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ABSTRACT	

A	simplified	model	of	the	motion	of	a	grounding	iceberg	for	determining	the	gouge	depth	into	the	seabed	

is	proposed.	Specifically,	taking	into	account	uncertainties	relating	to	the	soil	strength,	a	nonlinear	

stochastic	differential	equation	governing	the	evolution	of	the	gouge	length/depth	in	time	is	derived.	

Further,	a	recently	developed	Wiener	path	integral	based	approach	for	solving	approximately	the	

nonlinear	stochastic	differential	equation	is	employed;	thus,	circumventing	computationally	demanding	

Monte	Carlo	based	simulations,	and	rendering	the	approach	potentially	useful	for	preliminary	design	

applications.	The	accuracy/reliability	of	the	approach	is	demonstrated	via	comparisons	with	pertinent	

Monte	Carlo	simulation	data.	
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INTRODUCTION	

Oil	and	gas	(O&G)	operators	have	been	focusing	their	efforts	on	exploration	and	

development	of	arctic	regions	the	last	several	years	as	traditional	fields	are	rapidly	

depleting	[1].	It	has	been	estimated	that	22%	of	the	world’s	undiscovered	reserves	are	

located	in	the	arctic	circle,	84%	of	which	are	located	offshore	[2].	One	main	concern	

with	offshore	oil	and	gas	development	in	the	arctic	is	seabed	scouring	due	to	iceberg	

impact	with	the	soil	(ice	gouging).	Offshore	pipelines	in	the	arctic	are	buried	below	the	

mud	line	so	as	to	be	protected	from	iceberg	impact.	The	burial	process	involves	

trenching	the	seabed	before	laying	the	pipeline.	However,	trenching	costs	increase	

significantly	with	burial	depth,	potentially	even	exceeding	the	cost	of	the	pipeline	

fabrication	itself	[3].	Therefore,	a	sustained	challenge	in	the	O&G	industry	is	the	

accurate	prediction	of	the	depth	of	the	ice	gouge,	and	consequent	pipeline	embedment	

design	depth.		

Seabed	surveys	can	be	used	to	directly	measure	the	gouge	depth.	However,	

measurements	of	existing	berg	induced	seabed	scours	may	not	accurately	predict	the	

potential	future	gouge	event	as	infilling	of	the	scour	trenches	occurs.	Further,	it	is	

difficult	to	determine	if	the	observed	scours	are	recent	or	relics.	Another	approach	is	to	

conduct	multiple	seabed	surveys	over	several	years	to	determine	scouring	rates	relative	

to	time	and	space.	However,	this	requires	a	tremendous	amount	of	resources	and	is	not	

feasible	due	to	the	high	associated	costs.		Therefore,	it	is	important	to	understand	the	

mechanics	of	the	grounding	berg	to	predict	realistic	gouge	depths	using	theoretical	

models.		
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Sophisticated	finite	element	method	(FEM)	based	models	have	been	developed	

to	predict	the	ice	gouge	behavior	and	the	effects	of	ice	gouging	on	buried	pipelines	[4-

10].	In	[11]	a	FEM	based	model	was	employed	in	a	parametric	study	to	investigate	the	

effect	of	different	physical	factors	on	gouge	depth.	A	semi-empirical	relationship,	which	

can	be	construed	as	a	“meta-model”,	was	derived	to	estimate	gouge	depth	and	utilized	

in	a	probabilistic	analysis	within	a	Monte	Carlo	simulation	(MCS)	context.	FEM	based	

approaches	require	significantly	more	computational	effort	when	compared	to	more	

analytical	approaches.	Additionally,	it	can	be	argued	that	the	overall	accuracy	of	such	

detailed	FEM	approaches	is	not	necessarily	higher	than	that	of	more	approximate	

analytical	approaches.	This	is	due	to	the	high	level	of	uncertainty	involved	in	the	

selection	of	parameter	values	related	to	the	system	(e.g.	iceberg	shape/weight	etc.)	and	

to	the	excitation/environment	(e.g.	sea	current	characteristics).	Clearly,	because	of	this	

apparent	inconsistency	between	a	very	detailed	FEM	modeling	and	a	high	degree	of	

uncertainty	regarding	the	involved	parameter	values,	the	desired	outcome	of	overall	

enhanced	accuracy	is	at	least	a	debatable	one.	Furthermore,	even	if	the	effects	of	

uncertainties	were	considered	in	these	elaborate	FEM	models	in	a	comprehensive	

manner	via	an	appropriate	stochastic	modeling,	determining	the	system	stochastic	

response	using	brute	force	MCS	based	approaches	would	be,	potentially,	

computationally	prohibitive	[12,13].	A	comprehensive	discussion	of	some	of	the	

challenges	in	FEM	based	approaches	is	presented	in	[14].	

In	this	regard,	several	researchers	have	proposed	approximate	analytical	

treatments	of	the	ice-gouging	problem.	In	[15]	a	model	was	developed	that	equates	the	
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kinetic	energy	of	the	moving	berg	to	the	work	done	in	plowing	into	the	soil.	The	energy	

is	computed	considering	the	mass	of	the	berg	and	the	environmental	factors	(sea	

current	and	current	drag)	while	the	soil	resistance	is	determined	based	on	a	passive	

pressure	mechanism	at	the	face	of	the	grounding	berg;	see	also	[16,17].	Further,	[18,19]	

considered	the	soil	deformation	ahead	of	the	berg	keel,	assuming	two-dimensional	

plane	strain	and	relying	on	plasticity	theory.	In	[20]	a	model	of	the	grounding	berg	in	

sandy	soils	was	developed	based	on	experimental	work	that	incorporates	passive	soil	

resistance	on	the	front	and	sides	of	the	berg	and	sliding	resistance	on	the	bottom.	

