
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository
Accepted Manuscript

Looking-ahead in Backtracking Algorithms for Abstract Argumentation

Samer Nofal, Katie Atkinson, Paul E. Dunne

PII: S0888-613X(16)30118-9
DOI: http://dx.doi.org/10.1016/j.ijar.2016.07.013
Reference: IJA 7933

To appear in: International Journal of Approximate Reasoning

Received date: 29 October 2015
Revised date: 25 July 2016
Accepted date: 26 July 2016

Please cite this article in press as: S. Nofal et al., Looking-ahead in Backtracking Algorithms for Abstract Argumentation, Int. J. Approx.
Reason. (2016), http://dx.doi.org/10.1016/j.ijar.2016.07.013

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing
this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is
published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

https://core.ac.uk/display/80777482?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.ijar.2016.07.013

Looking-ahead in Backtracking Algorithms for Abstract
Argumentation

Samer Nofal

Computer Science Department, German Jordanian University, Jordan

Katie Atkinson, Paul E. Dunne

Computer Science Department, University of Liverpool, United Kingdom

Abstract

We refine implemented backtracking algorithms for a number of problems re-
lated to Dung’s argumentation frameworks. Under admissible, preferred, com-
plete, stable, semi stable, and ideal semantics we add enhancements, what are
so-called global looking-ahead pruning strategies, to the-state-of-the-art imple-
mentations of two problems. First, we tackle the extension enumeration prob-
lem: constructing some/all set(s) of acceptable arguments of a given argumenta-
tion framework. Second, we address the acceptance decision problem: deciding
whether an argument is in some/all set(s) of accepted arguments of a given argu-
mentation framework. The experiments that we report show that the speedup
gain of the new enhancements is quite significant.

Keywords: Algorithms, Argumentation Semantics, Argument-based reasoning

1. Introduction

Our study is centered around abstract argumentation frameworks (afs) in-
troduced in [12]. afs are an important model for reasoning over conflicting ar-
guments [17]. Applications of afs are likely in diverse domains such as medicine
[16], e-government [3] and agriculture [20]. Argumentation semantics are con-
cerned with defining the acceptable arguments in a given af. There are a
number of semantics for different motivations, see [2] for an excellent review.
Several problems related to argumentation semantics are computationally hard
[14]. In general, algorithms for solving these problems can be either direct or
indirect; see the survey of [9]. Indirect approaches are reduction-based meth-
ods such that the problem at hand is translated to another form to be solved
by an off-the-shelf system. Direct approaches are dedicated algorithms (e.g.
backtracking algorithms) that search for a solution to the input af. In this
work we present improvements over the running-time efficiency of the state-of-
the-art backtracking-based algorithms presented in [19, 18]. We highlight our
contributions in two specific points:

Preprint submitted to International Journal of Approximate Reasoning July 26, 2016

1. Under a number of argumentation semantics (specified shortly) we en-
hance the backtracking search (for sets of acceptable arguments) by a
more powerful pruning strategy, so-called the global looking-ahead strat-
egy.

2. We set out a backtracking-based approach to deciding acceptance under
different semantics, i.e. whether an argument is in some/all set(s) of ac-
ceptable arguments of a given af, without necessarily enumerating all
such sets.

More concisely, we present an improved backtracking-based implementation
for different problems in argumentation frameworks. The source code of the im-
plementation is available at http://sourceforge.net/projects/argtools/.

The main enhancement implemented is the global looking-ahead pruning
strategy. Informally, this strategy enables a backtracking procedure (during
traversing the search space) to regularly look-ahead for dead-ends (i.e. paths
that do not lead to solutions) early enough such that considerable time is saved.
Throughout the paper we precisely illustrate the new looking-ahead strategy.
However, a high-level idea of the global looking-ahead is given in the next section
after we present a necessary background on abstract argumentation frameworks.

2. Preliminaries

We recall the definition of abstract argumentation frameworks from [12].

Definition 1 (Dung’s Argumentation Frameworks). An abstract argumen-
tation framework af is a pair (A,R) where A is a set of abstract arguments and
R ⊆ A×A is a binary relation, so-called the attack relation.

We refer to (x, y) ∈ R as x attacks y (or y is attacked by x). We denote by
{x}− respectively {x}+ the subset of A containing those arguments that attack
(resp. are attacked by) the argument x, and so we use {x}± to represent the set
{x}+ ∪ {x}−; extending this notation in the natural way to sets of arguments,
so that for S ⊆ A,

S− = { y ∈ A : ∃ x ∈ S s.t. y ∈ {x}−}
S+ = { y ∈ A : ∃ x ∈ S s.t. y ∈ {x}+}

We say S ⊆ A attacks T ⊆ A (or T is attacked by S) if and only if
S+ ∩ T �= ∅. S ⊆ A attacks x ∈ A (or x is attacked by S) if and only
if x ∈ S+. Given a subset S ⊆ A, then

• x ∈ A is acceptable w.r.t. S if and only if for every (y, x) ∈ R, there is
some z ∈ S for which (z, y) ∈ R.

• S is conflict free if and only if for each (x, y) ∈ S × S, (x, y) /∈ R.

• S is admissible if and only if it is conflict free and every x ∈ S is acceptable
w.r.t. S.

2

• S is a preferred extension if and only if it is a ⊆-maximal admissible set.

• S is a stable extension if and only if it is conflict free and S+ = A \ S.
• S is a complete extension if and only if it is an admissible set such that
for each x acceptable w.r.t. S, x ∈ S.

• S is a semi stable extension if and only if it is admissible and S ∪ S+ is
maximal (w.r.t. ⊆).

• S is the ideal extension if and only if it is the maximal (w.r.t. ⊆) admissible
set that is contained in every preferred extension.

Preferred, complete and stable semantics are introduced in [12]. Ideal semantics
is presented in [13] whereas semi stable semantics is presented in [24, 5]. Under
these semantics, we are concerned with four problems:

P1. Given an af H = (A,R), enumerate all extensions of H.

P2. Given an af H = (A,R), build an extension of H.

P3. Given an af H = (A,R) and an argument a ∈ A, decide whether a
is in some extension of H. In the literature this is called the credulous
acceptance problem.

P4. Given an af H = (A,R) and an argument a ∈ A, decide whether a is in
all extensions of H. This is called the skeptical acceptance problem.

To provide an overview of the new looking-ahead strategy consider for ex-
ample the af depicted in figure 1. Assume a backtracking procedure tries to
build a preferred extension starting with the set S = {b}. Then, assume the
procedure adds the argument e to S. At this point, our new global looking-
ahead will detect that S is not possible to be expanded to a preferred extension
because b can not be defended anymore; so the procedure will not try to extend
further any set T ⊇ {b, e}, whereas previous backtracking algorithms may not
discover such conflict in an early stage of the search process. Global looking-
ahead is a simple yet powerful mechanism. In the following sections we explain
how to incorporate the global looking-ahead in the state-of-the-art backtrack-
ing algorithms in a cost-effective way such that the overall performance of the
algorithms is significantly improved.

The rest of the paper is structured as follows, in section 3 we present the
algorithms for problems P1 & P2 along with a demonstration on the new en-
hancement. Then in section 4 we give the algorithms for problems P3 & P4
with the new features explained. In section 5 we show experimentally how the
refined algorithms result in a better performance, and lastly we conclude the
paper in section 6.

3

Figure 1: A backtracking procedure using the new looking-ahead will not try any T ⊇ {b, e}.

3. Enhanced looking-ahead in backtracking algorithms for the exten-
sion enumeration problem

We present respectively enhanced algorithms for listing preferred extensions,
admissible sets, complete extensions, stable extensions, semi stable extensions,
and lastly for constructing the ideal extension.

