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23 Abstract 
 
 

24 Australia’s tropical waters represent predicted “hotspots” for nitrogen (N2) fixation based on 
 

25 empirical and modelled data. However, the identity, activity and ecology of diazotrophs 
 

26 within  this  region  are  virtually unknown.  By  coupling  DNA  and  cDNA  sequencing  of 
 

27 nitrogenase genes (nifH) with size fractionated N2 fixation rate measurements, we elucidated 
 

28 diazotroph dynamics across the shelf region of the Arafura and Timor Seas (ATS) and 
 

29 oceanic  Coral  Sea  during  Austral  spring  and  winter.  During  spring,  Trichodesmium 
 

30 dominated ATS assemblages, comprising 60% of nifH DNA sequences, while Candidatus 
 

31 Atelocyanobacterium  thalassa  (UCYN-A)  comprised  42%  in  the  Coral  Sea.  In  contrast, 
 

32 during winter the relative abundance of heterotrophic unicellular diazotrophs 
 

33 (δ−proteobacteria and γ-24774A11) increased in both regions, concomitant with a marked 
 

34 decline in UCYN-A sequences, whereby this clade effectively disappeared in the Coral Sea. 
 

35 Conservative estimates of N2  fixation rates ranged from < 1 to 91 nmol L-1  d-1, and size 
 

36 fractionation indicated that unicellular organisms dominated N2  fixation during both spring 
 

37 and winter, but average unicellular rates were up to 10-fold higher in winter than spring. 
 

38 Relative abundances of UCYN-A1 and γ-24774A11 nifH transcripts negatively correlated to 
 

39 silicate  and  phosphate,  suggesting  an  affinity  for  oligotrophy.  Our  results  indicate  that 
 

40 Australia’s   tropical   waters   are   indeed   hotspots   for   N2    fixation,   and   that   regional 
 

41 physicochemical   characteristics   drive   differential   contributions   of   cyanobacterial   and 
 

42 heterotrophic phylotypes to N2 fixation. 
 
 

43 
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47 Running title: Diazotroph dynamics in the tropical Australian ocean 
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49 INTRODUCTION 
 
 

50 Biological nitrogen  (N2)  fixation is a fundamental process  within the  ocean,  helping to 
 

51 alleviate nitrogen limitation, thereby supporting primary production and the sequestration of 
 

52 carbon to the deep sea (Sohm et al. 2011; Karl et al. 2012). N2  fixation is mediated by a 
 

53 diverse  range  of  microorganisms  (Zehr  et  al.,  2003),  including  the  photoautotrophic 
 

54 cyanobacterium  Trichodesmium,  as  well  as  unicellular  cyanobacteria,  diatom-associated 
 

55 cyanobacteria and heterotrophic bacteria, all of which are distributed across tropical and 
 

56 subtropical latitudes (Capone et al., 1997, 2005; Montoya et al., 2004; Moisander et al., 2008, 
 

57 2010, 2014; Foster et al., 2009). 
 
 

58 High rates of marine N2 fixation have been observed in Australia’s tropical waters (Montoya 
 

59 et al., 2004) and N2 fixation rate models predict rates sometimes exceeding 100 µmol m-2 d-1
 

 

60 in this region (Luo et  al., 2014). Additionally, ecosystem models predict cyanobacterial 
 

61 diazotrophs will be abundant in northern Australian waters (Monteiro et al., 2010). Indeed, 
 

62 Trichodesmium has long been recognised as an important member of the phytoplankton in 
 

63 this  region  (Hallegraeff  and  Jeffrey,  1984;  Burford  et  al.,  1995,  2009),  and  unicellular 
 

64 diazotrophs are assumed to be highly active here as well (Montoya et al., 2004). However, 
 

65 compared to the South Pacific Ocean, where unicellular diazotrophs including Candidatus 
 

66 Atelocyanobacterium thalassa (UCYN-A), Crocosphaera watsonii, and the γ-proteobacterial 
 

67 clade γ-24774A11 are known to be abundant (Moisander et al., 2010, 2014), we currently 
 

68 lack  any  detailed  understanding  of  patterns  in  the  diversity,  activity  and  ecology  of 
 

69 diazotrophs within tropical Australian waters. 
 
