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Abstract 

This article presents a novel methodology to analyze the dynamics of emotional responses to 

music. It consists of a computational investigation based on spatiotemporal neural networks, 

which “mimic” human affective responses to music and predict the responses to novel music 

sequences. The results provide evidence suggesting that spatiotemporal patterns of sound 

resonate with affective features underlying judgments of subjective feelings (arousal and 

valence). A significant part of the listener’s affective response is predicted from a set of six 

psychoacoustic features of sound – loudness, tempo, texture, mean pitch, pitch variation, and 

sharpness. A detailed analysis of the network parameters and dynamics also allows us to identify 

the role of specific psychoacoustic variables (e.g., tempo and loudness) in music emotional 

appraisal. This work contributes new evidence and insights to the study of musical emotions, 

with particular relevance to the music perception and cognition research community.  
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Ever since antiquity, the relationship between music and emotion has been acknowledged 

as a fascinating quality of the human experience. Ancient philosophers such as Socrates, Plato, 

and Aristotle, in their theories of emotion, considered the sound of music and the unique way in 

which it can reflect “states of the soul.” For the Greek philosophers music has the power to alter 

and drive the collective consciousness of massive groups of people.  

Many years have passed and we still haven’t found an answer to expose the mechanisms 

that music uses to interact with emotional systems. Nevertheless, the revival of studies on 

emotions during the late 19th century, together with the new technological developments in 

measurement techniques, have contributed with new insights for such an old question: how does 

music affect emotions?  

 

Cognitivist and Emotivist Views 

There are two principle, complementary views regarding the relationships between music 

and emotions. “Cognitivists” defend that music simply expresses emotions that the listener can 

identify, while “emotivists” defend that music can elicit affective responses in the listener (see 

Kivy, 1990; Krumhansl, 1997).  

One of the most influential works from a cognitivist perspective was by Meyer (1956). 

He developed a theory in which musical emotions depend mainly upon expectations about the 

unfolding events and their meanings, which create patterns of tension and release in the listener 

(Meyer, 1956). For Meyer, expectation is a necessary condition for emotion and meaning to be 

conveyed in music. The nature of these expectations derives from the development of 

psychological schemas of systems of sound relationships. These include the general Gestalt 
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principles for perceptual organization, but mainly psychological schemas derived from the 

interaction with a given (musical) culture. Without the “stylistic experience” music becomes 

meaningless and consequently lacks in affect. Empirical support for Meyer’s ideas has come 

from different formalizations of his theory (e.g., Cuddy & Lunney, 1995; Krumhansl, 1991; 

Narmour, 1992). Meyer’s cognitivist perspective is especially evident in a passage of his 1956 

book: “... when a listener reports that he felt this or that emotion, he is describing the emotion 

which he believes the passage is supposed to indicate, not anything which he himself has 

experienced” (Meyer, 1956, p. 8). Although our affective experiences with music are ultimately 

individual and culturally dependent, emotivists claim that music can itself elicit emotions in 

listeners. From this perspective, there are certain music dimensions and qualities that induce 

similar affective experiences in all listeners, crossculturally, and independent of context and 

personal biases or preferences. Some evidence about the universality of music affect comes from 

a crosscultural study by Balkwill and Thompson (1999). Western listeners (who had no 

familiarity with North Indian ragas) listened to Hindustani music and were able to identify 

emotions of joy, sadness, and peace.  

More compelling evidence suggesting that music itself can elicit emotions without the 

involvement of cognition, favoring the emotivist view on musical emotions, can be found in 

Peretz, Gagnon, and Bouchard (1998). Peretz et al. (1998) described a patient (I.R.) suffering 

from severe loss of music recognition and expressive abilities. I.R. showed no evidence of 

impairment in the auditory system but couldn’t discriminate pitch and temporal deviations in 

music. Even violations of the scale structure, or judgments of adequacy of a pitch as the ending 

of a harmonic sequence (tonal closure), were impossible to I.R. Despite all this, I.R. still claimed 

the capacity to enjoy music. In the experiment, the patient was able to derive the emotional tone 
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of the excerpts, manipulated in terms of tempo and mode, to achieve the intended emotional 

qualities. Although I.R. was not aware of the music manipulations,1 she performed as well as the 

control group on the affective content identification task. This study shows that the perceptual 

analysis of the music input can be maintained for emotional purposes, even if impaired for 

cognitive ones. Peretz et al. (1998) suggest the possibility that emotional and nonemotional 

judgments are the products of distinct neurological pathways. Some of these pathways were 

found to involve the activation of subcortical emotional circuits (Blood & Zatorre, 2001; Blood, 

Zatorre, Bermudez, & Evans, 1999), which also are associated with the generation of human 

affective experiences (e.g., Damasio, 2000; Panksepp, 1998), and can operate even outside an 

individuals’ awareness. Panksepp and Bernatzky (2002) even suggest that a great part of the 

emotional power derived from music may be generated by lower subcortical regions, where basic 

affective states are organized (Damasio, 2000; Panksepp, 1998).  

Taken together, these findings provide evidence of the universality of music affect and 

that cognitive mediation is not a required element in music appreciation. But in that case, for the 

affective experience to happen, it is plausible to think that the listener must derive affective 

meaning from the nature of the stimulus. This approach follows the view advocated by Langer 

(1942) on the existence of expressive forms (“iconic symbols”) of emotions in all art forms. She 

believed that the arts and music in particular, are fundamental forms of human physical and 

mental life. 

