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Abstract. In this paper, we study option pricing under a regime-switching exponential
Lévy model. Assuming that the coefficients are time-dependent and modulated by a finite
state Markov chain, we generalise the work in [20, 22], that is, we use a pricing method based
on the Esscher transform conditional on the information available on the Markov chain. We
also carry out numerical analysis, to show the impact of the risk induced by the underlying
Markov chain on the price of the option.

1. Introduction4

Empirical studies have suggested the need for modern financial modelling to move from5

the standard log-normal dynamics of the Black-Scholes model framework. This is primarily6

because in their works, the authors in [2, 17] assume that the price dynamic of the under-7

lying risky asset are governed by geometric Brownian motion, an assumption which many8

researchers have challenged. There is evidence that the risky assets experience stochastic9

volatility overtime and therefore the assumption of constant volatility creates biases when10

an option is priced using the Black-Scholes model. Several models have been developed to11

provide more realistic ways to model empirical behaviour of option prices. Among them, we12

can list: the jump-diffusion models, the stochastic volatility and the regime switching models.13

In the latter case, economic cycles are described by a discrete, finite state Markov chain; See14

for example [12, 13] for more details. The states of the underlying Markov chain represent the15

different states of the economy and such model enable to incorporate the impact of changes16

in macro-economic conditions on the behaviour of the dynamics of the assets’ prices.17

The possibility of switching across induces an important source of risk that investors might18

want to hedge against. As pointed out in [8], in a regime switching Black-Scholes model,19

there exist at least two sources of risk that the investor needs to consider: the diffusion risk20

which can be considered as the market or financial risk and regime switching risk which can21

be thought as economic risk. In addition, when the underlying is driven by a Lévy process,22

one needs to consider the risk due to multiple jumps coming from Poisson random measures.23

There has been many works on option pricing under regime switching model, most of them24

assuming that the risk due to switching of regimes is zero. In [7, 20, 22], the importance of25
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Esscher transform.
*This work is based on Mr Asiimwe MSc Dissertation from University of Dar es Salaam. He acknowledges

the financial support by NORAD through its NOMA program.
** The research of this author was supported by the LMS (London Mathematical Society) grant number

51305. He also thanks the Department of Mathematics, University of Dar es Salaam for their hospitality and
for providing nice work environment.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/80777829?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 ASIIMWE, MAHERA, AND MENOUKEU-PAMEN

pricing the regime risk is shown, in the sense that, the authors show the impact of the change26

in the regime on the option prices, hence addressing the problem of pricing the risk associated27

to the regime. The work regime switching Black-Scholes model is discussed in [7, 22] whereas28

[20] is an extension to the regime-switching Variance-Gamma model. See also the work [21]29

where the author studies the price of the regime risk induced by the jumps in volatility.30

One of the main characteristics of the regime-switching model is that they generate incom-31

plete market and hence a family of Equivalent Martingales Measure (EMM). The first task is32

to determine an equivalent martingale measure which will enable to price the different risks33

efficiently. One may think of the martingale measure that minimises the “distance” between34

the set of equivalent martingale measures and the real world probability measure. One of35

such distances is given by the relative entropy and the associated minimiser is the minimal36

entropy martingale measure (MEMM). In this work, we will use the regime switching Esscher37

transform which was already used in [22] (see also [20]). The Esscher transform is taken38

conditional on the information available on the Markov chain. The result by [19] can be used39

to justify the choice of our pricing result by the minimal entropy martingale measure. It is40

also worth mentioning that the work [11] introduces Esscher transform in actuarial science as41

the pricing measure for option valuation and justify this choice by maximizing the expected42

utility of power type of an investor. For other works on minimal entropy martingale measure,43

the reader may consult [1, 9, 10, 18].44

In this paper, we extend the works [20, 22], that is, we assume that the dynamic of the un-45

derlying risky asset is governed by a regime switching Carr, Geman, Madan and Yor (CGMY)46

process. We first study the option price under a general regime switching exponential Lévy47

model. In this model, the parameters of the assets are assumed to be deterministic, time de-48

pendent and are modulated by an observable continuous time, finite state Markov chain. For49

example, one may interpret the time dependent interest rate as corresponding to the relative50

frequent announcements or industry involving reasonably small shifts in the interest rates (see51

for example [16]). One may also interpret the observable states of the chain as different stages52

of the business cycle, for instance if the states of the Markov chain are two, they could be53

interpreted as expansion and recession periods. As in [20, 22], we introduce a pricing model54

to price the diffusion risk (for the time dependent regime switching Black-Scholes model), the55

risk due to jumps and the regime-switching risk. To achieve this, we first adopt the regime56

switching Esscher transform in order to determine a set of equivalent martingale measures57

satisfying the martingale condition. The selection of the Esscher transform martingale mea-58

sure is done by minimizing the maximum entropy between an equivalent martingale measure59

and the real world probability measure over the different states of the economy (compare with60

[20, 22]).61

We conduct numerical experiments to show the impact of the risk induced by the underlying62

Markov chain on the price of the option. This implies that in pricing options, a probable error63

can be made when we chose to ignore the risk associated with the switching of regimes. Our64

results extend those in [20, 22] to incorporate the time dependency of the parameters and to65

the CGMY model. Another interesting observation in our model is the following: During the66

lifetime of the option, its price is higher when the regime risk is priced than when it is not,67

which is higher than the option price when there is no regime.68

The remaining of the paper is organized as follows: In Section 2, we describe the model and69

study the different pricing kernels and their associated martingale condition. These conditions70

are explicitly given is the case of regime switching Black-Scholes model, Variance-Gamma and71

CGMY model. Section 3 is devoted to numerical experiments to illustrate the effect of pricing72
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the regime switching risk are conducted and we find a significant difference between pricing73

the risk and not.74

2. The Model75

In this section, we present a general regime switching exponential Lévy model. The model76

is that of [20]. Let (Ω,F ,P) be a complete probability space, where P is the reference measure.77

The evolution of the states of the economy is modelled by an irreducible homoge-78

neous continuous time Markov chain X := {X(t); t ∈ [0, T ]} with a finite state space79

X = {e1, e2, . . . , eN} ∈ RN , where N ∈ N, and the jth component of en is the Kronecker80

delta δnj for each n, j = 1, . . . , D. Denote by A := [aij ]i,j=1,2,...,N the intensity matrix of81

the Markov chain under P. Then for each i, j = 1, 2, . . . , N with i 6= j, aij is the transition82

intensity of the chain X jumping from state ej to state ei at time t ∈ [0, T ]. Hence, for83

i 6= j, aij ≥ 0 and
∑N

j=1 aij = 0 i.e., λii ≤ 0. With the canonical representation of the state84

space of the Markov chain, the following semimartingale decomposition for the Markov chain85

X was given in [4]:86

X(t) = X(0) +

∫ t

0
A(s)X(s) ds+M(t), t ∈ [0, T ]. (2.1)

where {M(t); t ∈ [0, T ]} is an RN -valued martingale under the measure P with respect to the87

filtration generated by X.88

We consider a financial market with two primary securities, namely, a riskless asset B and89

a risky stock S, which are traded continuously over the time horizon [0, T ]. We model the90

evolution of the instantaneous interest rate r = {r(t); t ∈ [0, T ]} of the money market account91

