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Abstract—In this paper, we propose two novel Dynamic Active
Learning (DAL) methods with the aim of ultimately reducing
the costly human labelling work for subjective tasks such as
speech emotion recognition. Compared to conventional Active
Learning (AL) algorithms, the proposed DAL approaches employ
a highly efficient adaptive query strategy that minimises the
number of annotations through three advancements. First, we
shift from the standard majority voting procedure, in which
unlabelled instances are annotated by a fixed number of raters,
to an agreement-based annotation technique that dynamically
determines how many human annotators are required to label
a selected instance. Second, we introduce the concept of the
order-based DAL algorithm by considering rater reliability and
inter-rater agreement. Third, a highly dynamic development
trend is successfully implemented by upgrading the agreement
levels depending on the prediction uncertainty. In extensive
experiments on standardised test-beds, we show that the new
dynamic methods significantly improve the efficiency of the
existing AL algorithms by reducing human labelling effort up to
85.41 %, while achieving the same classification accuracy. Thus,
the enhanced DAL derivations opens up high-potential research
directions for the utmost exploitation of unlabelled data.

I. INTRODUCTION

Within the context of Computational Paralinguistics, speech
patterns can be characterised using objective and subjective
measures [1]. In the case of objective measures (e. g. age, gen-
der, weight), the labels attributed to speech are referred to as the
‘ground truth’. On the other hand, there are speech phenomena
(e. g. voice likeability, degree of interest or nativeness) that can
only be reliably assessed (annotated/labelled) by perceptive
judgments [2]. In consequence, the reliability of labels for the
subjective speech phenomena highly depends on the annotators’
stable and transient characteristics, including a myriad of
subjective factors [2], [3]. Further, some of the variations
amongst individuals in perception of emotion in the auditory
domain can be attributed to personality differences, which
are associated with affective biases in emotion judgment [5]
due to the interaction of personality with attention, motivation
and mood [6]. Other factors which may influence individual
variation in the perception of emotion include emotional
intelligence (which is associated with improved emotion
perception abilities), and age (emotion recognition is at its
peak in young adults and declines with age [7]). Therefore, in
contrast to the ‘ground truth’ that can be measured objectively,

subjective annotations lead to what is known as the ‘gold
standard’, and are necessarily assessed by inter-rater agreement
procedures. Thus, a large number of annotators is necessary to
establish a well grounded reference. Unfortunately, one of the
major barriers of today’s research is the costly consequences
of obtaining human annotations, which are time-consuming
and expensive to obtain.

Given this scenario, many researchers in the area of Machine
Learning (ML) developed approaches for the exploitation of
unlabelled data, which is nowadays pervasive in digital format
and relatively easy and inexpensive to collect (e. g. from public
resources such as social media). The most common methods
include Semi-Supervised Learning (SSL) [8], [9], Active
Learning (AL) [10]–[12], as well as diverse combinations
thereof (e. g. [13]–[15]). The essence of the conventional ML
methods is to train a classifier on a small, labelled data set,
and re-train the model iteratively by sequentially adding new
(machine or human) labelled instances to the training set. The
active learner aims at achieving greater accuracy with fewer
training labels by (actively) choosing the data from which it
learns, and querying human annotators for labelling. It has
been shown that AL strategies significantly reduce human
labelling work, while still achieving good performance levels
[10]. Despite the success that has been achieved with these
techniques, the methodology has converged to a degree of
standardisation, and major breakthroughs have been lacking in
the past years.

As aforementioned, in the case of subjective labelling tasks,
reliability of ratings is of paramount importance and therefore
AL techniques are preferred as labels are obtained from human
and reliability can be assessed. In conventional AL, the most
‘informative’ instances are selected and submitted to a fixed
number of human raters for labelling (hereinafter referred to
as ‘Static Active Learning’ (SAL)). It is evident that applying
majority voting on a fixed number of annotators for each
instance is a rather inefficient method. For instance, if there
are five annotators available and the first three annotate a
specific instance with the same label, the annotations of the
other two annotators seem to be abundant. Consequently, there
is the possibility of further reducing the amount of human
annotations required by SAL, as long as we shift our perspective
from standard majority voting methods to agreement-based
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annotation strategies.
The our previous work [16], we introduced for the first

time a novel method called DAL with random query order
(rDAL). rDAL is a derivation of the DAL algorithm, in which
an adaptive query strategy is used to dynamically determine
the number of annotators for each selected instance. The main
underlying idea behind this method is to sequentially query
human annotators to label a specific instance until a predefined
agreement level (i. e. a certain number of votes for one common
class label) is achieved, instead of requesting all available raters
and then computing the gold standard by majority voting. As
a consequence, the number of annotators required for each
instance depends solely on the agreement level defined by
the user to establish the gold standard. rDAL was shown to
significantly reduce the labelling costs up to 79.17 % with the
Medium Certainty (MC) strategy in relation to traditional AL
methods and warrant the reliability of the subjective labelling
procedure without sacrificing the classification performance.