Music Elements and the Construct of Emotion 

One of the major obstacles for experimental studies on the emotional power of music is 

the subjective nature and multiple components of the affective experience. Nevertheless, by 

focusing on the time course of emotional responses to music, several experimental studies 
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suggest some generalizations. One of the most important is that different listeners report 

emotional responses to music, consistent in their quality and intensity. This led some studies to 

focus on the music features (e.g., tempo, mode, dynamics, among others), attributing to the 

variables correspondences with particular affective experiences. Some pioneering studies that 

investigated the influence of music parameters on perceived emotion were published by Hevner 

(1936). Hevner attempted a systematic explanation of such relationships. Since then a core 

interest amongst music psychologists has been the isolation and measurement of the perceptible 

factors in music that may be responsible for the resultant affective value (Gabrielsson & 

Lindström, 2001). The belief is that the way the sound elements are chosen and organized in time 

is linked with the listeners’ affective experience. 

Much of the research in this area has focused on general emotional characterizations of 

music (e.g., identification of basic emotion, lists of adjectives, or affective labels), by controlling 

parameters that can show some degree of stability throughout a piece (e.g., tempo, key, timbre, 

mode). In some studies, sets of specially designed stimuli have been used (e.g., probe tone test), 

while other studies were based on a systematic manipulation of real music samples (e.g., slow 

down tempo, changing instruments). More recently, following the claim that music features and 

structure are characterized by emotionally meaningful changes over time (e.g., Dowling & 

Harwood, 1986), new frameworks using use real music and continuous measurements of 

emotion emerged (e.g., Schubert, 2001).  

Schubert (2001) proposed the use of continuous measurements of cognitive self-report of 

emotion; using a dimensional paradigm to represent emotions on a continuous scale. According 

to Wundt (1896), differences in the affective meaning among stimuli can succinctly be described 

by three pervasive dimensions (of human judgment): pleasure (“lust”), tension (“spannung”), and 
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inhibition (“beruhigung”). This model has received empirical support from several studies that 

have shown that a large spectrum of continuous and symbolic stimuli can be represented using 

these dimensions (see Bradley & Lang, 1994). They can be represented in a three-dimensional 

space, with each dimension corresponding to a continuous bipolar rating scale: pleasantness-

unpleasantness, rest-activation, and tension-relaxation. Other studies have provided evidence that 

the use of only two dimensions is a good framework to represent affective responses to linguistic 

(Russell, 1980), pictorial (Bradley & Lang, 1994), and music stimuli (Thayer, 1986). These 

dimensions are labeled as arousal and valence. Arousal corresponds to a subjective state of 

feeling activated or deactivated. Valence stands for a subjective feeling of pleasantness or 

unpleasantness (hedonic value; Russell, 1989).  

The use of dimensional models is by itself a limitation on the representation and 

measurement of music emotions. Principally, the limitation is due to the wide variety of 

emotions conveyed by music and their limited representation by such a model. Another 

limitation arises due to the focus placed on a limited characterization of emotion: by asking 

participants to focus on their feelings, other components of emotion are not controlled for. 

Nevertheless the model shows important advantages compared with other methods used 

(generally classified as discrete emotions and eclectic approaches; Scherer, 2004). First, they are 

suitable to be used with continuous measurement frameworks. In this way, they allow analysis of 

the time course of emotion in more detail than other methods. Second, because they describe a 

continuous space not attached to a specific label, they also allow for the representation of a very 

wide range of emotional states, which is especially important in the context of music. By 

acknowledging its disadvantages, and by considering the important advantages offered by this 

method (particularly the simplicity in terms of psychological experiments and good reliability; 
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Scherer, 2004), dimensional approaches to emotion representation have been consistently used in 

emotion research.  

Models of Continuous Measurements of Emotion in Music 

Following a continuous measurement framework, some studies have focused on 

analyzing temporal patterns in music and emotion. The music stimuli are encoded into time-

varying patterns in the form of psychoacoustic features. These correspond to perceptually 

separable elements (or groups of elements) that, when combined, provide a description of the 

“perceptual object”. Their division into separable sound dimensions allows for the study of their 

dynamics individually. The phenomena of music perception can then be described at different 

levels of detail, by selecting among different combinations of features.  

Within this framework, two mathematical models that used time-varying patterns of 

music and emotion ratings have been proposed. Schubert (1999a) applied an ordinary least 

squares stepwise linear regression and a first order autoregressive model to his experimental data. 

He created regression models of emotional ratings, for selected music features, at different time 

lags for each piece. The relationships between music and emotional ratings were assumed to be 

linear and mutually independent, not accounting for the interactions among variables. The 

models also had the disadvantage of being piece specific.  

Korhonen (2004) adopted a different modeling paradigm and extended the sound feature 

space and the music repertoire. He chose System Identification (Ljung, 1987) to model time-

varying patterns of psychoacoustic features and emotion ratings. Korhonen’s contributions are 

the integration of all music features into a single module and the possibility to use the model 

with unknown pieces. Despite some improvements over Schubert’s work, the performance of 

this model is irregular. It outperformed Schubert’s models for some pieces, but performed worse 
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in others. Another important disadvantage is that no insights on the processes used by the models 

to achieve the predictions are made. It is difficult to assess the meaningfulness of the 

relationships established to model the affective reactions based on sound features.  

Although traditional time series analysis techniques allow for an investigation of the 

relationships between different processes, they often assume too much about the nature of the 

signals and their underlying behavior (due to assumptions like stationarity; Brockwell & Davis, 

1991). The work by Schubert (1999a) and Korhonen (2004) has shown the relevance of auto and 

crosscorrelations among psychoacoustic variables, and the limitations associated with the use of 

time series analysis techniques (e.g., pdf’s, stationarity, linear correlations). In the two studies 

described, the model analysis only highlights positive relationships between tempo and loudness 

gradients and arousal ratings. Other observations derived from the model analysis often lack in 

generality.  