B at time t as follows.92

r(t) = r(t,X(t)) = 〈r, X(t)〉 =

N∑
i=1

ri(t)〈ei, X(t)〉, (2.2)

where r := (r1(t), r2(t), . . . , rN (t))′ ∈ RN for each i = 1, 2, . . . , N and 〈·, ·〉 denotes the93

inner product in RN . The i-th component ri(t) of the vector r is a deterministic function,94

representing the value of the interest rate when the Markov chain is in state ei that is when95

X(t) = ei. The dynamics of {B(t); t ∈ [0, T ]} of the money market account B are given by96

dB(t) = r(t)B(t) dt, B(0) = 1. (2.3)

Denote by {µ(t); t ∈ [0, T ]} and {σ(t); t ∈ [0, T ]} the appreciation rate and the volatility of97

the stock S at the time t respectively. Using similar convention, we set98

µ(t) = µ(t,X(t)) := 〈µ, X(t)〉 =
N∑
i=1

µi(t)〈ei, X(t)〉, (2.4)

99

σ(t) = σ(t,X(t)) := 〈σ, X(t)〉 =
N∑
i=1

σi(t)〈ei, X(t)〉, (2.5)

where µ =
(
µ1(t), µ2(t), . . . , µN (t)

)′ ∈ RN and σ =
(
σ1(t), σ2(t), . . . , σN (t)

)′ ∈ RN+ .100

µi(t) and σi(t), i = 1, 2 . . . , N are deterministic functions representing respectively the101

appreciation rate and volatility of S when the Markov chain is in state ei. The price dynamics102
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of the stock S is given by the following stochastic differential equation,103

dS(t) = S(t−)
(
µ(t) dt+ σ(t) dW (t) +

∫
R0

(ez − 1)ÑX( dt; dz)
)
, S(0) > 0, (2.6)

where R0 = R\{0}, W = {W (t); t ∈ [0, T ]} is a Brownian motion and ÑX(dt,dz) :=104

N(dz, dt)− ρX(dz) dt is an independent compensated Markov regime-switching Poisson ran-105

dom measure with ρX(dz) dt, the compensator (or dual predictable projection) of N , defined106

by:107

ρX(dz)dt :=
D∑
j=1

〈X(t−), ej〉ρj(dz)dt. (2.7)

For each j ∈ {1, 2, . . . , D}, ρj(dz) is the conditional density of the jump size when the Markov108

chain X is in state ej and satisfies
∫
R0

min(1, z2)ρj(dz) <∞ and
∫
|z|≥1(ez − 1)2ρi(z) dz <∞.109

The dynamic of the stock S can also be written as

S(t) = S(0)eY (t),

where Y (t) is given by:110

Y (t) =Y (0) +

∫ t

0

(
µ(s)− 1

2
σ2(s)−

∫
R\{0}

(ez − 1− z)ρX( dz)
)

ds

+

∫ t

0
σ(s) dW (s) +

∫ t

0

∫
R\{0}

zÑ( ds, dz). (2.8)

The model defined by (2.1)-(2.6) is referred to as a general regime switching exponential111

Lévy model. Such model leads to incomplete markets i.e., there exists more than one equiv-112

alent martingale measures (EMM) describing the risk-neutral price dynamic and compatible113

with the no arbitrage requirement. In order to price contingent claim, we shall determine114

EMM using regime switching Esscher transform introduced in [5, 22]. In fact, the classical115

definition of Esscher transform based on the moment generating function of a random vari-116

able is replaced by a conditional Esscher transform where the moment generating function117

is conditional to a subset of information available on the Markov chain. This leads to two118

different pricing kernels based on the conditional Esscher transform.119

2.1. Pricing Kernel I. In this section, we construct a risk neutral measure assuming that120

the whole path of the underlying Markov chain is known. This Esscher change of measure121

produces a pricing kernel that does not take into account the risk associated with the Markov122

chain.123

We shall first specify the information structure of our model. Let FX := {FXt ; t ∈ [0, T ]}124

and FS := {FSt ; t ∈ [0, T ]} denote the P-augmentation of natural filtrations generated by125

{X(t); t ∈ [0, T ]} and {S(t); t ∈ [0, T ]} respectively. That is, for each t ∈ [0, T ], FXt and FSt126

are, respectively, the σ-fields generated by the histories of the chain X and the stock price S127

up to and including time t. We define for t ∈ [0, T ], Gt to be the σ-algebra FXT ∨ FSt . This128

represents the information set generated by both histories of X and S up to and including129
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the time t. We write G := {Gt; t ∈ [0, T ]}. We set130

Θ :=
{
θ(t); t ∈ [0, T ]|θ(t) :=

N∑
i=1

θi(t)〈X(t−), ei〉, with
(
θ1(t), . . . , θN (t)

)
∈ RN ,

such that θi, i = 1, . . . , N are deterministic and EP
[
e−

∫ t
0 θ(s) dY (s)

∣∣∣FXT ] <∞}. (2.9)

For θ := {θ(t); t ∈ [0, T ]} ∈ Θ, define the generalized Laplace transform of a G-adapted131

process Y by132

MY (θ) := EP
[
e−

∫ t
0 θ(s) dY (s)

∣∣∣FXT ]. (2.10)

We define the kernel of a generalized Esscher transform with respect to the parameter θ. Let133

Λθ := {Λθ(t); t ∈ [0, T ]} denote a G-adapted stochastic process defined as134

Λθ(t) =
exp

(
−
∫ t

0 θ(s) dY (s)
)

MY (θ)
, t ∈ [0, T ], θ ∈ Θ. (2.11)

Then, the regime switching Esscher transform Q ∼ P on G with respect to a family of135

parameters {θ(s); s ∈ [0, t]} is given by:136

Λθ(t) =
dQ
dP

∣∣∣∣∣
Gt

=
exp

(
−
∫ t

0 θ(s) dY (s)
)

EP

[
exp

(
−
∫ t

0 θ(s) dY (s)
)∣∣∣FXT ] , t ∈ [0, T ], θ ∈ Θ. (2.12)

Hence, as shown in [5], one has137

Λθ(t) = exp
(
−
∫ t

0
θ(s)σ(s) dW (s)− 1

2

∫ t

0
(θ(s))2(σ(s))2 ds

−
∫ t

0

∫
R0

θ(s−)zÑX( ds, dz)−
∫ t

0

∫
R0

(e−zθ(s) − 1 + θ(s)z)ρX( dz) ds
)
. (2.13)

For each θ ∈ Θ, Λθ is a density process (see [20, 22]), therefore a new equivalent probability138

measure can be defined by setting139

dQθ

dP

∣∣∣∣∣
Gt

= Λθ(t), t ∈ [0, T ]. (2.14)

The pricing kernel associated to such measure shall then be defined by choosing θ adequately140

(see Section 2.3.)141

2.2. Pricing Kernel II. In this section, we construct a change of measure assuming that the142

initial state of the underlying Markov chain is known. This assumption seems more realistic143

since an investor can only observe the current and past information about the macro-economic144

condition and then anticipate future evolution of the macro-economic conditions. The expec-145

tation in the denominator of the regime switching Esscher transform is unconditional implying146

that the risk due to the switching regimes is priced.147
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We introduce a new filtration, namely G := {Gt = FXt ∨ FSt ; t ∈ [0, T ]} which denotes the148

right continuous, P-complete filtration generated by the bivariate process (X,S). Set149

