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Abstract

This paper analyses the e¢ cient use of information in an agency relationship with

moral hazard, when parties are risk-neutral. We show that, given an arbitrary

information system, all relevant information from a mechanism-design point of

view can be summarized by a binary statistic. We then show that this allows

a complete ordering of information systems for the risk-neutral agency problem.

These results are obtained under a weak convexity condition which does not rely

on an exogenous ordering on signal sets. The condition is shown to be more

general than existing requirements for justifying the �rst-order approach.
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systems.
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1. Introduction

This paper is concerned with the e¢ cient use of information in the context of a

moral hazard principal-agent framework when the participants are risk neutral

and penaltics are bounded.1 Given an arbitrary information system, potentially

with multidimensional observables, we examine how information should be aggre-

gated optimally. The information system refers to the set of commonly observable

variables correlated with the agent�s hidden action and with respect to which the

principal can design an incentive scheme.

Due to the risk-neutrality restriction we show that from a mechanism-design

point of view all relevant information can be summarized by a binary statistic.

Consequently, the principal can constraint mechanism without loss of generality to

the set of bonus contracts. All the mechanism needs to specify are a �x payment,

a bonus and the terms under which the agent will receive the bonus. We show that

if the original signal satis�es the Monotone Likelihood Ratio Condition (hereafter

MLRC, see Milgrom [1981]), the terms for the bonus are independent of the

agent�s action. We generalize our results by examining the case in which the

su¢ cient binary statistics is state dependent. We conclude by showing that the

1Otherwise the risk neutrality implies that the �rst-best solution would be possible with any
information system, as is well known.
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set up allows for a simple ranking criteria of information systems.

In the existing agency literature, there are two prevailing criteria for com-

paring information systems: Holmström�s [1979] notion of informativeness and

Blackwell�s [1951, 1953] e¢ ciency condition.2 Although originally developed in

a statistical or decision theoretic context, both criteria also proved useful to rank

information systems in the agency framework. However, as emphasized by Kim

[1995], there is an essential di¤erence between a statistical or decision theoretic

problem and an agency problem. In the �rst case the decision maker attempts

to estimate some unobserved variable, while in the second the principal attempts

to control an action. Based on this observation, Kim introduced a new criterion

de�ned in terms of a mean-preserving spread (MPS) of the likelihood ratio distri-

bution function.3 He shows that for moral hazard situations with a risk-neutral

principal the MPS criterion is less restrictive than the two aforementioned criteria

and that it applies to a broader set of comparisons.

Based on Kim�s work, we de�ne the notion of mechanism su¢ ciency and dis-

tinguish it from the well known concept of statistical su¢ ciency. Heuristically

a signal is said to be statistically su¢ cient for an other random variable if none

2See also Gjesdal [1982] and Grossman and Hart [1983].
3This criterion is related to the Fisher measure of the quantity of information found in the

statistical literature.
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of the informational content is lost. However, in an agency problem the princi-

pal may not care about losing some statistically relevant information if it is not

useful to correctly align the agent�s incentive. As a result, we de�ne a signal to

be mechanism su¢ cient to an other random variable if none of the information

relevant to the principal is lost. The main purpose of this paper is to examplify in

a simple environment with risk neutral participants the distinction between these

two concepts. Though the risk neutrality assumption is strong, it is justi�ed be-

cause it ensures that the di¤erence between both notions of su¢ ciency is, in fact,

maximal.4

From a more applied point of view, our results provide a strong theoretical

justi�cation for the widespread use of dichotomic monitoring schemes (of the �fail

or pass�type) in the agency literature where the principal�s monitoring e¤ort is

endogenized. Rather than assuming as a simpli�cation that the signals observed

by the principal are binary and that they satisfy the monotone likelihood ratio

condition, we show that the e¢ cient aggregation of information leads to a statistic

with these kind of characteristics.5 Our result is a generalization of Park [1995],

where it is shown in a similar model that if the �rst-best outcome can be attained

4It is maximal in the sense that the informational content of any system can be contained in
a binary statistic.

5For example Baron and Besanko [1984], Laffont and Tirole [1993] and Mirrlees
[1974].
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the optimal contract is a bonus contract. One interpretation of our result is that

bonus contract remain optimal even when �rst-best is not attainable.

