− r2)− y2 = −uk,

or alternatively
(x− r1)(x− r2) = y2 − uk.

Now, from Lemma 2, we have that the non-zero eigenvalues have negative real parts im-274

plying that uk < 0, for k 6= j. Therefore (x − r1)(x − r2) > 0, from which it follows that275

(x − r1) and (x − r2) have the same sign. That is, x is either larger or smaller than both276

r1 and r2.277

Note that in the case that r has no imaginary part, i.e. y = 0, the same argument278

holds, meaning that the other real solutions also lie outside the interval determined by r1279

and r2. This completes our proof.280
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Remark 4. Since r1 and r2 correspond to the 0 eigenvalue of 2
σ2 Q and hence Q, it follows

from equation (5.16) that
Q~g0(rk) = ~0, k = 1, 2.

Using the fact that the elements in each row of Q sum to 0, it is not difficult to see that281

~g0(rk) = β~e, k = 1, 2, where ~e is an m-dimensional vector of units and β is arbitrary, let’s282

say β = 1.283

Proposition 1. Consider the model given by (2.1) and assume that σ > 0. Then, if the
ruin probability ψ(u) decays at infinity, we have

ρ =
2a

σ2
− 1 > 0.

Proof. The proof of this proposition will become apparent towards the end of this section.284

285

Using the two Lemmas above, we can determine the slowest decaying power of the ho-286

mogeneous solution to the vector equation (5.3), given by equation (5.9). Note that, by287

Proposition 1 we have r1 < r2. Now, the boundary condition limu→∞ ψi(u) = 0, and the288

use of final value theorem, implies that the coefficients of terms with powers that have real289

part less than r1 in equation (5.10), must be zero. Consequently this makes r1 the slowest290

decaying power.291

Next, we will apply Karamata-Tauberian theorems to find the asymptotic behaviour292

of the homogeneous solution. It is crucial to observe that by applying the Karamata-293

Tauberian theorem, in the case that the slowest decaying power of equation (5.9) is r1,294

results in the fact that the ruin probabilities converge to a constant, which is in contradic-295

tion with the boundary condition (3.3). Hence, it should be clear that the coefficient of296

sr1 , namely η1, vanishes.297

Based on the above observation, we conclude that eventually the slowest decaying power
is r2. Thus, we are ready now to apply Karamata-Tauberian theorem and the Monotone
Density theorem to find the asymptotic behaviour of the homogeneous solution, given by
equation (5.9). Since we have concluded the root r2 represents the slowest decaying power,
we have that the individual elements of the homogeneous solution vector, ~yh(s), behave
like

Ũj(s) ∼ η2s
ρ−1γ2,j(s), s→ 0,

which is equivalent to

Uj(u) ∼ η2u
1−ργ2,j(1/u)

Γ(2− ρ)
, u→∞,

by the application of Karamata-Tauberian theorem. Finally, applying the Monotone Den-
sity theorem gives

ψh,j(u) ∼ η2(1− ρ)u−ργ2,j(1/u)

Γ(2− ρ)
, u→∞.

17



Note that, since ρ > 0 by Proposition 1, ψh,j(u) decays to zero, as required, and the298

conclusion is that299

ψh,j(u) ∼ Cu−ργ2,j(1/u), u→∞ (5.18)

where C = η2(1−ρ)
Γ(2−ρ) . Alternatively, we have

lim
u→∞

ψh,j(u)uρ = C

since γ2,j(0) = gj,0(r2) = 1 (see Remark 4).300

301

Having completed the asymptotic analysis of the homogeneous part of equation (5.3), it re-302

mains to analyse the asymptotic behaviour of the particular solution of the aforementioned303

equation, namely ~yp(s). Noticing that the elements of the vector ~yp(s), given by equation304