Θ∗ : =
{
θ∗(t); t ∈ [0, T ]|θ∗(t) :=

N∑
i=1

θ∗i (t)〈X(t−), ei〉, with

(
θ∗1(t), . . . , θ∗N (t)

)
∈ RN , such that EP

[
e−

∫ T
0 θ∗(s) dY (s)

∣∣∣X(0)
]
<∞

}
(2.15)

and define the generalized Laplace transform of a G-adapted process Y as150

MY (θ∗) := EP
[
e−

∫ T
0 θ(s) dY (s)

∣∣∣X(0)
]
. (2.16)

As in [20, 22], define the new kernel Λθ
∗

= {Λθ∗(t); t ∈ [0, T ]} as follows151 Λθ
∗
(0) := 1

Λθ
∗
(t) := E[Λθ

∗
(T )|Gt] = EP

[
e−

∫T
0 θ∗(s) dY (s)

EP[e−
∫T
0 θ∗(s) dY (s)|X(0)]

∣∣∣∣Gt], t ∈ (0, T ]; θ∗ ∈ Θ∗.
(2.17)

Then {Λθ∗(t); t ∈ [0, T ]} is a positive (G,P)-martingale satisfying

EP[Λθ
∗
] = 1, ∀t ∈ [0, T ].

As for the first kernel, one can define a family of equivalent measures Qθ∗ through152

dQθ∗

dP
∣∣Gt = Λθ

∗
(t), t ∈ [0, T ]. (2.18)

and derive a pricing kernel by adequately choosing θ∗ (see Section 2.3.)153

The pricing kernel (2.14) and (2.18) and The knowledge of the whole path of the Markov154

chain implies that there is no need for additional premium whereas the knowledge of only the155

initial state of the Markov chain forces the need of additional premium that will take into156

account the risk associated to the changes in the regime.157

2.3. Martingale condition. Denote by {S∗(t) := S(t)
B(t) ; t ∈ [0, T ]} the discounted price158

process. Therefore, by the fundamental theorem of asset pricing (see [14, 15]), the no-arbitrage159

price of any contingent claim written on S in this market is given by160

EQ
[
S∗(t)

∣∣∣G0

]
= S∗(0), (2.19)

with Q ∈ {Qθ,Qθ∗}. Eq. (2.19) implicitly gives the condition on the process θ and θ∗ that161

determine an EMM within the families {Qθ : θ ∈ Θ} and {Qθ∗ : θ∗ ∈ Θ∗}.162

The following theorem gives necessary and sufficient conditions for Qθ to be an EMM.163

Theorem 2.1. Consider the Lévy regime-switching market defined in (2.3) and (2.6). An164

equivalent probability measure Qθ defined through (2.14) is an equivalent martingale measure165

on (Ω,GT ),i.e., it satisfies the condition (2.19), if and only if θ satisfies the following equation166

167

µi(t)− ri(t)− θi(t)σ2
i (t) +

∫
R

(ez − 1)(e−zθi(t) − 1)ρi(z) dz = 0, t-a.e., ∀ t ∈ [0, T ] (2.20)

for i = 1, . . . , N .168

Proof. It easily follows using the martingale condition under the enlarged filtration169

G = {Gt; 0 ≤ t ≤ T} and Bayes rules. �170
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Next, we shall discuss the necessary and sufficient condition for Qθ∗ to be an equivalent171

martingale on (Ω,GT ). We begin by presenting, without proof, a lemma which gives an explicit172

form of the moment generating function of the Markov chain in terms of the occupation times.173

Lemma 2.2. Consider an irreducible homogeneous continuous-time Markov chain174

X := {X(t); t ∈ [0, T ]} on (Ω,GT ,G,P) with a finite state space X of size N ∈ N and with175

an intensity matrix A := {aij : 1 ≤ i, j ≤ N}. Let176

J(u, v) := (J1(u, v), J2(u, v), . . . , JN (u, v)) (2.21)

denote the vector of the occupation times of X during a period of time [u, v] ⊂ [0, T ]. We177

have178

Jk(u, v) =

∫ v

u
〈X(s), ek〉 ds.

The conditional moment generating function of J(u, v) is given by179

EP[e∑N
k=1

∫ t
u ζk(v) dJk(u,v)

∣∣Gu] =
〈
e
∫ t
u(A+Diag(ζ

k
(r))) drX(u),1

〉
, ζ ∈ RN , (2.22)

where 1 = (1, 1, . . . , 1)′ ∈ RN , 〈·, ·〉 is the scalar product in RN and Diag(ζ) is an N × N180

diagonal matrix of the form181

Diag(ζ) =


ζ1 0 . . . 0 0
0 ζ2 0 . . . 0
...

. . .
. . .

. . .
...

...
. . .

. . . ζN−1 0
0 . . . 0 0 ζN

 .

Proof. Follows in the same way as in the proof of [6, Proposition 2] �182

We can now state the necessary and sufficient condition for Qθ∗ to be an equivalent mar-183

tingale measure on (Ω,GT ). This result is adapted from Siu and Yang [22].184

Theorem 2.3. Consider the Lévy regime-switching market defined in (2.3) and (2.6). An185

equivalent measure Qθ∗ defined through (2.18) is an equivalent martingale measure on (Ω,GT ),186

i.e., condition (2.19) holds if and only if θ∗ satisfies the following equation187 〈
e
∫ t
0 (A+Diag(ξ̃(θ∗(r))) drX(0),1

〉
−
〈
e
∫ t
0 (A+Diag(ξ(θ∗(r))) drX(0),1

〉
= 0, (2.23)

where188

ξ(θ∗) = (ξ1(θ∗1(t)), ξ2(θ∗2(t)), . . . , ξN (θ∗N (t))),

ξ̃(θ∗) = (ξ̃1(θ∗1(t)), ξ̃2(θ∗2(t)), . . . , ξ̃N (θ∗N t)),

with189

ξi(θ
∗
i (t)) = −θ∗i (t)

(
µi(t)−

1

2
σ2
i (t)

)
+

1

2
(θ∗i (t))

2σ2
i (t)

+

∫
R

(e−zθ
∗
i (t) − 1 + θ∗i (t)(e

z − 1))ρi(z) dz, t-a.e., (2.24)

ξ̃i(θ
∗
i (t)) = −ri(t)− (θ∗i (t)− 1)(µi(t)−

1

2
σ2
i (t)) +

1

2
(θ∗i (t)− 1)2σ2

i (t)

+

∫
R

(e−z(θ
∗
i (t)−1) − 1 + (θ∗i (t)− 1)(ez − 1))ρi(z) dz, t-a.e. (2.25)
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for i = 1, 2, . . . , N.190

In order to prove this theorem, we will need the following lemma, which is a extension of191

As in [20, Lemma4.2] and [22, Lemma 3.1].192

Lemma 2.4. Under Assumptions of Theorem 2.3, for all u, v ∈ [0, T ] such that u ≤ v, we193

have that194

EQθ∗
[
S∗(v)

∣∣∣Gu] =

〈
e
∫ v
u (A+Diag(ξ̃(θ∗(r)))) drX(u),1

〉
〈
e
∫ v
u (A+Diag(ξ(θ∗(r)))) drX(u),1

〉S∗(u), (2.26)

where ξ̃(θ∗(r)) and ξ(θ∗(r)) are given in Theorem 2.3.195

Proof. Choose u, v ∈ [0, T ] such that v ≥ u. Then the discounted stock price is given by196

