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Graphical Abstract  

 

 

 

Two alkoxy groups are added in a syn-conformation mode in all the studied cases of nickel(II) 14,28-

dialkoxy phthalocyanines. 

 

 

Highlights 

 

► Five unstable Ni(II) substituted-at-core 14,28-dialkoxy-phthalocyanines are easily synthesized by 

a solvothermal process 

► Both alkoxy groups are added in a syn-mode 

► Ni(II) dialkoxy-phthalocyanines are highly soluble in most common organic solvents 
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ABSTRACT: A series of soluble in common organic solvents nickel(II) 14,28-dialkoxy-substituted 

phthalocyanines is synthesized by reaction of nickel acetate tetrahydrate with 1,2-dicyanobenzene in 

the presence of an alcohol under solvothermal conditions. Single crystal X-ray diffraction analyses 

reveal that the two alkoxy groups are added in a syn-conformation mode in all the studied cases. The 

use of microwave irradiation leads to decomposition of the nickel(II) 14,28-dialkoxy-substituted 

phthalocyanines. 

 

Key words: Nickel(II) complexes, Phthalocyanines, Solvothermal synthesis, Microwave-assisted 

reaction. 
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Introduction 

 

The chemistry of metal-free (Pcs) and metallated (M-Pcs) phthalocyanines [1] has long been 

an area of active investigation, mainly due to the wide range of their applications in industry, 

laboratory and medicine, e.g. as dyes/pigments [2,3], light-harvesting molecular antennae for dye-

sensitized solar cells [4-6], catalysts [7,8], nonlinear optical materials [9-11], organic semiconductors 

and electronic devices [12-16], active agents for phototherapy [17-19], chemical sensors [20], etc. In 

many of these applications a good solubility of Pcs and M-Pcs in different solvents is required [21-

24]. However, typically phthalocyanines possess low solubility, mainly due to the formation of 

multiple π-π and other related intermolecular non-covalent interactions [25]. To weaken such 

interactions and at the same time to increase the non-covalent ones with molecules of solvents, 

various substituents can be introduced into the core or periphery of Pcs [21-24]. Thus, sulfo- or 

carboxy-groups allow to increase the solubility in polar solvents, in particular water [23], while 

alkoxy-substituents are useful to create lipophilic Pcs [8]. 

The introduced substituents also allow tuning of the other physical and chemical properties of 

Pcs species. For instance, the introduction of substituents at the Pc core give rise to 

thermodynamically unstable Pcs which easily decompose at heating or chemical treatment and thus 

can be used for thermal deposition of thin films and other functional materials [26,27]. Hence, 

modification of Pcs and M-Pcs by introduction of different substituents at various positions is an 

important task in the synthetic chemistry of phthalocyanines. 

In some cases, the substituents can be introduced into the pre-prepared Pcs and M-Pcs, but 

their high robustness limits the post-modification. Moreover, although numerous examples of the 

peripheral modifications are known [1], Pc core (skeletal) modifications are much less exploited and 

usually are based on phthalonitrile treatment with lithium alkoxide [26,27] or solvothermal reactions 

of metal(II) acetate tetrahydrates with 1,2-dicyanobenzenes and some nucleophiles [28,29]. As a 

rule, the substituents can be introduced into positions 14 and 28 of the Pc core upon synthesis, in 

contrast to the post-synthetic modification. 

Taking in mind the above considerations and following our interest in the synthesis of M-Pcs 

and related complexes [30-35], we decided to widen the scope of modified at core soluble Pcs 

species by the reaction between Ni(CH3COO)2·4H2O and phthalonitrile in different alcohols. 

 

Results and Discussions 
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Nickel(II) acetate tetrahydrate, phthalonitrile and several alcohols ROH (R = Me, Et, Pr
n
, Bu

n
 

and CH2CH2OMe) were used as starting materials, the latter being applied as both reactants and 

solvents (Scheme 1, Table 1). In attempt to improve yields, two synthetic strategies with alternative 

energy inputs were applied: (i) solvothermal and (ii) microwave-assisted syntheses.  