In rDAL, the order in which the raters are queried to label
a specific instance was randomised. Considering that some
annotators (and groups of annotators) are more reliable than
others, it is plausible to assume that the efficiency of rDAL can
potentially be improved by querying the most reliable raters
first in order to reach the predefined agreement level with less
annotators. This idea motivated us to introduce and evaluating
new query order strategies that consider both the individual rater
reliability as well as inter-rater agreement for every possible
combination of raters. Henceforth, we will refer to this method
as order-based DAL (oDAL). The core underlying idea behind
oDAL is that we approximate the gold standard by selecting the
most reliable rater or group of raters first, hoping to achieve
further reduction of the annotation costs while maximising
the reliability of the gold standard. Moreover, the agreement
level in these algorithms is set to a fixed value, which lead
to a deterioration of classification performance as learning
progressed because of the noisier instances left to be labelled
at the end of the learning process. In order to overcome this
limitation, a possible option is to switch to higher agreement
levels for labelling noisy instances. Therefore, in this paper,
we also introduce another variant of DAL – uDAL– which
implements an oDAL algorithm that dynamically upgrades the
agreement levels dependent on the noisiness of the instance to
be labelled.

In what follows we describe the algorithms developed
to integrate an efficient query order into rDAL and their
applications to speech emotion recognition. In Section II, we
describe our proposed algorithms and methodology. Then, in
Section III and Section IV, we describe the database and feature
set, respectively, which are used to demonstrate the potential
of our method. The experimental setup and the results are
presented in Section V. In Section VI, we discuss our findings
and explore possible extensions of this work.

II. METHODOLOGY

In this section, we introduce the oDAL and the uDAL
algorithms and the method for their evaluation in the context

of speech emotion recognition. We employ Support Vector
Machines (SVMs) as the classification model. SVMs are
introduced in Section II-A as well as the concept of confidence
values which are used by the algorithms to select the instances
for human annotation. Then we formally define agreement
level, rater reliability and inter-rater correlation, which are the
basic concepts underlying the DAL algorithms. Finally, we
describe the oDAL and uDAL algorithms in Section II-D.

A. SVMs and Confidence Levels

Similar to traditional AL, the dynamic active learner actively
selects the data from which it learns by considering the
prediction uncertainty of the trained classifier in terms of
confidence values. For this purpose, we apply Support Vector
Machines (SVMs) that construct decision hyperplanes to sepa-
rate instances of different classes by using the decision function
f(x), while maximizing the functional margin. For each
instance, the output distances to the decision boundaries are
then transformed into probability values through a parametric
method of logistic regression [17]. For binary classification,
the sigmoid function with the parameters A and B is defined
as:

P1(x) =
1

1 + exp(Af(x) +B)
(1)

P0(x) = 1− P1(x) (2)

The confidence value for the predicted class is obtained
by forming the difference of the posterior probabilities
P0(x), P1(x) for classes ‘0’ and ‘1’, respectively.

C(x) = |P1(x)− P0(x)| (3)

In our experiments, we consider the MC query strategy [18]
that has the potential advantage of avoiding the selection of
noisy data, which can be caused by distortions of acoustic
patterns [19], unreliable or ambiguous annotations [20] as it is
usually the case for acoustic emotion recognition tasks due to
their subjective nature. Formally, the query function for MC is
defined as:

xMC = argmin
x

|C(x)− Cm|, (4)

where C(x) denotes the confidence value assigned to the
predicted label of a given instance x. The confidence values are
ranked and stored in a queue (in descending order). Accordingly,
Cm represents the confidence value of the instance located
in the centre of the ranking queue. Ideally, for uniformly
distributed predictions, Cm would be 0.5. Nonetheless, in
practice this value is not fixed. In fact, it varies due to the
changes on the unlabelled data pool as learning progresses and
labelled instances are accumulatively moved to the training set.



