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Abstract: Recently Witten introduced a type IIB brane construction with certain

boundary conditions to study knot invariants and Khovanov homology. The essen-

tial ingredients used in his work are the topologically twisted N = 4 Yang-Mills

theory, localization equations and surface operators. In this paper we extend his

construction in two possible ways. On one hand we show that a slight modifica-

tion of Witten’s brane construction could lead, using certain well defined duality

transformations, to the model used by Ooguri-Vafa to study knot invariants using

gravity duals. On the other hand, we argue that both these constructions, of Witten

and of Ooguri-Vafa, lead to two different seven-dimensional manifolds in M-theory

from where the topological theories may appear from certain twisting of the G-flux

action. The non-abelian nature of the topological action may also be studied if we

take the wrapped M2-brane states in the theory. We discuss explicit constructions

of the seven-dimensional manifolds in M-theory, and show that both the localization

equations and surface operators appear naturally from the Hamiltonian formalism of

the theories. Knots and link invariants are then constructed using M2-brane states

in both the models.
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1. Introduction and summary

Knot theory has attracted both mathematicians and physicists to tackle some of

the challenging problems. There are various approaches of constructing invariants of

knots and links. Mathematicians put forth skein/recursion relation [1] to evaluate the

invariants. The skein method involves study of knots projected onto two dimensions.

These invariants can also be obtained from braid group representations deduced from

the two dimensional statistical mechanical models, rational conformal field theories

and quantum groups. All these approaches show that the invariants are Laurent

polynomials in variable q with integer coefficients. That is, for any knot K:

J(K, q) =
∑
n

anq
n, (1.1)

where an are integers.

On the other hand, Chern-Simons gauge theory based on any compact group G

provides a natural framework to study knots and their invariants [2]. In particular,

this approach gives a three-dimensional definition for knots and links. For any knot

K carrying representation R of gauge group G, the expectation value of Wilson loop

operator W (K, R) = TrRP exp
(∮

K
A
)

gives the knot invariants:

J(K, R, q) = 〈W (K, R)〉 (1.2)

=

∫
DA exp

[
ik

∫
R3

Tr

(
A ∧ dA+

2

3
A ∧ A ∧ A

)]
TrRP exp

(∮
K

A

)
,

with the first trace being in the adjoint representation, and the second trace TrR
being in the representation R of G; and k, an integer giving the coupling constant

that we can use to write q in the following way:

q = exp

(
2πi

k + h

)
, (1.3)

where h is the dual coxeter number for group G. The Jones and HOMFLY-PT

polynomials correspond to placing defining representations of SU(2) and SU(N)
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respectively. Additionally, the skein relation obtained from SU(N) Chern-Simons

theory resembles skein relation of Alexander polynomial when N = 0. Similarly for

the defining representation of SO(N), we get Kauffman polynomials. Besides the well

known polynomials, we can obtain many new generalised knot invariants [3]. Within

this theory having manifest three-dimensional symmetry, it is not obvious as to why

these knot invariants have to be Laurent polynomials with integer coefficients. Giving

a topological interpretation to these integer coefficients is one of the challenging

problem which has been addressed by both mathematicians and physicists during

the last 17 years.

An understanding of this issue came from the works on homological invariants

initiated by Khovanov [4]. In this interesting work, Khovanov argued that the integer

coefficients can be accounted as dimensions of vector spaces. This imples, for any

knot K, Khovanov polynomial will be:

Kh(K, q, t) =
∑
i,j

tiqjdim Hi,j, (1.4)

where dim Hi,j is the dimension of the bigraded homological chain complex. Taking

t = −1, the above invariant is the q-graded Euler characteristic of the homology

which gives Jones polynomial (for G = SU(2)), namely:

J(K,�, q) =
∑
i,j

(−1)iqjdim Hi,j. (1.5)

Generalisations of the bigraded homological theory for sl3 [5], slN [6] and arbitrary

colors which are referred to as categorifications of knot polynomials leading to vector

spaces have been extensively studied.

Parallel development from topological string duality conjecture proposed by

Gopakumar-Vafa [7] followed by Ooguri-Vafa [8] conjecture for knots have shown

that these invariants and their reformulations can be interpreted as counting of BPS

states in string theory. Interestingly, this approach led to various checks of integrality

properties of generalised knot invariants [9]. Further the works on categorifications

motivated the study of triply graded polynomials discussed in [10] succinctly within

the string theory context.

More recently, with the aim of interpreting Khovanov homology within inter-

secting brane model, Witten considered the NS5-D3 brane system to study four

dimensional gauge theory on W × R+ with knots K stuck on the three dimen-

sional boundary W [11]. Interestingly, the number of solutions an to the Hitchin

equation in the four-dimensional gauge theory, for a given instanton number n, now

give topological meaning to the integer coefficients in the Laurent polynomials (1.1).

The homological invariants involve one more variable t besides the already existing

variable q, and require study of the surface operators in a five dimensional theory.
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A relation between Witten’s brane setup [11] and the Ooguri-Vafa [8] approach

with intersecting D4-branes has been studied in section 5 of [11]. However a more

generic construction that relates the four-dimensional N = 4 model of Witten to the

N = 1 set-up of Ooguri-Vafa has not been spelled out in full generalities1. In this

detailed paper, we will study a unified setting in low energy supergravity description

of M-theory where we relate the brane setup of Witten with the Ooguri-Vafa string

theory background. Specifically we focus on reproducing all the results of Witten in

the supergravity picture. Further, we also detail the construction of oper equation

useful for the study of knots stuck at the three-dimensional boundary.

1.1 Organization and summary of the paper

This paper is organized in two broad topics. On one hand, we analyze in details the

model studied by Witten in [11]. On the other hand we discuss, albeit briefly, the

model studied by Ooguri-Vafa [8], pointing out some of the key ingredients that may

link various aspects of the two models [11] and [8].

We start section 2 by introducing the two models in question. In section 2.1 we

discuss the brane constructions associated with the two models, and argue how they

can stem from similar brane configurations. This is of course a first hint to show that

the two pictures in [11] and [8] may not be so different as they appear on first sight.

However subtlety lies in the construction of the Ooguri-Vafa [8] model because there

are at least two possible realizations of the model − one in type IIB and the other

in type IIA. Additionally, because of the large N nature of [8], there are also gravity

duals in each pictures that may be used to study the model. This is illustrated in

section 2.2, where certain issues related to knot configurations are being pointed out.

Section 3 is dedicated completely to analyzing the physics of Witten’s model [11]

using a dual configuration in M-theory that has only geometry and fluxes and no other

branes except the M2-branes. The technique considered in our work is very different

from what is utilized in [11]. Witten uses mostly brane configurations and tactics

of four-dimensional N = 4 gauge theory, along with its topological twist, to discuss

the physics of knots in the three-dimensional boundary W. In fact in the notation

of [11], the four-dimensional space will be denoted by V such that V = W × R+,

where R+ is a half-line. Our approach will be to use eleven-dimensional M-theory to

study similar physics on the boundary W. Question naturally arises as to how could

two wildly different methods lead to the same physics on V as well on the boundary

W. Elaborating this is of course one of the purposes of section 3, but before we

summarize the story, let us discuss Witten’s model in some details below.

The work of Witten [11] utilizes certain crucial ingredients useful in studying

knots on the boundary W. The first is the topological theory on W. In [11] this

is achieved in two steps using an intersecting NS5-D3 brane configuration shown in

Table 1. The details are discussed in section 3.1.
1The actual comparison will be between two N = 1 models as we discuss in section 4.4.
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The second is the localization equations that are not only responsible in simplify-

ing the path integral formalism of the theory, but also helpful in fixing the boundary

terms discussed above. We will call these localization equations as BHN equations,

the acronym being related to Bogomolnyi, Hitchin and Nahm. A derivation of the

BHN equations, using techniques different from what is being used in [11], is pre-

sented in section 3.2.10. It turns out, and as explained in [11] and [13], the number

of solutions of the BHN equations, for a given instanton number, determines the co-

efficient of the knot polynomial. In other words, if we express the Jones’ polynomial

as (1.1), then an is the number of solutions to the BHN equation with instanton

number n. This accounts for the integer coefficients in the knot polynomials.

The knots appear as Wilson loops in the boundary theory. In the S-dual picture

the knots are given by ’tHooft loops. There are some advantages in discussing the

S-dual story, particularly in connection with solving the BHN equation, and this

forms the third crucial feature of Witten’s work [11]. In section 3.2.13 we use our

technique to analyze the S-dual picture, putting special emphasis on the form of the

BHN equations.

There is yet another way to study the knots in the theory involving co-dimension

two operators, both in the boundary W as well as in the bulk V. These are called

the surface operators, and is the fourth crucial ingredient in Witten’s work [11]. We

discuss the surface operators in section 3.3.1, and as before show that most of the

results studied in [11] do also appear from our analysis.

Finally, Witten discusses a possible realization of the Ooguri-Vafa model [8]

given in terms of intersecting D4-branes. Similar analysis is also studied by Walcher

[43]. Our study in section 4 differs from both Witten and Walcher analysis as we

discuss the D6-branes’ realization of the Ooguri-Vafa model using the brane set-up

in Table 2. Although this is intimately connected to the minimally supersymmetric

four-dimensional gauge theory, the specific realization of knots in this picture is more

subtle. This is elaborated in sections 4.1.1 and 4.4.

From the above discussions we see that the general picture developed by Witten

and Ooguri-Vafa in [11] and [8] respectively, may be addressed in a different, albeit

unified, way by dualizing the brane configurations of Table 1 and Table 2 to M-

theory. The duality proceeds via an intemediate configuration in type IIB involving

wrapped five-branes on two-cycles of certain non-Kähler manifolds. The choice of

the non-Kähler manifolds remain specific to the model that we want to analyze. For

example, Witten’s model dualizes to a configuration of D5-D5 branes wrapped on a

warped Taub-NUT space as shown in section 3.2. This Taub-NUT space, or more

appropriately a warped ALE space, is very different from the ALE space that may

appear from T-dualizing the NS5-brane in Table 1. The latter creates problem in

path integral representation because of the lack of a global one-cycle rendering it

useless to study Khovanov homology. The Taub-NUT that we study here is different

as discussed in section 3.2 and we do not use it to study Khovanov homology. Instead
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our configuration is only used to study knots in the three-dimensional boundary W.

However, restricting the knots to the three-dimensional boundary is non-trivial.

In Witten [11] this is achieved by switching on the gauge theory θ angle. In our su-

pergravity approach in type IIB, as we show in sections 3.2.1 and 3.2.2, this may be

achieved by switching on a non-commutative or a RR deformation on the wrapped

five-branes. Interestingly, as we argue in section 3.2.2, these two deformations have

similar four-dimensional physics when it comes to restricting the knots to the bound-

ary W.

The M-theory uplift of the type IIB configuration is then elaborated in section

3.2.3. This is the dual description of Witten’s model in the absence of the knots (knots

will be inserted later), and consists of only geometry and fluxes with no branes other

than the M2-branes. In this section we argue how the precise geometric information

is essential to derive the harmonic two-form which is normalizable and unique. This

two-form is essential to derive the U(1) gauge theory on V. This is elaborated in

section 3.2.4, first by ignoring certain backreactions, and then in section 3.2.5, by

including all possible backreactions.

The U(1) theory is of course only a toy model, and what we need is the full non-

abelian theory in four-dimensional space V. This is achieved in section 3.2.6, where

the first appearance of the M2-branes wrapped on the two-cycles of certain warped

multi Taub-NUT space occurs. All these lead to the non-abelian theory on V, whose

details are analyzed in the subsequent sections. In section 3.2.7 we introduce the

boundary dynamics.

In sections 3.2.8 and 3.2.9 we present our first set of major computations, related

to the four-dimensional scalar fields. The complete interacting lagrangian is derived

from M-theory dimensionally reduced over a seven-dimensional manifold of the form

(3.152). It turns out that the dynamics of three scalar fields that are dimensional

reduction of the seven-dimensional gauge fields are somewhat easier to derive than

the other three scalar fields that are fluctuations of the multi Taub-NUT space. The

two sections 3.2.8 and 3.2.9 are elaborations on this.

We then combine everything and write the complete four-dimensional action as

(3.153). The action contains two pieces: a topological piece and a non-topological

piece. This is the start of section 3.2.10, being one of the important section of the

paper. The action computed in (3.153) now leads succinctly to the total Hamiltonian

(3.158). This is the central result of the paper, from where all other results are derived

by minimization and other techniques. For example the BPS equations from the

Hamiltonian (3.158) may be studied by minimizing. The first set of BPS equations

appear in (3.162) for the gauge choice (3.161). As we showed in details, for example

in (3.163), the coefficients computed in sections 3.2.5, 3.2.8, and 3.2.9 solve all the

BPS equations (3.162) precisely!

The second set of BPS equations also follow easily from the Hamiltonian (3.158).

Our analysis proceeds by first ignoring the topological piece of the action (3.153).
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The BPS equations turn out to be the BHN equations studied in [11]. The BHN

equations are given by (3.172) and (3.176), with (3.176) being further expressed in

terms of component equations as (3.177). Incidentally, if we change our gauge choice

from (3.161) to (3.178), the first and the second set of BPS equations change to

(3.179) and (3.182) respectively, perfectly consistent to what one would expect from

[11].

Among all the crucial ingredients of Witten’s model [11], one that we did not

emphasize earlier is the appearance of the parameter t. This parameter has appeared

before in describing the geometric Langland programme using supersymmetric gauge

theories in [12]. In the work of [11], t appears once we try to express the BHN

equations in terms of topologically twisted variables. In section 3.2.11 we show how

t appears naturally in our set-up too, although all informations that may be extracted

from [11] using t may appear from our supergravity analysis without involving t. This

is to be expected as supergravity data contains all information and there is no need

to add new parameters. Nevertheless, as we elaborate in section 3.2.11, one may

use supergravity to define t and then use this to extract informations similar to [11].

One immediate advantage of this procedure is for finding the BHN equations once

the topological piece in the action (3.153) is switched on. For example the BHN

equation (3.209) appears easily now, and the full background equations, including

the constraint equations plus the BHN equations, can be presented succinctly as

(3.221). As mentioned above, all these could be done directly using supergravity

without involving t, but the use of t avoids certain technical challenges.

We have now assimilated all the ingredients, namely the constraint equations

and the BHN equations, to construct the theory on the boundary W. The crucial

ingredients are the electric and the magnetic charges QE and QM respectively that

appear in the Hamiltonian (3.225) which is the modified version of the Hamiltonian

(3.158) once the topological term in the action (3.153) is switched on. In section

3.2.12 we compute the two charges and show that the electric charge vanish due

to our gauge choice (3.161), and the magnetic charge is given by (3.227). After

twisting, the magnetic charge combines with the topological piece, now reduced to the

boundary W, to give us the boundary theory. This is easier said than done, because a

naive computation yields an incorrect boundary action of the form (3.228). There are

numerous subtleties that one needs to take care of before we get the correct boundary

action. These are all explained carefully in section 3.2.12, and the final topological

action on W is given by (3.241). This is a Chern-Simons action but defined with a

modified one-form field Ad, given by (3.240), and not with the original gauge field A.

This is one of our main results, and matches well with the one derived in [11] using

a different technique. The story can be similarly reproduced in the S-dual picture,

and we elaborate this in section 3.2.13. Various subtleties in the S-dual description

discussed in [11] also show up in our description.

So far we have managed to reproduce the complete boundary topological theory
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on W. Question is, where are the knots in this picture? Section 3.3.1 is dedicated

to answering this question. It turns out, one of the key player is the surface operator

that will be used to explore the knots and knot invariants in the boundary theory.

In this section we start by discussing how the surface operators modify the BHN

equations that we studied in section 3.2.10. The surface operators are M2-branes

in the theory, but their orientations are different from the M2-branes used earlier in

section 3.2.6 to enhance the gauge symmetry from abelian to non-abelian. In fact

the M2-brane surface operators are co-dimension two singularities both in the bulk

V and in the boundary W, and their configurations are presented in Table 5 and

in Table 6 for type IIA and M-theory respectively.

In the language of Table 5, the supersymmetry preserved by the surface oper-

ator is (4, 4). The (4, 4) supersymmetric representation contains a vector multiplet,

containing vectors and four scalars all in the adjoint representations of the gauge

group, and a hypermultiplet, containing four scalars. If we concentrate only on the

hypermultiplet sector then, in the absence of the surface operator, the BHN equations

satisfy (3.287) which are exactly the Hitchin’s equations that one would expect from

[32], [33], [34]. In the presence of the surface operators (3.287) changes to (3.307),

again consistent with [32], [33], [34]. Interestingly, comparing (3.307) with (3.287)

we see that the RHS of the three equations in (3.287) are now no longer zeroes but

proportional to certain source terms parametrized by the triplets (α, β, γ). These

triplets can be expressed in terms of supergravity parameters as given in (3.310),

which in our opinion is a new result.

One might also ask how the full BHN and the constraint equations appear in

the presence of the surface operators when we consider both the vector and the

hypermultiplet of (4, 4) supersymmetry. The results are presented in (3.316), and

(3.323) for the BHN equations and (3.318) for the constraint equations.

Having got all the background equations and constraints, our next question is

the form of the boundary theory. We follow similar steps as before, and express the

Hamiltonian, in the presence of the surface operators, as (3.330). The Hamiltonian

again can be expressed as sum of squares plus the magnetic charge QM. However

now it turns out, and as explained in section 3.3.1, that the non-abelian case is in

reality much harder to study in the presence of the surface operators. To simplify,

we then go to the abelian case and express the BHN and the constraints equations

as (3.331). The magnetic charge is not too hard to find now − it is presented in

(3.333); and from here the boundary theory on W is given by (3.336) by taking care

of similar subtleties as encountered in section 3.2.12.

Construction of knots on the boundary W using surface operators now easily

follow using the configuration depicted in fig 2 and as given at the start of section

3.3.2. More precisely, the Wilson loop structure that we will consider is as given in

(3.343). i.e using gauge fields parallel to the x1 axis. This way we are able to trace

all the computations with the same rigor as of the earlier sections.
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The next set of computations rely on three crucial steps for the Wilson line

configurations. First is the Heegaard splitting (3.356) as shown in fig 4. Second

is the monodromy identifications (3.365), as shown in fig 6; and third is the braid

group action, as shown in fig 5. These three steps form the building blocks for all

the knot configurations that we study here. We represent them as operators Ak, Bk

and C(2,σj) respectively acting on the Wilson line state |nk〉, where the subscript k

denotes the number of Wilson lines; and σj is the braid group action on the j-th set

of two consecutive Wilson lines. Using the three operators, for example the unknot

may be represented as fig 8 and we can use them to compute the knot invariant for

this case. However the steps leading to the actual computation of the invariant are

riddled with numerous subtleties− dealing with monodromies and framing anomalies

to name a few − that we discuss in details in section 3.3.2. The final knot invariant,

or more appropriately the linking number for the unknot is given by (3.367). Similar

analysis is presented for the trefoil knot, torus (2, n) knots, figure 8 knot and 52

knot in (3.368), (3.369), (3.370) and (3.371) respectively. These knot configurations

easily follow the three-steps building blocks mentioned above, as shown in fig 9, fig

10, fig 11 and fig 12 respectively, and we discuss how this generalizes to all knot

configurations that may be built in our model.

In fact other invariants, beyond the linking numbers, may also be studied for the

knot configurations that we discuss here. These invariants have been addressed in

[36] and may be constructed using the monodromies Mk in (3.358), implying that

our analysis is generic enough not only to include all the constructions of [36] but

also give them appropriate supergravity interpretations. Despite the success, a non-

abelian extension of this picture is harder, and we do not attempt it here leaving

a more detailed elaboration for the sequel. Instead however we dedicate the last

section, i.e section 3.3.3, albeit briefly on opers that may generalize more easily to

the non-abelian case.

Section 4 is dedicated completely in exploring the physics of the Ooguri-Vafa [8]

model. From start, there are many points of comparison with section 3 dealing with

the physics of Witten’s model [11]. For example, the absence of a Coulomb branch,

the location of the knots on the internal S3 and the existence of a gravity dual might

suggest that the Ooguri-Vafa [8] model is very different from Witten’s model [11]. In

section 4 we argue that this is not the case. In spirit, these two models are far closer

in many respects than one would expect from naive comparison.

The first hint already appears from the discussion in section 5 of [11] and in [43],

where the intersecting D4-branes’ construction of the Ooguri-Vafa model is discussed

from the brane set-up of Table 1. However we want to emphasize the connection

using the brane set-up of Table 2 that directly relates the four-dimensional N = 4

model of Witten to the N = 1 set-up of Ooguri-Vafa.

Our starting point is then multiple D5-branes wrapped on a two-cycle of a non-

Kähler resolved conifold. We take N five-branes so that IR gauge group for the
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minimally supersymmetric four-dimensional gauge theory becomes SU(N). The ge-

ometry can be worked out precisely as we show in section 4.1, which in turn is based

on the recent work [40]. However existence of a similar picture as in section 3.2.1

without dipole deformation, doesn’t mean that the physics remains similar now.

The absence of the Coulomb branch changes the story a bit, and this is discussed

in details in section 4.1.1. However the two models, despite the small difference, are

identical in some respect regarding the four-dimensional picture, even when we go

to the mirror type IIA side. The Ooguri-Vafa model is then realized from the mirror

picture by first Euclideanizing the geometry, so that the four-dimensional physics is

defined on S3
(1) ×R+, and then performing a flop (4.8) that exchanges the S3

(1) with

S3
(2), the three-cycle of the mirror deformed conifold. The flop transfers the physics

to the three-cycle of the deformed conifold, and this way we can get [8] from [11].

The discussion in section 4.1.1 leaves a few questions unanswered. The first is

related to the physics on S3
(1), namely, what is the precise topological theory on S3

(1)

that we eventually transfer to S3
(2)? The second is related to the knots, namely, what

about the knot configurations and the knot invariants? In the remaining part of the

paper we answer these two questions.

To answer the first question we will require the precise supergravity background

in type IIB, before mirror transformation. This is studied in section 4.2, where the

fluxes are worked out in section 4.2.1 and the warp-factors, in the type IIB metric,

are worked out in section 4.2.2. The M-theory lift of this configuration is studied in

section 4.3.1, where we show that the seven-dimensional manifold is again a warped

Taub-NUT fibered over a three-dimensonal base. This time however the warping of

the base and fibre in the seven-dimensional manifold (4.43) is different from what we

had in section 3.2.3 such that the four-dimensional supersymmetry can be minimal.

Of course the right comparison with section 3.2.3 can only be done after we make a

dipole deformation to the type IIB background. It turns out, and as expected, dipole

deformation doesn’t break any supersymmetry, but does break the four-dimensional

Lorentz symmetry to three-dimensional Lorentz symmetry. This is good because

we can localize the knots in the three-dimensional space where there is a manifest

Lorentz invariance. Details on this are presented in section 4.3.2.

Once we have the full geometry and fluxes in M-theory, with dipole deformation,

it is easy to follow similar procedure as in sections 3.2.3, 3.2.4, 3.2.5 and 3.2.6 to

work out the normalizable harmonic forms, and non-abelian enhancement to study

the gauge theory in four-dimensional space. This is the content of section 4.3.3, where

we discuss the vector multiplet structure, leaving the study of chiral multiplets for

the sequel. The vector multiplet structure leads to a non-abelian gauge theory in

four-dimensions whose coupling constant, much like (3.76) before, may to traced to

the underlying supergravity variables in M-theory.

The above discussions then brings us to the second question related to the knot

configurations and knot invariants. In fact the story is already summarized in section
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4.1.1, and in section 4.4 we elaborate on individual steps. The first step is related to

the topologically twisted theory on the three-dimensional boundary W. This time,

because of the absence of the Coulomb branch, the boundary theory is simpler than

the one in Witten’s model, namely (3.241). It is now given by (4.60), which is again

a Chern-Simons theory but the coupling constant is not the one that we naively

get from the topological piece (4.59) in M-theory, rather it is a combination that

appears from both the G-flux kinetic and the topological pieces in M-theory. This

is identical to what we had in section 3.2.12 related to Witten’s model. We now see

that a similar structure, yet a bit simpler from [11], is played out for the Ooguri-Vafa

model [8] too.

All these are defined on S3
(1), and once we take the mirror, the theory on S3

(1)

remains identical. The second step is to perform a flop operation (4.8), so that we

can transfer the physics to the three-cycle S3
(2) of the non-Kähler deformed conifold,

giving us (4.62). For this case, the knots may now be introduced by inserting co-

dimension two singularities as depicted in fig 14. Again, the picture may look similar

to what we discussed in sections 3.3.1 and 3.3.2, but there are a few key differences.

One, we cannot study the abelian version now as the model is only defined for large

N . This means all the analysis of the knots using operators Ak, Bk and C(2,σj) may

not be possible now. Two, similar manipulations to the BHN equations that we did

in section 3.3.1 now cannot be performed.

What can be defined here? In the remaining part of section 4.4 we give a brief

discussion of how to study knots in the Ooguri-Vafa model, leaving a more detailed

exposition for the sequel. We summarize our findings and discuss future directions

in section 5. In a companion paper [15], and for the aid of the readers, we provide

detailed proofs and derivations of all the results here including, at times, alternative

derivations of some of the results.

2. Brane constructions and Knots

In this section we will study the knots first from a brane construction proposed

by Witten [11, 13] and argue how this could be mapped to the geometric transition

picture of Ooguri-Vafa [8, 14]. We will argue that certain fourfolds along with specific

configurations of surface operators are useful in making the connections between the

two scenarios.

2.1 Brane constructions for Knots

In the original Witten’s construction [11] of knot theory in type IIB theory, we will

call this2 Model A, the branes were arranged as in Table 1, with an additional

2Not to be confused with A-model and B-model that appear in the topologically twisted version

of our constuction.
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Directions 0 1 2 3 4 5 6 7 8 9

NS5
√ √ √ √

∗ ∗ ∗ ∗
√ √

D3
√ √ √

∗ ∗ ∗
√
∗ ∗ ∗

Table 1: The orientations of various branes in the intersecting branes set-up. The notation√
is the direction along which the branes are oriented.

source for IIB axion, C0, switched on such that the knots are localised along the

2 + 1 dimensional intersection parametrised by x0,1,2.

Let us now modify the original set-up of Witten by converting the direction

x6 along which the D3-brane is stretched into a finite interval. This is achieved

by introducing another NS5-brane oriented along x0,1,2,3,4,5. This crucial step will be

useful for us to relate the configuration of Witten to the configuration of Ooguri-Vafa

[8], as we will soon see. For later convenience we will call this, and the subsequent

modification of this, as Model B.

The type IIB configuration can be modified further by T-dualizing along x3

direction. This T-duality leads us to the well-known configuration in type IIA theory

[16, 17] as depicted in Table 2. In addition to the required branes we will have a

Directions 0 1 2 3 4 5 6 7 8 9

NS5
√ √ √ √

∗ ∗ ∗ ∗
√ √

NS5
√ √ √ √ √ √

∗ ∗ ∗ ∗
D4

√ √ √ √
∗ ∗

√
∗ ∗ ∗

Table 2: The orientations of various branes in the T-dual of the modified Witten set-up.

background type IIA gauge field A3, that will have a pull-back on the D4-brane

and furthermore introduce a non-trivial complex structure on the (x3, x6) torus.

The latter operation will help distinguish the non-compact world-volume directions

x0,1,2 with the compact toroidal directions even in the limit of large size of the

torus. However although supersymmetry of the background still remains valid, the

localization of the knots in the x0,1,2 directions is not: we have lost the Coulomb

branch, so the discussion of knots should be taken with care here. We will study this

soon.

Finally let us make yet another modification to the set-up studied above: in-

troduce large N number of D4-branes. Such a modification will help us to study

the gravity dual of this set-up, in other words will connect us directly to the model

studied by Ooguri-Vafa [8] or more recently to Aganagic-Vafa [14]! This is because

an appropriate T-duality to the above brane configuration will convert the two NS5-

branes to a singular conifold and the N D4-branes to N wrapped D5-branes on the

vanishing two-cycle of the conifold. We can then blow-up the two cycle to convert the
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singular conifold to a resolved conifold3. The D5-branes will then wrap the resolution

two-cycle. To see how this works, let us discuss this in some details.

2.2 T-duality, resolved cone and a geometric transition

We begin by introducing a circle action on the conifold and extend it to the resolved

conifold in a compatible manner. Consider an action Sc on the conifold xy−uv = 0,

where (x, y, u, v) are complex coordinates, in the following way:

Sc : (eiθ, x)→ x, (eiθ, y)→ y, (eiθ, u)→ eiθu, (eiθ, v)→ e−iθv. (2.1)

The orbits of the action Sc degenerates along the union of two intersecting complex

lines y = u = v = 0 and x = u = v = 0 on the conifold. Now, if we take a T-dual

along the direction of the orbits of the action, there will be NS branes along these

degeneracy loci as argued in [18]. So we have two NS branes which are spaced along x

(i.e. y = u = v = 0) and y directions (i.e. x = u = v = 0) together with non-compact

direction along the Minkowski space which will be denoted by NSx and NSy.

This action can be lifted to the resolved conifold. To do that, we consider two

copies of C3 with coordinates (Z,X, Y ) for the first C3 and (Z ′, X ′, Y ′) for the second

C3 . Then O(−1)⊕O(−1) over P1 is obtained by gluing two copies of C3 with the

identification:

Z ′ =
1

Z
, X ′ = XZ , Y ′ = Y Z. (2.2)

The Z and Z ′ are the coordinates of P1’s in the two C3’s respectively; and others

are the coordinates of the fiber directions. The blown-down map from the resolved

conifold C3 ∪C3 to the conifold C is given by

x = X = X ′Z ′, y = ZY = Y ′, u = ZX = X ′, v = Y = Z ′Y ′. (2.3)

From this map, one can easily see that the following action Sr on the resolved conifold

is an extension of the action Sc (2.1):

Sr : (eiθ, Z)→ eiθZ, (eiθ, X)→ X, (eiθ, Y )→ e−iθY

(eiθ, Z ′)→ e−iθZ ′, (eiθ, X ′)→ eiθX ′, (eiθ, Y ′)→ Y ′. (2.4)

The orbits degenerates along the union of two complex lines Z = Y = 0 in the first

copy of C3 and Z ′ = X ′ = 0 in the second copy of C3. Note that these two lines do

not intersect and in fact they are separated by the size of P1. Now we take T-dual

along the orbits of Sr of type IIB theory obtained by wrapping N D5-branes on

the rigid P1. Again there will be two NS-branes along the degeneracy loci of the

action: one NS brane, denoted by NSX , spaced along X direction (which is defined

3We will see that the metric on this will be a non-Kähler one.

– 13 –



by Z = Y = 0 in the first C3) and the other NS brane, denoted by NSY ′ along

Y ′ direction (which is defined by Z ′ = X ′ = 0 in the second C3). Therefore the

T-dual picture will be a brane configuration of D4 brane along the interval with two

NS branes in the ‘orthogonal’ direction at the ends of the the interval exactly as

illustrated in Table 2. Here the length of the interval is the same as the size of the

rigid P1. As the rigid P1 shrinks to zero, the size of the interval goes to zero and

NSX (resp. NSY ′) approaches to NSx (resp. NSy) of the conifold.

In the language of branes, the two NS5 branes are along directions x4,5 and x8,9

and fill simultaneously the spacetime directions x0,1,2,3. This means the T-duality

was done along direction x6, or in the language of a conifold, along ψ. The conifold

geometry is parametrized by (θi, φi) with i = 1, 2 with the U(1) direction ψ and the

non compact radial direction r. In the following let us clarify some subtleties related

to the T-duality. First let us consider the wrapped D5-brane on a conifold geometry.

A standard T-duality along an orthogonal direction should convert this to a wrapped

D6-brane. The C7 source charge of the D6-brane decomposes in the following way:

C7(−→x , ψ, θ1, φ1) = C5(−→x , ψ) ∧
(
eθ1 ∧ eφ1√

V2

)
(2.5)

where V2 is the volume of the two-sphere that is being wrapped by the D6-brane and

whose cohomology is represented by the term in the bracket4. In the limit where the

size of the two-sphere is vanishing (i.e for the T-dual conifold), the term in the bracket

in (2.5) will behave as a delta-function, and consequently C7 will decompose as C5

i.e as a D4-brane. It will take infinite energy to excite any mode along the directions

of the vanishing two-sphere, and therefore for all practical purpose a T-dual of the

wrapped D5-brane on a conifold will be a D4-brane stretched along ψ direction. This

is of course the main content of [20, 21, 19]. Similarly if the wrapped two-sphere is of

finite size, i.e the D5-brane wraps the two-cycle of a resolved conifold, then at energy

lower than the inverse size of the two-sphere the T-dual will effectively behave again

as a D4-brane [16, 17]. Once the energy is bigger than this bound − the size of

the two-cycle is much bigger than the string scale − then the intermediate energy

physics will probe the full D6-brane. Our analysis in this paper will be related to

this case only, i.e we will explore the classical dynamics of a wrapped D6-brane on a

four-cycle parametrized by (θ1, φ1, ψ) and x3.

The above discussion tells us that, under appropriate T-duality, we should get

the IR picture of the geometric transition model studied by Ooguri-Vafa [8]. There

are of course few differences that we need to consider before making the equivalences.

The first is the existence of a BNS field with one of its components along the D5-

4The representative of second cohomology for a two-cycle of a conifold is eθ1 ∧ eφ1
− eθ2 ∧ eφ2

as both P1 vanish at the origin [19]. For resolved conifold we will take (2.5), as geometrically the

D5-brane wraps a two-sphere parametrized by (θ1, φ1). This makes sense as one of the sphere will

be of vanishing size at r = 0.
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branes and another orthogonal to it5. This BNS field should give rise to the dipole

deformations of the D5-branes’ gauge theory [24, 25, 26]. This deformation should

also be responsible for preserving supersymmetry in the model. It is however not clear

that the knots in this model should again be restricted to x0,1,2 directions, although

naively one could argue that the two directions of the D5-branes are wrapped on the

P1 of the resolved conifold, and the dipole deformation with a BNS field B3ψ should

restrict the knots further to the x0,1,2 directions. The reason is of course the absence

of the Coulomb branch which is a crucial ingredient in [11, 13].

There is another reason why this should not be the case. We can ask the fol-

lowing question: what will happen if we make a geometric transition to two-cycle

on which we have wrapped D5-branes? From standard argument we know that the

D5-branes will disappear and will be replaced by fluxes. In this flux picture, or more

appropriately the gravity dual, it will be highly non-trivial to get the information

about the knots from the fluxes on a deformed conifold background (as there are no

branes on the dual side). One might think that a T-dual of this gravity dual could

bring us back to branes in type IIA, but this doesn’t help as the original D4-branes

on which we had the knot configurations do not appear even on the brane side. To

see this, consider the following circle action Sd:

Sd : (eiθ, x)→ x, (eiθ, y)→ y, (eiθ, u)→ eiθu, (eiθ, v)→ e−iθv, (2.6)

on the deformed conifold xy − uv = µ, where µ is the deformation parameter. Then

Sd is clearly the extension of Sk discussed in (2.4) and the orbits of the action

degenerate along a complex curve u = v = 0 on the deformed conifold. If we take a

T-dual of the deformed conifold along the orbits of Sk, we obtain a NS brane along

the curve u = v = 0 with non-compact direction in the Minkowski space which

is given by xy = µ in the x-y plane. Topologically, the above curve is R1 × S1.

Thus in the T-dual picture, the large N duality implies a transition from the brane

configuration of N coincident D4-branes between two orthogonal NS5-branes to the

brane configuration of a single NS5-brane wrapped on R1 × S1 with appropriate

background fluxes. The D4-branes have disappeared in the dual brane configuration

too, apparently along with our knot configuration!

The solution to the above conundrum is non-trivial and we will discuss this soon.

But first let us discuss how to study Model A using the approach of wrapped branes

on certain non-Kähler manifolds. This will lead us to a more unified approach to

discuss both the models.

5In general we expect both BNS and BRR to appear here. The latter however is more non-trivial

to deal with, so we will relegate the discussion for later.
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3. Model A: The type IIB dual description and warped Taub-

NUT

The situation for Model A is slightly different as it is directly related to [11] and

therefore to the Chern-Simons theory along x0,1,2 directions for the brane configura-

tions given in Table 1. The claim is that the knot polynomial J(q; Ki, Ri) for any

knot Ki is given in the Chern-Simons theory via the following path integral:

J(q; Ki, Ri) = 〈W (Ki, Ri)〉 = 〈TrRiP exp

∮
Ki

A〉

=

∫
DA exp (iScs)

∏
iW(Ki, Ri)∫

DA exp (iScs)
, (3.1)

that is a generalization of (1.2), and where q is the variable which is used to express

the knot polynomial as a Laurent series, Ri is the compact representation of the

gauge group G appearing in the Chern-Simons action Scs:

Scs =
k

4π

∫
W

Tr

(
A ∧ dA+

2

3
A ∧ A ∧ A

)
. (3.2)

As discussed in the introduction, k is an integer used to express q as in (1.3). The

denominator appearing in (3.1) is in general non-trivial function of k. For example

for SU(2) group with W = S3, as shown in [2] and [11], the denominator becomes:∫
DA exp (iScs) =

√
2

k + 2
sin

(
π

k + 2

)
, (3.3)

but if we take W = R3, this can be normalized to 1 and so (1.2) and (3.1) become

identical. This is the case we will study in this section. The above two expressions

(3.1) and (1.3) serve as dictonary that maps the knot polynomial J and the knot

parameter q in terms of the variables of Chern-Simons theory.

3.1 First look at the gravity and the topological gauge theory

We will discuss the knots appearing from this construction soon, but first let us

modify Table 1 slightly by first restricting the direction x6 to an interval, and

secondly, T-dualizing along x3 direction to convert the configuration to D4-branes

between two parallel NS5-branes. T-dualizing further along x6 ≡ ψ direction will

convert the D4-branes to fractional D3-branes at a point on a warped Taub-NUT

space. In particular, we will have a geometry like:

ds2 = e−φds2
0123 + eφds2

6

F3 = e2φ ∗6 d
(
e−2φJ

)
, (3.4)
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where φ is the dilaton and the Hodge star and the fundamental form J are wrt to

the dilaton deformed metric e2φds2
6. The metric ds6 will be given by:

ds2
6 = F1dr

2 + F2(dψ + cos θ1dφ1)2 + F3(dθ2
1 + sin2θ1dφ

2
1) + F4(dx2

8 + dx2
9), (3.5)

with F1 = F1(r), F2 = F2(r) and F3 = F3(r) as functions of r only and F4 =

F4(r, x8, x9), as the simplest extension of the case with only radially dependent warp

factors. Note also that the fractional D3-branes cannot be interpreted as wrapped

D5 - D5 branes along (θ1, φ1) directions. Instead the fractional D3-branes will be

interpreted here as D5 - D5 pair wrapping direction ψ and stretched along the radial

r direction.

We can also change the topology along the x8,9 directions from R2 to T2 or P1

without violating Gauss’ law. Before elaborating on this story, let us clarify few

issues that may have appeared due to our duality transformation. First, one would

have to revist the supersymmetry of the model, which seems to have changed from

N = 4 to N = 2. This still allows a Coulomb branch, but we need more scalars

to complete the story. One way to regain the lost supersymmetry is to assume that

the x6 circle is large, so that essentially, for the half space x6 > 0, we have the same

physics explored in [12, 11].

Secondly, Witten discusses the possibility of T-duality along orthogonal S1 for

the D3-NS5 system and argues that, because of the absence of a topological one-cycle

in the T-dual configuration, the path integral in this framework cannot be taken as

a trace. Our configuration differs from this conclusion in the following way. The

T-dual will lead us to a non-Kähler metric on the Taub-NUT space (we call this

as a deformed Taub-NUT) and although the Taub-NUT circle will shrink to zero

size, we will not be using the Taub-NUT configuration to compute the path integral.

Rather a different Taub-NUT will feature later in our study of the gauge theory on

the wrapped D5-branes.

Thirdly, converting the D3-branes to D4-branes wrapped along direction x3

would seem to give us only two scalars (x8, x9). But this is not quite the case

as the fluctuation of the gauge field along the x3 direction will appear as an extra

scalar field when we look at the three dimensional gauge theory along directions

(x0, x1, x2). These are therefore exactly the scalar
−→
X in [11]. The other three scalar

fields, namely (x4, x5, x7), are related to
−→
Y in [11].

Below a certain energy scale, related to inverse radius of the x3 circle, the theory

on the D4-branes can be studied at the intersection space of NS5-D4 system. The

boundary action is then given, for the Euclidean three dimensional space, by [11]:

S
(1)
b =

1

g2
YM

∫
x6=0

d3x

[
l1ε

abcTr Xa[Xb, Xc] + l2ε
µνρTr

(
Aµ∂νAρ +

2

3
AµAνAρ

)]
,

(3.6)
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where (l1, l2) are constants related to the background gauge field 〈A3〉 (see also [11])

and the superscript is for later convenience.

3.1.1 On the topologically twisted theory

Constructing a topological field theory using R-symmetry twist to N = 4 theory

is well known, and could be easily applied to our configuration. The wrapped D4-

branes on x3 has a SO(5) symmetry broken to SO(4)×U(1). The one-form associated

with the U(1) symmetry can be combined with the twisted scalar fields, i.e scalar

fields associated with (x8, x9) converted to one-forms φµdx
µ. The fluctuation of the

gauge field along x3 direction6 contributes another one-form. Finally the fourth one-

form may appear from one component of the fluctuations of the D4-branes along

orthogonal direction. Together these one-forms could be expressed (in Euclidean

space) as:

φ ≡
3∑

µ=0

φµdx
µ, (3.7)

which captures the concept of R-symmetry twist (see [12, 11] for more details). Using

these we can rewrite (3.6) as the following topological theory [11]:

S
(1)
b =

1

g2
YM

∫
x6=0

d3xεµνρTr

[
2l1φµφνφρ + l2

(
Aµ∂νAρ +

2

3
AµAνAρ

)]
, (3.8)

where the coefficients l1 and l2 are defined7 in terms of t ≡ ± |τ |
τ

, where τ is the

standard defination for four-dimensional gauge theory, namely τ = θ
2π

+ 4πi
g2YM

, as:

l1 ≡ −
t+ t−1

6
, l2 ≡

t+ t−1

t− t−1
. (3.9)

The derivation of the above relations are given in [11], assuming the θ angle in the

defination of τ to be related to the YM coupling g2
YM .

The topological theory that we got above in (3.8) is however not complete. There

are other terms that require a more detailed study to derive. The derivation has been

beautifully presented in [11], so we will just quote the results. The idea is to take

the five-dimensional action on the D4-branes:

SD4 =
1

g2
5

∫
d5x
√
g(5)L(5)

kin + T4

∫
εµνρσαAµTr FνρFσα, (3.10)

where T4 is the tension of the D4-brane, and reduce over the compact direction

x3. The expectation value of Aµ, alongwith T4, will give rise to the θ angle in the

6Not to be confused with the type IIA U(1) gauge field with expectation value 〈A3〉.
7We thank Ori Ganor for explaining the coefficient l1 of the cubic term in (3.8) using bound

state wavefunction of a F1-string with a NS5-brane [23].
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dimensionally reduced four-dimensional N = 4 SYM theory with the YM coupling

determined by the length R3 of the compact x3 direction (assuming flat g(5)):

1

g2
YM

=
R3

g2
5

. (3.11)

The kinetic piece of the five-dimensional action of the D4-branes can now be repre-

sented as:

1

g2
5

∫
d5x
√
gL(5)

kin →
1

g2
YM

∫
d4x
√
gLkin = {Q, ....} (3.12)

+
1

g2
YM

∫
d3x

1√
1 + w2

[
−wΩ(A) + εµνσTr

(
φµFνσ + wφµDµφσ −

2

3
φµφνφσ

)]
where the bounday integral has to be defined at both ends of x6, namely x6 = 0 and

x6 → ∞, or to the point along x6 where we have moved the other NS5-brane. Of

course, as mentioned earlier, to preserve maximal supersymmetry, the other NS5-

brane has to be kept far away so that near x6 = 0 we restore N = 4 supersymmetry.

We have also related t, appearing in (3.9), and w as:

t = w −
√

1 + w2. (3.13)

The other parameters appearing in (3.12) are defined in the following way: Q is the

standard supersymmetric operator such that in the absence of any boundary, the

kinetic piece would only be given by the first line of (3.12) i.e as an anti-commutator

with Q. The other parameter Ω(A) is the standard Chern-Simons term in three-

dimension, such that:∫
d3x Ω(A) =

∫
Tr

(
A ∧ dA+

2

3
A ∧ A ∧ A

)
. (3.14)

It is now easy to see that once we combine the boundary term of (3.12) with the

bounday action (3.8), the final action takes the following simple form:

S = − 4π

g2
YM

· 1

w
√

1 + w2

∫
x6=0

d3x

∫
Tr

(
Aw ∧ dAw +

2

3
Aw ∧ Aw ∧ Aw

)
, (3.15)

as one may verify from [11] too. The above action is essentially Ω(Aw), with Aw ≡
A + wφ. This tells us that we could insert a generalized one-form, given by Aw,

into the Chern-Simons action and get the corresponding topological field theory!