 

70 We  surveyed  two  distinct  oceanographic  provinces  in  northern  Australia,  which  play 
 

71 important roles in global climate and ocean circulation. These include the semi-enclosed 
 

72 Arafura and Timor shelf sea regions (ATS), which form part of the Indian Pacific Warm Pool 
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73 (Alongi  et  al.,  2011),  and  the  open  ocean  Coral  Sea,  where  the  South  Pacific  western 
 

74 boundary current originates (Qu and Lindstrom, 2002). The ATS is considered autotrophic 
 

75 (McKinnon et al., 2011) and highly productive, particularly during the tropical dry season 
 

76 (Austral winter) (Alongi et al., 2011), despite relatively low surface nitrogen concentrations 
 

77 (< 2 µM nitrate) and no deep-water reservoir of nutrients (Lyne and Hayes, 2005). Annual 
 

78 primary production in the Coral Sea is relatively low and nitrogen limitation is predicted 
 

79 (Condie  and  Dunn,  2006),  with  the  upper  100  m  of  the  water  column  being  highly 
 

80 oligotrophic throughout the year (Lyne and Hayes, 2005). 
 
 

81 N2 fixation has been found to be a significant biogeochemical feature of this important region 
 

82 of  the  ocean  (Montoya  et  al.,  2004;  Luo  et  al.,  2014),  but  we  observed  substantial 
 

83 physicochemical variability, manifest in differential temperature and salinity signatures and 
 

84 nutrient availability, between the ATS and Coral Sea, which may influence the relative 
 

85 importance of diazotroph activity, particularly given the highly dynamic nature of diazotroph 
 

86 communities (Robidart et al., 2014). By combining nifH sequencing and size fractionated 
 

87 15N2  rate  measurements,  we  assessed  spatial  and  temporal  patterns  in  the  diversity and 
 

88 activity of N2 fixing bacteria across this region, with the aim of characterising the dynamics 
 

89 of diazotrophy within this putative global N2 fixation hotspot. 
 
 

90 
 
 

91 
 
 

92 MATERIALS AND METHODS 
 
 

93 Sample Collection 
 
 

94 Sampling was performed during two voyages aboard the R/V Southern Surveyor, consisting 
 

95 of a 2500 km transect from Darwin to Cairns conducted in the Austral spring (October 2012; 
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96 ss2012_t07; Figure 1A), and a 5000 km transect from Broome to Brisbane during the Austral 
 

97 winter (July-August; ss2013_t03; Figure 1B). October marks the beginning of the tropical 
 

98 wet season, while the July-August period corresponds to the middle of the dry season. 
 
 

99 Seawater was sampled daily at dawn during both transects for diazotroph diversity (DNA) 
 

100 and gene expression (cDNA) analyses and N2  fixation rate measurements, as well as mid- 
 

101 afternoon for analysis of diazotroph diversity (DNA) only, resulting in stations separated by 
 

102 100 - 300 km. Samples were collected from the surface at all stations, and the chlorophyll 
 

103 maximum  (cmax)  when  a  fluorescence  peak  was  discernible  in  the  water  column  (see 
 

104 
 
 

105 

Supplementary Information). 