Spatio-temporal Connectionist Networks 

In order to overcome such limitations we suggest that spatio-temporal connectionist 

networks (Kremer, 2001) offer an ideal platform for the investigation of the dynamics of 

affective responses to music. Specifically we propose the use of recurrent neural networks. The 

fundamental additional aspect of this neural network (when compared with the traditional feed-

forward model) is the use of recurrent connections that endow the network with a dynamic 

memory.  

Various proposals and architectures can be found in literature for time-based neural 

networks (see Kremer, 2001, for a review), which make use of recurrent connections in different 

contexts. In our study we have selected the Elman network (Elman, 1990), also called Simple 

Recurrent Network. An Elman Neural Network (ENN) is based on the standard architecture of a 
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multilayer perception with an additional “context” or “memory” layer. The units in this layer 

receive a copy of the previous internal state of the hidden layer. They are connected back to the 

same hidden layer, through adjustable weights. These units endow the network with a dynamic 

memory, achieved through recursive access to past information of internal representations of 

input stimuli.  

The internal representations of an ENN encode not only the prior event but also relevant 

aspects of the representation that were constructed in predicting the prior event from its 

predecessor (that is the effect of having learned weights from the memory to the hidden layer). 

The basic functional assumption is that the next element in a time-series sequence can be 

predicted by accessing a compressed representation of previous hidden states of the network and 

the current inputs. If the process being learned requires that the current output depends somehow 

on prior inputs, then the network will need to “learn” to develop internal representations that are 

sensitive to the temporal structure of the inputs. During learning, the hidden units must 

accomplish an input-output mapping and simultaneously develop representations that systematic 

encodings of the temporal properties of the sequential input at different levels (Elman, 1990). In 

this way, the internal representations that drive the outputs are sensitive to the temporal context 

of the task (even though the effect of time is implicit). The recursive nature of these 

representations (acting as an input at each time step) endows the network with the capability of 

detecting time relationships of sequences of features, or combinations of features, at different 

time lags (Elman, 1991). This is an important feature of this network because the lag between 

music and affective events has been consistently shown to vary over a range of five seconds 

(Krumhansl, 1996; Schubert, 2004; Sloboda & Lehmann, 2001).  
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ENNs use a training phase and a testing phase. Learning algorithms (supervised or 

unsupervised) define the way the model behaves during training when tuning its parameters for a 

certain task. The testing phase serves to test the model with novel data, either for prediction or 

validation of the model. A typical example of neural network training is categorization: given a 

set of training stimuli, the model is asked to separate them into a predetermined set of categories. 

An interesting phenomenon arises when we present the system with novel stimuli. These new 

inputs, after a successful learning process, should ideally be categorized within the learned 

categories space, reflecting the underlying grammar of the process being modeled. This process 

is called generalization and allows connectionist models to categorize novel stimuli.  

In this article we will use an ENN to model continuous measurements of affective 

responses to music, based on a set of psychoacoustic components extracted from the music 

stimuli. Following the modeling stage, we make use of a set of analytical techniques, which 

allow for a better understanding of the relationships between sound features and affective 

responses. We then discuss the performance of our model and the implications of our findings for 

the emotivist and cognitivist perspectives on musical emotions. 

Simulation Experiments 

Method 

The data for the experiments were obtained from a study conducted by Korhonen 

(2004).2 The original self-report data include the emotional appraisals of six selections of 

classical music (see Table 1), obtained from 35 participants (21 male and 14 female). Using a 

continuous measurement framework, emotion was represented by its valence and arousal 

dimensions (using the EmotionSpace Lab; Schubert, 1999b). The emotional appraisal data were 

collected at 1Hz (second-by-second).  
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– Insert Table 1 – 

 

Encoded features. Korhonen (2004) encoded the music pieces into the psychoacoustic 

space by extracting low and high level features, using Marsyas (Tzanetakis & Cook, 1999) and 

PsySound (Cabrera, 1999) software packages. Only Tempo was calculated manually, using 

Schubert’s (1999a) method. The 13 psychoacoustic variables chosen (the 5 sound features 

representing Harmony variables included in Korhonen’s study are not included here in order to 

exclude higher level features specific to the music culture, and with controversial methods for its 

quantification) are shown in Table 2 and described below (for convenience we will refer to the 

input variables with the aliases indicated in this table). Because some of these measures refer to 

the same psychoacoustic dimension, they were clustered into 6 major groups: Dynamics, Mean 

Pitch, Pitch Variation, Timbre, Tempo, and Texture.  

– Insert Table 2 – 

 Dynamics: The Loudness Level (D1) and the Short Term Maximum Loudness (D2) 

represent the subjective impression of the intensity of a sound (measured in sones). Both 

algorithms estimate the same quantity (described in Cabrera, 1999) and output similar values.  

 Mean Pitch: The Mean Pitch was quantified using two power spectrum calculations (one 

from PsySound, and another from Marsyas). The Power Spectrum Centroid (P1) represents the 

first moment of the power spectral density (PSD; Cabrera, 1999). The Mean STFT Centroid (P2) 

is a similar measure and corresponds to the balancing point of the spectrum (Tzanetakis & Cook, 

1999).  

 Pitch Variation: The pitch contour was quantified using 3 measures. The Mean STFT 

Flux (Pv1) corresponds to the Euclidian norm of the difference between the magnitudes of the 
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Short Time Fourier Transform (STFT) spectrum evaluated at two successive sound frames. The 

standard deviation of P2 (Pv2) and of Pv1 (Pv3) also were used to quantify the pitch variations3 

(refer to Tzanetakis & Cook, 1999, for furthers details).  