Reference	[21]	used	a	differential	equation	that	balances	the	forces	of	inertia,	current	

drag	and	soil	resistance	to	compute	the	gouge	length.	A	comprehensive	presentation	of	

the	various	theoretical	ice	gouge	models	can	be	found	in	[3,22].	

The	current	work	extends	and	generalizes	the	model	proposed	in	[21]	

circumventing	some	of	its	limitations.	Specifically,	first,	the	model	proposed	in	[21]	

exhibits	an	oscillatory	response	behavior,	which,	clearly,	is	not	physically	realistic	for	the	

ice-gouging	problem.	Therefore,	an	energy	dissipation	term	is	added	to	the	model	that	

prevents	oscillatory	behavior.	The	result	can	be	construed	as	an	“over-critically	

damped”	nonlinear	dynamical	system	(e.g.	[23]).		

Second,	most	of	the	theoretical	models	in	the	literature	(including	the	model	in	

[21])	are	deterministic,	and	thus,	it	can	be	argued	that	they	cannot	capture	many	

aspects	of	the	ice	gouge	mechanism	as	the	uncertainties	inherent	in	the	environment	

are	not	considered.	Therefore,	a	natural	extension/generalization	to	the	proposed	

gouge	model	is	to	consider	the	variations	in	the	environmental	parameters	that	affect	
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the	response.	In	this	regard,	a	stochastic	treatment	of	the	proposed	dynamical	system	is	

considered	by	taking	into	account	uncertainties	related	to	the	soil	strength;	this	yields	a	

second-order	nonlinear	stochastic	differential	equation	(SDE)	governing	the	evolution	in	

time	of	the	gouge	length.		Next,	the	recently	developed	Wiener	path	integral	(WPI)	

technique	for	treating	certain	random	vibration	problems	(e.g.	[24,25])	is	applied	to	

efficiently	solve	the	SDE	governing	the	ice	gouging	motion;	thus,	computationally	

demanding	MCS	are	circumvented.	Specifically,	a	variational	formulation	is	utilized	to	

derive	an	Euler-Lagrange	(E-L)	equation	governing	the	“most	probable	path”.	The	

resulting	boundary	value	problem	(BVP)	is	then	solved	numerically	and	the	response	

probability	density	function	(PDF)	for	the	gouge	depth	at	a	given	point	is	obtained.	

Further,	the	accuracy	of	the	WPI	based	solution	approach	is	demonstrated	by	

comparing	the	results	to	pertinent	MCS	data.	

The	model	utilized	in	the	proposed	approach	is	a	simplification	of	the	gouging	

phenomenon,	however,	it	requires	significantly	less	computational	time	when	

compared	to	previously	developed	FEM	based	approaches.	Further,	as	discussed	in	[3],	

FEM	based	models	require	rigorous	validation	against	quality	data	from	physical	

simulations.	Furthermore,	conducting	a	probabilistic	analysis	utilizing	a	FEM	based	

model	in	a	MCS	can	be	computationally	prohibitive.		The	WPI	technique	adopted	in	the	

proposed	approach	is	orders	of	magnitude	less	computationally	demanding	when	

compared	to	brute	force	MCS	based	approaches.	The	combination	of	a	simplified	model	

and	the	efficient	WPI	based	solution	establishes	the	proposed	approach	as	a	viable	

alternative	to	previous	approaches,	at	least	at	a	preliminary	design	level.				
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ICE	GOUGE	MODEL	

	 The	formulation	in	[21]	is	delineated	in	the	following	subsection	followed	by	the	

proposed	enhancement	to	the	model.	A	numerical	example	is	presented	comparing	the	

two	models	and	the	results	are	discussed.	Next,	modeling	the	soil	strength	as	a	

stochastic	process	further	extends	the	enhanced	formulation	governing	the	ice	gouging.	

This	leads	to	a	nonlinear	second	order	stochastic	differential	equation	governing	the	

berg	dynamics.  

Equation	of	Motion	Governing	Ice	Gouging	

The	berg	is	assumed	to	be	freely	drifting	initially	with	a	velocity	equal	to	that	of	the	

propelling	currents	averaged	over	the	immersed	depth	of	the	berg.	As	shallower	water	

depths	are	reached	the	berg	will	tend	to	ground	in	the	course	of	its	travel.	The	forces	

acting	on	the	berg	during	gouging	process	are	the	hydrodynamic	force	from	the	current,	

the	soil	resistance	and	the	inertial	force	of	the	berg.	Balancing	the	forces	yields	the	

following	expression	[21],	

𝑚𝑥 + 𝑃! = 𝑓 𝑡 	 	 	 	 	 	 	 	 	 								(1)	

where	𝑚	is	the	mass	of	the	berg,	𝑃!	is	the	of	soil	resistance	force,	𝑓 𝑡 	is	the	

hydrodynamic	force	and	𝑥	is	the	gouge	length.	The	most	widely	used	expression	for	a	

hydrodynamic	force	is	based	upon	Morison’s	equation	[26],	

𝑓 𝑡 = 𝜌𝑉!𝑣 + 𝐶! − 1 𝜌𝑉! 𝑣 − 𝑥 + !
!
𝐶!𝜌𝐴! 𝑣 − 𝑥 𝑣 − 𝑥 	 	 	 								(2)	

where	𝜌	is	the	density	of	seawater,	𝑉!	is	the	volume	of	the	berg,	𝐴!	is	the	cross-

sectional	area	of	the	berg	normal	to	the	drag	force,	𝐶!	and	𝐶! 	are	the	mass	and	drag	
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coefficients,	respectively,		and	𝑣	is	the	velocity	of	the	current.	Since	the	current	velocity	

is	assumed	to	be	constant,	Eq.	2	reduces	to	

𝑓 𝑡 = 𝐶! − 1 𝜌𝑉!𝑥 +
!
!
𝐶!𝜌𝐴! 𝑣 − 𝑥 𝑣 − 𝑥 .	 	 	 	 	 								(3)	

The	soil	resistance	force,	𝑃!,	is	approximated	as	

P! = K!d!	 	 	 	 	 	 	 	 																																		(4)	

where	K!	is	the	coefficient	of	soil	resistance	and	d	is	the	gouge	depth	(see	also	[21]).	

