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Abstract. Spectral analysis — the study of the properties of the eigen-
values associated with some matrix derived from an underlying graph
form — has proven to offer valuable insights in many domains where
graph-theoretic models are prevalent. Abstract argumentation frame-
works (AFs) are, of course, one such model and have provided a unify-
ing basis for defining semantic properties related to concepts of “argu-
ment acceptability”. In this paper we consider the possible benefits of
adopting spectral methods as a tool for analysing argumentation struc-
tures, presenting a preliminary empirical study of semantics in AFs and
properties of the associated spectrum.

Keywords. abstract argumentation frameworks; directed graph spectrum,;
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Introduction

A notable feature of formal analytic treatments of Dung’s seminal model of ab-
stract argumentation from [16] is the focus on discrete methodologies. Typical of
such directions has been the exploitation of graph-theoretic structures in defining
semantics, e.g. Dung [16], Baroni et al. [4,2], and Caminada [12]. Developments
seeking to alleviate issues with the highly abstracted form of Dung’s approach
— such as Amgoud and Cayrol [1], Bench-Capon [7], Brewka and Woltran [9] —
similarly embrace discrete mechanisms. While there are exceptions in which con-
tinuous measures are, in principle, permitted, e.g. within divers forms of so-called
“weighted” frameworks, e.g. Dunne et al. [20], Barringer et al. [5], and, more di-
rectly, in models of probabilistic frameworks, such as Li et al. [29], it could be
argued that the presence of continuous numerical quantities in such is more a
consequence of the problems addressed than a direct analytic tool.

The aim of this article is to consider what scope for determining argumen-
tation framework properties may be provided by considering the spectrum of the
(0,1)-matrix! defined through the directed graph describing the framework. We
review the formal definition of “graph spectrum” subsequently, but for the pur-
pose of this introduction it suffices to note that the spectrum of an n x n matrix

L Although the (0, 1) structure is a natural choice it is often useful — especially within directed
graph forms to make use of “transformed” n X n matrix definitions, one of the most widely used
of these being the so-called Laplace operator, see e.g. Bauer [6].
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is given by an n-tuple (A1, A2, -+, \,) of (possibly) complex values? correspond-
ing to the eigenvalues of the matrix. That is to say for x(A4,A) the polynomial
of degree n in A, (thus x(4,A) = >, ¢;\Y) given® by |AI — A] the n (not
necessarily distinct) solutions of x(A, ) = 0. If A4 is an eigenvalue of the matrix
A, then one may find n-tuples, z, with at least one non-zero component, for which
Az = Aaz. Such n-tuples being referred to as eigenvectors.

At first inspection it may seem that there is little connection between the
rather abstruse notion of eigenvalue (especially when these lie in the complex
plane) and the, apparently, more practically grounded concepts offered within
established ideas of abstract argumentation semantics. In order to motivate our
subsequent study, it is worth reviewing contexts both within computational and
other domains where their analysis is known to provide important benefits.

Undoubtedly one of the best known such applications is found in Web search-
engines and the mechanisms used to rank pages, see Bryan and Leise [11] for
further discussions. Other computational applications building on properties of
eigenvalues within a supporting graph structure include pattern matching, e.g.
Kirby and Shilovich [28], Shi and Malik [32], power control in communication
networks, see e.g. Bertoni [8]. Similarly within empirical studies from the phys-
ical sciences concepts such as the Estrada inder — an invariant defined via the
eigenvalues arising from a graph introduced in Estrada [22] — have been argued
to have important properties with respect to models of molecular structures, see
e.g. Gutman and Graovac [26], Ili¢ and Stevanovié¢ [27]. Finally the use of graph
spectra to inform reasoning about combinatorial structures within graphs is well
established, e.g. Brouwer and Haemers [10].