3.1. Preferred Semantics

Before presenting our algorithm in full, we give the reader a high-level notion
of backtracking algorithms. As we are concerned with building extensions (i.e.
subsets of arguments) consider the task of subset enumeration of A = {x, y, z}.
Then, a backtracking search procedure recursively traverses a conceptual binary
tree in which the root node is an empty set {}. Then the procedure forks to a left
(respectively right) node by including (respectively excluding) some argument,
say x. Thus, the left subtree represents all possible subsets S ⊇ {x}, whereas the
right subtree represents all possible subsets T � {x}. See figure 2 that shows
an implicit binary tree for a backtracking procedure constructing subsets of
{x, y, z}. As the problems we tackle in this paper are in general around building
set-inclusion maximal subsets then all of the algorithms of the paper traverse
the binary tree (see figure 2) from left to right to make sure that maximal sets
are visited first, and so maximality check is made more efficient. Referring to
figure 2, to check whether {x} is a subset of other solution subsets all we need
is to compare {x} with the constructed subsets so far. This is true because
the subsets not constructed yet certainly do not include {x}. Concluding a
general description of the backtracking search, we note that a search procedure
backtracks and follows a different path if it detects that a solution can not be
reached by pursuing the current path. Or the procedure simply backtracks to
find another solution.

So far, we discussed argumentation semantics using set-theoretic notations to
define different kind of extensions. Another way to define argumentation seman-
tics is in terms of labellings. A common comprehensive handling of labelling-
based semantics is introduced in [6], where it is shown that extensions and
labellings are interchangeable. In [6] argumentation semantics are characterized
using three-label mapping λ → {IN,OUT,UNDEC}. For example let (A,R)
be an af and S ⊂ A be an admissible set, then the corresponding admissible
labelling λ → {IN,OUT,UNDEC} for S is defined by the set

4

Figure 2: subset enumeration of the set {x, y, z}.

{(x, IN) | x ∈ S} ∪ {(x,OUT) | x ∈ S+} ∪ {(x, UNDEC) | x ∈ A \ (S ∪ S+)}.
In other words the IN label denotes that an argument is in the set S ⊂ A,

the OUT label that an argument is attacked by S and the UNDEC label that
none of the previous holds.

For the purpose of constructing argument extensions, we use a five-label
mapping Lab : A → {IN,OUT,UNDEC,BLANK,MUST OUT}. The extra
labels, BLANK & MUST OUT, are used for algorithmic purposes only. The
BLANK label is the initial label for all arguments in a given af. An argument
x is labeled with MUST OUT if and only if:

1. there is an argument y with Lab(y) = IN such that x ∈ {y}−,
2. and there is no argument z with Lab(z) = IN such that x ∈ {z}+.

The MUST OUT label denotes an argument that must be labeled OUT to
make the set of IN arguments admissible, but does not have yet an attacker
labeled IN. Our algorithm is a depth-first-search backtracking procedure (and
so all of the algorithms presented in the paper) that passes along an abstract
binary tree. The nodes of the tree are different states of a total mapping Lab :
A → {IN,OUT,UNDEC,BLANK,MUST OUT}. In what follows we define
different kinds of states, from now on we refer to these states by labellings. We
start with defining the initial labelling (i.e. the root node of the binary tree.)

Definition 2 (Initial Labelling). Let H = (A,R) be an af and S ⊆ A be the
set of self-attacking arguments. Then the initial labelling of H is defined by the
union: {(x,BLANK) | x ∈ A \ S} ∪ {(y, UNDEC) | y ∈ S}.

Trying to build a set including (respectively excluding) some argument, the
algorithm forks to a left (respectively right) node by what we call transitions.

5

Recall that we build conflict-free sets, and so including an argument in a set
will consequently expel the neighbor arguments out of the set. Hence, a left-
transition involves three actions: labelling some argument with IN, its attackers
with MUST OUT while the arguments it attacks are labeled OUT. A right-
transition is basically equivalent to labelling some argument with UNDEC. In
what follows we precisely define left and right transitions.

Definition 3 (Left-Transition). Let H = (A,R) be an af, Lab : A → {IN,
OUT,UNDEC,MUST OUT,BLANK} be a total mapping and x be an argu-
ment with Lab(x) = BLANK. Then the left-transition of Lab to a new labelling
Lab′ using x is defined by:

1. Lab′ ← Lab.
2. Lab′(x) ← IN .
3. for each y ∈ {x}+, Lab′(y) ← OUT .
4. for each z ∈ {x}− with Lab′(z) �= OUT, Lab′(z) ← MUST OUT .

Definition 4 (Right-Transition). Let H = (A,R) be an af, Lab : A → {IN,
OUT,UNDEC,MUST OUT,BLANK} be a total mapping and x be an ar-
gument with Lab(x) = BLANK. Then the right-transition of Lab to a new
labelling Lab′ using x is defined by:

1. Lab′ ← Lab.
2. Lab′(x) ← UNDEC.

We specify terminal labellings that are associated with leaf nodes of the
search tree. Terminal labellings imply that further transitions are not possible
simply because there is no argument left with the BLANK label.

Definition 5 (Terminal Labellings). Let H = (A,R) be an af and Lab :
A → {IN,OUT,UNDEC,MUST OUT,BLANK} be a total mapping. Then
Lab is a terminal labelling of H if and only if for each x ∈ A, Lab(x) �=
BLANK.

Terminal labellings are either dead ends or solutions. Here we define dead-
end labellings.

Definition 6 (Dead-end Labellings). Let H = (A,R) be an af and Lab :
A → {IN,OUT,UNDEC,MUST OUT,BLANK} be a total mapping. Then
Lab is a dead-end labelling of H if and only if Lab is a terminal labelling and
there is x ∈ A with Lab(x) = MUST OUT .

Now we define solution states. A solution state is actually a labelling that
corresponds to a preferred extension. We define first admissible labellings then
preferred labellings.

Definition 7 (Admissible Labellings). Let H = (A,R) be an af and Lab :
A → {IN,OUT,UNDEC,MUST OUT,BLANK} be a total mapping. Then
Lab is an admissible labelling of H if and only if Lab is terminal and there is
no x with Lab(x) = MUST OUT .

6

Definition 8 (Preferred Labellings). Let H = (A,R) be an af and Lab :
A → {IN,OUT,UNDEC,MUST OUT,BLANK} be a total mapping. Then
Lab is a preferred labelling of H if and only if Lab is an admissible labelling and
{x | Lab(x) = IN} is maximal (w.r.t. ⊆) among all admissible labellings.

We give now algorithm 1 that finds all preferred extensions of a given af
when called with the initial labelling. This is to show a high-level view of
the basic mechanism of all algorithms presented in the paper. Note that all
procedures in this paper are called by reference to the passed parameters, unless
otherwise specified.

Algorithm 1: Enumerate Preferred(H,Lab,E)

input : H is an af,
Lab : A → {IN,OUT,UNDEC,MUST OUT,BLANK},
E ⊆ 2A.

output: Lab : A → {IN,OUT,UNDEC,MUST OUT,BLANK},
E ⊆ 2A.

1 if Lab is a dead-end labelling then
2 return;
3 if Lab is a terminal labelling then
4 if Lab is an admissible labelling then
5 if {x | Lab(x) = IN} is not a subset of any set in E then
6 E ← E ∪ {{x | Lab(x) = IN}} ;

7 return;

8 select any argument x with Lab(x) = BLANK;
9 get a new labelling Lab′ by applying the left-transition of Lab using x;

10 call Enumerate Preferred(H,Lab′, E);
11 get a new labelling Lab′ by applying the right-transition of Lab using x;
12 call Enumerate Preferred(H,Lab′, E);

The behavior of algorithm 1 is depicted in figure 3.
We illustrate that algorithm 1 is sound and complete.