 Timbre: Timbre was represented using the 4 different measures. Sharpness (Ti1), a 

measure of the weighted centroids of the specific loudness, approximates the subjective 

experience of a sound on a scale from dull to sharp. The unit of sharpness is the acum (one acum 

is defined as the sharpness of a band of noise centered on 1000 Hz, 1 critical-bandwidth wide, 

with a sound pressure level of 60 dB); details on the algorithm used in Psysound can be found in 

Zwicker and Fastl (1990). Timbral Width (Ti2) is a measure proposed by Malloch (1997) that 

measures the flatness of the specific loudness function, quantified as the width of the peak of the 

specific loudness spectrum (see Cabrera, 1999, for further details and slight modifications to that 

algorithm). The mean and standard deviations of the Spectral Roll-off (the point where a 

frequency that is below some percentage of the power spectrum resides; refer to Tzanetakis & 

Cook, 1999, for the details on these measures) are also two measures of spectral shape (Ti3 and 

Ti4). Although they do not directly represent timbre, Korhonen (2004) included these measures 

because they have been used successfully in music information retrieval.  

 Tempo: Tempo was estimated from the number of beats per minute. Because the beats 

were detected manually, a linear interpolation between beats was used to transform the data into 

second-by-second values (details on the tempo estimation are described in Schubert, 1999a).  

 Texture: Multiplicity (Tx) is an estimate of the number of tones simultaneously noticed 

in a sound; this feature was quantified using Parncutt’s algorithm (1989), which was included in 

Psysound.  
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Modeling procedure. The psychoacoustic features constitute the input for our model. 

Each of these variables corresponds to a single input node of the network. The output layer 

consists of 2 nodes representing Arousal and Valence. Three pieces of music (1, 2, and 5), 

corresponding to 486 s, were used during the training phase. In order to evaluate the response to 

novel stimuli, we used the remaining 3 pieces: 3, 4, and 6 (632 s of music). Throughout this 

article we refer to the “Training set” as the collection of stimuli used to train the model, and 

“Test set” to the novel stimuli, unknown to the system during training, that test its generalization 

capabilities and performance. The task at each training iteration is to predict the next (t+1) values 

of Arousal and Valence. The target values (aka “teaching input”) are the average 

Arousal/Valence pairs across all participants in Korhonen’s (2004) experiments. In order to 

adapt the range of values of each variable to be used with the network, all variables were 

normalized to a range between 0 and 1.  

The learning process was implemented using a standard back-propagation technique 

(Rumelhart, Hintont, & Williams, 1986). During training the same learning rate and momentum 

were used for each of the 3 connection matrices. The network weights were initialized with 

different random values. The range of values for each connection in the network (except for the 

connections from the hidden to the memory layer which are set constant to 1.0) was defined 

randomly between -0.05 and 0.05.  

If the model also is able to respond with low error to novel stimuli, then the training 

algorithm was able to extract from the training set more general rules that relate music features to 

emotional ratings. To avoid the overfitting of the training set, we estimated the maximum 

number of training iterations and learning parameters. After preliminary tests and analysis, we 

decided upon 20,000 iterations as the duration of training, using a learning rate of .075 and a 
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momentum of 0. The size of the hidden layer (which defines the dimensionality of the internal 

space of representations) also was optimized by testing the model with different numbers of 

hidden nodes. The best performance was obtained with a hidden layer of size five.  

The root mean square (RMS) error is used here to quantify the differences between 

values predicted by the model and the values actually observed experimentally. Although this is 

a common measure to assess the performance of connectionist models, it gives little guaranties 

about a successful modeling process. We will use this measure only to compare the model 

performance with alternative sets of inputs to the network (next subsection). To assess the model 

ability to categorize the stimuli in terms of their affective value (and so the meaningfulness of the 

modeling process), we will analyze in detail the model categorization process.  

 

Simulation 1: Reduction of the Psychoacoustic (Input) Dimensions 

The choice of the input space must consider musical, psychological, and modeling 

aspects. The psychoacoustic features chosen by Korhonen (2004) include a significant set of 

perceptually relevant dimensions, although there are some redundancies to address. A recurrent 

problem in dealing with these types of data are the correlations among the encoded dimensions, 

especially redundant information and collinearity (as discussed by Schubert; 1999a). Because of 

that we decided to use only one variable of each of the psychoacoustic dimensions considered.  

We started our simulations by training the neural network with different groups of inputs. 

Tempo, Texture, Dynamics, Mean Pitch, Pitch Variation, and Timbre are all considered to be 

included in the model as separate dimensions. In the case of Tempo and Texture, because they 

ere estimated using a single method (algorithm), they are included directly because there is no 

choice among alternative measures to be made.4 In order to select one sound feature from the 
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remaining music dimensions (Dynamics, Mean Pitch, Pitch Variation, and Timbre), each set of 

inputs considered included all unique features for each music dimension as a basic set (T and Tx 

as explained before), plus one other test variable(s). For instance, in the case of Dynamics we 

tested T, Tx, D1, and D2,5 but also T, Tx, and D1, and T, Tx, and D2. We followed the same 

procedure for Mean Pitch, Pitch Variation, and Timbre.  

For each test case we trained three different neural networks (with different random 

configuration of initial weights) and averaged their errors. Table 3 showns the RMS errors for 

each test condition.  

– Insert Table 3 – 

For the loudness measures, we found that the inclusion of both variables, or only D1, 

produced the best results. We selected D1 from this group. Regarding Timbre, the best 

performance was achieved using only Ti1, and so this variable also was selected. The variable 

selected to represent Mean Pitch is P1, because it performs better than the remaining variables. 

