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We study Seiberg-like dualities for three-dimensional N ¼ 2 theories with flavors in fundamental

and adjoint representations. The recent results of Intriligator and Seiberg provide a derivation of an

Aharony duality from a Giveon–Kutasov duality. We extend their result to the case of more general

theories involving various masses for fundamental quarks and adjoint fields. By fine-tuning the vacuum

expectation value of a scalar field and using various identifications between gauge groups and their singlet

duals, we derive several examples of Aharony dualities. For theories with an adjoint field, we discuss the

connection between the Aharony dualities proposed by Kim and Park for theories with multiple Coulomb

branches and Giveon–Kutasov–Niarchos dualities.
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I. INTRODUCTION

The breaking of supersymmetry (SUSY) from N ¼ 2
to N ¼ 1 in four-dimensional theories with flavors has
been the subject of intense study in both field theory or
string theory. It is achieved by turning on superpotentials for
the adjoint fields and the matter fields. In string theory, one
can either consider brane configurations with suspended
D4-branes [1], geometries with wrapped D5-branes [2],
or matrix models [3]. These distinct approaches are related
to each other by T dualities [4]. String theory provides
insights into strongly coupling regimes, Seiberg dualities,
metastable vacua, etc.

One immediate question is whether one can translate
this knowledge to three-dimensional (3d) theories, where
the corresponding deformation would beN ¼4!N ¼2.
A partial answer to this question was obtained some time
ago when certain aspects of mirror symmetry for 3d
N ¼ 2 theories were uncovered [5]. In recent years there
has been a renewal of interest in 3d gauge theories along
various exciting research avenues. On one hand 3-algebras
were shown to describe multiple, parallel membranes in M
theory (see Ref. [6] for a review and a complete list of
references). On the other hand, a new AdS/CFT duality
was proposed in Ref. [7] (see again Ref. [6] for details and
references).

A third recent direction, built up on the developments of
Ref. [5], has already provided important fresh tools for
exploring Seiberg dualities as the computation of the par-
tition functions on 3-spheres and the corresponding super-
conformal index [8–23]. Various connections between 3d
dualities and usual four-dimensional (4d) dualities were
discussed in Refs. [24,25].

In three dimensions there are two types of Seiberg-like
dualities:

(i) Giveon–Kutasov duality, which applies for theories
with any Chern-Simons level. This is reminiscent of
a 4d Seiberg duality for theories with fundamental
matter [26] or an adjoint field [27]. The Giveon–
Kutasov duality is well understood from brane con-
figurations with D3-branes suspended between
Neveu-Schwarz (NS) branes.

(ii) Aharony duality for three dimensions, which has a
peculiar coupling between electric and magnetic
monopoles [28]. This does not have a clear brane
picture.

The two Seiberg-like dualities can be connected by start-
ing with the Aharony duality, adding masses and generating
Chern-Simons terms, resulting in the Giveon–Kutasov dual-
ity. It is less clear how to proceed the other way because a
coupling between electric andmagneticmonopoles has to be
generated. Very recently, Ref. [29] discussed a reverse re-
normalization group flow from Giveon–Kutasov duality in
the UV to Aharony duality in the IR. This flow provided a
derivation of the monopole operator in the Aharony duality.
Intriligator and Seiberg considered the case of one massive
fundamental flavor and performed a fine-tuning of the ex-
pectation value for the extra adjoint scalar coming from the
4d N ¼ 2 vector multiplet. The result was an extra set of
Uð1Þ groups with Chern-Simons level k ¼ � 1

2 , which are

dual to some singlets [30,31], subsequently identified with
electric monopoles in the magnetic theory.
Our work extends the discussion of Ref. [29] in two

directions. First, we consider the case in which more than
one flavor is massive (we consider the case of two and four
massive flavors). The choices of mass and the tuning of the
corresponding vacuum expectation value (vev) for the
adjoint scalar field lead to various electric theories and
their corresponding Giveon–Kutasov duals. For particular
values of the Chern-Simons level, some unbroken groups
are of type UðkÞ�k

2
and have dual descriptions in terms of

singlets [31], which are identified with the Aharony dual
monopoles. The second direction that we consider involves

*srk@liverpool.ac.uk
†rtatar@liverpool.ac.uk

PHYSICAL REVIEW D 88, 066011 (2013)

1550-7998=2013=88(6)=066011(10) 066011-1 � 2013 American Physical Society

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Liverpool Repository

https://core.ac.uk/display/80777816?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1103/PhysRevD.88.066011


theories with an extra adjoint field where the Aharony
duality has multidimensional Coulomb branches and mul-
tiple monopole operators are needed [32]. The Giveon–
Kutasov duality for Chern-Simons theories with adjoint
matter was proposed in Ref. [27]. We explain how masses
for fundamental fields provide unbroken groups with sin-
glet duals providing pairs of monopoles and connecting the
two duality pairs. We use the continuous deformation
between the adjoint field potential Tr�n and the one with
lower powers in � in order to understand how pairs of
monopoles overlap.

II. FIELD THEORY RESULTS

We start with N ¼ 4 theory in three dimensions
obtained by suspending N D3-branes between two parallel
NS-branes with extra Nf flavor D5-branes.

In N ¼ 2 language, the hypermultiplets can be written

as two chiral superfields Q and ~Q with charges 1 and �1.
The N ¼ 4 vector multiplet contains an N ¼ 2
real vector multiplet V with a real scalar � as the
lowest component and a chiral multiplet � with a
complex scalar as the lowest component. Another type of
N ¼ 4multiplet is the linear multiplet, which contains an
N ¼ 2 linear multiplet � (which is real and satisfies
D2� ¼ �D2� ¼ 0).