The exploitation of what are often referred to as “spectral techniques”, in the
light of their use in other domains, may provide some useful insight into aspects
of argumentation frameworks. The principal aim of the current paper is to ex-
plore this potential. Our approach is empirical rather than analytic in nature.
In particular, we consider evidence for links between divers argumentation struc-
tures, e.g. acceptability of arguments with respect to given semantics, existence of
extensions containing some number of arguments, etc. and various spectral mea-
sures defined on the underlying framework, amongst which are invariants such as
the Estrada index, the spectral spread — i.e. the difference between largest and
smallest eigenvalue, etc.

Before proceeding with the technical presentation we elaborate on what the
aims of our empirical investigations are and, of equal importance, what is not
being asserted.

The central conceit motivating this paper may, informally, be expressed in
the following question: do spectral techniques offer a possible basis for studying
structural, especially semantic, properties within abstract argumentation frame-
works? In support of a positive answer to this question, we have noted the nu-
merous examples in other computational domains, particularly those wherein di-

2In special cases, in particular when the underlying matrix [aij] is symmetric, its spectrum
consists of values drawn from R.

3For an n x n real-valued matrix, A we use |A| to denotes its determinant, recalling that a
matrix B for which A X B = B x A = [ exists if and only if |A| # 0.



rected graphs provide a natural modelling formalism, of spectral analysis provid-
ing insight.

Of course, the fact that a given formalism has proven helpful in one arena
of study does not imply it will also prove useful within different but superficially
similar fields. Nevertheless, it would seem reasonable prior to rejecting outright
the notion that “spectral methods have a role within the analysis of argumentation
frameworks”, to consider evidence in its support. In addition, we note recent
studies of argumentation frameworks have explored operations on the matrix
representation as an approach to capturing particular semantics in terms of matrix
properties. Notable here is the recent work of Xu and Cayrol [33].

Thus, our principal aim is not to provide a full analytic or even empirical
study of the relationships between spectra and argumentation but rather to con-
sider connections between one specialized class of AFs and its spectra. For the
class of AFs examined, its behaviour with respect to one argumentation semantics
is well-characterized this characterization does not, however, assist computation-
ally: that is to say, the canonical decision questions become no more tractable. In
principle, however, given what is already known regarding the structural proper-
ties of this class, one might reasonably hope that this could in turn be tied with
spectral properties. We develop this idea in fuller detail within Section 2 below.

We present background to Dung’s abstract AF model and review some ele-
ments regarding linear algebra and matrices in Section 1. In Section 2 we outline
the basis and motivation underlying the structure of the experimental studies, and
report on preliminary findings from these. Conclusions are presented in Section 3.

1. Preliminaries

We begin by recalling the concept of abstract argumentation frameworks and
terminology from Dung [16]

Definition 1 We use X to denote a finite set of arguments with A C X X X the
so-called attack relationship over these. An argumentation framework (AF) is a
pair H = (X, A). A pair (z,y) € A is referred to as ‘y is attacked by =’ or @
attacks y’. Using S to denote an arbitrary subset of arguments for S C X,

S™ =qet {p : F3q€S8 such that (p,q) € A}
ST =4t {p : 3q€S such that (q,p) € A}

We say that: x € X is acceptable with respect to S if for every y € X that attacks
x there is some z € S that attacks y. Given S C X, F(S) C X is the set of all
arguments that are acceptable with respect to S, i.e.

F(S) = {x€X : Vy such that (y,x) € A, 3z€ S s.t. (z,y) € A}

A subset, S, is conflict-free if no argument in S is attacked by any other argu-
ment in S. The C-mazimal conflict-free sets are referred to as naive extensions.
A conflict-free set S is admissible if every y € S is acceptable w.r.t S. S is a
complete extension if S is conflict-free and should x € F(S) then x € S, i.e. every



argument that is acceptable to S is a member of S, so that F(S) = S. The set
of C-maximal complete extensions coincide with the set of C-mazximal admissible
sets these being termed preferred extensions. The set S is a stable extension if S
is conflict free and ST = X\ S. It is a semi-stable extension (Caminada [12]) if
admissible and has S U ST C-mazimal among all admissible sets.

The grounded extension of (X, .A) is defined as the C-minimal complete ex-
tension.