Finally, Pitch variation shows very similar error values for all test cases. We chose Pv1 because it 

yields a lower error than Pv2 and Pv3.  

We trained another network including all the variables chosen (T, Tx, D1, P1, Ti1, and 

Pv1) in order to assess the performance with all variables together. The results are shown at the 

bottom of Table 3. An inspection of the RMS error shows that combining all the features 

improved the model performance substantially, suggesting that the interaction among different 

features conveys relevant information. In the following simulation experiment, we will use the 

selected 6 input features as the inputs for the model. The model architecture is shown in Figure 

1.  

Simulation 2: Analysis of Model Performance 
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We trained 37 neural networks (the same number of participants in Korhonen, 2004, 

experiments) with the data set comprising the psychoacoustic variables selected in Simulation 1 

(see Figure 1). The average error (for both outputs) of the 37 networks was .05 for the Training 

set, and .076 for the Test set. These values correspond to 20000 iterations of the training 

algorithm.  

– Insert Figure 1 – 

In order to compare the model output with the experimental data for each piece, we 

calculated the Mutual Information (MI) between the model outputs and the respective target 

values (experimental data). The MI is a quantity that measures the mutual dependence of the two 

variables or, in other words, how much they vary together, and it detects both linear and 

nonlinear correlations between data sets. Because its interpretation, in terms of magnitude, is 

heavily dependent on data sets used (rendering difficulties for comparisons between different 

variables), we use a standardized measure for the MI (c.f. Dionísio, Menezes, & Mendes, 2006; 

Granger & Lin, 1994), based on the global correlation coefficient (λ), defined by 

€ 

λ(X,Y ) = 1− e−2*I (X ,Y )  .6    

The following analysis was performed on the network that showed the lowest average 

RMS error and λ for both data sets (network 24). The RMS errors and λ of each output for all the 

music pieces are shown in Table 4. Figures 2 and 3 show the Arousal and Valence outputs of the 

model for Training and Test sets, versus the data obtained experimentally (target values).  

– Insert Table 4 – 

– Insert Figure 2 – 

– Insert Figure 3 – 
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The model was able to track the general fluctuations in Arousal and Valence for both data 

sets, although the performance varied from piece to piece. The model performance for Arousal 

was better for pieces 1, 2, 5, and 6 (RMS1 = .05, RMS2 = .04, RMS5 = .04, and RMS6 = .05), as 

shown by the low RMS errors (lower than the mean Arousal for all pieces: RMSall = .06) and 

high λ. Pieces 3 and 4 had a higher RMS error than the mean of all the remaining pieces. 

Nevertheless, only piece 4 shows a λ significantly lower than the remaining pieces). This weaker 

performance is visible in Figure 3b). Even though the initial 80s (approximately) of the model 

predictions show the same increasing tendency of the experimental data, they do not follow the 

same pattern: they are lower during the initial 50 s (“dialogue” between flutes and strings) to 

which follows a strong increase (only strings playing in bigger number louder) until around 80s 

of the piece (a transition to a new section in piece).  

The best Valence predictions were obtained for pieces 1, 2, 3, and 5 (RMS1 = .04, RMS2 

= .05, RMS3 = .05, and RMS5 = .05): all these pieces had a RMS error lower than the average of 

all pieces: RMSall = .06). The worst performances were obtained for pieces 4 and 6, although 

only piece 4 had a λ coefficient significantly lower than the remaining ones (with the exception 

of piece 5). In these cases, as for the Arousal predictions, poor performance is particularly 

evident during the initial 80s of the piece, as seen in Figure 3b).  

The successful predictions of the affective dimensions for both known and novel music 

support the idea that music features contain relevant relationships with emotional appraisals. A 

visual inspection of the model outputs, confirmed by the RMS and λ measures, also indicates that 

the model output resembles the experimental data (with the exception of the initial 80s of piece 

4). The spatio-temporal relationships learned from the Training set were successfully applied to a 

new set of stimuli.  
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These relationships now encoded in the network weights, and the flux of information in 

the internal (hidden) layer of the neural network represents the dynamics of the internal 

categorization (or recombination) of the input stimuli, that enables output predictions. One of the 

advantages of working with an artificial neural network is the ability to explore the internal 

mechanisms that generate the behavior and indirectly show how the model processes the 

information. In the following paragraphs we will analyze their spatial representation accordingly 

to Arousal and Valence levels using a method for dimensionality reduction.  

Model internal dynamics: Discriminant functions. Clustering diagrams of hidden unit 

activation patterns are good for representing the similarity structure of the representational space. 

In order to analyze the internal dynamics of our model we use Linear Discriminant Analysis 

(LDA). The LDA is a classic method of classification using categorical target variables (features 

that somehow relate or describe the objects). Unlike Principle Component Analysis (PCA), in 

LDA the groups are known or predetermined.7  

The main purpose of this algorithm is to find the linear combination of features that best 

separate between classes or object properties. This method maximizes the ratio of between-class 

variance to the within-class variance in any particular data set thereby guaranteeing maximal 

separability. Because we are interested in establishing the dynamics of the psychological report, 

we defined as the classification model the four quadrants of the two-dimentional emotional space 

(2DES; Q1, Q2, Q3, and Q4). We hypothesized that the quadrants division of the A/V space 

represents the underlying internal representations of the model. This method also allows us to 

identify the hidden units related with each dimension of the categorical space (an important 

aspects because it will allow for the study of the input-output mapping of the model).  