(5.15), strongly depend on the tail of the claim size distribution, below we consider two305

separate cases.306

Depending on the distribution of F̂ k(s) we can identify two cases, similarly to Albrecher307

et al. (2012):308

A. Light tailed claims with exponentially bounded tails. Assume F̂ k(s) has a rightmost309

singularity at −µk < 0, k ∈ E, and F̂ k(−µk) =∞ for each k ∈ E.310

B. Heavy tailed claims F̂ k(−ε) =∞, for ε > 0, k ∈ E.311

Light Tailed claims. Let us first note that if −µk is the rightmost singularity of each312

F̂ k(s), k ∈ E, then −δ, where δ = mink∈E(µk), is the rightmost singularity of the summa-313

tion of F̂ k(s), k ∈ E. Now, using L’Hopital’s rule, we have314

lim
s→−δ

∑m
k=1 λk

∫ s
s0
t−ri−1F̂ k(t) dt

s−ri
∑m

k=1 λkF̂ k(s)
= lim

s→−δ

∑m
k=1 λks

−ri−1F̂ k(s)

−ris−ri−1
∑m

k=1 λkF̂ k(s) + s−ri
∑m

k=1 λk
d
ds F̂ k(s)

= lim
s→−δ

1

−ri + s
∑m
k=1 λk

d
ds
F̂k(s)∑m

k=1 λkF̂k(s)

=
1

−ri
.

Thus,
m∑
k=1

λk

∫ s

s0

t−ri−1F̂ k(t) dt ∼
1

−ri
s−ri

m∑
k=1

λkF̂ k(s), as s→ −δ.
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Then, from equation (5.15), we have

ψ̂p,j(s) ∼
2m∑
i=1

(
1

−ri

)
γi,j(−δ)

m∑
k=1

2ckψk(0)

σ2

ξi,k(−δ)
ξ(−δ)

−
2m∑
i=1

(
1

−ri

)
γi,j(−δ)

m∑
k=1

2λk
σ2

ξi,k(−δ)
ξ(−δ)

F̂ k(s), s→ −δ.

Normalise ξi,k(−δ) such that γi,j(−δ)
ξi,k(−δ)
ξ(−δ) = 1, for all i = 1, . . . , 2m, k = 1, . . . ,m. Since315

−δ is the rightmost singularity of ψ̂p,j(s) and the first term of the above equation is analytic316

in −δ, one can apply the Heaviside Operational Principle (see Abate and Whitt (1997)) to317

deduce318

ψp,j(u) ∼ 2

σ2

2m∑
i=1

1

ri

m∑
k=1

λk F k(u), u→∞. (5.19)

Heavy Tailed claims. Using L’Hopital’s rule and other limit properties, we have, for319

each k ∈ E320

lim
s→0

∑m
k=1 λk

∫ s
s0
t−ri−1F̂ k(t) dt

s−ri
∑m

k=1 λkF̂ k(s)
= lim

s→−0

∑m
k=1 λks

−ri−1F̂ k(s)

−ris−ri−1
∑m

k=1 λkF̂ k(s) + s−ri
∑m

k=1 λk
d
ds F̂ k(s)

= lim
s→0

1

−ri + s
∑m
k=1 λk

d
ds
F̂k(s)∑m

k=1 λkF̂k(s)

=
1

−ri
.

Thus,
m∑
k=1

λk

∫ s

s0

t−ri−1F̂ k(t) dt ∼
1

−ri
s−ri

m∑
k=1

λkF̂ k(s), as s→ 0.

Then,

ψ̂p,j(s) ∼
2m∑
i=1

(
1

−ri

)
γi,j(0)

m∑
k=1

2ckψk(0)

σ2

ξi,k(0)

ξ(0)

−
2m∑
i=1

(
1

−ri

)
γi,j(0)

m∑
k=1

2λk
σ2

ξi,k(0)

ξ(0)
F̂ k(t), s→ 0.