We use o to denote an arbitrary semantics and for a given semantics o and AF,
H(X,A), E;(H) denotes the set of all subsets of X that satisfy the conditions
specified by 0. We say that o is a unique status semantics if |E,(H)| = 1 for every
AF, H, denoting the unique extension by E,(H).

We complete this, brief, overview by describing the three canonical decision
problems that may be instantiated for a given semantics: Verification (VER),
Credulous Acceptance (CA) and Sceptical Acceptance (SA). Formal definitions of
these problems for AFs are presented in Table 1.

Table 1. Decision Problems in AFs

Problem Name Instance Question
Verification (VERs) H(X,A); SCX Is S € E(H)?
Credulous Acceptance (CAq) | H(X, A);z € X | 35S € E;(H) for which z € S?
Sceptical Acceptance (SAq) H(X,A);zeX VT €& (H)isxzeT?

Similarly we have two function problems — CONSTRUCT and COUNT —

Table 2. Function Problems in AFs

Problem Name Instance Computation
Construction (CONSTRUCT,) | H(X,A) | Return some S € E,(H)
Count (COUNT4) H(X,A) Return |E5(H)|

Both of the function problems of Table 2 may be qualified so that instances
specify a given argument x € X. In such cases, one is asked to construct a
representative (resp. to count the number of subsets) in &,(#H) containing the
given argument x.

1.1. Review of Matriz Algebra

For an AF, H = (X, A) with |X| = n we denote by M the n x n (0, 1)-matrix

with entries m;; defined via m;; = 1 if and only if (z;,z;) € A. With C denoting

the complex plane,* A € C is said to be an eigenvalue of M if there is some n x 1

vector v (with v having at least one non-zero component) for which M*"y = . A

witnessing vector v for \ is referred to as an eigenvector with respect to (M* \).
The tuple

4That is pairs (a,b) € R defining the complex number z = a + ib, i = —1.

5Tt is, on occasion, useful to distinguish so-called right eigenvectors w.r.t. (M, ) from left
eigenvectors w.r.t. (M7, \): the former being n x 1 vectors, v with My = v, the latter 1 x n
vectors w for which wM™ = \w.



o(H) = (A, A2, M)

formed by the n eigenvalues of M is called the spectrum (of H). The spectral
radius of M*, denoted p(M™) is

max { [A| : \is an eigenvalue of M* }

where for A = a +ib € C, |A\| = ++/(a? +b?). We assume an ordering of the

spectrum for # such that whenever ¢ < j it holds that |A;| — |A;| > 0 so that

the eigenvalues are considered in a non-decreasing order and || = p(M™). The

largest eigenvalue (that is to say, A1) will be termed the dominant eigenvalue. This

(and on occasion its successor Ag) are the typical focus of spectral treatments.
The Estrada Index of H ([22]), E(H) is given as

EH) = Y @

AET(H)

We briefly recall some well known properties of eigenvalues in,
Fact 1

a. For an nxn-matriz, A, not necessarily (0,1), let |A| denote its determinant,
and xa(x) the polynomial of degree n in x defined through |xI— A| (I being
the (0,1) identity matriz with (i,7) entries equal to 1 if and only if i = j).
The quantity A € C is an eigenvalue of A if and only if X is a root of xa (),
i.e. xa(\) =0.9

b. For (a,b) € R?, \ = a + ib is an eigenvalue of A if and only if X\ = a — ib
s an eigenvalue of A.

c. If A is a symmetric matriz (a;; = aj; for all 1 <4,j < n) then all eigen-
values of A lie in R.

The concepts of eigenvalue and eigenvectors arise with respect to n x n real-valued
matrices: of particular interest are the class of non-negative matrices and the
subset of these defined by positive matrices.

Definition 2 Let A = [a;;] be an n X n real-valued matriz. We say that A is non-
negative if for each i and j (1 <4, j <n)a;; > 0. It is a positive matriz if every
ay; satisfies a;; > 0.

It is obvious for the mapping described that M™ is always a non-negative matrix,
however, an apparent difficulty with this representation is that there is ezactly
one AF, H, that gives rise to a positive matrix: namely the AF in which every
attack between arguments is present (including self-attacks). There are, however,
a large class of 1 whose structural properties allow M to be related to positive
matrices with consequential benefits.