The kinetic part of the Lagrangian for an N ¼ 4
theory is

Lkin ¼
Z

d4�ðQye2VQþ ~Qye�2V ~QÞ

þ
�Z

d2�
ffiffiffi
2

p
�Q ~Qþ c:c:

�
: (1)

The hypermultiplets can have a complex mass mc coming
form their coupling to the multiplet � or a real mass mr:

Lmass ¼
Z

d4�ðQye2imr� ��Qþ ~Qye�2imr� �� ~QÞ

þ
�Z

d2�mcQ ~Qþ c:c:

�
: (2)

There are also Fayet–Iliopoulos terms,

�V

Z
d4�V þ ��

Z
d2��; (3)

and Chern-Simons terms,

Z
d4�

k

4�
�V: (4)

The N ¼ 4 theory is deformed to an N ¼ 2 one by
adding a mass term for the field �,1

Z
d2�

1

2
�2�2: (5)

Integrating out the massive fields, we obtainN ¼ 2,UðNÞ
theory with Nf flavor fields.

The terms containing � are

Z
d2�

� ffiffiffi
2

p
�Q ~Qþ 1

2
�2�2

�
: (6)

The equation of motion for � is
ffiffiffi
2

p
Q ~Qþ�� ¼ 0; (7)

with the simple solution Q ~Q ¼ � ¼ 0, suggesting either

Q ¼ � ¼ 0 or ~Q ¼ � ¼ 0.
In terms of brane configurations, we consider that one

NS-brane rotates by an angle tan ð�Þ ¼ �, which goes to1
forN ¼ 2 theory. In this limit, the equations of motion for
the remaining fields in the N ¼ 2 theory are [29]:

Z
d4�ðVþmrÞQ¼ 0;

Z
d4�ð�VþmrÞ ~Q¼ 0; (8)

which for the scalar components of Q and ~Q are [29]

ð�þmrÞQ ¼ 0; ð��þmrÞ ~Q ¼ 0: (9)

We have the following possibilities:

(1) � ¼ 0, Q ¼ 0, ~Q ¼ 0,
(2) Q ¼ 0, � ¼ mr,

(3) ~Q ¼ 0, � ¼ �mr.
We also impose the D-term equation, which becomes

� k

2�
�� �

2�
þQyQ� ~Qy ~Q ¼ 0: (10)

III. REVIEW OF INTRILIGATOR–SEIBERG
RESULT

We are reviewing the Seiberg duality flow discussion for
one massive flavor described in Ref. [29].
Consider first the case in which only one flavor gets

massive and we have zero �, QNf , ~QNf . In brane configu-
rations we have a stack of N D3-branes at � ¼ 0. On the
other hand, integrating out the massive flavor causes the
Chern-Simons level to increase by 1. The flavor D5-branes
split into (1,1)-branes [33], and the gauge group has a
bigger Chern-Simons level, becoming UðNÞ1. If the initial
level was k, a ð1; kÞ-brane splits into (1, kþ 1)-branes, and
the gauge group becomes UðNÞkþ1.
When � ¼ �mr, some of the D3-branes move to the

points �mr. For one massive flavor, the gauge group is
broken to UðNc � 1Þkþ1 �Uð1Þkþ1

2
. The UðNc � 1Þ group

has Nf � 1 massless flavors and one massive flavor QNf ,
~QNf . Uð1Þ only has either QNf or ~QNf as massive flavors.
After integrating out the massive flavor, the level of the
UðNc � 1Þ gauge group increases by 1, whereas the level
of the Uð1Þ gauge group changes byþ 1

2 . In brane configu-

ration language, the UðNc � 1Þ group lives on the Nc � 1
D3-branes, which are not moved, whereas Uð1Þ lives on
the single D3-brane moved and suspended between an1We will consider more general deformations in a later section.
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NS-brane and the intersection point of ð1; kÞ 5-brane,
D5-brane, and (1, kþ 1) 5-branes.

For � ¼ �mr we also need to consider the D-term

equation (10). When QyQ and ~Qy ~Q are zero, the value
for the Fayet–Iliopoulos parameter is � ¼ m. In brane
configurations, the Fayet–Iliopoulos parameter is the dis-
tance between the two NS-branes. It is generally associated
to a supersymmetry breaking. Nevertheless, in our present
case, the Fayet–Iliopoulos term balances the nonzero
expectation value for the field � and does not break
supersymmetry.

The UðNc � 1Þkþ1 �Uð1Þkþ1
2
-brane configuration

contains:
(i) one (1, kþ 1) 5-brane between two junctions of D5

intersecting ð1; kÞ-branes,
(ii) three rotated NS-branes: NS0 and NS�,
(iii) Nc � 1 D3-branes between NS and NS0,
(iv) one D3-brane between NS and either NSþ or NS�.

A. Giveon–Kutasov to Aharony duality
for one massive flavor

Reference [29] considered the flow between Giveon–
Kutasov [26] and Aharony dualities [28].

The Giveon–Kutasov duality maps N ¼ 2, UðNcÞ
Chern-Simons theory with Nf flavors and level k to a

dual theory UðNf þ jkj � NcÞ�k with a superpotential

Mq~q, where q are the dual quarks and M is a singlet. On
the other hand, the Aharony duality maps N ¼ 2, UðNcÞ
theory with Nf flavors and level 0 to UðNf � NcÞ with
an unusual superpotential coupling the electric X� and
magnetic monopoles ~X�:

Mq~qþ Xþ ~X� þ X� ~Xþ: (11)

One can flow from Aharony duality to Giveon–Kutasov
duality by turning on real masses for the electric flavors. It
is less clear how to flow from Giveon–Kutasov duality to
Aharony duality, and the solution was offered in Ref. [29]:

(i) Start with Giveon–Kutasov electric theory UðNcÞk
with Nf quark flavors, and add a real mass for one of

the flavors QNf and ~QNf
.

(ii) For � ¼ 0, Q ¼ 0, ~Q ¼ 0, the Giveon–Kutasov
electric theory modifies into an Aharony electric
theoryUðNcÞkþ1 withNf�1 flavors, when k ¼ �1.