Proposition 1. Let H = (A,R) be an af, Lab be the initial labelling of H and
E = ∅. Then after calling algorithm 1 with Enumerate Preferred(H,Lab,E),
E is the set of all preferred extensions of H.

Proof: Algorithm 1, and so all of the algorithms of the current paper, can
be proved by contradiction. Firstly we note that completeness is guaranteed by
the fact that the algorithm builds every conflict-free subset of A, which follows
directly from definitions 3 & 4. Also note that conflict-free sets are added to
the set E if and only if they are admissible and not a subset of any admissible
set in E. To show the soundness, assume that algorithm 1 reported incorrectly
S preferred. Then, S is not a maximal (w.r.t. ⊆) admissible set. S being not
admissible is a contradiction with the actions of line 4 of the algorithm. If S

7

Figure 3: The behavior of algorithm 1 in listing the preferred extensions of a given af.

8

is admissible but not maximal then there is a preferred extension T ∈ E such
that S ⊆ T . This contradicts with the actions of line 5 together with the fact
that maximal subsets are constructed first. �

Note that algorithm 1 backtracks if a dead-end labelling is reached or it
backtracks to find another preferred extension. To improve the performance of
algorithm 1 we note dead-end labellings can be detected earlier before reaching
them. Therefore, we define a hopeless labelling, expanding of which will lead
only to dead-end labellings.

Definition 9 (Hopless Labelling). Let H = (A,R) be an af and Lab : A →
{IN,OUT,UNDEC,MUST OUT,BLANK} be a total mapping. Then Lab
is a hopeless labelling of H if and only if there is x ∈ A with Lab(x) =
MUST OUT such that for all y ∈ {x}− Lab(y) ∈ {OUT,MUST OUT,UNDEC}.

We give algorithm 2 that backtracks whenever a hopeless labelling is reached.
This mechanism, i.e. detecting (and avoiding) fruitless paths before getting to
a dead-end labelling, is the spirit of the new looking-ahead enhancements.

Algorithm 2: Enumerate Preferred(H,Lab,E)

input : H is an af,
Lab : A → {IN,OUT,UNDEC,MUST OUT,BLANK},
E ⊆ 2A.

output: Lab : A → {IN,OUT,UNDEC,MUST OUT,BLANK},
E ⊆ 2A.

1 if Lab is a hopeless labelling then return;
2 if Lab is a terminal labelling then
3 if Lab is an admissible labelling then
4 if {x | Lab(x) = IN} is not a subset of any set in E then
5 E ← E ∪ {{x | Lab(x) = IN}} ;

6 return;

7 select any argument x with Lab(x) = BLANK;
8 get a new labelling Lab′ by applying the left-transition of Lab using x;
9 call Enumerate Preferred(H,Lab′, E);

10 get a new labelling Lab′ by applying the right-transition of Lab using x;
11 call Enumerate Preferred(H,Lab′, E);

We illustrate the soundness and completeness of algorithm 2.

Proposition 2. Let H = (A,R) be an af, Lab be the initial labelling of H and
E = ∅. Then after calling algorithm 2 with Enumerate Preferred(H,Lab,E),
E is the set of all preferred extensions of H.

Proof: It follows directly from the similarity between algorithm 2 and al-
gorithm 1. The only difference between algorithm 1 and algorithm 2 is that
algorithm 1 backtracks if a dead-end labelling is reached while algorithm 2

9

instead backtracks if a hopeless labelling is reached. Recall that a dead-end
labelling is a terminal labelling in contrary to a hopeless labelling, which is not
necessarily terminal. However, if we further expand a hopeless labelling, then by
its definition we ended up with a dead-end labelling. Note that a labelling Lab
being hopeless implies the fact that there is x with Lab(x) = MUST OUT such
that for all y ∈ {x}− Lab(y) ∈ {OUT,MUST OUT,UNDEC}. Transitioning
such Lab will not change this situation, which is a basic condition of dead-end
labellings. �

We add now two changes to algorithm 2 that also improve the efficiency
of preferred extension enumeration. The first change is about the argument
selection for labelling transition. In all of the presented algorithms we select an
argument x with Lab(x) = BLANK such that x has the maximum number of
neighbors, we call such x an influential argument.

Definition 10 (Influential Arguments). Let H = (A,R) be an af, x ∈ A
and Lab : A → {IN,OUT,UNDEC,MUST OUT,BLANK} be a total map-
ping. Then x is influential if and only if Lab(x) = BLANK and for all y with
Lab(y) = BLANK |{x}±| ≥ |{y}±|.

For the second change of algorithm 2 we note BLANK arguments that are
attacked only by OUT/MUST OUT arguments must be labeled IN because if
the current labelling expanded to an admissible labelling then these arguments
will be acceptable with respect to the constructed admissible set. Thus, we prop-
agate labellings using must-in arguments. A definition of must-in arguments is
given first then followed by a specification for labelling propagation.

Definition 11 (Must-in Arguments). Let H = (A,R) be an af, x ∈ A
and Lab : A → {IN,OUT,UNDEC,MUST OUT,BLANK} be a total map-
ping. Then x is must-in if and only if Lab(x) = BLANK and for all y ∈
{x}− Lab(y) ∈ {OUT,MUST OUT}.
Definition 12 (Labelling Propagation). Let H = (A,R) be an af and Lab :
A → {IN,OUT,UNDEC,MUST OUT,BLANK} be a total mapping. Then
the propagation of Lab is defined by the following actions:

1. if there is no must-in argument, then halt.

2. pick a must-in argument x.

3. Lab(x) ← IN .

4. for each y ∈ {x}+, Lab(y) ← OUT .

5. go to 1.

Now, we present algorithm 3 that includes the two changes, i.e. argument
selection and labelling propagation. The changes implemented in lines 8 & 9.

Here we illustrate that algorithm 3 is sound and complete.

Proposition 3. Let H = (A,R) be an af, Lab be the initial labelling of H and
E = ∅. Then after calling algorithm 3 with Enumerate Preferred(H,Lab,E),
E is the set of all preferred extensions of H.

10

Algorithm 3: Enumerate Preferred(H,Lab,E)

input : H is an af,
Lab : A → {IN,OUT,UNDEC,MUST OUT,BLANK},
E ⊆ 2A.

output: Lab : A → {IN,OUT,UNDEC,MUST OUT,BLANK},
E ⊆ 2A.

1 if Lab is a hopeless labelling then
2 return;
3 if Lab is a terminal labelling then
4 if Lab is an admissible labelling then
5 if {x | Lab(x) = IN} is not a subset of any set in E then
6 E ← E ∪ {{x | Lab(x) = IN}} ;

7 return;

8 propagate Lab;
9 select any x ∈ A such that x is influential;

10 get a new labelling Lab′ by applying the left-transition of Lab using x;
11 call Enumerate Preferred(H,Lab′, E);
12 get a new labelling Lab′ by applying the right-transition of Lab using x;
13 call Enumerate Preferred(H,Lab′, E);

Proof: Algorithm 3 differs from algorithm 2 in two issues: argument selection
(line 9) and labelling propagation (line 8). We note that any argument selec-
tion strategy is valid and does not affect the soundness/completeness of the
algorithm. As to the labelling propagation soundness, assume the algorithm
reported incorrectly S admissible due to an argument x ∈ S that was incor-
rectly added by labelling propagation. This means x is not acceptable to S,
and hence there is y ∈ {x}− with Lab(y) = UNDEC. This is a contradiction,
recall labelling propagation is about including arguments that are attacked only
by OUT/MUST OUT arguments. Lastly, observe that by labelling propagation
we exclude admissible labellings that are not preferred due to the existence of
must-in arguments; hence the algorithm is complete. �

We present now algorithm 4, an optimized version of algorithm 3. There are
three optimization points. For the first point, we drop the recursive call after
a right-transition and put a while structure to do the required loop operation,
see lines 3 & 7. For the second optimization point, we increase the number
of checks for a hopeless labelling. Now we check for a hopeless labelling every
time a labelling changes. Thereby we possibly save a considerable amount of
running-time, see lines 2 & 6 & 8. For the third optimization, we start the
algorithm by propagating labellings. Consider for example an acyclic input af,
then by applying labeling propagation only we get the preferred extension of
the given af.