The basic framework is described in section 2. In section 3 we introduce

the notion of mechanism su¢ ciency. In section 4 our main result are derived

under somewhat restrictive su¢ cient conditions. In section 5 we show that the

same results can be obtained under much weaker conditions, without imposing

any prior ordering requirements on signals. The implications for the ordering of

information systems are drawn in section 6. Section 7 concludes.

2. The Model

The agent�s action space is a real interval A = [a; a]. The action or e¤ort level

is observed by the agent only, but the principal obtains imperfect ex post infor-

mation. The information system consists of a �nite set S of possible observations

with a family fp(s; a); s 2 Sga2A of probability distributions. The signals s 2 S

may be multidimensional, with quantitative and (or) qualitative information. The

characteristics of the information system are common knowledge. We assume the

following:

Assumption (A1): p(s; a) > 0 for every s 2 S and every a 2 A.
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Assumption (A2): For every s 2 S, p(s; a) is twice continuously di¤eren-

tiable with respect to a.

Assumption (A3): For every a 2 A, pa(s; a) 6= 0 for some s 2 S.

(A1) eliminates information systems with moving supports, which lead to trivial

solutions. (A2) is a regularity condition. Finally (A3) essentially states that

signals are informative with respect to any action that may be required from the

agent.

The agent is risk-neutral with utility t�C(a), where t is the transfer from the

principal to the agent and C(a) is the agent�s cost of e¤ort function, with C 0(a) > 0

and C 00(a) � 0. The transfer to the agent is constrained by the limited liability

condition t � �L, where the liability limit L � 0 represents the maximum penalty

than can be imposed on the agent. The agent�s reservation utility is normalized

to zero.

The ex post signal generated by the information system is observable by both

parties. A contract or mechanism is a schedule t(s) specifying the transfer from

the principal to the agent for each possible signal. The mechanism t(s) implements

the action ba if
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ba 2 argmax
a

X
s2S

p(s; a)t(s)� C(a); (2.1)

X
s2S

p(s;ba)t(s)� C(ba) � 0; (2.2)

t(s) � �L, for every s 2 S. (2.3)

That is, the mechanism provides the correct incentives for the action considered

by the principal and it satis�es the agent�s participation and limited liability

constraints. For a required action ba, the principal�s problem is to design the

implementing mechanism so as to minimize the expected transfer

X
s2S

p(s;ba)t(s): (2.4)

3. Mechanism Su¢ cient Statistics

The signals generated by the information system can be aggregated. A real-valued

statistic Y is a mapping from the set of signals S to the set of real numbers and

may be interpreted as an aggregator of information. We write Y (S) for the image
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of Y and y 2 Y (S) for a possible realization of the variable. In what follows,

di¤erent properties are de�ned with the quali�cation �for a 2 B�, where B is

a subinterval of the action space A. When the quali�cation is omitted, this is

understood to mean that the property holds with respect to the whole action

space. A basic distinction is that between statistical su¢ ciency and mechanism

su¢ ciency.

Definition (Statistical Su¢ ciency): The statistic Y is su¢ cient for a 2 B if

the conditional distribution of s 2 S given Y is constant with respect to a 2 B.

This de�nition di¤ers slightly from the one usually found in the agency lit-

erature. Its main advantage is that it does not rely on the agent�s action being

interpreted as a random variable (see, for example, Holmström [1979]), which

would not be appropriate in the present context.6 Let �(s; y; a) denote the con-

ditional probability of s given a realization y of some statistic Y . Then

�(s; y; a) =

8>>><>>>:
0 if Y (s) 6= y;

p(s;a)P
s:Y (s)=y

p(s;a)
if Y (s) = y:

(3.1)

6On the equivalence between this de�nition (due to Neyman) and the Bayesian de�nition,
see for instance Gourieroux and Montfort [1995]. Note that assumption (A3) ensures that
a su¢ cient statistics cannot be a degenerate random variable.
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The statistic is su¢ cient for a 2 B if the expression for the conditional prob-

ability, when Y (s) = y, is constant on B. This leads directly to the following

characterization:

Statistical Sufficiency Criteria: Let Y be a statistic with probability

distribution g(y; a) �
P

s:Y (s)=y p(s; a). The following statements are equivalent:

(i) The statistic Y is su¢ cient for a 2 B.

(ii) If Y (s) = Y (s0), p(s
0;a)

p(s;a)
is constant on B.