Note	that	Eq.	4	depicts	the	force	required	to	push	a	smooth	vertical	wall	into	

cohesionless	soil	and	is	based	on	Coulomb’s	passive	earth	pressure	theory	[27].	It	has	

been	shown	in	plowing	force	estimation	studies	(e.g.	[28])	that	Eq.	4	underestimates	the	

plowing	force	as	it	ignores	the	shearing	of	the	sidewalls	and	bottom	surface	as	well	as	

the	effects	of	pore	water	flow.	Therefore,	Eq.	4	can	be	viewed	as	a	conservative	

estimate	of	the	soil	resistance	force	and	an	appropriate	first	approximation	for	the	given	

application.		

In	[21]	and	in	the	ensuing	analysis,	a	slight	seabed	indentation	is	assumed	and	the	depth	

𝑑	is	related	to	the	length	𝑥	of	the	gouge	as	𝑑 = 𝑥𝑡𝑎𝑛𝛽	yielding	the	following	equation	

for	the	soil	resistance	P!,	i.e.,	

P! = K!x!tan!β	 	 	 	 	 	 	 	 												 								(5)	

where	β	is	the	seabed	slope	(assumed	to	be	approximately	constant	over	the	space	

domain	of	the	gouging	event).	Note	also	that	seabed	indentation	observations	indicate	

most	gouge	features	are	uniform	in	cross	section	over	long	distances	on	often	almost	

horizontal	seabed	configurations	[29].	

Substituting	Eq.	3	and	Eq.	5	into	Eq.	1	yields,	
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𝑚𝑥 + K!x!tan!β = 𝐶! − 1 𝜌𝑉!𝑥 +
!
!
𝐶!𝜌𝐴! 𝑣 − 𝑥 𝑣 − 𝑥 	 	 	 								(6)	

Further,	defining	the	ratios	𝐴 =
!
!!!!!!
!!

	and	𝐵 = !!!"#!!
!!

,	where	

	𝑚! = 𝑚 + 𝐶! − 1 𝜌𝑉!	 	 	 	 	 	 	 	 								(7)	

Eq.	6	is	rewritten	as	

x+ Bx! = 𝐴 𝑣 − 𝑥 !.		 	 	 	 	 	 	 	 								(8)	

Note	that	Eq.	8	is	actually	the	equation	proposed	in	[21].	

Modified	ice	gouge	model	

Clearly,	relying	on	the	physics	of	the	problem,	it	is	anticipated	that	at	time	t = 0	when	

the	berg	touches	the	seabed	the	conditions	𝑥 𝑡 = 0 = 𝑣	and	𝑥 𝑡 = 0 = 0	are	

satisfied.	Next,	as	the	gouging	process	progresses,	the	velocity	x	of	the	berg	gradually	

decreases	(monotonically)	until	it	becomes	zero.	Obviously,	(and	since	a	constant	

velocity	𝑣	of	the	current	is	assumed)	a	reversal	of	the	sign	of	the	berg	velocity	x	is	not	

anticipated	at	any	point	during	the	gouging	process.				

Nevertheless,	note	that	the	form	of	Eq.	8	which	can	be	construed	as	a	nonlinear	single	

degree	of	freedom	oscillator	excited	by	the	forcing	term	𝐴 𝑣 − 𝑥 !	suggests	a	solution	

of	an	oscillatory	nature.	Indeed,	for	the	parameters	values	shown	in	Table	1	(the	values	

are	within	typical	ranges	as	presented	in	the	Discussion	section	of	reference	[21]),	the	

model	in	[21]	yields	a	solution	that	is	plotted	in	Fig.	1.	It	can	be	readily	seen	that	

according	to	Eq.	8	the	berg	oscillates.	Clearly,	this	is	not	a	physically	realistic	outcome;	

and	thus,	the	dynamics	modeling	described	by	Eq.	8	needs	to	be	modified.	In	this	
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regard,	a	large	enough	energy	dissipation	term	(i.e.	damping	term)	is	added	to	Eq.	8	to	

prevent	any	reversal	in	velocity;	this	yields	

𝑥 + 𝐶𝑥 + 𝐵𝑥! = 𝐴 𝑣 − 𝑥 !	 	 	 	 	 	 																																		(9)	

where	𝐶	is	the	energy	dissipation	constant.	Further,	it	can	be	argued	that	the	motion	of	

the	berg	resembles	the	non-oscillatory	motion	of	an	over-critically	damped	single	

degree	of	freedom	oscillator	(e.g.	[23]).	In	the	following,	a	simple	parametric	study	is	

performed	to	determine	the	lowest	damping	coefficient	value	𝐶	which	prevents	

oscillatory	motion;	thus,	being	consistent	with	the	physics	of	the	problem.	In	this	regard,	

in	Fig.	1	the	solution	of	Eq.	9	is	plotted	for	several	values	of	the	damping	coefficient	𝐶	

and	compared	with	the	solution	of	Eq.	8	(model	by	[21]).		