 

Scheme 1. Synthesis of the 14,28-dialkoxy-substituted Ni-Pcs 1-5 [R = Me (1), Et (2), Pr
n 

(3), Bu
n 

(4), MeOCH2CH2 (5)]. The six-membered metallacycles of the inner core are planar [-Ni-N=Csp2-

N=Csp2-N-] and distorted [-Ni-N-Csp2=N-Csp3-N-] (see also Fig.1). 

 

Table 1. Reaction conditions for the preparation of 1-5. 

ROH Pcs 

Solvothermal Microwave-assisted 

t, °C Time, d Yield, % t, °C Time, h Yield, % 

MeOH 1 70 7 32 80 12 2.3 

EtOH 2 90 4 25 90 12 – 

Pr
n
OH 3 95 7 10 110 9 1.1 

Bu
n
OH 4 120 7 11 120 12 – 

MeOCH2CH2OH 5 120 7 13 120 12 – 

 

We started the study by modifying the known synthesis [28] and using methanol and ethanol 

as both reagents and solvents. We found that under optimized conditions the reaction of 

phthalonitrile and nickel(II) acetate tetrahydrate in methanol for 7 days at 70 °C and in ethanol for 4 

days at 90 °C furnishes the corresponding M-Pcs 1 and 2 in 32% and 25% yields, correspondingly 
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(Table 1). To expand the series, other aliphatic alcohols were employed under solvothermal 

conditions. Hence, the reaction in n-propanol, n-butanol or methoxyethanol for 7 days at 95 °C (for 

propanol) or 120 °C (for n-butanol and methoxyethanol) results in the formation of the 

corresponding 14,28-dialkoxy-substituted phthalocyanines 3, 4 and 5 with 10, 11 and 13% yields, 

respectively (Table 1). 

In attempt to improve the synthetic procedure, we also performed a set of experiments under 

microwave irradiation: the metal source, dicyanobenzene and corresponding alcohol were mixed, 

sealed in a reactor and kept under MW irradiation for a certain time (Table 1). After that, the reaction 

mixtures were filtered and the residual solution was left for slow evaporation of the solvent to 

crystallize the product. Under microwave irradiation, the reaction in methanol (12 h at 80 °C) yielded 

the Ni-Pc 1 in only 2.3 % yield. The reaction in n-propanol (9 h at 110 °C) resulted in the 

corresponding complex 3 in ca. 1 % yield; also the formation of simple dark-blue non-substituted M-

Pc was observed. When ethanol, n-butanol and methoxyethanol were used as solvents and reagents, 

we were unable to isolate reasonable amounts of the corresponding nickel(II) dialkoxy-substituted 

phthalocyaninates. Hence, application of the microwave irradiation does not lead to any 

improvement of the synthetic procedure, possibly due to the destruction of the kinetic products (i.e., 

14,28-dialkoxy-substituted Ni-Pcs). 

Complexes 1-5 gave satisfactory C, H, and N elemental analyses that are consistent with the 

proposed formulations for the nickel(II) dialkoxy substituted-at-core phthalocyaninates. The ESI
+
-

MS spectra of 1-5 display molecular ion peaks with the expected isotopic pattern (see Experimental 

part). The IR spectra of 1-5 show no presence of the ν(C≡N) stretching vibrations of the 

phthalonitrile C≡N groups in the range between 2220 and 2198 cm
–1

, but display strong bands due to 

ν(C=N) of the products between 1650 and 1630 cm
–1

. It also should be mentioned that Ni-Pcs 1 and 

2 possess IR spectra identical to those previously published [28], and thus these compounds were not 

characterized in detail. 