(iii) For � ¼ �mr, the Giveon–Kutasov magnetic
theory becomes

UðNf � Nc � 1Þkþ1 �Uð1Þkþ1
2
�Uð1Þkþ1

2
: (12)

This is to be identified with the Aharony magnetic
theory when k ¼ �1. The identification holds for
k ¼ �1, and the proposed Aharony duality takes
UðNcÞ0 withNf � 1 flavors intoUðNf�Nc�1Þ0�
Uð1Þ�1

2
�Uð1Þ�1

2
with Nf � 1 flavors. The product

Uð1Þ�1
2
�Uð1Þ�1

2
is dual to a pair of single chiral

superfields X� [30,31]. The single superfields
couple to the magnetic monopoles ~X� associated
to Uð1Þ inside UðNc � 1Þ as X� ~XþþXþ ~X�, as
required for Aharony duality.

IV. FLOW BETWEEN DUALITIES
FOR TWO MASSIVE FLAVORS

We now generalize the results of Ref. [29] to the case of
more massive flavors. We start with two massive flavors

QNf , QNf�1 and ~QNf
, ~QNf�1 with masses

mf0
1 f ¼ m1�

f0Nf

fNf
; mf0

2 f ¼ m2�
f0Nf�1

fNf�1 ;

~mf0
1 f ¼ m1�

~f0Nf

~fNf
; ~mf0

2 f ¼ m2�
~f0Nf�1
~fNf�1

:
(13)

We start with the case of equal masses m1 ¼ m2 ¼ m.

A. Equal masses m1 ¼ m2

If the masses are equal m1 ¼ m2 ¼ m, we can have one

of the following (all entries of Q, ~Q are always zero):
Case 1: All components of � are 0.
After integrating out the massive flavors, the gauge

group becomes UðNcÞkþ2. This group lives on Nc

D3-branes suspended between an NS-brane and a
(1, kþ 2) 5-brane.

Case 2: �Nc

Nc
¼ �Nc�1

Nc�1 are �m. The other components

are 0.
The gauge group becomes the UðNc � 2Þkþ2 �Uð2Þkþ1

group. The unbroken Uð2Þkþ1 is a decoupled factor with

two ~Q fields with mass 2m and two Q fields with mass 0.

By integrating out the massive flavors ~Q, we get a modi-
fication in the level and Fayet–Iliopoulos term:

k ! kþ 1; � ! �þ 2m; (14)

which, after a shift, relates the Fayet-Iliopoulos (FI) term
and the mass m as � ¼ mðkþ 2Þ.
We analyze the low-energy Uð2Þkþ1 theory. The Witten

index for the theory with two massless Q fields and level
kþ 1 is [29]

Trð�1ÞF ¼ jkþ 1j þ 1; (15)

which is nonzero for any value of k. The theory has SUSY
vacua, but they can be topological. For jkþ 1j ¼ 1, if one
adds massive matter and flows down, the theory at the
origin is an IR-free theory consisting of one chiral super-
field with no superpotential. This superfield is to be
identified with the electric monopole X�.
One special case is k ¼ �2, in which the broken gauge

group becomes UðNc � 2Þ0 �Uð2Þ�1. As in Ref. [31],
Uð2Þ�1 with two Q fields has a magnetic dual with only
one singlet X�, which couples to the operator ~Xþ associ-
ated to the Uð1Þ inside UðNc � 2Þ. X� is exactly the chiral
superfield describing the vacuum of Uð2Þ�1.
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The Chern-Simons level of the field theory on the
D3-branes is

(i) k for D3-branes between the NS-brane and the
ð1; kÞ-brane,

(ii) kþ 2 for D3-branes between the NS-brane and the
(1, kþ 2)-brane,

(iii) kþ 1 for D3-branes between the NS-brane and the
junction point of ð1; kÞ, (1, kþ 2), and 2 D5-branes

Case 3: �Nc

Nc
¼ �Nc�1

Nc�1 ¼ þm and �Nc�2
Nc�2¼�Nc�3

Nc�3¼�m.

The gauge group becomes UðNc � 4Þkþ2 �Uð2Þkþ1 �
Uð2Þkþ1. For the case k ¼ �2, the duals for both Uð2Þ�1

provide two chiral superfields X�, Xþ.
Case 4: �Nc

Nc
¼ �m and �Nc�1

Nc�1 ¼ 0. The two massive

flavors are integrated out, and one obtains the product
between UðNc � 1Þkþ2 with Nf � 2 flavors and Uð1Þkþ1

with two massless Q fields. The Witten index for Uð1Þkþ1

is jkþ 1j þ 1, which is always positive so the supersym-
metry is preserved. Nevertheless, for k ¼ �2, the Abelian
group becomes Uð1Þ�1, and no candidate for magnetic
monopoles exists.

Case 5:�Nc

Nc
¼ �m,�Nc�1

Nc�1 ¼ �m and�Nc�2
Nc�2 ¼ 0. After

integrating out the two massive flavors, the remaining
gauge group is UðNc � 2Þkþ2 �Uð1Þkþ1 �Uð1Þkþ1.

B. Different masses for the two flavors

We now consider the case when the mass for the QNf

flavor is bigger than the one for QNf�1.
Case 1 remains the same as for equal masses.
For case 2 we choose two nonzero entries for � as

�Nc

Nc
¼ �m1, �

Nc�1
Nc�1 ¼ �m2. The unbroken gauge group

is UðNc � 2Þkþ2 �Uð1Þk1 �Uð1Þk2 , where k1;2 need to be

determined.

The Uð1Þk1 on the D3-brane displaced to �Nc

Nc
¼ �m1

has two massive ~Q fields with positive masses 2m1 and
m1 þm2, respectively. The effective real masses for the
fields Q are

mið�Þ ¼ mi þ ni�; where ni is the charge under Uð1Þ;
(16)

so the effective mass for QNf is 0 and the one for QNf�1 is
m2 �m1 < 0. The Uð1Þk2 on the D3-brane displaced to

�Nc�1
Nc�1 ¼ �m2 contains two massive ~Q fields with positive

masses 2m2 and m1 þm2, respectively, and one field Q
with positive mass. The effective mass for the fields Q is
m1 �m2 > 0 for QNf and zero for QNf�1. The effective
Chern-Simons level

keff ¼ kþ 1

2

X
i

n2i signðmið�ÞÞ (17)

implies that k1 ¼ kþ 1
2 , k2 ¼ kþ 3

2 , and the unbroken

gauge group becomes

UðNc � 2Þkþ2 �Uð1Þkþ1
2
�Uð1Þkþ3

2
: (18)