S∗(v) := S(v)e−
∫ v
u r(s) ds. using this and a version of the Bayes’s rule, we get197

EQθ∗
[
S∗(v)

∣∣∣Gu] =S∗(u)EQθ∗
[
e−

∫ v
u r(s) dse

∫ v
u dY (s)

∣∣∣Gu]
=S∗(u)

EP
[
e−

∫ v
u r(s) dse

∫ v
u dY (s)Λθ

∗
(v)
∣∣∣Gu]

EP
[
Λθ∗(v)

∣∣∣Gu]
=S∗(u)

EP[e−
∫ v
u r(s) dse

∫ v
u dY (s)Λθ

∗
(v)|Gu]

EP[Λθ∗(v)|Gu]

=S∗(u)
EP
[
e−

∫ v
u r(s) dse−

∫ v
u (θ∗(s)−1) dY (s)EP

[
e−

∫ T
v θ∗(s) dY (s)

∣∣∣Gv]∣∣∣Gu]
EP
[
e−

∫ T
u θ∗(s) dY (s)

∣∣∣Gu] (2.27)

Using the occupation times as in Lemma 2.2.198

EQθ∗
[
S∗(v)

∣∣∣Gu]
=S∗(u)

EP
[

exp
(∑N

i=1

∫ v
u ξ̃i(θ

∗
i (t)) dJi(u, t)

)
EP
[

exp
(∑N

i=1

∫ T
v ξi(θ

∗
i (t)) dJi(v, t)

)∣∣∣Gv]∣∣∣Gu]
EP
[

exp
(∑N

i=1

∫ v
u ξi(θ

∗
i (t)) dJi(u, t)

)
EP[exp

(∑N
i=1

∫ T
v ξi(θ∗i (t)) dJi(v, t)

)∣∣∣Gv∣∣∣Gu] .
(2.28)

Using the following property of homogeneous Markov chains199

Law(J1(v, T ), . . . , JN (v, T )|G(v)) = Law(J1(v, T ), . . . , JN (v, T )|X(v))

= Law(J1(0, T − v), . . . , JN (0, T − v)|X(0)),

(2.28) becomes200

EQθ∗
[
S∗(v)

∣∣∣Gu]
=S∗(u)

EP
[

exp
(∑N

i=1

∫ T−v
0 ξi(θ

∗
i (t)) dJi(0, t)

)∣∣∣X(0)
]
EP
[

exp
(∑N

i=1

∫ v
u ξ̃i(θ

∗
i (t)) dJi(u, t)

)∣∣∣Gu]
EP
[

exp
(∑N

i=1

∫ T−v
0 ξi(θ∗i (t)) dJi(0, t)〉

)∣∣∣X(0)
]
EP
[

exp
(∑N

i=1

∫ v
u ξi(θ

∗
i (t)) dJi(u, t)

)∣∣∣Gu] .
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This implies201

EQθ∗
[
S∗(v)

∣∣∣Gu] = S∗(u)
EP
[

exp
(∑N

i=1

∫ v
u ξ̃i(θ

∗
i (t)) dJi(u, t)

)∣∣∣Gu]
EP
[

exp
(∑N

i=1

∫ v
u ξi(θ

∗
i (t)) dJi(u, t)

)∣∣∣Gu] .
Hence, using Lemma 2.2, we get202

EQθ∗
[
S∗(v)

∣∣∣Gu] = S∗(u)

〈
e
∫ v
u (A+Diag(ξ̃(θ∗(r)))) drX(u),1

〉
〈
e
∫ v
u (A+Diag(ξ(θ∗(r)))) drX(u),1

〉 . (2.29)

�203

Proof of Theorem 2.3. This follows directly from the previous lemma by setting v = t and204

u = 0 in (2.26). In fact, we have that the martingale condition (2.19) is equivalent to (2.23).205

�206

We turn our main focus on the condition for the family {Qθ∗ : θ∗ ∈ Θ∗} because through a207

standard approximation for the matrix exponential in (2.23), we shall deduce the martingale208

condition for the family {Qθ : θ ∈ Θ}; See [20, 22].209

2.4. Approximations. Here, we analyse the two families of equivalent martingale measures210

Qθ and Qθ∗ via certain types of approximations for the martingale condition (2.23). The211

exponential of a N ×N matrix E is defined as212

exp(E) :=
∞∑
n=0

En

n!
, (2.30)

where E0 = I is the identity matrix and by convention 0! = 1. Replacing X(0) by ei for213

i = 1, . . . , N in (2.23) yields,214 〈
e
∫ t
0 (A+Diag(ξ̃(θ∗(r)))) drei,1

〉
−
〈
e
∫ t
0 (A+Diag(ξ(θ∗(r)))) drei,1

〉
= 0. (2.31)

This is a system of N equations and in practice to solve it, one needs to adopt a finite number215

of terms in the series’ expansion of exp(E). Using the first-order approximation of exp(E)216

(i.e., exp(E) ≈ I + E) in (2.31), we have217 〈(
I +

∫ t

0
(A + Diag(ξ̃(θ∗(r)))) dr

)
ei,1

〉
−
〈(

I +

∫ t

0
(A + Diag(ξ(θ∗(r)))) dr

)
ei,1

〉
= 0.

This yields218 ( N∑
k=1,k 6=i

taki + 1 + aiit+

∫ t

0
ξ̃i(θ

∗
i (r)) dr

)
−
( N∑
k=1,k 6=i

taki + 1 + aiit+

∫ t

0
ξi(θ

∗
i (r)) dr

)
= 0,

i.e.,219 ∫ t

0
ξ̃i(θ

∗
i (r)) dr −

∫ t

0
ξi(θ

∗
i (r)) dr = 0, for i = 1, 2, . . . , N,

which simplifies to220

µi(t)− ri(t)− θi(t)σ2
i (t) +

∫
R

(ez − 1)(e−zθi(t) − 1)ρi(z) dz = 0, t-a.e., ∀ t ∈ [0, T ]. (2.32)



10 ASIIMWE, MAHERA, AND MENOUKEU-PAMEN

Eq. (2.32) coincides with the martingale condition for the family {Qθ : θ ∈ Θ} as given221

in (2.20). Hence, the martingale condition for the family {Qθ : θ ∈ Θ} is a first order222

approximation of the martingale condition for {Qθ∗ : θ∗ ∈ Θ∗}. We can think of the pricing223

kernel Λθ
∗

as having more information than the kernel Λθ with θ∗ been more realistic.224

We will now as in [20, 22] derive the martingale condition for Qθ∗ by taking a two-order225

approximation for the matrix exponential in (2.30). This will enable to move from the less226

realistic assumption where the whole path of the Markov chain is known to the more realistic227

one where only the initial state in know. The approximation is given by228

exp(E) ≈ I + E +
1

2
E2. (2.33)

For simplicity, we consider two regimes i.e, N = 2 and we set a11 = −a12 = −a and229

a21 = −a22 = a; a ≥ 0 and t > 0. In this case, we need to solve the following pair of equations:230 〈
e
∫ t
0 (A+Diag(ξ̃(θ∗(r)))) dre1,1