(iii) For every a 2 B, pa(s;a)
p(s;a)

= ga(y;a)
g(y;a)

if Y (s) = y.

It is a well known result that a su¢ cient statistic includes all the relevant

information for the principal�s problem:

Proposition 1 (Holmström [1979])7: Let t(s) be a mechanism imple-

menting ba. If Y is a su¢ cient statistic, there exists another mechanism �(s)

that implements ba at the same expected cost for the principal and that satis�es
�(s) = '(Y (s)).

In section 4 we derive the optimal mechanism implementing some required

action. Considered as a statistic, a mechanism t(s) aggregates information. If a

7The above de�nition of statistical su¢ ciency allows for a more general and simpler proof
than in Holmström�s [1979] article. In particular, the demonstration does not need to rely on
the validity of the �rst-order approach.
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mechanism were optimal only if it is a su¢ cient statistic, one would conclude that

the principal must use all the statistically relevant information provided by the

information system. By contrast, if the best mechanism is not a su¢ cient statistic,

some of the statistically relevant information is redundant from a mechanism-

design point of view. This observation suggests the following distinction:

Definition (Mechanism Su¢ ciency): A statistic X is mechanism su¢ cient

for a 2 B if the cost-minimizing mechanism implementing any a 2 B can be

written as t(s) = '(X(s)).

Though Kim [1995] did not explicitly formulate the terminology of a mech-

anism su¢ cient statistic, the concept follows easily from his work. The current

formulation clari�es the distinction between the statistical de�nition of su¢ ciency

and the mechanism design concept. The di¤erence can arise because, from the

principal�s perspective, loosing statistically relevant information does not matter

if it is not useful to align the agent�s incentive.

4. E¢ cient Aggregation of Information

The derivation of the optimal mechanism rests on the validity of the ��rst-order

approach�; by this is meant the possibility of replacing the incentive compatibility
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constraint with the �rst-order condition of the agent�s optimization problem. It

is well known that MLRC and CDFC are su¢ cient for the �rst-order approach

to be valid.8 We �rst impose these conditions and then show that similar results

can be obtained under less restrictive conditions. For completeness, we recall

some standard de�nitions where Y denotes a statistic with probability distribution

g(y; a) �
P

s:Y (s)=y p(s; a):

Definition (MLRC): The statistic Y is said to satisfy strict MLRC for a 2 B

if ga(y;a)
g(y;a)

is non-decreasing for all a 2 B and strictly increasing for some a 2 B:

Definition (CDFC): The statistic Y satis�es CDFC if its cumulative prob-

ability distribution
P

y�y0 g(y; a) is convex in a for every y
0 2 Y (S).

The next proposition describes the least-cost mechanism for implementing an

action a > a.9

Proposition 2: Assume there exists a su¢ cient statistic Y satisfying the

8See Rogerson [1985].
9To implement a there is no need to provide incentives to the agent and t(s) = C(a) for every

s 2 S is optimal.
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strict MLRC and CDFC. Let yM = maxf y j y 2 Y (S)g. Then

X(s) =

8>><>>:
1 if Y (s) = yM

0 if Y (s) 6= yM
(4.1)

is a mechanism su¢ cient statistic for a 2 A. Letting h(a) �
P

s:X(s)=1 p(s; a), the

optimal mechanism implementing the action a 2 (a; a] has the form

t(s) =

8>><>>:
T + C 0(a)=h0(a) if X(s) = 1

T if X(s) = 0

(4.2)

where

T = max

�
�L;C(a)� C 0(a)

h0(a)=h(a)

�
; (4.3)

and the expected cost to the principal is

CP (a) = max

�
C(a);

C 0(a)

h0(a)=h(a)
� L

�
: (4.4)

Proof: See the appendix.

The optimal mechanism is dichotomic. As in Park (1995), it is a bonus
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contract of the �pass or fail� type. It can be described by a non-contingent

transfer T and a bonus equal to C 0(a)=h0(a), paid to the agent only if X = 1 or

equivalently Y = yM is observed.10 The value of the non-contingent transfer T

depends on whether it is the limited liability or the participation constraint that

is binding. If the limited liability constraint is binding, then T = �L and the cost

to the principal is CP (a) > C(a), which means that the agent earns a rent. If it

is not binding, T is set so as to satisfy the participation constraint.