Neural Network Models of Musical Emotions    20 

The analysis has shown that two discriminant functions can explain 99.7% of the 

variance in the data.8 The canonical correlations of the original data set are .821 for the 1st 

discriminant function (F1) and .506 for the 2nd function (F2). In Figure 4, we show the two 

discriminant functions. Each point corresponds to the internal state of the model at a particular 

moment in time. The dot’s color identifies the category hypothesized for each internal state of the 

model, which correspond to the affective space quadrants (indicated by the labels Q1 to Q4).  

– Insert Figure 4 – 

The model shows an internal discrimination of the input stimuli, which is very similar to 

the affective space quadrants division. This indicates that the input stimuli were successfully 

categorized accordingly to their affective value, suggesting that the relationships built in the 

model transform meaningful patterns of sound features into the Arousal and Valence components 

of emotion. 

As the discriminative power of the model is embedded in the hidden unit activations (the 

ones that connect to the output), we needed to assess the influence of each hidden unit on the pair 

of canonical variables. This was done by analyzing the factor structure coefficients shown in 

Table 5. These values correspond to the correlations between the variables in the model and each 

of the discriminant functions (similar to the factor loadings of the variables on each discriminant 

function in PCA).  

The 1st discriminant function (F1) receives the highest contributions from H1, H3, H4, and 

H5. F2 receives the strongest contributions from H2, H4, and H5. The next step was to identify 

how these units relate with the input and output layers. With that information we can estimate the 

input-output transformations of the model.  

– Insert Table 5 – 
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Input/output transformation: Model production rules. To study the relationships between 

inputs and model predictions, we analyzed their relationships with the internal states of the 

model, which we saw to reorganize the sequence of input stimuli into meaningful affective 

representations (see previous section). One possibility would be to inspect the weight’s matrixes 

in the model to identify the highest weights. Although simple, this methodology only compares 

weight values (long-term memory) and excludes the level of activity of each unit (including its 

bias) and implicit time representations (the short-term memory of the model).  

In order to account for the temporal dynamics of the model, the correlations between 

inputs, hidden, and output units were computed using a Canonical Correlation Analysis (CCA) 

(Hotelling, 1936). A canonical correlation is the correlation of two canonical variables: one 

representing a set of independent variables, the other a set of dependent variables. The CCA 

optimizes the linear correlation between the two canonical variables to be maximized in the 

context of many-to-many relationships. There may be more than one linear correlation relating 

the two sets of variables, each representing a different dimension of the relationship, which 

explain the relation between them. For each dimension it is also possible to assess how strongly 

it relates each variable in its own set (canonical factor loadings). These are the correlations 

between the canonical variables and each variable in the original data sets.  

In this article the CCA is used to assess the relationships between the sequences of input, 

hidden, and output layer activity. This method permits the analysis of the contribution of each 

network layer node or (sets of nodes) to the activity of a different layer. Relevant for our analysis 

are the relationships between input and hidden layers (how the inputs relate to the internal 

representations of the model), and these with the outputs (which sets of hidden units are more 
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related to the output). In Table 6 we show the details of a CCA for the activity of the neural 

network layers.  

– Insert Table 6 – 

Input to hidden: Three canonical variables explain 98.3% of the variance in the data (see 

left side of Table 6). The first pair of variables loads on P1, Tx, Ti1 (inputs set), and H2 and H5 

(hidden layer). The second loads only on input D1 but it loads on all nodes of the hidden layer. 

The third canonical variable loads on Pv1, H2, and H4. These three dimensions encode the general 

levels of shared activation in the input and hidden layers.  

Hidden to output: Two canonical variables explain all the variance in the data (see right 

side of Table 6). The first root correlates strongly with Arousal and the activity in hidden units 

H1 and H2. The second pair of canonical variables correlates with both Valence (positive) and 

Arousal (negative), and with the activity in units H3 to H5.  

Input to output: By taking together these two groups of relationships we can establish 

qualitative patterns of correlations illustrative of the general model dynamics. Hidden units H1, 

H2, and H5 have a positive correlation with Arousal. H5 correlates negatively with Valence and 

positively with Arousal. H3 and H5 correlate negatively with Arousal and positively with 

Valence. Because Tx, P1, and Ti1 relate positively to H2, they have a positive effect on Arousal. 

The negative correlation with H5 indicates that they correlate positively with Valence. D1 

correlated with the activity in all the hidden units. These correlations were consistently positive 

with Arousal. Finally, Pv1 shows a negative correlation with Valence (through H4).  

In summary, the general strategies for input-output (sound features - affective 

dimensions) mapping found are:  
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Tempo (bpm): Fast tempi are related to high Arousal (quadrants 1 and 2) and positive 

Valence (quadrants 1 and 4). Slow tempi exhibit the opposite pattern;  

Texture (multiplicity): Thicker textures have positive relationships with Valence and 

Arousal (quadrants 1, 2, and 4);  

Dynamics (loudness): Higher loudness relates with positive Arousal;  

Mean Pitch (spectrum centroid): The highest pitch passages relate with high Arousal and 

Valence (quadrants 1, 2, and 4);  

Timbre (sharpness): Sharpness showed positive associations with Arousal and Valence 

(especially the first);  

Pitch variation (STFT Flux): The average spectral variations relate negatively with 

Valence and positively with Arousal, indicating that large pitch changes are accompanied by 

increased intensity and decreased hedonic value.  

Discussion and Conclusions 

In this paper we presented a novel methodology to study the affective experience of 

music. From an emotivist perspective we considered that music can elicit affective experiences 

in the listener, focusing on sound features as a source of information about this process. 

Emotions were represented in terms of two pervasive dimensions of affect: Arousal and Valence. 