To connect to Aharony duality, we consider k ¼ �2,
and the unbroken gauge group becomes UðNc � 2Þ0 �
Uð1Þ�3

2
�Uð1Þ�1

2
. Uð1Þ�3

2
and Uð1Þ�1

2
have two ~Q fields

and one Q field. Uð1Þ�1
2
has a dual with a free singlet field

Xþ. What about the group Uð1Þ�3
2
? The effective FI term is

keff�þ �eff , which is negative and so would signal no
SUSY vacuum. Nevertheless, as Uð1Þ�3

2
does not contrib-

ute to the Aharony duality, it can decouple, and the theory
would remain SUSY. It would be interesting to discuss this
decoupling in detail.
In case 3 all entries of Q are 0, and two nonzero entries

of � are �Nc

Nc
¼ þm1, �

Nc�1
Nc�1 ¼ þm2. The unbroken gauge

group is UðNc � 2Þkþ2 �Uð1Þk3 �Uð1Þk4 .
The Uð1Þk3 on D3-branes displaced to �Nc

Nc
¼ m1 con-

tains two massive Q fields with positive masses 2m1 and

m1 þm2, respectively, together with a ~Q field with nega-
tive mass m2 �m1. The value for k3 is kþ 1

2 . The Uð1Þk4
on D3-branes located at �Nc

Nc
¼ m2 has two massive Q

fields with positive mass 2m2 and m1 þm2, respectively,

plus a ~Q field with positive mass m1 �m2. The value
for k4 is then kþ 3

2 so the unbroken gauge group is

UðNc � 2Þkþ2 �Uð1Þkþ1
2
�Uð1Þkþ3

2
. For k ¼ �2, the

group becomes UðNc � 2Þ0 �Uð1Þ�3
2
�Uð1Þ�1

2
.

For case 4, the nonzero entries of � are �Nc

Nc
¼ m1,

�Nc�1
Nc�1 ¼ m2, �

Nc�2
Nc�2 ¼ �m2, �

Nc�3
Nc�3 ¼ �m1. The unbro-

ken gauge group is UðNc � 2Þkþ2 �Uð1Þk5 �Uð1Þk6 �
Uð1Þk7 �Uð1Þk8 . The field content for all Uð1Þ groups

implies that

k5 ¼ k8 ¼ kþ 1

2
; k6 ¼ k7 ¼ kþ 3

2
: (19)

For k ¼ �2, the unbroken group becomes

UðNc�4Þ0�Uð1Þ�3
2
�Uð1Þ�1

2
�Uð1Þ�1

2
�Uð1Þ�3

2
: (20)

The two Uð1Þ�1
2
groups have duals represented by the

scalars X�.
In case 5 other interesting cases are �Nc

Nc
¼ 0, �Nc�1

Nc�1 ¼
�m1 or �Nc

Nc
¼ 0, �Nc�1

Nc�1 ¼ �m2, in which case the

unbroken gauge group is UðNc � 1Þkþ2 �Uð1Þkþ1
2
or

UðNc � 1Þkþ2 �Uð1Þkþ3
2
. For k ¼ �2, this becomes

UðNc � 1Þ0 �Uð1Þ�3
2
or UðNc � 1Þ0 �Uð1Þ�1

2
.

For all cases 3, 4, and 5, we need to decouple the Uð1Þ�3
2

in order to save the SUSY.

C. Giveon–Kutasov to Aharony duality
for two massive flavors

We start with Giveon–Kutasov electric theory with
gauge group UðNcÞ�2 with Nf quark flavors. The Nf and
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Nf � 1 flavors have a real mass. After integrating out the

massive flavors and considering a vacuum with � ¼ 0, the
electric theory becomes an Aharony electric theory with
UðNcÞ0 with Nf � 2 massless flavors.

One the other hand, the Giveon–Kutasov magnetic dual is
UðNf þ 2� NcÞ�2. How can we reach the Aharony mag-

netic dual? The answer depends on the choice for themasses:
(i) If the two masses are equal, the corresponding case 3

provides an Aharony magnetic dual with a gauge
group UðNf � 2� NcÞ0 �Uð2Þ�1 �Uð2Þ�1 with

Nf � 2 flavors. Each Uð2Þ�1 is dual to a singlet

X�, which contributes to the mysterious superpoten-
tial. Therefore, the corresponding case 1 for electric
theory with equal masses is dual to case 3 for mag-
netic theory with equal masses. This is the Aharony
duality for equal flavor masses.

(ii) If the two masses are equal and we consider case 4,
the electric theory would be UðNc � 1Þ0 �Uð1Þ�1

and the magnetic one UðNf þ 1� NcÞ0 �Uð1Þ�1.

This now looks like an Aharony duality.
(iii) If the masses are not equal, we consider the case 3

for nonequal masses and obtain a theory with a
gauge group (20). Both Uð1Þ�1

2
groups can be dual-

ized into singlets, and we obtain UðNf � 2� NcÞ
with singlets and a superpotential, together with an
extra product of two Uð1Þ�3

2
. The Aharony duality

is valid only if the two masses are very large and
almost equal. The product of two Uð1Þ�3

2
can

decouple to preserve SUSY.
(iv) If we are in case 5 of nonequal masses, the electric

theory is UðNc � 1Þ0 �Uð1Þ�3
2
or UðNc � 1Þ0 �

Uð1Þ�1
2
, and the magnetic theory is UðNf þ 1�

NcÞ0 �Uð1Þ�3
2
or UðNf þ 1� NcÞ0 �Uð1Þ�1

2
. We

have Giveon–Kutasov duality between UðNc �
1Þ0 �Uð1Þ�1

2
and UðNf þ 1� NcÞ0 �Uð1Þ�1

2
if

both Uð1Þ�1
2
are dualized into singlets. For UðNc �

1Þ0 �Uð1Þ�3
2
and UðNf þ 1� NcÞ0 �Uð1Þ�3

2
, we

have a Giveon–Kutasov duality if the Uð1Þ�3
2

groups decouple to save SUSY.
The conclusion is that by starting from a Giveon–

Kutasov duality, we can reach a multitude of dualities,
depending on the choice of the vevs for �.