 
 

106 N2 fixation rates 
 
 
 

107 Net 15N2 assimilation (Montoya et al., 1996) was measured to obtain estimates of N2 fixation 
 

108 by the whole community (WC) and < 10 µm unicellular size fraction (USF) of diazotrophs as 
 

109 previously described  (Church  et  al.  2009;  see  Supplementary Information).  Experiments 
 

110 conducted with surface and cmax samples were incubated at in situ temperature and light 
 

111 levels for 24 h and terminated by filtration (see Supplementary Information). Assimilation 
 

112 
 

113 
 

114 
 
 

115 

rates were calculated as previously described (Montoya et al. 1996), based on a theoretical 

enrichment of ca. 8 atom% 15N2, and are considered conservative estimates of N2 fixation due 

to the known incomplete dissolution of the 15N2 gas bubble (Mohr et al., 2010). 

 
 

116 Nucleic acid collection and extraction 
 
 

117 At each station, 4-8 L of seawater was filtered through 0.22 µm Sterivex filter units (EMD 
 

118 Millipore, Billerica, MA, USA). Filters were immediately frozen in liquid nitrogen and stored 
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119 at  -80°C.  Community  DNA  was  extracted  using  the  PowerWater  DNA  Extraction  Kit 
 

120 (MoBio  Laboratories, Carlsbad, CA,  USA) according to the manufacturer’s instructions, 
 

121 
 

122 
 

123 

including an additional 10 min heating step with solution PW1 to ensure complete cell lysis. 

DNA yield was quantified using a Broad Range DNA QubitTM Assay (Invitrogen, Carlsbad, 

CA, USA) with a QubitTM 2.0 Fluorometer. 

 

124 RNA samples were collected from all N2  fixation incubation stations. Seawater (1-2 L) was 
 

125 filtered  through  a  0.22  µm  Durapore membrane  filter  (Millipore)  within  15  minutes  of 
 

126 collection, after which RNAlater solution (300 µl; Ambion, Austin, TX, USA) was added and 
 

127 filters were frozen in liquid nitrogen and stored at -80°C. Total RNA was extracted as 
 

128 previously  described  (Frias-Lopez  et  al.  2008;  Stewart  et  al.  2010;  see  Supplementary 
 

129 
 
 

130 

Information). 

 
 

131 nifH PCR amplification and amplicon pyrosequencing 
 
 

132 A nested PCR protocol was used to amplify an ~359 bp region of the nitrogenase gene, using 
 

133 the degenerate primers: nifH3, nifH4, nifH1 and nifH2 (Zani et al., 2000; Zehr and Turner, 
 

134 2001). Equal volumes of DNA or cDNA were used as template (2 µl) in the first stage of the 
 

135 reaction, and 1 µl of PCR product was used as template in the second stage, using previously 
 

136 described reaction conditions (Messer et al. 2015; see Supplementary Information). 
 
 

137 The nifH amplicons were sequenced using the 454 FLX Titanium pyrosequencing platform 
 

138 (Roche, Molecular Research LP, USA) following an additional 10 PCR cycles with custom 
 

139 barcoded nifH1 and nifH2 primers under the same PCR reaction conditions (Dowd et al. 
 

140 2008; Farnelid et al. 2011, 2013; Messer et al. 2015; Supplementary Information). Raw 
 

141 sequences were quality filtered, whereby sequences with a quality score < 25 and reads < 200 
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142 bp  long  were  removed,  and  clustered  into  operational  taxonomic  units  (OTUs)  at  95% 
 

143 sequence identity (Penton et al., 2013) using UCLUST (Edgar, 2010) and rarefied to the 
 

144 lowest number of sequences per sample (872 sequences) in QIIME (Caporaso et al., 2010). 
 

145 To assign putative taxonomy, representative sequences from nifH OTUs were aligned to the 
 

146 closest sequence in a custom nifH database (updated in April 2014) (Zehr et al., 2003; Heller 
 

147 et al., 2014) and placed in a phylogenetic tree using the maximum parsimony tool in ARB 
 

148 (Westram et al., 2011). Translated nifH sequences were compared to the Ribosomal Database 
 

149 Project’s nifH protein database using FrameBot from the Fungene pipeline (Fish et al., 2013; 
 

150 
 
 

151 

Wang et al., 2013). 