This generalized one-form, as we will argue soon, should appear from our M-theory

analysis. Note also that the path integral description should remain similar to (3.1)

as:∫
DAwexp

[
4π

g2
YM

· 1

w
√

1 + w2

∫
d3x Ω(Aw)

]
=

∫
DA exp

[
4π

g2

∫
d3x Ω(A)

]
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(3.16)

where we assume that the path integral is evaluated at the usual boundary x6 = 0.

Thus the Scs appearing in (3.1) should then be identified with (3.14) except with a

scaled coupling g2 defined as:

g = gYM

√
w
√

1 + w2. (3.17)

It is important to recall that, for our case, only the low energy dynamics is given

by the Chern-Simons theory at the boundary. By low energy we mean the energy

scale smaller than the inverse radius of the x3 direction. Using the language of [11]

our five-dimensional Euclidean space is given by V ≡ W × S1 × R+, where S1 is

parametrized by x3 and R+ is parametrized by x6. This S1 should not be confused

with the S1 of [11] used in studying Khovanov Homology.

There is one subtlety that we always kept under the rug: the physics at the other

boundary associated with the existence of the second parallel NS5-brane. We had

assumed that the second NS5-brane can be moved far away so that near x6 = 0 we

have the full N = 4 supersymmetry. Although this description is roughly correct,

this is not the full picture as this x6 circle will become the Taub-NUT circle in the

dual type IIB framework. Therefore it is then necessary to determine the behavior

of the following Chern-Simons form:

Ω(A(1)
w )− Ω(A(2)

w ), (3.18)

where A
(1)
w = Aw is gauge field we studied earlier for the boundary x6 = 0. As

discussed by Witten in [11], if we view A
(2)
w to be trivial, then the path integral can

be represented as (3.16). We will elaborate on this later.

3.2 Non-abelian extension and Chern-Simons theory

Having developed the basic strategy to study Chern-Simons theory from our brane

construction, let us now analyze the geometry (3.4). The x6 circle on the brane

side will appear as a S1, parametrized by ψ, fibered over the radial direction. The

topology of this space is a P 1 and it will be assumed that the D5-branes wrap this

two-cycle. The D5-branes are moved away along the Coulomb-branch.

The fundamental form J can be computed from (3.5) using standard procedure,

and is given by:

J =
√
F1F2 (dψ + cos θ1dφ1) ∧ dr + F3 sin θ1dθ1 ∧ dφ1 + F4 dx8 ∧ dx9. (3.19)

One can plug J ≡ e2φJ in (3.4) to determine the RR three-form flux using Hodge

duality. Assuming non-zero background dilaton, this is given by the following ex-

pression:

F3 = eψ ∧ (k1 eθ1 ∧ eφ1 + k2 dx8 ∧ dx9) , (3.20)
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where due to the wedge structure there would be no F48 = ∂F4

∂x8
or F49 factors. This

is reflected in the coefficients (k1, k2) which are given in terms of the warp factors of

(3.4) as:

k1 =
e2φF4rF3

√
F2

F4

√
F1

, k2 =
e2φ
(√

F1F2 − F3r

)
F4

√
F2

F3

√
F1

, (3.21)

even if we keep φ as an arbitrary, but well defined, function of the internal coordi-

nates. Note that if the metric on the space (3.4) is Kähler, then our formula would

have yielded vanishing RR three-form flux. Thus when the D5-branes wrap the two-

cycle of a blown-up Taub-NUT space, the metric has to be non-Kähler to preserve

supersymmetry.

3.2.1 Generalized deformation and type IIB background

It is now time to see what effect would the introduction of type IIA complex structure

on the (x3, ψ) torus have on our type IIB background. This will not be a dipole

deformation, rather it will be a non-commutative (NC) deformation of the wrapped

five-brane theory, the non-commutativity only being along the (x3, ψ) directions.

Essentially the simplest non-commutative deformation amounts to switching on a

NS B-field with both components along the brane. The B-field for our case will have

component B3ψ as we mentioned before, which of course has the required property

in the presence of a D5-brane along (x0,1,2,3, r, ψ). Since the warp factors are r

dependent, this B-field component will be a constant along the (x3, ψ) directions

but will depend on the radial coordinate r. This case is unlike anything that has

been studied so far, although from an effective three-brane point of view this will

be a dipole deformation. Thus this is not the standard NC deformation but we will

continue calling it one.

We now expect a field strength of the form dB. This field strength will then

back-react on our original type IIB background (3.4) and change the metric to the

following:

ds2 = e−φ
[
−dt2 + dx2

1 + dx2
2 +

dx2
3

cos2θ + F2 sin2θ

]
(3.22)

+ eφ

[
F1dr

2 +
F2

(
dψ

cos θ
+ cos θ1dφ1

)2

1 + F2 tan2θ
+ F3

(
dθ2

1 + sin2θ1dφ
2
1

)
+ F4(dx2

8 + dx2
9)

]
,

where θ is related to the NC deformation. It is easy to see how the Lorentz invariance

along the compact x3 direction is broken by the NC deformation. This is one reason

(albeit not the most important one) for the knots to be restricted along the Euclidean

three directions.

Coming now to the fluxes, it is interesting to note that the RR three-form flux

remain mostly unchanged from the value quoted earlier in (3.20) with a small change
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in the dψ fibration structure:

F3 = (k1 eθ1 ∧ eφ1 + k2 dx8 ∧ dx9) ∧ (dψ + cos θ cos θ1dφ1), (3.23)

where (k1, k2) are the same as in (3.21). However now along with the three-form RR

flux, we also have a source of NS three-form flux which is responsible for generating

the NC deformation in our system. This extra source of NS flux is given by:

H3 =
F2r sin 2θ

2
(
cos2 θ + F2 sin2 θ

)2 er ∧ êψ ∧ e3 −
F2 sin θ

cos2 θ + F2 sin2 θ
eθ1 ∧ eφ1 ∧ e3,

(3.24)

from where we see how θ creates the necessary NC deformation and êψ = dψ +

cos θ cos θ1dφ1 denotes the new ψ fibration. Finally, the NC deformation also effects

the type IIB dilaton, changing it from e−φ to:

eφB =
e−φ√

cos2θ + F2 sin2θ
. (3.25)

3.2.2 Comparision with an alternative deformation

Here we pause a bit to ask the question whether the NC deformation that we study

here is consistent with the procedure adopted in [12, 11] to localize the knots along the

Euclidean x0,1,2 directions. In the original construction of [11] an axionic background

C0 is switched on to provide a theta-angle to the gauge theory on the D3-branes (with

the NS5-brane boundary). In our language this will dualize to a RR B-field switched

on the wrapped D5-branes on the Taub-NUT two cycle. Note that this RR B-field is

in addition to the RR B-field generated by the D5-brane sources. The question now

is how will this additional RR B-field change the background solution. To analyze

this let us assume, for simplicity, that the RR B-field for the wrapped D5-brane

sources is given by:

C2 = bθ1φ1 dθ1 ∧ dφ1 + b89 dx8 ∧ dx9, (3.26)

with the metric as in (3.4) and (3.5) and (bθ1φ1 , b89) are functions of all the internal

coordinates except (ψ, φ1) to maintain the necessary isometries. Note that if bθ1φ1 =

bθ1φ1(ψ) and b89 = b89(ψ, φ1), then:

dC2 = (m1 eθ1 ∧ eφ1 +m2 dx8 ∧ dx9) ∧ (dψ +m3 cos θ1 dφ1) , (3.27)

which resembles (3.20) but is closed and doesn’t have the required isometries. We

have defined the coefficients in the following way:

m1 = cosec θ1
dbθ1φ1
dψ

, m2 =
∂b89

∂ψ
, m3 = sec θ1

(
∂b89

∂ψ

)−1(
∂b89

∂φ1

)
. (3.28)

– 22 –



Therefore to be consistent with the RR field strength (3.20), we can define:

F3 ≡ dC2 + sources, (3.29)

with dC2 derivable from (3.26) that preserves the (ψ, φ1) isometries. What happens

when a component like Cψ3 is switched on? To be consistent with [11] this component

should be a constant along the fractional D3-branes’ direction but could be a function

of the internal coordinates.

The answer can be derived following certain well defined, but tedious, steps. The

backreacted metric changes from (3.4) and (3.5) to the following:

ds2 = eϕB
[
−dt2 + dx2

1 + dx2
2 +

dx2
3

cos2 θ + F2e2φ sin2 θ

]
(3.30)

+ e2φ+ϕB

[
F1dr

2 +
F2

(
dψ

cos θ
+ cos θ1 dφ1

)2

1 + F2e2φ tan2 θ
+ F3

(
dθ2

1 + sin2θ1dφ
2
1

)
+ F4

(
dx2

8 + dx2
9

)]
where θ will be related to the additional RR B-field component switched on. Com-

paring (3.22) and (3.30) we see they are formally equivalent: the Lorentz invariance

along spacetime directions is broken in exactly the same way for both the cases; and

the ψ-fibration structure match. The metric differs slightly along the (ψ, x3) direc-

tions, and the warp factors are little different from (3.22), but the essential features

are reproduced in an identical way. The dilaton eϕB is again a slight variant of (3.25)

and takes the form:

e−ϕB =
eφ√

cos2 θ + F2e2φ sin2 θ
. (3.31)

The RR B-field changes from what we started off in (3.26) because of the backreac-

tions from the additional RR B-field piece. The precise functional form can also be

worked out with some efforts, and the result is:

C2 =

(
F2 e

2φtan θ

cos2 θ + F2e2φ sin2 θ

)
(dψ + cos θ cos θ1dφ1) ∧ dx3

+ bθ1φ1 dθ1 ∧ dφ1 + b89 dx8 ∧ dx9 (3.32)

where we see that the first term is precisely the additional RR B-field piece that is

switched on to restrict the knots along the Euclidean x0,1,2 directions. In the limit

θ → 0 we get back (3.5) and (3.26).

Thus, comparing (3.22) and (3.30), we see that NC (or dipole) deformation and

the deformation from switching on RR component of the B-field essentially amount

to the same thing: they both restrict the knots along the x0,1,2 directions, albeit in

the Euclidean version, by breaking the Lorentz invariance along the x0,1,2 and the

x3 directions8. However the RR deformation is sometime hard to implement in the

8This is a bit sloppy as, we shall see later, restricting the knots along a particular subspace is

more subtle.
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supergravity language as it relies on the precise values of the C2 components in the

presence of sources. But now with our above-mentioned equivalence we can use the

NC deformations to compare the results as the supergravity analysis that we perform

here will only be sensitive to the metric deformations! Henceforth we will mostly use

the dipole (or NC) deformations to study the knots, unless mentioned otherwise, and

compare with the RR deformations whenever possible as we go along.

3.2.3 M-theory uplift and harmonic forms

It is now instructive to analyze the M-theory uplift of the deformed background

(3.22). Before that however we can see how the intermediate type IIA background

looks like by T-dualizing along a compact orthogonal direction. There are no global

one-cycle, but locally we have polar coordinates (θ1, φ1). There is no isometry along

θ1 direction, so that leaves us only with the φ1 circle. Local T-duality along φ1

will give us D6-branes, originally wrapped along the two-sphere generated by the

collapsing ψ coordinate on the radial r direction, and the φ1 circle. This configuration

is stabilized against collapse by background fluxes, which we will determine below.

The background metric for the wrapped D6-branes is now given by:

ds2 = e−φ

[
−dt2 + dx2

1 + dx2
2 +

dx2
3

cos2θ + F2 sin2θ
+

(dφ1 + F̃2 tan θ sec θ cos θ1 dx3)2

F̃2 cos2θ1 + F3 sin2θ1

]

+ eφ

[
F1 dr

2 + F3 dθ
2
1 + F4 ds

2
89 +

(
F̃2F3 sin2θ1 sec2 θ

F̃2 cos2θ1 + F3 sin2θ1

)
dψ2

]
, (3.33)

where we note that the Lorentz invariance along (x3, φ1) directions is broken so

that the knots are still localized along the x0,1,2 directions, albeit in the Euclidean

version. Note also the non-trivial fibration of the φ1 circle, which in turn appears in

the background NS two-form B2 as:

B2 =
F̃2 cos θ1 sec θ

F̃2 cos2θ1 + F3 sin2θ1

(
dφ1 + F̃2 tan θ sec θ cos θ1 dx3

)
∧ dψ

+ F̃2 tan θ sec2 θ dψ ∧ dx3, (3.34)

from where the field strength H3 = dB2 can be determined. We have also defined F̃2

as:

F̃2 =
F2

1 + F2 tan2θ
. (3.35)

To complete the story we will need the type IIA dilaton and the RR fluxes. The

dilaton is well defined and takes the form:

eφA =
e−3φ/2√(

cos2θ + F2 sin2θ
) (
F̃2 cos2θ1 + F3 sin2θ1

) , (3.36)
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provided the warp factors (F2, F3) are well defined everywhere. Otherwise strong

coupling will set in at the following two isolated points:

(θ1 = 0, F2(r1) = 0) ,
(
θ1 =

π

2
, F3(r2) = 0

)
, (3.37)

irrespective of whether there is any NC deformation on the type IIB side. In general

however, for arbitrary choice of the warp factors, strong coupling will set in when

e−φ →∞. This is the regime where the dynamics will be captured by M-theory.

To study the RR fluxes we first note that in the type IIB framework, the RR

three-form flux F3 is not closed and gives rise to the following source equation:

dF3 = −k2 cos θ eθ1 ∧ eφ1 ∧ dx8 ∧ dx9 + (k1a eθ1 ∧ eφ1 + k2a dx8 ∧ dx9) ∧ ea ∧ êψ,
(3.38)

with a ≡ (r, 8, 9) and ea ≡ (dr, dx8, dx9). The first term is the expected source term

for the D5-branes located at a point in (θ1, φ1, x8, x9) space. The other two terms

signify the fact that we have fractional D5-branes. This is also reflected on the type

IIA two-form F2 as:

dF2 = −k2 cos θ sin θ1 dθ1 ∧ dx8 ∧ dx9

− (sin θ1 k1a dθ1 ∧ dψ − cos θ cos θ1 k2a dx8 ∧ dx9) ∧ ea, (3.39)

with the first line denoting the expected charge of the wrapped D6-branes.

At strong type IIA coupling, we can analyze the dynamics using M-theory. The

M-theory metric takes the following form:

ds2 = H1

[
−dt2 + dx2

1 + dx2
2 +H2 dx

2
3 +H3(dφ1 + f3dx3)2 + e2φ

(
F1dr

2 +H4dψ
2
)]

+ e2φH1

[
F3 dθ

2
1 + F4

(
dx2

8 + dx2
9

)]
+ e−2φH−2

1 (dx11 + A1mdx
m)2 , (3.40)

where we see that the second line reflects the warped Taub-NUT nature of the back-

ground using gauge field A1 from the source (3.39). The warp factors Hi and f3

describing the background are defined as:

H1 =
(
cos2θ + F2 sin2θ

)1/3
(
F̃2 cos2θ1 + F3 sin2θ1

)1/3

H2 =
1

cos2θ + F2 sin2θ
, H3 =

1

F̃2 cos2θ1 + F3 sin2θ1

f3 = F̃2 tan θ sec θ cos θ1, H4 =
F̃2F3 sin2θ1 sec2 θ

F̃2 cos2θ1 + F3 sin2θ1

. (3.41)

To proceed further we will have to define the type IIA gauge field from (3.39) as:

F2 = dA1 ≡ α1 dx8 ∧ dx9 + α2 dx8 ∧ dθ1 + α3 dx9 ∧ dθ1, (3.42)
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with the background one-form A1 appears in the fibration structure of (3.40) giving

the Taub-NUT form and αi ≡ αi(θ1, x8, x9) as some generic function of (θ1, x8, x9)

at some fixed value of r satisfying the constraint:

∂α1

∂θ1

+
∂α3

∂x8

− ∂α2

∂x9

= 0. (3.43)

Since most of the warp factors are functions of r, except F4 and eφ which are respec-

tively generic functions of (x8, x9) and (x8, x9, θ1) also, at a given point if r, i.e at

r = r0, we have a warped Taub-NUT space specified by the following metric derivable

from (3.40):

ds2
TN = G1 dθ

2
1 +G2 dx

2
8 +G3 dx

2
9 +G4(dx11 + A1)2, (3.44)

with Gi given by the following expressions in terms of the warp factors H1 given in

(3.41), Fi in (3.5), and the dilaton e2φ:

G1 = e2φ H1 F3, G2 = G3 = e2φ H1 F4, G4 =
1

e2φ H2
1

. (3.45)

To proceed further we will assume, for simplicity, the warped Taub-NUT space de-

scribed above in (3.44) is a single centered Taub-NUT space. This is clearly not

an accurate description of the system as the warped Taub-NUT space is derived

originally from N wrapped D4-branes in type IIB theory. We will rectify the sit-

uation soon by resorting back to the original description, but for the time being a

single-centered Taub-NUT space will suffice to illustrate the picture without going

into too much technicalities. Having said this, we now use the fact that a single-

centered Taub-NUT space allows a unique normalizable harmonic form ω ≡ dζ which

is self-dual or anti-self-dual i.e ω = ± ∗4 ω. For our case, this is given by:

ζ = g(θ1, x8, x9) (dx11 + A1) , (3.46)

with g(θ1, x8, x9) satisfying the following set of differential equations at r fixed at

r = r0:

1

g

∂g

∂θ1

= ±α1

√
G1G4

G2G3

= ± α1

e2φ F4

√√√√ F3(
cos2θ + F2 sin2θ

) (
F̃2 cos2θ1 + F3 sin2θ1

)
1

g

∂g

∂x8

= ±α3

√
G2G4

G1G3

= ± α3 e
−2φ√

F3

(
cos2θ + F2 sin2θ

) (
F̃2 cos2θ1 + F3 sin2θ1

) (3.47)

1

g

∂g

∂x9

= ∓α2

√
G3G4

G1G2

= ∓ α2 e
−2φ√

F3

(
cos2θ + F2 sin2θ

) (
F̃2 cos2θ1 + F3 sin2θ1

) .
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The above set of partial differential equations are in general hard to solve if we don’t

know the precise functional forms of the warp factors and dilaton involved in the

expressions above. However comparing (3.42) and (3.39) we see that α1 appearing

above in (3.47) should at least be proportional to k2 defined in (3.21). In other words,

we can write α1 at r = r0 as:

α1(r0, x8, x9, θ1) = e2φ F4αa(θ1), (3.48)

where F4 = F4(r0, x8, x9) and φ = φ(r0, x8, x9, θ1). Note that, with the choice of

F2 in (3.42) and the wedge structure, we can allow the above functional form for

α1 without spoiling the constraint equation (3.43). This way the first equation in

(3.47) is easily satisfied. However for the other two equations in (3.47), one simple

way to solve it would be to allow the dilaton as well as (α2, α3) to be functions of

(r, x8, x9, θ1), such that the following conditions are met:

α3e
−2φ√

F̃2 cos2θ1 + F3 sin2θ1

≡ β3(x8),
α2e

−2φ√
F̃2 cos2θ1 + F3 sin2θ1

≡ β2(x9). (3.49)

Let us also assume that g appearing in (3.46) can be expressed as:

g(θ1, x8, x9) ≡ g1(θ1)g2(x8)g3(x9). (3.50)

Thus plugging in (3.50) into the differential equations (3.47) and assuming, without

loss of generality, F2(r0) = b−1
0 , we get the following functional form for g:

g(x8, x9, θ1) = g0 exp

±c0

∫ θ1

0

αa√
sin2θ1 + cos2θ1

b0+tan θ

dθ1 +

∫ x8

0

β3 dx8 −
∫ x9

0

β2 dx9

 ,
(3.51)

where for appropriate sign we should get a normalizable harmonic form ω and we

have defined c0 as c0 =
√

cos2 θ + b−1
0 sin2 θ. The normalizability is defined wrt

(x8, x9) directions as θ1 is a compact angular coordinate. Thus the θ1 dependence of

(3.51) is redundant and we can simplify (3.51) by eliminating the θ1 dependence in

the gauge field (3.42) i.e eliminating the α1 factor in (3.42). Under this assumption

the integrand in:∫
TN

ω ∧ ω =

∫
2g

(
α3

∂g

∂x8

− α2
∂g

∂x9

)
dθ1 ∧ dx8 ∧ dx9 ∧ dx11, (3.52)

will be independent of θ1 provided (α2, α3) can be made independent of θ1 leading to

a constant factor for the θ1 integral9 as g in (3.51) will now be a function of (x8, x9).

9In general however one should get an additional piece of the form 2gα1
∂g
∂θ1

in (3.52).
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The θ1 independency of (α2, α3) is still consistent with (3.49), but the question is

whether this will be true for (3.42). To see this, recall that F2 in (3.42) needs to

satisfy:

F2 = dA1 + ∆, d∆ = sources, (3.53)

where A1 would still be written as (3.42), but now with only (α2, α3), and appear in

the M-theory fibration structure in the metric (3.40); and the sources correspond to

the D6-brane sources. We can distribute the sources appropriately such that (3.42)

has α2 = α2(x9) and α3 = α3(x8) satisfying all the background constraints. The

dilaton, which is a function of (r, x8, x9, θ1), can be chosen from the start in (3.4) to

be of the form:

e2φ =
e2φ0Q(r, x8, x9)√

F̃2 cos2θ1 + F3 sin2θ1

, (3.54)

which can then be used to determine the RR three-form flux F3 in (3.20) and (3.21)

with the functional form for Q(r, x8, x9) determined using supersymmetry via torsion

classes10. The θ1 independence of (3.52) will be useful later. Finally, this harmonic

form can be used to express the M-theory G-flux G4 as:

G4 = 〈G4〉+ F ∧ ω, (3.55)

where F = dA is the field strength of the U(1) gauge field A and 〈G4〉 is the back-

ground G-flux whose explicit form can be easily determined form the type IIB three-

form fluxes F3 and H3. This can be worked out by the diligent reader, therefore we

will not discuss this and instead we will concentrate on the M-theory uplift of the

RR deformed background (3.30), (3.32) and (3.31). The M-theory metric is given as:

ds2 = H̃1

[
−dt2 + dx2

1 + dx2
2 + H̃2 dx

2
3 + H̃3(dφ1 + f3dx3)2 + e2φ

(
F1dr

2 + H̃4dψ
2
)]

+ e2φH̃1

[
F3 dθ

2
1 + F4

(
dx2

8 + dx2
9

)]
+ e−2φH̃−2

1 H̃−1
2 (dx11 + A1mdx

m)2 , (3.56)

where we see that the metric is almost similar to the one presented earlier with NC

deformation in (3.40). In fact the coefficients are also identical to the ones in (3.41),

namely:

H̃1 =
(
cos2θ + F2 e

2φ sin2θ
)1/3

(
F̃2 cos2θ1 + F3 sin2θ1

)1/3

H̃2 =
1

cos2θ + e2φ F2 sin2θ
, F̃2 =

F2

1 + e2φ F2 tan2θ

10An example of supersymmetric compactification will be described in details later using tor-

sion classes. For our case using torsion classes may lead us to consider a more generic case with

F4(r, x8, x9, θ1) instead of our present choice of F4(r, x8, x9).
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H̃3 = H̃−3
1 , f3 = 0, H̃4 =

F̃2F3 sin2θ1 sec2 θ

F̃2 cos2θ1 + F3 sin2θ1

, (3.57)

with the differences being the vanishing of f3, and the existence of certain extra

factors of e2φ. Finally, the gauge field appearing in the fibration structure of (3.56)

can be read from the bθ1φ1 and b3φ1 components of (3.32) as:

A1 = bθ1φ1 dθ1 + b3φ1 dx3. (3.58)

The next step would be to evaluate the field strength for A1 and bring it in the

form (3.42) with the triplet (α1, α2, α3) such that we can eliminate α1 and make

α2 = α2(x9), α3 = α3(x8) at r = r0 and fixed x3. All these can be accomplished by a

simple choice of the components in (3.32) and (3.58):

dbθ1φ1 = α2(x8, x9) dx8 + α3(x8, x9) dx9, b3φ1 = α1(θ1),
∂α2

∂x9

− ∂α3

∂x8

= 0.(3.59)

This way α1 piece in (3.42) will be absent at fixed x3 and the harmonic function will

be independent of θ1 in exactly the way we wanted. The dilaton can now be chosen

as (3.54) with F̃2 defined as in (3.57) to satisfy the remaining constraints. Thus with

the intial metric choice (3.4) and (3.5), alongwith the dilaton (3.54), supersymmetric

configuration can be constructed once the RR fluxes satisfy the second relation in

(3.4). This can be verified by working out the torsion classes, but we will not do so

here. Instead, in the following section, we will determine the four-dimensional action

that may appear from the 11-dimensional M-theory supergravity action.

3.2.4 First step towards a gauge theory

To derive a four-dimensional gauge theory from M-theory we will start by assuming

Lorentz invariance along (x0, x1, x2, ψ). Looking at (3.40), we see that this is possible

only if the dilaton and the warp factor H4 combination e2φH4 is expressed as:

e2φH4 = 1 + U4, (3.60)

with small U4 at all points in (r, x8, x9, θ1). In this limit, comparing this with (3.49)

and (3.41), it means (α2, α3) are chosen as

α2(r, x9, θ1) =
β2(x9)

(
F̃2 cos2θ1 + F3 sin2θ1

)3/2

F̃2F3 sec2 θ sin2θ1

+O(U4)

α3(r, x8, θ1) =
β3(x8)

(
F̃2 cos2θ1 + F3 sin2θ1

)3/2

F̃2F3 sec2 θ sin2θ1

+O(U4), (3.61)

for all points in (r, x8, x9, θ1) space except at θ1 = 0. At θ1 = 0 one has to resort

back to the definition (3.49).
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Therefore for small U4, the metric along (x0, x1, x2, ψ) is essentially H1, and

consequently the M-theory action with lp ≡ 1 will have the following four-dimensional

reduction:∫
d11x G4 ∧ ∗11G4 +

∫
C3 ∧ G4 ∧ G4 = c1

∫
d4x F ∧ ∗4F + c2

∫
F ∧ F , (3.62)

where we have ignored for the time being the seven-dimensional nature of the U(1)

theory by compactifying down to four-dimensions over the three-cycle Σ3 parametrized

by φ1 in (3.40) and the two-sphere determined by the degenerating x3 fibration over

the radial coordinate r. The coefficients ci appearing in (3.62) are given as:

c1 =

∫
Σ3

d3σ
√
g3

∫
TN

ω ∧ ∗TNω, c2 =

∫
Σ3

〈C3〉
∫

TN

ω ∧ ω, (3.63)

with c1 giving us the U(1) YM coupling whose value can be read off from ω, using

(3.51), and the internal metric along (φ1, r, ψ), using (3.40); and c2 giving us the Θ

angle. Note also that c1 and c2 are related by:

c2 =

∫
Σ3
〈C3〉∫

Σ3
d3σ
√
g3

c1, (3.64)

which should be reminiscent of the relation between Θ and 1
g2YM

discussed in [11].

To see the precise connection, let us go back to the original orientation of the D3-

branes on the NS5-brane in Table 1. The D3-branes are oriented along x0, x1, x2

and ψ directions, and therefore since the M-theory Taub-NUT is oriented along

(x8, x9, θ1, x11), we are left with the three-cycle Σ3 along (x3, r, φ1) directions with

metric:

g3 =


H1H2 +H1H3f

2
3 H1H3f3 0

H1H3f3 H1H3 0

0 0 H1e
2φF1

 , (3.65)

which could be read from the metric (3.40), and Hi, f3 are defined in (3.41) above.

The above metric leads to the following value of the integral:

v3 ≡
∫

Σ3

d3σ
√
g3 = 2πR3

∫ ∞
0

dr eφ
√
F1, (3.66)

at a fixed value for (θ1, x8, x9). In deriving (3.66), we have assumed R3 to be the

radius of the x3 circle. The above integral is a well defined function because the

dilaton is well defined at the two boundaries of r and F1 vanishes at the origin and

goes to identity at r →∞. Thus (3.66) will lead to some constant value at any given

point of (θ1, x8, x9) space.
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Coming to the M-theory three-form C3, we now require the component (C3)3rφ1

to compute c2 in (3.63). A naive computation from T-duality will yield zero value

for this component11. However the scenario is subtle because of the fractional brane

nature of the type IIB three-branes. The D5-D5 nature of the fractional D3-branes

imply that we need a small value of NS B-field switched on along (r, ψ) directions to

take care of the tachyons [19]. Consistency then requires us to have at least a RR

two-form along (x3, r) directions in type IIB side. This will dualize to the required

C3 component (C3)3rφ1 which, without loss of generalities, will be assumed to take

the following form:

C3 ≡
Nr sin 2θ cos θ p(θ1, θ) q(θ)

2(cos2 θ +N sin2 θ)2
dr ∧ dx3 ∧ dφ1, (3.67)

where N ≡ N(r, θ) such that N remains arbitrary small for all r and only at r →
∞, N → 1; and p(θ1, θ) and q(θ) are well-defined periodic functions of θ1 and θ

respectively. This way EOMs will not be affected by the introduction of these field

components. Using this, the value of the integral in (3.63) for c2 is given by:∫
Σ3

〈C3〉 =
2

π

∫ π/2

0

dθ1 p(θ1, θ)

∫
Σ3

dr ∧ dx3 ∧ dφ1
Nr sin 2θ cos θ q(θ)

(cos2 θ +N sin2 θ)2
= 2R3q(θ) sin θ,

(3.68)

where we have absorbed the value of the θ1 integral in the definition of R3 and q.

Now combining (3.66) and (3.68), and making q(θ) = 1 for simplicity, we find that

c1 and c2 are related by:

c2 = sin θ c1 =

(
2tan θ

2

1 + tan2 θ
2

)
c1 =

(
2a

1 + a2

)
c1, (3.69)

where we have normalized the integral in (3.66) to 2R3 to avoid some clutter. Fur-

thermore, in (3.69), we have defined a ≡ tan θ
2
. It is interesting that if we identify

this a with the same a used in eq. (2.7) of [11], we can compare (3.69) with eq.

(2.14) of [11] provided we define (c1, c2) as12:

c1 ≡
4π

g2
YM

, c2 ≡
Θ

2π
. (3.70)

11A more accurate statement is the following. Existence of the RR two-form C2 in (3.32) implies

the three-form field strength components (F3)3ψr and (F3)3φ1r, both of which under specific gauge

transformations may yield a two-form field (C2)3r. However consistency would require this to be

functions of (ψ, φ1) which, in our T-dual framework, would be impossible as we require the field

components to be independent of the T-dual coordinates (ψ, x3, φ1).
12The results don’t match exactly as the above comparison is naive. The precise connection

between a of [11] and the supergravity parameters will be outlined later.
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What happens for the M-theory uplift (3.56) for the type IIB background (3.30),

(3.32) and (3.31)? It is easy to see that the component of the C3 (3.67) remains

unchanged, but v3 defined in (3.66) changes to the following:

v3 = 2πR3 sec θ

∫ ∞
0

dr eφ
√

F1

1 + e2φ F2 tan2θ

= 2πR3 sec θ

∫ ∞
0

dr eφ
√
F1

(
1− 1

2
e2φ F2 tan2θ + ...

)
, (3.71)

at a fixed value of (θ1, x8, x9) space. The last equality is assuming small RR defor-

mation parameter θ, otherwise one will need the explicit form for the warp factor Fi
and the dilaton eφ to evaluate the three-volume v3. Now, because of the change in

the volume v3, the relation between c2 and c1 becomes:

c2 =
1

2
sin 2θ c1 =

(
tan θ

1 + tan2θ

)
c1 ≡

2a

1 + a2

(
1− a2

1 + a2

)
c1, (3.72)

with corrections coming from the O(θ2) terms in (3.71). This relation can be com-

pared with (3.69) and also with [11] where somewhat similar discussion appears from

gauge theory point of view.

3.2.5 Including the effects of U4

The above identification (3.69) or (3.72) is encouraging and points to the consistency

of the picture from M-theory point of view. However generically U4 is never small

everywhere, and therefore Lorentz invariance cannot always be restored along the ψ

direction. In such a scenario we expect the gauge theory to have the following form:

c11.c1

v3

∫
d4x

∑
a,b

FabFab +
c12.c1

v3

∫
d4x

∑
a

FaψFaψ, (3.73)

where a, b = 0, 1, 2 and (c11, c12) will eventually be related to the YM coupling (3.70)

after proper redefinations of the gauge fields. We will do this later. However subtlety

arises when we try to define these coefficients in terms of the background data because

the components of the metric along directions orthogonal to the Taub-NUT space as

well as the dilaton do depend on the Taub-NUT coordinates (θ1, x8, x9). For example

the first coefficient in (3.73) can be expressed as:

c11c1

v3

≡ 4R3e
2φ0 sec θ

∫
d4ζ

√
F1F̃2

F̃2 − F3

tan−1

√ F̃2 − F3

F3

 gQ

(
α3

∂g

∂x8

− α2
∂g

∂x9

)
,

(3.74)

where g = g(r, x8, x9) instead of g(r0, x8, x9, θ1) as in (3.51) and Q = Q(r, x8, x9).

We have defined d4ζ as the integral over:∫
d4ζ ≡

∫ ∞
0

dr

∫ R8

0

dx8

∫ R9

0

dx9

∫ R11

0

dx11 (3.75)
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with Rn being the radius of the n-th direction, which could be compact or non-

compact depending on the configuration. For example we expect R8 or R9 to be

non-compact.

Looking at (3.74), we see that there is a mixing between the Taub-NUT and

the non Taub-NUT coordinates. However we can simplify the resulting formula by

making two small assumptions: (a) we can take the constant leading term for the

dilaton, namely e2φ0 , and (b) fix the Taub-NUT space at r = r0. The latter would

mean that the dr integral could be restricted only to the space orthogonal to our

Taub-NUT configuration, whereas the former would imply that we do not have to

worry about the dx8 and dx9 integrals13. Note also that the average over θ1 coordinate

that we perform here is consistent with (3.52) because one may assume as though

the dθ1 integral is being transferred to the integrand over the space orthogonal to

the Taub-NUT space. This is where our work on making the integrand in (3.52)

independent of θ1 will pay off. Of course as we saw, a general analysis is not too

hard to perform, but this is not necessary to elucidate the underlying physics.

Therefore taking the two assumptions into account, the first coefficient c11 is

easy to work out, and is given by the following integral:

c11(θ) = R3 sec θ

∫ ∞
0

dr e2φ0

√
F1F̃2F3

F̃2 − F3

ln

∣∣∣∣∣∣
√
F̃2 +

√
F̃2 − F3√

F̃2 −
√
F̃2 − F3

∣∣∣∣∣∣ , (3.76)

where we have only taken the constant leading term for the dilaton. Additionally,

the combination F̃2 − F3 should be viewed as
∣∣∣F̃2 − F3

∣∣∣ so that this will always be

real. This means for our purpose we will always be choosing the metric ansatze (3.5)

with F̃2 ≥ F3 at all points in r, the radial coordinate14. This choice, although not

generic, should suffice at the level of a concrete example. An alternative choice with

F3 ≥ F̃2, at all r, leads to:

c11(θ) = 2R3 sec θ

∫ ∞
0

dr e2φ0

√
F1F̃2F3

F3 − F̃2

tan−1

√F3 − F̃2

F̃2

 , (3.77)

13If we define Q appearing in (3.54) as Q ≡ Q1

√
F3, then we see that the dilaton varies between

e2φ0Q1 and e2φ0Q1

√
2F3

F̃2+F3
. For regimes where F̃2 → F3, the latter is simply e2φ0Q1. Therefore

the choice of constant dilaton means that Q1 do not vary significantly over the (r, x8, x9) space.

This way issues related to strong coupling could be avoided.
14Note that the r behavior of the warp-factors Fi typically goes as Fk =

∑
n αkn(r/ro)

n where

ro is the scale and the sum over n can be from all positive and negative numbers depending on the

model. This means, to maintain F̃2 ≥ F3 at all points in r, we will have to choose the functional

behavior differently for r < ro and for r > ro. Again, this subtlety is only because we restricted

ourselves to a concrete example with F̃2 ≥ F3. We could take generic (F̃2, F3) for our case, but

then the analysis becomes a bit cumbersome although could nevertheless be performed. However

since in the latter case we don’t gain any new physics, we restrict ourselves with the former choice.
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and could be considered instead of (3.76) but we will only consider the former case

namely F̃2 ≥ F3.

The above integral (3.76) is just a number and is well defined for all values of

the warp factors even in the limits F3 = 0 = F̃2 and F̃2 = F3. On the other hand c12

is more non-trivial to represent in integral form because c12 depends on H−1
4 given

in (3.41), which unfortunately is not well defined at θ1 = 0. To deal with this we will

express the integral form for c12 in the following way:

c12(θ) = 2R3 cos θ

∫ ∞
0

dr

√
F1(F̃2 − F3)

F̃2F3

∫ 1

−1

dz

√
z2 + a2

b2 − z2
(3.78)

= 2R3 cos θ

∫ ∞
0

dr b2

b3 tanh−1

1

b

√
F3 + b2(F̃2 − F3)

F̃2

+ ln

∣∣∣∣∣∣
√
F̃2 −

√
F̃2 − F3√

F̃2 +

√
F̃2 − F3

∣∣∣∣∣∣


such that b is the regularization factor introduced to avoid the z = ±1 singularities.

We have also defined (a, b2, b3) in the following way:

a =

√
F3

F̃2 − F3

, b2 =

√
F1(F̃2 − F3)

4F̃2F3

, b3 =
2

b

√
F3 + b2(F̃2 − F3)

F̃2 − F3

. (3.79)

Let us now study the limiting behavior of the integrand in (3.78). In the limit F3

vanishes for some point(s) in r, the integrand generically blows up but we can arrange

it such that this vanishes as:

lim
F3→0

1√
F3

{
tanh−1

[√
1 +

(
1− b2

b2

)
F3

F̃2

]
+ ln

(√
F̃2 −

√
F̃2 − F3

)}
→ 0.

(3.80)

On the other hand, when F̃2 → F3 for certain value(s) of r, the integrand in (3.78)

approaches the following limit:

tanh−1

(
1

b

)
, (3.81)

which blows up in the limit b = 1. But since b is never identity − the original integral

(3.78) being not well-defined for b = 1 − the value in (3.81) can be large but not

infinite. However subtlety arises when F̃2 → 0, because in this limit we expect F3

to also vanish otherwise F̃2 ≥ F3 cannot be maintained. Furthermore, F3 has to go

to zero faster than F̃2. This then brings us to the case (3.81) studied above, and we

can impose F̃2 → 0 there. This means the integrand in (3.78) will be well defined at

all points in (r, x8, x9, θ1) space even where both (F̃2, F3) vanish, and the large value

of (3.81) can be absorbed in the definition of Aψ in (3.73).
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Again, we should ask as to what happens once we consider the M-theory uplift

(3.56). The coefficients in the metric (3.56) are slightly different from the ones in

(3.40) so we expect (c11, c12) to change a bit. Indeed that’s what happens once we

evaluate the precise forms for (c11, c12). The first coefficient c11 is now given by:

c11(θ) = R3 sec θ

∫ ∞
0

dr e2φ0

√√√√ F1F̃2F3

b4

(
F̃2 − F3

) ln

∣∣∣∣∣∣
√
F̃2 +

√
F̃2 − F3√

F̃2 −
√
F̃2 − F3

∣∣∣∣∣∣ , (3.82)

where F̃2 is now defined as in (3.57) with an extra factor of the dilaton e2φ. Unless

mentioned otherwise, we will continue using the same notation for F̃2 as in (3.35) to

avoid clutter. It should be clear from the context which one is meant. As expected,

(3.82) is exactly as in (3.76) except for the additional factor of b4 defined as:

b4 ≡ cos2θ + e2φ F2 sin2θ (3.83)

in the dr integral. Similarly, the c12 coefficient is given by an expression of the form

(3.78) except b2 in (3.79) changes to b2√
b4

, i.e:

b2 →
b2√

cos2θ + e2φ F2 sin2θ
. (3.84)

This concludes our discussion of the gauge theory from M-theory and we see that

the components of the gauge fields, namely (A0,A1,A2) can formally be distinguised

from Aψ because of their structure of the kinetic terms in (3.73). However the picture

that we developed so far is related to U(1) theory, so the natural question is to ask

whether we can extend the story to include non-abelian gauge theories. This is in

general a hard question because the G-flux in the supergravity limit is always a U(1)

field. However if we are able to include M2-brane states then we should be able to

study the non-abelian version of (3.62). In the following we will analyze this picture

in some details.

3.2.6 Non-abelian enhancement and M2-branes

To proceed we will have to first find the two-cycles in the space given by the metric

ansatze (3.44), where we now take our background to be a warped multi-centered

Taub-NUT space. The idea is to wrap a M2-brane on each of the the two-cycles such

that in the limit of vanishing size of the cycles, the M2-branes become tensionless

giving rise to enhanced gauge symmetry. This idea has been explored earlier in [27]

so we will be brief. Note that for this to happen, we will start by assuming that the

circle parametrized by the coordinate x11 shrinks to zero size at various points on

the geodesic line in the (θ1, x8, x9) space. This way we will have multiple two-cycles,

giving rise to a warped multi-centered Taub-NUT space. In other words, we can

rewrite the warped Taub-NUT metric (3.44) in the following suggestive way:

ds2
TN = U−1 (dx11 + A1)2 + Ud~x2, (3.85)
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where we have defined the variables appearing above, using the definations in (3.45),

in the following way:

d~x2 =
1

H1(θ1)

[
F3dθ

2
1 + F4(x8, x9)

(
dx2

8 + dx2
9

)]
(3.86)

U ≡ e2φH2
1 = e2φ

(
cos2θ +

sin2θ

b0

)2/3(
F3 sin2θ1 +

cos2θ1

b0 + tan θ

)2/3

,

with b0 = F−1
2 (r0) as before. Now since both b0 and F3(r0) are O(1) numbers, and

just for analytical simplicity if we take a small NC deformation θ, then both U and

H1 will be independent of (θ, θ1) and U can be expressed as:

U(x8, x9) = 1 +
∞∑
m=1

N∑
k=1

cmk
|l89 − lk|m

, (3.87)

stemming entirely from the dilaton e2φ, where cmk are certain constants associated

with the N -centered warped Taub-NUT space and l89 is the geodesic length in (x8, x9)

space.

We can simplify the subsequent analysis a bit more if we assume that the warp

factor F4 is only a function of x8 at r = r0 and is independent of x9. Of course the

generic case can also be done, but since this will not change any of the physics that

we want to discuss here, we will resort to the simplest treatment here. Thus the

mass of the wrapped M2-brane between (lk, lk+1) two-cycle is then given by:

mk,k+1 ≡ TMSk,k+1 = βTMR11

∫ lk+1

lk

dx8

√
F4, (3.88)

where TM is the tension of the membrane, Sk,k+1 is the area of the two-cycle between

points (lk, lk+1) and β is a constant that could be extracted from the coefficients cmk
in (3.87) that is needed to avoid any conical singularities in the system. The next

step is easy and has been discussed in details in [27]. The intersection matrices of

the two cycle satisfy the following algebra:

[Sk,k+1] o [Sl,l+1] =

{
2δkl
−δl,k−1

(3.89)

which is exactly the Cartan matrix of AN−1 algebra! Thus the enhanced gauge

symmetry of the system leads to an SU(N) group with the Cartan coming from the

decomposition of the localised G-flux as (3.55) but now with:

G4 = 〈G4〉+
N∑
i=1

Fi ∧ ωi, (3.90)

with orthonormal harmonic forms ωi associated the i-th two-cycle. All these harmonc

forms can be easily derived from (3.51) by restricting the (x8, x9) integrals over

– 36 –



the two-cycles appropriately. Thus after the dust settles, and ignoring the seven-

dimensional origin of the system for the time being, we expect the following non-

abelian enhancement of the U(1) theory discussed earlier in (3.62) for the D3-branes

oriented as in Table 1:

SYM = c1

∫
d4x

(
γ1

∑
a<b

Tr FabFab + γ2

∑
a

Tr FaψFaψ
)

+ c2

∫
Tr F ∧ F ,

(3.91)

with the trace in the adjoint representation of SU(N) and (c1, c2) defined as in

(3.70) and related by (3.64) and (3.69) (the correct relation will be provided later).

Note that we have inserted (γ1, γ2) for the coefficients of the Fab and Faψ terms

respectively. We expect γ1 to be related to (3.76) and (3.66); and γ2 to be related

to (3.78) and (3.66) as in the U(1) case described in (3.73). A proof of this is hard,

and in the following we will try to give some justification of this.

So far we saw that the localized G-fluxes at the Taub-NUT singularities provide

the Cartan of the gauge group and the wrapped M2-brane states provide the neces-

sary charged states to allow for the non-abelian enhancement. In fact the M2-brane

states provide a two-dimensional sigma model description at weak string coupling

that takes the following form:

S2 =

∫
d2σ
√
h hαβ

[
f1(Φ1,Φ2,Φ3)∂αλ

>
1 ∂βλ1 + f2(Φ1,Φ2,Φ3)∂αλ2∂βλ2

]
(3.92)

+

∫
d2σ
√
h hαβ

[
5∑

k=3

fk(Φ1,Φ2,Φ3)∂αΦ>k ∂βΦk + f6(Φ1,Φ2,Φ3)∂αλ
>
3 ∂βλ3 + ...