V. FLOW BETWEEN DUALITIES
FOR FOUR MASSIVE FLAVORS

We now move to a more involved case with four massive

flavorsQNf ,QNf�1,QNf�2,QNf�3 and ~QNf
, ~QNf�1, ~Q

Nf�2,

~QNf�3 as

mf0
1 f ¼ m1�

f0Nf

fNf
; mf0

2 f ¼ m2�
f0Nf�1

fNf�1 ;

mf0
3 f ¼ m3�

f0Nf�2

fNf�2 ; mf0
4 f ¼ m4�

f0Nf�3

fNf�3

(21)

~mf0
1 f ¼ m1�

~f0Nf

~fNf
; ~mf0

2 f ¼ m2�
~f0Nf�1
~fNf�1

;

~mf0
3 f ¼ m3�

~f0Nf�2
~fNf�2

; ~mf0
4 f ¼ m4�

f0Nf�3

fNf�3 :
(22)

We have several possibilities, among which we consider
the following:
(i) Case a: all the masses are equal m1 ¼ m2 ¼ m3 ¼

m4 ¼ m.
(ii) Case b: three masses are equal.
(iii) Case c: two masses are equal.
(iv) Case d: all the masses are different and choose

m1 >m2 >m3 >m4.

A. Case a: All four masses are equal

(1) All components of � are 0, and all entries of Q, ~Q
are 0.
After integrating out the massive flavors, the gauge
group changes from UðNcÞk with Nf flavors to

UðNcÞkþ4 with Nf � 4massless flavors. One special

case is k ¼ �4, where the level becomes 0.
(2) All entries of Q are 0, and the � nonzero entries are

�Nc

Nc
¼ �Nc�1

Nc�1 ¼ �Nc�2
Nc�2 ¼ �Nc�3

Nc�3 ¼ �m: (23)

The gauge group is UðNc � 4Þkþ4 �Uð4Þkþ2. The

unbroken Uð4Þkþ2 has four ~Q fields with mass 2m
and four Q fields with mass 0, which implies an
effective Chern-Simons level kþ 2 and an effective
shifted FI term � ¼ mðkþ 4Þ.
One special case is k ¼ �4, in which the gauge
group becomes UðNc � 4Þ0 �Uð4Þ�2. Uð4Þ�2 the-
ory with fourQ fields has a dual with a singlet X�. It
would be very interesting to check that the Witten
index is indeed nonzero for this case, and we expect
that the IR description is obtained by adding mas-
sive matter and flowing down as in Ref. [29] for
Uð2Þ groups.
A slight generalization is written as

�Nc

Nc
¼ �Nc�1

Nc�1 ¼ �Nc�2
Nc�2 ¼ �Nc�3

Nc�3 ¼ m;

�Nc�4
Nc�4 ¼ �Nc�5

Nc�5 ¼ �Nc�6
Nc�6 ¼ �Nc�7

Nc�7 ¼ �m;
(24)

when the gauge group becomes UðNc�8Þkþ4�
Uð4Þkþ2�Uð4Þkþ2. For k¼�4 this isUðNc�8Þ0�
Uð4Þ�2�Uð4Þ�2, and both Uð4Þ�2 groups have
duals with singlets X�.

(3) We consider some special values for �Nc

Nc
, �Nc�1

Nc�1,

�Nc�2
Nc�2, �

Nc�3
Nc�3 for which the unbroken gauge group

is the following:

(a) for �Nc

Nc
¼ �m, �Nc�1

Nc�1 ¼ �Nc�2
Nc�2 ¼ �Nc�3

Nc�3 ¼ 0:

UðNc � 1Þkþ4 �Uð1Þkþ2

(b) for �Nc

Nc
¼ �Nc�1

Nc�1 ¼ �m, �Nc�2
Nc�2 ¼ �Nc�3

Nc�3 ¼ 0:

UðNc � 2Þkþ4 �Uð2Þkþ2
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(c) for �Nc

Nc
¼ �Nc�1

Nc�1 ¼ �Nc�2
Nc�2 ¼ �m, �Nc�3

Nc�3 ¼ 0:

UðNc � 3Þkþ4 �Uð3Þkþ2

The cases with eigenvalues equal to m or mixed m and
�m are similar.

B. Case b: Three equal masses

(1) m1 ¼ m2 ¼ m3 >m4

Choose �Nc

Nc
¼ �Nc�1

Nc�1 ¼ �Nc�2
Nc�2 ¼ �m1, �Nc�3

Nc�3 ¼
�m4. In this case, for the first set of vevs of �,

one gets a Uð3Þ theory with four ~Q fields with
positive mass and one Q field with negative mass,
which are integrated out. The effective level is

kþ 3
2 . For �Nc�3

Nc�3 ¼ �m4, we get Uð1Þ with four

~Q with positive masses and three Q with positive
masses, so the effective level is kþ 7

2 . The gauge

group becomes

UðNc � 4Þkþ4 �Uð3Þkþ3
2
�Uð1Þkþ7

2
: (25)

For k ¼ �4 this becomes

UðNc � 4Þ0 �Uð3Þ�5
2
�Uð1Þ�1

2
: (26)

To preserve SUSY, we expect that Uð3Þ�5
2

decouples.
There are also other special cases:

(a) �Nc
Nc

¼ �Nc�1
Nc�1 ¼ �Nc�2

Nc�2 ¼ �m1, �Nc�3
Nc�3 ¼ 0

with a gauge group

UðNc � 3Þkþ4 �Uð3Þkþ3
2

(27)

(b) �Nc

Nc
¼ �Nc�1

Nc�1 ¼ �Nc�2
Nc�2 ¼ 0, �Nc�3

Nc�3 ¼ �m4

with a gauge group

UðNc � 1Þkþ4 �Uð1Þkþ7
2

(28)