〉
−
〈
e
∫ t
0 (A+Diag(ξ(θ∗(r)))) dre1,1

〉
= 0, (2.34)〈

e
∫ t
0 (A+Diag(ξ̃(θ∗(r)))) dre2,1

〉
−
〈
e
∫ t
0 (A+Diag(ξ(θ∗(r)))) dre2,1

〉
= 0 (2.35)

for 1 = (1, 1)′ ∈ R2. But231

E =

∫ t

0
(A + Diag(ξ̃(θ∗(r)))) dr

)
, (2.36)

or232

E =

(∫ t
0 (−a+ ξ̃1(θ∗1(r))) dr at

at
∫ t

0 (−a+ ξ̃2(θ∗2(r))) dr

)
. (2.37)

Substituting (2.33) in (2.34), the martingale condition (2.23), for X(0) = e1 = (1, 0)′ becomes233 ∫ t

0
(ξ̃1(θ∗1(r))− ξ1(θ∗1(r))) dr − at

∫ t

0
(ξ̃1(θ∗1(r))− ξ1(θ∗1(r))) dr

+
1

2

{[∫ t

0
(ξ̃1(θ∗1(r))− ξ1(θ∗1(r))) dr

][ ∫ t

0
(ξ̃1(θ∗1(r)) + ξ1(θ∗1(r))) dr

]
+ at

∫ t

0
(ξ̃2(θ∗2(r))− ξ2(θ∗2(r))) dr

}
= 0. (2.38)

Similarly, for X(0) = e2 = (0, 1), substituting (2.33) in (2.35), we get234

∫ t

0
(ξ̃2(θ∗2(r))− ξ2(θ∗2(r))) dr − at

∫ t

0
(ξ̃2(θ∗2(r))− ξ2(θ∗2(r))) dr

+
1

2

{[∫ t

0
(ξ̃2(θ∗2(r))− ξ2(θ∗2(r))) dr

][ ∫ t

0
(ξ̃2(θ∗2(r)) + ξ2(θ∗2(r))) dr

]
+ at

∫ t

0
(ξ̃1(θ∗1(r))− ξ1(θ∗1(r))) dr

}
= 0. (2.39)

Here235

ξ̃i(θ
∗
i (t))− ξi(θ∗i (t)) = µi(t)− ri(t)− θ∗i (t)σ2

i (t) +

∫
R

(ez− 1)(e−zθ
∗
i (t)− 1)ρi(z) dz, t-a.e (2.40)



11

and236

ξ̃i(θ
∗
i (t)) + ξi(θ

∗
i (t)) = µi(t)− ri(t)− 2θ∗i (t)µi(t) + (θ∗i (t))

2σ2
i (t)

+

∫
R

(e−z(θ
∗
i (t)−1) + e−zθ

∗
i (t) − 2) + (2θ∗i (t)− 1)(e−z − 1)ρi(z) dz, t-a.e.

(2.41)

for i = 1, 2. (2.38) and (2.39) are more tractable than (2.23) and we shall use them to237

determine the EMM parameters (θ∗1(t), θ∗2(t)) for the numerical illustrations.238

2.5. Particular cases. In this section, we present the developments made in the previous239

section for particular models. In the sequel, we take N = 2, i.e., the Markov chain X240

moves only between the two states e1 = (1, 0)T and e2 = (0, 1)T . We shall give explicit241

martingale conditions for regime-switching Black-Scholes, Variance Gamma (VG) and Carr242

Geman Madan and Yor (CGMY) models when the coefficient are constants. Note that the243

former cases of regime-switching Black-Scholes and Variance Gamma models were already244

derived in [22] and [20].245

2.5.1. The regime-switching Black-Scholes model. In this section, we present the regime246

switching Black-Scholes model. The dynamic of price of the risky asset in this case is given247

by248

S(t) = S(0) exp

{∫ t

0

(
µ(s)− 1

2
σ2(s)

)
ds+

∫ t

0
σ(s) dW (s)

}
. (2.42)

In the following theorem, we give (without proof) the equation satisfied by the state price249

density θi and θ∗i .250

Theorem 2.5.251

Assume that the dynamic of the stock price is given by (2.42). Then the values of θi satisfying252

the martingale condition (2.20) are reduced to253

θi =
µi − ri
σi2

for i = 1, 2. (2.43)

Moreover, θ∗i in (2.23) satisfy the following system of nonlinear equations in (θ∗1, θ
∗
2),254

σ1
4t2

2
(θ∗1)3 − (3µ1 − r1)σ1

2t2

2
(θ∗1)2 +

(
σ1

2t+
(µ1 − r1)(σ1

2(t) + 2µ1)t2 − aσ1
2t2

2

)
θ∗1(t)

+
aσ2

2t2

2
θ∗2 −

((µ1 − r1)2 − a(µ1 − r1) + a(µ2 − r2)

2

)
t2 −

(
µ1 − r1

)
t = 0, t ∈ [0, T ] (2.44)

and255

σ2
4t2

2
(θ∗2)3 − (3µ2 − r2)σ2

2t2

2
(θ∗2)2 +

(
σ2

2t+
(µ2 − r2)(σ2

2 + 2µ2)t2 − aσ2
2t2

2

)
θ∗2

+
aσ1

2t2

2
θ∗1 −

((µ2 − r2)2 − a(µ2 − r2) + a(µ1 − r1)

2

)
t2 −

(
µ2 − r2

)
t = 0, t ∈ [0, T ]. (2.45)

Proof. See [22]. �256
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2.5.2. The regime-switching Variance-Gamma model. In this section we present the regime257

switching variance-gamma model. We obtain this model from the general model for the risky258

asset described in equation (2.6) by setting the dynamics of the process as259

S(t) =S(0) exp
[ ∫ t

0
µ(s) ds+

∫ t

0

∫
R\{0}

zÑX
VG( ds, dz)

−
∫ t

0

∫
R\{0}

(ez − 1− z)ρXVG( dz) ds
]
, (2.46)

where the jump process NV G(·, ·) has the predictable compensator260

ρXVG( dz) dt =

2∑
i=1

〈ei, X(t−)〉ρV Gi (z) dt, (2.47)

with the Lévy measure associated to the variance gamma process as261

ρV Gi (z) = Ci
e−Gi|z|

|z|
1z<0 + Ci

e−Mi|z|

|z|
1z>0. (2.48)

We then have the following martingale conditions theorem262

Theorem 2.6. Assume that the dynamic of the stock price is given by (2.46). Then the263

values of θi satisfying the martingale condition (2.20) are reduced to264

µi − ri − Ci log
( GiMi

(Gi + 1)(Mi − 1)

)
+ Ci log

( (Gi − θi)(Mi + θi)

(Gi − θi + 1)(Mi + θi − 1)

)
= 0 (2.49)

for i = 1, 2. Moreover, θ∗i in (2.23) satisfy the following system of nonlinear equations in265

(θ∗1, θ
∗
2)266

{
µ1 − r1 − C1 log

( G1M1

(G1 + 1)(M1 − 1)

)
+ C1 log

( (G1 − θ∗1)(M1 + θ∗1)

(G1 − θ∗1 + 1)(M1 + θ∗1 − 1)

)}
×
{
t+

1

2
t2
[
µ1 − r1 − 2θ∗1µ1 + C1 log

( G1M1

(G1 − θ∗1)(M1 + θ∗1)

)
(2.50)

+ C1 log
( G1M1

(G1 − θ∗1 + 1)(M1 + θ∗1 − 1)