]
,

where hαβ is the world-sheet metric, fl(Φk) are the couplings, the dotted terms denote

couplings to NS and RR fields including the fermions, and the various sigma model

fields are defined as:

λ1 =

x0

x1

x2

 , λ2 = ψ, λ3 =

(
x3

φ1

)
,

Φ1 =

(
x8

x9

)
, Φ2 = r, Φ3 = θ1. (3.93)

Due to the non-trivial interaction terms in (3.92), a detailed study of the spectra is

hard. However we make a few observations. First, the couplings are not arbitary

and can be worked out from (3.33). We will specifically concentrate on the first two

interactions in (3.92) as their fluctuations will be related to the four-dimensional

gauge interactions. The (f1, f2) terms are given by:

f1(Φ1,Φ2,Φ3) ≡ f1(r, x8, x9, θ1) = eφ, f2(Φ1,Φ2,Φ3) ≡ f2(r, x8, x9, θ1) =
eφ

1− U4

,
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(3.94)

where U4 is the same function that appeared in (3.60) and entered in the derivation

of the couplings (c11, c12) in (3.76) and (3.78) respectively. Thus plugging (3.94) in

the first two terms of (3.92) leads us to the following 2d interacting lagrangian for

the fields (λ1, λ2):

L = ∂αλ
>
1 ∂

αλ1 + ∂αλ2∂
αλ2 + φ∂αλ

>
1 ∂

αλ1 + (φ− U4 − φU4) ∂αλ2∂
αλ2 + ... (3.95)

Secondly, the dilaton field φ interacts equally with all the components of the sigma

model field λ1, but has a different interaction with the sigma model field λ2. This

at least suggests that the three gauge fields (A0,A1,A2) appearing from the corre-

sponding vertex operator with λ1 will have identical gauge couplings, which would

differ from the gauge coupling of the gauge field Aψ appearing from λ2. Thirdly, the

appearance of U4, or more appropriately e2φH4 from (3.41) with the same relative

weight as in (3.40) points to the emergence of the coefficents (c11, c12) describing the

gauge fields in four-dimensions. Therefore putting these together, and including the

Chan-Paton factors, we expect the possibility of the emergent action (3.91), with

γ1 ∝ c11, γ2 ∝ c12. (3.96)

In addition to the emerging gauge theory description (3.91), the M-theory gravita-

tional coupling also leads to interesting four-dimensional gravitational coupling. For

example we can have the following correspondence:∫
C3 ∧X8 → c3

∫
tr R∧R, (3.97)

which will become useful in studying gravitational and framing anomalies associated

with the knots in a curved background as mentioned in [11]. We will discuss this later.

In writing (3.97) we have defined R as the four-dimensional curvature two-form, the

trace over the Lorentz group, and the coefficient c3 given via:

c3 =

∫
Σ3

〈C3〉
∫

TN

p1, (3.98)

with p1 being the first Pontryagin class defined over the warped Taub-NUT space

(and as such should be an integer).

3.2.7 Dynamics on the three-dimensional boundary

In writing (3.91) and (3.97) we have inadvertently described the theory in four-

dimensional spacetime without resorting to any boundary. The boundary description

is important and as such lies in the heart of the problem. This description featured

prominently in [11] and therefore we should see if our M-theory picture leads us to

the right boundary description.

– 38 –



To infer about any boundary, we note that we have two possible four-dimensional

description in the dual type IIB side. In one description, mentioned in the brane

construction Table 1, the D3-branes are oriented along (x0, x1, x2, ψ) directions. In

the other description, also in type IIB, the fractional D3-branes are oriented along

(x0, x1, x2, x3). Thus we should look at the M-theory metric along (x0, x1, x2) as well

as along (x3, ψ). This can be extracted from (3.40) and is given by:

ds2 = H1

(
−dt2 + dx2

1 + dx2
2

)
+H1H2 dx

2
3 + e2φH1H4dψ

2, (3.99)

where we note that the Lorentz invariance along x3 is broken by our choice of H2 that

depends on the NC deformation θ as depicted in (3.41); and the Lorentz invariance

along ψ is broken both by our brane construction as well as the NC deformation,

as depicted also in (3.41). This is at least one reason for localizing the knots along

(x0, x1, x2) directions albeit in the Euclidean version. The other reason, which also

stems from the Lorentz invariance, is related to supersymmetry as described in [11].

Therefore from both viewpoints, namely the brane construction of Table 1 and the

fractional branes on warped Taub-NUT space, there is a reason to localize the knots

along the Euclidean three dimensions.

Having got the space along which knots could be described, we should now

investigate the topological theory describing the knots from M-theory. Of course

some parts of the four-dimensional theory is already at hand, this is given by (3.91)

and (3.97). We will have to restrict them to the three-dimensional boundary. This

is the same boundary W that featured in [11]:

V ≡W ×R+, (3.100)

with R+ related to ψ described earlier. Note that in the language of fractional branes

wrapped on two-cycle of our warped Taub-NUT space, W will be the same Euclidean

three-dimensional space, although the four-dimensional space (x0, x1, x2, x3) doesn’t

have a representation like (3.100).

3.2.8 Action for the three scalar fields in four-dimensions

Before moving to the three-dimensional description on the boundary W, we should

complete our four-dimensional description. This would require us to go back to the

original seven-dimensional description that appears naturally from M-theory. The

non-abelian seven-dimensional gauge field will have an action similar to (3.91), but

now the integral will be restricted to d7x. The number of scalars in this description

appears from various sources. A set of three non-abelian scalar fields should appear

from the dimensional reduction of our seven-dimensional non-abelian gauge fields on

Σ3, and as such also appears from the wrapped M2-branes fluctuating orthogonally

to both the Taub-NUT and the four-dimensional space-time directions.

It is instructive to work this out in some details as this will help us to unravel the

BPS structure of the system. In this section we will concentrate on the scalars that
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come from the non-abelian gauge fields on Σ3. To start we will define our non-abelian

gauge field as:

A ≡ A3 dx3 +Ar dr +Aφ1 dφ1 = α1 e3 + α2 er + α3 eφ1

≡ (A3 − f3Aφ1)√
H1H2

e3 +
e−φAr√
F1H1

er +
Aφ1√
H1H3

eφ1 , (3.101)

where these three components of the gauge field would appear as scalar fields in

four-dimensional space. These three scalar fields form a part of the N = 4 vector

multiplet, and we will discuss the remaining three scalar fields in the next subsection.

The functional forms for Hi, F1 and f3 have been defined in (3.41), and ei are given

by:

e3 =
√
H1H2 dx3, er = eφ

√
H1F1 dr, eφ1 =

√
H1H3 (dφ1 + f3dx3) .(3.102)

Now using the gauge field A in (3.101), and using the vielbeins ei in (3.102) we can

evaluate the following four-dimensional piece stemming from the interaction term of

(3.91):

Sint =

∫
Tr (A ∧A) ∧ ∗ (A ∧A) (3.103)

= R3

∫
d4x dr dθ1 H

2
1

√
H4F1e

2φ Tr
(

[α1, α2]2 + [α1, α3]2 + [α2, α3]2
)
,

where d4x ≡ dtdx1dx2dψ and the commutator brackets take the following form in

terms of the gauge field components:

[α1, α3] =
[A3,Aφ1 ]
H1

√
H2H3

, [α2, α3] =
e−φ[Ar,Aφ1 ]
H1

√
F1H3

[α1, α2] =
e−φ[A3,Ar] + e−φf3[Ar,Aφ1 ]

H1

√
H2F1

. (3.104)

To evaluate the functional form of the scalar action we need to plug in the values of

the warp factors from (3.41) in (3.104) and (3.103). Doing this we get the following

terms for the scalar field action in four-dimensional space:

S
(1)
int =

∫
d4x Tr

{
a1

[
Ar,Aφ1 −

a3A3

2a1

]2

+

(
4a1a2 − a2

3

4a1

)
[A3,Ar]2 + a4 [A3,Aφ1 ]

2

}
,

(3.105)

where ai ≡ ai(θ) are all functions of the constant NC parameter θ which are got by

integrating out all the internal coordinates as well as averaging over θ1 coordinate.

For example a1(θ) will be defined as15:

a1(θ) = R3

∫ ∞
0

dr

∫ π

0

dθ1

√
H4

F1

(
1

H3

+
f 2

3

H2

)
(3.106)

15All coefficients, including the ones for Aφ1
, henceforth will be taken to be positive definite,

unless mentioned otherwise. Any overall negative signs can be absorbed in the definition of the

fields.
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= R3 sec θ

∫ ∞
0

dr ã1

√ F̃ 2
2F3

F1

+
ã2F

3/2
3

2ã1

√
F̃2

F1(F̃2 − F3)
ln

∣∣∣∣∣∣
√
F̃2 +

√
F̃2 − F3√

F̃2 −
√
F̃2 − F3

∣∣∣∣∣∣


where we have assumed that F̃2, defined in (3.35), satisfy F̃2 > F3 at all points in

r, otherwise we will need to replace this combination by |F̃2 − F3| to allow for real

values of the above integral. We have also defined ãi as:

ã1 = 1 +
tan2θ(1 + F2 tan2θ)F̃ 2

2

F̃2 − F3

, ã2 = 1− tan2θ(1 + F2 tan2θ)F̃ 2
2

F̃2 − F3

. (3.107)

The above integrand in (3.106) is well defined everywhere in r and therefore integrates

to a constant, i.e only a function of the constant NC parameter θ as predicted earlier.

The other constants ai(θ) are slightly simpler than (3.106), and we will define them

in the following. It is interesting to note that:

a3(θ) = 2R3

∫ ∞
0

dr

∫ π

0

dθ1
f3

H2

√
H4

F1

= 0, (3.108)

which mean that there are no unnecessary cross-terms in the scalar-field interactions

(3.105), as one might have expected from supersymmetric considerations. The other

two coefficients are given as follows:

a2(θ) = R3

∫ ∞
0

dr

∫ π

0

dθ1
1

H2

√
H4

F1

(3.109)

= R3 sec θ

∫ ∞
0

dr
(
cos2θ + F2 sin2θ

)√ F̃2F3

F1(F̃2 − F3)
ln

∣∣∣∣∣∣
√
F̃2 +

√
F̃2 − F3√

F̃2 −
√
F̃2 − F3

∣∣∣∣∣∣ ,
where the integrand is again a well defined function for all values of r, and therefore a2

is just a function of the constant NC parameter θ. On the other hand the coefficient

a4(θ) is given by:

a4(θ) = R3

∫ ∞
0

dr

∫ π

0

dθ1
e2φ0
√
H4F1

H2H3

(3.110)

= R3 sec θ

∫ ∞
0

dr ã4

√F̃2 +
F3

2

√
F̃2 − F3

ln

∣∣∣∣∣∣
√
F̃2 +

√
F̃2 − F3√

F̃2 −
√
F̃2 − F3

∣∣∣∣∣∣
 ,

assuming as before the dilaton e2φ to be given by the leading order constant piece

e2φ0 . In that case ã4(r, θ) is given by the following expression:

ã4(r, θ) = e2φ0
(
cos2θ + F2 sin2θ

)√
F̃2F3F1. (3.111)
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We can similarly work out the coefficients for the M-theory uplift (3.56). Interest-

ingly, the functional forms for the a1 and the a4 coefficients for the new background

are similar to the a4 functional functional form (3.110) except with ã4 in (3.111)

replaced by:

ã4 →
√
b4F

−1
1 F̃2F3, and ã4 → e2φ0

√
b3

4F1F̃2F3, (3.112)

respectively with b4 as in (3.83). On the other hand, the functional form for the new

a2 is similar to the functional form for a2 in (3.109). The only difference being that

the following replacement in (3.109):

b4(φ = 0) →
√
b4. (3.113)

We now have all the functional forms for ai given in terms of the constant NC

parameter θ. All the ai are finite numbers, and although one might worry about the

case when F3 vanishes for some r in (3.106), (3.109), (3.110) because the logarithmic

functions therein are not well defined, this is not a problem. The reason is that all

the logarithmic functions in (3.106), (3.109), (3.110) always come with a factor of

F3 attached to them, so when F3 vanishes, the logarithmic functions also vanish.

Thus after the dust settles, the interaction terms for the three scalars in (3.103) and

(3.105) can now be expressed as:

S
(1)
int =

∫
d4x
{
a1(θ)Tr [Ar,Aφ1 ]

2 + a2(θ)Tr [A3,Ar]2 + a4(θ)Tr [A3,Aφ1 ]
2
}
.(3.114)

Having got the interaction terms, it is now instructive to work out the kinetic terms

of the three scalars (A3,Ar,Aφ1). As one might have expected, M-theory does re-

produce the expected form of the kinetic terms, namely:

S
(1)
kin =

∫
d4x
{
cψ3Tr (DψA3)2 + cψrTr (DψAr)2 + cψφ1Tr (DψAφ1)

2

+
2∑

a=0

[
ca3Tr (DaA3)2 + carTr (DaAr)2 + caφ1Tr (DaAφ1)

2] }, (3.115)

whereDa andDψ are defined using the four-dimensional gauge fieldsAa ≡ (A0,A1,A2)

and Aψ in the usual way:

Daϕ ≡ ∂aϕ+ i [Aa, ϕ] , Dψϕ ≡ ∂ψϕ+ i [Aψ, ϕ] . (3.116)

The coefficients (cam, cψm), where m = (3, r, φ1), are straightforward (albeit tedious)

to work out from the background data. We will first tackle the easier ones. The

coefficients ca3 for all a’s take the following form:

ca3(θ) = R3 sec θ

∫ ∞
0

dr
e2φ0

H2

√
F1F̃2F3

F̃2 − F3

ln

∣∣∣∣∣∣
√
F̃2 +

√
F̃2 − F3√

F̃2 −
√
F̃2 − F3

∣∣∣∣∣∣ , (3.117)

– 42 –



where H2 is defined in (3.41), and the integrand is well defined when (F̃2, F3)→ 0 as

well as when F̃2 → F3. This means ca3 is just a constant defined in terms of θ, the

NC parameter. Similarly the other three coefficients car are similar to (3.117) and

take the following form:

car(θ) = R3 sec θ

∫ ∞
0

dr

√
F̃2F3

F1(F̃2 − F3)
ln

∣∣∣∣∣∣
√
F̃2 +

√
F̃2 − F3√

F̃2 −
√
F̃2 − F3

∣∣∣∣∣∣ , (3.118)

and is well defined at all the limits described above.

The remaining three coefficients caφ1 are more complicated than (3.117) and

(3.118) as they involve certain manipulations involving ca3 in (3.117). After the dust

settles, the result is:

caφ1(θ) = R3 sec θ

∫ ∞
0

dr e2φ0

√
F1F̃2F3

(
1 +

F̃ 2
2

H2(F̃2 − F3)
tan2θ sec2 θ

)

⊗

2

√
F̃2 +

ã2F3

ã1

√
F̃2 − F3

ln

∣∣∣∣∣∣
√
F̃2 +

√
F̃2 − F3√

F̃2 −
√
F̃2 − F3

∣∣∣∣∣∣
 . (3.119)

The integrand is well defined in the limit F̃2 = F3 = 0, but seems to diverge in the

limit F̃2 → F3. However as before, we should look at the limit more carefully. If we

assume F̃2−F3 = ε2, where ε→ 0, then the relevant part of the integrand in (3.119)

takes the following form:

lim
ε→0

1

ε

2

√
1 +

F3

ε2
− F3

ε2
ln

∣∣∣∣∣∣
√
F̃2 + ε√
F̃2 − ε

∣∣∣∣∣∣
 → 4

3

√
F̃2

+O(ε), (3.120)

which implies that the integrand in (3.119) is well-defined everywhere, and thus the

corresponding integral leads to a constant function of the NC parameter θ.

The integral form of the other two coefficients, namely cψ3 and cψr, have certain

resemblance to (3.78) as for all three cases the integrand are somewhat similar. For

example:

cψ3(θ) = 2R3 cos θ

∫ ∞
0

dr
b2J3

H2

, cψr(θ) = 2R3 e
−2φ0 cos θ

∫ ∞
0

dr
b2J3

F1

,(3.121)

where the functional form for J3 can be expressed from (3.78) as:

J3(r) ≡ b3 tanh−1

1

b

√
F3 + b2(F̃2 − F3)

F̃2

+ ln

∣∣∣∣∣∣
√
F̃2 −

√
F̃2 − F3√

F̃2 +

√
F̃2 − F3

∣∣∣∣∣∣ , (3.122)
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with (b2, b3) as defined earlier in (3.79) and H2 as in (3.41). Since the integrand

in (3.78) is well-defined for the limits F̃2 = F3 = 0 and F̃2 → F3, we expect the

integrands in (3.121) to be well-defined as well. Note that only in the limit H2 =

F1 = 1 we get:

cψ3 = cψr = c12, (3.123)

which is in general not true as H1 is a function of (r, θ1) whereas F1 is a function

of r only. However if F̃2 → F3, then H1 becomes a function of r only, and we can

choose our starting metric (3.5) with F2 = F 3
1 in the absence of NC deformation.

This choice is very special, so in general we don’t expect (3.123) to hold.

The final coefficient cψφ1 is a little harder to compute as it involves some mixing

with cψ3 in (3.121), similar to (3.119) derived earlier. The analysis nevertheless is

straightforward, and is given by:

cψφ1(θ) =

∫ ∞
0

dr
[
a01 tanh−1 (a02)− b01 ln |b02| − c01

]
, (3.124)

where the various coefficients appearing above are defined in the following way. The

first three coefficients (a01, b01, c01) receive contributions from cψ3 of (3.121). The

other two (a02, b02) are more straightforward. We start with a01:

a01 =
2R3 cos θ

[
(1− b2)F3 + b2F̃2

]3/2√
F1

b

√
F̃2F3

+
2bR3tan2θ sec θ F̃ 2

2

H2

√
(1− b2)F1F3 + b2F1F̃2

F̃2F3

, (3.125)

where the first line is the expected output directly from M-theory analysis, and the

second line involves contribution from cψ3 in (3.121). The second coefficient b01 also

takes a somewhat similar form:

b01 =
1

2
R3 cos θ

[
(3− 2b2)F3 + 2b2F̃2

F̃2 − F3

]√
F1(F̃2 − F3)3

F̃2F3

+
R3 tan2θ sec θ F̃ 2

2

2H2

(1− 2b2)F3 + 2b2F̃2√
F̃2 − F3

√ F1

F̃2F3

, (3.126)

where again the second line appears from the cψ3 coefficient of (3.121). Finally the

coefficient c01 is given by:

c01 =
R3 cos θ

(
F̃2 − F3

)√
F1

√
F3

+
R3F̃

2
2 tan2θ sec θ

H2

√
F1

F3

, (3.127)

– 44 –



with the second term now appearing from cψ3 piece. The other two factors, namely

(a02, b02), are straightforward to work out and take the familiar forms:

a02 =
1

b

√
(1− b2)F3 + b2F̃2

F̃2

, b02 =

√
F̃2 +

√
F̃2 − F3√

F̃2 −
√
F̃2 − F3

. (3.128)

Once again, it is time to look at the limiting behavior of the integrand when F3 → 0

and F3 → F̃2. The other limit of F̃2 → 0 is contained in the other two limits if we

assume that F3 goes to zero faster than F̃2. Thus in the limit F3 → 0, the integrand

in (3.124) behaves as:

lim
F3→0

1√
F3

{
tanh−1

[√
1 +

(
1− b2

b2

)
F3

F̃2

]
+ ln

∣∣∣∣√F̃2 −
√
F̃2 − F3

∣∣∣∣− constant

}
,

(3.129)

which could be arranged to vanish as before. For the other limit F3 → F̃2, or

alternatively as F̃2 − F3 = ε2 → 0, the integrand in (3.124) behaves as:

√
F3(1 + F3) tanh−1

(
1

b

)
− F 2

3

ε
ln

∣∣∣∣1 + ε

1− ε

∣∣∣∣− ε2√
F3

, (3.130)

which vanishes in the limit F3 goes to zero slower than ε2. However this limit,

although would contradict with F̃2 > F3 − where we expect F3 to vanish faster than

F̃2 − would still be fine if we impose F̃2 = F3 at the vanishing point.

We are almost done, but before ending this section let us work out the gauge

theory coefficients for the kinetic terms in (3.115) using the M-theory uplift (3.56)

of the RR deformed background (3.30). The coefficients are again easy to work out,

and its no suprise that they don’t change appreciably from what we computed above.

For example the expressions for (cψ3, cψr) remain similar to (3.121) with the same J3

as in (3.141) except for the following changes:

H2 →
√
H̃2, and b2 → b2

√
H̃2, (3.131)

respectively, where H̃2 ≡ b−1
4 is defined earlier in (3.57) and (3.83). Similarly for the

coefficient car the new expression is exactly as in (3.118) given above, except with

the following replacement in the integrand of (3.118):

√
F1 →

√
F1

H̃2

. (3.132)

For the other two coefficients caφ1 and cψφ1 in (3.119) and (3.124) respectively, the

above replacement (3.132) alongwith the vanishing of the F̃ 2
2 terms in (3.119) and
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(3.125), (3.126), (3.127) respectively capture the new coefficients succinctly. Finally

for the ca3 coefficient (3.117), all we need is to replace H2 therein by

√
H̃2 of (3.57)

to get the correct expression.

Thus, after the dust settles, the three scalars coming from the seven-dimensional

gauge fields, all combine together to reproduce the action (3.115) with the coefficients

cψm and cam as well defined functions of the NC parameter θ or the RR deformed

parameter θ. In the following section we will discuss the remaining three scalars that

come from the explicit form of the warped Taub-NUT geometry.

3.2.9 Action for the remaining three scalar fields

The remaining scalar fields, that fill the rest of the N = 4 vector multiplet in

four-dimensions, come precisely from the seven-dimensional vector multiplet. In M-

theory they should appear from our warped Taub-NUT configuration. The zero-mode

fluctuations of the N -centered Taub-NUT space, namely:

N(2h11 + 1) = 3N, (3.133)

which would appear in our four-dimensional description on V, provide the Cartan of

the AN−1 algebra for the seven-dimensional theory. The fluctuations of the wrapped

M2-branes along the Taub-NUT directions provide the necessary roots and weights

of the AN−1 algebra leading to the non-abelian enhancement of the three scalars in

the vector multiplet of the seven-dimensional theory.

To analyze these scalars, let us first discuss the abelian version of the model that

would come from the zero mode fluctuations of our warped Taub-NUT space. These

fluctuations are not hard to work out from the M-theory Einstein term, and have

the following action derivable from the supergravity lagrangian:∫
d11x δ (

√
g11R11) ∝

∫
d4x

3∑
k=1

[
2∑

a=0

bak (∂aϕk)
2 + bψk (∂ψϕk)

2

]
, (3.134)

where (ϕ1, ϕ2, ϕ3) are the three abelian scalars, and δ denote the combination of the

three fluctuations of the internal Taub-NUT space. In writing (3.134) we have as-

sumed that the fluctuations are only functions of the spacetime coordinates (x0, x1, x2, ψ).

The coefficient bak for a given (a, k) is a function of the NC parameter θ and can be

expressed in terms of the warp factors as:

bak(θ) = 2R3 sec θ

∫ ∞
0

dr e2φ0
(
cos2θ + F2sin2θ

)1/3
F

1/3
3

√
F1F̃2 Θ12, (3.135)

where we see that all the nine coeffcients have identical functional form because

of the isometry along the (x0, x1, x2) directions. We have also defined Θ12 using

Hypergeometric function in the following way:

Θ12 = 2F1

(
1

6
,
1

2
;
3

2
;
F3 − F̃2

F3

)
. (3.136)
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Let us now check the limits. When F3 = 0, the integrand in (3.135) vanishes, and so

it is well defined. On the other hand, when F3 → F̃2, the Hypergeometric function

Θ12 = 1, and the integral is again well defined provided none of the warp factors

blow up at r → ∞. However subtlety arises once we use the warp factors to define

the other coefficient bψk. The form of bψk for any k is more non-trivial compared to

(3.135), and takes the following form:

bψk(θ) =
2R3 cos θ

b2

∫ ∞
0

dr
(
cos2θ + F2 sin2θ

)1/3
F

1/3
3

√
F1

F̃2

Θ34, (3.137)

where as before all the three coefficients have identical functional forms, and they

differ from (3.135) because the Lorentz invariance along ψ direction is broken. The

functional form for Θ34 is now defined in terms of a certain Appell function in the

following way:

Θ34 = F1

(
1

2
;−5

6
; 1;

3

2
;
F3 − F̃2

F3

;
1

b2

)
, (3.138)

where b2 is the same regularization parameter used earlier in (3.78) to avoid cer-

tain singularities. Note that when F3 → F̃2, the Appell function blows up in the

limit b → 1, but b is not necessarily identity. This way the integrand will be well

defined everywhere. Alternatively, the field ϕk could be made independent of ψ alto-

gether. We will discuss a variant of the latter idea soon when we study the boundary

dynamics in more details.

Our discussions so far have mostly concentrated on the abelian scalar fields. To

study the non-abelian scalars we will, without loss of generalities, define the scalar

fields again as ϕk where ϕk ≡ ϕakT
a with T a being the generator of SU(N) in the

adjoint representation. The extension of (3.134) to the non-abelian version is now

straightforward:

S
(2)
kin =

∫
d4x

3∑
k=1

[
2∑

a=0

bak Tr (Daϕk)2 + bψk Tr (Dψϕk)2

]
, (3.139)

where the trace is in the adjoint representation and Da,ψ are the covariant deriva-

tives with respect to the four-dimensional bulk gauge fields (Aa,Aψ) as described in

(3.116).

To proceed further we shall use various arguments to justify the remaining in-

teraction terms. Maximal supersymmetry tells us that the remaining scalars should

at least have the following form of the lagrangian:

Lϕ = β1Tr (Dmϕk)2 + β2Tr [ϕk, ϕl]
2 + β3Tr

[
A{3,r,φ1}, ϕk

]2
, (3.140)

where we determined the form of β1 in (3.139) above. Additionally, multiple D6-

branes wrapped on a 3-cycle of a manifold will have the world-volume dynamics
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given by a non-abelian Born-Infeld action in a curved space. What curvatures are

we interested in from M-theory point of view? Looking at the analysis done in

the earlier subsections, we see that the emergent dynamics of the seven-dimensional

gauge theory from M-theory is simply an interacting non-abelian vector multiplet

in a curved space with a metric given by the first line of (3.40). In fact this is

consistent with the matrix formalism of M-theory also. Multiple D6-branes in a

curved background can be studied as a M(atrix) theory on warped multi-centered

Taub-NUT space [28, 29] where the seven-dimensional gauge theory appears on a

curved ambient space orthogonal to the warped Taub-NUT background.

With this in mind, the rest of the discussions is now straightforward and will

follow the pattern developed in (3.115). The interaction terms of the three scalars will

not only involve self interactions, but also interactions with the other three scalars

(A3,Ar,Aψ) that we studied in the previous subsection. The interaction terms then

take the following form:

L(2)
int =

∑
k,l

dkl Tr [ϕk, ϕl]
2 +

3∑
k=1

{
crk Tr [Ar, ϕk]2 + c3k Tr [A3, ϕk]

2 + cφ1k Tr [Aφ1 , ϕk]
2
}
.

(3.141)

Let us first study the self-interaction terms. These terms have coefficients dkl as

depicted above, and since all these scalars appear in a democratic way, we expect

the coefficients dkl to be the same for all choices of k and l. This is indeed what is

bourne out from our analysis, and the coefficient dkl for any (k, l) is given by:

dkl(θ) =
1

2
R3 sec θ

∫ ∞
0

dr e2φ0

√
F1F̃2F3

(
cos2θ + F2sin2θ

)2/3
Θ56, (3.142)

where Θ56 now involves another Hypergeometric function that can be expressed, in

combination with other warp factors, in the following way:

Θ56 = F
1/6
3 2F1

(
1

2
,
5

6
;
3

2
;
F3 − F̃2

F3

)
+ 3F̃

1/6
2 , (3.143)

that approaches 1 in the limit F3 → F̃2. This means the integrand in (3.142) is well

defined when F3 → 0 and when F3 → F̃2.

The interaction of the scalars ϕk with the other three scalars (A3,Ar,Aφ1) can

now be determined using similar Hypergeometric functions. For example the coeffi-

cient crk can be expressed as:

crk(θ) = 2R3 sec θ

∫ ∞
0

dr F
1/3
3

(
cos2θ + F2sin2θ

)1/3

√
F̃2

F1

Θ12, (3.144)

in terms of the Hypergeometric function Θ12 given in (3.136), which implies that

the limiting behaviors of the integrand (3.144) for F3 → 0 and F3 → F̃2 remain
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well-defined. The other coefficient c3k now has a form given by:

c3k(θ) = 2R3 sec θ

∫ ∞
0

dr e2φ0 F
1/3
3

√
F̃2F1

(
cos2θ + F2sin2θ

)4/3
Θ12, (3.145)

using the same Hypergeometric function Θ12 as in (3.136). The above integrand is

also well-defined in the limits F3 → 0 and F3 → F̃2 as before because Θ12 is well

behaved in the latter limit.

Finally, the last three coefficients cφ1k for any k are more complicated than the

other coefficients that we derived earlier. However as before we do expect all the

three coefficients to be identical because of the isometry of the three scalars. Thus

for any given k, we get:

cφ1k(θ) = R3 sec θ

∫ ∞
0

dr e2φ0
(
cos2θ + F2sin2θ

)1/3
√
F1F̃2F3 Π78, (3.146)

which is well defined in the limit F3 → 0. For the other limit F3 → F̃2 we need

to know the behavior of Π78. Our analysis shows that Π78 can be expressed in the

following way:

Π78 ≡ Π̂78 + 3 tan2θ sec2 θ F̃ 2
2

(
cos2θ + F2sin2θ

)
Π̃78, (3.147)

where, compared to our earlier analysis, this is a more complicated form because of

the fibration structure of φ1 in the metric (3.40). The variables Π̂78 and Π̃78 are both

expressed in terms of the Hypergeometric function Θ12, given earlier in (3.136), and

the warp factors as:

Π̂78 =
3

4
F̃

5/6
2 +

5

4
F

5/6
3 Θ12, Π̃78 =

F̃
5/6
2 − F 5/6

3 Θ12

4(F̃2 − F3)
. (3.148)

Now the limiting behavior of F3 → F̃2 is easy to determine. Since the Hypergeometric

function Θ12 approaches identity in this limit, Π̃78 vanishes and Π̂78 → 8F̃
5/6
2 . This

way the integrand in (3.146) is well defined everywhere.

For the M-theory background (3.56), one may similarly work out the coefficients

as we had done earlier. We expect, as before, the results to not change significantly

and indeed this is what appears from concrete computations. For example, for the

coefficients (bak, bψk, crk) in (3.135), (3.137) and (3.144) respectively, the integral

expressions remain unchanged upto the following replacements in each of the above

integrands:

b
1/3
4 (φ = 0) → 1

b
1/6
4

, (3.149)

where b4 ≡ H̃−1
2 has been defined earlier in (3.57) and (3.83). In a similar vein, the

integral expressions for dkl in (3.142) and c3k in (3.145) remain unchanged for the

new background (3.56), except, with the following replacements:

b
2/3
4 (φ = 0) → b

1/6
4 , and b

4/3
4 (φ = 0) → b

5/6
4 , (3.150)
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respectively. This means all the Hypergeometric and the Appell functions preserve

their forms for the RR deformed background (3.30). Finally, the only expression that

changes significantly is the expression for cφ1k in (3.146). The new expression for cφ1k
doesn’t have the second F̃ 2

2 term of (3.146). This is of course expected. However

the first term of (3.146) is reproduced in a similar fashion except with the following

replacement:

b
1/3
4 (φ = 0) → b

5/6
4 . (3.151)

We have now completed the discussions of the full gauge theory action in four-

dimensions using a warped multi-centered Taub-NUT space in M-theory. In the

following subsection we will derive the Bogomolnyi-Hitchin-Nahm (BHN) type of

equation from our gauge theory data which will help us to search for, among other

things, the Nahm poles.

3.2.10 A derivation of the BHN type of equation

Before proceeding further, let us summarize our results so far. The full non-abelian

SU(N) gauge theory action that we get from our M-theory construction, from a

warped seven-dimensional non-compact manifold that is topologically of the form:

TNN × Σ3, (3.152)

with compact Σ3 and a N -centered warped Taub-NUT space TNN , can now be

assimilated together from (3.91), (3.115), (3.139), (3.114) and (3.141) (or with the

corresponding RR deformed ones), to give us the following total action:

Stotal =
c1

v3

∫
d4x

(
c11

∑
a<b

Tr FabFab + c12

∑
a

Tr FaψFaψ
)

+ c2

∫
Tr F ∧ F

+
c1

v3

∫
d4x
{
cψ3 Tr (DψA3)2 + cψr Tr (DψAr)2 + cψφ1 Tr (DψAφ1)

2

+
2∑

a=0

[
ca3 Tr (DaA3)2 + car Tr (DaAr)2 + caφ1 Tr (DaAφ1)

2] }
+

∫
d4x

3∑
k=1

[
2∑

a=0

bak Tr (Daϕk)2 + bψk Tr (Dψϕk)2

]
(3.153)

+

∫
d4x

{
c1

v3

(
a1 Tr [Ar,Aφ1 ]

2 + a2 Tr [A3,Ar]2 + a4 Tr [A3,Aφ1 ]
2
)

+
∑
k,l

dkl Tr [ϕk, ϕl]
2 +

3∑
k=1

(
crk Tr [Ar, ϕk]2 + c3k Tr [A3, ϕk]

2 + cφ1k Tr [Aφ1 , ϕk]
2
)}

,

where the coefficients (am, cmn, bmn, dmn) for all values of (m,n) specified above are

functions of the constant NC or RR parameter θ. Since we have maintained super-

symmetry in the M-theory construction, we expect the action to have, at least for
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certain choices of the warp-factors, the maximal N = 4 supersymmetry. In fact the

choice of supersymmetry depends on the supersymmetry of the original type IIB

background (3.4) and (3.5). For specific choices of Fi in (3.5), one of the NS5-brane

in Table 1 can be moved away from the other to allow for the maximal N = 4

supersymmetry. Generically however (3.5) has a N = 2 or N = 1 supersymmetry,

implying atmost a G2 structure for the M-theory seven-manifold (3.152).

Looking at (3.153), one may note that all the NC or RR deformations appear

only as constant coefficients for various terms in (3.153). The presence or absence of

the NC or RR deformations will not change the form of the effective action, except

alter the coefficients (cmn, bmn, dmn, am) a bit. An interesting question at this stage is

to see what additional constraints on these coefficients appear from minimizing the

energy of the system. These would of course be the BPS conditions, and once the

BPS conditions are satisfied the EOMs will be automatically satisfied. Our original

configuration (3.4) with the choice of dilaton (3.54) and the internal space (3.5)

satisfy EOMs in the absence of any BPS states on the type IIB fractional D3-branes.

To satisfy the EOMs in the presence of the BPS states would require us to find static

configurations on the branes that minimize the total energy of the system. This in

turn would require us to compute the Hamiltonian and search for the static BPS

configurations by minimizing this.

To determine the constraints on the warp-factors, i.e the constant coefficients

(cmn, bmn, dmn, am) appearing in (3.153), we first proceed to determine the the BPS

configurations. For consistency, these configurations should satisfy the Gauss’ con-

straint. We isolate the scalar A3, and express the Gauss’ law constraint in the

following way:

c11DαFα0 + c12DψFψ0 = ic03 [A3,D0A3] + ic0r [Ar,D0Ar] + ic0φ1 [Aφ1 ,D0Aφ1 ]

+
3∑

k=1

iv3b0k

c1

[ϕk,D0ϕk] , (3.154)

where (cmn, bmn) are exactly the coefficients that appear in (3.153). We have also

divided a = (0, 1, 2) ≡ (0, α) where α = 1, 2.

Secondly, looking at Table 3 we can identify the scalar fields
−→
X and

−→
Y used in

[11]. This will be useful when we want to express the BHN equations in terms of the

scalar field components used here. The scalar fields
−→
X and

−→
Y can be identified as:

−→
X ≡ (A3, ϕ1, ϕ2) ,

−→
Y ≡ (Ar,Aφ1 , ϕ3) , (3.155)

which appears from the fact that a part of the Coulomb branch for the NS5-D3 system

as shown in Table 3, is along the (x3, x8, x9) directions . This also means, associated

with the components of the gauge fields Aµ = (A0,A1,A2,Aψ) in four-dimensions,
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we can now identify approximately the four scalars used in [11] as16:

(φ0, φ1, φ2, φ3) ∝ (ϕ3, ϕ1, ϕ2,A3) , (3.156)

which, as described in [11], can be made by picking the three scalar fields in
−→
X and

one scalar field from
−→
Y (which we take here as ϕ3). This means the complex σ field

of [11], for our case will become:

σ ≡ Ar + iAφ1 . (3.157)

The Gauss law constraint and the identification of the scalar fields will lead us to

compute the Hamiltonian from the total effective action (3.153). Isolating the same

scalar A3, the expression for the Hamiltonian, for the case when c2 = 0 in (3.153),

can be expressed as sum of squares of various terms in the following way:

H =

∫
d3x Tr

{
2∑

α=1

c1

v3

(
√
c11Fα0 −

√
cα3DαA3)

2
+
c1

v3

(√
c12Fψ0 −

√
cψ3DψA3

)2

+
c1

v3

(
√
c0rD0Ar − i

√
a2[A3,Ar])2

+
c1

v3

(√
c0φ1D0Aφ1 − i

√
a4[A3,Aφ1 ]

)2

+
c1

v3

(
s(1)cψr(DψAr)2 + s(2)cψφ1(DψAφ1)2 + t(1)cβr(DβAr)2 + t(2)cβφ1(DβAφ1)2

)
+

3∑
k=1

(√
b0kD0ϕk − i

√
c3k[A3, ϕk]

)2

+
c1c03

v3

(D0A3)2 +
2∑

α,β=1

(√
c1c11

2v3

Fαβ

+

√
c1cψr
v3

s
(1)
αβεαβψrDψAr +

√
c1cψφ1
v3

s
(2)
αβεαβψφ1DψAφ1 +

3∑
δ=1

3∑
k=1

√
bδkεαβ ·m(1)

δk Dδϕk

−
∑
k,l

ig
(1)
αβkl

√
dkl [ϕk, ϕl]−

3∑
k=1

i
(
g

(2)
αβk

√
crk [Ar, ϕk] + g

(3)
αβk

√
cφ1k [Aφ1 , ϕk]

)
− ig

(4)
αβ

√
c1a1

v3

[Ar,Aφ1 ]
)2

+
(QE + QM) δ3x

dim G
+

2∑
α=1

(√
c1c12

2v3

Fαψ +

√
c1cβr
v3

t(1)
α εαψβrDβAr

+

√
c1cβφ1
v3

t(2)
α εαψβφ1DβAφ1 +

3∑
δ=1

3∑
k=1

√
bδkεαψ ·m(2)

δk Dδϕk −
∑
k,l

ih
(1)
αψkl

√
dkl [ϕk, ϕl]

−
3∑

k=1

i
(
h

(2)
αψk

√
crk [Ar, ϕk] + h

(3)
αψk

√
cφ1k [Aφ1 , ϕk]

)
− ih(4)

αψ

√
c1a1

v3

[Ar,Aφ1 ]
)2

+
∑
k,l

q
(1)
kl dkl [ϕk, ϕl]

2 +
3∑

k=1

3∑
γ=2

q
(γ)
k cyγk

[
Ayγ , ϕk

]2
+
q(4)c1a1

v3

[Ar,Aφ1 ]
2

}
, (3.158)

16Note that the identification (3.156) differs slightly from [11]. For example, using (3.156),
−→
X

would be (φ1, φ2, φ3), whereas in [11] it is (φ0, φ1, φ2). We will consider a different mapping of the

scalars in (3.282) later. Furthermore to avoid cluttering of symbols we will use the same symbol to

denote the twisted and the untwisted scalars of [11], unless mentioned otherwise. It should hopefully

be clear from the context which one is meant.
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where QE and QM are the electric and the magnetic charges respectively, which

will be determined later; dim G is the dimension of the group; and δ ≡ (α, ψ),

(y2, y3) ≡ (r, φ1). Most of coefficients appearing in (3.158) have been determined

earlier, which the readers may want to look up. The other coefficients appearing

above are defined in the following way:

g
(1)
αβkl ≡ g

(1)
[αβ][kl], g

(m)
αβk ≡ g

(m)
[αβ]k, g

(m)
αβ ≡ g

(m)
[αβ], (3.159)

and similarly for (h(j)
... , s

(j)
... , t

(j)
... ). In other words they are all generically taken to be

Theory Configurations x0 x1 x2 x3 θ1 φ1 ψ r x8 x9 x11

IIB NS5
√ √ √ √

∗ ∗ ∗ ∗
√ √

∗
IIB D3

√ √ √
∗ ∗ ∗

√
∗ ∗ ∗ ∗

IIA D4
√ √ √ √

∗ ∗
√

∗ ∗ ∗ ∗
IIB D5/D5

√ √ √ √
∗ ∗

√ √
∗ ∗ ∗

IIA D6
√ √ √ √

∗
√ √ √

∗ ∗ ∗
M TNN ∗ ∗ ∗ ∗

√
∗ ∗ ∗

√ √ √

M Σ3 ∗ ∗ ∗
√

∗ ∗
√ √

∗ ∗ ∗

Table 3: The orientations of branes and manifolds at various stages of dualities in our

set-up.

anti-symmetric17 with respect to (α, β), (α, ψ), and (k, l), except for m
(j)
δk where the

symmetric part will play some role later. Assuming this, the relation between them

are now easy to work out from the defination of the Hamiltonian in (3.158) as:

2
∣∣∣g(4)

12

∣∣∣2 +
∣∣∣h(4)

1ψ

∣∣∣2 +
∣∣∣h(4)

2ψ

∣∣∣2 − q(4) = 1

2
∣∣∣g(n)

12k

∣∣∣2 +
∣∣∣h(n)

1ψk

∣∣∣2 +
∣∣∣h(n)

2ψk

∣∣∣2 − q(n)
k = 1

2
∣∣∣g(1)

12kl

∣∣∣2 +
∣∣∣h(1)

1ψkl

∣∣∣2 +
∣∣∣h(1)

2ψkl

∣∣∣2 − q(1)
kl = 1

2
∣∣∣s(l)

12

∣∣∣2 + s(l) = 1,
2∑

α=1

∣∣t(l)α ∣∣2 + t(l) = 1,
2∑
j=1

∣∣∣m(j)
δk

∣∣∣2 =
1

2
, (3.160)

where n = 2, 3 and l = 1, 2. Note that the last relation for coefficients m
(j)
δk can have

additional pieces depending on how the kinetic piece (Dδϕk)2 is defined in the action

(3.153). We will discuss this later. In general however all the coefficients appearing

above are generic (they should of course satisfy (3.160)) and we will determine them

for a special configuration that resonates with [11]. For the time being we want to

17For ϕk it will be instructive to resort to the identification (3.156) to discuss anti-symmetry.
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identify generic BPS configurations by minimizing the energy of the system. We

start by taking static configurations with the following gauge choice:

A0 = A3, (3.161)

which is motivated, in retrospect, from our choice of isolating the scalar field A3 from

the very begining in the expression for the Hamiltonian (3.158). The gauge choice

(3.161) implies the following constraints on A3 field from (3.158):

D0A3 = 0,
(√

b0k −
√
c3k

)2

[A3, ϕk]
2 = 0

(
√
c11 −

√
cα3)

2
(DαA3)2 = 0,

(√
c12 −

√
cψ3

)2
(DψA3)2 = 0

(
√
c0r −

√
a2)

2
[A3,Ar]2 = 0,

(√
c0φ1 −

√
a4

)2
[A3,Aφ1 ]

2 = 0. (3.162)

The first equation is automatically satisfied once we demand static configurations.