B. Agreement Levels

Given the number n of annotators who are available for
labelling a specific database, we define the agreement level
as the minimum number of raters agreeing on one common
category. Accordingly, j ∈ {1, ..., bn+1

2 c}, with j, n ∈ N,
agreement levels can be selected. For the upper limit of the
interval, the floor is considered with regard to even numbers
of annotators. Specifically, n′ ∈ {j, ..., 2j − 1}, n′ ∈ N raters
might be needed until a certain agreement level j is achieved.
In practice, j raters would be required simultaneously in the
first round of queries to minimise the related time-consumption
as j is the minimum number of ratings to achieve the respective
agreement level. The SAL performance that is achieved through
majority voting among all n raters is set to the baseline in our
experiments.

C. Rater Reliability and Correlation

In existing crowd-sourcing platforms (e. g. Amazon Mechan-
ical Turk [21]), annotation tasks are distributed to paid click-
workers to complete [22], [23]. For work screening in these
annotation systems, the rater reliability is usually assessed and
guaranteed through a pretest comprising different questions to
determine the annotator is taking his task seriously or just
clicking haphazardly. Inspired by the quality management
system, we implement a preliminary stage preceding the
learning algorithm to assess the rater reliability and the
representativeness of every possible rater subset in relation
to the respective gold standard labels. For this purpose, we
randomly select a test set of labelled instances and train a rater-
specific model for each single rater. The obtained classification
accuracy is used to rank the raters according to their reliability.
Additionally, the correlation between the arithmetic mean of the
votes within the rater subsets and the respective gold standard
label is computed. By this means, we obtain a measure for
the inter-rater agreement and the reliability of a rater group,
respectively. Table I depicts an example of the correlation values
of the rater subgroups with the highest correlations. As it can
be seen, the larger rater groups with the highest correlation
values always include the smaller ones, which can be explained
by the high coherence between rater reliability and inter-rater
correlation. This ranking list suits particularly well our adaptive
query strategy because the raters are sequentially requested.
Depending on the defined agreement level, the subgroup with
the minimum number j of raters is selected. If no consensus is
reached, the raters who are most representative by forming a
group with the preceding raters are enlisted one after another.

TABLE I
CORRELATION BETWEEN THE ARITHMETIC MEAN OF THE RATINGS OF THE
MOST RELIABLE RATER SUBGROUPS AND THE GOLD STANDARD LABELS,
OBTAINED BY MAJORITY VOTING AMONG ALL FIVE AVAILABLE RATERS.

# Raters Rater Subgroup Correlation
2 3 4 0.852
3 3 4 1 0.891
4 3 4 1 5 0.890

In this example, there are five raters available and rater 3
achieves the highest performance in the pretest. Consequently,
the most efficient query order considering both rater reliability
and correlation is defined as 3, 4, 1, 5, 2. Besides, it should be
noted that once a minimum subset of j raters is selected for an
agreement level j, the internal order is not relevant since all
raters will be queried in one turn. The principle of the adaptive
query strategy is illustrated in Figure 1. The solid line indicates
the minimum number of annotations required to achieve the
respective agreement level, while the dotted line implies the
backup raters who might be enlisted one after another.

Fig. 1. Adaptive query strategy of the DAL method according to different
agreement levels

D. Algorithms

Figure 2 shows the pseudo-code description of the oDAL
and uDAL algorithms based on the MC strategy. Let L =
([x1, y1], . . . , [xl, yl]), i = 1, 2, ..., l, denote a small set of la-
belled training data, where xi is a d-dimensional feature vector,
and yi is the assigned emotion-related label. Additionally, a
large pool of unlabelled data U = (x′

1, . . . ,x
′
u), k = 1, 2, ...u,

exists where u� l and x′
k is a d-dimensional feature vector.

The number of votes for a specific class label y′ that is manually
assigned to an example instance x′ ∈ Na is named v′.