Three	energy	dissipation	constants	are	considered	in	the	current	example	for	solving	Eq.	

9.	Note	that	although	only	three	values	are	considered	in	the	present	example,	the	

parametric	study	requires	that	an	initial	value	is	chosen	arbitrarily	and	then	ramped	up	

in	order	to	gauge	the	amount	of	damping	required	to	prevent	oscillatory	behavior.		

The	equations	are	solved	utilizing	a	standard	fourth	order	Runge-Kutta	scheme	[30]	and	

the	resulting	gouge	lengths	as	a	function	of	time	are	shown	in	Fig.	1.	

As	can	be	seen	in	Fig.	1,	a	constant	C = 6 × 10!	is	required	to	prevent	oscillatory	

motion.	Note	that	the	solution	derived	using	the	model	by	[21]	yields	the	same	final	

gouge	length	result.	However,	as	previously	mentioned,	the	response	oscillates,	and	

thus,	does	not	portray	the	physics	of	the	problem	realistically.	Further,	due	to	the	

oscillatory	nature	of	the	response	the	computational	cost	related	to	the	ODE	solution	is	
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increased	since	more	time	is	required	for	the	solution	to	converge	to	the	final	gouge	

length.		

The	parametric	exercise	presented	above	can	be	performed	for	other	system	

parameters	as	well.	Additionally,	the	above	exercise	provides	some	insight	regarding	an	

approximate	range	of	the	response.	This	information	can	be	used	in	the	proposed	

approach	to	solve	the	SDE	more	efficiently	(details	regarding	increasing	the	efficiency	of	

the	proposed	approach	are	presented	in	the	numerical	example	section	of	this	paper).	

In	the	next	subsection,	the	proposed	model	is	extended	to	consider	the	uncertainties	in	

soil	strength.		

Stochastic	Model	

Offshore	systems	most	often	exhibit	random	characteristics	due	to	inherent	

uncertainties	in	offshore	loading	conditions	(i.e.	wind,	wave,	current,	earthquake	etc.)	

and	soil	properties.	Even	design	standards	and	codes	acknowledge	the	uncertainty	in	

soil	strength	(see	[31,32]).	Thus,	to	realistically	capture	the	system	behavior	the	

inherent	randomness	must	be	appropriately	modeled.	This	requires	a	suitable	

uncertainty	quantification	methodology	with	concepts	and	methods	of	statistics	and	

probability	theory	(e.g.	[33]).	Stochastic	procedures	have	been	shown	to	provide	a	

sound	framework	for	a	rational	treatment	of	uncertainties	(see	[34]).	Indicatively,	

probabilistic	approaches	have	been	developed	that	account	for	uncertainties	in	the	

design	of	pipeline	systems	(e.g.	[35-38]).		

Note,	however,	that	the	previous	theoretical	models	developed	for	estimating	gouge	

depths	(i.e.	[15-22])	are	purely	deterministic;	thus,	neglecting	the	variations	in	soil	
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properties	and	utilizing	deterministic	“mean”	(or	“extreme”	in	some	cases)	values.	

Consequently,	gouge	depths	may	be	overestimated	when	using	deterministic	

approaches,	which	can	lead	to	costly	offshore	pipeline	burial	campaigns.	Therefore	it	is	

beneficial	to	model	the	uncertainty	in	soil	strength	as	more	realistic	gouge	depths	can	

be	estimated,	which	may	result	in	lower	offshore	installation	costs.		

In	this	regard,	(Eq.	9)	is	modified	by	considering	the	randomness	in	the	soil	strength	and	

Eq.	9	is	re-written	as	

x+ Cx+ B 1+w t x! = A v! − x !	 			 	 	 																																(10)	

where	w t 	represents	a	Gaussian,	zero-mean	white	noise	process	possessing	a	power	

spectrum	𝑆!.	Note	that	a	magnitude	for	the	white	noise	intensity	𝑆!	is	chosen	so	as	to	

ensure	that	the	probability	of	a	resulting	negative	soil	resistance	is	negligible.	The	

modeling	of	the	uncertainty	in	soil	strength	as	a	Gaussian	process	is	recommended	in	

[32].	Also,	it	is	noted	that	more	sophisticated,	than	the	Gaussian	white	noise,	stochastic	

modeling	of	the	soil	strength	can	be	utilized	based	on	available	measured	data.	

Potential	future	work	includes	modifications	of	the	model	to	consider	uncertainties	in	

other	parameters	as	well	such	as	berg	mass,	current	velocity	etc.	Clearly,	Eq.	10	is	a	

nonlinear	SDE	with	no	known	exact	solution.	In	the	subsequent	section	the	basic	

elements	of	the	recently	developed	Wiener	Path	Integral	(WPI)	technique	is	presented	

which	will	be	used	to	solve	the	SDE	Eq.	10	in	an	efficient	manner;	thus,	circumventing	

computationally	demanding	MCS.		
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WIENER	PATH	INTEGRAL	(WPI)	based	solution	treatment		

The	Monte	Carlo	simulation	(e.g.	[11])	has	been,	perhaps,	the	most	versatile	tool	

for	determining	response	and	reliability	statistics	of	stochastic	systems.	However,	there	

are	cases,	for	instance	when	large-scale	complex	systems	are	concerned	or	when	the	

quantity	of	interest	has	a	relatively	small	probability	of	occurrence,	for	which	the	use	of	

MCS	techniques	can	be	computationally	demanding,	or	even	prohibitive.	Thus,	there	is	a	

need	for	developing	alternative	efficient	approximate	analytical	and/or	numerical	

solution	techniques;	see	[39-43]	for	some	recent	references.		