 
 

152 Statistical analyses 
 
 

153 Rarefied sequence data were square-root transformed and a resemblance matrix generated 
 

154 using  Bray-Curtis  similarity.  Environmental  parameters  (Supplementary  Table  1)  were 
 

155 normalised  and  a  resemblance  matrix  generated  using  Euclidean  distance  (Clarke  and 
 

156 Warwick, 2001). Statistical analyses, including analysis of similarities (ANOSIM; Clarke 
 

157 1993), distance based linear modelling (DistLM) and distance-based redundancy analysis 
 

158 (dbRDA) (Legendre and Anderson, 1999; McArdle and Anderson, 2001), were performed in 
 

159 the PRIMER + PERMANOVA software package (v6; Clarke & Warwick 2001). 
 
 

160 In order to identify associations (linear regression, p) between N2  fixation rates, expressed 
 

161 nifH OTUs and environmental parameters, we calculated the maximal information coefficient 
 

162 (MIC) between all variable (n = 255) pairs from all samples (n = 28) using the MINE 
 

163 statistics package (Reshef et al., 2011). Strongly co-linear variables (p > 0.9 or > -0.9) were 
 

164 removed from the analyses. After correction for multiple testing (Benjamini and Hochberg, 
 

165 1995), statistically significant co-occurrence relationships (P < 0.01; MIC > 0.473) between 
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166 pairs of variables were input into Cytoscape v 2.8  (Smoot et al., 2011) and used to generate 
 

167 
 
 

168 
 
 

169 

network diagrams for visualisation. 

 
 

170 RESULTS 
 
 

171 Physicochemical characteristics of the ATS and Coral Sea 
 
 

172 During both spring and winter, ATS waters were warmer, exhibited lower salinities and had 
 

173 higher nutrient concentrations and phytoplankton abundances than Coral Sea waters (Figure 
 

174 1, Supplementary Table 1). Mean sea surface temperature (SST) in the ATS was 27.4 °C in 
 

175 spring and 26.4 °C in winter, compared with 26.5 °C and 24.3 °C in the Coral Sea. During 
 

176 both  sampling  periods,  salinity  increased  from  33.5  to  >  35  PSU  at  a  longitude  of 
 

177 approximately 143 °E, reflecting the transition from the shelf region (ATS) to the open ocean 
 

178 (Coral Sea) (Figure 1). Mean nitrate and phosphate concentrations were greatest during the 
 

179 spring, being 3.5 and 3.8 times greater in the ATS than the Coral Sea respectively, with this 
 

180 discrepancy falling  to  2.6  and  1.8  times  in  the  winter.  N:P  ratios  were  always  <  16:1 
 

181 indicating an excess of phosphate compared to nitrate and ammonium, particularly in surface 
 

182 waters  (Supplementary Table 1). We also observed intra-region nutrient differences, for 
 

183 
 

184 

example silicate concentrations were highest in the eastern region of the ATS in spring (5.97 
 
µmol L-1; SS7), and the western region in winter (5.74 µmol L-1; WS1; Figure 1). Pigment 

 

185 analyses  indicated  that  phytoplankton  communities  within  the  ATS  were  dominated  by 
 

186 microphytoplankton such as diatoms, whereas pico- and nanophytoplankton were relatively 
 

187 
 
 
 

188 

more abundant in the Coral Sea (Supplementary Table 1). 
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189 N2 fixation rates 
 
 
 

190 N2 fixation rates within the WC and USF ranged from < 1 to 91 nmol L-1 d-1, and at times 
 

191 
 

192 
 

193 

displayed substantial variability between the ATS and Coral Sea and between seasons (Figure 

2). During the Austral spring, mean WC N2 fixation rates (± sd.) were 23 ± 32 nmol L-1 d-1 

compared to 6 ± 7 nmol L-1 d-1  in the USF. However, it is notable that the majority of N2 

194 fixation occurred within the < 10 µm size class at three out of four ATS sites (Figure 2A). 
 