Due to MLRC, the partition of the set of signals on which transfers are con-

ditioned does not depend on the action that is to be implemented (nor does it

depend on the agent�s liability limit or on his cost of e¤ort function). Most of the

information provided by the information system is irrelevant from the principal�s

point of view, in the sense that the least cost mechanism would be feasible even

if the principal were only able to observe the binary variable X. Due to the risk-

neutrality assumption the result is extreme, but it demonstrates the importance

to distinguish between statistical and mechanism su¢ ciency. In the remaining of

the paper, we generalize the result and examine some of its implication for the

ranking of information systems.

10Obviously, the optimal scheme could also have been described by a non-contingent transfer
and a penalty if X = 0 is observed.

12



A straightforward generalization consists in showing that MLRC is not needed.

In the following result, we show that the essence of a �pass or fail�mechanism

is that the agent is penalized (at least in the sense of not getting the �bonus�)

whenever a more favorable signal could have been observed11.

Proposition 3: Let Y be a su¢ cient statistic and assume there exists a

realization yM that is more favorable than any y 6= yM . De�ne the statistic

X(s) =

8>><>>:
1 if Y (s) = yM

0 if Y (s) 6= yM
(4.5)

If X satis�es CDFC, it is mechanism-su¢ cient for a 2 A and the optimal mech-

anism is as in proposition 2.

Proof:The result follows directly from the proof of proposition 2 by using the

de�nition of a more favorable signal and equation (7.14).

MLRC and CDFC with respect to a su¢ cient statistic, as in proposition 2,

imply the conditions in proposition 3. That is, they imply the existence of a

realization that is more favorable than any other and they also imply that the

11Following Milgrom [1981], we say y is more favorable than y0 for a 2 B if ga(y;a)g(y;a) �
ga(y

0;a)
g(y0;a) ,

for all a 2 B with a strict inequality for some a 2 B:
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binary statistic de�ned in (4.5) satis�es CDFC. The conditions of proposition 3

are of course much weaker, as an example at the end of the section will show. In

either case the mechanism-su¢ cient statistic satis�es MLRC. Observe also that

under the conditions of proposition 3 any a 2 A can be implemented.

In the next section, we show that similar results can be obtained under even

weaker conditions, but with di¤erent mechanism-su¢ cient statistics depending on

the action to be implemented.

An Example

Consider a situation where a signal s 2 S corresponds to the realization of

n independently distributed Bernoulli variables. That is, s = (s1; : : : ; sn) where

si 2 f0; 1g with probability Pr[si = 1 ja] = qi(a). Letting q0i(a) > 0 and q00i (a) < 0,

the event si = 1 can be interpreted as �pass�with respect to the i-th check in a

test involving n checks, the event si = 0 as �fail�with respect to the i-th check.

Case 1

Suppose that the si�s are identically distributed so that qi(a) = q(a) for i =

1; : : : ; n. De�ne the statistic Y (s1; : : : ; sn) =
Pn

i=1 si. Such a statistic counts

the total number of �pass�marks and its possible realizations are f0; 1; : : : ; ng,

as compared to the 2n possible signals in S. Y has the binomial distribution
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B(n; q(a)) and is well known to be a su¢ cient statistic for the probability q(a).

Because the latter is monotonic in a, Y is also su¢ cient for a. It is easily veri�ed

that Y satis�es the strict MLRC; if there is enough concavity in the function q(a),

it will also satisfy CDFC. Proposition 2 will then hold and the statistic

X(s) =

8>><>>:
1 if s = (1; : : : ; 1)

0 if s 6= (1; : : : ; 1)
(4.6)

will be mechanism-su¢ cient for a 2 A. Equivalently, the mechanism-su¢ cient

statistic could have been de�ned by X = 1 if Y = n and X = 0 if Y < n.