Normalise ξi,k(0) such that γi,j(0)
ξi,k(0)
ξ(0) = 1, for all i = 1, . . . , 2m, k = 1, . . . ,m. Similarly321

to previous, the first term is analytic in zero, thus one can apply the Heaviside Operational322

Principle to deduce323

ψp,j(u) ∼ 2

σ2

2m∑
i=1

1

ri

m∑
k=1

λk F k(u), u→∞. (5.20)
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Now that we have completed the analysis of both the homogeneous and non-homogeneous324

parts of equation (5.3) we can present the asymptotic behaviour of the general solution,325

for each j ∈ E, namely ψj(u). By combining equations (5.18), (5.19) and (5.20), we have326

ψj(u) ∼ Cu−ργ2,j(1/u) +
2

σ2

2m∑
i=1

1

ri

m∑
k=1

λkF k(u), u→∞. (5.21)

Consequently, by equation (2.2), we can derive the asymptotic behaviour for the ultimate327

ruin probability, ψ(u), given by328

ψ(u) ∼ Cu−ρ
m∑
j=1

πjγ2,j (1/u) +
2

σ2

2m∑
i=1

1

ri

m∑
k=1

λkF k(u), u→∞. (5.22)

Remark 5. On the right hand side of equation (5.22) we have a summation of light and/or
heavy tailed distributions. Now, since for some positive constants r, n, αk and ck (k =
1, . . . , n)

lim
u→∞

∑n
k=1 cke

−αku

u−r
=

n∑
k=1

lim
u→∞

cke
−αku

u−r
= 0,

we have that the particular solution does not represent a significant asymptotic decay in329

the case of light tails. However, in the case of heavy tails we have to compare the decay of330

the power function and the tail of the claim size distributions to determine which one is331

slower.332

Considering all of the above, we obtain the following theorem.333

334

Theorem 2. Let ai = a and σi = σ, for all i ∈ E. Then, if ρ = 2a
σ2 − 1 > 0, the ultimate

ruin probability behaves asymptotically as

ψ(u) ∼ Cu−ρ
m∑
j=1

πjγ2,j (1/u) +
2

σ2

2m∑
i=1

1

ri

m∑
k=1

λkF k(u), u→∞,

where C = η2(1−ρ)
Γ(2−ρ) .335

6 Asymptotic results for the Gerber-Shiu function336

In this section our aim is to derive asymptotic results with respect to the expected dis-337

counted penalty function, introduced first by Gerber and Shiu (1998). The expected dis-338

counted penalty function, also called the Gerber-Shiu function, has been extensively studied339

in ruin theory since it unifies many risk-related quantities into a single function. In more340
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details, quantities such as the time of ruin T , the deficit at ruin |U(T )|, the surplus immedi-341

ately prior to ruin U(T−) and many others can be explicitly derived from the Gerber-Shiu342

function [see among others Albrecher et al. (2012), Cai (2004) and Lu and Tsai (2007)].343

Let Pi(·) = P(·|J(0) = i) and Ei(·) be the expectation with respect to Pi, i ∈ E. Also,344

let w(x, y), for x, y > 0, be an arbitrary non-negative function representing the penalty at345

ruin. Then, the Gerber-Shiu function, for δ, u > 0, is given by346

φi(u) = Ei
[
e−δTw(U(T−), |U(T )|) I(T<∞)|U(0) = u

]
, i ∈ E, (6.1)

where δ can be considered as a constant force of interest. In particular, when δ = 0 and
w(x, y) = 1, we have

φi(u) = Ei
[
I(T<∞)|U(0) = u

]
= ψi(u).

In a similar way to the ruin probability we can define the ultimate discounted penalty at347

ruin, in the stationary case, by348

φ(u) =
m∑
j=1

πjφj(u), j ∈ E. (6.2)

Using similar arguments as in Theorem 2, we have the following theorem.349

350

Theorem 3. The system of Gerber-Shiu functions, φi(u), satisfy the following integro-
differential equation system

1

2
σ2
i u

2φ′′i (u) + (aiu+ ci)φ
′
i(u)

= (λi + qi + δ)φi(u)− λi
[∫ u

0
φi(u− x) dFi(x) + wi(u)