)
+ (2θ∗1 − 1)C1 log

( G1M1

(G1 + 1)(M1 − 1)

)]
− a
}

+
1

2
at2
{
µ2 − r2 − C2 log

( G2M2

(G2 + 1)(M2 − 1)

)
+ C2 log

( (G2 − θ∗2)(M2 + θ∗2)

(G2 − θ∗2 + 1)(M2 + θ∗2 − 1)

)}
= 0

and267 {
µ2 − r2 − C2 log

( G2M2

(G2 + 1)(M2 − 1)

)
+ C2 log

( (G2 − θ∗2)(M2 + θ∗2)

(G2 − θ∗2 + 1)(M2 + θ∗2 − 1)

)}
×
{
t+

1

2
t2
[
µ2 − r2 − 2θ∗2µ2 + C2 log

( G2M2

(G2 − θ∗2)(M2 + θ∗2)

)
(2.51)

+ C2 log
( G2M2

(G2 − θ∗2 + 1)(M2 + θ∗2 − 1)

)
+ (2θ∗2 − 1)C2 log

( G2M2

(G2 + 1)(M2 − 1)

)]
− a
}

+
1

2
at2

{
µ1 − r1 − C1 log

( G1M1

(G1 + 1)(M1 − 1)

)
+ C1 log

( (G1 − θ∗1)(M1 + θ∗1)

(G1 − θ∗1 + 1)(M1 + θ∗1 − 1)

)}
= 0.

Proof. See [20]. �268



13

2.5.3. The regime-Switching CGMY Model. In this section we present the regime switching269

CGMY. This model is obtained from the general case by setting the dynamics of the risky270

process S as271

S(t) = S(0) exp

[ ∫ t

0
µ(s) ds+

∫ t

0

∫
R\{0}

zÑX
CGMY ( ds, dz)

−
∫ t

0

∫
R\{0}

(ez − 1− z)ρXCGMY ( dz) ds

]
, (2.52)

where the jump process NX
CGMY (t; ·) has the predictable compensator272

ρXCGMY ( dz) dt =
2∑
i=1

〈ei, X(t−)〉ρCGMY
i (z) dt, (2.53)

with the Lévy measure associated to the CGMY process as273

ρCGMY
i (z) = Ci

e−Gi|z|

|z|1+Y
1z<0 + Ci

e−Mi|z|

|z|1+Y
1z>0. (2.54)

In the following theorem, we derive the equation satisfied by the state price density θi of274

the equivalent martingale measure Qθi when the price of risk in the regime switching model275

is not taken into account.276

Theorem 2.7 (Martingale condition without price of risk). Assume that the dynamic of the277

stock price is given by (2.52). Moreover assume that the state price density θi is such that278

0 < θi < Gi and Mi > 1. Then θi(t) satisfies the following system of equations279

µi − ri + CiΓ(−Yi)
[
(Gi − (θi − 1))Yi − (Gi + 1)Yi − (Gi − θi)Yi

+GYii +MYi
i + (Mi + θi − 1)Yi − (Mi − 1)Yi − (Mi + θi)

Yi
]

= 0

for i = 1, 2. (2.55)

Proof. Assume that S satisfies (2.52), then (2.20) is reduced to280

µi − ri +

∫
R

(ez − 1)(e−zθi − 1)νi(z) dz = 0, i = 1, 2. (2.56)

The integral term involved in equation (2.56) is computed as follows281 ∫
R

(ez − 1)(e−zθi − 1)νi(z) dz =

∫
R

(ez − 1)(e−zθi − 1)
(
Ci
e−Gi|z|

|z|1+Y
1z<0 + Ci

e−Mi|z|

|z|1+Y
1z>0

)
dz

=

∫ 0

−∞
(ez − 1)(e−zθi − 1)

Ci exp(Giz)

(−z)Yi+1
dz

+

∫ ∞
0

(ez − 1)(e−zθi − 1)
Ci exp(−Miz)

(z)Yi+1
dz

=I1 + I2. (2.57)

We shall now consider different cases282

Case 1; Y = 0283
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This now becomes the variance gamma case. This case was discussed in the previous section.284

Case 2; Y 6= 0 We have that285

I1 =

∫ 0

−∞

(
e−z(θi−1) − ez − e−zθi + 1

) Cie
Giz

(−z)Yi+1
dz

= Ci

[ ∫ 0

−∞

(
eGi−z(θi−1)(−z)−1−Yi

)
dz −

∫ 0

−∞

(
e(Gi+1)z(−z)−1−Yi

)
dz

−
∫ 0

−∞

(
e(Gi−θi)z(−z)−1−Yi

)
dz −

∫ 0

−∞

(
eGiz(−z)−1−Yi

)
dz
]
. (2.58)

Put w = −(Gi− (θi− 1))z, w = −(Gi + 1)z, w = −(Gi− θi)z, w = −Giz in the first, second,286

third and fourth integral respectively, then using the definition of the gamma function, we287

get288

I1 = CiΓ(−Yi)
[
(Gi − (θi − 1))Yi − (Gi + 1)Yi − (Gi − θi)Yi +GYi

]
. (2.59)

In the same way, I2 is solved explicitly using change of variable and the definition of the289

gamma function to get290

I2 = CiΓ(−Yi)
[
(Mi + θi − 1)Yi − (Mi − 1)Yi − (Mi + θi)

Yi +MYi
i

]
. (2.60)

Combining (2.59) and (2.60), we get291

∫
R

(ez − 1)(e−zθi − 1)ρi(z) dz = CiΓ(−Yi)
[
(Gi − (θi − 1))Yi − (Gi + 1)Yi

+GYii − (Gi − θi)Yi + (Mi + θi − 1)Yi

− (Mi − 1)Yi − (Mi + θi)
Yi +MYi

i

]
. (2.61)

Substituting this into equation (2.56) gives us the desired result. �292

In the following theorem, we derive the equation satisfied by the state price density θ∗i of293

the equivalent martingale measure Qθ∗i
when the price of risk in the regime switching model294

is taken into account.295

Theorem 2.8 (Martingale condition with price of risk). Assuming that conditions of theorem296

(2.7) are satisfied. Then the state price densities θ∗i (t) in (2.23) satisfy the following system297
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of non linear equations in (θ∗1, θ
∗
2)),298 {

µ1 − r1 + C1Γ(−Y1)
[
(G1 − (θ1 − 1))Y1 − (G1 + 1)Y1 − (G1 − θ1)Y1

+GY11 +MY1
1 + (M1 + θ1 − 1)Y1 − (M1 − 1)Y1 − (M1 + θ1)Y1

]}
×
{
t+

1

2
t2
(
µ1 − r1 − 2θ∗1µ1 + C1Γ(−Y1)

[
(G1 − (θ∗1 − 1))Y1

+ (G1 − θ∗1)Y1 + (2θ∗1 − 1)(G1 + 1)Y1 − (2θ∗1 + 1)G1
Y1 + (M1 + θ∗1 − 1)Y1

+ (M1 + θ1)Y1 + (2θ∗1 − 1)(M1 − 1)Y1 − (2θ∗1 + 1)M1
Y1

])
− a
}

+
1

2
t2a
{
µ2 − r2 + C2Γ(−Y2)

[
(G2 − (θ2 − 1))Y2 − (G2 + 1)Y2 +GY22 +MY2

2

− (G2 − θ2)Y2 + (M2 + θ2 − 1)Y2 − (M2 − 1)Y2 − (M2 + θ2)Y2
]}

= 0 (2.62)

and299 {
µ2 − r2 + C2Γ(−Y2)