We believe the three changes do not raise doubts about the soundness (or

11

Algorithm 4: Enumerate Preferred(H,Lab,E)

input : H is an af,
Lab : A → {IN,OUT,UNDEC,MUST OUT,BLANK},
E ⊆ 2A.

output: Lab : A → {IN,OUT,UNDEC,MUST OUT,BLANK},
E ⊆ 2A.

1 propagate Lab;
2 if Lab is hopeless then return;
3 while Lab is not terminal do
4 select any x ∈ A such that x is influential;
5 get a new labelling Lab′ by running the left-transition of Lab using x;
6 if Lab′ is not hopeless then Enumerate Preferred(H,Lab′, E);
7 update Lab by applying the right-transition of Lab using x;
8 if Lab is hopeless then return;

9 if Lab is admissible then
10 if {x | Lab(x) = IN} is not a susbet of any set of E then
11 E ← E ∪ {{x | Lab(x) = IN}};

completeness) of our algorithm. Figure 4 depicts the behavior of algorithm 4 in
listing the preferred extensions of a given af. We do not mean by this example
to show the improvements brought by algorithm 4. In fact, the algorithm of
[19] will behave on this example similarly to algorithm 4.

Now we show the improvement of algorithm 4 over the algorithm of [19]. To
do so, we recall the hopeless labelling characterization of [19].

Definition 13 (Hopeless Labellings of [19]). Let H = (A,R) be an af,
x ∈ A and Lab : A → {IN,OUT,UNDEC,MUST OUT,BLANK} be a total
mapping such that Lab(x) = IN . Then Lab is a hopeless labelling of H due to
x if and only if there is y ∈ {x}− with Lab(y) = MUST OUT such that for all
z ∈ {y}− Lab(z) ∈ {OUT,MUST OUT,UNDEC}.

Now we are ready to give the two differences between algorithm 4 and the
algorithm of [19]:

Diff 1. The algorithm of [19] identifies hopeless labellings by checking the at-
tackers of some argument (that is why we call it a local looking-ahead),
whereas algorithm 4 captures hopeless labellings by investigating every
argument with the label MUST OUT in the framework (that is why we
call it a global looking-ahead).

Diff 2. The algorithm of [19] checks for hopeless labellings less often, only after
left-transitions. In contrast, algorithm 4 checks for hopeless labellings on
three occasions, see lines 2, 6 & 8.

We present an example to show the impact of the new enhancement. Refer-
ring to figure 5, at this state of the given af algorithm 4 stops searching and

12

Figure 4: The behavior of algorithm 4 in listing the preferred extensions of a given af.

13

Figure 5: An example to show the enhancement of algorithm 4 over the state-of-the-art
algorithm presented in [19].

backtracks because the argument a, which is labelled MUST OUT, is attacked
only by the argument f that is OUT. On the contrary, the algorithm of [19] will
continue searching by testing the argument g with the label IN, which is unpro-
ductive. However, we verify experimentally the significance of the enhancement
in section 5.

3.2. Admissible Sets

For listing admissible sets we present algorithm 5, which is a modification
of algorithm 4. There are two differences between algorithm 4 and algorithm 5:

Diff 1. Labelling propagation is not applicable for enumerating admissible sets.

Diff 2. By definition, maximality check is not needed for building admissible sets.

To justify Diff 1, consider an af H = ({a, b, c}, {(a, b), (b, c)}) with Lab =
{(a, IN), (b, OUT), (c, BLANK)}. Then, using the argument c algorithm 5

14

performs a left-transition and then a right-transition to report respectively
{a, c} and {a} admissible. In contrast, algorithm 4 will propagate Lab to
{(a, IN), (b, OUT), (c, IN)}, thereby building the preferred extension {a, c}.
Note that with labelling propagation the admissible set {a} is overlooked.

Algorithm 5: Enumerate Admissible(H,Lab,E)

input : H is an af,
Lab : A → {IN,OUT,UNDEC,MUST OUT,BLANK},
E ⊆ 2A.

output: Lab : A → {IN,OUT,UNDEC,MUST OUT,BLANK},
E ⊆ 2A.

1 while Lab is not terminal do
2 select any x ∈ A such that x is influential;
3 get a new labelling Lab′ by running the left-transition of Lab using x;
4 if Lab′ is not hopeless then Enumerate Admissible(H,Lab′, E);
5 update Lab by applying the right-transition of Lab using x;
6 if Lab is hopeless then return;

7 if Lab is admissible then
8 E ← E ∪ {{x | Lab(x) = IN}};

3.3. Complete Semantics

To present our algorithm for complete extension enumeration, we define first
complete labellings.

Definition 14 (Complete Labellings). Let H = (A,R) be an af and Lab :
A → {IN,OUT,UNDEC,MUST OUT,BLANK} be a total mapping. Then
Lab is a complete labelling of H if and only if Lab is admissible and for each x
with Lab(x) = UNDEC there is y ∈ {x}− with Lab(y) = UNDEC.

Thus, complete labellings go hand in hand with labelling propagation. This
is because a complete labelling can not be reached if a procedure applies a
right-transition using a must-in argument, which is a BLANK argument that is
attacked only by OUT/MUST OUT arguments. Next we prove that a complete
labelling corresponds to a complete extension, i.e. the set of IN arguments of a
given complete labelling is a complete extension.

Proposition 4. Let H = (A,R) be an af and Lab be a complete labelling of
H. Then, the set S = {x | Lab(x) = IN} is a complete extension of H.

Proof: Assume S is admissible but not complete. Then there is x �∈ S with
Lab(x) = UNDEC such that x is acceptable to S. This is in contradiction
to the definition of complete labellings. Similarly, S being not admissible is a
contradiction. �

We give algorithm 6 that lists complete extensions.

15

Consider an af H = ({a, b, c}, {(a, b), (b, a), (b, c), (c, b)}) with Lab = {(a,
UNDEC), (b, OUT), (c, IN)}. Then, {c} is admissible but not complete be-
cause a, which is with Lab(a) = UNDEC, is acceptable w.r.t. {c}. Therefore,
algorithm 6 differs from algorithm 4 in two aspects:

1. Maximality check is not required for listing complete extensions, contrary
to preferred extensions.

2. By the definition of complete labellings, the property that every UNDEC
argument being attacked by an UNDEC argument is essential in identify-
ing complete extensions, see line 9 of algorithm 6.

Algorithm 6: Enumerate Complete(H,Lab,E)

input : H is an af,
Lab : A → {IN,OUT,UNDEC,MUST OUT,BLANK},
E ⊆ 2A.

output: Lab : A → {IN,OUT,UNDEC,MUST OUT,BLANK},
E ⊆ 2A.

1 propagate Lab;
2 if Lab is hopeless then return;
3 while Lab is not terminal do
4 select any x ∈ A such that x is influential;
5 get a new labelling Lab′ by running the left-transition of Lab using x;
6 if Lab′ is not hopeless then Enumerate Complete(H,Lab′, E);
7 update Lab by applying the right-transition of Lab using x;
8 if Lab is hopeless then return;

9 if Lab is a complete labelling then
10 E ← E ∪ {{x | Lab(x) = IN}};

3.4. Stable Semantics

Recall that if S is a stable extension of an af H = (A,R) then S+ = A \ S.
Therefore the UNDEC label is not usable in characterizing stable semantics,
and so stable extensions can be constructed by using a 4-label mapping Lab :
A → {IN,OUT,MUST OUT,BLANK}. Although left-transitions are valid
for listing stable extensions, we note right-transitions are not applicable any
more due to the absence of the UNDEC label. In the following definition we
describe right-transitions for listing stable extensions.