In a preliminary stage, a rater-specific model is trained
on a test set comprising a number t of randomly selected
labelled instances. The classification accuracy of the model
is used to determine the reliability of each rater, while the
inter-rater agreement corresponds to the correlation between the
arithmetic mean of the votes within a subset of raters and the
respective gold standard label (Table I). Based on the reliability
assessment, a specific query order is defined by ranking the
raters and forming the rater subgroups for different agreement
levels. When using uDAL algorithm, the initial agreement level
is set to j = 1. The learning process starts by training a model
on the labelled data L and subsequently using this model to
classify all instances of the unlabelled data pool U . According
to the MC query strategy, an subset Na ⊂ U is selected. Step 5)
pertains to the proposed adaptive query strategy. Optionally, the
uDAL algorithm can be applied at this stage. Starting at j = 1,
if the confidence value of a selected instance decreases below a
prediction uncertainty level p, the agreement level is upgraded
to a higher one until the next prediction uncertainty limit is
reached. Depending on the selected agreement level, the most
reliable rater or rater subgroup is requested to annotate the
selected instances. The stopping criterion for manual labelling



of each instance is fulfilled when the respective agreement
level is achieved. Finally, the human labelled instances are
removed from U and added to L. The sequential process is
repeated until a predefined number of instances are annotated.

Taking again our previous example, assuming there are five
expert labellers available for a specific binary classification
task, the majority is attained if the same opinion occurs three
times. In the existing SAL algorithm, all five labellers would be
needed in the query process regardless of the actual distribution
of votes. In comparison, choosing j = 3, the DAL approach
first queries the most reliable group consisting of three raters
since this is the minimum number of annotations to obtain
the same result as with majority voting among all five raters.
If the first three raters agree on one common category, the
opinions of the two others are irrelevant, in the sense that they
will not affect the final annotation. If this is not the case, the
query will be continued by iteratively requesting one more
rater according to the ranking until the same opinion occurs
three times or there is no rater left. Following the line of
thought, the term ‘majority’ can be regarded as relative to
the number of the raters actually enlisted, which does not
necessarily correspond to the number of all available raters.
In this example, j = 3 is the highest achievable agreement
level as explained before. However, it is also possible to set
the stopping condition to the first or second agreement level,
requiring only one or two vote(s) for one common category.
The respective numbers of potentially required raters would
be n′ = {2, 3} for j = 2 and n′ = 1 for j = 1, respectively.
The related trade-off between learning performance and cost
reduction will be further investigated in Section V-B.

III. DATABASE

In our experiments, we use the FAU Aibo Emotion Corpus
(AEC) [24] of the INTERSPEECH 2009 Emotion Challenge
(IS09 EC) [25], [26]. The database consists of recordings of
children interacting with Sony’s pet robot Aibo, which performs
a fixed, predetermined sequence of actions. Spontaneous
German speech that is emotionally coloured is provoked by
leading the children to believe that the Aibo was responding
to their commands, whereas the robot was actually controlled
by a human operator and sometimes behaved disobediently.
The recordings were taken from 51 children (age 10-13, 21
male, 30 female, about 9.2 hours of speech without pauses) at
two different schools, referred to as ‘MONT’ and ‘OHM’. Five
labellers (advanced students of linguistics) annotated each word
independently from each other as neutral (default) or as one of
ten emotional states: angry, touchy, reprimanding, emphatic,
surprise, joyful, helpless, motherese, bored, and rest. We use the
same natural speech corpus as in the IS09 EC that comprises
18 216 instances. Each instance corresponds to a manually
defined chunk that consists of multiple words according to
the syntactic-prosodic criteria. For binary classification, the
11-class labels are mapped onto two-class labels by defining
states with negative valence (angry, touchy, reprimanding,
emphatic) as NEG(agative), and all other states as IDL(e).
A heuristic approach is applied to map the labels from the

Algorithms: Order-based Dynamic Active Learning (oDAL)

Pretest:
1) Select t random test instances
2) Train a model for each single rater
3) Compute the correlation value for each rater subgroup
4) Define the query order based on rater reliability and

inter-rater agreement

Repeat:
1) (Optional) Upsample the training set L to obtain even

class distribution LD

2) Use L/LD to train a classifier H, and then classify the
unlabelled data set U

3) Rank the data based on the prediction confidence values
C and store them in a queue

4) Select a subset Na with medium certainty
5) For each instance x′ in Na

a) Optional: Upgraded Dynamic Active Learning
(uDAL)
If C > p; j = j;
else j ++;

b) Submit x′ to the first j raters
c) If v′ = j; STOPP

else repeat: select one rater for annotation
until agreement level j is achieved

d) Assign y′ to x′

6) Remove Na from the unlabelled set U , U = U rNa

7) Add Na to the labelled set L, L = L ∪Na

Fig. 2. Pseudocode description of the oDAL and uDAL algorithms based on
the medium certainty query strategy.