One	of	the	promising	frameworks	relates	to	the	concept	of	the	Wiener	path	

integral	(WPI).	In	this	regard,	note	that	although	the	WPI	has	strongly	impacted	the	field	

of	theoretical	physics,	the	engineering	community	has	so	far	ignored	its	potential	as	a	

powerful	uncertainty	quantification	tool.	The	concept	of	path	integral	was	introduced	by	

[44]	and	was	reinvented	in	a	different	form	by	[45]	to	reformulate	quantum	mechanics.	

A	more	detailed	treatment	of	path	integrals,	especially	of	their	applications	in	physics,	

can	be	found	in	a	number	of	books	such	as	in	[46].	Recently,	in	[24]	an	approximate	

analytical	WPI	technique	was	developed	based	on	a	variational	formulation	and	on	the	

concepts	of	stochastic	averaging/linearization	for	addressing	certain	stochastic	

engineering	dynamics	problems.	In	this	regard,	relying	on	the	concept	of	the	most	

probable	path	an	approximate	expression	was	derived	for	the	non-stationary	response	

probability	density	function	(PDF).	Further,	the	aforementioned	technique	was	

extended	in	[25]	to	account	for	multi-degree-of-freedom	(MDOF)	systems	as	well	as	for	
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hysteretic	nonlinearities.	In	[47]	the	technique	was	further	enhanced	and	generalized	to	

treat	linear	and	nonlinear	systems	endowed	with	fractional	derivatives	terms.		

The	basic	elements	of	the	WPI	technique	are	presented	in	more	detail	below.	

The	technique	is	then	applied	to	the	ice-gouging	problem	in	the	subsequent	section.			

 
WPI	formulation	and	Most	Probable	Path	

Regarding	the	WPI,	it	can	be	realized	as	a	functional	integral	over	the	space	of	all	

possible	paths	C x!, x!, t!; x!, x!, t! 	starting	from	a	state	(x!, x!, t!)	and	reaching	the	state	

(x!, x!, t!),	where	x t! = x!, x t! = x!, x t! = x!, x t! = x!.	It	possesses	a	probability	

distribution	on	the	path	space	as	its	integrand,	which	is	denoted	by	W x(t) 	and	is	called	

probability	density	functional.	In	this	manner,	the	transition	PDF	p x!, x!, t!|x!, x!, t! 	is	

given	by	

p x!, x!, t!|x!, x!, t! = W x t dx t .!!,!!,!!
!!,!!,!!

		 			 	 												 																			(11)	

Further,	note	that	even	if	the	probability	density	functional	is	constructed,	the	analytical	

solution	of	the	WPI	of	Eq.	11	is	a	rather	challenging	task.	Thus,	to	circumvent	the	

aforementioned	challenge,	several	research	efforts	have	focused	on	developing	

approximate	techniques	for	determining	the	transition	PDF	p x!, x!, t!|x!, x!, t! .	In	this	

regard,	researchers	invoked	a	variational	formulation	and	defined	a	Lagrangian	function	

L x, x, x 	for	determining	the	most	probable	path	that	connects	the	points	(x!, x!, t!)	and	

(x!, x!, t!).	In	this	manner,	a	variational	principle	can	lead	to	the	associated	Euler-

Lagrange	equation	to	be	solved	for	the	most	probable	path;	see	[24,25]	for	a	more	

detailed	presentation.			
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Specifically,	utilizing	the	Lagrangian	function	and	considering	Eq.	11	yields	(e.g.	[46])	

W x(t) = Dexp − L x, x, x dt!!
!!

			 	 	 	 	 																			(12)	

where	D	is	a	normalization	coefficient.	The	largest	contribution	to	the	Wiener	path	

integral	comes	from	the	trajectory	for	which	the	integral	in	the	exponential	(Eq.	12)	

becomes	as	small	as	possible.	Variational	calculus	rules	(e.g.	[48])	dictate	that	this	

trajectory	with	fixed	end	points	satisfies	the	extremality	condition	

δ L x!, x!, x! dt
!!
!!

= 0.	 	 	 	 	 	 	 																			(13)	

This	condition	leads	to	the	E-L	equation	

!!
!!!

− !
!!

!!
!!!

+ !!

!!!
!!
!!!

= 0,	 	 	 	 	 	 	 																			(14)	

with	the	four	boundary	conditions	

x! t! = x!, x! t! = x!, x! t! = x!, x! t! = x!,	 			 	 																																(15)	

where	x!	represents	the	most	probable	trajectory.	Next,	solving	the	boundary	value	

problem	(BVP)	of	Eq.	14	together	with	the	conditions	of	Eq.	15	(e.g.	[49])	yields	a	

solution	for	the	transition	PDF	p x!, x!, t!|x!, x!, t! 	in	the	form	

p x!, x!, t!|x!, x!, t! = D exp − L x!, x!, x! dt
!!
!!

. 						 	 									 																			(16)	

It	can	be	readily	seen	that	for	fixed	time	points	t!	and	t!,	D	can	be	determined	by	merely	

applying	the	normalization	condition	

p x!, x!, t!|x!, x!, t! dx!dx!
!
!!

!
!! = 1.	 	 															 	 																				(17)	

The	primary	approximation	of	the	technique	relates	to	the	fact	that	only	the	most	

probable	path	x!	is	considered	in	the	evaluation	of	the	functional	integral	of	Eq.	10	

instead	of	all	the	possible	paths C x!, x!, t!; x!, x!, t! .	The	concept	of	the	most	probable	
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path	can	be	viewed	as	something	equivalent	to	the	fact	that	the	most	probable	value	of	

a	random	variable	is	the	one	corresponding	to	the	peak	of	the	PDF.	