The Ni-Pcs 3-5, as being new, were additionally characterized by NMR. In the 
1
H NMR 

spectrum of 3, the triplet at 3.82 ppm, multiplet at 1.79, triplet at 0.91, and multiplets at 7.95-7.52 

ppm correspond to -OCH2Et, -OCH2CH2Me, -OCH2CH2CH3 and aromatic protons, respectively.  

Similarly, in the 
1
H NMR spectrum of 4, the triplet at 3.47 ppm, multiplet at 1.49, multiplet at 1.22, 

triplet at 0.90 and multiplets at 7.90-7.32 ppm correspond to -OCH2Pr
n
, -OCH2CH2Et, -

OCH2CH2CH2Me, -OCH2CH2CH2CH3 and aromatic protons, respectively. The 
1
H NMR spectrum of 

5 exhibits the aromatic protons at 7.86-7.42, while the -OCH2CH2O- protons resonate at 3.64 and 

3.55 ppm, and the methoxy protons at 3.20 ppm. The 
13

C(
1
H) NMR spectra of complexes 3-5 display 

the sp2 carbons of C=N within the range of ca. 168-165 ppm, the aryl carbons at ca. 142-117 ppm, 



 7 

while the sp3 carbon atoms within the distorted [-Ni-N-Csp2=N-Csp3-N-] metallacycles appear at ca. 

100-109 ppm (see Experimental part). In addition, the structures of complexes 1, 3 and 5 were 

elucidated by single crystal X-ray diffraction studies [36].  

The crystal structures of 1, 3 and 5 (Figure 1) are composed of discrete monomeric units 

possessing distorted square-planar geometries (τ4 values of 0.14 ‒ 0.16) around the nickel centres 

[37]. The chelation of the Pc ligands through the N atoms [Ni‒N bond distances in the 1.832(3) ‒ 

1.8697(17) Å range] gives rise to two types of six-membered metallacycle rings, a planar [-Ni-N-

Csp2=N-Csp2-N-] [maximum deviations of 0.109(1) ‒ 0.141(1) Å, generally pertaining to the metal 

cation] and a distorted one [-Ni-N-Csp2=N-Csp3-N-] [maximum deviations of 0.289(5)‒ 0.336(3) Å 

pertaining to the out-of-plane sp
3
 carbon atom]. 

  

1 3 

 

5 

Figure 1. Molecular structures of complexes 1, 3 and 5. Symmetry codes to generate equivalent 

atoms: i) 1-x,y,1.5-z. 
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As a result of the syn-binding of the alkoxy groups to sp
3
 carbons in the structures of 1, 3 and 

5, the molecules are highly bent. Analyzing the least-square planes of the four isoindole subunits in 

each molecule and the angles between them, one can consider these parameters as measures of 

deviations from planarity of the phthalocyanide ligand. While in complex 1 the rings are relatively 

displaced by a minimum value of 5.15º and a maximum of 37.21º, in complex 3 those values are of 

7.85 and 47.97º, and in 5 they are of 15.41 and 46.40º. The overall increase of these angles in the 

order 1 < 3 < 5 may be related to the size of the alkoxyl groups and stereochemical constrains. The 

minimum intermolecular metal···metal distances assume values of 7.764 (1), 7.685 (3) and 8.956 Å 

(5). 

Apart from the above mentioned main structural details, molecules of 1 and 3 are involved in 

strong intermolecular π···π interactions connecting not only the phenyl groups of adjacent molecules, 

but also a phenyl group of a molecule with the pyrrole ring of a vicinal one (Figures S1 and S2; most 

intense centroid···centroid distances below 3.800 Å). Known examples of other copper(II) and 

nickel(II) with 14,28-dialkoxy substituted phthalocyanate ligands [26,28] present similar 

conformations. Moreover, the geometry and bonding parameters within the Pc moieties of compound 

1 agree with those reported [26,28]. 