The other covariant derivatives, or the commutator brackets cannot vanish unless we

take trivial solutions. This observation leads to two possible set of solutions to the

system of equations in (3.162). The first set of solutions is when A3 = 0. The second

set of solutions is for the coefficients, associated to the various configurations of the

A3 fields, to vanish. In the following, we will first discuss the second set of solutions

wherein the coefficients vanish. To check whether this is possible, let us study the

coefficient associated with DαA3. Comparing (3.76) and (3.117) and for the benefit

of discussion we can re-express the two coefficients appearing in (3.162) as:

c11(θ) = R3 sec θ

∫ ∞
0

dr e2φ0

√
F1F̃2F3

F̃2 − F3

ln

∣∣∣∣∣∣
√
F̃2 +

√
F̃2 − F3√

F̃2 −
√
F̃2 − F3

∣∣∣∣∣∣
cα3(θ) = R3 sec θ

∫ ∞
0

dr
e2φ0

H2

√
F1F̃2F3

F̃2 − F3

ln

∣∣∣∣∣∣
√
F̃2 +

√
F̃2 − F3√

F̃2 −
√
F̃2 − F3

∣∣∣∣∣∣ . (3.163)

We see that they are exactly identical except for the appearance of the H2 term in

the second integral. In fact this observation repeats for all the doublet coeffcients

appearing in (3.162), namely, (c12, cψ3) in (3.78) and (3.121) respectively; (c0r, a2) in

(3.118) and (3.109) respectively; (c0φ1 , a4) in (3.119) and (3.110) respectively; and

(b0k, c3k) in (3.135) and (3.145) respectively, in exactly the same way: they all differ

by the presence of the H2 term in the integral! This conclusion will not change if we

take the RR deformation instead, or if we consider the full expression for the dilaton

(3.54). All the differences of the coefficients in (3.162) take the following form:

c(a) − c(b) ≡
∫ ∞

0

dr G(ab)(r)(1− b4), (3.164)

where c(a) ≡ (cmn, bmn, dmn, am), b4 as defined in (3.83), and the explicit forms of the

G(ab) functions can be read up from (3.76), (3.117), (3.78), (3.121) etc., as mentioned
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above. The result for RR deformation can be expressed as (3.164) with b4(φ), whereas

with b4(φ = 0) we get the results for the NC deformation. Therefore the vanishing

of the integral in (3.164) implies the vanishing of the NC or the RR deformation

parameter θ, or in the language of (3.70), the vanishing of Θ implying further that

in our four-dimensional gauge theory:

τ ≡ 4πi

g2
YM

. (3.165)

This is of course consistent with our simplifying choice of c2 = 0 in (3.153) and

(3.158) and also with the observations of [12], [11] and [13], namely that the four-

dimensional supersymmetry in the presence of BPS configurations18 is only preserved

when θ vanishes. However when A3 vanishes, which is our second set of solutions,

we are basically restricted to the three-dimensional boundary W of (3.100) where θ

in general could be non-zero19. Therefore to summarize, we have the following two

sets of solutions:

Set 1 : (A3 6= 0, θ = 0)

Set 2 : (A3 = 0, θ 6= 0). (3.166)

Our next series of conditions, which in principle should be valid for either of the above

two sets of solutions (3.166) but will only consider Set 2 henceforth, appear from look-

ing at the third and the last lines of (3.158). Since the coefficients (cψr, cψφ1 , cβr, cβφ1)

in (3.121), (3.124), (3.118) and (3.119) respectively are all non-zero, and we will as-

sume (s(n), t(n), q(4)) also to be generically non-zero, minimization of the Hamiltonian

(3.158) implies the following conditions on the two scalar fields Ar and Aφ1 :

DηAr = DηAφ1 = [Ar,Aφ1 ] = 0, (3.167)

with η ≡ (α, ψ). Thus these scalar fields, appearing in
−→
Y in (3.155), are covariantly

constants and have a vanishing commutator bracket. In the language of the complex

field σ in (3.157), the relations in (3.167) imply the following conditions on (σ, σ̄):

Dησ = Dησ̄ = [σ, σ̄] = 0, (3.168)

which is also the conditions imposed on (σ, σ̄) fields in [11]. Additionally, it is inter-

esting to note that, since we took (s(n), t(n), q(4)) to be non-zero, the first and the last

set of equations in (3.160) can be easily satisfied. Thus they do not impose further

constraints on the BPS equations (3.167). Finally, we can completely decouple the

scalars (Ar,Aφ1) if we demand:

[Ar, ϕk] = [Aφ1 , ϕk] = 0, (3.169)

18For example like Wilson loops etc., that we will discuss soon.
19Here c2 may be made to vanish by taking q(θ) = 0 for non-zero θ. Thus switching on q(θ)

would imply switching on c2.
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for any values of q
(γ)
k in (3.158). This way the second set of equations for n = 2, 3 in

(3.160) can also be easily satisfied without introducing any additional constraints.

We are finally left with two sets of equations in (3.160) that need to be satisfied.

These are important equations as they deal with the commutator brackets [ϕk, ϕl]

and covariant derivatives Dδϕk. We first demand that the commutator brackets do

not vanish − at least not all the brackets − to avoid the system from becoming

completely trivial. This immediately implies q
(1)
kl = 0 for some choices of (k, l) to

satisfy the BPS conditions from the Hamiltonian (3.158) (see the last line of (3.158)).

The equations for the other coefficients from (3.160) then become:

2
∣∣∣g(1)

12kl

∣∣∣2 +
∣∣∣h(1)

1ψkl

∣∣∣2 +
∣∣∣h(1)

2ψkl

∣∣∣2 = 1,
∣∣∣m(1)

δk

∣∣∣2 +
∣∣∣m(2)

δk

∣∣∣2 =
1

2
, (3.170)

again for the specific choices of (k, l). To see what values of the coefficients could

solve the above set of equations (3.170), let us write down the corresponding BPS

equations that use these coefficients. The simplest case is when only one commutator

bracket doesn’t vanish, i.e when q
(1)
12 = 0. This means the field ϕ3 will commute with

the other two scalar fields ϕ1 and ϕ2. In other words, we take20:

[ϕ3, ϕ1] = [ϕ3, ϕ2] = 0. (3.171)

The first equation of (3.170) then connects the gauge-field F12 with the scalar fields

in
−→
X defined earlier as (3.155) in the following way21:

F12 +

√
bψ3v3

c1c11

Dψϕ3 +

√
b12v3

c1c11

(D1ϕ2 −D2ϕ1)− 2i

√
v3d12

c1c11

[ϕ1, ϕ2] = 0,(3.172)

where (bψ3, b12, c1, c11, v3, d12) are given in (3.137), (3.135), (3.63), (3.76), (3.66) and

(3.142) respectively. The above equation is one of the Bogomolnyi-Hitchin-Nahm

(BHN) equation that appears from our analysis. In fact the generic equation that

we get from (3.158) is more complicated than (3.172), but we have simplified the

system by assuming the following values of the coefficients:

g
(1)
1212 = m

(1)
ψ3 = m

(1)
12 =

1√
2
, (3.173)

20One might worry that (3.171) could be too strong a constraint that would eventually trivialize

some of the boundary terms in (3.227), (3.232) or in (3.236). This is however not true because the

boundary theory will be developed without resorting to any constaints so that the boundary degrees

of freedom may capture the fluctuations over any classical configurations. As an aside, note that we

can allow all but one of q
(1)
kl to vanish so that we are not obliged to impose the full set of (3.171).

The remaining decouplings may be achieved by choosing appropriate values for g
(1)
12kl, h

(1)
aψkl.

21Expectedly, because of our gauge choice (3.161), the Nahm equation will have Dψϕ3 and [ϕ1, ϕ2]

which is slightly different from what one would have expected from the orientations of the branes in

Table 3. This generic formalism is more useful for later development so we will mostly concentrate

on this. Again, a more standard formalism is also possible and we will discuss it briefly for the

gauge choice (3.178) later in this section.
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with other coefficients, except m
(j)
11 and m

(j)
22 , vanishing. This in turn is motivated in

part to bring the BHN equation in a more standard form like (3.172) with

m
(j)
11

√
b11 D1ϕ1 +m

(j)
22

√
b22 D2ϕ2 = 0 ≡ D1ϕ1 +D2ϕ2, (3.174)

which involves the symmetric coefficients m
(j)
11 and m

(j)
22 with, as we’ll see below, j = 2

to avoid contradictions22. Without loss of generalities, they are taken to be equal;

and b11 = b22 as can be inferred from (3.135).

The choice (3.173), when plugged in (3.170), would imply that both h
(1)
1ψ12 as well

as h
(2)
2ψ12 vanish. However other coefficients can be non-zero, and as before we will

make the following choice of the coefficients:

− h(1)
1ψ1ψ = − h(2)

2ψ2ψ = m
(2)
β3 = m

(2)
ψβ =

1√
2
, (3.175)

with the rest taken to be zero. For the time, the above choice should be viewed

as being motivated by consistency, and we will go beyond these special choices of

coefficients (3.173) and (3.175) later on. With this in mind, the BPS conditions lead

to the following additional equation:

Fαψ − 6
∑
δ,k

√
2bδkv3

c1c12

ε[αψm
(2)
δk]Dδϕk +

√
2bψαv3

c1c12

εαψm
(2)
ψαDψϕα = 0, (3.176)

where α = 1, 2; bψα and bα3 as given in (3.137) and (3.135) respectively, and

(v3, c1, c11, c12) are given in (3.66), (3.63), (3.76) and (3.78) respectively. Note the

way we arranged the anti-symmetric pieces together. This could be taken as the

definition of the term εab ·m(k)
cd in (3.158). We could do the same for (3.172), but that

is not necessary because of our choice of coefficients (3.173). The above equation is

valid for Set 1 in (3.166), but we can always use Set 2 by switching on the NC or the

RR parameter θ and interpret the coefficients apearing in (3.172) accordingly. For

this case, (3.176) will give rise to the following two equations:

F1ψ +

√
b23v3

c1c12

D2ϕ3 +

√
bψ1v3

c1c12

Dψϕ1 = 0

F2ψ +

√
b13v3

c1c12

D1ϕ3 +

√
bψ2v3

c1c12

Dψϕ2 = 0, (3.177)

without involving any commutator brackets. Thus combining (3.172) with the two

equations in (3.177), for Set 2 in (3.166), we have our three BHN equations for the

system.

22We could also get (3.174) by adding a term (
∑
amaaDaϕa)

2
to the Hamiltonian (3.158). This

will only change the last equation in (3.160).
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Before ending this section, let us what would happen if our gauge choice were

different from (3.161). One example would be to choose the following gauge where:

A0 = Ar. (3.178)

Looking at the action (3.153) we see that there is a symmetry between x3 and r,

implying that we can re-write the Hamiltonian (3.158) in the gauge (3.178) simply

by exchanging the two coordinates! The BPS condition then changes from (3.162)

to the following new conditions that are easy to derive:

D0Ar = 0,
(√

b0k −
√
crk

)2

[Ar, ϕk]2 = 0

(
√
c11 −

√
cαr)

2
(DαAr)2 = 0,

(√
c12 −

√
cψr
)2

(DψAr)2 = 0

(
√
c03 −

√
a2)

2
[A3,Ar]2 = 0,

(√
c0φ1 −

√
a1

)2
[Ar,Aφ1 ]

2 = 0. (3.179)

The non-trivial issue is to verify that the coefficients do vanish in the limit Ar 6= 0,

just as it were for the case when A3 6= 0 in (3.162). To see whether this is still the

case, let us consider two coefficients c0φ1 in (3.119) and a1 in (3.106). For the benefit

of the discussion, we reproduce them once again as:

a1(θ) = R3 sec θ

∫ ∞
0

dr
ã1

√
F1F̃2F3

F1

2

√
F̃2 +

ã2F3

ã1

√
F̃2 − F3

ln

∣∣∣∣∣∣
√
F̃2 +

√
F̃2 − F3√

F̃2 −
√
F̃2 − F3

∣∣∣∣∣∣


c0φ1(θ) = R3 sec θ

∫ ∞
0

dr
ã1

√
F1F̃2F3

e−2φ0

2

√
F̃2 +

ã2F3

ã1

√
F̃2 − F3

ln

∣∣∣∣∣∣
√
F̃2 +

√
F̃2 − F3√

F̃2 −
√
F̃2 − F3

∣∣∣∣∣∣
 ,

(3.180)

where ã1 and ã2 are defined in (3.107). The above two expressions for the coefficients

are well defined for any choices of the warp-factors F1 as we discussed earlier. We

now see that the two coefficients in (3.180) would be the same when:

e2φ0F1 = 1. (3.181)

This condition on F1 remains the same if we compare the other coeffcients appear-

ing in (3.179) namely (b0k, crk) from (3.135) and (3.144); (c11, cαr) from (3.76) and

(3.118); (c12, cψr) from (3.78) and (3.122); and (c03, a2) from (3.117) and (3.109)

respectively. This is illustrated in Table 4. However since F1 is taken to be a non-

trivial function in general, it may not always be possible to impose (3.181). Thus in

this gauge we can take Ar = 0 and θ 6= 0. Interestingly however demanding Ar 6= 0

doesn’t imply vanishing θ. This is therefore different from (3.166) that we had for

the A3 gauge.

Most of the other details, regarding the Hamiltonian, Hitchin equations etc

should be similar to what we discussed earlier once we replace x3 with r. This
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also means that the complex σ field (3.157) will now be σ = A3 + iAφ1 satisfying

relations similar to (3.168). The decoupling of the A3 and Aφ1 scalars would follow

relations similar to (3.169).

A0 = A3 A0 = Ar Relevant Equations

c11, cα3 c11, cαr (3.76), (3.117), (3.118)

b0k, c3k b0k, crk (3.135), (3.145), (3.144)

c12, cψ3 c12, cψr (3.78), (3.121), (3.122)

c0r, a2 c03, a2 (3.118), (3.117), (3.109)

c0φ1 , a4 c0φ1 , a1 (3.119), (3.110), (3.106)

H2 = 1 e2φ0F1 = 1/2 (3.41), (3.5)

Table 4: Comparing various pairs of coefficients in the action for two different gauge

choices A0 = A3 and A0 = Ar. The last entries give us the BPS conditions which can

be got by demanding equality between the individual pair of coefficients for the two gauge

choices.

We could also discuss a slightly different formalism with the gauge choice (3.178)

where the Nahm equation from the corresponding BHN equation may take a more

standard form23. For example with a different choice of the Hamiltonian we may get

our BHN equation to take the following form that is a slight variant of (3.172):

F12 +

√
cψ3

c11

DψA3 − 2i

√
v3d12

c1c11

[ϕ1, ϕ2] = 0, (3.182)

and similarly for the equations for Fαψ. We can see that the Nahm reduction of the

above equation implies that the scalar fluctuations (A3, ϕ1, ϕ2) are all restricted to

the Coulomb branch of the original D3-brane picture as depicted in Table 1. This

also means that the decoupled complex scalar σ is now completely the Higgs branch

scalar field combination σ = ϕ3 + iAφ1 . The story could be developed further, more

or less along the line of our earlier discussions, but we will not do it here and instead

leave it as an exercise for our diligent reader.

3.2.11 First look at the t parameter and the BHN equations

The analysis that we performed in the above section assumed c2 = 0 for simplicity.

It is now time to switch on the c2 parameter and see how the results changes. In the

process we can analyze the three BHN equations (3.172) and (3.177). Our procedure

would be to compare our results with the ones given in [11] and [13] and express them

in a language suitable for later developments. First, we will write our complexified

23Alternatively we could take the same gauge choice (3.161) but use a different mapping (3.282)

of the scalars instead of the original mapping (3.156). In fact the mapping (3.282) will be useful

later to elucidate the physics in the presence of a surface operator.
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gauge coupling τ using supergravity variables. Switching on c2 in (3.153) and (3.158),

this is expressed as:

τ ≡ c1

(
q sin θ +

ic11

v3

)
, (3.183)

where the expression for (c1, c11, v3, q) are given earlier as (3.63), (3.76), (3.66) and

(3.67) respectively. The above expression (3.183) is for NC deformation, and if we

replace sin θ with 1
2

sin 2θ and assume that (c11, v3) are now given by (3.82) and

(3.71) respectively, we will get the functional form for τ with RR deformation θ. In

the following however we will continue using the NC deformation θ, although the RR

deformation is equally easy to implement. To proceed, let us define another quantity

called t, in the following way:

t ≡ ± |τ |
τ

= ±

(
v3q sin θ√

c2
11 + v2

3q
2 sin2θ

− ic11√
c2

11 + v2
3q

2 sin2θ

)
, (3.184)

which is in general a complex number, and becomes a purely imaginary number

t = ±i when the θ parameter vanishes or when c11 becomes very large compared to

other parameters appearing in (3.184). On the other hand when v3q sin θ >> c11, t

approaches t = ±1. Once we replace sin θ by 1
2

sin 2θ, alongwith certain appropriate

changes mentioned above, we will get the expression for the RR deformation. Note

that similar arguments can be made for the limit t = ±i, whereas for the other limit

t = ±1, the condition becomes v3q sin 2θ >> 2c11.

What is the usefulness of the parameter t? As discussed in [11] and in [13] t is

useful in expressing the BHN equation in terms of topologically twisted variables24.

In general however we don’t have to incorporate topological twist to express the BHN

equation in terms of t. For example the BHN equations, as they appear in [11] with

topological twist, can be expressed as:

(F − φ ∧ φ+ tdAφ)+ =
(
F − φ ∧ φ− t−1dAφ

)−
= Dµφ

µ = 0, (3.185)

where φµ are twisted scalar fields (see details in [11]), the ± appearing above denote

self-dual and anti-self-dual expressions respectively. Without the topological twist,

the last equation in (3.185) is clearly our equation (3.174).

Adding the self-dual and the anti-self-dual parts of (3.185), and removing the

topological twist so as to express everything in the language of standard gauge the-

ory25, the equation that we get for the F12 component the gauge fields can be ex-

pressed as:

F12 +

(
t+ t−1

2

)
Dψφ0 +

(
t− t−1

2

)
D[1φ2] + 2 [φ1, φ2] = 0, (3.186)

24There are other and more deeper reasons for introducing t in gauge theory, especially topological

field theory, which will be elaborated later.
25We are a bit hand-wavy in describing the details here, but before the readers despair we want

to assure that our sloppiness will be rectified in the following sections.

– 60 –



where we have assumed the four-dimensional coordinates to be (x0, x1, x2, ψ). Before

comparing this equation with (3.172), we should ask whether incorporating c2 back

in (3.158) changes the form of (3.172). The gauge theory part of the action (3.153)

now reproduces the following Hamiltonian26:

H2 =
2i

τ − τ̄
Tr

(
c1c11F0i

v3

+ τ εijkFjk
)(

c1c11F0i

v3

+ τ̄ εilmF lm
)
, (3.187)

where τ is given earlier in (3.183). In the presence of the scalar fields of (3.153), the

above Hamiltonian will reproduce the Hamiltonian (3.158) apart from the additional

pieces:

c1q sin θ

∫
Tr F ∧ F +

v3c1q
2

c11

sin2θ

∫
Tr F ∧ ∗F , (3.188)

depending on how all the terms are arranged as sum of squares. An alternative way

of putting F and ∗F inside the sum of squares could also be performed, but in the

end the final results shouldn’t differ. The former way of separating the topological

piece from the non-topological pieces has one advantage: the BHN equations (3.172)

etc., remain mostly unaltered.

The definition of t in (3.184) is motivated from [11], and one may see that when

θ = 0, t takes the value of ±i. However what definition of t we use is up to us:

for every choice of t there is a topological field theory although choosing a t that

may be an arbitrary complex number would break supersymmetry. Furthermore the

appearance of q(θ) in (3.184) will complicate the subsequent analysis as knowing the

precise value of q(θ) from (3.67) requires knowing the background fluxes in M-theory

in full details. We can then use our freedom to choose θ, using Set 2 in (3.166), to

make q(θ) = 1 for θ = β. Therefore let us define t, when θ = β, using the functional

form similar to (3.184) but without any adjoining q(β), namely27:

t ≡ ±

(
v3 sin β√

c2
11 + v2

3 sin2β
− ic11√

c2
11 + v2

3 sin2β

)
, (3.189)

but now with β, a specific angle, instead of the generic NC parameter θ, that can be

used to parametrize the warp-factors Fi in the following way:

Fk ≡ Fk(r; β), F4 ≡ F4(r, x8, x9; β), (3.190)

in (3.5), where k = 1, 2, 3. The question that we want to ask is whether this could

lead to a consistent description.

26Needless to say, this is the special case with c11 ∝ c12, where c11 and c12 are defined in (3.76)

and (3.78) respectively. The picture is not hard to generalize, but we will not do so here.
27We could also define ṽ3(θ) ≡ v3(θ)q(θ) and replace all v3 appearing below by ṽ3. This will lead

to identical conclusion.

– 61 –



Before answering this, we should also note that the scalar fields used here are

(φ0, φ1, φ2), which should be compared to (3.156), and also note the apparent absence

of i in the equation compared to our set-up28. However, with |t|2 = 1 and t given as

(3.189), t + t−1 is real but t − t−1 cannot be real29. This means, and according to

(3.156), we can now identify our relevant scalars and gauge-field components with

the ones in [11] in the following way:

Aµ = −iAµ, ϕ3 = −iφ0, ϕ1 =

(
c1C11

v3d12

)1/4

φ1, ϕ2 =

(
c1C11

v3d12

)1/4

φ2 (3.191)

Fµν = −iFµν ,Dαϕ1 =

(
c1C11

v3d12

)1/4

Dαφ1,Dαϕ2 =

(
c1C11

v3d12

)1/4

Dαφ2,Dβϕ3 = −iDβφ0,

where Dαφk = ∂αφk + [Aα, φk]; (c1, v3, d12) are defined earlier in (3.63), (3.66) and

(3.142) respectively; and the new parameter C11 can be expressed as:

C11 ≡ c11

(
1 +

v2
3 sin2β

c2
11

)
, (3.192)

where c11 is given in (3.76). For vanishing q(β), C11 and c11 coincide. Therefore using

the identifications (3.191), we can reexpress (3.172) in the following suggestive way:

F12 +

(
bψ3v3

c1C11

)1/2

Dψφ0 + i

(
b2

12v3

c1C11d12

)1/4

D[1φ2] + 2 [φ1, φ2] = 0, (3.193)

where (bψ3, b12) are defined in (3.137) and (3.135) respectively. Comparing (3.193)

with (3.186), we can easily identify:

t+ t−1 = 2

(
bψ3v3

c1C11

)1/2

≡ 2ξ1, t− t−1 = 2i

(
b2

12v3

c1C11d12

)1/4

≡ 2iξ2, (3.194)

where ξi are defined accordingly. Note that there are two equations for t and therefore

we should expect some relation between ξ1 and ξ2. Solving the first equation in

(3.194) gives us the following expression for t:

t = ξ1 ± i
√

1− ξ2
1 , (3.195)

which should now be compared to (3.184) that we found earlier. Equation (3.195)

implies two possible values for t (which are the two solutions of the quadratic equation

(3.194)), consistent with (3.184). Therefore using (3.195), (3.194) in (3.184), we get:

sin2β =
c11(β)bψ3(β)

c1(β)v3(β)
, (3.196)

28We define Daφc = ∂aφc+[Aa, φc] compared to Daφc that has an i in the definition (see (3.116)).
29Unless of course t = ±1, in which case t− t−1 = 0. We will discuss this case later.

– 62 –



where the β dependence of c11(β) and bψ3(β) can be read from (3.76) and (3.137) re-

spectively in the limit θ = β when we assume that the warp factors are parametrized

by β.

Observe that the above equation (3.196) has two free variables: the parameter β,

and the asymptotic value of the gauge field e2φ0 . Thus the above relation connects β

with e2φ0 . To determine them individually we will require another relation between

them. In fact this appears from the second equation for t in (3.194) in the following

way. Solving it, we get:

t = iξ2 ±
√

1− ξ2
2 . (3.197)

This should be related to (3.195), otherwise it will lead to certain inevitable contra-

dictions. Equating (3.197) to (3.195), leads to:

ξ2
1 + ξ2

2 = 1, (3.198)

which when expressed in terms of supergravity variables described above in (3.194),

leads to the following relation between the coefficients:

bψ3

√
v3

c1C11

+
b12√
d12

=

√
c1C11

v3

, (3.199)

which as expected should provide another relation between β and e2φ0 . To see this

let us go back to the definations of the parameters appearing in (3.199) and (3.196)

all in the limit θ = β: b12(β) in (3.135), d12(β) in (3.142), v3(β) in (3.66), c11(β) in

(3.76), bψ3(β) in (3.137) and c1(β) in (3.63), and isolate their e2φ0 dependences in

the following way:

c1(β) ≡ eφ0〈c1(β)〉, v3(β) ≡ eφ0〈v3(β)〉, bψ3(β) ≡ 〈bψ3(β)〉
b12(β) ≡ e2φ0〈b12(β)〉, d12(β) ≡ e2φ0〈d12(β)〉, c11(β) ≡ e2φ0〈c11(β)〉,(3.200)

here 〈amn〉 is simply used to denote the form for amn sans the dilaton dependence

eφ0 . Plugging (3.200) in (3.196) and (3.199), we get the following relations between

the two free parameters β and eφ0 :

e2φ0 =
b̂1(β)

b̂3(β)− b̂2(β)
, e2φ0 =

â1(β)

â3(β)− â2(β)
, (3.201)

which when solved simultaneously should provide the values for β, the parameter

used for defining t at θ = β, and eφ0 , the aymptotic value of the dilaton. The

coefficients appearing in (3.201) are defined, using (3.200), in the following way:

â1 =

√
〈bψ3〉2〈v3〉
〈c1〉〈C11〉

, â2 =
〈b12〉√
〈d12〉

, â3 =

√
〈c1〉〈C11〉
〈v3〉
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b̂2 = 〈C11〉2〈bψ3〉, b̂1 = 〈v3〉2〈bψ3〉sin2β, b̂3 = 〈v3〉〈c1〉〈C11〉sin2β, (3.202)

where we have defined 〈C11〉 using the relation C11 = e2φ0〈C11〉, which is similar to c11

defined in (3.200) above. However the definition of C11 in (3.192) will yield:

C11 = e2φ0〈C11〉+O(φ0), (3.203)

and therefore in the limit φ0 << 1, the above analysis can be trusted. Additionally,

since eφ0 is a positive definite quantity, the two equations in (3.201) only makes sense

if b̂3 ≥ b̂2 and â3 ≥ â2. In the language of the gauge theory coefficients, this would

imply:

〈v3〉〈c1〉
〈C11〉〈bψ3〉

≥ cosec2β,
〈C11〉〈c1〉
〈v3〉

≥ 〈b12〉2

〈d12〉
, (3.204)

where (c1, c11, v3, bψ3, b12, d12) are defined in (3.63), (3.76), (3.66), (3.137), (3.135)

and (3.142) respectively. We expect the condition (3.204) to be compatible with the

following equation, used to determine the parameter β:

b̂1(β)

b̂3(β)− b̂2(β)
=

â1(β)

â3(β)− â2(β)
, (3.205)

which indeed is the case as (3.205) leads to the following relation between the gauge

theory coefficients formed as a juxtaposition of the two inequalities, discussed above

in (3.204), in the following way:

〈v3〉〈c1〉sin2β

〈C11〉〈bψ3〉
=

√
〈C11〉〈c1〉〈d12〉
〈v3〉〈b12〉2

. (3.206)

So far the analysis have moved smoothly and we have results that are apparently

self-consistent. There is however one issue that is not completely satisfactory, and

it appears at the point where we identified the scalars, namely (ϕ1, ϕ2, ϕ3) with the

ones of [11], namely (φ0, φ1, φ2), in (3.191). Using the identification (3.191), the

resulting action does not have the full canonical form. A way out of this would be to

insert
√
−1 in the definition of (ϕ1, ϕ2) in (3.191). However this will imply t− t−1 to

be real once we identify (3.172) with (3.186), leading to a contradiction, unless we

impose the following condition:

D[1φ2] ≡ D1φ2 −D2φ1 = 0. (3.207)

Now with appropriate identification of the scalars (ϕ1, ϕ2) with (φ1, φ2), the BHN

equation for our case takes the following form:

F12 +

(
bψ3v3

c1C11

)1/2

Dψφ0 + 2 [φ1, φ2] = 0, (3.208)
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which one may now compare with the BHN equation discussed in [11] and [13] for

t 6= ±1. The way we have defined things here, the BHN equation comes with

relative plus signs, but we can always redefine the variables so as to allow for the

anti-symmetric condition (3.207).

The discussion in the last couple of pages was intended to convince the reader

that we have ample independence in defining the parameter t. Once the parameter

t is chosen, we can define the other variables in the problem appropriately to give

us consistent results as we saw above. For θ 6= 0, t is in general a complex number

different from ±i, and therefore a definition like (3.184), used in [11], could as well

suffice without resorting to the fixed parameter β to make q(β) = 1. However, now

due to (3.187), the BHN equation will change a little from (3.193) to the following

more generic form:

F12 +

[
bψ3(τ − τ̄)

2i|τ |2

]1/2

Dψφ0 + i

[
b2

12(τ − τ̄)

8i|τ |2d12

]1/4

D[1φ2] + 2 [φ1, φ2] = 0, (3.209)

by appropriately defining m
(1)
δk and g

(1)
αβkl in (3.158) and using the scaling relations

similar to (3.191). Note that the form of (3.209) may not be unique if we allow

for other components of the scalar fields. However once we choose the appropriate

number of scalar fields, we may use the components m
(1)
δk and g

(1)
αβkl to always bring

the BHN equation into the form (3.209).

Comparing (3.209) with (3.186), and using the definition of t as in (3.184), it is

easy to see that the NC parameter θ now satisfies a relation similar to (3.196):

sin2θ =
bψ3(θ)c11(θ)

q2(θ)c1(θ)v3(θ)
. (3.210)

We should note a few details regarding the above relation. One, for the RR defor-

mation, the LHS of the above relation (3.210) will be replaced by 1
2

sin 2θ alongwith

appropriate changes to v3 as in (3.71), c11 as in (3.82) and bψ3 as in (3.149) with the

functional form for c1 remaining similar to (3.63) as before30. Two, when θ vanishes,

we expect the RHS of (3.210) to vanish. This may not be too obvious from the form

of bψ3 in (3.149), so we may use an alternative way to express this by redefining bψ3

as:

bψ3 =
σ0c1c11

v3

, (3.211)

where σ0(θ) is a positive definite θ-dependent constant. We can now use (3.211) to

rewrite (3.210) in the following suggestive way:

c1q sin θ(
c1c11
v3

) ≡ Θ/2π

4π/g2
YM

=
√
σ0, (3.212)

30As discussed earlier, this change is valid only for small RR deformation parameter θ. For finite

θ the relation (3.72) gets corrected, and therefore the LHS of (3.196) will change accordingly.
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from where the vanishing of bψ3 when θ vanishes amounts to the vanishing of σ0.

While the above step may not shed much tranparency to the vanishing issue, our

rewrite of (3.210) in terms of (3.212) will be useful later on.

On the other hand, we can use (3.197) to express the second term in the BHN

equation (3.209) in terms of the known variables. This will give us:

b2
12

d12(1 + σ0)
=

c1c11

v3

. (3.213)

The above relation should be compatible with (3.198) and (3.199) even if we switch

off θ in our equations. In general, equation like (3.199) follows provided c11 is replaced

by its θ-dependent cousin:

c11(0) → sec θ c11(0)− 2R3 sin2θ sec3 θ

∫ ∞
0

dr e2φ F2
∂G0

∂F2

∂F2

∂r
, (3.214)

in (3.199) for small θ, where G0(F1, F2, F3) is the integrand in (3.76). Other relations

like the ones discussed above should follow, and one may easily check that the overall

picture is still expectedly consistent. We will not elaborate further on this, instead

however we will try to express (3.213) in a way that may be a bit more transparent

with the analysis of [11] by redefining b12 and d12 as:

b12 =
γ0c1c11

v3

, d12 =
κ0c1c11

v3

, (3.215)

which is similar to the definition (3.211) studied above. The coefficients (γ0, κ0) are

constants, just like σ0 in (3.211) above. They can be related to each other via:

γ2
0 = κ0(1 + σ0), (3.216)

which is easily got by plugging (3.215) in (3.213). We could also rewrite all the other

coefficients appearing in our original lagrangian (3.153) as (3.215) so that they are

all proportional to c1c11
v3
≡ 4π

g2YM
. This way the overall four-dimensional lagrangian

will take the familiar form given in [11] and a direct comparison to the results of [11]

can then be performed succinctly. We will however leave this as an exercise for our

attentive readers.

Let us now come to the other two BHN equations for our case, namely the two

equations in (3.177). We can rewrite them using t and the definitions (3.191) in the

following way:

Faψ +

(
t+ t−1

2

)
Dbφ0 +

(
t− t−1

2

)
Dψφa = 0, (3.217)

where a = 1, 2 and we can allow a relative sign difference by allowing the sign choice

for (ϕ1, ϕ2) identifications in (3.191). As before, noticing that t− t−1 cannot be real,
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and preserving the canonical form of the action, we conclude31:

Dψφa = 0 =⇒ Dψφ1 = Dψφ2 = 0. (3.218)

At this stage there seems to be two possibilities: we can either identify t+ t−1 with

the coefficients of the Dbφ0 terms, or we can assume that Dbφ0 terms themselves

vanish. The former leads to two relations, but since b23 = b13 we will only have one

quadratic equation in t. However we will have to identify this to the one that we got

earlier in (3.194) otherwise there will be contradictions. This means:

c11

c12

=
bψ3

b23

. (3.219)

Looking at (3.76) for c11, (3.78) for c12, (3.137) for bψ3 and (3.135) for b23 = b13,

we can see that (3.219) is definitely not generic. Under special choices of the warp

factors one might be able to recover (3.219) but generically (3.219) will be hard

to satisfy. Thus the second option seems more viable. Interestingly, imposing the

second condition:

D1φ0 = D2φ0 = 0 =⇒ F1ψ = F2ψ = 0, (3.220)

which is equivalent to putting a flat connection along ψ direction. This further means,

from (3.218), the scalar fields (φ1, φ2) are covariantly constant along ψ direction, with

φ0 being covariantly constant along (x1, x2) directions. Thus the non-trivial scalar

fields φ1 ≡ φ1(x1, x2, ψ) and φ2 ≡ φ2(x1, x2, ψ) satisfy:

D1φ1 = −D2φ2, D1φ2 = D2φ1

F12 +

[
bψ3(τ − τ̄

2i|τ |2

]1/2

Dψφ0 + 2 [φ1, φ2] = 0, (3.221)

assuming φ0 to not be covariantly constant along ψ direction. The system is therefore

tightly constrained, but note that for t = ±1, the second constraint in (3.221) is

relaxed32. The first and the third equation in (3.221) are thus related to the equations

(3.185) (see also [11] and [13]). The Gauss law equation (3.154) puts no additional

constraints on (φ1, φ2) in this gauge.

We will soon solve these set of equations, but for the time being we will postpone

this to concentrate on identifying the supergravity variables used here to the gauge-

theory variables described in [11] and [13].
31There is an alternate way of expressing (3.218), after twisting, that is sometime useful although

the resulting constraint may be a bit weaker than (3.218). To see this combine the two relations in

(3.218) as:

Dψφ1 − iDψφ2 = ∂ψϕ12 + [Aψ − iφ0, ϕ12] = 0

where ϕ12 ≡ φ1− iφ2 with φi being the twisted scalar (see footnote 16) and we have used a shifted

gauge field using the twisted scalar φ0. Since φ0 decouples via (3.171) (using the identification

(3.156)) both unshifted and the shifted fields will have the same effect here.
32The first constraint can be expressed as D0φ0 + D1φ1 + D2φ2 + Dψφ3 = D1φ1 + D2φ2 = 0,

where we have defined A3 = −iφ3. This is exactly Dµφµ = 0 in (3.185).
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3.2.12 Identifying supergravity and gauge theory parameters

In the previous section we have developed the full gauge theory data from our M-

theory analysis. It is encouraging to see how the Bogomolnyi-Hitchin-Nahm (BHN)

equation appears naturally from out set-up. However we have been a bit sloppy

in describing two things: the appearance of t given in (3.184) and the appearance

of a to describe the boundary gauge theory as in [12], [11], and [13]. Our initial

identification of a with the NC parameter θ in (3.70), although matched with [11],

was actually accidental. Once the effect of U4 in (3.60) is added, we no longer expect

a = tan θ
2

for both NC and RR deformations. The identification of a with the sugra

variables will have to be more non-trivial, and finding this will allow us to describe

the other parameter, called t here (3.184) and in [11] and [13] respectively, more

succinctly.

With all the development that we carried out in the previous section, it is not

too hard to make an ansätze for a using the background data. In the begining we

used (3.69) to define a for the Yang-Mills data (c1, c2). However now the Yang-Mills

data have changed by the inclusion of U4. Let us then define a using the new data

in the following way:

Θ/2π

4π/g2
YM

=
v3q sin θ

c11

≡ 2a

1− a2
, (3.222)

where c11 is given in (3.76) and v3 is given in (3.66). This would be the natural

extension of (3.69) and is motivated by the connection between the gauge theory Θ
2π

parameter and the Yang-Mills coupling 4π
g2YM

described in [12] and [11]; and also in

(3.212) earlier. The above relation to a will continue to hold once we replace the

sin θ appearing in (3.222) by 1
2

sin 2θ, where θ will now be the RR deformation.

For our case and assuming θ, for simplicity, is providing the NC deformation, the

definition of a in terms of the sugra variables can then be expressed as33:

a ≡

√
1 +

c2
11

v2
3q

2 sin2θ
− c11

v3q sin θ
, (3.223)

that follow naturally from (3.222). Additionally it is easy to verify, for NC deforma-

tion, the definition of t in (3.184) can be re-expressed in terms of a as:

t =
2a

1 + a2
− i
(

1− a2

1 + a2

)
≡ −i

(
1 + ia

1− ia

)
, (3.224)

precisely as in [12] and [11]. Once again, with appropriate modification, one may

describe an exactly similar relation with the RR deformation parameter θ.

So far our discussions have been self-consistent, and the results could be com-

pared to [11]. However note that the introduction of the t parameter in our model is

33There is a relative sign ambiguity, but that can be absorbed by redefining θ.
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not unique. There are other ways to introduce this parameter which may also lead

to consistent results. In the following we will elaborate this and in turn determine

the electric and the magnetic charges QE and QM respectively in (3.158). To start,

we will first rewrite the relevant parts of the Hamiltonian H using (3.187) once we

switch on c2 parameter, in the following way:

H =
2∑

α,β=1

∫
d3x Tr

(√
2i|τ |2
τ − τ̄

Fαβ +
3∑

δ,k=1

√
bδkεαβm

(1)
δk Dδϕk −

∑
k,l

ig
(1)
αβkl

√
dkl [ϕk, ϕl]

)2

2∑
α=1

∫
d3x Tr

(√
2i|τ |2
τ − τ̄

Fαψ +
3∑

δ,k=1

√
bδkεαψm

(2)
δk Dδϕk −

∑
k,l

ih
(1)
αψkl

√
dkl [ϕk, ϕl]

)2

+
1

2

∫
d3x ε0αβγ (τ + τ̄) Tr F0αFβγ + QE + QM, (3.225)

where τ is given by (3.183), and the other parameters have been defined earlier34.

We expect QE = 0 if the warp-factors satisfy (3.162). To determine QM, we can

take the following simplifying condition that we discussed earlier:

√
bδkm

(1)
δk =

√
bδkm

(2)
δk = − εδk

√
2i|τ |2
τ − τ̄

g
(1)
αβkl = −ηkαηlβ

√
2i|τ |2

dαβ(τ − τ̄)
, h

(1)
αψkl = −ηkαηlψ

√
2i|τ |2

dαψ(τ − τ̄)
, (3.226)

which would still satisfy the consistency relations (3.160) because the other coeffi-

cient, namely q
(1)
kl , that does not appear in (3.226), is undetermined and can be used

to our advantage to solve (3.160). Note that (3.226) is more generic than our earlier

choices (3.173) and (3.175), and thus the BHN equations for Fαψ will differ from

(3.176) and (3.177)35. This is good because it simplifies the form for QM, which in

our case will be given by (see also [22]):

QM =
2i|τ |2

τ − τ̄

∫
d3x ∂ψ

{
εαβkTr

(
ϕkFαβ +

i

3
ϕk[ϕα, ϕβ] + ϕαDβϕk

)}
, (3.227)

where the subscript on the scalar fields ϕm are to be interpreted in the way described

earlier. In the absence of any boundary, QM = 0, as should be obvious from (3.227).

In the presence of the boundary W along (x0, x1, x2), as described in sec. (3.2.7),

one might combine the QM piece (3.227) with the topological term in (3.225), to

34The electric and magnetic charges QE and QM respectively are c-numbers as should be evident

from (3.158) and the dim G piece is removed by taking the adjoint trace.
35The decoupling of the two scalars σ and σ̄ as given in (3.167), (3.168) and (3.169) still holds

and therefore they do not appear in (3.225). This situation will change in the presence of surface

operators and other defects, which will be discussed in section 3.3.
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write the following boundary action36:

Sbnd =

∫
V

dx0 QM +
τ + τ̄

2

∫
V

Tr F ∧ F =
τ + τ̄

2

∫
W

Tr

(
A ∧ dA+

2i

3
A ∧A ∧A

)
+

2i|τ |2

τ − τ̄

∫
W

dx0dx1dx2 ε
αβkTr

(
Fαβϕk +

i

3
ϕk[ϕα, ϕβ] + ϕαDβϕk

)
, (3.228)

where V = W × R+ as described in sec. (3.2.7). Under twisting, the three

scalars (ϕ1, ϕ2, ϕ3) become one-forms37 φ =
∑2

µ=0 φµdx
µ, and therefore one might be

tempted to declare (3.228) as the required boundary topological action for the three-

dimensional theory once we convert to Euclidean signature. In fact under twisting

and Euclideanisation, (3.228) almost resembles eq. (2.54) and (2.55) of [11] provided:

φµ →
(
t2 − 1

2t

)
φµ, (3.229)

with t as in (3.184). Unfortunately however the coefficients appearing in the two

terms of (3.228) do not match with the ones in eq. (2.54) and (2.55) of [11]. One

might think that a different scaling of all the fields could bring (3.228) in the required

form where one could compare with [11]. While this might be possible, the physics

leading to the correct boundary topological action is more subtle, and the action

that we got in (3.228), despite its encouraging similarity, is not the complete story.

What have we missed? First note that in the absence of any boundary our

analysis from (3.227) and (3.228) would have implied zero boundary action. However

once we twist our scalar fields (ϕ1, ϕ2, ϕ3) to (φ0, φ1, φ2) we expect, again in the

absence of any boundary, the action Stotal (3.153) to be expressible as:

Stotal → S̃total = {Q, ....}+ (b2 + c2)

∫
V

Tr F ∧ F , (3.230)

where Q is the topological charge, c2 is given earlier as in (3.63) and b2 is a new

coefficient that is not visible in the untwisted theory (see also [12, 11]). When the

theory has a boundary, we expect the second term in (3.230) to give us:

S
(1)
bnd = (b2 + c2)

∫
W

Tr

(
A ∧ dA+

2i

3
A ∧A ∧A

)
, (3.231)

which differs from the coefficient τ + τ̄ of the Chern-Simons term that we got earlier

in (3.228). This difference is crucial and will help us to get the correct boundary

theory.

36The existence of dx0 implies that the action (3.228) is still in the Lorenzian frame, although an

extension to the Euclidean frame is straightformward and will be discussed below.
37Note that previously (3.191) was used to relate scalar fields ϕk with scalar fields φm. Here we

relate scalar fields ϕk with one-forms φµ. Since we are using the same notations for scalar fields

and one-forms, we hope the readers will not be confused as which one is meant should be clear from

the context.
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However (3.231) is not the only boundary term that we get from our analysis.

We expect some variants of the second term in (3.228) to also show up, albeit with

twisted scalar fields. Infact this turns out to be the case, and once we ignore the

scalings (3.229) and (3.226), the boundary terms that we get are now:

S
(2)
bnd =

∫
W

Tr

(
2d1F ∧ φ+

id2

3
φ ∧ φ ∧ φ+ d3 φ ∧ dAφ

)
, (3.232)

where dk coefficients depend on m
(1)
kl and g

(1)
abkl appearing in (3.158) and (3.187),

dA = d+ 2iA is the covariant derivative expressed in differential geometry language

and φ is the one-form constructed from the twisted scalars φµ as depicted above.

The extra factors of 2 in (3.232) as well as in the definition of dA are meant to relate

the wedge products with the commutator brackets.

At this stage one might conclude that we have all the necessary couplings for

our topologically twisted theory. However this is not the case. We have ignored

few other possible ingredients in our construction associated with couplings of the

scalar fields. The first one being related to Myers effect [30], namely the fact that

the fractional D3-branes could also be thought of as the puffed up version of a single

spherical fractional D5-brane38.

It is crucial to get the orientations of various branes right. The wrapped D5 -

D5 pairs are oriented along (x0, x1, x2, x3, r, ψ) such that the D3-branes that we are

concerned with can be viewed as along (x0, x1, x2, ψ). The effective theory on the D3-

branes have been worked out in details in earlier sections using M-theory multi Taub-

NUT configuration oriented along (θ1, x8, x9, x11). The spherical D5-brane (which

has no net D5-brane charge) is along the space-time directions (x0, x1, x2, ψ) with

a two-dimensional projection along (θ1, x8, x9) directions for both the gauge choices

A0 = A3 and A0 = Ar respectively.

The second type of couplings could be associated with the interactions of the NS

three-form field strengths with the non-abelian brane configuration. These couplings

are different from the usual couplings of the NS three-form field strengths with the

brane in the sense that the couplings originate from the orthogonal components of

the three-form field strengths with the non-abelian scalars of the brane (thus they

are absent in the abelian case).

The final set of couplings appear when one goes from the non-abelian nature

of the scalars to their twisted version. To see this consider the boundary coupling

(3.232). If we do not resort to the simplifying conditions (3.226), we see that the dk

38Recall the fractional brane origin of the D3-brane, namely it being a D5 - D5 pair. In the

presence of multiple fractional D3-branes, there will be multiple pairs of D5 - D5 branes wrapped

on the Taub-NUT two-cycles. Once we move the D5 branes along the Coulomb branch in the

IIB picture, we can describe the physics using a multi-centered Taub-NUT configuration in the

M-theory lift. Thus in the spherical D5-brane picture, the bound fractional D3-branes are secretly

D5 - D5 pairs much like bound D0-branes on a spherical D2-brane.
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coefficients satisfy:

d1 ∝ m
(1)
δk

√
bδk, d3 ∝ g

(1)
αβkl

√
dkl, d2 ∝ d1d3, (3.233)

which is direct descendent of the properties of dk before twisting. The constraint

(3.233) may not hold once we twist the scalars. However if we want to keep the

constraint (3.233), we can insert an additional cubic coupling of the twisted scalars.