WPI	Numerical	implementation	elements	

It	is	worth	noting	that	for	linear	systems,	the	boundary	value	problem	of	Eq.	14	and	Eq.	

15	can	be	solved	analytically,	yielding	an	explicit	closed-form	expression	for	the	most	

probable	path	x!.	Unfortunately,	for	the	case	of	nonlinear	systems	(e.g.	the	current	ice	

gouging	problem),	the	BVP	of	Eq.	14	and	Eq.	15	cannot,	in	general,	be	solved	

analytically;	thus,	a	numerical	solution	technique	needs	to	be	implemented.	In	this	

regard,	for	a	given	time	instant	t!	and	a	given	vector	value	 x!, x! ,	a	numerical	solution	

of	Eq.	14	and	Eq.	15	yields	a	single	point	of	the	response	PDF	via	Eq.	16.		Typically,	an	

effective	domain	of	values	is	assumed	for	the	response	PDF	p x!, x!, t!|x!, x!, t! ;	namely,	

for	the	ith	components	x!,!	of	x!	and	x!,!	of	x!	it	is	assumed	that	x!,! =∈ x!,!,!"#, x!,!,!"# ,	

x!!,! = x!,!,!"# + j− 1 ∆x!,!,	j = 1,… ,n	with	∆x!,! = x!,!,!"# − x!,!,!"# /(n− 1)	and	

x!,! =∈ x!,!,!"#, x!,!,!"# ,	x!!,! = x!,!,!"# + j− 1 ∆x!,!,	j = 1,… ,n	with	∆x!,! = x!,!,!"# −

x!,!,!"# /(n− 1),	respectively.	It	can	be	readily	seen	that	in	the	general	case,	where	no	

analytical	solution	exists	for	Eq.	14	and	Eq.	15,	the	determination	of	the	system	

response	PDF	can	be	computationally	demanding.	Specifically,	the	number	of	BVPs	of	

the	form	of	Eq.	14	and	Eq.	15	to	be	solved	is	𝑛!.	However,	for	the	ice-gouging	problem,	

only	𝑛	BVPs	are	required	to	compute	the	response	PDF	of	maximum	gouge	depth	due	to	

the	fact	that	the	final	velocity	is	known	(i.e.	x! t! = 0).	Note	that	based	on	numerical	

examples	performed	in	this	study,	a	value	of	n	=	50	has	been	deemed	more	than	
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adequate	for	determining	the	system	response	PDF	with	reasonable	accuracy	in	most	

cases.	

STOCHASTIC	ICE	GOUGING	PROBLEM	

The	WPI	approach	presented	in	the	previous	section	is	now	applied	to	the	ice-

gouging	problem.	Solving	Eq.	10	for	w t 	yields,	

w t =
!!!!!!!!!

!
!!!!"!!!!!!

!!!

!!!
.	 	 	 		 	 	 																			(18)	

The	probability	density	functional	for	the	white	noise	process	w t 	is	given	by	(e.g.	[46])	

W w t = Dexp − !
!
! ! !

!"!!
dt!!

!!
	 	 	 	 	 	 																			(19)	

Next,	Eq.	18	is	substituted	into	Eq.	19	and	the	probability	density	functional	W w t 	is	

interpreted	as	the	probability	density	functional	W x t 	for	x t ,	yielding		

W w t = Dexp − !
!"!!

!!!!!!!!!
!
!!!!"!!!!!!

!!!

!!!

!

dt!!
!!

.		 	 	 						(20)	

Thus,	the	corresponding	Lagrangian	is	given	by	

L x, x, x = !
!"!!

!!!!!!!!!
!
!!!!!!!!!!!

!!!

!!!

!

.	 	 	 	 																			(21)	

Substituting	Eq.	21	into	Eq.	14	and	considering	Eq.	15	leads	to	the	E-L	equation,	

!
!!!!!!!!!!!

−20𝑚𝑥𝑐
2 − 𝑐 + 2𝐴𝑚𝑣0 𝑥𝑐 + 𝐴𝑚𝑥𝑐

2 + 𝑚 𝐴𝑣0
2 − 𝑥𝑐 + 2𝐵𝑚2𝑥𝑐

3 𝐴𝑣0
2 − 𝐴𝑥𝑐

2 −

2𝑥𝑐 + 2𝐴𝐵𝑚2𝑥𝑐
4𝑥𝑐 − 2𝑥𝑐 4𝐴𝑚 𝑐 + 2𝐴𝑚𝑣0 𝑥𝑐

3 − 3𝐴2𝑚2𝑥𝑐
4 − 𝑥𝑐

2 𝑐2 + 4𝑐𝑚𝑣0 + 6𝐴2𝑚2𝑣0
2 +

8𝐴𝑚2𝑥𝑐 + 𝑚2 𝐴2𝑣0
4 − 4𝐴𝑣0

2𝑥𝑐 + 3𝑥𝑐
2 + 2𝑚𝑥𝑐 3 𝑐 + 2𝐴𝑚𝑣0 𝑥𝑐 + 2𝑚𝑥𝑐

(3) + 𝑥𝑐
2 − 𝑐2 +

4𝐴𝑐𝑚𝑣0 + 6𝐴2𝑚2𝑣0
2 𝑥𝑐 + 6𝐴𝑚 𝑐 + 2𝐴𝑚𝑣0 𝑥𝑐𝑥𝑐 + 6𝑚2𝑥𝑐

2 𝐵 − 𝐴2𝑥𝑐 + 𝑚2𝑥𝑐
(4) = 0  						(22) 

where	𝑥!
(!) and	𝑥!