195 
 

196 

Within ATS waters there was a peak in N2 fixation at site SS5 where WC rates reached 71 ± 

10 nmol L-1  d-1, significantly greater than the USF rates of 16 ± 3 nmol L-1  d-1  (One-way 

197 ANOVA, Tukey HSD, P < 0.05). This was the only ATS site sampled for N2  fixation rate 
 

198 
 

 
199 

measurements where a cmax was observed, and rates within it were comparatively low at ≤ 4 

nmol L-1 d-1 for both size classes (Figure 2A). 

 

200 
 

201 

Spring N2 fixation rates in the Coral Sea were lower than in the ATS, with mean rates of 13 ± 

5 (WC) and 7 ± 6 nmol L-1 d-1 (USF). However, within this region the contribution made by 

202 
 

203 

unicellular organisms was higher, being ~50% of the total. Rates in Coral Sea surface waters 

reached a maximum of 18 ± 2 (WC) and 14 ± 13 (USF) nmol L-1 d-1 at SS16 (Figure 2A). N2 

204 
 

205 

fixation rates in the cmax were at times higher than in the surface waters, reaching up to 24 ± 
 
0.6 (WC) and 18 ± 5 (USF) nmol L-1 d-1 (Figure 2A). 

 
 

206 A marked increase in N2  fixation was observed in both regions during the Austral winter 
 

207 
 

208 

(Figure 2B). Within ATS surface waters, WC N2  fixation increased almost three-fold in 

winter, with a mean of 60 ± 15 nmol L-1 d-1 across the six sites. Furthermore, the majority of 

209 
 

210 

this activity was attributable to the USF (One-way ANOVA, Tukey HSD, P > 0.05), such that 

mean USF rates increased almost ten-fold in winter to 57 ± 23 nmol L-1 d-1. Maximum rates 

211 recorded in the ATS surface waters were similar to the spring (Figure 2). Only one winter 
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212 ATS site had a discernible cmax and here, in contrast to the spring, N2  fixation was also 
 

213 relatively high (Figure 2B). 
 
 

214 
 

215 

Mean winter N2 fixation rates in the Coral Sea were four and seven-times higher than during 

the spring in the WC (56 ± 32 nmol L-1  d-1) and USF (47 ± 28 nmol L-1  d-1) respectively. 

216 While mean N2 fixation rates were again lower in the Coral Sea than the ATS, the maximum 
 

217 
 

218 

rates recorded in Coral Sea surface waters were the highest observed, reaching 91 ± 7 (WC) 

and 71 ± 18 nmol L-1  d-1 (USF) at station WS16, towards the southern end of the transect 

219 (Figure 2B). During the winter, four Coral Sea sites had discernible cmax, where N2 fixation 
 

220 
 
 

221 

rates were also relatively high (Figure 2B). 

 
 

222 Diazotroph population dynamics in ATS and Coral Sea waters 
 
 

223 A total of 174 nifH OTUs were resolved from our samples. Phylogenetic analysis revealed 
 

224 the presence of photoautotrophic, photoheterotrophic and heterotrophic diazotrophs during 
 

225 both transects, and these clustered with environmental nifH sequences originating from the 
 

226 Pacific and Atlantic Oceans and the South China Sea (Supplementary Figure 1). 
 
 

227 Three nifH OTUs were dominant across the data-set, comprising 67% of total nifH DNA 
 

228 sequences retrieved. These included OTU6956, which was 100% identical to Trichodesmium 
 

229 erythraeum  (IMS  101;  hereafter  Trichodesmium)  in  nifH  amino  acid  (aa)  composition, 
 

230 OTU6352, which was 100% identical in aa composition to UCYN-A and clustered with the 
 

231 UCYN-A1 ecotype (Supplementary Figure 1), and OTU4713, which shared 91% similarity in 
 

232 aa  composition  to  the  γ-proteobacteria  Pseudomonas  stutzeri,  and  clustered  within  the 
 