All these can be achieved by allowing the following couplings:

Sadd =
i

3

∫
dx0dx1dx2dψ Tr

(
ΦiΦjΦk

) [
e1 (F7)012ψijk + e2 (H3)ijk

]
, (3.234)

where we expect e1 to be proportional to ±e2 with the sign determining whether it is

a brane or an anti-brane, and Φi are the scalar fields ϕk that we discussed above. The

seven-form field strength accomodates both the Myers effect as well as the changes

in the coupling when ones goes from one description to another39. This can be seen

by twisting the non-abelian scalar in (3.234) to reproduce the following boundary

action:

S
(3)
bnd =

i

3
(e1n1 + e2n2)

∫
W

Tr (φ ∧ φ ∧ φ) , (3.235)

where n1 and n2 are related to the expectation values of F7 and H3 respectively. In

deriving (3.235) we have assumed the integrand in (3.234) to be independent of ψ.

We now have all the necessary boundary bosonic couplings. Combining (3.231),

(3.232) and (3.235), we can get the full action on the boundary W, parametrized by

coordinates (x0, x1, x2), as:

Sbnd = (b2 + c2)

∫
W

Tr

(
A ∧ dA+

2i

3
A ∧A ∧A

)
(3.236)

+

∫
W

Tr

[
2d1F ∧ φ+

i

3
(d2 + n1e1 + n2e2)φ ∧ φ ∧ φ+ d3 φ ∧ dAφ

]
.

Comparing the boundary action with (3.225), we can make a few observations on

the dk coefficients without actually computing them. First, and as we discussed

above, we can continue using (3.233) even when we have twisted scalars. Thus the

second coefficient d2 gets fixed once (d1, d3) are determined. Secondly, we can use

the ambiguity of (m
(1)
δk , g

(1)
αβkl) to fix the form of d3 in terms of d1. As we discussed,

39The seven-form field strength originates from dimensional reduction of a nine-form field strength

of the form F9 = ∗dC0+F9, where C0 is the axion and F9 is a nine-form d5ε0123ψrθ189 with constant

coefficient d5. For the specific case that we study we have no axion switched on, and no three-form

with components (H3)θ189. However this is not generic, as we can easily change the identification of

the scalars (3.156) to allow for the required components of the three and the effective seven forms.

To take care of this we express the couplings generically as (3.234).
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from (3.233), this way d2 also gets fixed in the process once d3 is fixed. Thus we can

have:

d3 =
d2

1

b2 + c2

, d2 =
d3

1

(b2 + c2)2
, (3.237)

where (b2, c2) are the coefficients that appear in (3.236). The (b2 + c2) factors in the

dk coefficients guarantee that the Chern-Simons coupling remain (b2 + c2) instead of

shifting to another value. The choice (3.237) is motivated from the scaling argument

that we performed earlier in (3.229).

The last bit of information that we need to complete the story is the value for

the interaction term (3.234). As we see in (3.234), the values for (n1, n2) depend on

the background fluxes F7 and H3. We can fix the background data from the start in

(3.4) in such a way that:

n1e1 + n2e2 ≡ d2 =
d3

1

(b2 + c2)2
, (3.238)

which in fact governs the way the warp-factors Fi in (3.5) are chosen. This is good

because so far we have left the warp-factors Fi in (3.5) undetermined. Thus after the

dust settles, our boundary action takes the following form:

Sbnd = (b2 + c2)

∫
W

Tr

(
A ∧ dA+

2i

3
A ∧A ∧A

)
(3.239)

+

∫
W

Tr

{
2d1F ∧ φ+

2i

3

[
d3

1

(b2 + c2)2

]
φ ∧ φ ∧ φ+

(
d2

1

b2 + c2

)
φ ∧ dAφ

}
= (b2 + c2)

∫
W

Tr

{[
A+

(
d1

b2 + c2

)
φ

]
∧ d
[
A+

(
d1

b2 + c2

)
φ

]
+

2i

3

[
A+

(
d1

b2 + c2

)
φ

]
∧
[
A+

(
d1

b2 + c2

)
φ

]
∧
[
A+

(
d1

b2 + c2

)
φ

]}
,

where the coefficients b2 and d1 are yet to be determined from the background data.

Interestingly however, even though we do not have the precise functional form for

the two coefficients b2 and d1, the second equality combines the original gauge field

A with the twisted scalar field φ to give us a new gauge field:

Ad ≡ A+

(
d1

b2 + c2

)
φ, (3.240)

using which we have defined another Chern-Simons theory with a coupling constant

(b2 + c2) in the following way:

Sbnd = (b2 + c2)

∫
W

Tr

(
Ad ∧ dAd +

2i

3
Ad ∧ Ad ∧ Ad

)
, (3.241)

which is the topological field theory that we have for our boundary manifold W. One

may check that our considerations have led to the same topological theory envisioned

by Witten in [11] but using completely different techniques.
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3.2.13 More on the Chern-Simons theory and S-duality

There are a few details regarding the Chern-Simons theory written above in (3.241)

that needs clarifications. First, the Chern-Simons theory is expressed in terms of

the modified gauge field Ad which in turn can be expressed in terms of the original

gauge field A and the twisted scalar φ via (3.240). The factor d1 appearing above is

not arbitrary and can be determined using supersymmetry condition:

δAµ +
d1

b2 + c2

δφµ = − iλ̄
(

Γµ +
d1

b2 + c2

Γ4+µ

)
ε = 0, (3.242)

where λ is the fermion of the supersymmetrc multiplet and ε is the supersymmetric

transformation parameter. We have used the similar notations to express the Γ-

matrices as in [11] and therefore the RHS of (3.242) follow same algebra as in [11].

The Γ-matrices chosen here are the flat space Γ-matrices as they are related to

the effective theory (3.153) defined on four-dimensional spacetime parametrized by

(x0, x1, x2, ψ). Although our model is inherently supersymmetric from the start, it

may be interesting to revisit the issue of supersymmetry so we could directly compare

our analysis with that of [11]. The original orientations of the branes are given in

Table 3 and therefore it is easy to see that we have the required Lorentz symmetry

of:

SO(1, 2) × SO(3) × SO(3), (3.243)

where SO(1, 2) correspondings to Lorentz rotation along (x0, x1, x2) directions; the

first SO(3) corresponds to rotation along (x3, x8, x9) directions associated with the

Coulomb branch of the theory on the D3-branes; and the second SO(3) corresponds

to rotation along (r, θ1, φ1) directions. In the dual type IIB theory where we have

wrapped D5/D5 branes on two-cycle of a Taub-NUT space we can easily allow the

symmetry (3.243) to persist by putting some mild constraints on the warp factors

Fi. Note that this is not a necessary constraint, so at this stage we can see that

for certain choices of the warp-factors we can reproduce precisely the results of [11].

Similar arguments can be given for our M-theory construction where we only have a

Taub-NUT space with background fluxes.

Finding a symmetry like (3.243) in our construction means that we can channel

the results of [11] more directly. For example one persistent questions has been

the identity of the parameter t in our set-up. In the last couple of sections we

have mentioned how t could appear in our set-up, and in fact this parameter played

important roles in [12], [11] and [13], so the natural question is to ask where a

parameter like t could fit in our analysis.

To answer this question, it may be intructive to search for the source of t in, for

example, [11]. The 16 dimensional fermionic component in our model decomposes

as two copies of (2,2,2) of the symmetry group (3.243) which, following [11], we
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write it as a vector space V8 ⊗ V2. Thus a supersymmety parameter ε appearing

in (3.242) above can be expressed as ε = η ⊗ ε0, where η is an element of V8 and

ε0 is an element of V2. Supersymmetry therefore requires us to find two functions

(Q2, Q3) that may be used to express the susy relation:[
1 +

1

2
(Q2 −Q3) B0 +

1

2
(Q2 +Q3) B1

]
ε0 =

(
1 Q2

Q3 1

)
ε0 = 0, (3.244)

where B0 and B1 are two two-dimensional matrices given in eq (2.4) of [11]; and ε0 is

normalised as ε0 =

(
−a

1

)
similar to [11]. This is the same a that appears in (3.222)

above and is related to the θ-angle via (3.223). The two functions (Q2, Q3) are then

functions of the parameter a and it is easy to see that to solve (3.244) we need:

Q2 ≡ a, Q3 ≡
1

a
. (3.245)

The picture developed above is before twisting, and so the natural question is to

ask about the susy condition after twisting. Again following the notation of [11], we

can define the susy parameter ε to be ε = εL + tεR. This is where the parameter t

appears in our picture, and one can easily see that t has to be a function of a so that

a relation like (3.244) may be constructed for ε after twisting. What value of t(a)

is allowed so that supersymmetry is preserved both before and after twisting? The

answer, as worked out in [11], is:

t = −i
(

1 + ia

1− ia

)
, (3.246)

which matches precisely with (3.224). This is not surprising because we have tailored

our definition of t in (3.184) so as to reproduce the correct answer (3.246), although

we should note that the definition of t as ± |τ |
τ

is not with an arbritary τ (3.183), but

with a τ constrained via (3.222).

The parameter t, as mentioned above is expressed in terms of a which, in the orig-

inal construction of Witten [11] is related to the axionic background. For us, looking

at the RR deformation (3.32), the axion in our original NS5-D3 brane construction

Table 1 will be given by the following expression:

C0 =
F2e

2φ tan θ

cos2θ + F2e2φ sin2θ

∣∣∣∣
r=r0

, (3.247)

where the parameters have been described earlier. Note that the D3-branes in Table

1 are located at some fixed value of r = r0 as they are oriented along (x0, x1, x2, ψ).

This should be contrasted with the dual D5-D5 picture where the branes wrap the

two-sphere along the (ψ, r) directions. This is of course the reason for the r integrals

in all the coefficients appearing in (3.153).
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Dualizing C0 gives us RR two-form (C2)3ψ as we would have expected from (3.32),

and from the background (3.30). This is not quite the two-form we require from M-

theory point of view to reproduce the topological coupling in (3.153), but as discussed

earlier, the existence of a small amount of NS B-field on the two-sphere oriented along

(ψ, r) directions tells us that we can also allow a RR two-form (C2)3r. Lifting this to

M-theory yields a three-form (C3)3rφ1 as given in (3.67) which we can re-express in

the following form:

C3 = p(θ1, θ) q(θ) sin θ dζθ ∧ dx3 ∧ dφ1, (3.248)

where p(θ1, θ) and q(θ) are arbitrary periodic functions of (θ1, θ) respectively as

described in (3.67), and ζθ is given in terms of a slowly varying function N(r, θ) as:

ζθ =
N(r, θ)

cos2θ +N(r, θ) sin2θ
. (3.249)

The smallness of N(r, θ) in fact tells us that switching on (3.248) will change the

background very slightly in M-theory. The function ζθ is of the form (3.247), so that

the three-form does give us the required topological term or, in other words, the

coefficient c2 of the topological term.

On the other hand if we normalize our warp-factor and the dilaton to satisfy

F2e
2φ = 1 at r = r0, then from (3.247) we see that C0 = tan θ. We can go back to

our definition of a in (3.223) and ask for what values of q(θ), a becomes tan θ
2
. The

answer is the following θ-dependence for q(θ):

q(θ) =
c11 sec θ

v3

, (3.250)

which may be easily derived from (3.67) and (3.222). It is interesting that if we plug

in (3.250) in (3.69), the coefficient c2 becomes:

c2 =
c1c11

v3

tan θ =
4π

g2
YM

(
2a

1− a2

)
, (3.251)

where we have normalized v3 as v3 = 2R3. The above relation is precisely the

coefficient of the Θ-parameter in [11].

All the above discussions point to the consistency of our model, both in terms of

reproducing the correct boundary theory as well as comparing our results to that of

[11]. One issue that we haven’t discussed so far is the issue of S-duality that forms an

integral part of the discussion in [11]. Can we analyze the S-dual picture completely

in terms of a supergravity background with fluxes and without branes, as we did for

the case before S-duality?

The answer turns out to be in affirmative although the computations are a bit

more subtle now. Our aim is to address the analysis completely in terms of supergrav-

ity fields with no branes, so the first choice of S-dualizing the brane constructions
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in Table 1 doesn’t seem to give us the required answer as an S-duality leads to

D3-branes perpendicular to the D5-brane. A further T-duality may lead to D4-D6

system which when lifted to M-theory will have M5-branes in a Taub-NUT geometry.

This is not what we are aiming for, so we have to look for alternative scenario to

study the S-dual background. Interesting the D4-D6 system has been used in [11] to

study the S-dual model.

The alternative scenario appears from the wrapped D5-brane construction that

we developed earlier. The D5-D5 branes wrap the two-cycle of a Taub-NUT geometry

and we move the D5-branes along the Coulomb branch to study the wrapped D5-

branes on the Taub-NUT two-cycle. This picture, as we discussed earlier is not only

equivalent to the brane construction but has a distinct advantage over the brane

model when expressing the explicit supergravity solution.

S-dualizing the wrapped D5-branes, give us wrapped NS5-branes on the Taub-

NUT two-cycle. The directions are important: the NS5-branes are oriented along

(x0, x1, x2, x3) and wrap two-cycle of the Taub-NUT oriented along (ψ, r) directions.

The remaining two directions of the Taub-NUT are along (θ1, φ1) directions. A T-

duality orthogonal to the wrapped NS5-branes, i.e along φ1 direction, converts it to a

multi-centered Taub-NUT space in type IIA theory warping the original Taub-NUT

geometry suitably. Thus we have the following scenario.

• A muti-centered deformed Taub-NUT geometry in type IIA theory where the four-

dimensional gauge theory can be studied from dimensional reduction of type IIA

fields over the multi Taub-NUT space in the way we described earlier.

• A M-theory uplift of the type IIA geometry where the multi Taub-NUT space

develops further warping yet retaining the essential topological properties of the

underlying space. The four-dimensional gauge theory can now be recovered from the

dimensional reduction over the Taub-NUT space and over the M-theory circle.

Both the above techniques will give us the required four-dimensional gauge theory,

but the latter method might be suitable to compare with the results that we had

earlier from M-theory. To start therefore let us write the metric in type IIA theory:

ds2 = −dt2 + dx2
1 + dx2

2 + e2φF1dr
2 +

dx2
3

cos2θ + F2e2φ sin2θ
+

(
e2φF̃2F3 sec2 θ sin2θ1

F̃2 cos2θ1 + F3 sin2θ1

)
dψ2

+ e2φ
[
F3dθ

2
1 + F4(dx2

8 + dx2
9)
]

+
(dφ1 + bφ13dx3 + bφ1θ1dθ1)2

e2φ
(
F̃2 cos2θ1 + F3 sin2θ1

) (3.252)

where the second line is the warped Taub-NUT space that appears from the wrapped

NS5-branes, bθ1φ1 is the component of the RR B-field appearing in (3.32) and b3φ1 is

the RR deformation in (3.32) and is given by the following expression:

bφ13 = F̃2e
2φ tan θ sec θ cos θ1. (3.253)
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It is interesting that the Taub-NUT fibration structure depends on the x3 direction,

and the F1 warp-factors are at least functions of the radial coordinate r. Thus the

Taub-NUT space is non-trivially fibered over the six-dimensional base and at a given

point (r, x3) we can have a well-defined warped Taub-NUT manifold.

The fluxes on the other hand are mostly NS fluxes as the only non-trivial RR flux

component is the three-form (C3)ψrφ1 appearing from the NS B-field switched on the

two cycle in the type IIB side to cancel the D5-D5 tachyons. This is a small amount

of flux, which in turn allows us to have the NS B-field component b3r appearing from

the RR two-form potential (C2)3r responsible for (3.67). The NS B-field in type IIA

is then the following:

B2 =
F̃2 cos θ1 sec θ

F̃2 cos2θ1 + F3 sin2θ1

(dφ1 + bφ13dx3 + bφ1θ1dθ1) ∧ dψ

+ F̃2 e
2φ tan θ sec2 θ dx3 ∧ dψ + b89 dx8 ∧ dx9 + b3r dx3 ∧ dr, (3.254)

with b89 as it appears in (3.32), and the functional form of the b3r component will be

similar to (3.67) i.e we expect b3r to take the following form:

b3r =
Nr sin 2θ cos θ p(θ1, θ) q(θ)

2(cos2θ +N sin2θ)2
. (3.255)

On the other hand the behavior of the type IIA dilaton is interesting. Unlike its type

IIB counterpart (3.31), the parameter eφ only appears in the subleading term, and

the functional form is given by:

eϕA =
sec θ√

F2 cos2θ1 + F3(1 + F2 e2φ tan2θ)sin2θ1

, (3.256)

which means that the type IIA background is in general not weakly coupled. One

may compare this to the type IIA dilaton that we get from the background (3.31)

by T-dualizing along direction φ1 as:

eϕA =
e−3φ/2

√
cos θ

(
1 + F2e

2φ tan2θ
)3/4√

F2 cos2θ1 + F3(1 + F2 e2φ tan2θ)sin2θ1

. (3.257)

We see that there exists a tunable parameter e−3φ/2 that helps us to realize the M-

theory uplift. Such a tunable parameter is absent in (3.256). In fact in the limit

φ→ ±∞, (3.256) yields

eϕA =
sec θ√

F2 cos2θ1 + F3 sin2θ1

∣∣∣∣
φ→−∞

, eϕA =

(
cosec θ cosec θ1√

F2 F3

)
e−φ
∣∣∣∣
φ→+∞

.(3.258)

The former being an O(1) number; whereas the latter vanishes implying that strong

type IIA coupling may be reached although infinite coupling will not be. Thus
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studying the background using M-theory might be more appropriate which, as we

had anticipated earlier, puts an emphasis on the eleven-dimensional uplift. The story

herein should then be somewhat similar to the one that we developed earlier, and

therefore the first step would be the derivation of the harmonic forms. As before, we

will first attempt the single-centered case and then extend this to the multi Taub-

NUT picture.

At a given point in (r, x3), the taub-NUT space takes a simple form if we, without

loss of generalities, put F2(r0) = F3(r0) ≡ a. The other warp-factor F4 remains a

function of (x8, x9) as before. Thus the warped Taub-NUT space at a given point on

(r, x3) takes the following form:

ds2 = e2φ
(
a dθ2

1 + F4 ds
2
89

)
+

e−2φ + a tan2θ

a+ a2 e2φ tan2θ sin2θ1

(dφ1 + bφ1θ1dθ1)2 .(3.259)

The harmonic form will again be written as ω̃ = dζ̃ with the property that ω̃ =

± ∗4 ω̃, where the Hodge-star is over the Taub-NUT space (3.259). The one-form ζ̃

is expressed as:

ζ̃ ≡ g(θ1, x8, x9) (dφ1 + bφ1θ1 dθ1) , (3.260)

where we have used the same notation g that we had used earlier in (3.46). The

functional form of g remains unchanged if we go to M-theory (despite the fact that

in M-theory the warping of our Taub-NUT (3.259) is different). Again, as before we

expect g in (3.260) to satisfy the following set of equations:

1

g

∂g

∂θ1

= ± α1

e2φF4

√
1 + a e2φ tan2θ

1 + a e2φ tan2θ sin2θ1

1

g

∂g

∂x8

= ± α3

a e2φ

√
1 + a e2φ tan2θ

1 + a e2φ tan2θ sin2θ1

1

g

∂g

∂x9

= ± α2

a e2φ

√
1 + a e2φ tan2θ

1 + a e2φ tan2θ sin2θ1

(3.261)

where α2 and α3 are used to express the type IIB B-field component bθ1φ1 as (3.59);

and the vanishing of α1 would imply the θ1 independence of the g function in (3.260).

If we now assume that the dilaton satisfies:

e2φ =
e2φ0

√
F3

 Q̃(r, x8, x9)√
F̃2 cos2θ1 + F3 sin2θ1

 , (3.262)

which when compared to (3.54) would imply Q(r, x8, x9) = Q̃√
F3

, we maintain the

expected consistency in every duality frames. On the other hand the type IIA dilaton
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eϕA at the given point r = r0, in the limit with small θ, is given by:

eϕA =
sec θ√

a
+O(θ2). (3.263)

Since a is a finite non-zero number, the type IIA coupling is finite and an O(1)

number at least for small θ. Thus eleven-dimensional supergravity analysis may

not be able to capture the full details of the theory. This is clear when we try to

compute the four-dimensional axionic coupling from dimensional reduction over the

Taub-NUT space using an analysis similar to (3.62). The functional form of the

three-form entering the topological coupling of M-theory (3.62) is similar to (3.67)

although the components are (C3)3r,11 appearing in turn from the uplift of (3.255).

The precise form is given via:

c̃2 =

∫
Σ̃3

C3

∫
TN

ω̃ ∧ ω̃ (3.264)

= −
∫

2〈C3〉 g2
(
α2

3 − α2
2

)
dr ∧ dx3 ∧ dφ1 ∧ dθ1 ∧ dx8 ∧ dx9 ∧ dx11,

where 〈C3〉 is the value of the three-form that we got in (3.67) and Σ̃3 is the three-

cycle along (r, x3, x11). Expectedly the orientation of Σ̃3 differs from the three-cycle

Σ3 used earlier in (3.63). This is consistent with the fact that the Taub-NUT spaces

in both cases are oriented slightly differently as we saw above. Thus once we re-

arrange the integral properly, we see that c̃2 differs from c2 in (3.63) by at least an

overall minus sign, although the full behavior of c̃2 would require us to get higher

order terms in M-theory. The sign difference indicates S-duality at play, so this is

consistent with expectation.

The question however is why we should expect higher order corrections here. The

answer lies in (3.258). The type IIA couplings is of O(1), and so the 11-dimensional

circle has a finite radius. Thus there is an infinite tower of KK states that would con-

tribute to the M-theory spectra which in turn would enter the supergravity loops to

change the background solution. Of course very massive KK states can be integrated

out in the Wilsonian action, but light states would affect the background. When the

radius of the 11-dimensional circle is infinite, the type IIA coupling is infinite and

the theory is governed by eleven-dimensional supergravity only.

The above discussion implies that the values of (α2, α3) from (3.59) that appears

in the S-dual picture should receive correction so that
∫
ω̃ ∧ ω̃ computed above in

(3.264) from (3.261) will differ from the one given earlier in (3.52). Thus we expect:

c̃2 = − c2

[
R11

2π

(∫
TN2

ω̃ ∧ ω̃∫
TN1

ω ∧ ω

)
+O(δFi)

]
, (3.265)

where we should remember that the two Taub-NUT spaces discussed above (respec-

tively as TN1 in (3.56) and TN2 as (3.259)) not only have different orientations but
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also slightly different warp-factors; R11 is the eleven-dimensional radius; and the

corrections δFi to the warp-factors Fi are the corrections to 〈C3〉.
The Yang-Mills coupling should also change accordingly. To see this we should

compute c̃11, the equivalence of c11 given earlier. We proceed by first defining

F̂i = Fi + δFi for i = 1, 3, 4 and F̂2 = F̃2 + δF̃2, where the variations represent

possible quantum corrections to the warp factors. To the first approximation we

will assume that there are no extra cross-terms in the type IIA metric (3.252) com-

ing from the quantum corrections. A full generalization is technically challenging

because eliminating the cross-terms by redefining the coordinates can make the re-

sultant warp-factors to be functions of all the internal coordinates. However since c̃11

involves finding the determinant of the metric along the directions orthogonal to the

Taub-NUT space, the cross-terms (which are of the same order as δFi) would mostly

contribute to O[(δFk)
2]. Thus the O(δFi) contributions to the determinant can be

viewed coming entirely from the warp-factor fluctuations of the metric (3.252).

This then gives us the explicit form for c̃11 in terms of the warp-factors F̂i, which

have been defined above. The form is similar to what we had earlier because, as one

may verify, the deformations to the type IIA metric (3.252) coming from M-theory

uplift simply gets cancelled in the final expression:

c̃11 =
R3R11

2π
sec θ

∫ ∞
0

dr e2φ0

√
F1F̃2F3

b4(F̃2 − F3)
ln

∣∣∣∣∣∣
√
F̃2 +

√
F̃2 − F3√

F̃2 −
√
F̃2 − F3

∣∣∣∣∣∣
+

∫ ∞
0

dr

(
B1 δF1

F1

+
B2 δF̃2

F̃2

+
B3 δF3

F3

+
B4 δφ

φ

)
, (3.266)

where b4 is given in (3.83), and the first term above is similar to (3.82) except for the

additional factor of R11, the eleven-dimensional radius. The correction terms given

in terms of Bi are all functions of the warp-factors Fi, as one may easily derive. This

means that the four-dimensional Yang-Mills coupling can now be expressed as:

c̃1c̃11

ṽ3

=
c1c11

v3

[
R11

2π

(∫
TN2

ω̃ ∧ ω̃∫
TN1

ω ∧ ω

)
+O(δFi)

]
, (3.267)

where it should be clear from the context that the volumes of the three-cycles ṽ3 and

v3 have different orientations, the former being along (x3, r, x11) and the latter being

along (x3, r, φ1). However since c̃1 and c1 are also oriented differently, the ratios c̃1
ṽ3

and c1
v3

match precisely with the orientations of the Taub-NUT spaces TN2 and TN1

respectively.

The O(δFi) corrections appearing in (3.267) and (3.265) are, at this stage, arbi-

trary but we expect them to be proportional to each other40. In general they are not

40Both the O(δFi) corrections are integrated over all the coordinates, and especially r and θ1, so

they are only functions of the NC (or RR parameter) θ.
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equal, so it will be instructive to see how they are related to each other. To analyze

this let us express the O(δFi) corrections to (3.267) and (3.265) to be O(δF
(a)
i ) and

O(δF
(b)
i ) respectively. This means we can rewrite (3.265) with the same coefficient

of c1c11
v3

as in (3.267) but with an extra factor of:

q(θ)

q̃(θ)
≡ 1 +

O(δF
(b)
i )−O(δF

(a)
i )

R11

2π

(∫
TN2

ω̃∧ω̃∫
TN1

ω∧ω

)
+O(δF

(a)
i )

, (3.268)

where q̃(θ) is similar to the arbitrary small parameter q(θ) that appeared in (3.67) in

the definition of 〈C3〉. The above manipulation is useful because we can now express

the complex coupling τ̃ for the S-dual theory to be:

τ̃ = c̃2 +
ic̃1c̃11

ṽ3

=

(
−c2 + ic1c11

v3

)
[
R11

2π

(∫
TN2

ω̃∧ω̃∫
TN1

ω∧ω

)
+O(δF

(a)
i )
]−1 , (3.269)

where all the parameters appearing above are functions of the RR (or NC) parameter

θ as we discussed earlier. Furthermore, the form of the denominator in (3.269) is

written in a suggestive way so that one may connect this to the expected S-dual

result:

τ̃ = − 1

τ
= − τ

|τ |2
=
−c2 + ic1c11

v3

c2
2 +

c21c
2
11

v23

=
v3

c1c11

[
i− 2a

1−a2(
1+a2

1−a2
)2

]
, (3.270)

provided of course that the denominator in (3.269) is equal to |τ |2. In the last

equality above, we have invoked (3.251) which relates c2 and c1c11
v3

so that the ratio

is completely expressed in terms of the parameter a. In this form, it may be easier

to relate the denominator of (3.269) to the denominator in (3.270).

Having described the S-duality in some details from supergravity, the next ques-

tion is how should we go about defining a parameter like t, now to be renamed t̃, in

the S-dual theory. A naive description, following (3.184):

t̃ ≡
¯̃τ

|τ̃ |
, (3.271)

cannot quite be the right description for t̃ simply because the definition of t as

in (3.184) only works when the four-dimensional Yang-Mills coupling and the Θ-

parameter are related via (3.222). Since the relation between Yang-Mills coupling

and the Θ-parameter changes under S-duality, (3.271) cannot be the right definition.

We need to look for an alternative definition for t̃ that may capture the right behavior

in the S-dual theory.

The clue comes from the connection between ε0, the susy transformation param-

eter before twisting, and ε, the susy transformation parameter after twisting via the
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relation ε = η ⊗ ε0 where η ∈ V8. There exist an operator, defined in terms of Q2

and Q3 in (3.244), that may act on both ε and ε0 to annihilate them. The value of

t for which this could happen is of course (3.224) or (3.246). Under a S-duality we

should now ask how ε and ε0 transform. We expect:

ε → ε̃ ≡ ε̃L + t̃ ε̃R = exp (Qa) ε, (3.272)

where Qa is an element of the S-duality group. On the other hand, a transforma-

tion like (3.272), allows us to construct the following transformation laws for the

individual components of ε, namely εL and εR, as:

εL → ε̃L ≡ exp (Qa) εL, εR → ε̃R ≡ exp (Qb) εR, (3.273)

where Qa and Qb are in general not equal to each other, although could be com-

muting. However a transformation like (3.273) with unequal Qa and Qb will not be

consistent with (3.272), unless we demand t to also transform in the following way:

t → t̃ ≡ exp (Qa −Qb) t, (3.274)

under S-duality. Note that, with (3.274), the transformations of ε as well as ε0 under

S-duality are consistent to each other. This means, while we needed to use a relation

like (3.244) to express t in terms of the parameter of ε0 in (3.246), the form for t̃ can

be inferred from (3.274) directly provided we know the forms of (Qa,Qb).

Our simple consideration has yielded the transformation rule for t, but not the

forms for (Qa,Qb). At this stage, and as we mentioned above, we can say that

they are commuting but unequal. The functional forms for (Qa,Qb) require a more

detailed analysis along the lines of [12], wherein it is shown that Qb = Qa, and the

following transformation rule:

t̃ = exp (2iIm Qa) t =
cτ + d

|cτ + d|
t, (3.275)

where the last equality uses elements of the SL(2,Z) group41. As expected the

definition of t̃ is different from (3.271). A little work, following (3.275) and [11], will

give us t̃ = 1.

The choice of t̃ = 1 in the S-dual side may be a bit puzzling from the correspond-

ing supergravity point of view. Before S-duality, the parameter t can be related to

the supergravity variables via the two relations in (3.194) or via (3.195) and (3.197).

If we assume similar relations now between t̃ and the sugra variables for the S-dual

41Note that when τ = 4πi
g2Y M

or τ = i
gs

, then t̃ = t in the limit d = 0. This makes sense because

the ten-dimensional fermionic action in type IIB supergravity in the string frame has the form∫
d10x e−2ϕB

√
g10 ΨΓNDNΨ (plus interactions) which does not require any additional scaling of

the fermions when ϕB → −ϕB . However when the axion C0 is present, the story is more involved.

This is similar to what we see from four-dimensional point of view too as depicted in (3.275).
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metric, we face a contradiction because the vanishing of t̃ − t̃−1 would imply the

vanishing of corresponding b12 coefficient, but this coefficient in the S-dual metric

clearly doesn’t vanish. The reason why we see an apparent contradiction is because

we have assumed that the S-dual constraint equations would follow similar pattern

of derivation as elaborated for the pre S-dual scenario. That this may not happen

is already been anticipated in footnote 22: we may get same set of constraints via

adding two additional terms to the Hamiltonian, instead of mapping the picture to

the one involving t. From this point of view, there is no need to make any extra con-

nection to the t variable because supergravity by itself knows all about the fermionic

structure from the start. As such, the S-dual picture is also self contained.

However the mapping to t in (3.194) is not without its own merit. It showed

us how to connect our set of solutions to the localization equations of [11] and

[12]. Interestingly, adding the aforementioned two set of terms to the Hamiltonian

would not have changed our conclusions, or the path of derivations, regarding the

background constraints! The mapping to t in the pre S-dual picture showed us

another layer of hidden structures in our construction. In the S-dual picture no

contradictions will now arise even if don’t make any mention of the t̃ parameter from

supergravity point of view. The BHN equations would continue to resemble the ones

in (3.221), but now expressed in terms of the S-dual fields.

3.3 Types of solutions: surface operators and opers

In the above sections we have managed to discuss the appearance of the BHN equa-

tions, including the boundary Chern-Simons theory (3.241) using the twisted gauge

field (3.240), from M-theory. The key question to ask now is the locations of the

knots. In other words, what additional ingredients do we need to construct knots in

this theory? In the following we will discuss this and other related issues. Our aim

would also be to build a bridge between Model A and Model B using our set-up

that we developed above. As we shall see, the key player for both the models would

be the surface operators.

3.3.1 M2-brane states, surface operators and the BHN equations

Lets us start with M2-brane wrapping the two-cycle of our Taub-NUT space. The

Taub-NUT space is oriented along directions (θ1, x8, x9, x11) with x11 being the Taub-

NUT circle. This means the M2-brane will be a source of a point charge in the

remaining 6 + 1 dimensional orthogonal space in the following way:∫
C =

∫
A ∧ ω =

∫
A0 dx0

∫
TN

ω ≡ q

∫
A0 dx0, (3.276)

where the value of the charge q appears from the integral of the harmonic two-form ω

over the Taub-NUT space. Reducing down to the 3+1 dimensional space, this would
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lead to the non-abelian enhancement in the presence of multiple wrapped M2-branes

on the two-cycle, as discussed in section 3.2.6 and in (3.91).

For our case this is not what we need to study the knots: The wrapped M2-branes

on Taub-NUT two-cycles could only enhance the gauge symmetry but will not give

us the required Wilson loops necessary to study knots. What other M2-brane states

can we study here? This then brings us to few other possible configurations of M2-

branes that can be realized in the Taub-NUT background. As we shall see, the most

relevant ones will be related to the surface operators in our 3 + 1 dimensional gauge

theory.

Our first configuration that we want to entertain can be realized directly in the

original brane construction in Table 1, or more appropriately the T-dual one given

in Table 2 with the second NS5-brane removed. This way we can simply keep two

parallel NS5-branes oriented along (x0, x1, x2, x3, x8, x9) with D4-branes and a D2-

brane oriented as in Table 5. The D2-brane state, which is a co-dimension two

Directions x0 x1 x2 x3 θ1 φ1 ψ r x8 x9

NS5
√ √ √ √

∗ ∗ ∗ ∗
√ √

D4
√ √ √ √

∗ ∗
√
∗ ∗ ∗

D2
√ √

∗ ∗ ∗
√

∗ ∗ ∗ ∗

Table 5: The orientation of a D2-brane as a surface operator in 3 + 1 dimensional non-

compact directions.

defect, acts as a surface operator in 3 + 1 dimensional gauge theory. This has been

described in many recent works (see [32], [33], [34] for discussions on the subject and

for references) which the readers may refer to for details. For us, we want to lift this

configuration to M-theory by first dualizing this to type IIB theory (see details in

earlier sections), followed by shrinking the φ1 circle to zero size and then opening up

the eleventh-direction. The M2-brane state in M-theory is now depicted in Table 6.

In type IIA theory this will simply be a D2-brane embedded inside D6-branes. It is

also easy to make the system non-abelian by taking multiple M2-branes, or in type

IIA theory, multiple embedded D2-branes inside D6-branes.

Directions x0 x1 x2 x3 θ1 φ1 ψ r x8 x9 x11

Geometry ∗ ∗ ∗ ∗
√ √ √ √

∗ ∗ ∗
Taub-NUT ∗ ∗ ∗ ∗

√
∗ ∗ ∗

√ √ √

M2
√ √

∗ ∗ ∗ ∗
√
∗ ∗ ∗ ∗

Table 6: M2-brane state in the warped Taub-NUT background. The warping appears

from non-trivial geometry, shown above, and G-fluxes, discussed earlier.
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Our goal now is to find how the M2-branes modify the BHN equations that we

discussed earlier. In particular we would like to see how, for example, the background

constraint equations (3.221) (or (3.182)), change in the presence of the M2-brane

states. A direct study of multiple M2-brane states in M-theory following [31] would

make our analysis harder. However the fact that, in the dual type IIA side, the

D2-brane states are bound states with the D6-branes make this analysis a bit easier

because the bound D2-brane states could be considered as instantons on the D6-

branes. In M-theory therefore the M2-brane states would simply be provided by

localized G-fluxes, and the M2-branes’ charge Q2 would appear from:

Q2 =

∫
Σ8

G4 ∧ G4 =

∫
Σ4

〈F〉 ∧ 〈F〉
∫

TN

ω ∧ ω, (3.277)

where Σ8 = Σ4 × TN, with Σ4 being a four-dimensional surface oriented along

(x2, x3, r, φ1) and the orientation of the Taub-NUT space as before. This means,

on one hand, switching on the above-mentioned instanton implies switching on the

following components of the seven-dimensional gauge fields: A2,A3,Ar,Aφ1 . On the

other hand, from our four-dimensional point of view with the action (3.153), having

an instanton (3.277) implies switching on the four-dimensional gauge field component

A2 and the three scalar fields (A3, σ, σ̄) where σ is defined in (3.157).

The above discussion implies that, in the presence of M2-branes, we can entertain

a more elaborate decomposition than envisioned in (3.55) by taking into account

localized G-fluxes of (3.277) alongwith the usual G-fluxes in the following way:

G4 = 〈G4〉+ 〈F〉 ∧ ω + (F + B2) ∧ ω + Gϕo +H3 ∧ ζ, (3.278)

where ω = dζ has been defined earlier,H3 = dB2 is the three-form, ϕo is the harmonic

zero-form defined on the warped Taub-NUT space, and G is the fluctuation of the

four-form in the seven-dimensional spacetime orthogonal to the warped Taub-NUT

space. The four-form piece H3 ∧ ζ only contributes to the ten-dimensional type IIA

action, and so we can ignore this for our case. This means we can also absorb B2 in

the definition of F without any loss of generalities.

Plugging (3.278) in the M-theory action along the lines of (3.62) will not only

reproduce back the total four-dimensional action (3.153) from the zero mode fluctu-

ations of the fluxes and fields over the warped Taub-NUT space, but will also give

us the additional M2-brane piece Q2

∫
C01ψ dx0 ∧ dx1 ∧ dψ. This means the BHN

equation (3.172) will remain unchanged if the internal instanton contibutions to the

charge piece (3.277) come only from the background scalar fields (A3, σ, σ̄). The

precise conditions, to first approximations, are modifications of (3.167) and (3.168)

in the following way:

Dηδσ = Dηδσ̄ = 0

[δσ, σ̄] + [σ, δσ̄] = [δσ, ϕk] = [δσ̄, ϕk] = 0, (3.279)
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where δσ and δσ̄ are the fluctuations of the scalar fields (σ, σ̄) in the presence of the

instanton (3.278). The other two fluctuations of the components of the gauge fields

δA2 and δA3 would in principle only redefine the BHN equation (3.221) and the

gauge condition (3.161) respectively without changing the content of the equations.

We will however retain the gauge condition (3.161) by resorting to A3 = 0 case42.

However subtlety comes when we look at the other set of the BHN equations,

namely (3.176) or (3.177). Considering the c2 = 0 case for simplicity, the BHN

equation for the Fαψ components of the gauge fields can be rewritten in a more

complete form, in the absence of M2-branes, as:

Fαψ +
3∑

β,k=1

√
2bβkv3

c1c12

εαψm
(2)
βk Dβϕk − i

3∑
k,l=1

√
2dklv3

c1c12

h
(1)
αψkl [ϕk, ϕl] = 0,(3.280)

where the coefficients appearing above have been defined earlier. In (3.176) and

(3.177) we had taken the simplifying assumption where only q
(1)
12 vanishes. Generically

however q
(1)
kl = 0 for all choices of (k, l). Additionally we can demand non-zero values

for the coeffcients h
(1)
αψkl. This way we no longer have to decouple ϕ3 as in (3.171). On

the other hand, if we don’t want to change (3.221), we can easily take appropriate

values for the coefficients g
(1)
αβkl satisfying the third constraint in (3.160).

The discussion in the above paragraph was intended to establish a link between

the BHN equation (3.280) and the surface operators that we discussed at the begining

of this section. In the type IIA side, as depicted in Table 5, the D2-branes intersect

the D4-branes along (x0, x1) directions and therefore the support D of the surface

operator should be along x2 = ψ = 0 (recall that x3 direction is a compact circle

for us). When one of the parallel NS5 is sufficiently far away the supersymmetry on

the D4-branes is N = 4 and therefore, as discussed in [33], the supersymmetry pre-

served by the surface operator is (4, 4) supersymmetry from two-dimensional point of

view. Using the language of M-theory construction discussed in Table 6, the (4, 4)

vector multiplet contains vector fields with components (A0,A1) and four scalars

(A3, σ, σ̄, ϕ1) all in the adjoint representations of the gauge group. The (4, 4) hy-

permultiplet is constructed from the remaining two gauge field components (A2,Aψ)

and the two scalars (ϕ2, ϕ3)43.

Looking at the components of the hypermultiplets, we see that the BHN equa-

tion (3.280) can be used to capture the behavior of the hypermultiplets of the two-

dimensional theory. In fact we are interested in α = 2 BHN equation in (3.280).
42This way Fα3 ≡ −∂3Aα for both abelian and non-abelian cases.
43Following (3.156) one might have expected the two scalars to be (ϕ2,A3). This unfortunately

will not work with the gauge choice (3.161). However since h
(1)
αψkl = h

(1)
[αψ][kl] this is not an issue

for us, and we can as well choose the two scalars to be (ϕ2, ϕ3). Additionally note that while the

components of the gauge fields that enter the vector multiplet and the hypermultiplet are fixed, we

have some independence in distributing the scalars in the two multiplets. This independence stems

from two sources, one, our choice of the gauge (3.161) or (3.178) and, two, the definition of the

decoupled scalars (σ, σ̄).
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In other words, we have the following BHN equation, again in the absence of any

M2-branes, associated to the F2ψ component of the gauge field:

F2ψ +

√
2v3

c1c12

(
m

(2)
23

√
b23 D2ϕ3 +m

(2)
ψ2

√
bψ2 Dψϕ2

)
− 2i

√
2d23v3

c1c12

h
(1)
2ψ23 [ϕ2, ϕ3] = 0,

(3.281)

where the coefficients b23, bψ2 and d23 are given in (3.135), (3.137) and (3.142) respec-

tively; with m
(2)
αβ satisfying the constraint given by the last equation in (3.160). Note

that keeping (3.221) unchanged means that m
(2)
ψ2 = ±m(2)

23 , where the sign ambiguity

will be fixed soon. In addition, we will make a small change in the identification of

the scalars given earlier in (3.156) to the following:

(φ0, φ1, φ2, φ3) ∝ (A3, ϕ1, ϕ2, ϕ3) , (3.282)

which will be more useful for us than the earlier identification. Interestingly (3.282)

implies that the Coulomb branch scalar
−→
X will be (φ0, φ1, φ2) exactly as in [11] (see

also footnote 16 and Table 7). Now defining:

Φ2 ≡ − i
√

2v3bψ2

c1c12

m
(2)
23 ϕ2, Φ3 ≡ − i

√
2v3b23

c1c12

m
(2)
23 ϕ3, (3.283)

where c1, c12 and v3 have been defined earlier in (3.63), (3.78) and (3.66) respectively,

we can plug this in (3.281) to rewrite it as:

F2ψ − i (D2Φ3 ±DψΦ2) + i

√
2d23c1c12

v3b23bψ2

(
h

(1)
2ψ23

|m(2)
ψ2m

(2)
23 |

)
[Φ2,Φ3] = 0. (3.284)

The sign ambiguity appearing above can be fixed by looking at the constraints on

the scalar fields in (3.221). If we want similar conditions for our present case too,

then we expect the full set of BHN equations to be an appropriate modification of

(3.284) in the following way:

F2ψ + c0 D1Φ0 − [Φ2,Φ3] = 0

D2Φ2 +DψΦ3 = 0, DψΦ2 −D2Φ3 = 0, (3.285)

where c0 is a constant that we will derive below. Note that there is no relative

constant in the second equation in (3.285). This is only in the simplifying case where

bψ3 = b23, with bψk as given in (3.137) and bak as given in (3.135), otherwise we expect

a relative ratio of
bψ3

b23
. The two scalar fields (Φ2,Φ3) have already been identified in

(3.283), so Φ0 appearing in (3.285) can only be proportional to ϕ1 or A3. However it

cannot be proportional to ϕ1 because of the derivative structure in the first equation

of (3.285). Thus Φ0 should be proportional to A3, but since the value of A3 is fixed
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via the gauge choice (3.161) at least to the first approximation44, we conclude that

Φ0 = 0 here. This not only fixes the sign ambiguity in (3.284), but also gives rise

to the Hitchin’s equation which are precisely the conditions for supersymmetry with

the hypermultiplets!

Epsilon factor BHN decomposition Map 1: (3.156) Map 2: (3.282)

12 ⊗ (0ψ ⊕ ψ0) D0φ3 −Dψφ0 D0A3 −Dψϕ3 D0ϕ3 −DψA3

12 ⊗ (12⊕ 21) D1φ2 −D2φ1 D1ϕ2 −D2ϕ1 D1ϕ2 −D2ϕ1

1ψ ⊗ (02⊕ 20) D0φ2 −D2φ0 D0ϕ2 −D2ϕ3 D0ϕ2 −D2A3

1ψ ⊗ (1ψ ⊕ ψ1) D1φ3 −Dψφ1 D1A3 −Dψϕ1 D1ϕ3 −Dψϕ1

2ψ ⊗ (01⊕ 10) D0φ1 −D1φ0 D0ϕ1 −D1ϕ3 D0ϕ1 −D1A3

2ψ ⊗ (2ψ ⊕ ψ2) D2φ3 −Dψφ2 D2A3 −Dψϕ2 D2ϕ3 −Dψϕ2

Table 7: Various terms in the BHN equations coming from the two scalar fields mapping

choices 1 and 2 respectively. The first column is the epsilon tensor decomposition along the

lines of our earlier discussion, where only the relevant pieces are shown. The second column

correspond to the parts of the BHN equations associated to the epsilon decomposition.