(!)	denote	the	third	and	fourth	derivative	with	time.	Further,	the	

boundary	conditions	are	x! 0 = 0 and x! 0 = v!.	The	most	probable	path,	x!,	is	

determined	by	solving	the	BVP	of	Eq.	22	numerically	(e.g.	[49]).		
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Numerical	example		
 
A	numerical	example	is	presented	to	demonstrate	the	efficiency	of	the	developed	

approach.	The	system	parameters	listed	in	Table	1	along	with	a	damping	coefficient	of	

6.0	x	10^7	(derived	previously	and	shown	in	Fig.	1)	are	used	for	the	current	example.	

The	zero	mean	white	noise	process	(modeling	the	deviation	of	the	soil	strength	from	its	

mean	value)	is	assumed	to	have	a	power	spectrum	value	of	S! = 0.01,	which	is	chosen	

so	that	the	probability	of	a	resulting	negative	soil	resistance	is	negligible.	Further,	the	

parametric	exercise	used	to	compute	the	energy	dissipation	term	provides	some	insight	

into	the	effective	domain	of	the	response	PDF	(i.e.	approximate	maximum	and	

minimum	gouge	length/depth).	This	improves	the	efficiency	of	the	approach	as	a	

relatively	smaller	amount	of	BVPs	need	to	be	solved	to	achieve	the	desired	

discretization	density	of	the	PDF.	Consequently,	an	approximate	range	of	values	of	202	

meters	to	206	meters	(i.e.	x!,!,!"#	and	x!,!,!"#)	for	the	gouge	length	response	PDF	is	

chosen	and	the	numerical	technique	presented	in	subsection	“WPI	Numerical	

implementation	elements”	is	employed.	Next,	a	value	of	n	=	50	BVPs	are	solved	and	the	

resulting	length	response	PDF	is	shown	in	Fig.	2.	Since	the	gouge	length	PDF	is	

computed,	a	transformation	is	conducted	(e.g.	[33])	to	convert	it	to	a	response	PDF	for	

gouge	depth	(according	to	the	relationship	d = xtanβ)	assuming	a	seabed	slope	of	

1/100,	a	value	within	a	typical	range	as	presented	in	[21].		

To	validate	the	approach,	a	Monte	Carlo	simulation	is	conducted	and	Eq.	9	is	solved	

using	a	standard	fourth	order	Runge-Kutta	integration	scheme	(e.g.	[30])	and	utilizing	

50,000	realizations.	Fig.	3	shows	the	gouge	depth	response	PDFs	derived	using	the	WPI	
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and	MCS	approaches.	As	can	be	seen	in	the	figure,	a	satisfactory	level	of	accuracy	is	

achieved	using	the	WPI	technique.			

The	approach	can	also	be	used	to	derive	the	response	PDFs	at	different	time	instances	if	

needed.	Fig.	4	shows	the	gouge	depth	response	PDF	as	a	function	of	time	derived	using	

the	MCS	and	Fig.	5	shows	the	comparison	of	the	response	PDFs	derived	using	WPI	and	

MCS	approaches	at	various	time	instances.	As	can	be	seen	in	the	figures,	a	satisfactory	

level	of	accuracy	is	achieved	with	the	WPI	approach.	It	is	worth	noting	that	for	Fig.	5	an	

approximate	range	of	values	for	the	final	velocity	were	required	(i.e.	x!,!,!"#,	and	x!,!,!"#)	

to	solve	n^2	BVPs	and	to	compute	the	response	PDFs	at	the	different	time	instances.	

This,	of	course,	is	due	to	the	fact	that	the	final	velocity	is	unknown	at	the	intermediate	

time	instances.		

Discussion 
 
The	maximum	gouge	depth	response	PDF	is	computed	by	solving	n	=	50	boundary	value	

problems	only.	Obviously,	the	computational	cost	of	the	developed	technique	increases	

with	an	increasing	value	of	n,	or,	in	other	words,	when	a	relatively	denser	discretization	

map	is	utilized.	Nevertheless,	it	is	noted	that	to	obtain	reliable	response	PDF	estimates	

via	MCS,	especially	in	the	tails	of	the	PDF	where	samples	occur	with	low	probability,	the	

number	of	realizations	to	be	produced	and	of	subsequent	numerical	integrations	of	Eq.	

9	needs	to	be	large	(on	the	order	of	10!	simulations).	To	provide	an	order	of	magnitude	

for	the	example	presented	above,	the	50	BVPs	that	were	solved	for	the	WPI	approach	

required	only	a	few	minutes	(i.e.	between	1	to	2	minutes)	of	computational	time	while	
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the	MCS	approach	required	several	hours	(i.e.	between	6	to	7	hours)	of	computational	

time	using	the	same	machine.		

Additionally,	note	that	the	proposed	approach	is	befitting	for	determining	the	maximum	

gouge	depth	as	only	n	BVPs	are	required	versus	n!	(which	would	be	the	case	in	general	

stochastic	response	determination	problems,	e.g.	[24]).	This	is	due	to	the	fact	that	the	

final	velocity	is	zero.		

The	current	model	can	be	modified	to	consider	the	uncertainty	in	other	parameters	as	

well	such	as	berg	mass,	current	velocity	etc.	Also,	it	is	envisioned	that	future	work	will	

consider	more	sophisticated	stochastic	modeling	as	well	as	system	modeling.		