[
(G2 − (θ2 − 1))Y2 − (G2 + 1)Y2 − (G2 − θ2)Y2

+GY22 +MY2
2 + (M2 + θ2 − 1)Y2 − (M2 − 1)Y2 − (M2 + θ2)Y2

]}
×
{
t+

1

2
t2
(
µ2 − r2 − 2θ∗2µ2 + C2Γ(−Y2)

[
(G2 − (θ∗2 − 1))Y2

+ (G2 − θ∗2)Y2 + (2θ∗2 − 1)(G2 + 1)Y2 − (2θ∗2 + 1)G2
Y2 + (M2 + θ∗2 − 1)Y2

+ (M2 + θ2)Y2 + (2θ∗2 − 1)(M2 − 1)Y2 − (2θ∗2 + 1)M2
Y2

])
− a
}

+
1

2
t2a
{
µ1 − r1 + C1Γ(−Y1)

[
(G1 − (θ1 − 1))Y1 − (G1 + 1)Y1 +GY11 +MY1

1

− (G1 − θ1)Y1 + (M1 + θ1 − 1)Y1 − (M1 − 1)Y1 − (M1 + θ1)Y1
]}

= 0. (2.63)

Proof. In this case, (2.40) and (2.41) are reduced to300

ξ̃i(θ
∗
i (t))− ξi(θ∗i (t)) = µi(t)− ri(t) + CiΓ(−Yi)

[
(Gi − (θ∗i (t)− 1))Yi +GYi

− (Gi + 1)Yi +MYi − (Gi − θ∗i (t))Yi + (Mi + θ∗i (t)− 1)Yi

− (Mi − 1)Yi − (Mi + θ∗i (t))
Yi

]
, (2.64)

and301

ξ̃i(θ
∗
i (t)) + ξi(θ

∗
i (t)) = µi(t)− ri(t)− 2θ∗i (t)µi(t) + CiΓ(−Yi)

[
(Gi − θ∗i (t))Yi

+ (Gi − (θ∗i (t)− 1))Yi + (2θ∗i (t)− 1)(Gi + 1)Yi

+ (Mi + θ∗i (t)− 1)Yi + (Mi + θi(t))
Yi − (2θ∗i (t) + 1)Gi

Yi

+ (2θ∗i (t)− 1)(Mi − 1)Yi − (2θ∗i (t) + 1)Mi
Yi
]
, (2.65)

respectively and the result follows. �302
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The solutions to the martingale condition for Qθ∗ are generally not unique and therefore303

we need to use some criteria to select the final Esscher parameters. These criteria a discussed304

in the Appendix.305

3. Numerical results and discussions306

In this section, we conduct numerical experiments for the models discussed in the previous
sections; the regime switching Black-Scholes (Model I) and CGMY (Model II). We shall
assume that there are two states of the economy i.e., N = 2. State 1 represents an expansion
period while state 2 represents a recession period. We assume that the transition probability
matrix is

A =

(
−a1 a1

a2 −a2

)
, with a1 = a2 = 0.5

.307

3.1. Model I. We assume that the stock price is driven by a regime switching geometric308

Brownian motion.309

Specific forms of time dependent interest rate and volatility. Here, we will extend the results310

and analysis in [22] to the time dependent interest rate and volatility that is, there are both311

functions of time. We refer the reader to [22] (see also [20]) in the case of constant parameters312

In the following graphs, it is assumed that the exercise price is 100, the value of the asset313

is 120, and the expiry date is one year in the future. t = T is known as the remaining life of314

an option. It is also assumed that there is a gradual trend for the parameter to move in a315

decreasing or increasing manner which might conveniently be regarded as continuous.316

We write the two forms as,317

(a) Constant model. The interest rates in the two regimes are given by

r1(t) = a1 and r2(t) = a2.

(b) Linear model. The interest rates are given by

r1(t) = a1 + b1t and r2(t) = a2 − b2t,

where a1, a2, b1, b2 are constants with a1 = a2 = b1 = b2 = 0.05.318

We define the forms of volatility as;319

(a) Constant model. Volatility in the two regimes are given by

σ1(t) = b1 and σ2(t) = b4.

(b) Decaying model. The volatility is given by

σ1(t) = b1 + b2e
−b3t and σ2(t) = b4 + b5e

−b6t,

where b1, b2, b3, b4, b5, b6 are constants with b1 = 0.15, b2 = b5 = b4 = 0.25 and320

b3 = b6 = 4.321
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Figure 1. Effect of
linear interest rates
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Figure 3. Effect of
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In Figure 1, while keeping the volatility constant, we investigate the impact on the option322

price of a variation in the form of interest rate when there is no regime (NR), the regime323

risk not priced (RNP) and the regime risk priced (RP), respectively. In Figure 2, the same324

study is made assuming that the interest rate is constant and the form of the volatility can325

change. Finally, in Figure 3, we looked at the impact of both linear interest rate and decaying326

volatility on the option prices in the case of NR, RNP and RP.327

As shown in the graphs, the same qualitative results are observed over the lifetime of the328

option. The initial price of the option is affected in all the situations (NR, RNP and RP)329

by the change in the form of interest rate and volatility. When the interest is constant, the330

option price values are very closed during the option’s lifetime irrespective of the form of331

volatility. Note also that, when the regime risk is priced, the option prices are lower when332
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the parameters are time dependent than those with constant parameters. The graphs also333

show that taking only into account the impact of the regime on the option prices leads to334

a completely different overall result. For example, the initial value of the option prices are335

increased substantially when the regime risk is priced. Moreover, during the lifetime of the336

option, the option prices with the regime risk priced are higher than those with regime risk337

not priced which are higher than those without regime risk considered.338

3.2. Model II. In this section, we discuss the regime switching CGMY model. We cover in339

particular two cases: Y = 0 (known as the variance gamma (VG) model) and Y 6= 0. We340

refer the reader to [20] for the case Y = 0 with constants coefficients.341

3.2.1. VG Case. We consider linear interest rates and analyse their effects on the call prices.342

We set343

r1 = 0.05 + 0.05t and r2 = 0.01− 0.005t,

C = [3, 4], G = [5, 6], M = [10, 8],

S(0) = 100, X(0) = e1, µ = [0.35, 0.05].

We use the constant parameter case i.e., constant interest rates, as a marker. We define t = T344

as the remaining time to maturity. We present the results of our simulation below.345
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In Figure 4 and 5, we investigate the impact of a variation in the form of interest rate on346

the option price in three cases: no regime (NR), regime risk not priced (RNP) and regime347

risk priced (RP). The same conclusions as in the Black-Scholes regime switching model hold348

concerning the impact of the regime risk on the option prices. Note however that during the349

life time of the option, the difference in option prices when the regime is priced and when it350

is not are not significant.351
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3.2.2. CGMY Case. The simulation of this case proved to be more difficult than the former352

case. We have simulated the CGMY’s with Y > 0. We shall give the results of our simulation353

in two examples. An algorithm for the simulation of the CGMY process can be found in [3].354

(1): We assume that Y ∈ (0, 1) and set the parameters to be355

r = [0.05, 0.01], µ = [0.35, 0.05],

C = [3, 4], G = [5, 6], M = [10, 8], Y = [0.5, 0.5]

S(0) = 100, X(0) = e1, K = {70, 80, 90, 100, 110, 120, 130, 140, 150}.