Case 2

Suppose now that the si�s are not identically distributed, so that qi(a) and

qj(a) are di¤erent functions for i 6= j. This implies that in general the image of

a su¢ cient statistic will usually have the same cardinality as S. Furthermore,

the information system does not satisfy MLRC in that two arbitrary signals in

S are not necessarily comparable. However, there is a partial ranking between

signals in the sense that s0 is more favorable than s if s0 � s, s0 6= s. In particular,

s = (1; : : : ; 1) is more favorable than any other signal. If there is enough concavity

in the functions qi(a), the conditions for proposition 3 will therefore hold and the

statistic X, as de�ned in (4.6), will be mechanism-su¢ cient for a 2 A.
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In both cases the agent is penalized (or does not get his �bonus�) if he fails in

at least one of the n checks and the sanction is the same irrespective of the number

of �fails�. In other words, the benchmark for �pass� in the optimal dichotomic

scheme is �pass�with respect to all of the n checks. This should not be interpreted

as implying that the agent is punished more often than he is rewarded: if the qi�s

are close to one, the probability of not receiving the bonus may be small. The

point is not to penalize often but to penalize whenever a more favorable signal

could have been observed, as emphasized in the previous section; in the example,

this occurs whenever the agent gets a �fail�mark in any of the n checks.

5. A Generalization

So far the information system has been assumed to exhibit a �most favorable�

signal (possibly aggregated) that serves as the �pass�benchmark in the optimal

dichotomic mechanism, irrespective of the action to be implemented. We now

relax the condition that there exists such a signal.

Let Y be a minimal su¢ cient statistic with probability distribution g(y; a),

where a statistic is said to be minimal su¢ cient if its image has the smallest
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cardinality among all su¢ cient statistics. De�ne12

Y M(S) =

�
y 2 Y (S) j for every y0 6= y, ga(y; a)

g(y; a)
>
ga(y

0; a)

g(y0; a)
for some a 2 A

�
(5.1)

In some sense, the set Y M(S) replaces the most favorable signal: it is formed

by taking the realizations of the statistic that may constitute a �most favorable�

signal at least locally, with respect to a subinterval of the action-space. The subset

of elementary signals that generate such realizations is

SM =
�
s 2 S j Y (s) 2 Y M(S)

	
(5.2)

Assumption (A3) ensures that Y M(S) and therefore SM are not empty. The

following convexity assumption is introduced:

Assumption (A4): For every s 2 SM and a 2 A, paa(s; a) � 0 if pa(s; a) > 0.

We will use (A4) in lieu of MLRC and CDFC. In the standard model MLRC

generates an exogenous ordering and CDFC imposes a convexity structure on this

ordering. By contrast, we do not impose any ordering. In fact, it is the purpose

12We restrict our attention to minimal su¢ cient statistics to ensure that YM (S) 6= ;. This
observation follows immediately from the de�nition since, in the case of a minimal su¢ cient
statistic for any y1; y2 2 Y (S); ga(y1;a)g(y1;a)

6= ga(y2;a)
g(y2;a)

for some a 2 A:
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of this section to show that signals are endogenously ordered according to their

usefulness to the principal. In particular, the ordering might depend on the action

to be implemented. As a result, we have to rely on a local convexity hypothesis..

The requirement in (A4) can be interpreted as a decreasing return hypothesis for

favorable information.

To further motivate this assumption, we show that (A4) is implied by the

conditions for proposition 3. Recall that the latter proposition holds under both

an ordering and a convexity condition: for a su¢ cient statistic Y , it was assumed

that there existed a �most favorable� realization yM and that the probability

distribution of the statistic satis�ed gaa(yM ; a) � 0 for every a 2 A. Because

yM is a globally most favorable signal, it is clear that s 2 SM if and only if13

Y (s) = yM . Also, because Y is a su¢ cient statistic, it is easily veri�ed that

gaa(y
M ; a) � 0 implies paa(s; a) � 0 for s 2 SM . Thus, the convexity condition

of proposition 3 (as well as the more restrictive MLRC and CDFC conditions of

proposition 2) imply the statement in the assumption.

We now show that assumptions (A1) to (A4) are su¢ cient for any action to

be implementable and for the least-cost mechanism to be dichotomic, as in the

13By restricting the requirement in (A4) to the set SM , we keep the hypothesis to the smallest
essential set. We also note that otherwise this equivalence would not hold and as a result MLRC
and CDFC would not imply (A4).
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previous sections:

Proposition 4: The statistic

Za(s) =

8>><>>:
1 if s 2 arg max

s2SM
pa(s;a)
p(s;a)

;

0 otherwise.

(5.3)

is mechanism su¢ cient for action a 2 A.

Proof: See the appendix.