CONCLUDING	REMARKS	

Ice	gouging	has	been	identified	as	a	concern	for	oil	and	gas	development	in	the	

arctic	and	thus	has	prompted	efforts	to	develop	mathematical	models	of	the	gouging	

event	(e.g.	[22]).	Accurate	theoretical	models	are	required	to	circumvent	the	costly	

seabed	survey	campaigns.		In	the	present	paper,	a	previous	formulation	governing	the	

ice	gouging	has	been	enhanced	and	then	extended	to	consider	the	uncertainties	in	the	

soil	strength.	Further,	the	recently	developed	Wiener	path	integral	technique	for	

treating	certain	random	vibration	problems	has	been	applied	to	solve	the	SDE	governing	

the	ice	gouging	motion.	Specifically,	a	Lagrangian	formulation	in	conjunction	with	a	

variational	principle	has	been	utilized	to	derive	an	Euler-Lagrange	equation	governing	

the	most	probable	response	trajectory.	The	boundary	value	problem	has	then	been	

solved	numerically	and	the	corresponding	response	probability	density	function	has	
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been	derived.	The	proposed	approach	is	especially	well	suited	for	determining	the	

maximum	gouge	depth	as	only	n	boundary	value	problems	need	to	be	solved	as	

opposed	to	n!	(which	would	be	the	case	in	general	stochastic	response	determination	

problems,	e.g.	[24]),	due	to	the	fact	that	the	final	velocity	is	known	(i.e.	x! t! = 0).		

Further,	the	reliability	of	the	approach	has	been	demonstrated	by	comparing	the	

results	to	those	obtained	by	Monte	Carlo	simulations.	The	resulting	PDFs	computed	via	

the	WPI	compare	well	to	those	computed	using	the	more	computationally	demanding	

MCS-based	approach.	

The	advantage	of	the	proposed	stochastic	dynamics	based	approach	over	other	

approaches	is	computational	efficiency,	which	hinges	on	the	simplified	model	adopted	

to	estimate	the	gouge	depth	coupled	with	the	efficient	WPI	based	solution	used	to	

conduct	the	stochastic	analysis.	The	accuracy	of	sophisticated	FEM	based	approaches	is	

not	necessarily	higher	than	that	of	more	approximate	analytical	approaches	since	a	high	

level	of	uncertainty	is	involved	in	the	selection	of	parameter	values	related	to	the	

system	and	to	the	excitation/environment.	Further,	parameter	uncertainty	is	more	

prevalent	in	the	beginning	stages	of	projects	when	in-situ	data	is	limited	or	not	

available.		As	such,	it	is	envisaged	that	the	developed	approach	can	be	used	during	the	

“desk-top”	study	or	“front-end”	phases	of	projects	given	the	high	level	of	uncertainty	

involved	in	the	selection	of	parameter	values	related	to	the	system	and	to	the	

excitation/environment	in	these	phases.	During	the	later	stages	of	projects	(i.e.	detailed	

design,	execution	etc.)	when	in-situ	data	is	gathered	and	the	level	of	uncertainty	is	

decreased,	the	use	of	more	computationally	demanding	FEM	based	models	is	
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recommended.	Nonetheless,	the	developed	approach	can	provide	a	good	first	

approximation	of	the	gouge	length/depth.	Further,	parametric	studies	are	feasible	using	

the	developed	approach	since	it	is	orders	of	magnitude	more	efficient	than	the	common	

MCS-based	approaches	currently	used	in	the	industry	for	system	response	and	reliability	

analysis.	

Finally,	note	that	although	path	integrals	have	reformulated	and	revolutionized	

theoretical	physics,	the	engineering	mechanics	community	has	neglected	their	potential	

for	uncertainty	quantification	of	systems	of	engineering	interest.	It	is	hoped	that	the	

WPI	will	offer	a	potent	new	tool	for	treating	complex	offshore	oil	and	gas	problems	

where	uncertainties	are	prevalent.	
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Figure	Captions	List	
	
Fig.	1	 Model	by	0	vs.	Proposed	Model	

Fig.	2	 Gouge	Length	Response	PDF	(WPI	Approach)	

Fig.	3	

Fig.	4	

Fig.	5	

Maximum	Gouge	Depth	Response	PDF	(WPI	Approach	vs.	MCS)	

Gouge	Depth	Response	PDF	with	Time	(MCS)	

Gouge	Depth	Response	PDF	at	Different	Time	 Instances	 (WPI	Approach	

vs.	MCS)	
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Table	Caption	List	
	
Table	1	 Inputs	used	in	Numerical	Example	
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Fig.1.	Model	by	0	vs.	Proposed	Model	 	
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Fig.2.	Gouge	Length	Response	PDF	(WPI	approach)	
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Fig.3.	Maximum	Gouge	Depth	Response	PDF	(WPI	Approach	vs.	MCS)	 	
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Fig.4.	Gouge	Depth	Response	PDF	with	Time	(MCS)	
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Fig.5.	Gouge	Depth	Response	PDF	at	Different	Time	Instances	(WPI	Approach	vs.	MCS)	 	

Journal of Offshore Mechanics and Arctic Engineering. Received September 26, 2015; 
Accepted manuscript posted August 5, 2016. doi:10.1115/1.4034372 
Copyright (c) 2016 by ASME

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d

Downloaded From: http://asmedigitalcollection.asme.org/ on 08/16/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use



Journal	of	Offshore	Mechanics	and	Arctic	Engineering	(JOMAE)	
 
 

OMAE-15-1102	 GAZIS	 33	

	
Parameter	 Value	
Berg	mass,	m	 20 ∙ 10!kg	
Drag	coefficient,	A	 10!!m!!	
Soil	resistance	
coefficient1,	B	 6 ∙ 10!!m!!s!!	

Mean	sea	current	
velocity,	v	 0.5

m
s 	

1The	value	of	B	considers	a	soil	with	relatively	small	cohesion,	submerged	unit	weight	of	
2	𝑘𝑁/𝑚!,	bottom	slope	of	1/100	and	gouge	width	of	30	meters	(e.g.	0).	

Table	1.	Inputs	used	in	Numerical	Example	
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