Attempts to increase the yields of 1–5 by either running the reactions at higher temperatures 

or for a longer period of time result in the yield depletion and in many cases only simple 

unsubstituted phthalocyaninato nickel(II) complexes were formed. The small yields and instability of 

the isolated dialkoxy-substituted M-Pcs signifies that they are kinetic forms on the way to the 

thermodynamically stable highly symmetrical “simple” M-Pcs. Similarly, it was indicated that the 

14,28-di-alkoxy-substituted Pc copper(II) complexes decompose under heating towards the 

corresponding copper(II) phthalocyanines [26]. It is very probable that the above mentioned strong 

intermolecular π···π interactions stabilize the kinetic intermediates 1–5 thus allowing their isolation 

and characterization. 

In summary, we have isolated and fully characterized several new unstable nickel(II) 

phthalocyanines with alkoxy “at-core” substituents, derived from the convenient one-pot template 

condensation of phthalonitrile and alcohols on the nickel(II) matrix, performed under considerably 

mild conditions. The work deserves to be extended to a wider variety of alcohols with different 

electronic and steric features, and to other metals, towards the sustainable synthesis of a diversity of 

substituted-at-core phthalocyanines. 
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Experimental part 

 

Materials and Methods. All chemicals were obtained from commercial sources and used as 

received. C, H and N elemental analyses were carried out by the Microanalytical Service of the 

Instituto Superior Técnico. Infrared spectra (4000�400 cm
–1

) were recorded on a BIO-RAD FTS 

3000MX instrument in KBr pellets. 1D (
1
H, 

13
C{

1
H}) NMR spectra were recorded on Bruker 

Avance II+ 300.13 (75.47 for 
13

C) and 400.13 (100.61 for 
13

C) MHz spectrometers at ambient 

temperature. The chemical shifts are reported in ppm using tetramethylsilane as the internal 

reference. Electrospray mass spectra (ESI-MS) were run with an ion-trap instrument (Varian 500-MS 

LC Ion Trap Mass Spectrometer) equipped with an electrospray ion source. For electrospray 

ionization, the drying gas and flow rate were optimized according to the particular sample with 35 

psi nebulizer pressure. Scanning was performed from m/z 100 to 1200 in methanol solution. The 

compounds were observed in the positive mode (capillary voltage = 80–105 V). 

Solvothermal synthesis. Nickel(II) acetate tetrahydrate (55 mg, 0.221 mmol), 1,2-

dicyanobenzene (100 mg, 0.781 mmol) and 3 mL of the corresponding alcohol (ROH) were 

combined and sealed in a stainless steel reactor and heated at 70 (1), 90 (2), 95 (3), 120 °C (4 and 5) 

for 4-7 days. Upon opening the reactor, a red solution and fine blue powder were observed. The blue 

powder was filtered off and was determined to be the unsubstituted “simple” phthalocyaninato 

nickel(II) complex by comparison of its IR spectrum to that of an authentic sample (Sigma) and also 

by the correspondence of its elemental analysis with the theoretical one. The eluate was cooled down 

and the formed colorless crystals were filtered off, while the resulting red solution was left for slow 

evaporation. Upon evaporation, red-orange crystallic blocks of Ni-Pc(OR)2 were formed. 

MW-assisted synthesis. Nickel(II) acetate tetrahydrate (55 mg, 0.221 mmol), 1,2-

dicyanobenzene (100 mg, 0.781 mmol) and 3 mL of the corresponding alcohol were combined and 

heated in sealed reactor at 80 (1), 90 (2), 110 (3), and 120 °C (4 and 5) for 9-12 h under MW 

irradiation (Table 1). Upon opening the reactor, a red solution and traces of fine blue powder were 

observed. The blue powder was filtered off and was determined to be phthalocyaninato nickel(II) by 

comparison of its IR spectrum to that of an authentic sample (Sigma). The eluate was cooled down, 

and the formed colorless crystals were filtered off, while the resulting red solution was left for 

evaporation. Upon slow evaporation of the solutions, red orange blocks of 1 and 3 were formed. 