Definition 15 (Right-Transition-Stable). Let H = (A,R) be an af, Lab :
A → {IN,OUT,MUST OUT,BLANK} be a total mapping and x be an argu-
ment with Lab(x) = BLANK. Then the right-transition-stable of Lab to a new
labelling Lab′ using x is defined by:

1. Lab′ ← Lab.

2. Lab′(x) ← MUST OUT .

16

We emphasize that for listing stable extensions we use a 4-label mapping
instead of a 5-label mapping in specifying the initial labelling, left transitions,
terminal labellings, dead-end labellings, hopeless labellings, must-in arguments,
labelling propagation, and influential arguments. These concepts are analogous
to the ones under preferred semantics but again with dropping the UNDEC
label. Now we describe stable labellings.

Definition 16 (Stable Labellings). Let H = (A,R) be an af and Lab : A →
{IN,OUT,BLANK,MUST OUT} be a total mapping. Then Lab is a stable
labelling of H if and only if Lab is terminal and there is no x with Lab(x) =
MUST OUT .

Observe that stable labellings capture stable extensions. Let H = (A,R) be
an af and Lab be a stable labelling of H. Then it follows directly, from the
definition of stable labellings and right-transition-stable, that the set S = {x |
Lab(x) = IN} is a stable extension of H.

For listing stable extensions, we present algorithm 7.

Algorithm 7: Enumerate Stable(H,Lab,E)

input : H is an af,
Lab : A → {IN,OUT,MUST OUT,BLANK},
E ⊆ 2A.

output: Lab : A → {IN,OUT,MUST OUT,BLANK},
E ⊆ 2A.

1 propagate Lab;
2 if Lab is hopeless then return;
3 while Lab is not terminal do
4 select any x ∈ A such that x is influential;
5 get a new Lab′ by running the left-transition of Lab using x;
6 if Lab′ is not hopeless then Enumerate Stable(H,Lab′, E);
7 update Lab by applying the right-transition-stable of Lab using x;
8 if Lab is hopeless then return;

9 if Lab is a stable labelling then
10 E ← E ∪ {{x | Lab(x) = IN}};

To summarize, algorithm 7 is different from algorithm 4 in three issues:

1. By definition, maximality check is not required for listing stable exten-
sions.

2. Algorithm 7 uses a four-label mapping

Lab : A → {IN,OUT,MUST OUT,BLANK},
whereas algortihm 4 applies a five-label mapping

Lab : A → {IN,OUT,MUST OUT,UNDEC,BLANK}.
3. The right-transitions for stable extension enumeration is modified as spec-

ified in definition 15.

17

3.5. Semi Stable Semantics

For listing semi stable extensions we present algorithm 8. It is known that
a subset S is semi stable if it is preferred and S ∪ S+ is maximal among all
preferred extensions (see [2]). Thus, algorithm 8 performs additional steps (on
top of what algorithm 4 does) to find semi stable extensions from the constructed
set of all preferred extensions, see lines 1 - 3 of algorithm 8. Consider an af
H = ({a, b, c}, {(a, b), (b, a), (b, c), (c, c)}) then there are two preferred extensions
{a} & {b} while there is only one semi stable extension, which is {b}.

Algorithm 8: Enumerate Semi Stable(H,Eprf , E)

input : H is an af,
Eprf is the set of the preferred extensions of H,
E ⊆ 2A.

output: E ⊆ 2A.
1 foreach S ∈ Eprf do
2 if �T ∈ Eprf with S ∪ S+ � T ∪ T+ then
3 E ← E ∪ {S};

3.6. Ideal Semantics

Now we present algorithm 9 for constructing the ideal extension. Note that
the ideal extension is the maximal complete extension that is not attacked by
any other complete extension, see [2]. Therefore, algorithm 9 builds the ideal
extension by firstly constructing all complete extensions. Then it picks the ideal
extension from the listed complete extensions, see lines 1- 4. Observe that all
algorithms in this paper are designed to enumerate extensions in descending
order (w.r.t. ⊆) from a maximal extension to a minimal one; hence at line 1
there is no extra work to be done to traverse complete extensions in this order.

Algorithm 9: Build The Ideal Extension(H,Ecom)

input : H is an af,
Ecom is the set of the complete extensions of H.

1 foreach S ∈ Ecom do // descendingly w.r.t. set inclusion

2 if ∀T ∈ Ecom T+ ∩ S = ∅ then
3 report S is the ideal extension;
4 halt;

4. Enhanced backtracking algorithms for the acceptance problem

We present algorithms for deciding credulous and skeptical acceptance prob-
lem under preferred and stable semantics.

18

4.1. Credulous acceptance under preferred, complete and admissible semantics

It is known that an argument is credulously accepted under preferred, ad-
missible and complete semantics if and only if the argument is in an admissible
set. Since we are concerned with deciding an acceptance of some argument,
say x, then the first step is to label x with IN and next to apply the effect on
the neighbor arguments. We define the initial labelling for deciding credulous
acceptance.

Definition 17 (Initial Labelling for Deciding Acceptance). Let H = (A,R)
be an af, x be an argument, S ⊆ A be the set of self-attacking arguments such
that x �∈ S. Then, the initial labelling of H for deciding an acceptance of x is
defined by the union of the sets:
{(x, IN)} ∪
{(y,OUT) | y ∈ {x}+} ∪
{(z,MUST OUT) | z ∈ {x}−} ∪
{(v,BLANK) | v �∈ S ∪ {x}± ∪ {x}} ∪
{(u, UNDEC) | u ∈ S \ {x}±}.

We note a terminal labeling, as defined earlier, is no more applicable to
deciding credulous acceptance. This is because a credulous acceptance of some
argument is affected by some (i.e. not all) of the BLANK arguments, which are
those that have a directed path to the argument in question. For example in
figure 6 the argument g has no effect on the credulous acceptance status of the
argument e. We give below a new definition for terminal labellings.

Definition 18 (Terminal Labellings for Deciding Acceptance). Let H =
(A,R) be an af, x be an argument and Lab : A → {IN,OUT,UNDEC,MUST OUT,BLANK}
be a total mapping. Then Lab is a terminal labelling of H for deciding an ac-
ceptance of x if and only if there is no (y, z) ∈ R with Lab(y) = BLANK and
Lab(z) = MUST OUT .

Another issue with deciding credulous acceptance is the concept of influential
arguments. Earlier we call an argument influential if it is labelled BLANK and
has the maximum number of neighbors among all BLANK arguments. Again,
deciding acceptance (for a given argument) is only affected by the arguments
that have a directed path to the argument in question. So, we are interested
in the influential arguments that have a directed path to the argument in ques-
tion. We modify the definition of influential arguments for deciding credulous
acceptance.

Definition 19 (Influential Arguments for Deciding Acceptance). Let H =
(A,R) be an af, x be an argument, Lab : A → {IN,OUT,UNDEC,MUST OUT,BLANK}
be a total mapping, Q = {u with Lab(u) = BLANK | there is v ∈ {u}+ with Lab(v) =
MUST OUT} and y ∈ Q. Then, y is influential in deciding a credulous accep-
tance of x if and only if for all z ∈ Q |{y}±| ≥ |{z}±|.

19

Figure 6: How algorithm 10 decides a credulous acceptance of e in a given af.

We present algorithm 10 for deciding credulous acceptance, see figure 6 that
shows how algorithm 10 works.