]
−

m∑
j=1,j 6=i

qijφj(u),

(6.3)

where wi(u) =
∫∞
u w(u, x− u) dFi(x), with boundary conditions351

lim
u→∞

φi(u) = 0, (6.4)

and352

ciφ
′
i(0)− (λi + qi + δ)φi(0) + λi

∫ ∞
0

w(0, x) dFi(x) +
m∑

j=1,j 6=i
qijφj(0) = 0. (6.5)

Next, we investigate the asymptotic behaviour of the Gerber-Shiu function using a similar
methodology as the one used for the analysis of the ruin probabilities. Thus, letting φ̂i(s)
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and ŵi(s) be the Laplace transforms of φi(u) and wi(u) respectively, taking the Laplace
transforms on both sides of equation (6.3), yields

s2σ2
i

2
φ̂′′i (s) + [s(2σ2

i − ai)]φ̂′i(s)

+
[
σ2
i + cis− (ai + qi + δ)− λi(1− f̂i(s))

]
φ̂i(s) +

m∑
j=1,j 6=i

qijφ̂j(s)

= ciφi(0)− λiŵi(s), i ∈ E. (6.6)

In matrix form, the above equation can be written as353

s2d
2~̂φ(s)

ds2
+ sA

d
~̂
φ(s)

ds
+ V(s)

~̂
φ(s) = c~φ(0)−Λ~̂w(s), (6.7)

where

~̂
φ(s) = [φ̂1(s), . . . , φ̂m(s)]T

~φ(0) = [φ1(0), . . . , φm(0)]T

~̂w(s) = [ŵ1(s), . . . , ŵm(s)]T ,

V(s) = B(s)− diag( 2δ
σ2
1
, . . . , 2δ

σ2
m

), with B(s), A, c, Λ all defined as in Section 4.354

Note that, the matrix equation (6.7) is of a similar form as the matrix equation (4.1).355

Therefore, this equation can be solved using similar arguments as the ones used for the356

analysis of the ruin probabilities, i.e. using the Frobenius method for systems [similar to357

Barkatou et al. (2010)].358

Letting
~̂
φ(s) = ~x(s) = (x1(s), . . . , xm(s))T (with corresponding first and second deriva-359

tive as in the previous section), then equation (6.7) has the form360

s2~x ′′(s) + sA~x ′(s) + V(s)~x(s) = ~g(s), (6.8)

where ~g(s) = (g1(s), . . . , gm(s))T is the m-dimensional vector, given by

~g(s) = c~φ(0)−Λ~̂w(s).

By the general theory of ordinary differential equations, equation (6.8) has a general solu-
tion of the following form

~x(s) = ~xh(s) + ~xp(s),

where ~xh(s) is the solution to the corresponding homogeneous matrix equation and ~xp(s)361

is the associated particular solution.362

363
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In the following, the particular vector solution ~xp(s) and the vector solution ~xh(s) of364

the corresponding homogeneous matrix equation of (6.8) will be analysed separately. The365

associated homogeneous equation system is given by366

s2~x ′′(s) + sA~x ′(s) + V(s)~x(s) = ~0, (6.9)

and hence, by the Frobenius method, we adopt a solution of the form367

~x(s, rδ) =
∞∑
k=0

~bk(rδ)s
rδ+k, (6.10)

where ~bk(rδ) = (bk,1(rδ), . . . , bk,m(rδ))
T is an m-dimensional vector of constants with

~b0(rδ) 6= ~0, and rδ is a solution to the characteristic equation

det

(
L(s)− diag

(
2δ

σ2
1

, . . . ,
2δ

σ2
m

))
= 0,

where L(s) is defined in equation (5.7).368

Following the same arguments as in Lemma 1, one can see that the characteristic369

equation has 2m roots, namely rδ,1, . . . , rδ,2m, therefore the solution to the homogeneous370

equation system (6.9), by the linear independence of solution vectors, is371

~xh(s) =

2m∑
i=1

pis
rδ,i ~βi(s), (6.11)

where pi’s are constant coefficients and ~βi(s) are vectors of holomorphic functions with372