[(14,28-(OMe)2Pc)Ni] (1). Anal. Calcd for C34H22N8NiO2 (MW=633.28): C, 64.48; H, 3.50; N, 

17.69. Found: C, 64.44; H, 3.90; N, 17.53%. ESI
+
-MS, m/z: 683 [M+H2O+MeOH+H]

+
, m/z: 651 
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[M+H2O+H]
+
. IR spectra of this compound was found to be identical to that published [28]. The 

formulation of this compound was also proved by X-ray diffraction analysis. 

[(14,28-(OEt)2Pc)Ni] (2). Anal. Calcd for C36H26N8NiO2 (MW=661.34): C, 65.38; H, 3.96; N, 

16.94. Found: C, 64.72; H, 3.94; N, 17.11%. ESI
+
-MS, m/z: 697 [M+2H2O+H]

+
, m/z: 679 

[M+H2O+H]
+
. IR spectra of this compound is identical to that previously published [28].  

[(14,28-(OPr
n
)2Pc)Ni] (3). Anal. Calcd for C38H30N8NiO2 (MW=689.39): C, 66.20; H, 4.39; N, 

16.25. Found: C, 66.82; H, 4.68; N, 16.23%. ESI
+
-MS, m/z: 725 [M+2H2O+H]

+
, m/z: 707 

[M+H2O+H]
+
. IR (KBr, selected bands, cm

−1
): 3437(br), 3107 (m-w), 3080 (m-w), 3043 (m-w) ν(C–

H from Ar); 2961 (m-w), 2924 (m-w) ν(C–H from CH2 and/or CH3); 1647 (m) ν(C=N); 1535(s), 

1494(vs), 1412 (m), 1387 (m), 1199 (m), 1166 (m), 1144 (m), 1127 (m), 1095 (m), 1061 (s), 1043 

(s), 1010 (s), 732 (s) δ(С–H from Ar). 
1
H NMR (CDCl3, δ): 7.95 (m, 7.0 Hz, 4H), 7.87 (m, 7.0 Hz, 

4H), 7.62 (m, 6.0 Hz, 2H), 7.52 (t, 6.0 Hz, 6H), (Ar’s), 3.82 (t, 7.5 Hz, 2H, OCH2Et), 1.79 (m, 7.5 

Hz, 4H, OCH2CH2Me), 0.91 (t, 7.5 Hz, 6H, OCH2CH2CH3). 
13

C(
1
H) NMR (CDCl3, δ): 168.2 (C=N), 

138.6, 138.4, 136.0, 132.7, 131.9, 130.0, 123.5, 122.5, 121.9 (carbons in Ar), 100.9 (NCO), 66.0 

(OCH2Et), 23.3 (OCH2CH2Me), 10.7 (OCH2CH2CH3). 

[(14,28-(OBu
n
)2Pc)Ni] (4). Anal. Calcd for C40H34N8NiO2 (MW=717.44): C, 66.96; H, 4.78; N, 

15.62. Found: C, 67.00; H, 4.93; N, 15.47 %. ESI
+
-MS, m/z: 719 [M+H]

+
. IR (KBr, selected bands, 

cm
−1

): 3390 (br), 3122 (m-w), 3076 (m-w) ν(C–H from Ar); 2937 (m-w), 2901 (m-w) ν(C–H from 

CH2 and/or CH3); 1650 (m-w) ν(C=N); 1546 (s). 
1
H NMR (CDCl3, δ): 7.90 (d, 7.5 Hz, 4H), 7.70 (t, 