SEigenvalues corresponding to unique roots of xa () are referred to as simple, e.g. A = 1 is
a simple eigenvalue (root) of (z — 1)(x + 1) but not of (x — 1)(z — 1).



Definition 3 Let A be a non-negative n x n matriz. If, for some k € N, A¥ is a
positive matrix, then A is said to be primitive.

If for each i, j (1 <i, j <n) there is some k;; € N for which [A¥i];; >0
then A is said to be irreducible.

With regards to irreducible matrices we have the following classic theorem, which
has been widely applied in many of the applications described in the introduction.

Theorem 1 (Perron-Frobenius Theorem [30,24])

If A is an irreducible n X n matrix then,

PF1. There is (at least one) positive real eigenvalue, A, of A with positive eigen-
vectors, that is for which there are associated eigenvectors x all of whose
components are strictly greater than 0.

PF2. There is a unique positive and dominant eigenvalue )\;‘f, i.e. )\ﬁf = p(A),
and simple.

PF3. If Ax = Az and x is positive then \ = /\I‘;‘f.

PF. If B> A and B # A then p(B) > )\;‘f.7

PF5. If B< A and B # A then p(B) < )\ﬁf

The eigenvector associated with A" where (informally) www is the matrix cor-

responding to web-page connectivity, is central to many web search page-ranking
algorithms, cf. the discussion in Bryan and Leise [11].

Thm. 1 applies to M for a wide-ranging class of AFs, whose importance has
earlier been demonstrated in Baroni et al. [4] and in connection with algorithmic
study of the semantics considered in [2].

Fact 2 If H = (X, A) is strongly-connected® then M™ is irreducible.

To conclude this overview we note that the property stated in Fact 1(b),
allows us to show,

Fact 3 For all H, E(H) € R.

2. Experiment Structure and Motivation

The experimental framework in essence uses randomly generated AFs constructed
so that the AF’s density (that is the ratio |.A|/|X]|) varies. For each randomly
constructed AF within a given class a specific semantic property is assessed and
comparative figures accumulated over all (generated test instances of relevant
size) sharing the property and the average of specific spectral parameters.

For the basis of our empirical overview we focus on three measures: the dom-
inant eigenvalue i.e. \; = p(M™); the second largest such eigenvalue (\2); and,

"For n X n real matrices A, B we say B > A if and only if bi; > a;; for 1 <1i,5 < n, ie. the
comparison is component-wise.

8A directed graph, (X, E) is said to be strongly-connected if for all (z;,z;) € X x X there is
a directed path of links from E starting in z; and ending in x;.



in order, to glean some indication of effects arising from the entire range of o(H),
its Estrada index E(H).

The frameworks of interest are characterized by three parameters, (n,m, k)
(F (mm.k) - denoting those AFs with the structure referred to and having these
parameters set to (n,m, k)) so that the entire space of interest is

(i)

[eS) [eS) k

s- 00 U s
k=1 n=1 m=0

The class of AFs examined have a number of important properties which we first
summarize in terms of their relationship to argumentation semantics.

Al. There is a polynomial-time computable mapping 7 that associates an AF,
7(p) € FmF) for ¢ an n variable, m clause, k-CNF formula. For such
formulae, the framework, 7(¢) has exactly 2n +m + 2 arguments and 4n +
(k4 1)m + 1 attacks.

A2. The AF 7(¢) has a non-empty preferred extension (which is also a stable
extension) if and only if its source CNF formula is satisfiable.

Regarding properties of M7(¥) the important one of interest (in the light of
Thm 1) is that the non-negative matrix M) is irreducible: the AF 7(p) being
strongly-connected.