~βi(0) = ~b0(rδ,i) 6= ~0.373

To complete the solution of the second order differential equation system (6.8), it re-
mains to find the contribution of the particular solution ~xp(s). For the particular solution,
we again use variation of parameters to obtain

~xp(s) =

2m∑
i=1

srδ,i ~βi(s)vi(s)

=

2m∑
i=1

srδ,i ~βi(s)
m∑
k=1

∫ s

s0

t−rδ,i−1gk(t)
θi,k(t)

θ(t)
dt

=

2m∑
i=1

srδ,i ~βi(s)

m∑
k=1

2ckφk(0)

σ2
k

∫ s

s0

t−rδ,i−1 θi,k(t)

θ(t)
dt

−
2m∑
i=1

srδ,i ~βi(s)

m∑
k=1

2λk
σ2
k

∫ s

s0

t−rδ,i−1ŵk(t)
θi,k(t)

θ(t)
dt, (6.12)
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from which we get the following form for the j-th element of ~xp(s)

xp,j(s) =

2m∑
i=1

srδ,iβi,j(s)

m∑
k=1

2ckφk(0)

σ2
k

∫ s

s0

t−rδ,i−1 θi,k(t)

θ(t)
dt

−
2m∑
i=1

srδ,iβi,j(s)
m∑
k=1

2λk
σ2
k

∫ s

s0

t−rδ,i−1ŵk(t)
θi,k(t)

θ(t)
dt, (6.13)

for each j ∈ E, where θ(t) and θi,k(t), i = 1, . . . , 2m are holomorphic functions, with374

θ(0) 6= 0 6= θi,k(0) (as they are linear combinations of βi,j(s), i = 1, . . . , 2m, j ∈ E and their375

derivative, for which ~βi(0) = ~b0(rδ,i) 6= ~0 holds).376

Following a similar line of logic as in Section 5, we will use Karamata-Tauberian theorem377

to get an asymptotic expression for ~xh(s) and Heaviside Principle for ~xp(s), respectively.378

For the application of the Karamata-Tauberian theorem, we have to identify the slowest379

decaying power in equation (6.11). To do this explicitly we will have to adopt the same380

idea as Section 5. Let ai = a and σi = σ, for all i ∈ E, with no change in the Markovian381

environment of the claim arrival process.382

Note that we now have

L(s)− diag

(
2δ

σ2
, . . . ,

2δ

σ2

)
= L(s)− 2δ

σ2
I = αδ(s)I +

2

σ2
Q,

with αδ(s) = α(s)− 2δ
σ2 = s2 +

(
3− 2a

σ2

)
s+ 2− 2(a+δ)

σ2 .383

384

Following the same arguments as in Lemmas 2 and 3 of Section 5 and noticing that
αδ(s) = 0 has two roots, namely rδ,i, given by

rδ,i = −2− ρ
2
±

√(
−ρ
2

)2

+
2δ

σ2
, i = 1, 2,

where ρ = 2a
σ2 − 1, we have the following Lemma.385

386

Lemma 4. For ai = a, σi = σ, for all i ∈ E, the characteristic equation det
(
L(s)− 2

σ2 I
)

=387

0 has two roots, rδ,i, i = 1, 2 and all remaining roots have real parts that lie outside the388

interval determined by rδ,1 and rδ,2.389

390

Remark 6. It should be clear that for δ = 0, rδ,1 and rδ,2 reduce to r1 and r2, respectively391

of Lemma 2.392

393
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The power rδ,1 = −2−ρ
2 +

√(−ρ
2

)2
+ 2δ

σ2 would not produce a decay to zero at infinity

resulting in the corresponding coefficient in equation (6.11), namely p1, vanishing. Thus,
the slowest decay power is given by

rδ,2 = −2− ρ
2
−

√(
−ρ
2

)2

+
2δ

σ2
.