word-level to the chunk-level for each of the five labellers,
where a chunk is defined as NEG if it contains at least one
word with negative valence. To define the gold standard for
the baseline results, we resort to majority voting to combine
the labels from all five labellers to one single label for each
chunk. The frequencies for the two-class problem are given
in Table II. Speaker independence is guaranteed by using the
speech samples of the school ‘OHM’ for training and the data
of the other school ‘MONT’ for validation. Specifically, the
training data referred to as ‘Pool’ contains both the labelled
training set L and the unlabelled data pool U .

TABLE II
DISTRIBUTION OF SPEAKERS AND INSTANCES PER PARTITION OF THE FAU
AEC. M: MALE; F: FEMALE; NEG: NEGATIVE EMOTIONS; IDL: NEUTRAL

AND POSITIVE EMOTIONS.

# speakers # instances per class
FAU AEC M F NEG IDL Σ
Pool 13 13 3 358 6 601 9 959
Validation 8 17 2 465 5 792 8 257
Σ 21 30 5 823 12 393 18 216
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Fig. 3. Comparison between Random Dynamic Active Learning (rDAL) and Order-based Dynamic Active Learning (oDAL): the performance measures show
the UAR values averaged across 20 runs of the algorithm and the respective standard deviations vs the number of human annotations for the FAU AEC with
IS09 EC feature set by 200 initial training instances for agreement level a) j = 1, b) j = 2, and c) j = 3
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Fig. 4. Order-based Dynamic Active Learning(oDAL) vs Upgraded Dynamic
Active Learning (uDAL): the performance measures show the UAR values
averaged across 20 runs of the algorithm vs the number of human annotations
for the FAU AEC with IS09 EC feature set by 200 initial training instances.

IV. ACOUSTIC FEATURES

The acoustic features used in our experiments are adopted
from the baseline feature set of IS09 EC. This is created with
the openSMILE framework [27], [28] by applying statistical
functionals to frame-wise low-level-descriptors (LLDs) as
depicted in Table III. To each of the 16 LLDs, the delta coef-
ficients are computed. Finally, the 12 functionals are applied
on a per-chunk level. As result of the ‘brute-forcing’ method,
the total feature vector per chunk contains 16× 2× 12 = 384
attributes.

TABLE III
THE IS09 EC ACOUSTIC FEATURE SET: LOW-LEVEL DESCRIPTORS (LLDS)

AND RESPECTIVE FUNCTIONALS.

LLD (∆) Functionals
ZCR mean
RMS Energy standard deviation energy
F0 kurtosis, skewness
HNR extremes: value, rel. position, range
MFCC 1-12∗ linear regression: offset, slope, MSE

V. EMPIRICAL EVALUATION

In this section, we investigate the performance of the various
DAL algorithms by evaluating the classification accuracy in
relation to the number of human annotations. Specifically, the
rDAL and oDAL algorithms are confronted with regard to
different agreement levels. Furthermore, the uDAL algorithm
which combines the first and second agreement levels of the
oDAL method is evaluated. Additionally, the robustness of the
trained model is examined. All results are compared with the
baseline performance achieved through the conventional SAL
method.

A. Experimental Setup

For transparency and reproducibility, we used open-source
classifier implementations of SVMs from the WEKA data
mining toolkit [29]. As classifiers, we chose linear kernel
SVMs trained with a complexity parameter C constant of 0.05
and with Sequential Minimal Optimization (SMO), as they are
robust against over-fitting in high dimensional feature spaces.
For initial training of the model, 200 instances were randomly
selected from the training data, whereas the remaining instances
were used as the unlabelled data pool. At each learning iteration,
we selected a subset Na comprising 200 instances to be
submitted to manual annotation. The learning process stopped
after a predefined number of iterations is reached. The training



process was repeated in 20 independent runs. As the evaluation
measure, we considered the unweighted average recall (UAR)
in accordance with the previous IS challenges.