(c) �Nc

Nc
¼ �Nc�1

Nc�1 ¼ �m1, �Nc�2
Nc�2 ¼ �Nc�3

Nc�3 ¼ 0

with a gauge group

UðNc � 2Þkþ4 �Uð2Þkþ3
2

(29)

(d) �Nc

Nc
¼ �m1, �Nc�1

Nc�1 ¼ �Nc�2
Nc�2 ¼ �Nc�3

Nc�3 ¼ 0

with a gauge group

UðNc � 1Þkþ4 �Uð1Þkþ3
2

(30)

(e) �Nc

Nc
¼ �m1, �

Nc�1
Nc�1 ¼ �Nc�2

Nc�2 ¼ �Nc�3
Nc�3 ¼ �m4

with a gauge group

UðNc � 2Þkþ4 �Uð1Þkþ3
2
�Uð1Þkþ3

2
(31)

(2) m1 ¼ m2 ¼ m3 <m4

Choose �Nc

Nc
¼ �Nc�1

Nc�1 ¼ �Nc�2
Nc�2 ¼ �m1, �Nc�3

Nc�3 ¼
�m4. For the first set of vevs of �, one gets a

Uð3Þ theory in which four ~Q with positive masses
and one Q with positive mass have been integrated
out. The effective level is then kþ 5

2 .

If �Nc�2
Nc�2 ¼ �m4 we get Uð1Þ with four ~Q with

positive mass and three Q with negative mass, and
the effective level is kþ 1

2 . The gauge group is

UðNc � 4Þkþ4 �Uð3Þkþ5
2
�Uð1Þkþ1

2
(32)

or in the k ¼ �4 case

UðNc � 4Þ0 �Uð3Þ�3
2
�Uð1Þ�7

2
: (33)

Among the cases with some zero values for the

above �, we mention the one with �Nc
Nc

¼ �Nc�1
Nc�1 ¼

�Nc�2
Nc�2 ¼ �m1, �Nc�2

Nc�2 ¼ 0, which provides the

unbroken gauge group

UðNc � 3Þ0 �Uð3Þ�3
2
: (34)

This is part of a candidate for Aharony duality
because Uð3Þ�3

2
has a singlet dual.

C. Case c: Two masses are equal

We only consider the choice m1 ¼ m2 >m3 >m4.
Take the vacuum

�Nc

Nc
¼�Nc�1

Nc�1 ¼�m1; �Nc�2
Nc�2 ¼�m3; �Nc�3

Nc�3 ¼�m4;

(35)

corresponding to the gauge group

UðNc � 4Þkþ4 �Uð2Þkþ1 �Uð1Þkþ5
2
�Uð1Þkþ7

2
: (36)

For k ¼ �4 this becomes

UðNc � 4Þ0 �Uð2Þ�3 �Uð1Þ�3
2
�Uð1Þ�1

2
: (37)

As in Ref. [29], Uð2Þ�3 with two massless flavors is an
superconformal field theory and should decouple in order
to obtain an Aharony duality with singlets coming from
Uð1Þ�1

2
.

One other important choice for two equal masses

is �Nc

Nc
¼ �Nc�1

Nc�1 ¼ �Nc�2
Nc�2 ¼ 0, �Nc�3

Nc�3 ¼ �m4, which

provides an unbroken gauge group,

UðNc � 1Þ0 �Uð1Þ�1
2
; (38)

containing a potential singlet coming from the dual of
Uð1Þ�1

2
.

D. Case d: All masses are different

We consider m1 >m2 >m3 >m4 and the following
vacuum:

�Nc�i
Nc�i ¼ �miþ1; i ¼ 0; 1; 2; 3: (39)

Each branch �Nc�i
Nc�i ¼ �miþ1 has 4 ~Q with positive

masses, but the masses forQ fields are positive or negative,
so the unbroken gauge group is
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UðNc � 4Þkþ4 �Uð1Þkþ1
2
�Uð1Þkþ5

2
�Uð1Þkþ7

2
; (40)

becoming for k ¼ �4

UðNc � 4Þ0 �Uð1Þ�7
2
�Uð1Þ�3

2
�Uð1Þ�1

2
: (41)

One other important solution is �Nc

Nc
¼ �Nc�1

Nc�1 ¼ �Nc�2
Nc�2 ¼

0, �Nc�3
Nc�3 ¼ �m4, which contains a singlet coming from

Uð1Þ�1
2
. The Uð1Þ�7

2
�Uð1Þ�3

2
groups should decouple in

order to preserve SUSY.

E. From Giveon–Kutasov to Aharony duality
for four massive flavors

We consider a Giveon–Kutasov electric theory with
gauge group UðNcÞ�4 with Nf quark flavors with real

masses for the Nf, Nf � 1, Nf � 2, Nf � 3 flavors. The

Giveon–Kutasov magnetic dual is UðNf þ 4� NcÞ�4.

We integrate out the four massive quarks, choose the
� ¼ 0 vacuum, and obtain the Aharony electric theory
UðNcÞ0 with Nf � 4 massless flavors.

The modification of the Giveon–Kutasov magnetic
picture depends on how we choose the masses for the
four quarks, as discussed in the previous subsections:

(i) If all four masses are equal, we consider case 2a
and obtain the Aharony dual with a gauge group
UðNf � 4� NcÞ0 �Uð4Þ�2 �Uð4Þ�2 w.

(ii) If only three masses are equal, we consider case b
and obtain the Aharony dual with a gauge group
which is either

UðNf � 4� NcÞ0 �Uð3Þ�5
2
�Uð3Þ�5

2
�Uð1Þ�1

2

�Uð1Þ�1
2

(42)

or

UðNf � 4� NcÞ0 �Uð3Þ�3
2
�Uð3Þ�3

2
�Uð1Þ�7

2

�Uð1Þ�7
2
: (43)

For the case (42), we get the two singlets X� from
dualizing Uð1Þ�1

2
�Uð1Þ�1

2
and then decouple

Uð3Þ�5
2
�Uð3Þ�5

2
by sending the masses to infinity.

For the case (43), we get the singlets X� from
dualizing Uð3Þ�3

2
�Uð3Þ�3

2
and then decoupling

Uð1Þ�7
2
�Uð1Þ�7

2
.