The di¤erence with respect to the previous results is that the �ordering� of

signals for the purpose of determining the �pass�and �fail� events now derives

endogenously from the cost-minimizing process and will in general depend on the

action required from the agent. An interesting question concerns the relationship

between the �ordering�induced by the mechanism su¢ cient statistic Za and the

ordering usually de�ned on the set of signals by the �more favorable than�relation

(or equivalently by MLRC). We have:

Proposition 5: For every a 2 A, the statistic Za de�ned in (5.3) satis�es

the strict MLRC and CDFC in some neighborhood of action a.

Proof: See the appendix.
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In other words, the mechanism-su¢ cient statistic satis�es at least a local

MLRC, in the sense that Za = 1 represents a most favorable signal at least with

respect to actions in some neighborhood containing the action to be implemented.

To conclude the section, we provide an example where there is a switching of the

most favorable signal depending on the action to be implemented.
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An Example

Let A = [0; 1] and S = fs1; s2; s3g, with p(si; a) = i exp[�ia � 1
2
�ia

2] for

i = 1; 2 and p(s3; a) = 1 � p(s1; a) � p(s2; a). Let i > 0 and �2i < �i < �i < 1

so that pa(si; a) > 0 and paa(si; a) < 0 for i = 1; 2; p(s; a) > 0 for every s 2 S is

ensured by choosing the i�s small enough. For i = 1; 2

pa(si; a)

p(si; a)
= �i � �ia > 0 for all a 2 [0; 1]: (5.4)

Assume that �1 > �2 and �1 � �1 < �2 � �2 and let ba solve
�1 � �1a = �2 � �2a: (5.5)

Then the statistic

X0(s) =

8>><>>:
1 if s = s1

0 if s 2 fs2; s3g
(5.6)

is mechanism-su¢ cient for a 2 [0;ba], while the statistic

X1(s) =

8>><>>:
1 if s = s2

0 if s 2 fs1; s3g
(5.7)
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is mechanism-su¢ cient for a 2 [ba; 1].
The intuition is that the probability of observing X0 = 1 rather than X0 = 0 is

more sensitive to changes in a for a < ba than the probability of observing X1 = 1

rather than X1 = 0. Therefore, X0 corresponds to a more e¢ cient partition of

the set of signals when the action to be implemented is less than ba. The converse
is true for actions greater than ba. The principal is indi¤erent between X0 and X1

if she wants to implement a = ba. Consider now the statistic14

Za(s) =

8>><>>:
1 if s 2 argmax

s2S
pa(s; a)=p(s; a);

0 otherwise.

(5.8)

It should be obvious that Za = X0 if a < ba while Za = X1 if a > ba. For a = ba, we
have Zba = 1 if s 2 fs1; s2g and Zba is mechanism-su¢ cient only at ba. To implement
ba, the principal is therefore indi¤erent between X0, X1 and Zba.
Given these results, it is now feasible to obtain the principal�s cost function of

14Notice that SM = fs1; s2g: However if we assumed �1 � �1 = �2 � �2 so that the two lines
in the �gure intersect at the point a = 1, then SM = fs1g: We see in that case why it would
not be important to impose restrictions on s2 since X0 is mechanism su¢ cient over the entire
range.
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implementing an action:

CP (a) = max

�
C(a);

C 0(a)

max f�1 � �1a; �2 � �2ag
� L

�
: (5.9)

If C(0) = 0 and C 0(0) > 0, this function is discontinuous at a = 0 if L < C 0(0)=�1.

We note that for a su¢ ciently large liability limit, L � C 0(1)=(�2 � �2) � C(1),

the principal�s cost is the same as under full information for every a 2 [0; 1].

6. Comparison of Information Systems

Let (S1; p1) and (S2; p2) be two information systems (S refers to the signal set and

p to the family of distribution functions). Proposition 4 leads directly to a simple

criterion for comparing information systems.

Definition: Information system (S2; p2) is more e¢ cient than (S1; p1) at a

if, for every liability limit L and cost of e¤ort function C, the cost to the principal

for implementing a is not greater with (S2; p2) than with (S1; p1), and is strictly

less for some L and C.