We summarize now the differences between algorithm 10 and algorithm 4:

1. Maximality check is not required for deciding credulous acceptance, recall
algorithm 10 basically builds an admissible set containing the argument
in question.

2. The initial labelling is different, see definition 17.
3. Terminal labellings are different, see definition 18.
4. Influential arguments are different, see definition 19.

It is not hard to see the soundness and completeness of algorithm 10.

Proposition 5. Let H = (A,R) be an af, x be an argument and Lab is the ini-
tial labelling of H for deciding a credulous acceptance of x. Then algorithm 10,
by calling Decide Credulous(H,x,Lab), decides a credulous acceptance of x.

Proof: Directly from similar structure of algorithm 10 and algorithm 4. �

Now we compare algorithm 10 with the algorithm of [19] for deciding cred-
ulous acceptance; there are three differences:

1. The first difference is stylistic only. In [19] the algorithm uses the labeling

Lab : A → {PRO,OPP,OUT,MUST OUT,UNDEC,BLANK}
while algorithm 10 uses

Lab : A → {IN,OUT,MUST OUT,UNDEC,BLANK}.

20

Algorithm 10: Decide Preferred Credulous(H,x, Lab)

input : H is an af,
x is the argument in question,
Lab : A → {IN,OUT,UNDEC,BLANK,MUST OUT}.

output: Lab : A → {IN,OUT,UNDEC,BLANK,MUST OUT}.
1 propagate Lab;
2 if Lab is hopeless then x is not accepted, halt;
3 while Lab is not terminal do
4 select any x ∈ A such that x is influential;
5 get a new labelling Lab′ by running the left-transition of Lab using x;
6 if Lab′ is not hopeless then Decide Credulous(H,x, Lab′);
7 update Lab by applying the right-transition of Lab using x;
8 if Lab is hopeless then return;

9 if Lab is admissible then
10 report x is accepted, x is in the admissible set {y | Lab(y) = IN};
11 halt;

The PRO label is applied in the same way the IN label is used in al-
gorithm 10. The actual difference between the two mappings is the use
of the OPP label. For a built admissible set S, an argument x with
Lab(x) = OPP implies that x ∈ S+ ∩ S− whereas in algorithm 10 such
x is mapped to OUT. Note that in [19] the concern was to compare with
related work that uses PRO & OPP. In this paper we opt to keep labeling
mappings consistent in all algorithms for readability. Again, we stress that
this issue (i.e. which of the two mappings to use) is a choice matter that
has negligible effect on running-time efficiency.

2. Algorithm 10 applies labelling propagation. This is not the case in the
algorithm of [19].

3. Lastly we note that algorithm 10 is enhanced in the same way algorithm 4
is improved over the algorithm of [19] for preferred extension enumeration,
see subsection 3.1.

4.2. Deciding skeptical acceptance under preferred semantics

We present algorithm 11 for deciding skeptical acceptance. The algorithm
tries to build all preferred extensions that include the argument in question; if
no preferred extension is found then the argument is not skeptically accepted.
Otherwise, the algorithm tries to build one preferred extension without the
concerned argument. If such extension is not found then the algorithm concludes
that the argument is accepted. If the algorithm finds one preferred extension not
containing the argument, then it concludes that the argument is not accepted.
In fact algorithm 11 uses algorithm 4 for enumerating extensions. We note
algorithm 4 can be easily modified to list one extension instead of all extensions.

We stress that for deciding skeptical acceptance we build all preferred ex-
tensions that include the argument in question. This is because if an admissible

21

set S for a given af is constructed excluding the argument in question, say x,
but not attacking x, then it is important to verify that S can not be expanded
to an admissible set that includes x. Such verification is straightforward if all
preferred extensions including x are already constructed.

Algorithm 11: Decide Preferred Skeptical(H,x)

input : H is an af,
x is the argument in question.

1 Let Lab be the the initial labeling of H for deciding a skeptical
acceptance of x; // As specified in definition 17

2 Let E be an empty set;
3 call Enumerate Preferred(H,Lab,E) of algorithm 4;// To find all

extensions including x
4 if E is empty then report x not accepted and then halt;
5 reset Lab to be the initial labelling of H as described in definition 2;
6 set Lab(x) to UNDEC;
7 call Enumerate Preferred(H,Lab,E) of algorithm 4;// To find one

extension excluding x
8 if there is S ∈ E such that x �∈ S then x is not accepted else x is accepted;

We recall the algorithm of [19] for deciding skeptical acceptance to com-
pare with algorithm 11. The algorithm of [19] decides that an argument is not
skeptically accepted if it is attacked by a credulous argument. Otherwise the
algorithm of [19] enumerates all extensions. If an extension, without the argu-
ment in question, is constructed then the algorithm stops searching to conclude
that the argument is not accepted; else, the argument is accepted. Apart from
the new looking-ahead strategy, algorithm 11 is just another style of deciding
the skeptical preferred acceptance, which – we believe – is more elegant.

4.3. Deciding credulous acceptance under stable semantics

For credulous acceptance under stable semantics, we present (for the first
time w.r.t. the current backtracking algorithms) algorithm 12 that decides cred-
ulous acceptance without listing all stable extensions. The algorithm tries to
construct one stable extension including the argument in question. If such ex-
tension is found then the algorithm concludes that the argument is accepted.
Otherwise the algorithm decides that the argument is not accepted. In fact,
if the problem is to decide credulous acceptance for all arguments in a given
af then listing all stable extensions is more efficient than using algorithm 12.
Algorithm 12 uses algorithm 7 for enumerating extensions. We note algorithm 7
can be easily modified to list one extension instead of all extensions.

4.4. Deciding skeptical acceptance under stable semantics

For skeptical acceptance under stable semantics, we present (for the first time
w.r.t. the current backtracking algorithms) algorithm 13 that decides skeptical

22

Algorithm 12: Decide Stable Credulous(H,x)

input : H is an af,
x is the argument in question.

1 Let E be an empty set;
2 Let Lab be the the initial labeling of H for deciding a credulous

acceptance of x; // As specified in definition 17

3 call Enumerate Stable(H,Lab,E) of algorithm 7;// To find one

extension including x
4 if E is empty then x is not accepted else x is accepted;

acceptance without listing all stable extensions. The algorithm tries to con-
struct one stable extension excluding the argument in question. If such exten-
sion is found then the algorithm concludes that the argument is not skeptically
accepted; else, the argument is skeptically accepted. Algorithm 13 uses algo-
rithm 7 for enumerating extensions. Again we note algorithm 7 can be easily
modified to list one extension instead of all extensions.

Algorithm 13: Decide Stable Skeptical(H,x)

input : H is an af,
x is the argument in question.

1 Let E be an empty set;
2 Let Lab be the the initial labeling of H as specified in definition 2;
3 set Lab(x) to UNDEC;
4 call Enumerate Stable(H,Lab,E) of algorithm 7;// To find one

extension excluding x
5 if E is empty then x is accepted else x is not accepted;

4.5. Deciding acceptance under other semantics

For deciding a skeptical acceptance of an argument, say x, in a given af
under complete semantics we note that x is accepted if and only if x is in
the grounded extension, see [2]. So having the grounded extension constructed
(using, for example, the algorithm presented in [18]) is enough for deciding the
skeptical acceptance problem under complete semantics.

Under admissible semantics the skeptical acceptance problem is trivially de-
cided such that every argument is not skeptically accepted since the empty set
is admissible. Under semi stable semantics we do not give dedicated algorithms
for deciding the acceptance problem, but obviously algorithm 8 can be used for
deciding skeptical and credulous acceptance.

Under ideal semantics an acceptance of some argument, say x in a given af,
can be decided by using algorithm 6 for listing all complete extensions, which
will be used later to build the ideal extension. During the listing process if a
complete extension is found attacking x, then x is reported not accepted and

23

then the process terminates. Otherwise, an acceptance of x is decided from the
constructed ideal extension.