We plot graphs of Call prices across different strikes.356
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T = 0.25
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Figure 7. Call prices
across strikes when
T = 0.5
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Figures 6- 9, depict the impact of a change in the regime on the option prices when the357

strike price changes and the interest rate is constant in three situations: no regime (NR),358

regime risk not priced (RNP) and regime risk priced (RP). The effect of the parameter Y is359

seen in this case. As shown in the graph, when the exercised time increases, the initial price360

of the option is substantially affected. For each time to maturity, as the strike price increases,361

the value of the option decreases. Contrarily to the Black-Scholes regime switching model362

(see [22]), the option prices with regime risk priced are higher than those with regime risk363

not priced regardless of the option maturity. .364

Assume now that the interest rates are linear and set365

r1 = 0.05 + 0.05t and r2 = 0.01− 0.005t.

We use the constant parameter case., i.e constant interest rates, as a marker.366
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Figure 10. Effect of
Linear rates on call
prices when K=70
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Figure 11. Effect of
Linear rates on call
prices when K=100

In Figures 10 and 11, we examine the impact that a change in the form of interest rate has367

on the option price. It can be seen that, there is no substantial impact of the form of interest368

rate in the three cases. However, there is a significant difference in the option prices when369

considering the impact of the regime risk. Once again, the initial value of the option price is370

considerably increased when the regime risk is priced, and during the lifetime of the option,371

its price when the regime risk is priced is higher than that when when the regime risk is not372

priced which is higher than that when there is no regime.373

Remark 3.1. When Y ∈ (0, 1), the CGMY process is an infinite activity and finite variation374

process. This means that the path of the process has a similar behaviour to the path of the375

VG process.376

4. Conclusion377

In this paper, we use the pricing method developed in [22] to price options when the378

underlying assets are driven by a regime switching CGMY process with time dependent379

parameters. The theoretical results are given for general regime switching exponential Lévy380

model with time dependent parameters. The choice of the martingale pricing measure is381
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justified by the minimization of the maximum entropy. We conduct numerical experiments382

to investigate the effect of pricing regime-switching risk and the analysis shows a significant383

difference of values between prices of an European call when the regime-risk priced and when384

the regime risk not priced. We also observe that the regime risk is sensitive to market385

parameters like time dependent interest rates and volatilities with the sensitivity higher in386

the case of the Black-Scholes than in the Variance Gamma or CGMY cases.387

We may explore the applications of our models to other types of options such as American388

options, barrier options, look back options, Asian options, Exotic options, option-embedded389

insurance products, etc. We may also extend our framework to include stochastic interest390

rates and volatility which would probably give higher values of the option prices.391

Appendix A. Criteria for selecting Esscher parameters392

As already mentioned systems of equations characterizing martingale condition for Qθ∗393

have in general more than one solution in (θ∗1(t), θ∗2(t)). Here, we present the selection criteria394

of the set of neutral Esscher parameters (θ∗1(t), θ∗2(t)) that minimizes the maximum entropy395

between an EMM and the real world probability measure over different states. The idea is396

from [22].397

Define first the entropy between Qθ∗ and P conditional on X(0) ∈ {e1, e2} as follows.398

I(Qθ∗ ,P) : = EP

[
dQθ∗

dP
ln

(
dQθ∗

dP

)∣∣∣∣X(0) = ei

]
= EP

[
Λθ
∗
T ln Λθ

∗
T

∣∣∣∣X(0) = ei

]

=
EP
[
−
∫ T

0 θ(s) dY (s)e−
∫ T
0 θ(s) dY (s)

∣∣∣X(0) = ei

]
EP
[
e−

∫ T
0 θ(s) dY (s)

∣∣∣X(0) = ei

]
− lnEP

[
e−

∫ T
0 θ(s) dY (s)

∣∣∣X(0) = ei

]
. (A.1)

Let Γ := {θ∗ ∈ R2|θ∗ satisfies (2.38) and (2.39)} and denote by IM (Qθ∗ ,P) the maximum399

entropy between Qθ∗ and P over the different values of X(0), i.e.,400

IM (Qθ∗ ,P) := max
i=1,2

I(Qθ∗ ,P|X(0) = ei). (A.2)

One can show as in [22] that401

I(Qθ∗ ,P|X(0) = ei) : = EP

[
dQθ∗

dP
ln

(
dQθ∗

dP

)∣∣∣∣X(0) = ei

]

=
〈e

∫ T
0 (A+diag(ξki (θ∗i (t)))) dtX(0),12〉

〈e
∫ T
0 (A+diag(ξi(θ∗i (t)))) dtX(0),12〉

− ln 〈e
∫ T
0 (A+diag(ξi(θ

∗
i (t)))) dtX(0),12〉.

(A.3)

The selected (θ∗1(t), θ∗2(t)) shall be solution to the following problem: Find (θ̂∗1(t), θ̂∗2(t)) ∈ Γ402

such that403

IM (Qθ̂∗ ,P) = min
θ∗∈Γ

IM (Qθ∗ ,P), (A.4)

with Γ := {θ∗ ∈ R2|θ∗ satisfies (2.38) and (2.39)}404
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Appendix B. Simulation procedure405

In this section, we discuss the simulation procedure. We adopt a straight forward Monte-406

Carlo procedure in order to obtain simulation approximations for the European call price.407

Suppose we want to evaluate the price of a European call option at the current time t = 0408

with maturity T and strike price K. We note that the call option C(0, S(0), X(0)) can be409

evaluated as follows:410

C(0, X(0), S(0)) = Eθ
∗
[

exp
(
−
∫ t

0
r(u) du

)
(S(T )−K)+

]
= EP

[ dQθ∗

dP
exp

(
−
∫ t

0
r(u) du

)
(S(T )−K)+

∣∣∣S(0), X(0)
]
. (B.1)

We assume that the process S is simulated over a discrete grid. To achieve this, we divide the411

time horizon [0, T ] into J subintervals [tj , tj+1] for j = 0, 1, . . . , J − 1 of equal length ∆ = T
J412

where t0 = 0 and tJ = T .413

For the discrete-time version of the Markov chain X, we suppose that the transition proba-414

bility matrix in a subinterval is I + A∆ given X(0).415

Given the simulated path of X, the sample paths of the processes {µ(tj)}Jj=1, {σ(tj)}Jj=1,416

{θ(tj)}Jj=1 and {r(tj)}Jj=1 are identified. Then, we can now use these to construct a Euler417

forward discretization scheme to discritize the log return process Y as follows418

Y (tj+1) = Y (tj) + ∆ ∗ (µ(tj)−
1

2
σ2(tj)) + ∆ ∗

∫
R

(ez − 1− z)ρX(tj)(dz)

+ σ(tj) ∗ ξ ∗
√

∆ + J̃Xj (tj+1)− J̃Xj (tj). (B.2)

where ξ ∼ N(0, 1) and419

J̃Xj (t) =

∫
R
zJXj (t; dz)−

∫ t

0

∫
R
zρX(tj)( dz) dt. (B.3)

Given {X(tj)}Jj=1 and Y (0) = 0, we then sample {Y (tj)}Jj=1 using (B.2) recursively. The420

Monte Carlo simulation procedure can be found in [22].421
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