Before describing the structure of 7(¢) in greater depth, we emphasize that
the random variable involved is not drawn from the space of all AFs per se but
rather a subset of these, namely for |[X|=2n+m+ 2, |[A] =4n+ (k+ 1)m + 1,

: (n,m,k)
P[(X,A) is chosen] = {(; 0 i éﬁ:ji i i("ﬁ"hk‘)
with these likelihoods being essentially uniformly distributed over eligible AFs,
i.e. those in F(m:k) 9

Now, although in general one cannot make inferences about the behaviour
of one class of random combinatorial structures (for example, directed graphs)
as a whole via mappings from a different class of random structures (e.g. k-CNF
formulae), this, of course, is not what we claim to be the focus of our experiments.
It is, rather the case that should there be any observable link between spectral
aspects of the AFs considered and semantic properties then it may well be the
case that such behaviour is evident when the source formulae exhibit specific
characteristics.

In the case of random k-CNF formulae, such characteristics have been vali-
dated (from initial experimental studies) analytically. For further background we
refer the reader to, among others, Chao and Franco [13], Freeman [23], Dunne et
al. [19].

In particular we have,

9Describing the distribution as “uniform” is a slight over-simplification, however, the differ-
ence between “true” uniform and that pertinent to the experiments themselves is insignificant.



Fact 4 Let ¢ be drawn uniformly at random from the space of n variable, m clause
k-CNF formulae where k > 2. For each k, there are constants (0L,0) € R (with
0! < 0%) such that

Letting r = m/n,

Pl is satisfiable] — 1 if r < 6%
Pl is satisfiable] — 0 if r > 0}

The behaviour indicated becoming increasingly pronounced as the sample space
induced by n increases in size. When k = 2, that 65 = 0% = 1 has been proven
analytically by Goerdt [25].

The “threshold” behaviours observed in random k-CNF formulae together
with the properties of the AF constructed by 7 as described in (A2), suggest inves-
tigating the following as an initial stage regarding putative connections between
spectra and semantics:

“Is the pattern whereby random k-CNF with few clauses (relative to n) are
almost certainly satisfiable whilst those with many clauses are not (the transi-
tion from“few” to “many” being witnessed by a constant multiple (6%) of n),
reflected in spectral properties of the AF defined through 777

The cases reported below consider a range of randomly generated 3-CNF us-
ing clause-to-variable ratios ranging from almost certainly satisfiable (r < 4) to
almost surely unsatisfiable (r > 5). Before proceeding to describe these in detail,
we conclude this overview by recalling the transformation from k-CNF formulae,
©, to AFs T(p).

Definition 4 Given a k-CNF, @ over propositional variables Z = {z1,...,2zn}
and clause set {C1,Cy,...,Cp} the standard translation of ¢ is the AF, H, =
(Xpr Ag)

Xy = {@}U{C1,....Cn}U{z1,..., 20} U{~21,..., 72}
Ay, = {{Cj) + 1<i<m} U {{(z,72:), (—z,2) + 1<i<n}
U {(v,C;) : yi is a literal (i.e., z; or —z;) of the clause C;}

The AF, T(p) is formed from H, by adding a new argument, ¥ to X, with Ay,
extended with attacks

{{e,¥)} U U{W,zi), (¢, ~z)}

The standard translation (and its variants such as 7) has formed an important
device in the complexity analysis of decision problems in argumentation semantics
since its introduction by Dimopoulos and Torres [15], e.g. Dunne and Bench-
Capon [18], Dunne [17], Dvordk and Woltran [21], etc. For our purposes the
important property of 7(p),demonstrated in [15] is,

Fact 5 Let ¢ be any CNF formula. The following are equivalent properties respect-
mg Q:



a. The formula ¢ is satisfiable.

b. The argument ¢ in both H, and () is credulously accepted w.r.t. admis-
sible semantics.

c. The AF 7(p) has a non-empty preferred extension.

d. The AF 7(p) has a stable extension.

A series of trials involving the following steps were carried out:

S1. Set m the number of propositional variables.

S2. Set m the number of clauses.

S3. Generate a random m-clause, 3-CNF formula, .
S4. Form the AF, 7(¢).

S5. Determine, for the (irreducible) matrix M7(®)

L1 The dominant eigenvalue, A\; = p(M7(®)).
L2 The second largest eigenvalue, As.
EE The Estrada index, E(7(y))

For reasons of space we focus on the experimental outcomes arising from the
behaviour of the dominant eigenvalue.