B. Discussion of Results

The following performance figures show the UAR measures
across 20 independent runs of the learning process and the
respective standard deviations by the use of the rDAL and oDAL
algorithms. According to the characteristic curve progression of
AL, the sequential addition of human-labelled instances to the
initial training set (200 per iteration) leads to continuous im-
provements in the performance of the classifier. The UAR first
increases steeply with the number of total human annotations
before reaching a plateau. In Figure 3, it can be clearly seen
that both the oDAL and rDAL algorithm outperform the SAL
method by significantly reducing the number of annotations
while obtaining the same performance. Or to put it into other
words, higher performance can be achieved with the same
amount of manual labelling work. For a more detailed analysis
of the performance of the various algorithms, we computed
Student’s t-test to statistically compare the performances at a
selected number of human annotations for different agreement
levels. The analysis of two-tailed P values (Table IV) confirms
our previous observations and clearly indicates that the DAL
approaches generally lead to significantly better performance
than SAL. This is particularly evident for oDAL that led to the
best performance at all three agreement levels by consistently
and robustly outperforming the other methods. Above all,

TABLE IV
SIGNIFICANCE LEVELS OBTAINED FROM THE STATISTICAL COMPARISON
(STUDENT’S t-TEST) OF THE UAR PERFORMANCE MEASURES BETWEEN

ITERATIONS

j = 1 j = 2 j = 3

rDAL vs SAL < .0001 < .0001 > 0.05
oDAL vs SAL < .0001 < .0001 > 0.05
oDAL vs rDAL < .0001 < .0001 < 0.05

Figure 4 demonstrates that the highest efficiency is realised
through the uDAL method, which starts at agreement level
j = 1 before jumping to j = 2 after reaching 4 000 annotated
instances and finishing 20 iterations, respectively. The transition
point can be noted by the slight click in the learning curve.
In order to substantiate our findings, we compare the relative
cost reduction by measuring the number of human annotations
at UAR = 68.2%. According to Table V, the relative cost
reduction (CR) increases with lower agreement levels regarding
all applied algorithms. This can be explained by the fact that
all five labellers are relatively reliable. Consequently, selecting
lower agreement levels results in a dramatic cost reduction
without affecting much the overall performance. Furthermore,
our results reinforce the finding that the rDAL algorithm
requires generally more human annotations, resulting in lower
CR than with oDAL. Moreover, it is important to note that
the average number of annotators per selected instance (AA)
inclines to the minimum that is necessary to achieve a certain

agreement level (Section II-B). Finally, the analysis of standard
deviation shows that the stability of the model is enhanced
during the learning process.

TABLE V
COST CORRESPONDING TO THE NUMBER OF HUMAN ANNOTATIONS AT

UAR = 68.2 % AND THE RELATIVE COST REDUCTION (CR) BY COMPARING
THE AGREEMENT LEVELS j = 1, 2, 3 OF THE ODAL ALGORITHM AND THE
UDAL PERFORMANCE WITH THE SAL BASELINE. THE AVERAGE NUMBER

OF ANNOTATORS PER SELECTED INSTANCE (AA) IS ALSO PROVIDED.

cost (x 10k) CR (%) AA
SAL 1.6 – 5
rDAL j=3 1.27 20.53 3.72
rDAL j=2 0.72 54.69 2.35
rDAL j=1 0.38 76.33 1
oDAL j=3 0.99 38.34 3.52
oDAL j=2 0.42 73.73 2.25
oDAL j=1 0.23 85.41 1
uDAL 0.23 85.41 1.96

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced two novel approaches for
Dynamic Active Learning that further reduce the amount of the
costly human labelling work. The adaptive query strategy of the
rDAL method is enhanced by considering the reliability of each
individual rater and of every possible rater subgroup, leading to
the most efficient query order. Additionally, a highly dynamic
approach is proposed that upgrades the agreement level to
handle noisy data on approaching the end of the learning
process. Our results demonstrate that the novel features of
the DAL method lead to improvement of the rDAL method
for all agreement levels, requiring up to 85.41% less human
annotations while achieving the same performance.

The implementation of the preliminary stage also suit the
currently emerging and popular crowd-sourcing systems. In
this way, we combine enhanced machine learning methods
with highly efficient data annotation resources, achieving a
new milestone for highly efficient exploitation of unlabelled
data.

For future research, we will investigate the robustness of
the DAL method by conducting experiments with multiple
corpora, different feature sets, and varying amount of initial
training instances. Moreover, the reliability and correlation
values will be updated after each annotated instance in order
to enable more dynamic DAL algorithms. In the long term,
the full potential of self-optimising classifiers will be realised
by combining SSL methods with advanced DAL techniques.
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