5. Experimental Study

We performed our experiments on a Linux-based machine (Red Hat Enter-
prise Linux 7) with Intel Core i7-4702MQ 2.2GHz processor along with 4 GB
of system memory. In our experiments we reported elapsed running times (in
seconds) using the time command of Linux. For the lack of non-trivial set of
real instances of afs, we generated random afs by setting attacks (i.e. elements
of R) randomly with some predefined probability. All of the generated afs were
free from self-attacking arguments; our algorithms can easily handle afs with
self-attacking arguments, but we avoided generating them in our experiments
to make sure that we do not end up with trivial afs. In acceptance problem
instances, we decide acceptance for an arbitrary argument; however, for a given
af instance we pick the same argument in every trial. For any problem instance
we set a time limit of 120 seconds; note that we include timeouts in reporting
total running times. The main goal of the experiments is to verify that the new
implementation of the algorithms presented above is more efficient than previ-
ous implementations, which means that the new global looking-ahead strategy
is effective. We implemented four experiments:

EXP 1. We examined how our algorithms perform as |R| changes. Figure 7 illus-
trates the behavior of algorithm 4 running on a set of 1000 afs. These afs
were generated randomly with |A| = 120 in each instance. Every point of
the chart of figure 7 represents the average running time of solving 10 afs.
For every p ∈ {0.01, 0.02, 0.03, ..., 0.98, 0.99, 1.0}, we generated 10 random
afs using p as the probability of any (x, y) being in R for a given af.
More specifically, given a set of arguments A = {a0, a1, ..., a118, a119} then
the probability that ai ∈ A attacks aj ∈ A is equal to p. Back to figure 7,
we observed two facts:

(a) hard (random) afs for algorithm 4 (and analogously for all of the
algorithms of this paper) might be often among those instances with
(approximately) 2|A| < |R| < 20|A|. Nonetheless, we stress that
not every af (with 2|A| < |R| < 20|A|) is necessarily hard to our
algorithm.

(b) the running-time of the algorithms is more sensitive to |R| rather
than |A|, which is also observed in [8, 10].

EXP 2. We compared the running-time of the new algorithm with the previous
algorithm together with two reduction-based solvers: CoQuiAAS and
ArgSemSAT, which achieved first (respectively second) place in the First
International Competition on Computational Models of Argument (IC-
CMA 2015), see [22, 23]. CoQuiAAS is based on constraint program-
ming solvers, while ArgSemSAT is based on satisfiability solvers. In
this experiment we generated 1000 afs with |A| = 120. For every p ∈
{0.01, 0.02, 0.03, ..., 0.98, 0.99, 1.0}, we generated 10 random afs using p

24

Figure 7: The behavior of algorithm 4 where the x-axis represents the probability used in
generating the corresponding solved afs.

Table 1: The results of EXP 2 that verify the new looking-ahead strategy.

problem
new algorithms previous algorithms CoQuiAAS ArgSemSAT

seconds timeouts seconds timeouts seconds timeouts seconds timeouts
P1preferred 241.83 0 11813.50 68 66.80 0 1356.17 0
P1stable 90.35 0 1239.33 0 30.27 0 2302.99 0
P1complete 227.32 0 11715.29 69 48.26 0 1449.92 0
P1admissible 2553.70 7 - - - - - -
P1semi stable 247.68 0 11764.22 70 - - - -
P1ideal 244.70 0 11798.88 70 - - - -
P3preferred 26.06 0 51.97 0 7.21 0 78.47 0
P4preferred 69.81 0 3097.94 21 36.94 0 109.69 0
P3stable 21.54 0 - - 2.06 0 92.51 0
P4stable 50.80 0 - - 6.63 0 118.57 0

as the probability of any (x, y) being in R for a given af. We report the
total running-time of solving the 1000 afs in table 1. We use (-) in the
tables to imply that a problem is not solvable by the respective solver. In
summary, the table verifies that the new algorithms are more efficient than
previous algorithms. In this experiment we note that the total running-
times of ArgSemSAT are larger than the new algorithms. However it does
not contradict the results of ICCMA 2015. This is because most of the
afs of the competition seem to be generated with 2|A| < |R| < 20|A|,
which are hard to our algorithms as we noted earlier.

EXP 3. Comparing with CoQuiAAS and ArgSemSAT, we evaluated the perfor-
mance of the new algorithms using a different set of random afs. We
generated 1000 random afs with |A|=120 as illustrated next. Given a
set of arguments A = {a0, a1, a3, ..., a118, a119}, then the probability that
ai ∈ A attacks aj ∈ A is equal to 0.01 + 0.01 ∗ (i div 2). Thereby the
number of outgoing attacks varies from argument to argument in a given
af. This is in contrary to the generated afs for the other experiments
where in a given af the number of outgoing attacks is almost constant for
all arguments. We report the total running-times of solving the 1000 afs
in table 2. The results show that the evaluated afs are easier to the new
algorithm than the set used in EXP 2. This confirms that hard random

25

Table 2: The results of EXP 3, using a different set of random afs.

problem
new algorithms CoQuiAAS ArgSemSAT

seconds timeouts seconds timeouts seconds timeouts
P1preferred 20.10 0 20.98 0 199.81 0
P1stable 17.32 0 16.93 0 172.38 0
P1complete 27.91 0 13.11 0 233.55 0
P1admissible 28.29 0 - - - -
P1semi stable 28.12 0 - - - -
P1ideal 20.00 0 - - - -
P3preferred 10.00 0 0.89 0 30.88 0
P4preferred 10.09 0 6.02 0 40.19 0
P3stable 10.41 0 7.05 0 30.83 0
P4stable 14.96 0 12.50 0 39.62 0

Table 3: The results of EXP 4, using random afs with |A|=200.

problem
new algorithms CoQuiAAS ArgSemSAT

seconds timeouts seconds timeouts seconds timeouts
P1preferred 1917.12 12 765.81 1 1533.24 1
P1stable 1353.48 6 180.89 0 1745.36 2
P1complete 1906.85 12 316.69 0 1733.77 1
P1admissible 2017.41 14 - - - -
P1semistable 1904.54 12 - - - -
P1ideal 1901.50 12 - - - -
P3preferred 85.16 0 11.40 0 53.70 0
P4preferred 1072.22 6 397.88 1 109.06 0
P3stable 132.67 0 5.24 0 53.19 0
P4stable 289.89 1 44.38 0 124.87 0

afs are often among those with 2|A| < |R| < 20|A|. Note that in this
experiment the average probability used in generating the afs is about
0.3, which means on average |R| > 30|A|.

EXP 4. In contrast to CoQuiAAS and ArgSemSAT, we evaluated how the new
algorithms perform as |A| increases. Therefore, we generated 100 random
afs with |A|=200. For every p ∈ {0.01, 0.02, 0.03, ..., 0.98, 0.99, 1.0}, we
generated an af using p as the probability of any (x, y) being in R. In
table 3 we report the total running-times of solving the 100 afs. As
we expected, the total times of our algorithms go up as the number of
arguments grows.

6. Conclusion

We have presented refined backtracking algorithms for computational prob-
lems under a number of argumentation semantics: preferred, admissible, com-

26

plete, stable, semi stable and ideal semantics. Specifically, we improved the
backtracking search for extensions by using a global looking-ahead strategy
rather than the local looking-ahead strategy used in existing backtracking al-
gorithms [19]. Also, we set a new implementation of a backtracking approach
to deciding the acceptance problem –without necessarily listing all extensions–
under preferred, complete, admissible and stable semantics. All presented algo-
rithms are implemented and the improvements are experimentally verified.