Fig. 1 shows (z-axis) varying clause-to-variable ratio from r = 3 (predom-
inantly satisfiable cases) to » = 8 (unsatisfiable) and n ranging from 6 to 16.
The 24 specific cases result in M7(®) of dimensions 62 x 62, 72 x 72 and 82 x 82
corresponding to the three curves indicated.

LambdaMax Against R

400

Barm|

T 3761
E 374
332

33.13233343.53.63.73.339 4 414.24.34.4454.6474.84.9 5 51525.35.45.5565.75859 6 6.16.26.364656.66.76.86.9 7 7.17.27.37.47.57.67.77.87.9 8
R

[ Ms=62 o Ms=72 & Ms=82

Figure 1. Clause Variable Ratio R vs. Dominant Eigenvalue

In Fig. 2, these ratios are compared against the Estrada Index of the corre-
sponding AF.
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Figure 2. Clause Variable Ratio R vs. Estrada Index

There is some indication that the dominant eigenvalue is dependent on . The
close similarity between the outcomes shown for dominant eigenvalue (Fig. 1) and
Estrada index!? (Fig. 2) could be accounted for by the presence of a large number
of very small values in the relevant spectra, so that a significant contribution
to E(7(p)) is from (e + e*2). We note, however, terms defining E(7(¢)) that
arise from smaller eigenvalues are also important so that estimating E(7(y)) as
(eM + e*2) fails to be accurate.

Of course, these outcomes are very far from being able to argue that p(M*) >
« allows some semantic properties of H to be deduced. The behaviour, however,
does suggest (on the basis of established properties of random CNF formulae) a
possible continuation, namely: rather than mapping random 3-CNF to AFs via the
standard translation, construct AFs with varying dominant eigenvalues (a non-
trivial task) and consider semantic properties of the given AF. This direction is
the subject of current work.

3. Conclusions

The use of spectral techniques, while widespread in many fields exploiting graph
models, has had comparatively little attention with respect to potential use in
studying argumentation frameworks. The primary thesis of this article is that a
deeper analysis or the relationship between AF spectra and argumentation prop-
erties, such as extension-based semantics, offers possible insights into (among oth-
ers), algorithm synthesis. In this regard, spectral techniques provide directions
well-suited to the consideration of weighted frameworks.
We conclude by outlining two (out of many) directions for further research.

10 Although not shown here, in fact R vs. A2 exhibits very similar behaviour.



D1.

D2.

Cyclic structures in AFs. Several researchers, e.g. Baroni and Giacomin [3],
Coste-Marquis et al. [14], have observed that directed cycles among argu-
ments (and the parity of such cycles) has a significant influence on argument
acceptability and algorithmic behaviour. A well-known relationship between
the spectrum of a directed graph, D, and the number of “cyclic paths of
length k in D” is that the latter is ..~ ; AF. (Note that this counts non-
simple cycles). Thus, the spectrum of H provides information about cycles
in ‘H. Notice that, as a consequence, returning to the expression of eigen-
values as roots of a polynomial, it follows that the governing polynomial for
acyclic AFs is simply x”, i.e all eigenvalues are 0.

Argument ranking. A growing area of interest within argumentation has
been capturing concepts of argument “strength” and defining “rankings”
of arguments, e.g. Pu et al. [31], Zhao et al. [34]. Many of the problems
with “naive” approaches (e.g. quantifying weakness by the number of at-
tackers ignoring the nature of the attack itself) have parallels with naive
approaches to web page-ranking (e.g. using the number of links to a page
to determine its importance). Pursuing this analogy suggests that applying
consequences of Thm. 1 (the Perron-Frobenius Theorem) — the mechanism
underpinning Google’s page ranking — offers one technique for exploring
argument strength.

In total these and other possibilities suggest that spectral techniques offer, as
these have been found to provide in other graph based arenas, a rich potential for
effective exploitation applied to abstract argumentation frameworks.
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