233 γ−24774A11 clade (Moisander et al., 2008, 2014). Despite the ubiquity of these dominant 
 

234 OTUs, significant partitioning of diazotroph population structure was observed between the 
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235 ATS and Coral Sea (Figure 3; ANOSIM, Global R: 0.471, P < 0.001) and between the 
 

236 Austral spring and winter sampling (ANOSIM, Global R: 0.399, P < 0.001). No significant 
 

237 differences were observed between surface and cmax diazotroph communities. 
 
 

238 During the Austral spring, Trichodesmium comprised 60% of nifH sequences in the ATS, and 
 

239 at some sites reached over 80% of sequences in both the surface and cmax (SS3 and SS5 
 

240 respectively; Figure 3A, B). γ-24774A11 was also detected throughout the ATS during the 
 

241 spring, where it represented 14% of total sequences, and reached a maximum abundance of 
 

242 over 40% of the diazotroph population at SS8 and SS6 (surface and cmax respectively; 
 

243 Figure 3A, Supplementary Figure 2). 
 
 

244 In contrast, the Coral Sea was dominated by the unicellular cyanobacterium UCYN-A during 
 

245 the spring. UCYN-A1 was conspicuously absent from the ATS samples, but comprised 42% 
 

246 of the total nifH sequences in the Coral Sea, with a maximum abundance of 77% at SS16 
 

247 (Figure  3A).  Like  the  ATS,  γ-24774A11  was  also  a  significant  feature  of  Coral  Sea 
 

248 springtime diazotroph populations, where it constituted 21% of sequences, and reached up to 
 

249 34 and 46% of diazotrophs at the surface and cmax at SS13 and SS14 respectively (Figure 
 

250 3A; Supplementary Figure 2). 
 
 

251 During the Austral winter, Trichodesmium still generally dominated throughout the ATS, 
 

252 representing 35% of total nifH sequences, but there was an increase in the relative number of 
 

253 heterotrophic diazotrophs compared to the spring (Figure 3). The putative heterotrophic δ- 
 

254 proteobacterial OTUs 359, 7075, and 811, which shared between 96 and 99% aa identity to 
 

255 Desulfuromonas acetoxidans, collectively comprised 19% of total sequences, and up to 55% 
 

256 of the diazotroph population in ATS surface waters (Figure 3C; Supplementary Figure 2). 
 

257 Notably these OTUs only accounted for 7% of diazotrophs in the ATS during the spring 
 

258 (Supplementary Figure 2). 
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259 Sequences associated with heterotrophic diazotrophs also increased during the winter in the 
 

260 Coral  Sea,  relative  to  the  spring  (Figure  3C,  D).  However,  here  they  were  primarily 
 

261 associated  with  γ-24774A11,  which  represented  34%  of  wintertime  Coral  Sea  nifH 
 

262 sequences, reaching a maximum of 64% of diazotrophs at the surface, and 43% at the cmax 
 

263 (Figure  3C,  D).  In  contrast  to  the  spring  sampling  where  they  dominated,  UCYN-A 
 

264 sequences only comprised 3% of Coral Sea diazotrophs during the winter and remained 
 

265 
 
 

266 

absent from the ATS (Supplementary Figure 2). 

 
 

267 Patterns in nifH expression 
 
 

268 Consistent with DNA profiles, Trichodesmium, UCYN-A1 and γ-24774A11 dominated nifH 
 

269 transcripts across the data-set (Figure 4), and significant differences were observed between 
 

270 transcription profiles from the ATS and Coral Sea (ANOSIM, Global R: 0.595, P < 0.01). In 
 

271 ATS surface waters, Trichodesmium (OTU6956) and γ-24774A11 (OTU4713) dominated 
 

272 nifH transcripts during the spring. Specifically, Trichodesmium comprised up to 86% of 
 

273 transcripts at sites where high rates of N2 fixation attributable to the > 10 µm size class were 
 

274 recorded (SS5, Figure 4A). γ-24774A11 represented up to 52% of transcripts during the 
 

275 
 

276 

spring  transect  (SS8;  Figure  4A),  even  though  unicellular  N2   fixation  was  recorded  at 

relatively low levels (< 1 nmol L-1 d-1; Figure 2A). 