Not all the gauge groups breaking give rise to
Aharony duals. One example when we get the

Aharony dual is �Nc

Nc
¼ �Nc�1

Nc�1 ¼ �Nc�2
Nc�2 ¼ 0,

�Nc�2
Nc�2 ¼ �m4 when the breaking is as in Eq. (28)

UðNc � 1Þkþ4 �Uð1Þkþ7
2
. This becomes UðNc �

1Þ0 �Uð1Þ�1
2

when k ¼ �4. We recover the

Aharony magnetic dual UðNfþ1�NcÞ0�Uð1Þ�1
2
.

(iii) If two masses are equal and we choose m1 ¼ m2 >
m3 >m4, case c discussed above implies that the

Aharony dual is

UðNf � 4� NcÞ0 �Uð2Þ2�3 �Uð1Þ2�3
2

�Uð1Þ2�1
2

;

(44)

with the two singlets X� being given by the duals of
Uð1Þ2�1

2

.

For �Nc

Nc
¼ �Nc�1

Nc�1 ¼ �Nc�2
Nc�2 ¼ 0, �Nc�3

Nc�3 ¼ �m4,

we have an unbroken electric gauge group
UðNc � 1Þ0 �Uð1Þ�1

2
and unbroken magnetic

gauge group UðNf þ 1� NcÞ0 �Uð1Þ�1
2
, which

are indeed Aharony dual to each other.
(iv) If all masses are different and we choose m1 >

m2 >m3 >m4, the above case d implies that the
Aharony magnetic dual is

UðNf � 4� NcÞ0 �Uð1Þ2�7
2

�Uð1Þ2�3
2

�Uð1Þ2�1
2

;

(45)

with the two singlets X� being again the duals of
Uð1Þ2�1

2

. The group Uð1Þ2�7
2

�Uð1Þ2�3
2

needs to

decouple to preserve SUSY.

VI. THREE-DIMENSIONAL THEORIES
WITH ADJOINT MATTER

We consider the N ¼ 4 ! N ¼ 2 deformation for a
general potential for the field � [1,34],

Z
d2�

Xn
i¼0

ci
nþ 1� i

�nþ1�i; (46)

which implies that the superpotential has n distinct minima
x ¼ ai:

W 0ðxÞ ¼ Xn
j¼0

cix
n�i ¼ c0

Yn
i¼1

ðx� aiÞ: (47)

The vacua are labeled by integers ðr1; . . . ; rnÞ. When all the
values of ai are distinct, the gauge group is Higgsed,

UðNcÞ ! Uðr1Þ �Uðr2Þ � � � � �UðrnÞ; (48)

and we get n decoupled copies of the N ¼ 2 theories
discussed in the previous section.
If we add Nf flavor fields, the full superpotential is

Z
d2�

ffiffiffi
2

p
�Q ~Qþ

Z
d2�

Xn
i¼0

ci
nþ 1� i

�nþ1�i: (49)

The equation of motion for � is

Z
d2�

� ffiffiffi
2

p
Q ~Qþ Xn

j¼0

ci�
n�i

�
; (50)

and we take the simple solution Q ~Q ¼ W 0ðxÞ ¼ 0.
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The Giveon–Kutasov duality [26] was generalized to the
case with an adjoint field in Ref. [27]. The magnetic dual is
an N ¼ 2, UðnNf þ njkj � NcÞ theory with Nf pairs of

chiral multiplets q~q, an adjoint field �, and n magnetic
mesons Miði ¼ 1; . . . ; nÞ. On the other hand, the Aharony
duality [28] was generalized to the case with an adjoint
field in Ref. [32]. The proposed magnetic dual is
UðnNf � NcÞ with Nf pairs of chiral multiplets q, ~q, an

adjoint field Y, n magnetic mesons Miði ¼ 1; . . . ; nÞ,
and 2n singlet superfields X�;1; . . . ; X�;n. The magnetic

superpotential is

Wm ¼ TrYnþ1 þ Xn�1

j¼1

Mj~qY
n�1�jq

þXn
i¼1

ðXþ;i
~X�;nþ1�i þ X�;i

~Xþ;nþ1�iÞ: (51)

X1;� and ~X1;� are the monopoles of the electric and

magnetic theory. The coupling between the monopoles is
dictated by the requirement of having the right R symmetry
charge together with the superconformal index matching
requirement [32].

We now want to flow from a Giveon–Kutasov duality
with adjoint matter to an Aharony duality with adjoint
matter. In order to do so, we start by generalizing the
results of Ref. [29] to the case of theories with adjoint
matter.

A. Symmetry breaking for theories with adjoint matter

Let us consider the deformation N ¼ 4 ! N ¼ 2 for
the three-dimensional theory given by the superpotential
(46). Each of the UðriÞ groups in Eq. (48) has Nf funda-

mental flavor, and we consider that each group has the
same Chern-Simons level k.

Fixing the expectation value for� does not imply that �
is also fixed, and, for each value � ¼ ai, we have a

classical vacua encoded by �i, Q
Nf;i, ~QNf ;i, i ¼ 1; . . . ; n

obeying Eq. (9) together with the D-term equation for each
group UðriÞ.

We now give a real mass to one or more flavors. If we

give mass to only one flavor QNf and ~QNf
, we have three

cases:

(i) �i, Q
Nf ;i ¼ ~QNf ;i, i ¼ 1; . . . ; n are all zero.

By integrating out the massive fundamental flavors,
each UðriÞk group becomes UðriÞkþ1 with Nf � 1

flavors. It is now easy to see what happens when
the coefficients ci, i � 1 in Eq. (46) are zero, in
which case the superpotential becomes �nþ1. All
ai become zero, and the gauge group enlarges to
UðNcÞkþ1 with Nf � 1 flavors.