By focusing on continuous measurements of emotion we investigated the relationships between 

perceptual features of sound and reports of subjective feelings of emotion.  

Initially we focused on the reduction of psychoacoustic variables used by Korhonen 

(2004), in order to identify a group of variables relevant for our hypothesis, but also to reduce the 

redundancy within the set. The initial simulations allowed us to select 6 variables: dynamics 

(loudness), pitch level (spectral centroid), pitch variations (mean spectral flux), timbre 
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(sharpness), texture (multiplicity), and tempo. Then we conducted a series of simulations to 

“tune” and test our model. We used 486 seconds of music (three pieces) as the sample set (used 

to train the neural network to respond as close as possible to the human participants). A further 

632 s of music (three pieces) were used as the test set. The model did not have any previous 

knowledge about these three pieces. We have shown that our model’s predictions resemble those 

obtained from human participants.  

In terms of modeling technique our model constitutes an advance in several respects. 

First, we are able to incorporate all music variables together in a single model, which permits to 

consider interactions among sound features (overcoming some of the drawbacks from previous 

models Schubert, 1999a). Second, artificial neural networks, as nonlinear models, enlarge the 

complexity of the relationships between music structure and emotional response observed since 

they can operate in higher dimensional spaces (not accessible to linear modeling techniques such 

as the ones used by Schubert, 1999a, and Korhonen, 2004). Third, the excellent generalization 

performance (prediction of emotional responses for novel music stimuli) validated the model and 

supported the hypothesis that psychoacoustic features are good predictors of the subjective 

experience of emotion in music (at least for the affective dimensions considered). Fourth, 

another advantage of our model is the possibility to analyze its dynamics; an excellent source of 

information about the rules underlying input/output transformations. This is a limitation inherent 

in the previous models we wished to address. It is not only important to create a computational 

model that represents the studied process, but also to analyze the extent to which the 

relationships built-in are coherent with empirical research. In our analysis we have identified 

consistent relationships between music features and the emotional response, which support 

important empirical findings (e.g., Davidson, Scherer, & Goldsmith, 2003; Gabrielsson & Juslin, 
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1996; Hevner, 1936; Scherer & Oshinsky, 1977; Thayer, 1986; see Schubert, 1999a, and 

Gabrielsson & Lindström, 2001, for a review).  

Our work presented some evidence supporting the emotivist views on musical emotions. 

We have shown that a significant part of the listener’s affective response can be predicted from 

the psychoacoustic properties of sound. We found that these sound features (to which Meyer, 

1956, referred as “secondary” or “statistical” parameters) encode a large part of the information 

that allows the approximation of human affective responses to music. Contrary to Meyer’s belief, 

our results suggest that “primary” parameters (derived from the organization of secondary 

parameters into higher order relationships with syntactic structure) do not seem to be a necessary 

condition for the process of emotion to arise (at least in some of its components). This also is 

coherent with Peretz et al.’s (1998) study, in which a patient lacking the cognitive capabilities to 

process the music structure (including Meyer’s “primary” parameters), was able to identify the 

emotional tone of music.  

Our research focuses on the expansion of the model. In an attempt to overcome the 

limitations of using a dimensional representation of emotion, we conducted an experiment using 

a similar framework as Schubert (1999a) and Korhonen (2004) but with the additional 

measurement of physiological activity. We intend to improve the description of music’s affective 

experience  by accounting for other components of emotion. Our goal is to assess the relevance 

of physiological cues for the prediction of the affective experience of music. We also will 

examine individual features in listeners, such as music training/expertise and personality traits, 

that may alter affective experience. These are also candidates to be incorporated into the model. 
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Notes  

1 In the screening tests, used to test I.R.s ability to process music, I.R. did not give any 

indication that she could perceive and/or interpret pitch and temporal variations in melodies.  

2 Data available online at http://www.sauna.org/kiulu/emotion.html, courtesy of the 

author.  

3 Although these algorithms are not specific measures of melodic contour, they have been 

used successfully as such in music information retrieval applications (Korhonen, 2004). 

Nevertheless, in this article we refer to this variable as pitch variation because it characterizes 

better the nature of the encoding. Moreover, the relationships between pitch variations and 

emotion were the object of some studies (e.g., Scherer & Oshinsky, 1977), as described in 

Schubert (1999a).  

4 T and Tx were chosen as the variables for the initial features for a few reasons. First is 

that they are the only variable for the sound features that they represent. A second important 

factor is that T and Tx are expected to contain important information about changes in the 

affective experience (Schubert, 1999a).  

5 In the tables we indicate no index when we include all variables from that music feature; 

in this case D indicates D1 and D2.  

6 X and Y are the data sets being compared and 

€ 

I(X,Y ) is the MI score.  

7 Both methods are very similar because they look for linear combinations of variables 

which best explain the data; the essential difference consists of the rules for classification 

(clustering), which is based on distance measures in PCA while LDA explicitly attempts to 

model the difference between the classes.  
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8 This does not mean that we can reduce the number of units in the model, but instead that 

some of these units might vary along similar dimensions. As we’ll see, all the hidden units have 

relevant contributions to at least one of the discriminant functions. 
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Table 1  

Pieces Used in Korhonen’s (2004) Experiment and their Aliases for Reference in this Paper.  