 

277 Within   Coral   Sea   surface   waters   in   spring,   nifH   transcripts   mainly   consisted   of 
 

278 Trichodesmium, UCYN-A and γ-24774A11 (Figure 4A). While Trichodesmium transcripts 
 

279 decreased throughout the Coral Sea, UCYN-A1 transcripts increased from 4 to 39%, towards 
 

280 southern latitudes where the peak in Coral Sea springtime N2 fixation was observed (Figure 
 

281 4A;  Figure  2A).  Transcripts  associated  with  γ-24774A11  were  most  abundant  in  cmax 
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282 
 

283 

samples, where they represented up to 71% of expressed nifH genes (Figure 4B), although 

cmax N2 fixation rates were relatively low (< 1 nmol L-1 d-1; Figure 2A). 

 

284 Similar to the spring sampling, Trichodesmium transcripts were often highly abundant in 
 

285 ATS surface waters during the winter, accounting for 98% of transcripts at station WS3 
 

286 (Figure 4C). Two additional OTUs, OTU1924 and OTU798, also constituted a significant 
 

287 fraction (up to 76 and 67%) of transcripts in the ATS, however these OTUs shared only 20 
 

288 and 25% aa identity respectively with available nifH sequences, with closest matches to 
 

289 members  of  the  Firmicutes.  Interestingly,  transcripts  associated  with  γ-24774A11  and 
 

290 UCYN-A were not detected in the ATS during the winter (Figure 4C) despite high unicellular 
 

291 N2 fixation rates (Figure 2B). 
 
 

292 In contrast to the spring, where cyanobacterial transcripts were dominant, nifH expression in 
 

293 Coral  Sea  surface  waters  was  more  variable  during  the  winter.  For  example,  both  γ- 
 

294 24774A11  and  OTU7453,  which  shared  98%  aa  identity  with  the  cyanobacterium 
 

295 Mastigocladus  laminosus,  contributed  up  to  ~56%  of  nifH  transcripts  at  stations  where 
 

296 unicellular N2 fixation rates were high (WS15 and WS16 respectively; Figure 4C; Figure 2B). 
 

297 Notably, no transcripts associated with UCYN-A ecotypes were detected in Coral Sea surface 
 

298 waters during the winter, but all three ecotypes were present in transcripts from the cmax, 
 

299 along with Trichodesmium, γ-24774A11, and some additional cyanobacterial diazotrophs 
 

300 
 
 

301 

(Figure 4C, D). 

 
 

302 Potential drivers of diazotroph populations and activity 
 
 

303 Analysis of the diazotroph populations using both nifH DNA (Figure 5A) and cDNA (Figure 
 

304 5B) data indicated clear separation between ATS and Coral Sea regions. DistLM identified 
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305 SST and salinity as significant explanatory variables (P < 0.05), reflecting the increase in 
 

306 salinity and decrease in temperature associated with the Coral Sea region (Figure 1, Figure 
 

307 5A, B; Supplementary Table 2). Dissolved silicate and phosphate were also significant (P < 
 

308 0.05) explanatory variables  in  both  the  DNA  and cDNA  DistLM  analysis, as  were the 
 

309 photoprotective and photosynthetic carotenoids alloxanthin and fucoxanthin (P < 0.05), all of 
 

310 which exhibited higher relative concentrations in the ATS compared with the Coral Sea. 
 