(ii) �Nc;i
Nc;i

¼ mi, i ¼ 1; . . . ; n as the only nonvanishing

�. Only one flavor is massive, and the gauge group
becomes

Uðr1 � 1Þkþ1 � � � � �Uðrn � 1Þkþ1 (52)

withNf � 1 flavors each, together with n decoupled

Uð1Þkþ1
2
factors, each having a single light field of

charge þ1 and a FI parameter � ¼ miðkþ 1Þ.
If we now take ci, i � 1 in Eq. (46) to zero, the
Uðri � 1Þkþ1 factors in Eq. (52) add up to UðNc �
nÞkþ1 with Nf � 1 massless flavors together with a

product of n Uð1Þkþ1
2
groups, each having a FI

parameter � ¼ miðkþ 1Þ.
(iii) �Ni

Nc;i
¼ mi, �

Nc�1;i
Nc�1;i ¼ �mi, i ¼ 1; . . . ; n break the

group to

Uðr1 � 2Þkþ1 � � � � �Uðrn � 2Þkþ1 (53)

with Nf � 1 massless flavors, each together with a

product of n Uð1Þkþ1
2
�Uð1Þkþ1

2
groups, each

Uð1Þkþ1
2
having a single charged field and a FI

parameter � ¼ �miðkþ 1Þ.
If ci, i � 1 are zero, all Uðri � 1Þkþ1 factors in
Eq. (53) overlap and provide UðNc � 2nÞkþ1 with
Nf � 1 massless flavors. The n Uð1Þkþ1

2
�Uð1Þkþ1

2

factors are distinguished by the value of the FI
parameter � ¼ �miðkþ 1Þ.

For k ¼ �1, the above three cases become in the limit
ci, i � 1 being zero, the following:
(1) UðNcÞ0 with Nf � 1 flavors

(2) UðNc � nÞ0 together with n Uð1Þ�1
2
groups

(3) UðNc � 2nÞ0 together with n Uð1Þ�1
2
�Uð1Þ�1

2

groups
We can apply the methods of the previous section to

generalize this case in the presence of more massive
fundamental flavors.

B. Coupling between monopoles

Before moving to dualities, we need to address the
question of the coupling between electric and magnetic
monopoles in the potential dual theory. As in Ref. [29], the
electric monopoles come from dualizing the Uð1Þ�1

2
into

X� chiral superfields, whereas the magnetic monopoles are
associated with Uð1Þ subgroups of the gauge groups. For
the second case above, we can dualize the Uð1Þ�1

2
factors

into Xþ;i, i ¼ 1; . . . n chiral superfields, each one coupling

to operators ~X�;i associated to Uð1Þi subgroups of

Uðri � 1Þ0, and a superpotential is generated as

W ¼ Xn
i¼1

Xþ;i
~X�;i: (54)

For the third case above, we dualize one group of
Uð1Þ�1

2
factors into Xþ;i, i ¼ 1; . . .n and the other

into X�;i, i ¼ 1; . . . n, which couple to the magnetic

monopoles as
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W ¼ Xn
i¼1

ðXþ;i
~X�;i þ X�;i

~Xþ;iÞ: (55)

What happens if all ci, i � 1 in Eq. (46) are taken to zero
and all the masses mi are equal? In this case all the
monopoles X�;i, ~X�;i, i ¼ 1; . . . ; n for the cases 2 and 3

overlap, and we need to reconsider their couplings. A brane
configuration discussion cannot provide an answer regard-
ing this coupling, and wewould need to lift our theory to an
M-theory/F-theory picture. Nevertheless, we can use the
arguments of Ref. [32] concerning the matching of the
chiral rings between magnetic and electric theories,
together with considerations of the superconformal index
for UðNÞ theory with an adjoint.

For a cubic superpotential in � (n ¼ 2), this would
mean that X�;1 are identified with the electric monopoles

and ~X�;1 with the magnetic monopoles. From Table 2 in

Ref. [32], we see that on one hand the state X�;1 Tr�
contributes to the index, and this is represented by a con-
tribution Xþ;1

~X�;2 þ X�;1
~Xþ;2 to the superpotential. On

the other hand, X�;2 and the Nf � Nf singlet M1 would

appear as singlets in the magnetic theory with no corre-
spondent in the electric theory. They must be paired with
monopole operators and disappear. The M1 operator is
canceled by Xþ;2

~X�;1 þ X�;2
~Xþ;1. The total contribution

to the superpotential is then

Xþ;1
~X�;2 þ X�;1

~Xþ;2 þ Xþ;2
~X�;1 þ X�;2

~Xþ;1: (56)

For a quartic superpotential in �ðn ¼ 3Þ, one has
three electric monopoles and three magnetic monopoles.
To see their coupling, one can again consult Table 2 in
Ref. [32] to see that X�;1

~X�;3 and X�;2
~X�;2 contribute to

the superconformal index, whereas X�;3
~X�;1 is needed to

cancel unwanted singlets. For general n we recover
formula (51).

C. From Giveon–Kutasov duality to Aharony
duality for adjoint matter

We start with a Giveon–Kutasov electric theoryUðNcÞ�1

with Nf fundamental flavors and an adjoint field with a

superpotential Tr�nþ1. By giving mass to one fundamental
flavor and choosing � ¼ 0, we get the Aharony electric
theory UðNcÞ0 with Nf � 1 fundamental flavors and an

adjoint field.
To get to the Aharony magnetic dual, we start by con-

sidering a Giveon–Kutasov duality, which takes the
UðNcÞ�1 with Nf fundamental flavors and an adjoint field

to UðnNf þ n� NcÞ�1 with flavors and an adjoint dual as

in Ref. [27]. The Giveon–Kutasov magnetic theory is then
deformed by a nonzero vev for� as in the third case above.
The theory flows to one in which the rank of the non-
Abelian dual group decreases by 2n, and it becomes
UðnNf � n� NcÞ�1 with Nf � 1 fundamental flavors

and an adjoint field. We also have the n products of
Uð1Þ�1

2
�Uð1Þ�1

2
groups, which are to be dualized into

electric monopoles that couple to magnetic monopoles as
above:

Xþ;1
~X�;nþX�;1

~Xþ;nþ���þXþ;n
~X�;1þX�;n

~Xþ;1: (57)

We therefore found a pair of Aharony duals that are the
same as in Ref. [32].
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