From the proof of proposition 4, we easily obtain the following result:

Corollary 1: Let Zia 2 f0; 1g with probability distribution hi(a) be the

23



mechanism-su¢ cient statistic for implementing action a 2 A using the information

system (Si; pi). Then information system (S2; p2) is more e¢ cient than (S1; p1) at

a 6= a if and only if
h02(a)

h2(a)
>
h01(a)

h1(a)
: (6.1)

In a context were the agent is risk averse, Kim [1995] introduced a su¢ cient

condition for the (partial) ordering of information systems and showed that his

criterion was implied by Blackwell�s e¢ ciency condition and that it nested Holm-

ström�s concept of informativeness. In contrast to Kim, and because the agent

is assumed here to be risk-neutral, our condition is necessary and su¢ cient for

an information system to be more e¢ cient than another; it therefore provides a

complete ordering of information systems (though the ordering is only valid for

implementing action a 2 A).

The relationship between condition (6.1) and Kim�s criterion is as follows. For

i = 1; 2, de�ne the statistics Zia(s) = p
i
a(s; a)=p

i(s; a) and denote their distribution

functions by F ia. According to Kim�s criterion, information system 2 is more

e¢ cient for action a than information system 1 if F 2a is a mean-preserving spread

24



of F 1a . Now, it is easily veri�ed that this condition implies

h02(a)

h2(a)
� h01(a)

h1(a)
: (6.2)

Thus, in a risk-neutral environment, Kim�s criterion is su¢ cient for system 2 to

be at least as e¢ cient as system 1 (in the weak sense), but it is neither necessary

nor in fact su¢ cient for system 2 to be (strictly) more e¢ cient than system 1.

Obviously, if information systems are to be compared on the basis of the cost

of implementing any a 2 (a; a], the ordering induced by condition (6.1) can only

be a partial one. On this basis, (S2; p2) will be more e¢ cient than (S1; p1) if and

only if h02(a)=h2(a) � h01(a)=h1(a) for every a, with strict inequality for some a.

7. Concluding Remarks

This paper has introduced the notion of a mechanism su¢ cient statistic and shown

that it must be distinguished from the standard concept of a su¢ cient statistic.

To substantiate the di¤erence, we have analyzed the e¢ cient use of information in

simple agency relationship with risk-neutral parties, under a fairly general charac-

terization of the information system available to the principal. With risk-neutral

parties the di¤erence between both concepts of su¢ ciency is shown to be maximal:
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the optimal incentive scheme is dichotomic and therefore a binary statistic is all

that is needed to summarize the signals generated by the information system.

It follows that, to compare di¤erent information systems, it is su¢ cient to

examine the binary mechanism-su¢ cient statistics from the di¤erent systems with

respect to the action that is to be implemented. This, we show, generates an

endogenous ordering of signals according to their usefulness to the principal. It

is important to note that we did not impose the standard requirements of MLRC

and CDFC. Instead, we introduced a weaker requirement that can be interpreted

as a hypothesis of decreasing return for favourble information.15 Speci�cally we

showed that our hypothesis is implied by MLRC and CDFC, but that the reverse

is not true. Owing to the risk-neutrality hypothesis, our criterion for comparing

information systems was shown to be less demanding than Kim�s MPS criterion.

Like the MPS criterion, we used the likelihood ratio distribution function to de�ne

the ranking. However, because of the risk neutrality, only one point on that

distribution function matters. As a result, from the principal�s perspective each

distribution function can be characterized by a scalar and the resulting ordering

of information structures is complete. With respect to this ordering, we proved

15In this respect, albeit in a simpler framework because of the risk-neutrality assumption,
our paper is related to a recent article by Sinclair-Desgagné [1994] on the validity of the
�rst-order approach in multi-signal agency problems.
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the interesting corollary that the mechanism su¢ cient statistic satis�es a local

version of the standard MLRC ordering.

There are numerous interesting extensions of the present paper. One possi-

bility would be to make use of the simplicity of these results to derive a general

characterization of the principal�s decision problem in choosing between di¤erent

information systems, i.e., in trading-o¤ the cost and e¢ ciency of di¤erent sys-

tems. A second possibility would be to go back to the standard model with risk

averse participants and attempt to reexamine the di¤erence between statistical

and mechanism su¢ ciency.

Appendix

Proof of proposition 2:Using the result from proposition 1, we can rewrite

the principal�s problem of implementing action a 2 A at minimal cost as:

min
fw(y)jy2Y g

X
y2Y

g(y; a)w(y) (7.1)

a 2 argmaxea
X
y2Y

g(y;ea)w(y)� C(ea); (7.2)

X
y2Y

g(y; a)w(y)� C(a) � 0; (7.3)

w(y) � �L; 8 y 2 Y . (7.4)
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By assumption, because of MLRC and CDFC the �rst order approach is valid.