Finally columns 3 and 4 are related to the pieces of the BHN equations once we use the

mappings 1 and 2 respectively.

The coefficient c0 is not zero, and fixing this will also tell us how F2ψ appearing in

(3.285) is related to F2ψ appearing in (3.284). To see how the latter transformation

occurs, we define:

A2 = − iA2√
c0

, Aψ = − iAψ√
c0

, x2 = x̄2

√
c0, ψ = ψ̄2

√
c0

A = A2 dx̄2 + Aψ dψ̄, Φ = Φ2 dx̄2 + Φ3 dψ̄, dA = d+ [A, ]. (3.286)

The first line of the above set of equations when plugged in (3.284) gives us (3.285)

with vanishing Φ0. Once we plug in the second line of (3.286) in (3.285), we can

rewrite (3.285) as:

F − Φ ∧ Φ = 0, dAΦ = 0 = dA ∗ Φ, (3.287)

which, as discussed above, are precisely the set of Hitchin’s equations that appeared

in [32], [33], [34] describing the scenario when we do not consider the singularity asso-

ciated with the surface operators. The hodge star45 is defined in the two-dimensional

44Looking at the Hamiltonian (3.158), which is written as sum of squares, we can easily infer

that A3 do not appear in the squared piece with Fαψ. This of course is because of our gauge choice

(3.161) hence it is no surprise that Φ0 vanishes in (3.285).
45Our choice of hodge star is slightly different from the ones taken in [32], [33], [34] and in [11],

but the essential content is captured in (3.287).
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space parametrized by (x̄2, ψ̄), and c0 appearing in (3.285) as well as (3.286) is at

least proportional to inverse of the coefficient of the commutator piece in (3.281), i.e:

c0 ∝

(
m

(2)
23

)2

h
(1)
2ψ23

√
v3b23bψ2

c1d23c12

. (3.288)

The above derivations are encouraging and allow us to make the first step in de-

riving the behavior of the surface operator from M2-branes embedded in non-trivial

geometry and fluxes in M-theory. The question now is: how is the singularity of the

support D of the surface operator manifested in the Hitchin’s equations (3.287)?

To analyze this we will have to go beyond (3.279) and look at (3.158) more

carefully. There is no reason for the two scalars (σ, σ̄) to completely decouple − like

(3.167) and (3.168) − now. The original constraints that governed the decoupling

conditions appeared in (3.160), which we can rewrite in the following way:

2
∣∣∣s(l)

12

∣∣∣2 + s(l) = 1,
2∑

α=1

∣∣t(l)α ∣∣2 + t(l) = 1, (3.289)

where all the parameters appearing above are described in (3.158), and we can choose

l = 1, 2 for our case. Additionally, we have assumed s(l) and t(l) to be positive definite

integers, and therefore the decoupling conditions in (3.167) and (3.168) were simply

the non-vanishing of them, i.e:

s(l) > 0, t(l) > 0. (3.290)

The constraint (3.167) and (3.168) imposed via (3.290) in (3.158) now would be

harder to implement completely in the presence of the localized G-fluxes along

(x2, x3, r, φ1). However, we might still be able to argue for ψ independence of the

scalar fields σ and σ̄, but β independence cannot hold now. Thus the first constraint

in (3.290) above may still hold, but t(l) has to vanish in the Hamiltonian (3.158).

Similarly q(4) appearing in the first equation, as well as q
(1)
kl in the third equation, of

(3.160) will also have to vanish. This way we will only have:

Dψσ = Dψσ̄ = 0, (3.291)

and not the full constraints (3.167) and (3.168). What about (3.169)? Recall that

this was imposed via switching on q
(γ)
k in (3.158) and appears in the second constraint

relation (3.160). There is no reason why this could be non-zero now so, as a most

generic condition, we will assume that this coefficient also vanishes. This way (3.169)

may not hold in the presence of the localized G-fluxes.

There are two ways to proceed now. One, we can assume that all the BHN

equations, namely (3.221) and (3.280), get contributions from the scalar fields (σ, σ̄);
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and two, only (3.280) gets contributions from the (σ, σ̄) scalar fields with (3.221)

remaining unchanged. The latter would imply that we impose:

g
(2)
αβk = g

(3)
αβk = g

(4)
αβ = 0, (3.292)

in (3.160) along with (3.291). Additionally the instantonic configuration, that results

in the M2-brane states via (3.277) and in the G-flux decomposition (3.278), can be

generated for our case from the following gauge field configurations46:

〈Ar〉(r, x2) =
σ + σ̄

2
, 〈Aφ1〉(φ1, x2, x3) =

σ − σ̄
2i

, (3.293)

from where we can have 〈F2r〉 and 〈F3φ1〉 as the source for the M2-brane charges

(3.277). This choice of components is fairly generic and helps us avoid switching on

components like 〈F2φ1〉, 〈F23〉, 〈F3r〉 and 〈Frφ1〉 at least in the abelian case (which

we will finally resort to). Again, we can always go to more elaborate scenario but

since many of the extra components can be eliminated by gauge transformations,

with no additional physics insights, we can narrow our choice to the simple case of

(3.293). Of course the above discussion does not in any way imply that fluctuations

A1 and A2 are defined as (3.293). The fluctuations remain functions of the space

coordinates (x1, x2, ψ) so that the components Fαβ and Fαψ defined appropriately

are related by the BHN equations.

This then brings us to the BHN equation, in the presence of the instanton source

(3.293), for the component Fαψ. As mentioned earlier, we are interested in the

component F2ψ. The BHN equation for this is given by47:

F2ψ − iγ4[ϕ2, ϕ3] + 2ε2ψ Re (γ5D2σ) = 2i Re (γ1[σ̄, ϕ2] + γ2[σ̄, ϕ3]) + γ3[σ̄, σ],

(3.294)

along with the two additional conditions on ϕ2 and ϕ3 as given in (3.285) with

suitable modifications. The other coefficients appearing in (3.294) are defined in the

following way:

γ1 =
1

2

√
2v3

c1c12

[
h

(2)
2ψ2

√
cr2 + ih

(3)
2ψ2

√
cφ12

]
, γ2 =

1

2

√
2v3

c1c12

[
h

(2)
2ψ3

√
cr3 + ih

(3)
2ψ3

√
cφ13

]
γ3 =

h
(4)
2ψ

√
2a1

2
√
c12

, γ4 =
h

(1)
2ψ23

√
8d23v3

√
c1c12

, γ5 =
1√
2c12

[
t
(1)
2r

√
cr2 − it(2)

2φ1

√
cφ12

]
,(3.295)

46Note that we haven’t made a distinction between (σ, σ̄) and (〈σ〉, 〈σ̄〉) to avoid clutter. Since

(σ, σ̄) only appear for our instanton configuration, switching on them means we have switched on

their expectation values. This should be clear from the context.
47Note that D2σ is defined with respect to the gauge field Ā2. However if we use D2σ instead

of D2σ, these two definitions of covariant derivative being connected via A2 = −iA2 as in (3.286)

assuming c0 = 1, then D2σ = D2σ̄ assuming A2 to be purely real. Thus, unless mentioned otherwise,

we will continue using the field strength Fαβ defined with respect to the gauge fields Aα and Aβ
instead of the field strength Fαβ . Note that they are related via: Fαβ = −iFαβ .
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where we have defined the coeffcients car in (3.118), caφ1 in (3.119), d23 in (3.142),

c12 in (3.78), c1 in (3.63) and v3 in (3.66). The other coefficents appearing in (3.295)

are defined in (3.160) except the two new coefficients t
(1)
2r and t

(2)
2φ1

. These two coeffi-

cients replace the previous two coefficients t
(1)
2 and t

(2)
2 respectively, appearing in the

Hamiltonian (3.158) and the constraint equations (3.160), via:

t
(k)
2 ε2ψask → ε2ψ t

(k)
ask
, (3.296)

where k = (1, 2) and sk are coordinates defined as s1 = r, s2 = φ1. One immediate

advantage of this replacement in (3.158) is that a in (3.296) can take values a = 1 or

a = 2 and is thus not restricted by the total antisymmetry constraint. The constraint

relation for t
(k)
ar is similar to what we had for t

(k)
α in (3.160), namely:

2∑
a=1

|t(k)
ask
|2 + t(k) = 1. (3.297)

Clearly for t(k) = 0, this change doesn’t alter any of our earlier results because of the

decoupling of the (σ, σ̄) fields. However now that (σ, σ̄) are relevant, introducing t
(k)
ask

can make our analysis more generic. Note that we are not required to make similar

changes to s
(k)
αβ in (3.158) and (3.160) because of (3.291).

The F2ψ BHN equation (3.294) seems more involved and therefore it will be

instructive to rewrite it in a slightly different way so as to simplify the appearance of

the equation. To proceed, let us define two new fields ϕ̂2 and ϕ̂3 using our old fields

ϕ2 and ϕ3 in the following way:

ϕ̂2 = ϕ2 + 2Re

(
γ̄2σ

γ4

)
, ϕ̂3 = ϕ3 − 2Re

(
γ̄1σ

γ4

)
, (3.298)

where γ1, γ2 and γ4 are defined in (3.295). The fields are defined in such a way so

that the commutator between them takes the following form:

[ϕ̂2, ϕ̂3] = [ϕ2, ϕ3] + 2Re

(
γ1

γ4

[σ̄, ϕ2] +
γ2

γ4

[σ̄, ϕ3]

)
+ 2iIm

(
γ1γ̄2

γ2
4

)
[σ̄, σ],

(3.299)

where γ4 is real but γ1 and γ2 are complex numbers. Interestingly, when we compare

(3.299) to the terms involving commutator brackets in the BHN equation (3.294), we

see that they are identical provided we identify γ3 to γ1, γ2 and γ4 in the following

way:

γ3 ≡ − 2Im

(
γ1γ̄2

γ4

)
. (3.300)

Looking at the γi defined in (3.295) and comparing the terms appearing in the

definition of γi with the ones in (3.160), we see that the above identification (3.300)
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implies the following relations between the coefficients:

2h
(4)
2ψh

(1)
2ψ23

h
(3)
2ψ3h

(2)
2ψ2 − h

(2)
2ψ3h

(3)
2ψ2

=

√
v3c3rc2φ1

a1c1d23

. (3.301)

The RHS of the above relation is defined with respect to the background warp-factors

and θ-parameter, whereas the LHS is only defined via (3.160). Thus satisfying (3.301)

doesn’t seem hard. In fact we can make arbitrary choices for h
(2)
2ψk and h

(3)
2ψk satisfying

(3.160), and then arrange h
(4)
2ψ to satisfy (3.301). This immediately implies that we

can rewrite the BHN equation (3.294) in the following way:

F2ψ − iγ4 [ϕ̂2, ϕ̂3] = − 2ε2ψ Re (γ5D2σ) . (3.302)

To bring the above equation in a more suggestive format, we can start by defining

the fields Φ̂k for k = (2, 3) as in (3.283) and then construct one-forms out of them

in a way similar to the definition we gave earlier in (3.286). More precisely:

Φ̂k ≡ − i√γ4 ϕ̂k, Φ ≡ Φ̂2 dx2 + Φ̂3 dψ, (3.303)

along with the gauge field components combined together to construct another one-

form A exactly as in (3.286), but now without any c0 factor. To avoid clutter we

removed the hat on Φ. These redefinitions now convert the BHN equation (3.302)

to the following form:

F − Φ ∧ Φ = −2 Re (γ5dAσ) , (3.304)

which is surprisingly similar to the first equation in (3.287), except that the RHS is

no longer zero but is proportional to dAσ. Note however the absence of the i factor

in the RHS of (3.304). This is because we have absorbed the i in the definition of σ

(this makes sense because σ, as constructed from Ar and Aφ1 , go to −iσ when we

define Aα = −iAα). On the other hand, if we also redefine Aψ in the following way:

Aψ → Âψ ≡ Aψ + 2 Re (γ5σ) , (3.305)

keeping the other gauge field components, i.e (A0,A1,A2) same as before, then the

BHN equation doesn’t change and takes the form as the first equation in (3.287).

Thus there seems to be two ways of expressing the BHN equation for this case: one,

if we assume that the gauge field components remain as before48, then the RHS of

the BHN equation receives correction from the (σ, σ̄) fields as (3.304); and two, if we

assume that Aψ is defined using the (σ, σ̄) fields then the RHS of the BHN equation

vanishes. For the time being we will continue with first case, and consider the second

case later.

48With the assumption that, due to the instantonic background, A2 will be defined as 〈A2〉 plus

fluctuation.
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Let us now turn our attention to the other parts of the BHN equations, namely

the ones constraining ϕ2 and ϕ3 as in (3.285). To analyze them now, and as before,

we will consider the simplifying assumption of bψk = bak where the functional forms of

bψk and bak appear in (3.137) and (3.135) respectively49. The constraining equations

now take the following form:

D2ϕ̂2 +Dψϕ̂3 =
2

γ4

Re (γ̄2D2σ) , Dψϕ̂2 −D2ϕ̂3 =
2

γ4

Re (γ̄1D2σ) , (3.306)

where the hatted fields are defined as in (3.298). Alternatively we could also use the

one-form Φ, defined in (3.303), to rewrite the full set of BHN equations for our case.

Combining (3.304) with (3.306), we collect all the BHN equations together as:

F − Φ ∧ Φ = −2 Re (γ5dAσ)

dAΦ =
2
√
γ4

Re (γ̄1dAσ) , dA ∗ Φ = − 2
√
γ4

Re (γ̄2dAσ) , (3.307)

where the hodge star is in two-dimensions, the gauge field components are (A2, Aψ)

and γi are defined in (3.295). One may now compare our set of equations (3.307) for

the surface operator to the ones appearing in [32], [33], [34] and [11]:

F − φ ∧ φ = 2πα δK, dAφ = 2πγ δK, dA ∗ φ = 2πβ δK, (3.308)

where δK is a delta function that is Poincare dual to the knot K. We have modified

the hodge star so that now it is in two-dimensions (see footnote 45). Comparing

(3.308) with (3.307) it is clear that φ in (3.308) can be identified with Φ in (3.307):

they represent similar fields. On the other hand, the RHS of the equations have

three different constants
(
γ5,

γ2√
γ4
, γ1√

γ4

)
and two functions dAσ and dAσ̄. These two

functions are clearly composed of 〈A2〉, 〈Ar〉 and 〈Aφ1〉 which form our instanton

configuration giving rise to localized G-fluxes and M2-brane charges in (3.277) and

(3.278) respectively. In the small instanton limit [35], where they indeed become M2-

brane states, the two functions become highly localized so that they are like delta

functions in the (x2, ψ) plane i.e the plane orthogonal to our M2-brane states along

(x0, x1) directions50. This is where we can make the following identifications between

(α, β, γ) appearing in (3.308) and (γi, σ, σ̄) appearing in (3.307) and (3.295):

α δK ≡
1

π
[Im(γ5)Im(dAσ)−Re(γ5)Re(dAσ)]

β δK ≡
1

π
√
γ4

[Im(γ2)Im(dAσ)−Re(γ2)Re(dAσ)]

49As mentioned earlier, there is no need for making this assumption other than for the sole reason

of simplifying the form of the equations. Thus if we do away with this assumption, the equations

in (3.306) will have relative coefficients but no new physics.
50It is not essential to go to the small instanton limit. All we need is finite localizations of the

two functions.
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γ δK ≡
1

π
√
γ4

[Re(γ1)Re(dAσ) + Im(γ1)Im(dAσ)] . (3.309)

The overall sign is irrelevant for us, as this can be absorbed by simultaneously shifting

Φ → −Φ and σ → −σ. Thus in the limit when dAσ approaches (1 + i)δK, at least

when K is a straight line along x1 direction, the (α, β, γ) coefficients in (3.308) and

(3.309) can be mapped to the parameters in the Hamiltonian (3.158) in the following

way:

α = − 1

π
√

2c12

[
t
(1)
2r

√
c2r + t

(2)
2φ1

√
c2φ1

]
(3.310)

β =
1

2π

h(2)
2ψ3

√
c3r + h

(3)
2ψ3

√
c3φ1√

h
(1)
2ψ23

√
2c1c12d23v

−1
3

 , γ =
1

2π

h(2)
2ψ2

√
c2r + h

(3)
2ψ2

√
c2φ1√

h
(1)
2ψ23

√
2c1c12d23v

−1
3

 ,
where all the parameters appearing above have been defined earlier, for example car
in (3.118), caφ1 in (3.119), d23 in (3.142), c12 in (3.78) and the other parameters in

(3.160) and in (3.297).

The above identification (3.310) is highly suggestive of type IIA small instan-

tons on D6-branes modelling as surface operators in the boundary three dimensional

theory. However to complete the picture we will not only have to derive the BHN

equations for the other components of the gauge fields but also find the boundary

theory along similar lines to the technique developed in section 3.2.12. To proceed,

let us first derive the BHN equations for the field strength F1ψ, which means we are

looking at the gauge fields A1 and Aψ and scalar fields ϕ1 and ϕ3 (see (3.282)). The σ

and σ̄ fields will appear again, but since they are independent of x1 direction, we are

not compelled to make a redefinition like (3.296), or even go to (3.297). In fact the

same parameters t
(1)
2r and t

(2)
2φ1

that appeared earlier in defining the BHN equations

for F2ψ will show up again here because the coefficients of t
(1)
1r and t

(2)
1φ1

vanish in the

Hamiltonian (3.158). Combining everything together, the F1ψ BHN equation takes

the following form:

F1ψ − iγ̃4[ϕ1, ϕ3] + 2ε1ψ Re (γ̃5D2σ) = 2i Re (γ̃1[σ̄, ϕ1] + γ̃2[σ̄, ϕ3]) + γ̃3[σ̄, σ],

(3.311)

which is in fact a variant of the BHN equation (3.294) for F2ψ. As expected (3.311)

relates the scalar fields ϕ1 and ϕ3, however the third term appears as D2σ instead of

D1σ. This is because of the comments that we made above. The other coefficients

i.e γ̃k are defined, also as a variation of (3.295), in the following way:

γ̃1 =
1

2

√
2v3

c1c12

[
h

(2)
1ψ1

√
cr1 + ih

(3)
1ψ1

√
cφ11

]
, γ̃2 =

1

2

√
2v3

c1c12

[
h

(2)
1ψ3

√
cr3 + ih

(3)
1ψ3

√
cφ13

]
γ̃3 =

h
(4)
1ψ

√
2a1

2
√
c12

, γ̃4 =
h

(1)
1ψ13

√
8d13v3

√
c1c12

, γ̃5 =
1

2
√
c12

[
t
(1)
2r

√
cr2 − it(2)

2φ1

√
cφ12

]
.(3.312)
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The above set of coefficients can be related to the coefficients (3.295) in the following

way. It is easy to see that γ5 = γ̃5. Furthermore, looking at the coefficients car, caφ1
and dkl in (3.118), (3.119) and (3.142) we can easily infer:

c1r = c2r, c1φ1 = c2φ1 , d13 = d23, (3.313)

so that the only distinguishing factors between γk and γ̃k are the coefficients h
(α)
aψa,

h
(α)
aψ3, h

(1)
aψa3 and h

(4)
aψ where a = (1, 2) and α = (2, 3). Other than these factors,

the BHN equations for F1ψ and F2ψ given in (3.311) and (3.294) respectively are

perfectly symmetrical. These factors, on the other hand, are controlled by (3.160)

which are in fact the only defining equations for them. Thus one assumption would

be to take the individual pieces to be equal to each other. In other words, we can

demand:

h
(α)
1ψ1 = h

(α)
2ψ2, h

(α)
1ψ3 = h

(α)
2ψ3, h

(1)
1ψ13 = h

(1)
2ψ23, h

(4)
1ψ = h

(4)
2ψ , (3.314)

so that γk = γ̃k in the BHN equation (3.311). Note that with the identification

(3.314) it almost implies that the BHN equations, given in (3.294) and (3.311), are

identical via the exchange of 1 and 2 in the subscripts of the gauge and the scalar

fields. The only difference is that the “symmetry” between the two equations is

broken by the existence of D2σ and D2σ̄.

Unfortunately the above assumption is too restrictive and could potentially lead

to additional constraints when all the background equations are laid out. Therefore

we will start by defining a field ϕ̂1 exactly as ϕ̂2 in (3.298) using γ̃2 and γ̃4. This

way of defining ϕ̂1 has an immediate advantage: the commutator bracket of ϕ̂1 and

ϕ̂3 will take similar form as (3.299), i.e

[ϕ̂1, ϕ̂3] = [ϕ1, ϕ3] + 2Re

(
γ1

γ4

[σ̄, ϕ1] +
γ̃2

γ̃4

[σ̄, ϕ3]

)
+ 2iIm

(
γ1

¯̃γ2

γ4γ̃4

)
[σ̄, σ],

(3.315)

with γ̃3 identified as (3.300) except the γ̄2 therein is replaced by ¯̃γ2; and γ̃1 is pro-

portional to γ1 with the proportionality constant being the ratio γ̃4
γ4

. The next set

of manipulations are important. We can use (3.315) to express the BHN equation

(3.311) as (3.302). However since the scalar fields σ and σ̄ are independent of x1

coordinate, and using the gauge field definition Âψ as given in (3.305), we see that

the F1ψ and the F2ψ BHN equations take the following form:

F̂2ψ − iγ4 [ϕ̂2, ϕ̂3] = 0

F̂1ψ − iγ̃4 [ϕ̂1, ϕ̂3] = −2ε1ψ Re
[
γ5D(2,1)σ

]
, (3.316)

where F̂aψ is the field strength for the gauge fields Aa and Âψ with a = (1, 2) in the

standard way; and the covariant derivative D(a,b) is defined in the following way:

D(a,b)σ ≡ ∂aσ + i [Aa −Ab, σ] , (3.317)
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using the difference of two gauge fields Aa and Ab, instead of just Aa as we had

before. The other equations, for example the constraining equations for the scalar

fields (ϕ̂2, ϕ̂3) given earlier in (3.306), and the equations for the other pair of scalar

fields (ϕ̂1, ϕ̂3) now take the following form:

D2ϕ̂2 + D̂ψϕ̂3 = 2i [Re (γ5σ) , ϕ̂3] + 2Re

(
γ̄2D2σ

γ4

)
D̂ψϕ̂2 −D2ϕ̂3 = 2i [Re (γ5σ) , ϕ̂2] + 2Re

(
γ̄1D2σ

γ4

)
D1ϕ̂1 + D̂ψϕ̂3 = 2i [Re (γ5σ) , ϕ̂3] +

2i

γ̃4

[
A1,Re

(
¯̃γ2σ
)]

D̂ψϕ̂1 −D1ϕ̂3 = 2i [Re (γ5σ) , ϕ̂1] +
2i

γ4

[A1,Re (γ̄1σ)] , (3.318)

where D̂ψσ is the covariant derivative defined with respect to the gauge field Âψ
(3.305). In terms of the unshifted field Aψ, the RHS of the above set of equations

(3.318) will not have the commutator brackets. It is also instructive to work out the

commutator bracket for ϕ̂1 and ϕ̂2:

[ϕ̂1, ϕ̂2] = [ϕ1, ϕ2] +
2

γ4

[ϕ1,Re (γ̄2σ)]− 2

γ̃4

[
ϕ2,Re

(
¯̃γ2σ
)]

+
¯̃γ2γ2 − γ̄2γ̃2

γ4γ̃4

[σ, σ̄] ,

(3.319)

where γk and γ̃k have been defined earlier in (3.295) and (3.312) respectively. Note

that if we had applied the identifications (3.314), the commutator piece [σ, σ̄] in

(3.319) would be absent. However as mentioned earlier, the identifications (3.314)

are not only over-constraining but also inconsistent. We will therefore refrain from

using them and stick with the commutator brackets in (3.319). Additionally now:

γ̃3 = −2Im

(
γ1γ̃2

γ4

)
. (3.320)

We will use the above informations, including (3.292), to determine the BHN equa-

tion corresponding to the gauge field strength F12 in the presence of the instanton

background. To start, let us define few things that will help us express the back-

ground more succinctly:

j1 ≡ m
(1)
11

√
b11, j2 ≡ m

(1)
12

√
b12

Γ1 ≡ −2g
(1)
1212

√
d12 Re

(
γ̄2σ

γ4

)
, Γ2 ≡ 2g

(1)
1212

√
d12 Re

( ¯̃γ2σ

γ̃4

)
, (3.321)

where b11 and b12 coefficients are defined in (3.135), d12 coefficient is defined in

(3.142), and (m
(1)
11 ,m

(1)
12 , g

(1)
1212) coefficients are defined in (3.160) where we have as-

sumed m
(1)
11 = m

(1)
22 for simplicity. Note that (j1, j2) are numbers whereas (Γ1,Γ2) are
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scalar fields expressed using σ and σ̄. Using these we define three fields:

Ax ≡ −
(
j1Γ1 + j2Γ2

j2
1 + j2

2

)
, Ay ≡

j2Γ1 − j1Γ2

j2
1 + j2

2

, Az ≡ −
σ̄

4

(
γ̄2γ̃2 − γ2

¯̃γ2

j2
¯̃γ2γ4 − j1γ̄2γ̃4

)
.

(3.322)

These fields are written in a suggestive way so that they could be used as components

of a vector field although (x, y, z) are not related to spacetime coordinates (they are

simply parameters here). We can now use (3.321) and (3.322) to express the BHN

equation for the gauge field strength F12 in the following way (see also Table 7):

F12 − i

(
m

(1)
ψ3

√
2v3bψ3

√
c1c11

)
Dψφ0 +

m
(1)
11

√
2v3b11√
c1c11

[
D(1,x)ϕ̂1 +D(2,y)ϕ̂2 − 2Re

(
γ̄2D(2,z)σ

γ4

)]

+
m

(1)
12

√
2v3b12√
c1c11

[
D(1,x)ϕ̂2 −D(2,y)ϕ̂1 + 2Re

( ¯̃γ2D(2,z)σ

γ̃4

)]
− i

(
2g

(1)
1212

√
2v3d12√

c1c11

)
[ϕ̂1, ϕ̂2] = 0,

(3.323)

where the new covariant derivative D(a,b) is defined as in (3.317) now using the fields

(3.322); the hatted scalar fields ϕ̂k appear in (3.298); γk and γ̃k are parameters given

in (3.295) and (3.312) respectively; and v3 is defined in (3.66). All other parameters

have been defined earlier which the readers may refer to for details.

We now make a few observations. It is easy to see that when σ = 0, the above

BHN equation (3.323) goes back to the BHN equation derived earlier in (3.172) when

we use the map (3.156) alongwith the values of the parameters given in (3.173). The

φ0 field appearing in (3.323) is the same field that appeared in (3.285) before. Using

the scalar field map (3.282), φ0 ∝ A3, whereas using the map (3.156), φ0 ∝ ϕ3 as can

also be inferred from column 4 in Table 7. The additional constraint (3.174) that

we impose on the scalar fields ϕ1 and ϕ2 should continue to hold even for the case

where we have nonzero σ. This immediately gives us our first constraint equation,

in the same vein as (3.174), to be:

D(1,x)ϕ̂1 +D(2,y)ϕ̂2 = 2Re

(
γ̄2D(2,z)σ

γ4

)
. (3.324)

In some sense this could be taken as the defining equation for hatted scalar fields

ϕ̂1 and ϕ̂2. Comparing (3.324) with the first and the third equations in (3.318), we

see that the constraints appear differently because of the structure of the covariant

derivative (3.317). In fact if we did not impose the constraint (3.292), we could have

easily absorbed this in the definition of the fields (3.322). Thus the form of (3.323)

is generic enough even in the absence of (3.292).

Once (3.324) is applied on (3.323), the form of the F12 BHN equation is now

almost identical to (3.172) except with extra (σ, σ̄) dependences as we discussed
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above. Thus we could express it as (3.186) using the t parameter given in (3.189).

Following similar criteria as developed in section 3.2.11, and without going into

details, we can again demand the coefficient of t − t−1 piece to vanish. For the

present case, this takes the following form:

D(1,x)ϕ̂2 −D(2,y)ϕ̂1 = −2Re

( ¯̃γ2D(2,z)σ

γ̃4

)
, (3.325)

which becomes (3.207) when σ = σ̄ = 0 once we appropriately redefine the scalar

fields. Now putting everything together, the F12 BHN equation is identical (at least

in form) to the one that we had earlier for c2 = 0 in (3.208), namely:

F12 − i

(
m

(1)
ψ3

√
2v3bψ3

√
c1c11

)
Dψφ0 − i

(
2g

(1)
1212

√
2v3d12√

c1c11

)
[ϕ̂1, ϕ̂2] = 0. (3.326)

Comparing the set of equations, (3.326), (3.324) and (3.325) to (3.316) and (3.318),

we observe that (3.326) is expressed in terms of Aψ instead of Âψ as (3.305). The

difference between the covariant derivatives may be expressed in terms of commutator

brackets in the following way:(
Dψ − D̂ψ

)
φ0 ≡ 2i [φ0,Re (γ5σ)] . (3.327)

This would change the form of our BHN equation (3.326) by putting extra commu-

tator brackets. This is not what we want so alternatively we could retain the form of

the BHN equation as in (3.326) with D̂ψφ0 instead of Dψφ0 and no extra commutator

terms, but change the RHS of the two constraint equations for the scalar fields ϕ̂1

and ϕ̂2 by replacing the covariant derivative D(2.z)σ by:

D(2,z,w)σ ≡ ∂2σ + i [A2 −Az −Aw, σ] , (3.328)

in both (3.325) and (3.324). The above definition of the covariant derivative, in

the similar vein as (3.317), is arranged in such a way as to absorb the commutator

brackets appearing in (3.327) by defining a field Aw as:

Aw ≡

(
m

(1)
ψ3γ5γ4γ̃4

j1γ̃4γ̄2 − j2
¯̃γ2γ4

)
φ0, (3.329)

where ji are defined in (3.321), γk in (3.295) and γ̃k in (3.312). The other coefficient

m
(1)
ψ3 appears in (3.160). The above definition of Aw differs crucially from the three

fields Ax, Ay and Az appearing in (3.322) in the sense that it is not given in terms

of the instanton fields (σ, σ̄). Instead it is expressed in terms of the scalar field φ0

whose value in general is only known by solving the BHN equation (3.326), although

for the present case this vanishes.
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The above observation of cyclicity is not new, and in fact did show up already in

(3.316) when we had used D(2,1)σ to express the BHN equation for F̂1ψ. The field A1

appears on both sides of the equation (3.316). Thus it can only be solved order by

order in terms of any small parameter used to express the field A1. Similar issue also

showed up for the constraint equations (3.318): the fields ϕ̂k appear on both sides of

the equations rendering exact solutions harder to determine. The Hamiltonian, on

the other hand, retains its form (3.158) as:

H =
c1c11

v3

∫
d3xTr

{
c12

c11

(
F̂1ψ − iγ̃4 [ϕ̂1, ϕ̂3] + 2ε1ψ Re

[
γ5D(2,1)σ

])2

+
c12

c11

(
F̂2ψ − iγ4 [ϕ̂2, ϕ̂3]

)2

+

[
F12 − i

(
m

(1)
ψ3

√
2v3bψ3

√
c1c11

)
D̂ψφ0 − i

(
2g

(1)
1212

√
2v3d12√

c1c11

)
[ϕ̂1, ϕ̂2]

]2}
+ QM,

(3.330)

except with hatted scalar fields that originate from the extra (σ, σ̄) fields. Due to

the σ and σ̄ dependences, the magnetic charge QM will now be different from what

we had before in (3.227)51, although the electric charge would still vanish with a

suitable gauge choice as before.

Before determining the magnetic charge QM, let us try to simplify the first set

of BHN equations (3.316) and (3.318). One simple way to keep the right hand

sides of the equations simple is to go to the abelian case. In the abelian case, all

commutator terms vanish and the rest of the BHN equations (3.324), (3.325) and

(3.326) alongwith (3.316) and (3.318) take the following simple form:

F̂2ψ = F̂1ψ + 2ε1ψRe (γ5∂2σ) = F12 + γ6∂ψφ0 = 0 (3.331)

∂ψϕ̂2 − ∂2ϕ̂3 = 2Re

(
γ̄1∂2σ

γ4

)
, ∂1ϕ̂2 − ∂2ϕ̂1 = −2Re

( ¯̃γ2∂2σ

γ̃4

)
∂1ϕ̂1 + ∂ψϕ̂3 = ∂ψϕ̂1 − ∂1ϕ̂3 = 0, ∂2ϕ̂2 + ∂ψϕ̂3 = ∂1ϕ̂1 + ∂2ϕ̂2 = 2Re

(
γ̄2∂2σ

γ4

)
,

where γ6 is the coefficient of Dψφ0 term in (3.326). The above set of equations

immediately implies that the un-hatted scalar fields ϕ1, ϕ2 and ϕ3 are independent

of x1, x2 and ψ directions respectively52. In addition, they are related to each other

via:

∂ψϕ1 = ∂1ϕ3, ∂2ϕ1 = ∂1ϕ2, ∂ψϕ2 = ∂2ϕ3. (3.332)

51To compare the magnetic charge to (3.227), we need to put c2 = 0 in (3.227).
52In other words: ϕ1 ≡ ϕ1(x2, ψ), ϕ2 ≡ ϕ2(x1, ψ) and ϕ3 ≡ ϕ3(x1, x2). Being static solutions

they are of course independent of x0 direction. A very simple solution, and definitely not the most

generic one, of the set of equations in (3.332) is to take ϕ1 ≡ Aψ + Bx2, ϕ2 ≡ Bx1 + Cψ and

ϕ3 ≡ Ax1 + Cx2 where (A,B,C) are constants.
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With all these we are almost ready to derive the boundary theory. Our starting

point would be to switch on the c2 parameter. The changes in the Hamiltonian

(3.330) would be similar to what we had earlier in (3.225), and therefore choosing

the coefficients in the Hamiltonian (3.330) as in (3.226), the magnetic charge will

take the following form:

QM =
4i|τ |2

τ − τ̄

∫
d3x ∂ψ

(
2∑

α,β=1

3∑
k=1

εαβkFαβϕ̂k +
3∑

k,l,m=1

ϕ̂k∂lϕ̂m +
i(τ − τ̄)

2|τ |
A1Re (γ5∂2σ)

)
,

(3.333)

which differs from (3.227) in two ways: first, due to the abelian nature we no longer

have the commutator brackets, therefore no cubic terms in fields; and secondly, we

have an extra term proportional to A1. The proportionality factor is some combina-

tion of ∂2σ and ∂2σ̄ that would vanish in the absence of the surface operators.

The physics that we developed here is all in the absence of any twisting, and

therefore the picture will change once we introduce twisting exactly as we had in

section 3.2.12. Following similar procedure as before, we twist the scalar fields

(ϕ̂1, ϕ̂2, ϕ̂3) to one forms (φ̂1, φ̂2, φ̂3), along the lines of (3.282), but now for the

hatted fields53. In the absence of the linear term in A1 the procedure of getting the

boundary theory is similar to (3.239), namely:

S
(1)
bnd = (b2 + c2)

∫
W

A ∧ dA+

∫
W

{
2d1 F ∧ φ̂+

(
d2

1

b2 + c2

)
φ̂ ∧ dφ̂

}
(3.334)

= (b2 + c2)

∫
W

[
A+

(
d1

b2 + c2

)
φ̂

]
∧ d
[
A+

(
d1

b2 + c2

)
φ̂

]
≡ k

4π

∫
W

Ad ∧ dAd,

where b2 appears in exactly the same way as in (3.230) before, albeit now in the

abelian case, alongwith similar definition for Ad as in (3.240) but now with φ̂µ instead

of φµ. The parameters c2 and d1 are determined from (3.64) and the supersymmetry

condition (3.242) respectively, as before. The linear term in A1 then adds a new

term to the boundary action (3.334):

S
(2)
bnd = d4

∫
W

dx0dx1dx2 A1Re (γ5∂2σ) ≡ Q2

∫
dx1A1, (3.335)

where d4 is a constant that may be read off from (3.333) after twisting and Q2 appears

in the same limit that converted (3.309) to (3.310) namely when ∂2σ =
(

1+i
2γ5

)
δK

where K is a straight line along x1 direction (in a more generic situation, K will be a

closed loop in the x1 − x2 plane). Note that the integrand in (3.335) is independent

53The procedure is similar to what we had in (3.191), but now appropriately modified by the

mapping (3.282).
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of x0, so the dx0 integral can be localized by our choice of δK . Combining (3.334)

and (3.335), we now get our complete boundary theory to be:

Sbnd = (b2 + c2)

∫
W

Ad ∧ dAd +Q2

∮
K

A, (3.336)

where the second integral is now over a closed loop K, in the (x1, x2) plane, instead of

a straight line along x1 in (3.335) above. At this stage one might compare (3.336) with

the boundary theory that appears in [32], [33], [34] and [11]. Note the appearance

of Ad instead of A for the abelian Chern-Simons term. Interestingly the equation of

motion from (3.336) becomes:

Fd = − Q2

2(b2 + c2)
δK , (3.337)

where δK , the Poincare dual of K, is the same singularity that appeared earlier. In

this form (3.337) resembles closer to the analysis presented in section 6 of [11] in the

sense that we can assume Ad to have a singularity along K with the monodromy

around K to be:

M≡ exp

[
− iQ2

2(b2 + c2)

]
. (3.338)

Note that the denominator in the monodromy formula (3.338) has the factor b2 + c2,

which is Ψ in the notation of [11]. This of course appears because of twisting in the

supergravity formalism, as we saw above. What is interesting however is that the

denominator will not change if we go from the abelian to the non-abelian case as can

be inferred from our earlier derivations although the boundary theory will change

from it simple form (3.336) to its, more non-trivial, non-abelian generalization.

3.3.2 Surface operators and knot configurations

All our above discussions are consistent with the series of papers [32], [33], and [34]

modulo couple of subtleties that we have kept under the rug so far, and they have to

do with the precise structures of our D2-brane surface operator. The first subtlety

arises when we look carefully at the orientations of the D2-brane in our problem. The

orientation of the D2-brane is given in Table 5, and we discussed how this appears

in the BHN equations using the M-theory uplift given in Table 6. The analysis that

we presented above works when the D2-brane circles the φ1 direction completely. In

type IIB dual, this is a D3-brane stretched between the D5-D5 pairs wrapped on the

Taub-NUT two-cycles oriented along (r, ψ) directions as depicted in Table 8. From

here the result of Table 6 can be easily inferred by T-dualizing along the compact

φ1 direction and lifting the resulting configuration to M-theory.

The story however gets more complicated if the D3-brane is stretched, not com-

pletely along the φ1 circle, but only between the five-branes. A T-duality along φ1
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Directions x0 x1 x2 x3 θ1 φ1 ψ r x8 x9

Taub-NUT ∗ ∗ ∗ ∗
√ √ √ √

∗ ∗
D5-D5

√ √ √ √
∗ ∗

√ √
∗ ∗

D3
√ √

∗ ∗ ∗
√ √

∗ ∗ ∗

Table 8: The orientation of a D3-brane between the wrapped five-branes.

direction now will only lead to a fractional D2-brane, which is a D4-D4 pair wrapped

on certain two-cycle in the internal space. The internal space, before T-duality, was

a Taub-NUT manifold. However after T-duality, we expect the internal geometry to

take the form as given in (3.33), namely:

ds2
6 = eφ

(
F1 dr

2 + F3 dθ
2
1 + F4 ds

2
89

)
+ C1(dφ1 + χ cos θ1dx3)2 + C2dψ

2,(3.339)

where we see that the φ1 circle is non-trivially fibered over the x3 circle. The reason

for this is because of certain B-field components in the type IIB side as we saw in

sections 3.2.1 and 3.2.2. The ψ direction now no longer has the Taub-NUT fibration

structure but still allows the six-branes to wrap around (ψ, r, φ1) directions in the

way described in section 3.2.3. The other coefficients appearing in (3.339) are defined

using the θ parameter and the warp factors Fi as (see also (3.33)):

C1 ≡
e−φ

F̃2 cos2θ1 + F3 sin2θ1

, C2 ≡
eφ F̃2F3 sin2θ1 sec2 θ

F̃2 cos2θ1 + F3 sin2θ1

, χ ≡ F̃2 tan θ sec θ.

(3.340)

The type IIA metric (3.339) is in general a non-Kähler manifold and therefore the

fractional two-brane may be thought of as D4-D4 wrapped on a two-cycle Σ2 in

the non-Kähler space (3.339). The M-theory uplift will then be a G2 structure

manifold oriented54 along (θ1, φ1, r, ψ, x8, x9, x11) and a fractional M2-brane state

oriented along (x0, x1, ψ) that could be viewed as wrapped M5-brane on Σ2 × S1
11

where S1
11 is the eleven-dimensional circle. At energies smaller than the size of the

internal cycle, the analysis that we performed above will suffice.

The second subtlety also has to do with the precise orientation of our D2-brane

surface operator. The surface operator that we discussed here is a co-dimension two

singularity in four-dimensions, and is a co-dimension one singularity in the boundary

three-dimensions. However what we need is a co-dimension two singularity in both

three and four-dimensions [11], [36]. One way out will be to change the orientations

of our D2-brane in Table 5 so that the D2-brane is now oriented along (x0, ψ, φ1)

directions. This way, not only in our four-dimensional space (x0, x1, x2, ψ) it is a

co-dimension two singularity but is also a co-dimension two singularity in the three-

dimensional boundary oriented along (x0, x1, x2) directions. However, since the D2-

brane has only temporal direction along the boundary, the line integral would vanish
54At a given point in the x3 circle.
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p
1

p
2

Figure 1: A loop K, denoted by p2, in the (x1, x2) plane can be lifted up to form a knot

K, denoted by p1, once we go to the Euclidean space. Non-trivial Wilson loop can now be

constructed by integrating the twisted gauge field Ad along the knot p1.

because of our gauge choice (3.161) or (3.178). Thus what we need here instead is

a one-dimensional curve in the (x0, x1, x2) plane. Lifting this configuration to M-

theory will now have D0-brane whose precise contributions to our BHN equations

should mimic what we had earlier. Note that changing the orientation of the D2-

brane from φ1 to any other orthogonal compact direction will uplift to a M2-brane

but the orientation of the resulting brane is such that it cannot always be percieved

as an instanton contributing to the BHN equations55. As such the analysis will be

harder to perform.

Alternatively we can go to Euclidean space where the co-dimension two singu-

larity is a curve in a three-manifold with non-trivial topology. This will be our knot

configuration. This means a co-dimension two singularity in four-dimensional space

V as in (3.100) will now be of the form:

C ≡ K×R+, (3.341)

where K is a knot in three-dimensional Euclidean space (not to be confused with

the loop K discussed earlier in (3.336)) and R+ is our ψ direction. In the equivalent

Minkowski space, K would be a one-dimensional curve in (x0, x1, x2) plane. In the

above discussion of putting a co-dimension two singularity along (x0, ψ, φ1) directions

55Unless one of the direction is along r. We will discuss this case later.
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R+

W3

K

Figure 2: A surface operator constructed out of a M2-brane intersects the three-

dimensional Euclidean boundary W (or W3 in the language of [11]) along a knot K and

is stretched along the remaining ψ direction, which we denote here as R+. As such it is a

co-dimension two singularity both on the three-dimensional boundary W3 as well as the

four-dimensional space V ≡W3 ×R+.

the charge of the dual D0-brane bound state (with D6-branes) appears from:∫
Σ11

C3 ∧ G4 ∧ G4 =

∫
A0dx0

∫
Σ6

〈F〉 ∧ 〈F〉 ∧ 〈F〉
∫

TN

ω ∧ ω, (3.342)

as such this amounts to switching on two extra components of gauge fields 〈A1〉 and

〈Aψ〉 in addition to what we had earlier. The caveat however is that, as discussed

above, the temporal loop would vanish if we want to maintain our gauge choice

(3.161) or (3.178). On the other hand, once we take a curve in the (x0, x1, x2) space,

this issue doesn’t arise and knots can arise naturally (see also Fig 1).

In the same vein if we allow the co-dimension two singularity to be along (x0, ψ, r)

directions, then the dual M2-brane state will be along (x0, φ1, r) directions. Going

to the Euclidean space we can allow the co-dimension two singularity to be along

C×R, where C is the surface given in (3.341) and R is the radial direction r. The

dual M2-brane state then would be along K × R × φ1, where K is the knot. In

the IIA framework this is again an instanton in a four-dimensional space, whose two

coordinates are (x3, ψ) and the other two coordinates are orthogonal to the knot K.