6.0 Hz, 4H), 7.50 (t, 6.0 Hz, 6H), 7.32 (s, 2H), (Ar’s), 3.47 (t, 7.0 Hz, 4H, OCH2Pr
n
), 1.49 (m, 7.0 

Hz, 4H, OCH2CH2Et), 1.22 (q, 7.0 Hz, 4H, OCH2CH2CH2Me), 0.90 (t, 7.0 Hz, 6H, 

OCH2CH2CH2CH3). 
13

C(
1
H) NMR (CDCl3, δ): 167.5 (C=N), 142.2, 136.3, 135.5, 134.5, 134.0, 

130.9, 128.9, 126.8, 123.0, 121.2, 118.1, 117.5 (carbons in Ar), 109.9 (NCO), 63.4 (OCH2Pr
n
), 33.3 

(OCH2CH2Et), 20.0 (OCH2CH2CH2Me), 12.4 (OCH2CH2CH2CH3). 

[(14,28-(OCH2CH2OCH3)2Pc)Ni]·(CH3OCH2CH2OH) (5). Anal. Calcd for C41H38N8NiO6 

(MW= 797.48): C, 61.75; H, 4.80; N, 14.05. Found: C, 62.94; H, 4.48; N, 15.55 %. ESI
+
-MS, m/z: 

722 [M - CH3OCH2CH2OH + H]
+
. IR (KBr, selected bands, cm

−1
): 3322 (br), 3096 (m-w), ν(C–H 

from Ar); 2922 (m-w) ν(C–H from CH2 and/or CH3); 1630 (m) ν(C=N); 1530(s). 
1
H NMR (CDCl3, 

δ): 7.86 (d, 7.5 Hz, 4H), 7.55 (t, 6.0 Hz, 4H), 7.50 (t, 6.0 Hz, 6H), 7.42 (s, 2H), (Ar’s), 3.64 (t, 7.0 

Hz, 2H, OCH2), 3.55 (t, 7.0 Hz, 2H, OCH2), 3.20 (s, 7.5 Hz, 6H, OCH3). 
13

C(
1
H) NMR (CDCl3, δ): 

165.0 (C=N), 140.4, 137.9, 136.4, 131.7 131.0, 129.1, 128.0, 119.3, 118.1 (carbons in Ar), 108.9 

(NCO), 63.2 (OCH2), 61.5 (OCH2), 58.0 (OCH3). 

X-ray crystallography. X-ray diffraction data were collected using a Bruker AXS-KAPPA APEX 

II diffractometer with graphite monochromated Mo-K radiation. Data were collected at 150 K using 
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omega scans of 0.5º per frame and a full sphere of data was obtained. Cell parameters were retrieved 

using Bruker SMART [38] software and refined using Bruker SAINT [38] on all the observed 

reflections. Absorption corrections were applied using SADABS [38]. Structures were solved by 

direct methods by using the SHELXS–97 package [39] and refined with SHELXL-2014 [40] with 

the WinGX graphical user interface [41]. The hydrogen atoms were inserted at geometrically 

calculated positions and included in the refinement using the riding-model approximation; Uiso(H) 

were defined as 1.2Ueq of the parent carbon atoms for phenyl and methylene residues and 1.5Ueq of 

the parent carbon atoms for the methyl groups. There were disordered molecules present in the 

structures of 3 and 5. Since no obvious major site occupations were found for those molecules, it was 

not possible to model them. PLATON/SQUEEZE [42]
 
was used to correct the data and potential 

void volumes of 505 (3) or 957 (5) Å
3
 were found worth of scattering (132 or 402 electrons per unit 

cells, in this order), thus featuring 26.3 or 24.1 % of the unit cell volumes, respectively. These were 

removed from the model and not included in the empirical formulas. 

 

Appendix A. Supplementary material 

 

Crystallographic data for the structure reported in this paper have been deposited with the 

Cambridge Crystallographic Data Centre as supplementary publication [CCDC 1451314 (1), 

1451315 (3), and 1451316 (5)]. Copies of the data can be obtained free of charge on application to 

the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [Fax: + 44 1223 336033; e-mail: 

deposit@ccdc.cam.ac.uk or www: http://www.ccdc.cam.ac.uk]. 
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