We resolve the optimization problem (7.1) by substituting for (7.2) its �rst-order

condition. We de�ne the Lagrangian:

L(L; a;�; �; w(y); �(y)y2Y ) =
X
y2Y

g(y; a)w(y) (7.5)

��(
X
y2Y

ga(y; a)w(y)� C 0(a))

+�(
X
y2Y

g(y; a)w(y)� C(a)) +
X
y2Y

�(y)(w(y) + L)

where � is the multiplier of the agent�s �rst-order condition of the incentive com-

patibility constraint, � the multiplier of the participation constraint and the �(y)�s

are the multipliers of the limited liability constraints. We consider two situations.

1. � > 0: In this case by complementary slackness, we know that the partici-

pation constraint is binding. Thus:

L(L; a;�; �; w(y); �(y)y2Y ) = C(a): (7.6)

2. � = 0: We partition the sample space Y . We de�ne Y 0 to be the set of y�s

where the constraints w(y)+L are not binding, i.e. Y 0 = fy 2 Y j�(y) = 0g.
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The partition implies:

8y 2 Y 0; g(y; a)

ga(y; a)
= � (7.7)

8y =2 Y 0; w(y) = �L (7.8)

(7.7) results from the �rst-order condition of the Lagrangian by setting � = 0

and �(y) = 0: De�ne �(y) = w(y)+L:We note that 8y =2 Y 0; �(y) = 0, thus

from the �rst-order condition of the agent�s problem:

X
y2Y

ga(y; a)w(y) =
X
y2Y 0

ga(y; a)�(y) (7.9)

= C 0(a) (7.10)

Using this equality and complementary slackness, we can solve for the La-
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grangian:

L(L; a;�; �; s(y); �(y)y2Y ) =
X
y2Y

g(y; a)w(y) (7.11)

=
X
y2Y 0

g(y; a)�(y)� L (7.12)

= �
X
y2Y 0

ga(y; a)�(y)� L (7.13)

=
g(y0; a)

ga(y0; a)
C 0(a)� L (7.14)

where y0 is an element of Y 0. Given the resulting expected cost and the strict

MLRC hypothesis, we conclude immediately y0 = yM i.e. Y 0 = max fyjy 2

Y (S)g:

Wether � > 0 or � = 0 depends on wether there is enough information content

in the outcome of the random experiment to extract the entire rent. When � = 0;

then T = �L and when � > 0; then T = � g(yM ;a)
ga(yM ;a)

C 0(a) +C(a): The result of the

proposition follows immediately by change of notation.

Proof of proposition 4: We rewrite the principal�s problem:

min
ft(s)js2Sg

X
s2S

p(s; a)t(s) (7.15)

a 2 argmaxea
X
s2S

p(s;ea)t(s)� C(ea) (7.16)
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X
s2S

p(s; a)t(s)� C(a) � 0 (7.17)

t(s) � �L; 8 s 2 S. (7.18)

We follow standard practice. We assume that the �rst-order approach is valid,

solve for the optimal solution under this hypothesis and conclude by showing that

(A4) guarantees that the resulting mechanism is globally incentive compatible. If

we follow the same steps as in the proof of proposition 2, adjusting for the change

in notation, we obtain:

L(L; a;�; �; t(s); �(s)s2S) =
p(s0; a)

pa(s0; a)
C 0(a)� L (7.19)

with s0 2 S 0: Given the expected cost structure, we have S 0 3 arg max
s2SM

pa(s;a)
p(s;a)

. To

conclude, we show that (A4) guarantees that the second order condition of the

agent�s problem is satis�ed. We proceed by contradiction.

1. We note that if the �rst-order condition is at a point a 2 A the it is a local

maximum. Indeed, for the �rst order condition to be satis�ed,we must have

pa(a; s) > 0 which implies paa(a; s) � 0:
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2. Suppose a 2 A is not the global maximum. Then there exists ba which
yields a higher pro�t. This in turns implies there exists a local minimum ea
between those two points. For a local minimum, we must have pa(s; a) > 0

and paa(s; a) > 0 which by (A4) yields a contradiction.

Proof of proposition 5 : Let h0(a) > 0 for some a 2 A; then h0(a) > 0 for

some neighbourhood and by (A4) h00(a) � 0 in that same neighborhood.
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