The paper was focused on improving backtracking-based implementations for
abstract argumentation frameworks. This line of research, i.e. backtracking algo-
rithms for afs, was considered by a number of works such as [10, 11, 7, 25, 4, 21].
However, we build on the state-of-art backtracking-based implementations pre-
sented in [19, 18]. There are, of course, different kinds of implementation such
as reduction-based algorithms; see [9] for an excellent review of methods for
implementing computational problems in abstract argumentation. Additionally
the results of ICCMA 2015 [22] show the performance of some of the above al-
gorithms compared with reduction-based methods; our entry in the competition
was under the name “ArgTools”. Although the presented backtracking-based
implementations might not be as efficient as some reduction-based solvers, we
believe it is a matter of time until more intelligent backtracking techniques
will be implemented for abstract argumentation. In this regard, we plan to
investigate implementing backtracking procedures that learn from failures (i.e.
dead-ends). Such learning process is an important factor in the efficient backend
solvers of the successful reduction-based entries of ICCMA 2015, see for exam-
ple [1, 15]. Also in future work we will study different dynamic orderings for
the argument selection. Recall the presented algorithms apply a static ordering,
which depends on the number of neighbor arguments.

Acknowledgements

The authors thank the anonymous reviewers for the helpful comments that
led to an improved presentation. We also thank Stefan Woltran (from Vienna
University of Technology) for the useful discussion via email on issues related to
implementing abstract argumentation. The research of the first author, Samer
Nofal, is supported by the Scientific Research Deanship at German Jordanian
University (project number SIC 18/2015.)

References

[1] Gilles Audemard and Laurent Simon. Predicting learnt clauses quality in
modern SAT solvers. In IJCAI 2009, Proceedings of the 21st International
Joint Conference on Artificial Intelligence, Pasadena, California, USA,
July 11-17, 2009, pages 399–404, 2009.

[2] Pietro Baroni, Martin Caminada, and Massimiliano Giacomin. An intro-
duction to argumentation semantics. Knowledge Eng. Review, 26(4):365–
410, 2011.

27

[3] Trevor J. M. Bench-Capon, Katie Atkinson, and Adam Zachary Wyner.
Using argumentation to structure e-participation in policy making. T.
Large-Scale Data- and Knowledge-Centered Systems, 18:1–29, 2015.

[4] Martin Caminada. An algorithm for computing semi-stable semantics. In
Symbolic and Quantitative Approaches to Reasoning with Uncertainty, 9th
European Conference, ECSQARU 2007, Hammamet, Tunisia, October 31
- November 2, 2007, Proceedings, pages 222–234, 2007.

[5] Martin Caminada, Walter Alexandre Carnielli, and Paul E. Dunne. Semi-
stable semantics. J. Log. Comput., 22(5):1207–1254, 2012.

[6] Martin W. A. Caminada and Dov M. Gabbay. A logical account of formal
argumentation. Studia Logica, 93(2-3):109–145, 2009.

[7] Claudette Cayrol, Sylvie Doutre, and Jérôme Mengin. On decision prob-
lems related to the preferred semantics for argumentation frameworks. J.
Log. Comput., 13(3):377–403, 2003.

[8] Federico Cerutti, Paul E. Dunne, Massimiliano Giacomin, and Mauro Val-
lati. Computing preferred extensions in abstract argumentation: A sat-
based approach. In Theory and Applications of Formal Argumentation -
Second International Workshop, TAFA 2013, Beijing, China, August 3-5,
2013, Revised Selected papers, pages 176–193, 2013.

[9] Günther Charwat, Wolfgang Dvorák, Sarah Alice Gaggl, Johannes Peter
Wallner, and Stefan Woltran. Methods for solving reasoning problems in
abstract argumentation - A survey. Artif. Intell., 220:28–63, 2015.

[10] Yannis Dimopoulos, Vangelis Magirou, and Christos H. Papadimitriou. On
kernels, defaults and even graphs. Ann. Math. Artif. Intell., 20(1-4):1–12,
1997.

[11] Sylvie Doutre and Jérôme Mengin. Preferred extensions of argumentation
frameworks: Query answering and computation. In Automated Reasoning,
First International Joint Conference, IJCAR 2001, Siena, Italy, June 18-
23, 2001, Proceedings, pages 272–288, 2001.

[12] Phan Minh Dung. On the acceptability of arguments and its fundamental
role in nonmonotonic reasoning, logic programming and n-person games.
Artif. Intell., 77(2):321–358, 1995.

[13] Phan Minh Dung, Paolo Mancarella, and Francesca Toni. Computing ideal
sceptical argumentation. Artif. Intell., 171(10-15):642–674, 2007.

[14] Paul E. Dunne. Computational properties of argument systems satisfying
graph-theoretic constraints. Artif. Intell., 171(10-15):701–729, 2007.

28

[15] Niklas Eén and Niklas Sörensson. An extensible sat-solver. In Theory and
Applications of Satisfiability Testing, 6th International Conference, SAT
2003. Santa Margherita Ligure, Italy, May 5-8, 2003 Selected Revised Pa-
pers, pages 502–518, 2003.

[16] Luca Longo and Pierpaolo Dondio. Defeasible reasoning and argument-
based systems in medical fields: An informal overview. In 2014 IEEE 27th
International Symposium on Computer-Based Medical Systems, New York,
NY, USA, May 27-29, 2014, pages 376–381, 2014.

[17] S. Modgil, F. Toni, F. Bex, I. Bratko, C.I. Chesñevar, W. Dvořák, M.A.
Falappa, X. Fan, S.A. Gaggl, A.J. Garćıa, M.P. González, T.F. Gordon,
J. Leite, M. Možina, C. Reed, G.R. Simari, S. Szeider, P. Torroni, and
S. Woltran. The added value of argumentation. In Sascha Ossowski, edi-
tor, Agreement Technologies, volume 8 of Law, Governance and Technology
Series, pages 357–403. Springer Netherlands, 2013.

[18] Samer Nofal, Katie Atkinson, and Paul E. Dunne. Algorithms for ar-
gumentation semantics: Labeling attacks as a generalization of labeling
arguments. J. Artif. Intell. Res. (JAIR), 49:635–668, 2014.

[19] Samer Nofal, Katie Atkinson, and Paul E. Dunne. Algorithms for decision
problems in argument systems under preferred semantics. Artif. Intell.,
207:23–51, 2014.

[20] Nouredine Tamani, Patricio Mosse, Madalina Croitoru, Patrice Buche,
Valérie Guillard, Carole Guillaume, and Nathalie Gontard. An argumenta-
tion system for eco-efficient packaging material selection. Computers and
Electronics in Agriculture, 113(0):174 – 192, 2015.

[21] Phan Minh Thang, Phan Minh Dung, and Nguyen Duy Hung. Towards a
common framework for dialectical proof procedures in abstract argumen-
tation. J. Log. Comput., 19(6):1071–1109, 2009.

[22] Matthias Thimm and Serena Villata. System descriptions of the first in-
ternational competition on computational models of argumentation (ic-
cma’15). CoRR, abs/1510.05373, 2015.

[23] Matthias Thimm, Serena Villata, Federico Cerutti, Nir Oren, Hannes
Strass, and Mauro Vallati. Summary report of the first international compe-
tition on computational models of argumentation. AI Magazine, 37(1):102,
2016.

[24] Bart Verheij. Two approaches to dialectical argumentation: admissible sets
and argumentation stages. In Proceedings of the Eighth Dutch Conference
on Artificial Intelligence, pages 357–368, 1996.

[25] Bart Verheij. A labeling approach to the computation of credulous ac-
ceptance in argumentation. In IJCAI 2007, Proceedings of the 20th In-
ternational Joint Conference on Artificial Intelligence, Hyderabad, India,
January 6-12, 2007, pages 623–628, 2007.

29