Piece ID Alias Title and Composer Duration Set 

1 Aranjuez 
Concierto de Aranjuez - II. Adagio 

(J. Rodrigo) 
165 s Training 

2 Fanfare 
Fanfare for the Common Man 

(A. Copland) 
170 s Training 

3 Moonlight 

Moonlight Sonata - I. Adagio 

Sostenuto 

(L. Beethoven) 

153 s Test 

4 Morning 

Peer Gynt Suite No 1 - I. Morning 

mood 

(E. Grieg) 

164 s Training 

5 Pizzicato 
Pizzicato Polka 

(J. Strauss) 
151 s Test 

6 Allegro 

Piano Concerto no.1 - I. Allegro 

maestoso 

(F. Liszt) 

315 s Test 

 

Note: The pieces were taken from the Naxos “Discover the Classics” CD 8.550035-36 
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Table 2  

Psychoacoustic Variables Considered for this Study.  

Musical Property Musical Feature Alias 

Loudness Level Dynamics D1 

Short Term Maximum Loudness Dynamics D2 

Power Spectrum Centroid Mean Pitch P1 

Mean STFT Centroid Mean Pitch P2 

Mean STFT Flux Pitch Variation Pv1 

Standard Deviation STFT Centroid Pitch Variation Pv2 

Standard Deviation STFT Flux Pitch Variation Pv3 

Sharpness (Zwicker and Fastl) Timbre Ti1 

Timbral Width Timbre Ti2 

Mean STFT Rolloff Timbre Ti3 

Standard Deviation STFT Rolloff Timbre Ti4 

Beats per Minute Tempo T 

Multiplicity Texture Tx 

 

Note: These variables are indicated within the article by their alias. 
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Table 3  

RMS Error for Each Input Data Set Using a Model with 5 Hidden Units.  

Input Set RMS Train RMS Test Mean RMS 
 Arousal Valence Arousal Valence  

T-Tx-D .06 .06 .07 .08 .07 
T-Tx-D1 .06 .06 .07 .08 .07 
T-Tx-D2 .07 .06 .09 .08 .07 

T-Tx-Ti .07 .07 .09 .09 .08 

T-Tx-Ti1 .07 .06 .08 .09 .08 
T-Tx-Ti2 .11 .07 .10 .08 .09 
T-Tx-Ti3 .11 .07 .14 .12 .11 
T-Tx-Ti4 .11 .08 .13 .09 .10 

T-Tx-P .08 .07 .11 .10 .09 

T-Tx-P1 .07 .07 .11 .08 .08 
T-Tx-P2 .14 .08 .23 .11 .14 

T-Tx-Pv .10 .06 .12 .08 .09 
T-Tx-Pv1 .10 .06 .13 .09 .10 
T-Tx-Pv2 .11 .07 .13 .08 .10 

T-Tx-Pv3 .10 .07 .13 .09 .10 

T-Tx-D1 -P1 –Ti1 -Pv1 .05 .05 .07 .08 .06 
 

Note: The values shown were averaged across 3 simulations for each test case. 
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Table 4  

Comparison Between the Model Outputs and Experimental Data: Root Mean Square (RMS) 

Error and Global Correlation Coefficient (λ).  

Piece RMS error MI (λ) Set 

 Arousal Valence Arousal Valence  

1 .05 .04 .94 .77 Training 

2 .04 .05 .76 .87 Training 

3 .06 .05 .75 .65 Test 

4 .09 .08 .54 .56 Test 

5 .04 .05 .90 .49 Training 

6 .05 .08 .96 .74 Test 
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Table 5  

Factor Structure Matrix: Correlations Between Discriminant Variables and Each Hidden Unit.  

Hidden unit F1 F2 

H1 -.49 -.25 

H2 .37 .90 

H3 -.79 .29 

H4 -.52 .57 

H5 .63 -.60 
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Table 6  

Canonical Correlation Analysis (CCA)  

Canonical Loadings (Input/Hidden)  Canonical Loadings (Hidden/Output) 

Variable var. 1 var. 2 var. 3  Variable var. 1 var. 2 

H1 -.40 -.63 -.03  H1 -.50 .48 

H2 .48 .66 -.44  H2 .98 -.06 

H3 .14 -.89 -.24  H3 -.29 .86 

H4 .16 -.65 -.63  H4 .01 .80 

H5 -.64 .65 .02  H5 -.07 -.97 

T .26 .48 .15  A .77 -.64 

Tx .61 .28 .22  V .26 .97 

D1 .45 .67 .14     

P1 .82 .30 .43     

Ti1 .75 .42 .26     

Pv1 .19 .27 .83     

Canon Cor. .73 .55 .45  Canon Cor. .99 .98 

Pct. 61.1% 23.4% 13.8%  Pct. 56.0% 44.0% 

Wilks’ L. 0.26 0.55 0.78  Wilks’ L. 0.00 0.03 

Sig. .000 .000 .000  Sig. .001 .000 

 

Note: The canonical correlations (interpreted in the same way as the Pearson’s linear correlation 

coefficient) quantify the strength of the relationships between the extracted canonical variates to 

assess the significance of the relationship. To assess the relationship between the original 
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variables (inputs and hidden units activity) and the canonical variables, we also include the 

canonical loadings (the correlations between the canonical variates and the variables in each set),
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Figure Captions  

Figure 1. Neural network architecture and units identification (model used in simulations). 

 

Figure 2. Training data set (Aranjuez, Fanfare and Pizzicato): Arousal and Valence model 

outputs compared with experimental data. 

 

Figure 3. Test data set (Moonlight, Morning and Allegro): Arousal and Valence model outputs 

compared with experimental data. 

 

Figure 4. Canonical Discriminant Functions plot: Each point corresponds to the internal state of 

the model at a particular moment in time. The dot’s color identifies the internal states of the 

model belonging to each of the categories hypothesized (the affective space quadrants), and the 

labels (Q1 to Q4) indicate the correspondent quadrant in the 2DES to which each color group 

belongs to.  

 

	
  