The slowest asymptotic behaviour of the solutions to the homogeneous part, given in
equation (6.11), for some j ∈ E, is then given by

φ̂h,j(s) ∼ p2s
− 2−ρ

2
−
√

(−ρ
2 )

2
+ 2δ
σ2 β2,j(s), s→ 0,

which, by Karamata-Tauberian theorem is equivalent to

φh,j(u) ∼ Ku−
ρ
2

+
√

(−ρ
2 )

2
+ 2δ
σ2 β2,j(1/u), u→∞,

where K is a constant.394

It remains to analyse the asymptotic behaviour of the particular solution, given by395

equation (6.13). As before we have to deal with the two cases of light and heavy tailed396

distributions.397

398

Light tailed claims. We again consider the right most singularity of ŵk(s), namely −µk,
then, in a similar way to the previous section, we can define the rightmost singularity −∆,
where ∆ = mink∈E(µk), of the summation of ŵk(s), k ∈ E. Applying L’Hopital’s rule we
have the following:

lim
s→−∆

∑m
k=1 λk

∫ s
s0
t−rδ,i−1ŵk(t) dt

s−rδ,i
∑m

k=1 λkŵk(s)

= lim
s→−∆

s−rδ,i−1
∑m

k=1 λkŵk(s)

−rδ,is−rδ,i−1
∑m

k=1 λkŵk(s) + s−rδ,i
∑m

k=1 λk
d
ds ŵk(s)

= lim
s→−∆

1

−rδ,i + s
∑m
k=1 λk

d
ds
ŵk(s)∑m

k=1 λkŵk(s)

=
1

−rδ,i
,

Then, we have

φ̂p,j(s) ∼
2

σ2

2m∑
i=1

(
1

−rδ,i

) m∑
k=1

ckφk(0)

+
2

σ2

2m∑
i=1

1

rδ,i

m∑
k=1

λkŵk(s), s→ −∆, (6.14)
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after normalising the value of θi,k such that βi,j(−∆)
θi,k(−∆)
θ(−∆) = 1, i = 1, . . . , 2m, k =399

1 . . . ,m. Applying the Heaviside Operational Principle, we have400

φp,j(u) ∼ 2

σ2

2m∑
i=1

1

rδ,i

m∑
k=1

λkwk(u), u→∞. (6.15)

Heavy Tailed Claims. A similar argument can be given for the case of heavy tailed401

claim size distributions to obtain402

φp,j(u) ∼ 2

σ2

2m∑
i=1

1

rδ,i

m∑
k=1

λkwk(u), u→∞, (6.16)

as long as −∞ < d
ds ln (

∑m
k=1 λkŵk(s)) |s=0 <∞, k ∈ E.403

Finally, by the same method as in Section 5, we can combine the homogeneous and404

corresponding particular solutions of both light and heavy tailed distributions to obtain the405

asymptotic behaviour of the ultimate Gerber-Shiu function, φ(u), given in the following406

theorem.407

408

Theorem 4. Let ai = a and σi = σ, for all i ∈ E. Consider that ρ = 2a
σ2 − 1 > 0, assume

that ŵi(s) exists and that | dds ln (
∑m

k=1 λkŵi(s)) |s=0 < ∞, i ∈ E. Then, the ultimate
Gerber-Shiu function, φ(u), behaves asymptotically as

φ(u) ∼ Ku−
ρ
2

+
√

(−ρ
2 )

2
+ 2δ
σ2 +

2

σ2

2m∑
i=1

1

rδ,i

m∑
k=1

λkwk(u), u→∞, (6.17)

for some strictly positive constant K.409

410

Remark 7. From the above theorem we deduce that the asymptotic decay will be given by411

the slower of the power function or the sum of functions wi(u), i ∈ E. By the definition412

of the these functions wi(u), it is clear that the asymptotic behaviour is dependent on413

the combination of the penalty function and the claim size distributions, which has been414

discussed in the previous literature.415
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