Thus for either of the case discussed above, the co-dimensional two singularity

in the Euclidean space is identical and is given in Fig 2, although the M-theory up-

lifts differ. Previously when the co-dimension two singularity was along (x0, x1) the

equations governed by the hypermultiplet scalars (A2,Aψ, ϕ2, ϕ3) were the Hitchin’s

equations (3.287) from the BHN equation (3.284) in the absence of the surface op-

erator; and (3.307) from the BHN equation (3.294) when the surface operator is

present. Now our hypermultiplet scalars would appear from directions orthogonal to
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Figure 3: An unknot configuration drawn almost parallel to the x1 axis to simplify the

computation of the Wilson loop. Thus away from the regions denoted by Qi, we can restrict

the Wilson line integral to be only along x1.

the knot K therefore the analysis will be different. However if we consider a knot

configuration given in Fig 3, away from the neighborhood points Qi, we have:∮
K

A →
∫
x1

A1dx1, (3.343)

then again we expect the local picture to be similar, namely, the Hitchin’s equations

(3.287) get suitably modified like (3.294) (although σ and σ̄ in (3.294) need to be

interpreted carefully now).

We are now getting closer to the approach initiated in the series of papers [32],

[33], [36] and [34] and also in [11]. The co-dimension two singularity in Euclidean

space that we discuss here is clearly related to the monodromy defect studied in

[11] and [36]. Moreover, since we study static configurations (using the Hamiltonian

(3.158)), the temporal direction x0 remains suppressed and the co-dimension one

singularity in the three-dimensional boundary of our earlier discussions continues to

provide accurate description of the singularity structure of the (4, 4) hypermultiplets

locally, although the global picture may be different. This shift of our view point

from global to local is not just a mere rephrasing of (3.343) but more of a helpful

calculational tool where analysis pertaining to specific knots could at least be ad-

dressed. In particular, for the present context, this helps us to channel our earlier

computations to analyze non-trivial knot configurations instead of just closed loops

discussed in (3.336).

We can make our analysis a bit more precise. In the presence of the knot K, the

part of the boundary three-dimensional action (3.334) for the abelian case remains

unchanged in form with Ad defined appropriately with φ̂. The additional piece of

the action will be more non-trivial than (3.335) as now we expect the integral to be
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over a knot K. The total action will then take the form similar to (3.336) with the

loop K replaced by the knot K and A by Ad. For completeness we reproduce this

again as:

Sbnd = (b2 + c2)

∫
W

Ad ∧ dAd +Q2

∮
K

Ad, (3.344)

where Q2 can be calculated from M-theory using either the dual D0-brane charge

(3.342), or the dual M2-brane charge depending on our choice of orientation. For the

latter case φ̂ in the definition of Ad will take a different form (that can be determined

with some effort, but we will not do so here). Various other details like the field

strength Fd as well as the monodromy around K remain similar to (3.337) and

(3.338) respectively. Furthermore, the presence of Ad in the integral over the knot

K can now be directly hinted from (3.294) and (3.311) by the following replacement:

Fαψ → Fαψ + 〈Fαψ〉 ≡ Fαψ + gαDψϕ̂α, (3.345)

where gα is an appropriate constant and there is no sum over alpha. Indeed the

above defines the gauge field Ad,α ≡ Aα + gαϕ̂α that eventually appears through the

boundary magnetic charge QM into the boundary coupling (3.344). One may easily

see that in our earlier derivation this replacement forA2 was not necessary despite the

existence of 〈A2〉 because the instanton configuration therein was defined in the space

parametrized by (x2, x3, r, φ1) and thus independent of the ψ coordinate56. However

now the dual D0-brane charge (3.342) does depend on all coordinates orthogonal to

the Taub-NUT space and as such (3.345) becomes necessary.

Our short discussion above shows that, at least for the abelian case, the bound-

ary theory appearing from the magnetic charge QM in the presence of a surface

operator does have all the essential properties to study knot configurations. The

brief mismatch that we had earlier in the boundary theory (3.336) goes away once

the background is correctly defined as we see in (3.344). All this is satisfactory and

one might, at this stage, even speculate how the non-abelian extension may look like.

The non-abelian boundary Chern-Simons theory will have the form (3.241), but now

Ad,α will have to be defined with respect to φ̂α. The knot will then be added as a

linear term in Ad, just as in (3.344), but now to (3.241). The above statements are

easy to state but a direct derivation of the boundary action along the lines of our

earlier discussion is unfortunately harder because of the issues pointed out above.

We will therefore relegate a detailed discussion to the sequel of this paper and instead

make some generic statements here.

There is one puzzle however that we need to clarify. The non-abelian Chern-

Simons theory (3.241) with the coupling k
4π
≡ b2+c2, appearing in (3.230) and (3.63),

56We define 〈F2ψ〉 = ∂2〈Aψ〉 − ∂ψ〈A2〉 + i [〈A2〉, 〈Aψ〉] which is proportional to ∂ψ〈A2〉 for the

case studied earlier because 〈Aψ〉 vanishes, but now, for the present case, has all the terms.
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Figure 4: Two Wilson lines in the three-dimensional boundary denoted by (A) is arranged

so that they are parallel to the x1 axis. In (B) we split them via Heegaard splitting and

they are rejoined in (C) via a braid group action. This procedure allows us to introduce

non-trivial structures to the Wilson lines.

is well defined in a path integral only when k is an integer. With a gauge group G,

the path integral representation is given by:

Z(K, k, G) =

∫
DAd exp

[
iSbnd(k,Ad)

]
TrRP exp

(
Q2

∮
K

Ad
)
, (3.346)

where the integral is over all gauge connections Ad modulo gauge transformations.

What happens when k is not an integer? This could in general be the case because

both b2 and c2, given in (3.230) and (3.63) respectively, appear from supergravity

analysis and are as such not restricted to be integers. It turns out, when k is not an

integer, we can still perform the path integral by complexifying the gauge field Ad.
The story becomes more interesting now, and has been discussed in much details in

[37]. This analytical continuation of Chern-Simons theory at the boundary proceeds

in few steps: one, to change the measure of the path integral; two, to incorporate the

complex conjugate piece in the path integral and then three, to assume the complex

conjugate piece, constructed from Ad, to be independent of the one constructed from

Ad [37]. In other words, we change (3.346) to:

Z(K, k, k̃, G) =

∫
C
DAdDÃd exp

[
iSbnd (k,Ad) + iSbnd

(
k̃, Ãd

) ]
TrRP exp

(
Q2

∮
K

Ad
)
,

(3.347)
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Figure 5: The action of the braid group on the Wilson lines. They are distinguised by

their over-crossing and under-crossing pattern. The first one has a braid group action σ−1
1 ,

whereas the second one has a braid group action σ1.

where both Ãd and k̃ are in general different from Ad and k respectively. The choice

of the integration cycle C is subtle and is captured by finding critical points of the

modified Chern-Simons action appearing in (3.347) and then expressing C in terms

of the so-called Lefshetz thimbles [37]. The integrals over these Lefshetz thimbles

should always converge, and this way finite values could be determined for the path

integral (3.347)57.

The above discussion raises an interesting question, namely, what is the inter-

pretation of the above story from our M-theory uplift? To answer this, recall how

we arrived at the Chern-Simons theory (3.241). Our starting point was the four-

dimensional action (3.153), from where we derived the Hamiltonian (3.158). The

electric and the magnetic charges QE and QM respectively, when arranged properly

by taking care of the subtleties mention in section 3.2.12, gave rise to the boundary

action (3.241). There were two crucial ingredients in the discussion: one, the ex-

pression (3.230), which was important in deriving the coupling constant k and two,

the twisted gauge field Ad which in turn was composed of the original gauge field

Aµ and the twisted scalar field φµ. Looking even further back, both the ingredients

appeared from M-theory: the twisted gauge field from the G-flux G4 via (3.55); and

the coupling k (i.e b2 and c2) essentially from the M-theory action via (3.62)58. This

means the complexification of the fields that is necessary to analyze (3.347) should

somehow also appear directly from our M-theory analysis.

The analysis gets harder because in M-theory, or in the eleven-dimensional super-

57Clearly this is a playground for using Morse theory and the theory of steepest descent as have

been exemplified by [37].
58For the full non-abelian enhancement the readers may refer to section 3.2.6.
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x
1

Figure 6: Four Wilson lines are joined pairwise by identifying the respective monodromies

around them.

gravity, the ingredients enhancing the four-dimensional gauge theory from abelian to

non-abelian and creating the knots may be the same M2-branes. The distinguishing

feature is of course their orientations: the non-abelian enhancements appear from

M2-branes wrapped on the Taub-NUT two-cycles, whereas the knots appear from

M2-branes having at most one leg along the Euclideanized boundary W (or being

a one-dimensional curve in the three-dimensional Minkowskian boundary). On the

other hand when the knot configurations are dual to the D0-branes, with the world-

line of the D0-branes forming a knot configuration in the three-dimensional boundary

W, the analysis is equally challenging from M-theory. Even at the abelian level, the

essential path-integral that we can lay out is the following:

Z(a, b) =

∫
DG4 exp

[
ia

∫
Σ11

G4 ∧ ∗G4 + ib

∫
Σ8

G4 ∧ G4

]
exp

(
i

∮
C3

)
. (3.348)

This is good enough to capture certain aspects of four-dimensional abelian gauge

theory as well as the boundary three-dimensional Chern-Simons theory, but definitely

not the full story, at least not yet in the present incarnation with a providing the

gauge coupling and:

b ≡ c2∫
TN
ω ∧ ω

, Σ8 = W ×R+ ×TN, (3.349)

on the eleven-dimensional manifold Σ11 = Σ8 × S3, where S3 is a three-cycle and

ω is the normalizable harmonic form defined on the warped Taub-NUT space. To

complete the story, we will need a few crucial intermediate steps: one, that converts

b in (3.348) to k as in (3.346) via a step similar to (3.230); two, that converts G-

flux G4 to three-dimensional twisted gauge field Ad; and three, that finally converts
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Figure 7: Once we identify monodromies of a pair of Wilson lines, the structure of the co-

dimension two surface operator in four-dimensional space can be formed out of two-branes.

Here two such configurations are shown on a Heegaard-split three-manifold base.

(3.348) to (3.347). The search then is a formalism for a topological M-theory where

calculations of the kind mentioned above may be performed (somewhat along the

lines of [38]).

In the absence of such a formalism, simplification occurs when k becomes an

integer, so that we can ignore complexification, and when we go to the abelian case,

where we can resort to our earlier calculations. This then brings us to the following

path-integral representation:

Z(K, k) =

∫
DAd exp

(
ik

4π

∫
W

Ad ∧ dAd
)

exp

(
iQ2

∮
K

Ad
)
, (3.350)

which is simpler than both (3.346) as well as (3.347) and where k
4π

= b2 + c2 is

now an integer. Additionally, the quadratic form of the Chern-Simons action implies

that (3.350) can be simplified further. Defining Ad = 〈Ad〉 + ad, where ad is the

fluctuation over the background field 〈Ad〉, and using (3.337) now for the background

field strength 〈Fd〉, we can express (3.350) equivalently as:

Z(K, k) = Z0

∫
Dad exp

(
ik

4π

∫
W

ad ∧ dad
)
, (3.351)

where Z0 is a number and is given by Z0 = exp
(
ik
4π

∫
W
〈Ad〉 ∧ d〈Ad〉

)
exp

(∮
K
〈Ad〉

)
,

implying that the quantum computations in the presence of a knot may be performed

by studying the fluctuations over a classical background as if the knot was absent.

This simplification is of course only for the abelian case, as the non-abelian case

would require more elaboarate computational machinery.
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Figure 8: Construction of an unknot using all the ingredients that we developed earlier.

Boxes A represent the Wilson lines parallel to x1 axis, boxes B denote the curving of

the Wilson lines by identifying pairwise monodromies, and finally box C denote the braid

group action. Together they form an unknot configuration. The points ai and bi are the

points where the Wilson lines end on the Heegaard-split three manifolds.

There is something puzzling about (3.351) that we would like to clarify. Rephras-

ing (3.350) to (3.351) one might worry that all information about the knot K is now

lost. In fact what we have in (3.351) is the following additional integral:

exp

(
−iQ2

∫
W

ad ∧ δK
)

exp

(
iQ2

∮
K

ad

)
, (3.352)

which vanishes classically and so the computations proceeds as though no knot is

present in (3.351). However (3.352) imples that the actual quantum mechanical

computation should have another knot linked to the previous one. In other words

there should be a framing anomaly [2]. Taking this into account, the information

about the knot can thus be recovered in the quantum computations.

Let us elaborate this a bit more. For abelian, Chern-Simons, the cubic interaction

term is absent. The expectation value of Wilson loop operator for knot K in (3.350)

can be expressed as:

Z(K, k) = exp

{
−Q2

2〈
∮

K

dxµAµd(x)

∮
K

dyνAνd(y)〉
}
, (3.353)

where Q2, as mentioned earlier, may be computed in M-theory from the dual D0-

brane charge (3.342) or from dual M2-brane charge depending on our choice of ori-
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entation. Using the gauge field two point function:

〈Aµd(x)Aνd(y)〉 = εµνλ
(x− y)λ
|x− y|

, (3.354)

we see that the above invariant (3.353) will blow up at coincident points xµ → yµ.

So we will have to regularize the integral. This is achieved by choosing a suitable

frame with a Kf knot slightly displaced from the original knot. In other words, we

take the coincident points as yµ = xµ + εµ, with εµ approaching zero. Depending on

the choice of frame, we will get the U(1) knot invariant (3.353) to be in terms of a

framing number p, defined as the linking number of knot K with its frame knot Kf ,

in the following way:

− 1

Q2
2

log Z(K, k) = lim
εµ→0〈

∮
K

dxµAµd(x)

∮
Kf

dyνAνd(y)〉 = −iπp
k
, (3.355)

implying that for any knot the result is proportional to p. However, we can always

choose a canonical frame in S3 where p = 0. In other words, this canonical frame

does not give any information about knots within abelian Chern-Simons theory.

This is exactly reflected by perturbing the classical background solution as detailed

in (3.351) and (3.352). Thus non-trivial information is achieved when we go from

one frame to another. For more details see [39].

We are now ready to discuss the construction of knots using our surface operators.

One of the crucial ingredient is the Heegaard splitting, which states that a three

manifold W can be obtained as a connected sum of three manifolds W1 and W2

joined along their common boundary Σ ≡ ∂W. Thus:

W = W1 ∪Σ W2. (3.356)

In the presence of a surface operator, a three manifold can also be split in a similar

way as depicted in Fig 4, (A) and (B). Once we extend the Wilson lines along

the R+ direction (or alternatively the ψ direction) in Fig 4(B), we can see how the

surface operators split. The way we have expressed the surface operators, they are

parallel to x1 axis as can be seen from the Wilson line representation (3.343). This

means on the boundary Σ of our three manifold W the Wilson lines will end on

points, and the splitting of the surface operators would imply how the points are

distributed on different boundaries. In a standard quantization of the Chern-Simons

theory on W, where W is locally a product of Σ × R1 with R1 representing the

direction x1, the Hilbert space HΣ associated to the boundary Σ changes, in the

presence of the surface operator, to:

HΣ → HΣ;pi;Ri , (3.357)

where pi are the points on Σ where the Wilson lines end and Ri are the represen-

tations of each points. In the present case the Hilbert space is precisely the gauge

theory described on the D2-brane surface operator that we use here.
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Figure 9: Construction of a trefoil knot by joining boxes A, B and C appropriately. The

braid group action now acts twice. The points (ai, bi) still remain the points where the

Wilson lines end on the Heegaard-split manifolds.

The next ingredient is the monodromy around the surface operator. We already

described the case when we have a loop K in the (x1, x2) plane for the surface

operator given in Table 5. The monodromy therein was given by (3.338), which

can be re-expressed in the language of (α, β, γ) using the BHN equations (3.308),

where (α, β, γ) have in-turn been expressed using supergravity variables in (3.309)

and (3.310). In eq. (6.4) of [11], and also in eq. (2.2) and eq. (2.3) of [33] with more

details, the gauge field A and the scalar field φ̂ have been described using (α, β, γ).

Using (3.309) and (3.310), we now express (A, φ̂) using supergravity variables. This

is no surprise, of course, as in our earlier sections we used supergravity to write the

BHN equations for Fαβ and Fαψ. Thus the monodromy around the k-th surface

operator (3.338) can be now written as:

Mk ≡ exp [−2π(αk − iγk)] . (3.358)

Since a given surface operator is a solution of the set of equations (3.316), (3.326),

(3.318), (3.324) and (3.325), monodromies around different surface operators depend

on their respective choices of the triplets (αk, βk, γk).

The gauge field set (A, φ̂) that we take appears in the boundary Chern-Simons

theory as a combined gauge field Ad as defined in (3.240) and in (3.334). There are

three parameters that appear in the definition of Ad: b2 and c2 from gauge theory

coupling constant (3.230) after twisting, and d1 from (3.232). It is easy to see that
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although b2 and c2 both have to be real, d1 can in principle be complex59. Nothing

that we discussed earlier will modify if d1 becomes a complex function. In fact there

are two ways to go about this, with definite advantages in either formalism. Using

Aµ = −iAµ as in (3.286), we can express Ad as:

Ad = − i
(
A− id1

b2 + c2

φ̂

)
, (3.359)

which keeps d1 real, but inserts an i in the definition of the gauge field. In this

formalism, a boundary flat connection implies a Hitchin equation of the following

form:

dAd − iAd ∧ Ad = 0 = F +

(
d1

b2 + c2

)2

φ̂ ∧ φ̂, (3.360)

where note the relative plus sign60. Comparing this with say (3.326), which is ex-

pressed in variables before twisting, we see that they are similar provided we use

F12 = −iF12 as in (3.286). After twising the coefficients of (3.360) may be identified

with the ones in (3.326) and this way the value of d1 may be determined.

In the second formalism, we keep the gauge field as Aµ, but make d1 itself

complex. If we now map all the variables in the action (3.153) to the ones appearing

in say [11] using (σ0, γ0, κ0) etc in (3.211) and (3.215) respectively, then one can show

that:

d1 ≡ ± ic11(b2 + c2)√
c2

11 + v2
3q

2 sin2θ
, (3.361)

where c11 is given in (3.76), v3 in (3.66) and q(θ) in (3.67) with a NC deformation

θ. This definition of d1 doesn’t change if we change φ, in the absence of a surface

operator, to φ̂, in the presence of one. Additionally it is interesting to note that there

are certain values of the NC parameter θ for which the definition of the boundary

gauge field Ad simplifies to:

Ad = A± iφ̂. (3.362)

The simplest case is of course when θ vanishes. The other case may arise when

q(θ), as defined in (3.250), vanishes for non-zero θ. Clearly for all these cases c2

also vanishes, and t becomes t = ±i. However the boundary gauge theory coupling

continues to remain non-zero and now takes the value b2 as can be seen from (3.230).

59When b2 and c2 are also complex, we are in the regime where we have to analytically continue

the Chern-Simons theory. We discussed this briefly earlier and more details are in [37].
60If we now define φ̂ = −iΦ, we will get back (3.287) as expected. However for the computations

at hand, we keep the twisted one-form scalar fields unchanged, and only redefine the gauge fields.

As noted above, this line of thought has some distinct advantages.
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Figure 10: A specific construction of a (2, n) torus knot by joining boxes A, B and C

appropriately. The braid group action now acts n times. The points (ai, bi) still remain

the points where the Wilson lines end on the Heegaard-split manifolds. Once we extend

the figure along R+ (or ψ) direction, we will get the configuration of the surface operator.

Unfortunately, as it turns out, by doing similar mapping of our variables to the

ones in [11] as discussed above, b2 becomes infinite when t approaches ±i. In this

limit, and as elaborated in [12], τ defined in (3.183) becomes irrelevant and therfore

is not an useful arena to study the boundary theory. Thus it seems we should only

allow t 6= ±i cases, which then brings us to the question whether the simplification

(3.362) is any way useful for us.

A path integral representation sheds some light here. Let us first discuss the

non-abelian case in the absence of any knots. The path integral can be written as:∫
C
DAd exp

[
i(b2 + c2)

∫
W

Tr

(
Ad ∧ dAd +

2i

3
Ad ∧ Ad ∧ Ad

)]
, (3.363)

where C is the same integration cycle that we discussed earlier; and we see that

(3.363) only depends on the combination b2 + c2 but does not depend on the ratio
d1

b2+c2
, which is another way of saying that Ad is a dummy variable in the integral

(3.363). We can therefore replace Ad by any complex function and the definition

(3.362) would equally suffice if we view A and φ̂ to be arbitrary functions appearing

in the path integral. All in all, it boils down to the fact that the gauge field appearing

in the path integral may be an arbitrary complex one-form, although the boundary

action is defined with a specific functional form forAd. Even in the presence of a knot,
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Figure 11: The construction of a figure 8 knot using A, B and C boxes in a slightly

different way than discussed earlier. The braid group action is now σ−1
1 ·σ2 ·σ−1

1 ·σ2 acting

on the Wilson lines as shown.

for both abelian and non-abelian cases, the arguments presented above go through

because the Wilson loop is defined with Ad, and as such could again be replaced by

an arbitrary complex one-form in the path integral. All these observations resonate

well with the ones presented in sec (2.4) of [11].

Further simplification occurs when we look at the BHN equations (3.316) and

(3.326) on a plane orthogonal to the surface operator. Since σ, as well as its covariant

derivatives (3.317) and (3.328), are localized functions we expect the behavior in a

plane away from the center of the surface operator to be:

F1ψ − iγ4 [ϕ1, ϕ3] = F2ψ − iγ4 [ϕ2, ϕ3] = F12 − iγ7 [ϕ1, ϕ2] = 0, (3.364)

where γ7 is the coefficient of the commutator piece in (3.326). Note that we have

expressed the BHN equations without the hats, as the σ dependences die off in the

orthogonal plane. Converting the gauge fields from Aµ to −iAµ using (3.286), the

Hitchin equation for F12 in (3.364) match with (3.360) as noted earlier. Of course

the above discussion is good only for the configuration that we study in Table 5

which is a co-dimension one singularity in the three-dimensional boundary. For a

co-dimension two singularity in the boundary, we will have to study the Hitchin’s

equations in a plane orthogonal to the surface operator. The analysis would be

similar to what we did above, although certain specific details might be different

now.
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The picture that we developed above leads to the concept of holonomy of the

complex gauge field around a given surface operator. This can typically be repre-

sented by Vk ≡ Hol(Ad(k)) with k representing the k-th surface operator. For flat

connections holonomy and monodromy are related so Vk will be conjugate to the

monodromy Mk in (3.358). An interesting consequence of having holonomy around

a surface operator is the following. Consider four Wilson lines parallel to each other

and intersecting at four-points on Σ in a Heegaard split three-manifold. This is de-

picted to the left of Fig 6, where the Wilson lines are parallel to x1 direction. If we

name them as 1, 2, 3 and 4, then by identifying the monodromies:

M1 =M−1
4 , M2 =M−1

3 , (3.365)

or equivalently the holonomies, we can go to the configuration depicted to the right

of Fig 6. This operation is useful because it tells us that we can join two Wilson

lines by identifying monodromies. In terms of surface operators, this procedure will

lead to the configuration depicted in Fig 7.

In fact we now have two distinct configurations of Wilson lines, or equivalently,

surface operators. The first one, we will call it box A and is depicted in Fig 4

(A), is a configuration of parallel surface operators. The second one, and we will

call it box B, is depicted to the right of Fig 6: a configuration of curved surface

operators. Associated to these boxes will be the operators Ak and Bk where k denote

the number of surface operators (or equivalently, Wilson lines).

There is a third possibility that we can entertain and is depicted in Fig 4 (C).

We will call it box C, where the Wilson lines are swapped by a braid group action

σα. We will concentrate on a braid group with two strands, with generators σα where

the subscript α denote which set of two strands, out of a given set of Wilson lines,

we choose here. The operators associated with the braid group action will be C(2,σ1)

and C(2,σ−1
1 ) where we take α = 1 for illustrative purpose and the two operations are

depicted in Fig 5. We therefore expect:

C(2,σ1)C(2,σ−1
1 ) = C(2,1), (3.366)

where σ1 = 1 implies no braid group action. This is therefore topologically equivalent

to Aᵀ2, with transpose put in to account for the orientations of the Wilson lines.

We now have more or less all the necessary ingredients to analyze the invariants

for various knots. Let us start with the simplest case of an unknot as depicted in Fig

8. Combining the boxes A, B and C we can express the invariant (or the linking

number) in the following way:

Z(q; K0) = 〈exp

∮
K0

Ad〉 =
∑
n2

〈n2|Bᵀ2C(2,σ1)B2A2|n2〉, (3.367)

where Ad, as described above, could be any complex one-form; and K0 is the unknot

configuration. The action of the operators in the RHS of (3.367) can be elaborated
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Figure 12: The construction of 52 knot using the A, B and C boxes. The braid group

action is now σ3
1 · σ2 · σ−1

1 · σ2 acting on the Wilson lines as shown.

in the following way. Consider box A in Fig 8 where the Wilson lines intersect

the top right two-dimensional surface Σ at two points. These two points may be

considered as a given state |n2〉 in the boundary U(1) Chern-Simons theory. The

operator A2 evolves the state from right to left (here we take the direction to be

parallel to x1, but this is not necessary). The subscript 2 denotes two strands (or the

two particle state |n2〉) in the field theory. The operator B2 then curves the Wilson-

line states by monodromy identification, much like (3.365) discussed above. This

evolution continues till the braid group operation C(2,σ1) acts in the way depicted

in Fig 8. The braided state is then evolved by Bᵀ2 where the transpose operation

just reverses the orientations of B2. Finally we sum over all possible two Wilson-line

states in the Chern-Simons theory.

The above, slightly unconventional way, reproduces the invaraint (3.353) for the

unknot case using the operators A2, B2 and C(2,σ1) combined as (3.367). All the

three operators can be thought of as a 2× 2 matrices whose components are evolu-

tion operators. As such they are expressible in terms of exponentials of generators

integrated over the knot configuration, exactly as in (3.353). This can be normalized

to 1, so one might wonder why we went about expressing the unknot in a rather

complicated way. The answer is that the above way of expressing the unknot using

the operators, help us to generalize the picture to any complicated torus knots. For

example, let us consider the trefoil depicted in Fig 9, which again uses the three set

of operators A2, B2 and C(2,σ1). The knot invariant associated with the trefoil then
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is:

Z(q; Kt) = 〈exp

∮
Kt

Ad〉 =
∑
n2

〈n2|Bᵀ2C(2,σ1)C(2,σ1)C(2,σ1)B2A2|n2〉, (3.368)

where Kt denotes the trefoil knot. The operators act in the same way as in (3.367),

except now we have three times the braid group action by the operator C(2,σ1). This

of course distinguishes it from (3.367), and thus the above analysis generalizes easily

to the torus knots (2, n) as:

Z(q; Kᵀ) = 〈exp

∮
Kᵀ

Ad〉 =
∑
n2

〈n2|Bᵀ2Cn
(2,σ1)B2A2|n2〉, (3.369)

with Kᵀ representing the torus (2, n) knots. Clearly when n = 3 we get our trefoil

invariant.

So far we have been using the operator C(2,σ1) to represent the braid group action

for two Wilson lines. The question is what happens when we have more than two

Wilson lines. It turns out we can still use C(2,σ1) but represent the braid group action

is a slightly different way. An example of this can be presented for the figure 8 knot,

which is the simplest non-torus knot, given in Fig 11. The knot invariant for this is

now:

Z(q; K8) = 〈exp

∮
K8

Ad〉 =
∑
n3

〈n3|Bᵀ3C
m1

(2,σ2)C
m2

(2,σ−1
1 )

C
m3

(2,σ2)C
m4

(2,σ−1
1 )

B3A3|n3〉,

(3.370)

where K8 is the figure 8 knot with m1 = m2 = m3 = m4 = 1; and C(2,σ2) and

C(2,σ−1
1 ) are the braid group actions (σ1, σ2) on two different strands. The inverse to

be understood as the operations depicted in Fig 5. The rest of the operators act

in the way we described earlier. We can generalize (3.370) by considering arbitrary

values for ni in (3.370). One such generalization leads to the 52 knot given in Fig

12, whose knot invariant may be written as:

Z(q; K52
) = 〈exp

∮
K52

Ad〉 =
∑
n3

〈n3|Bᵀ3C(2,σ2)C(2,σ−1
1 )C(2,σ2)C

3
(2,σ1)B3A3|n3〉,

(3.371)

where K52
is the 52 knot, and we have taken C3

(2,σ1) instead of C3
(2,σ−1

1 )
action. We

thus see that the three ingredients, namely (a) the Heegaard splittings, that typically

lead to a class of operators Ak; (b) Monodromy identifications, that lead to a class

of operators Bk; and (c) braid group actions that lead to a class of operators C(2,σα)

and C(2,σ−1
α ) are sufficient to give us both the surface operator representations as well

as the invariants for any given knots. All these are expressible in the language of a
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U(1) Chern-Simons theory with a complex gauge group Ad and the invariants that

we computed above are proportional to:

exp

(
iπp Q2

2

k

)
, (3.372)

which are consistent with the generic argument that we presented for (3.353). This

is not a big surprise, and one might wonder if we can get anything more out of our

elaborate constructions beyond the expected result (3.372). The answer turns out

to be affirmative and in fact accommodates the polynomial constructions outlined

in [36] where the monodromies Mk in (3.358) are used to construct the variables

(θi, xi) and the affine cubic f(xi, θm) = 0 (see for example equations (4.6), (4.7) and

(4.9) of [36]). This means the surface operator representations presented for various

knot configurations above not only give us the knot invariants, but also reproduce all

the constructions of [36]. Additionally, our analysis shows that all the constructions

of [36] may be given a supergravity interpretation!

However once we go to the non-abelian extension, we face many issues, and the

simple minded analysis that we presented here will have to be modified. This means,

for example, a surface operator representations of Jones polynomials using the three

kinds of operators we used here are not sufficient. A more detailed framework is

then called for, which is unfortunately beyond the scope of the present work. We

will therefore not discuss this further, instead we will elaborate on another set of

constructions that generalize easily to the non-abelian case.

3.3.3 ’t Hooft operator, opers and supergravity parameters

In the previous section we have considered the co-dimension two defect operators in

the field theory. The monodromy defect supported on a knot K inside the Chern-

Simons boundary was extended in four dimensions to a singularity that the fields

had along a two dimensional surface K×R+ inside the four dimensional space.

In [11] and [13], other defect operators were considered in a four dimensional

theory, the co-dimension one Wilson line operators and the co-dimension three ’t

Hooft operators. Especially important are the co-dimension three ’t Hooft operators

which can be related to the Nahm pole solution where the dependence of the co-

dimension three object is only on ψ, the four dimensional coordinate transversal to

the three dimensional boundary. The relevant equations have already appeared in

(3.185), which are of course the ones of [11]. Note that, compared to our earlier

sections, nothing we say in this subsection will be new. However an attempt will

be made to pave a way for possible connections between the results of [13] and our

supergravity analysis.

Let us first consider t = 1 case, where t is given, in our language of supergravity,

by (3.184). In this case, a stationary solution (invariant under translations along
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time direction) with zero Aµ and φ3 reduce to Nahm’s equations for the components

of the field φ tangent to the boundary61:

d
−→
φ

dy
+
−→
φ ×

−→
φ = 0, (3.373)

where we have identified y as our ψ coordinate. The above equation follows easily

from our BHN equation (3.221), and also from (3.326) which is in the presence of a

surface operator provided we change φ to φ̂. In the language of commutator brackets

of (3.221) or (3.326), it is not too hard to guess the solution of the above equation

to be:
−→
φ =

−→τ
y
, (3.374)

where τa are the three Pauli matrices. The advantage of expressing the equations in

terms of three-dimensional vectors, before twisting, allows us to compare with the

equations after twisting when they all become one-forms.

Once Aµ’s are non-vanishing, the scenario is not so simple as the Nahm equation

(3.373). From our earlier analysis, we know that we need the full BHN equations.

Of course, as expected, the solutions to the BHN equation again cannot be as simple

as (3.374). It turns out, there are two types of solutions to the BHN equations

which may be succintly presented in terms of a complex coordinate z defined as

z = x1 + ix2 (recall that our four-dimensional space is parametrized by (x0, x1, x2, ψ)

where we already identified y with ψ). The first type of solutions are independent of

z coordinate. Defining:

D1 ≡
∂

∂x1

+ i
∂

∂x2

+ [A1 + iA2, .]

D2 ≡
∂

∂y
+ [Ay − iφ0, .] , D3 ≡ [φ1 − iφ2, .] , (3.375)

where Ay ≡ Aψ; and as mentioned earlier, depending on the mapping (3.156) or

(3.282), we can identify φ0 to either A3 or ϕ3 respectively. This means, for certain

choice of the gauge ((3.161) or (3.178)), φ0 may vanish and therefore D2 described

above may be simplified. However for the present discussion, we will keep things

generic. The first order differential operators Di therefore satisfy:

[Di, Dj] = 0, i, j = 1, 2, 3;
3∑
i=1

[
Di, D

†
i

]
= 0, (3.376)

which are alternative ways to express the BHN equation (3.208) or (3.221) once

we absorb some factors and signs appropriately. To verify that this is indeed, for

61Our analysis here is generic and therefore φi and ϕk can be related via any of the two mappings

(3.156) or (3.282). In fact our gauge choice could also be generic i.e (3.161) or (3.178). Additionally

we will be using the gauge fields Aµ instead of Aµ so that we can easily compare our results to [13].
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example, (3.208) we note that the second equation in (3.376) is the moment map

equation which can be written as:

F12 − [φ1, φ2]−Dyφ0 = 0. (3.377)

In the gauge A1 + iA2 = 0, the operator D1 becomes derivative with respect to

z̄ and with the gauge choice Ay = iφ0, the operator D2 becomes derivative with

respect to y. D3 is proportional to φ ≡ φ1 − iφ2 as should be clear from (3.375).

The commutation relation [D1, D3] = 0 implies that φ is holomorphic in z and the

relation [D2, D3] = 0 means that φ is independent of y. Near y = 0, φ is a constant

and a complex valued gauge transformation maps it into the Nahm pole solution

with 1
y

dependence.

What about outside the region y = 0? The vanishing of the commutator brackets

[D1, D3] and [D2, D3] define a Higgs bundle (E, φ) where φ is independent of y and

holomorphic. The Nahm pole solution (also called the model solution) is trusted

around the y = 0 boundary but we can extend the model solution as a Higgs bundle

(E, φ) away from y = 0. In fact, as described in [13], such extension gives a Higgs

bundle (E, φ) endowed with a holomorphic line sub-bundle L which is not stabilised

by φ. In other words, for any section s of L we expect s ∧ φs 6= 0, as described in

[13].

Let us now consider the second type of solutions that depend on z. The depen-

dence on z is determined by the presence of extra monopoles with extra charges ka
at points z = za. Next to y = 0, the solution is a simple modification of the Nahm

pole solution as the field φ has a holomorphic entry with a power of z. Away from

y = 0 the solution is given again by a triplet (E, φ, L) of a Higgs bundle with a

holomorphic sub-bundle L.

How do we now extend this result to the case t 6= 1? A key observation of [13] is

that the Higgs bundle (with the key ingredient of a holomorphic scalar field φ) can

be obtained by starting from a set of Hitchin equations:

F − φ ∧ φ = 0; d ∗ φ = dφ = 0, (3.378)

and combining the last two equations to get the holomorphicity condition on φ,

namely ∂̄φ = 0. This is true for t = 1. When t 6= 1, it is useful to modify the

definition of the derivatives with respect to z, z̄ by introducing a complex parameter

ζ in the following way:

Dζ
z =

D

Dz
− ζ−1 [φ, .] , Dζ

z̄ =
D

Dz̄
+ ζ

[
φ̄, .

]
. (3.379)

We have [Dζ
z , D

ζ
z̄ ] = 0 which is taken as an equation governing holomorphic data. In

fact using vector field components Aζz = Az − ζ−1φ and Aζz̄ = Az̄ + ζφ̄ makes (3.379)

holomorphic in these variables. Additionally, the holomorphicity condition on φ is
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mapped into a holomorphicity condition on Aζz and the Higgs bundle condition is

now replaced by a complex flat connection. The Nahm pole solution around y = 0

now describes a singularity in Aζz and Ay. Away from y → 0 region, the solution is a

complex flat bundle E with a holomorphic bundle L defined such that its holomorphic

sections are not annihilated by Dz. Such a pair (E,L) is called an oper [13].

In the Appendix A of [13], the reduction of a four dimensional stationary solu-

tion to a topological theory in three dimensions was a function of a rotational angle

θ where the parameter t was set to tan
(

3θ
2

+ π
4

)
and ζ to tan θ. This relation be-

tween t and ζ should also appear from our M-theory reduction. As t is related to

the supergravity parameters via (3.184), we expect ζ to also be represented by our

supergravity parameter. From here we conclude that the oper solution is automati-

cally fixed once we have determined the supergravity parameters. This is somewhat

along the lines of the discussion in the previous subsections where we saw that many

of the results discussed in [11] automatically appear from our supergravity analysis.

More details on this will be presented in the sequel to this paper.

4. Model B: The type IIB dual description and non-Kähler

resolved cone

In section 3 most of our analysis revolved around the uplift of the brane configuration

given in Table 1 to M-theory, and the subsequent physics associated to the presence

of a knot in 2 + 1 dimensional boundary W. The existence of a Coulomb branch, as

well as dipole (or RR) deformation, helped us to study the knots and their localization

to the boundary W. Many of the details, that were studied exclusively from the

boundary point of view in [11], appeared very naturally in our set-up from the bulk

dynamics in M-theory. The starting point of all our discussion was the Hamiltonian

(3.158) from where, and in the presence of surface operators, we were led to the

detailed study of knots and knots invariants.

At this stage it is interesting to ask if we can repeat the success using the second

brane configuration given in Table 2. One immediate difference from the earlier

brane configuration in Table 1 (or its T-dual type IIA version) is the absence of

the Coulomb branch. Recall that the existence of the Coulomb branch earlier was

responsible in constructing the twisted gauge field Ad in (3.240) which eventually led

us to the boundary Chern-Simons theory (3.241). Once we lose the Coulomb branch,

restricting the knot to the three-dimensional boundary W is more subtle. In fact

the whole boundary picture developed from four-dimensional space V = W × R+

a la [11] will need to be re-interpreted differently now. Problems lie in restricting

the knots to three-dimensions, constructing the twisted gauge field and resolving the

conundrum addressed earlier in section 2.2.
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We will start by discussing, in series of steps, a way out of the conundrum for

Model B by analyzing the picture from M-theory in a slightly different way from

what is discussed in section 5 of [11]. In the process we will get some understanding

how to address the other two issues namely, restricting knots to 3d and topological

twisting of the scalar fields. But we make only the barest beginnings in this direction,

and leave most of the details for the sequel.

4.1 Second look at the gravity and the topological gauge theory

We saw, from our earlier discussion in section 2.2, that an appropriate duality to the

brane configuration of Model B leads to a type IIB picture with wrapped D5-branes

on the two-cycle of a resolved conifold. According to [40] the metric on the resolved

conifold should be non-Kähler. Ignoring the dipole deformation for the time being

(we will insert this soon), the supergravity background for the configuration is given

by (3.4) as before with φ being the dilaton and the Hodge star and the fundamental

form J are wrt to the dilaton deformed metric e2φds6
2. The metric ds2

6 is now different

from (3.5) as its a non-Kähler resolved conifold metric written as:

ds2
6 = F1 dr

2 + F2(dψ + cos θ1dφ1 + cos θ2dφ2)2 +
2∑
i=1

F2+i(dθ
2
i + sin2θidφ

2
i ),

(4.1)

where Fi(r) are warp factors that are functions of the radial coordinate r only62. The

above background (4.1) can be easily converted to a background with both H3 and

F3 fluxes by a series of duality specified in [41, 40]. The duality converts (4.1) to:

ds2 =
1

e2φ/3
√
e2φ/3 + ∆

ds2
0123 + e2φ/3

√
e2φ/3 + ∆ ds2

6 (4.2)

F3 = −e2φcosh β

√
F2

F1

(g1 eψ ∧ eθ1 ∧ eφ1 + g2 eψ ∧ eθ2 ∧ eφ2)

F̃5 = −sinh β cosh β (1 + ∗10) C5(r) dψ ∧
2∏
i=1

sin θi dθi ∧ dφi

H3 = sinh β
[ (√

F1F2 − F3r

)
er ∧ eθ1 ∧ eφ1 +

(√
F1F2 − F4r

)
er ∧ eθ2 ∧ eφ2

]
with a dilaton eφB = e−φ and a ∆ defined as:

∆ = sinh2β
(
e2φ/3 − e−4φ/3

)
(4.3)

and β is a parameter related to certain boost that is explained in [40] while the

others, namely (g1, g2, C5) are given by:

g1(r) = F3

(√
F1F2 − F4r

F4

)
, g2(r) = F4

(√
F1F2 − F3r

F3

)
(4.4)

62One may generalize this to make the warp factors Fi functions of (r, θ1, θ2) but we will not do

so here.
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Large N duality
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resolved cone 
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Figure 13: The web of dualities that connect various configurations in type IIB and type

IIA theories. Here we will concentrate mostly on the lower left hand box that captures the

physics of D5-branes wrapped on the two-cycle of a non-Kähler resolved conifold.

C5(r) =

∫ r e2φF3F4

√
F1F2

F1

[(√
F1F2 − F3r

F3

)2

+

(√
F1F2 − F4r

F4

)2
]
dr.

4.1.1 Revisiting the topologically twisted theory

Before moving further, let us ask how does finding the type IIB background (4.1)

and (4.2) helps us in understanding the topologically twisted theory. Recall what

we did in section 3. We mapped the type IIB brane configuration of Table 1 to a

configuration of wrapped D5-D5 branes on two-cycle of a warped Taub-NUT space.

An M-theory uplift then gave us the required action (3.153) and the Hamiltonian

(3.158) from where we extracted our boundary three-dimensional Chern-Simons ac-

tion (3.241).

The situation now is a bit different as has been hinted above. The Ooguri-Vafa

model [8] has two different realizations that are connected via large N dualities. On

one hand the SU(N) Chern-Simons theory is defined on S3
(2), the subscript 2 is for

later convenience, with the dual closed topological string theory of A-type defined

on the S2 blown-up of a conifold geometry (i.e on a resolved conifold). On the other

hand, we have N D6-branes wrapped on the S3
(2) of a deformed conifold giving us

N = 1 SYM theory in four spacetime dimensions that is dual to closed type IIA

string theory on a resolved conifold with fluxes and no branes.

There appears to be some mismatch between the locations of four-dimensional
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gauge theory and the three-dimensional Chern-Simons theory. The four-dimensional

N = 1 gauge theory is defined along the space-time directions (x0, x1, x2, x3). Al-

though this is slightly different from our earlier case, where the four-dimensional

gauge theory was located along (x0, x1, x2, ψ) directions, it is nevertheless consistent

with both the brane configurations in Table 2 as well as the configuration after a

duality to a non-Kähler resolved conifold with wrapped D5-branes. However what

is different now is the location of the Chern-Simons theory. Previously the Chern-

Simons theory was localized to the boundary W of the four-dimensional space. For

the present case the Chern-Simons theory is most succinctly described on the three-

cycle S3
(2) of a deformed conifold got by taking the mirror of the resolved conifold

picture with wrapped D5-branes.

This apparent mismatch of the location of the Chern-Simons theory is not just

a relocalization of the topological theory, but lies at the heart of the problem. To

see this, first note that the partition function of the Chern-Simons theory on S3
(2) in

the large N limit, takes the following form [7]:

Z
[
S3

(2)

]
= exp

[
−
∞∑
g=0

λ2g−2Fg(t)

]
, (4.5)

where λ is the string coupling and t = iλN is the Kähler modulus of the blown-up

S2 of a resolved conifold. This resolved conifold is not the same one studied in (4.1)

above. Rather it is the one that appears to the top right of Fig 13. The factor g

in (4.5) is the genus g of Riemann surfaces that parametrize the moduli space Mg

with Euler characteristics χg. Together they can be used to define Fg(t), for g ≥ 2,

appearing in (4.5) as (see [42], and [8] for details):

Fg(t) ≡
∫
Mg

c3
g−1 −

χg
(2g − 3)!

∞∑
n=1

n2g−3e−nt, (4.6)

where the first term denotes the Chern class of the Hodge bundle over the moduli

space Mg, derived in [42]. As noted in [7], (4.6) is very suggestive of a g-loop

topological string amplitude.

Secondly, there are two different ways we can study knots here as mentioned

above. The first is with intersecting D4-branes where a set of N D4-branes wrap

S3
(2) ×R2 and another set of M D4-branes intersect the first set on the knot K and

are stretched along the remaining directions R2×D2, where D2 is a two-dimensional

subspace in T ∗S3
(2). The second is with N D6-branes wrapping R4 × S3

(2). Once we

go to Euclidean space, the knots appearing on S3
(2) may be constructed using D2- or

D4-branes intersecting the D6-branes on K. Clearly it is the second case that is more

relevant to us because the brane configuration given in Table 2 take us directly to

this set-up via a series of T and SYZ [44, 45] dualities as shown in fig 13, at least in
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the absence of knots. Knots can then be inserted in the type IIA picture by surface

operators63.

It turns out, for the case that we are most interested in, the topological string

amplitude Fg,h with g = 0 and h = 1 computes the superpotential terms for the

N = 1 theories in four-dimensions. The superpotential terms are in general harder

to compute in type IIA language, but become easier in the mirror type IIB language.

The mirror is of course our configuration of D5-branes wrapped on the two-cycle of

a non-Kähler resolved conifold, bringing us back to the analysis performed in section

4.1.

The above discussion should hopefully suggest the usefulness of the type IIB

analysis. However we haven’t yet reconconciled with all the steps of our earlier

analysis performed in section 3. For example, if we want to localize the knots to the

three-cycle S3
(2) of the deformed conifold, what is the usefulness of the boundary W

used earlier?

The answer can be given in a few steps. First, let us go back to the type IIB D5-

D5 branes wrapped on the two-cycle of our Taub-NUT space discussed in section 3.1.

We can move the D5-branes away on the Coulomb branch so that we are left with

only D5-branes wrapped on the two-cycle of the Taub-NUT space. The geometry

is discussed in (3.5) before. To go from this geometry to the one studied above in

(4.1), we will assume that our Taub-NUT space is fibered over a P1, in other words,

a resolved conifold geometry may be viewed as a Taub-NUT space fibered over a P1.

The precise relationship between the two geometries is studied in section 3.1 of [46]

(see equations (3.10) to (3.13) in [46]). The only difference64 here is now that the

two-cycle, on which we have our wrapped D5-branes, should be along (θ1, φ1). This

is of course just a renaming of coordinates from section 3. The fibration breaks the

four-dimensional supersymmetry down to N = 1, but for the time being we will not

be too concerned with the supersymmetry. The above manipulation tells us how we

can channel our earlier calculations for the new set-up. Locally, at every point on

the base P1, parametrized by (θ2, φ2), we have D-branes wrapped on the two-cycle

of a Taub-NUT space.

Secondly, we go to Euclidean space and assume that the spacetime directions

with Minkowskian coordinates (x0, x1, x2) are now on an Euclidean S3
(1). Thus the

four-dimensional space V = W ×R+ previously, now becomes S3
(1) that represents

W and the half coordinate x3 that parametrizes R+. Further, the four-dimensional

theory that we have on S3
(1) × R+ can also be got from the mirror construction of

63In section 5 of [11] the Ooguri-Vafa [8] model with intersecting D4-branes is derived using a

different route. The D4-branes are oriented in a way that the four-dimensional gauge theory and the

three-dimensional Chern-Simons theory have similar representations as before. We thank Johannes

Walcher for explaining the construction to us [43].
64The discussion in [46] is for a resolved conifold with a Calabi-Yau metric on it. It can be easily

generalized for a resolved conifold with a non-Kähler metric on it.
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D6-branes wrapped on three-cycle of a non-Kähler deformed conifold. Since they are

connected by SYZ transformations [44, 45], the theories on V, and therefore also on

W, are identical.

The above discussions suggest that we can perform similar computations in type

IIB theory as in section 3, but now appropriately modified to incorporate D5-branes

wrapped on two-cycle of a non-Kähler resolved conifold. This is easier than the

mirror computations with D6-branes, and one may now insert the knots using surface

operators on S3. Since the mirror picture is identical, we can view the theory on S3
(1),

got from our IIB computations, to be exactly the same in the type IIA side.

In the type IIA side, as shown on fig 13, the D6-branes are wrapped on the

three-cycle S3
(2) of a non-Kähler deformed conifold. In fact the world-volume of the

D6-branes is oriented along M7 where:

M7 ≡ S3
(1) × S3

(2) × R+, (4.7)

and the physics on the first three-cycle S3
(1) is directly imported from our type IIB

analysis. Since the deformed conifold is non-compact, Gauss’ law is not violated and

the wrapped D6-branes continue to be a valid supergravity solution there. We can

now perform the following flop operation:

S3
(1) ↔ S3

(2), (4.8)

transferring all the physics on S3
(1) to the three-cycle of the non-Kähler deformed

conifold65. This is exactly the D6-brane realization of the Ooguri-Vafa [8] model!

Our construction differs from the intersecting D4-branes’ realization of the Ooguri-

Vafa model in [11, 43].

The above discussions suggest the power of the IIB analysis: we can continue

working on the type IIB side, albeit with a different background, and perform similar

manipulations as in section 3. Of course subtleties appear because of the underlying

supersymmetry, twisting etc, but presumably none too unsurmountable. Remark-

ably, once we have the full IIB analysis at hand, we can transfer the physics to the

type IIA side by a mirror transformation followed by a flop operation (4.8) giving us

the full realization of the Ooguri-Vafa [8] model. Therefore in the following we will

elaborate on the type IIB side, by analyzing the background with and without dipole

deformation and then discuss how to extract the four-dimensional physics similar to

what we did in section 3. Most of the other details regarding the subtleties coming

from reduced supersymmetry, twisting and the exact boundary theory on S3
(1); in-

cluding the type IIA mirror and the flop operation (4.8) will only be briefly touched

upon here, and detailed elaborations will be relegated to the sequel.

65One may also look up section 5.5 of [46] where somewhat similar kind of flop operation is

discussed. Note that D6-branes continue to remain D6-branes under the flop operation (4.8) because

the flop is performed inside the manifold M7 given in (4.7).
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4.2 Five branes on a resolved conifold: Exact results

Let us now consider specific choices of the warp factors Fi(r) that would not only

solve the EOMs but also preserve supersymmetry. One solution that was briefly

mentioned in [40] and studied in some details in [46] is:

F1 =
e−φ

2F
, F2 =

r2e−φF

2
, F3 =

r2e−φ

4
+ a2(r), F4 =

r2e−φ

4
, (4.9)

where a2 ≡ a2
0 + a1(r) and a2

0 is the resolution parameter, F (r) is some function of r

whose value will determined soon and φ, as usual, is related to the type IIB dilaton.

The function F (r) has to be related to the dilaton φ(r) because any arbitrary choice

of F and φ will break supersymmetry. We will determine the equation relating F

and φ using torsion classes [49, 50, 51, 52]. In the process we will also argue for

supersymmetry.

4.2.1 Analysis of the background fluxes

Before we go about determing the functional form for r, let us work out the three-

form fluxes from (4.2). Plugging (4.9) into (4.2), they are given by:

H3 =
1

4
sinh β e−φ r2

[(
φr −

8a

r2
eφar

)
er ∧ eθ1 ∧ eφ1 + φr er ∧ eθ2 ∧ eφ2

]
(4.10)

F3 = −1

4
cosh β eφ r3F (r)

[(
1 +

4a2

r2
eφ
)
φr eψ ∧ eθ1 ∧ eφ1 +

(
r2φr − 8aare

φ

r2 + 4a2eφ

)
eψ ∧ eθ2 ∧ eφ2

]
.

Looking carefully at the three-forms we see that H3 is closed but F3 is not. This is

good because non-closure of F3 is related to the wrapped five-brane sources. Recall

that the five-branes are wrapped on the two-cycle (θ1, φ1) and stretched along the

space-time directions x0,1,2,3, which will be later converted to Euclidean S3
(1) ×R+.

This means the source equation should have delta function like singularity along the

orthogonal directions of the brane, namely the (θ2, φ2, ψ) and the radial direction r.

In the limit when both a2 as well as ar are smaller than some chosen scale in the

theory, F3 can be expressed in the following suggestive way:

F3 = −1

4
cosh β eφr3F φr eψ ∧ (eθ1 ∧ eφ1 − eθ2 ∧ eφ2) (4.11)

−cosh β e2φrF eψ ∧
[
â2 eθ1 ∧ eφ1 − â2 eθ2 ∧ eφ2 −

(
2aar −

1

2
e−φr2φr

)
eθ2 ∧ eφ2

]
where the implications of the relative sign between the vielbein products will become

clear soon. We have also defined:

â2 = a2φr. (4.12)

As mentioned earlier, F3 is not closed, and therefore dF3 should be related to localized

or delocalized sources along the (θ2, φ2) and (r, ψ) directions. Using the fact that the
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three-form:

η3 ≡ eψ ∧ (eθ1 ∧ eφ1 − eθ2 ∧ eφ2) (4.13)

is closed we can find some relations between the three unknown functions F (r), φ(r)

and a(r) that appear in (4.11). All we need is to express the dilaton φ(r) and the

resolution parameter a(r) in terms of the function F (r) that appears in our ansatze

(4.9). One simple relation between the three variables is given by:

deφ

dr

(
1

4
+
eφ a2

r2

)
=

c0

r3F
, (4.14)

where c0 is a constant whose value could be determined from the boundary condition.

Note that this is an additional constraint compared to [46]. Pluging in (4.14) in

(4.11), we get:

F3

cosh β
= −c0 η3 +

(
2aar −

1

2
e−φr2φr

)
e2φrF eψ ∧ eθ2 ∧ eφ2 . (4.15)

The source equation is now easy to determine from (4.15). It is clear that the first

term does not contribute, and the contribution therefore solely comes from the second

term of (4.15):

dF3 = Gr(r) er ∧ eψ ∧ eθ2 ∧ eφ2 −G(r) eθ1 ∧ eφ1 ∧ eθ2 ∧ eφ2 (4.16)

with G(r) defined as:

G(r) =

(
2aar −

1

2
e−φr2φr

)
e2φrF cosh β. (4.17)

Looking at (4.16) we see that we have two terms. The first term of (4.16) captures

the Gauss’ charge along the orthogonal directions of the wrapped D5-branes i.e the

(r, ψ, θ2, φ2) directions. The second term, that is proportional to the volume of the

four-cycle, captures the Gauss’ charge along the (θ2, φ2) directions. In fact this term

tells us that even if G(r) is a constant, the D5-branes’ charge would be calculable.

We see that there are two constraint equations, (4.14) and (4.16), for three

functions F (r), eφ and a(r). The third equation will be determined soon when we

will demand supersymmety in the system. We could also go for more generic solution

to the system. Constraint on D5-brane charges impose the following relation between

the four warp factors Fi(r) and the dilaton eφ:

dF4

dr
=
√
F1F2

(
1− e−2φF4

F2F3

)
. (4.18)

One may compare this with the recently found constraint relations in [40]. Since we

are not imposing integrable complex structures, we don’t have additional constraint
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equations as in [40]. Note also that an equation like (4.18) is not required in the

heterotic theory as the anomalous Bianchi identity is enough [46]. Thus plugging in

(4.18) in (4.2) we get:

F3

cosh β
= −η3 −

[
1 + e2φF4

F3

√
F2

F1

(√
F1F2 − F3r

)]
eψ ∧ eθ2 ∧ eφ2 . (4.19)

The second constraint would come from (4.19) if we demand charge quantization. Of

course if the D5-brane charges are delocalized there is no strong constraint being im-

posed by (4.19). However demanding supersymmetry does introduce new constraint

on the warp factors. In the following section we will use the powerful machinery of

the torsion classes Wi [49] to analyze this.

4.2.2 Finding the warp factors using torsion classes

To study the constraint on the warp factors one may use the technique of the torsion

classes [49]. For us the relevant torsion classes are the W4 and W5 classes, defined

as:

W4 =
F3r −

√
F1F2

4F3

+
F4r −

√
F1F2

4F4

+ φr,

Re W5 =
F3r

12F3

+
F4r

12F4

+
F2r − 2

√
F1F2

12F2

+
φr
2
, (4.20)

where one may look at the detailed derivations from [46, 40] or some of the earlier

papers in the series namely [47, 48] etc. Plugging in the warp factor choice (4.9), it

is easy to see that:

W4 =
φr
2

+O(a2)

W5 ≡ Re W5 =
1

12

(
6

r
+ 3φr +

Fr
F
− 2

rF

)
. (4.21)

Depending on how to define our dilaton,

Re W5 = ±φr +O(a2), (4.22)

such that the supersymmetry condition will take the following well-known form in

terms of the torsion classes [50, 51, 52]:

2W4 ± Re W5 = 0. (4.23)

For us we will choose the minus sign in (4.22) such that (4.23) will appear with a

relative plus sign66. This gives the following equation for the variables F (r) and eφ

upto O(a2):

r
dφ

dr
+

r

15F

dF

dr
− 2

15F
+

2

5
+O(a2) = 0. (4.24)

66The overall behavior of fluxes etc do not change if we go from one convention to another as

shown in [46].
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The above is the simplified version where the dependence of the resolution parameter

is not shown. If we insert a2, the EOM becomes more involved and takes the following

form:(
15 +

88a2eφ

r2

)
dφ

dr
+

56eφa

r2

da

dr
+

(
4

r
+

1

F

dF

dr
− 2

rF

)(
1 +

4a2eφ

r2

)
+

2

r
= 0,

(4.25)

and reduces to (4.24) in the limit where a2 as well as da/dr are small. In this limit

we can combine (4.14) and (4.24) to eliminate F (r) and express everything in terms

of the following dilaton equation:

r
d2Z

dr2
− 3

dZ

dr
+ r

(
r2

2c0

− 15

Z

)(
dZ

dr

)2

= 0 (4.26)

where Z = eφ and c0 is a constant appearing in (4.14). To solve the above equation

let us take the following ansatze for Z:

Z(r) =
α(r)

r2
, (4.27)

with α(r) a positive definite function for all r. Plugging (4.27) in (4.26), we see that

α(r) satisfies the following second-order differential equation:

c0
d2α

dr2
+

(
53c0 − 2α

r

)
dα

dr
+

(
1

2
− 15c0

α

)(
dα

dr

)2

+
2α(α− 24c0)

r2
= 0. (4.28)

One simple solution for the system is given by a constant α, i.e:

α = 24c0. (4.29)

Other solutions to (4.28) could be entertained but we will not do so here. Plugging

(4.29) in (4.27) and (4.14), and using the defination of Z, we find that:

eφ =
24c0

r2
, F = − 1

12
. (4.30)

The careful reader will be alarmed by seeing the negative value for F because F goes

into the defination for the warp-factors in (4.9). However if we look at (4.9) carefully,

we see that F appears in the definations of F1 and F2 but not in the definations of

F3 and F4. This is good because (F1, F2) appear in the three-form fluxes H3 and F3

only in the combinations F1F2 and F2/F1. Thus we can change the sign of (F1, F2)

simultaneously without changing the fluxes or the constraint equation (4.14)! The

consequence of this invariance is simply the following changes to the defination of

the warp factors:

F1 → |F1|, F2 → |F2|, (4.31)
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without changing F3 and F4. This means, after the dust settles, the internal six-

dimensional manifold in type IIB theory will be given by the following metric:

ds2
6 =

r2

4c0

[
dr2 +

r2

144
(dψ + cos θ1 dφ1 + cos θ2 dφ2)2

+

(
r2

24
+O(a2)

)
(dθ2

1 + sin2θ1 dφ
2
1) +

r2

24
(dθ2

2 + sin2θ2 dφ
2
2)
]
. (4.32)

The above metric is a non-Kähler metric on the resolved conifold, and can be com-

pared to the recently studied examples in [40]. If we change our initial ansatze (4.9),

we can allow for a different non-Kähler metric on the resolved conifold. There is of

course an infinite class of possible non-Kähler metric that we can allow for a given

complex structure and satisfying the constraint equation (4.18) and the supersymme-

try condition (4.23) with a relative plus sign between theW4 andW5 torsion classes.

The generic solution for the metric and the three-form fluxes with these constraints

will then be (4.2). For the specific choice (4.32) of the internal metric, the three-form

fluxes are given by:

F3 = +c0 cosh β eψ ∧ (eθ1 ∧ eφ1 + eθ2 ∧ eφ2)

H3 = − r3

48c0

sinh β er ∧ (eθ1 ∧ eφ1 + eθ2 ∧ eφ2) , (4.33)

with the five-form flux derivable from (4.33) and (4.2). The IIB dilaton, on the other

hand, is eφB = e−φ and so for

r ≥
√

24c0, (4.34)

classical supergravity solution will not capture the full dynamics and one has to go

to it S-dual, or weakly coupled version of the theory. Combining the two patches,

one should be able to study the sugra limit of the theory.

On the other hand if dilaton is slowly varying from its weak coupling value then

one may express (4.25) as:

da2

dr
+

1

28

(
4r +

r2

F

dF

dr
− 2r

F

)(
e−φ +

4a2

r2

)
+
re−φ

14
= 0. (4.35)

To solve (4.35), let us assume that the dilaton is given by the following expression

in terms of a slowly varying function f(r):

eφ = eφ0 + f(r), (4.36)

where the constant factor is the weak coupling limit. To proceed, let us define two

functions H(x) and G(x) using the function F (x) appearing in (4.35), in the following

way:

G(x) =
1

7

(
4

x
− 2

xF (x)
+
F ′(x)

F (x)

)
, H(x) = xe−φ0

(
xG(x)

4
+

1

14

)
, (4.37)
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where the prime is defined as the derivative of x. Using (4.36) and (4.37), we can

solve for the resolution parameter a2 in terms of the functions G(x) and H(x) as:

a2(r) = −
∫ r

0

dy H(y) exp

(∫ y

r

dx G(x)

)
+O(f), (4.38)

where the overall negative sign shouldn’t be a concern because the functional form

for F (x) will be chosen so that a2 remains positive definite.

4.3 A four-fold from the G2 structure manifold in M-theory

In the previous section we discussed possible ways to construct the metric of D5-

branes wrapped on two-cycle of a non-Kähler resolved conifold. We discussed a class

of these solutions satisfying the charge constraint (4.18) and the supersymmetry con-

straint (4.23). The M-theory uplift of these solutions can be done by first T-dualizing

along ψ direction to allow for D6-branes in type IIA theory oriented along (θ1, φ1, ψ)

and spanning the space-time directions x0,1,2,3. We can then lift this configuration

to M-theory on a G2 structure manifold. The way we constructed our scenario,

T-duality of the IIB configuration will lead to D6-branes and not D4-branes as in

[21, 19]. At low energies, and as discussed around (2.5), we do get the D4-branes

configuration (see also [40]). Furthermore, we will start by studying a single D6-

brane and insert the dipole deformation of the T-dual wrapped D5-brane. Later on

we will generalize this to multiple D6-branes.

4.3.1 First look at the G2 structure manifold

The D6-brane configuration, without dipole deformation of the T-dual wrapped D5-

brane on non-Kähler resolved conifold, is given by the following metric structure on

an internal six-dimensional space:

ds2 =
1√
h
ds2

012 +
1√
h

(
dx2

3 +
1

F2

dψ2

)
+
√
h
[
F1dr

2 + F3(dθ2
1 + sin2θ1 dφ

2
1) + F4(dθ2

2 + sin2θ1 dφ
2
2)
]
, (4.39)

where we have separated the compact directions (x3, ψ) in anticipation of the dipole

deformations along those directions in the type IIB side. The type IIA dilaton eφA

and the warp factor h are defined in the following way:

eφA ≡ e−φF
−1/2
2 h−1/4, h ≡ e2φ cosh2β − sinh2β, (4.40)

such that when β = 0 we get back the standard picture. Combining the IIA metric

(4.39) with the dilaton (4.40) we can easily get the M-theory manifold as:

ds2
11 =

e2φ/3F
1/3
2

h1/3
ds2

012 + ds2
8 (4.41)
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where ds2
8 is a eight-dimensional manifold that, in the absence of the dipole deforma-

tion in the type IIB side, is simply a S1 fibration over a G2 structure seven-manifold

expressed as:

ds2
8 =

e2φ/3F
1/3
2

h1/3

(
dx2

3 +
1

F2

dψ2

)
+

1

e4φ/3F
2/3
2 h1/3

(dx11 + A1µdx
µ)2 (4.42)

+ e2φ/3F
1/3
2 h2/3

[
F1dr

2 + F3(dθ2
1 + sin2θ1 dφ

2
1) + F4(dθ2

2 + sin2θ2 dφ
2
2)
]
.

The A1 appearing above is the type IIA gauge field whose value will be determined

soon. As discussed in details in [40], the G2 structure seven-manifold in-turn is a

four-dimensional warped Taub-NUT manifold ds2
TN fibered over a three-dimensional

base ds2
3 parametrized by (θ1, φ1, ψ):

ds2
7 = ds2

3 + ds2
TN

= G2

(
dθ2

1 + sin2θ1 dφ
2
1 +

G1

G2F2

dψ2

)
+ G3dr

2 +G4

(
dθ2

2 +
G5

G4

dφ2
2

)
+G6 (dx11 + A1µdx

µ)2 , (4.43)

where Gi are the warp factors that can be read up from (4.42) or from [40] and the

third line of (4.43) is the metric of the warped Taub-NUT space.

4.3.2 Dipole deformation and the M-theory uplift

It is now time to see what effect would the type IIB dipole deformation have on

our M-theory manifold. Dipole deformation of four-dimensional Yang-Mills theory

was first introduced from gauge theory side in [24] and from type IIB gravity dual

in [25, 26]. Elaborate study was performed in [53, 54]. Essentially the simplest

dipole deformation amounts to switching on a NS B-field with one component along

the brane and the other component orthogonal to the brane. Generalization of this

picture exists, but we will not discuss this here. The B-field for our case will have

component B3ψ as we mentioned before, which of course has the required property

in the presence of a D5-brane along (x0,1,2,3, θ1, φ1). However as before this B-field

cannot be a constant otherwise it will be gauged away. Thus again we expect a field

strength of the form dB, which in turn will then back-react on our original type IIB

background (4.2) and change the metric to the following:

ds2 =
1√
h

(
−dt2 + dx2

1 + dx2
2 +

dx2
3

cos2 θ + F2 sin2 θ

)
(4.44)

+
√
h

[
F1dr

2 +
F2( dψ

cos θ
+ cos θ1 dφ1 + cos θ2 dφ2)2

1 + F2 tan2 θ
+

2∑
i=1

F2+i

(
dθ2

i + sin2 θi dφ
2
i

)]
,
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where θ is the dipole deformation parameter. The three-form fluxes also change from

their values in (4.2) to the following:

F3 = −e2φ cosh β

√
F2

F1

(g1 ẽψ ∧ eθ1 ∧ eφ1 + g2 ẽψ ∧ eθ2 ∧ eφ2)

H3 = sinh β
[(√

F1F2 − F3r

)
er ∧ eθ1 ∧ eφ1 +

(√
F1F2 − F4r

)
er ∧ eθ2 ∧ eφ2

]
+

F2r sin 2θ

2
(
cos2 θ + F2 sin2 θ

)2 er ∧ ẽψ ∧ e3 +
F2 sin θ

cos2 θ + F2 sin2 θ

2∑
i=1

eφi ∧ eθi ∧ e3

(4.45)

where as before we note that the dipole deformation has appeared as an additional

term in the definition of the three-form flux H3, and helped to break the Lorentz

invariance between x0,1,2 and x3 directions. The type IIB dilaton eφB and ẽψ are

defined in the following way:

eφB =
e−φ√

cos2 θ + F2 sin2 θ
, ẽψ = dψ + cos θ1 cos θ dφ1 + cos θ2 cos θ dφ2.

(4.46)

The M-theory uplift of the dipole-deformed type IIB set-up is now easy to perform

once we get the type IIA configuration. The type IIA dilaton does not change from

its value (4.40), and the only change in the metric (4.39) is:

1√
h

(
dx2

3 +
1

F2

dψ2

)
→ 1√

h

[
dx2

3

cos2 θ
+ 2tan θ dx3dψ +

(
sin2 θ +

cos2 θ

F2

)
dψ2

]
,

(4.47)

which means the M-theory metric retain its form (4.41) except the metric of the eight

manifold changes slightly from (4.42) to the following metric:

ds2
8 =

e2φ/3F
1/3
2

h1/3cos2 θ
|dx3 + τ1 dψ|2 +

1

e4φ/3F
2/3
2 h1/3

(dx11 + A1µdx
µ)2 (4.48)

+ e2φ/3F
1/3
2 h2/3

[
F1dr

2 + F3(dθ2
1 + sin2θ1 dφ

2
1) + F4(dθ2

2 + sin2θ2 dφ
2
2)
]
,

where the complex structure τ1 of the (x3, ψ) torus is given by:

τ1 = sin θ cos θ +
icos2 θ√

F2

. (4.49)

Note that the warped Taub-NUT space doesn’t change from what we had earlier in

(4.42) without dipole deformation. The gauge field A1 in the Taub-NUT fibration

structure also doesn’t change, and is given by the following field-strength:

F2

cosh β
= −eθ1 ∧ eφ1 − e2φ

√
F2

F1

· F4

F3

(√
F1F2 − F3r

)
eθ2 ∧ eφ2
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=
dA1

cosh β
+

[
1− e2φ

√
F2

F1

· F4

F3

(√
F1F2 − F3r

)]
eθ2 ∧ eφ2 , (4.50)

using the constraint (4.18) and defining the gauge field A1 in the following way:

A1 = cosh β (cos θ1 dφ1 + cos θ2 dφ2) , (4.51)

which would appear in the fibration (4.48). However expressing the gauge field as

(4.51) does not introduce any additional constraint on the warp-factors in the metric

(see discussion in [40]). The G4 flux in M-theory can now be expressed as:

G4

sinh β
=
(√

F1F2 − F3r

)
er ∧ eθ1 ∧ eφ1 ∧ e11 + cosech β dψ ∧ eθ1 ∧ eφ1 ∧ ẽ11

+
(√

F1F2 − F4r

)
er ∧ eθ2 ∧ eφ2 ∧ e11 + cosech β dψ ∧ eθ2 ∧ eφ2 ∧ ẽ11,

(4.52)

where we see that the dipole deformation appears in an appropriate way in the G4

flux. In the absence of the type IIB dipole deformation the form of (4.52) is almost

similar to what we had in [40] except the vielbeins e11 and ẽ11 are defined in a slightly

different way as:

e11 = dx11 + cos θ cosh β(cos θ1 dφ1 + go cos θ2 dφ2)

ẽ11 = dx11 + cos θ cosh β(go cos θ1 dφ1 + cos θ2 dφ2), (4.53)

using the following functional form for go(r):

go(r) = e2φ

√
F2

F1

· F4

F3

(√
F1F2 − F3r

)
. (4.54)

4.3.3 Revisiting gauge theory from M-theory

We have by now developed all the machinery needed for determining the gauge field

on the wrapped D5-branes from M-theory. If we take a single wrapped D5-brane

on the non-Kähler resolved conifold, the M-theory manifold (4.48) will be a warped

single-centered Taub-NUT space fibered over a four-dimensional base parametrized

by (x3, ψ, θ1, φ1) coordinates. The gauge-field in the type IIB side will appear as

localized G-flux in M-theory, similar to what we had earlier in section 3.2.3 (see also

the discussion in [40]). For the single centered Taub-NUT case in (4.48), at any given

point on four-dimensional base, the localized G-flux can be expressed as:

G loc
4 = F ∧ ω, (4.55)

where F is the world-volume gauge field that, in the language of the wrapped D6-

brane, will be along four-dimensional spacetime parametrized by x0,1,2,3 coordinates.
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This of course parallels the story we discussed in great details in section 3.2.4. There

is also an option to define the gauge theory along the compact (ψ, θ1, φ1) directions,

or even along all compact and non-compact directions. Each of these possibilities

will lead to interesting interpretations for the knot invariants once we extend this to

the non-abelian case. We will however only concentrate on the gauge theory along

the spacetime directions so that comparison with earlier sections like 3.2.4, 3.2.5 and

3.2.6 as well as with [11] may be made easily. In fact we will follow similar logic

as in sections 3.2.4 and 3.2.5, namely, study the abelian theory and then proceed to

discuss the non-abelian case (which is the large N limit here).

The abelian case is succinctly represented by ω in (4.55), which is a normalizable

harmonic two-form, expressed as ω = dζ. The procedure is similar to what we had

in (3.46), (3.47) and (3.51), so we will avoid the details. Once the dust settles, ζ is

given by the following expression67:

ζ(r, θ2) = g0 exp

[
−
∫ r

dr
e−φ

F4

√
F1

hF2

]
(dΨ + cos θ2 dφ2) (4.56)

= g0 exp

[
−
∫ r

0

48 dx

x
√

576c2
0 cosh2 β − x4 sinh2 β

]
(dΨ + cos θ2 dφ2) ,

where dΨ = dx11/cosh β and the second line is from using the background (4.30)

and (4.32). Note that the harmonic form tells us that for:

r >
√

24c0 coth β, (4.57)

new description has to be devised as the harmonic form will become oscillatory. This

bound should be compared to (4.34) where strong coupling sets in for the radius

equals
√

24c0.

The non-abelian enhancement now follows similar procedure as outlined in sec-

tion 3.2.6. The M2-brane states wrap around the Taub-NUT singularities to en-

hance the gauge symmetry to SU(N). This way we will have N = 1 supersymmetric

SU(N) Yang-Mills theory in four spacetime dimensions appearing from N D5-branes

wrapped on the two-cycle of a non-Kähler resolved conifold.

4.4 Comparing knots from branes and from gravity duals

In the previous sections we have developed most of the machinery needed to study

the abelian and the non-abelian theories on the wrapped D5-branes on a resolved

conifold from M-theory point of view. Our aim is to concentrate on the non-abelian

case with two goals in mind: the first is to study the connection between the model

of Witten [11] using five-branes and the model of Ooguri-Vafa [8] using geometric

67Note that at any given point on the four-dimensional base, φ1 is a constant and therefore the

eleven-dimensional fibration structure is the correct form for a warped Taub-NUT space.
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transition picture to study knots invariants and Khovanov homology. The second

goal is to use our M-theory picture to actually compute some of these invariants and

develop the picture in more generic direction. A discussion of the first goal, namely

connecting the two models: [11] and [8], is presented in section 4.1.1 and in the

following we will elaborate the story a bit more.

Our starting point, which is the configuration of N D5-branes wrapped on a two-

cycle of a non-Kähler resolved conifold, may look a bit different from the configuration

that we used before in section 3, namely, a finite number of D5-branes wrapped on

the two-cycles of a warped Taub-NUT space. Additionally, the supersymmetry is

now no longer N = 4, but is the minimal N = 1. The latter tells us that we have

no Coulomb branch, implying that the vector multiplet is devoid of any scalar fields.

Thus the twisting that we performed in section 3.2.12 to determine the boundary

theory cannot be done in a similar way now. Additionally, we see that there are

apparently two realizations of the Ooguri-Vafa model in M-theory from the type IIB

configuration.

Using one T-duality: This will lead to the D6-branes that we studied above.

Subsequent lift to M-theory results in the localized G-flux that has two legs along

the spacetime x0,1,2,3 directions and two legs along the Taub-NUT directions leading

to gauge fields in the spacetime directions. The other components of the gauge fields

in the internal directions will appear as non-abelan scalars in the non-compact three-

dimensions. Together they will generate the N = 1 non-abelan vector multiplet with

scalar fields forming the chiral multiplets.

Using three T-dualities: Instead of making one T-duality to go to the D6-brane

picture, we can make three T-dualities to go to the mirror picture68 [44, 45]. Here we

will again get D6-branes but wrapped on the three-cycle of a non-Kähler deformed

conifold. Lifting this to M-theory this will lead to another G2 structure manifold

which is yet again a warped Taub-NUT space fibered over a three-dimensional base

[46]. The localized G-flux can now be used to compute the four-dimensional theory

as before.

As explained in section 4.1.1, despite appearance, the physics in four spacetime di-

mensions for both cases are identical. This is not a surprise because T-dualities

generally do not change the four-dimensional physics. Thus either of the two con-

figurations − D5-branes wrapped on two-cycle of a resolved conifold or D6-branes

wrapped on three-cycle of a deformed conifold − may be used to study the Ooguri-

Vafa [8] model. However since the latter is technically harder, we have used the

type IIB model to study the four-dimensional physics above. Additionally since a

non-Kähler resolved cone may be expressed as a warped Taub-NUT fibered over a

68One encounters various subtleties in the duality procedure, which have been explained in details

in [45].
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P1 base [46], locally at a given point on P1, the D5-branes can be thought of as

wrapping the two-cycle of the Taub-NUT space. We now see some resemblance with

[11] locally, although the global picture is different. Unfortunately we cannot extend

the similarity too far because, in the Ooguri-Vafa case, the absence of the Coulomb

branch will not allow us to make similar manipulations as we did in section 3.2.12.

Despite this, the gauge theory derivation from M-theory in the previous section

helps us to at least get the topological piece in a way similar to what we had in (3.62)

before. Let us concentrate on the second piece in (3.62), namely the topological term.

For the present case, it is more instructive to Euclideanize everthing, as we hinted

in section 4.1.1. Assuming this, we get:∫
Σ11

C3 ∧ G4 ∧ G4 = c̃2

∫
Σ4

F ∧ F , (4.58)

where both Σ11 and Σ4 are eleven and four-dimensional Euclidean spaces respectively,

and the coupling constant c̃2 is defined as:

c̃2 ≡
∫

Σ7

〈C3〉 ∧ ω ∧ ω, (4.59)

with ω = dζ as described in (4.56) above, Σ7 is the G2 structure manifold in M-

theory and 〈C3〉 is the expectation value of the three-form potential (C3)rψφ1 which

may be extracted from the four-form G4 in (4.52) using the vielbeins (4.53).

One of the key difference between c̃2 in (4.59) and c2 in (3.63) is the orientations

of 〈C3〉 appearing in both. Previously we needed three-form potental of the form

(C3)3rφ1
(3.67) to determine c2 in (3.63). Such a component was generated from the

subtle flux arrangement on the two-cycle of the warped Taub-NUT space to stabilize

the D5-D5 pairs against tachyonic instabilities. Now we don’t have such instabilities,

and the three-form potential does appear more naturally from (4.52).

Once we allow for the non-abelian extension, the coefficient of the topological

term c̃2 will remain the same as (4.59) with a SU(N) trace inserted in the action

(4.59), similar to what we had in section 3.2.6. The boundary theory may now be

derived in a much simpler way that what we had in section 3.2.12. To proceed, we

will first assume that the Euclidean space Σ4 may be written as Σ4 = S3
(1)×R+ where

R+ is parametrized by x3 in either the M-theory or the type IIB metrics. Taking x3

or R+ to be the half-line, we can easily infer the boundary theory to be:

Sov =
(
b̃2 + c̃2

)∫
S3
(1)

Tr

(
A ∧ dA+

2i

3
A ∧A ∧A

)
, (4.60)

where the trace is in the adjoint representation of SU(N) and A is the non-abelian

gauge field derived from F once we allow for the full non-abelian extension in M-

theory (this is similar to what we had in section 3.2.6). The coefficient c̃2 is of course

the one in (4.59), however b̃2 is new. We expect b̃2 to appear in somewhat similar
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D2 or D4-brane

S3
(2)

K

Figure 14: Knot K on D6-branes wrapped on S3
(2) of a deformed conifold is represented by

a D2-brane (or D4-brane) surface operator that intersects the D6-branes on K. This picture

is before geometric transition. After geometric transition, the D6-branes disappear and are

replaced by fluxes on a non-Kähler resolved conifold, but the D2-brane (or D4-brane) state

survives on the dual side retaining all information of the knot K.

way as b2 appearing in (3.230) earlier. In other words, in the presence of a boundary,

the kinetic term is not completely Q invariant, and a piece proportional to (4.58)

should appear as described in (3.230). Considering this, reproduces (4.60).

The attentive reader must have noticed the key difference between (3.241) and

(4.60). The former is constructed from a modified gauge field Ad by combining the

original gauge field A and the Coulomb branch scalars φ as in (3.240). For the

present case, the vector multiplet has no scalars, and assuming we keep vanishing

expectation values of the scalars in the chiral multiplets, the boundary theory will be

constructed solely using the non-abelian gauge field A, leading to (4.60). Quantum

mechanically however the difference is only in the choices of the coupling constants

for the boundary theories (3.241) and (4.60). This is because of the following path

integral equivalence in the Euclidean formalism:∫
C
DAd exp [−Sbnd(Ad)] F (Ad) =

∫
C
DA exp [−Sbnd(A)] F (A), (4.61)

where F (A) is any observable in the theory and C is the integration cycle. Therefore

in the path integral Ad is just a dummy variable and can be replaced by the gauge

field A. Although our discussion above is a bit sloppy as we are ignoring many subtle
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points, the essential physics is captured in (4.61). For more details on the equivalence

of two path integrals for both real and complex gauge fields, one may refer to section

(2.4) of [11].

The three-dimensional boundary theory (4.60), defined on S3
(1), remains the same

when we go to the mirror type IIA side. Since the SYZ transformations [44, 45] do

not change the spacetime metric, the three-cycle S3
(1) on the type IIB side goes

unchanged to the type IIA side. However the D5-branes wrapped on the two-cycle of

the non-Kähler resolved confold become D6-branes wrapped on the three-cycle S3
(2)

of the non-Kähler deformed conifold. The world-volme of the D6-branes is now (4.7),

and therefore a flop operation (4.8) will transfer the boundary theory (4.60) defined

on the three-cycle S3
(1) to the three-cycle S3

(2) of the deformed conifold, giving us:

Sov =
(
b̃2 + c̃2

)∫
S3
(2)

Tr

(
A ∧ dA+

2i

3
A ∧A ∧A

)
, (4.62)

where, although we use the same notation of (4.60), A should be thought of as

the gauge field defined on S3
(2). Knots may now be inserted on S3

(2) using D2-brane

(or D4-brane) surface operators as shown in fig 14. The construction parallels the

discussion in section 3.3.1 in spirit only as specific details differ. The difference

of course stems from the construction of the Ooguri-Vafa model [8] starting with

Table 2 compared to the construction in section 3 starting with Table 1. The flop

operation (4.8) with the added complication of geometric transition, as well as the

absence of the Coulomb branch scalars, in fact makes it harder to implement similar

procedure as in section 3.3.1. We will therefore not analyze the story further and

only make few observations keeping most of the details for the sequel.

The first observation is the M-theory lift of the knot configurations on S3
(2).

The uplift leads to M2-brane states69 in the G2 structure manifold of the second

kind associated with three T-dualities (see discussion above). These M2-brane states

do not wrap the eleven-dimensional circle, so are distinct from the ones leading to

non-abelian enhancement discussed for the G2 structure manifold of the first kind

associated with one T-duality. This would then be the uplift of the surface operators

in M-theory.

The second observation is that the knots appearing from the surface operators

do not follow similar pathway that we developed earlier in section 3.3.1 and 3.3.2

for Witten’s model [11]. This is because we cannot study the abelian version now

as the model is only defined for large N , implying that our earlier analysis of the

knots using operators Ak, Bk and C(2,σj) in section 3.3.2 may not be possible now.

Secondly, similar manipulations to the BHN equations that we did in section 3.3.1

now cannot be performed.

69We can also entertain M5-brane states related to D4-branes in type IIA. This is allowed because

we only require co-dimension two singularities in S3
(2)×R+ space, and as such can come from both

D2 and D4-branes. This is depicted in fig 14.
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What can be done here? There is one well known procedure that we can follow.

We can use the canonical quantization approach by slicing the three-cycle S3
(2) con-

taining the knot K into many pieces so that each piece appears locally as S2
(2) ×R

where S2
(2) is a two-dimensional sphere with punctures pi’s. On every piece, the ac-

tion (4.62) in gauge A0 = 0 gives classical solution Fij = 0. One may compare this

to the classical solution F12 = 0 that we get from (4.60) − which in turn may be

assumed to be the special case of (3.172) with the scalar fields switched off. The con-

straint implies that the physical space {A} to be moduli space of flat connections on

the punctured sphere S2
(2) (modulo gauge transformation) which has a finite volume.

After imposing the constraint and then quantizing gives a finite dimensional Hilbert

space H(S2
(2)
,pi), with i = 1, 2, ...r, whose states are related to the r-point correla-

tion functions of the Wess-Zumino-Novikov-Witten conformal field theory (WZNW

model) in the two dimensional sphere S2
(2) [55]. The WZNW model possesses level

k current algebra symmetry Gk besides the conformal symmetry, where the Chern-

Simons coupling k ≡ 2π
(
b̃2 + c̃2

)
is identified with the level k of WZNW models.

This connection between Chern-Simons theory (4.62) and WZNW model [2, 3]

brings us to the familiar playground where a path integral of the form (4.61), now

defined with (4.62), may be identified with a quantum state in the Hilbert space of

WZNW model with r punctures. The story can be elaborated by working out the

link invariants, one example is shown in fig 15, but we will not do so here. Our aim

is to find a supergravity link to this construction, and we leave this for the sequel.

The third observation is related to geometric transition in the wrapped D6-

branes’ picture. Under geometric transition, the D6-branes wrapped on the three-

cycle S3
(2) of a non-Kähler deformed conifold disappear and are replaced by a non-

Kähler resolved conifold with fluxes and no branes. What happens to the knot

configurations on S3
(2)? This was the conundrum that we started off with in section

2.2. Introducing the D2-brane surface operators (or equivalently D4-brane surface

operators) in the wrapped D6-branes’ picture now resolves the conundrum. After

geometric transition, even though the D6-branes disappear, the D2-brane (or D4-

brane) configurations that are responsible for the knots, as shown in fig 14, continue

to survive on the resolved conifold side. Thus the gravity dual, which is our non-

Kähler resolved conifold with fluxes, now equipped with the D2-brane (or D4-brane)

states, continues to retain all the informations of knots and knot invariants and may

be extracted with high fidelity.

5. Discussions and conclusions

In recent times we have understood that knot invariants like Jones polynomial in

three-dimensional space W can be computed by understanding the solutions of cer-

tain elliptic partial differential equations in four-dimensional space V, where W
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Figure 15: An example of a trefoil knot computation in the Ooguri-Vafa model. The knot

invariant is now proportional to 〈Ψ0|Ψ〉, which is somewhat similar in spirit with the knot

invariants computed earlier. The details however differ.

is the boundary of V. These equations were originally derived in a topologically

modified N = 4 Super Yang-Mills by imposing a localization condition into the

Chern-Simons theory in the three-dimensional boundary W [11]. The restriction

to the three-dimensional boundary was realized by switching on an axionic field in

the four-dimensional gauge theory defined on V = W × R+. This way various

details about knot configurations may be addressed directly using the dynamics of

four-dimensional gauge theory.

In a parallel development, Ooguri-Vafa [8] studied SU(N) knot invariants using

a topological theory generated by wrapping D6-branes on three-cycle of a deformed

conifold. Here the knot invariants may be associated to counting certain BPS configu-

rations that have origins in the gravity dual of the wrapped D6-branes’ configuration.

The gravity dual is given by resolved conifold with topological fluxes.

In the first part of our work we present an alternative derivation of the results

of [11]. We show that the physics studied in both W and V can be derived from a

configuration in M-theory on a certain seven-dimensional manifold with fluxes and

no branes other than the M2-branes. These M2-branes serve dual purpose: one

set of configurations lead to non-abelian gauge theory in V; and another set of

configurations lead to surface operators in V that are responsible for knots in W.

Restricting the knots to the boundary W is achieved by switching on a dipole

or a RR deformation in V that can be parametrized from supergravity. The M-
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theory uplifts leads to a seven-dimensional manifold, as mentioned above, of the form

of a warped Taub-NUT space fibered over a three-dimensional base. Supergravity

analysis leads to a four-dimensional Hamiltonian (3.158), from where a series of BPS

equations are derived. A sets of these BPS equations are exactly the localization

equations of [11] and [13], and we call them the BHN equations (the acronym stands

for Bogomolnyi, Hitchin and Nahm). The remaining sets of the BPS equations are

shown to be solved exactly using supergravity variables. Therefore one of our results

was to show that such equations emerge from M-theory compactifications and their

coefficients are succinctly interpreted in terms of supergravity parameters.

We also considered various types of solutions of such BHN equations alongwith

their deformations. One possibility is to have codimension three solutions denoted

by ’t Hooft operators. These solutions appear as opers, and we discuss them briefly

here attempting a supergravity interpretation. Another possibility is to have codi-

mension two solutions denoted by surface operators. We make a detailed study of

this in our work and show how the surface operators, which we interpret as certain

configuration of M2-branes, modify the BHN equations. These modifications are

given by introducing delta function sources whose coefficients can be traced to the

supergravity parameters in our model. Additionally we argue how the M2-brane

surface operators help us to study the link invariants for various knot configurations

in the abelian case.

In the second part of the paper we argue how the Ooguri-Vafa model may also

be derived from a configuration in M-theory defined on a different seven-dimensional

manifold that is given by another warped Taub-NUT fibered over a three-dimensional

base. The warping and fluxes now are such that the supersymmetry is reduced to

N = 1, and the seven-dimensional manifold has a G2 structure. Nevertheless, many

of the physics discussed in the first part of the paper follow a similar route in the

second part too. There are crucial differences of course, which we point out in our

paper. For example the topological theory is simpler now, but the analysis of knots

using surface operators are harder because there is no abelian simplification that can

be performed now. There is also a relocation of the knots on the three-cycle of the

deformed conifold instead on the spacetime boundary W earlier. This relocation is

associated to a flop transition that can be performed on the mirror type IIA side. In

our opinion these are all new results.

There are a number of future directions. For example, in the first part we

only studied the link invariants for the abelian case, so a natural question would to

investigate the non-abelian scenario. This is harder because, as we discussed in the

text, the effect of the non-abelian configuration of the surface operators on the BHN

equations are difficult to handle. Thus solving the BHN equations and interpreting

the knots in terms of solutions of the BHN equations in the non-abelian case will be

more challenging.

For the second part we only make the barest beginnings in this direction, and
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leave most of the details for the sequel. For example the configuration of the surface

operators in terms of M2 or M5-branes, details about the flop transition and the

subsequent analysis of knot invariants still remain to be elaborated. Other connection

to A-polynomial of [14], Khovanov homology [4] etc have not been touched here at

all, and we expect to study them in the sequel. Thus we see that the two connections

to M-theory seven-manifolds explored in this paper lead to a rich spectrum of ideas

that can allow us to have a fruitful dialogue between M-theory supergravity on one

hand and topological field theory and mathematics on the other.
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