311 Interestingly,  dissolved  oxygen  and  divinyl  chlorophyll  a  were  significant  (P  <  0.05) 
 

312 explanatory variables within the nifH DNA model but not within the nifH cDNA model 
 

313 (Figure 5A, B). However for both models, > 50% of the total variation between diazotroph 
 

314 populations remained unexplained. 
 
 

315 Network analysis revealed that N2  fixation by the USF exhibited a significant, but only 
 

316 moderately strong, negative correlation to ammonium concentration (p = -0.43; MIC strength 
 

317 = 0.66; P < 0.01), and was also negatively correlated to the relative abundance of UCYN-A2 
 

318 transcripts (p = -0.33; MIC strength = 0.71; P < 0.01), possibly reflecting the relatively low 
 

319 abundance  of  this  ecotype  (Supplementary  Figure  2).  N2   fixation  was  not  significantly 
 

320 correlated to any other environmental parameters or nifH OTUs. 
 
 

321 A number of nifH OTUs were negatively correlated with phosphate and silicate (Figure 6A, 
 

322 B), including two of the most abundant diazotrophs, OTU4713 from the γ-24774A11 clade, 
 

323 and OTU6352 from the UCYN-A1 ecotype. These γ-24774A11 and UCYN-A1 OTUs were 
 

324 also positively correlated to salinity, to each other, and a range of other nifH OTUS including 
 

325 the  UCYN-A2  (OTU83)  and  UCYN-A3  (OTU2020),  and  other  γ-24774A11  OTUs 
 

326 (OTU2710 and OTU454; Figure 6C, D; Supplementary Figure 1). No significant correlations 
 

327 were observed between nifH transcripts and the concentration of dissolved inorganic nitrogen 
 

328 species. 
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329 
 
 

330 
 
 

331 DISCUSSION 
 
 

332 Identifying the factors that influence the composition and activity of diazotrophs is key to 
 

333 understanding the relative importance of N2 fixation on local and global scales (Zehr and 
 

334 Kudela,  2011;  Robidart  et  al.,  2014).  N2   fixed  by  diverse  diazotrophic  taxa  may  have 
 

335 different fates within the marine environment (Glibert & Bronk 1994, Mulholland 2007, 
 

336 Foster et al. 2011, Karl et al. 2012, Benavides et al. 2013) and therefore characterisation of 
 

337 the composition of active N2 fixing assemblages, combined with size fractionated N2 fixation 
 

338 rates, is necessary to determine the differential contribution of newly fixed N to pelagic 
 

339 ecosystems.  Here  we  report  changes  in  the  biogeographical  distribution  and  activity of 
 

340 diazotrophs across a broad tropical region, which has been identified as a potential global 
 

341 “hotspot” for marine N2  fixation (Montoya et al., 2004; Monteiro et al., 2010; Luo et al., 
 

342 2014). 
 
 
 

343 Previously, Montoya et al. (2004) reported rates of USF N2 fixation up to 480 nmol L-1 d-1 in 
 

344 ATS waters (25 m below surface) during the Austral spring. Herein, we sampled during both 
 

345 spring and winter, at similar latitudes (within 0 - 1 °S) and longitudes (within 0.3 – 2 °E), yet 
 

346 
 

347 

observed maximum USF rates that were substantially less than those reported by Montoya et 

al. (2004). Recently, Raes et al. (2014) reported mean WC rates of ~36 nmol L-1  d-1  within 

348 the westerly region of the ATS during the Austral spring. While not directly comparable due 
 

349 to methodological differences (Wilson et al., 2012), these values are in line with those we 
 

350 measured in the same region during the Austral winter, suggesting relatively high rates are 
 

351 maintained here across seasons. Based on methodological comparisons, there appears to be 
 

352 no clear trend in the level of N2 fixation rate underestimation using the Montoya et al. (1996) 
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353 method, due to multiple factors influencing the dissolution of the 15N2  bubble (Mohr et al., 
 

354 2010; Großkopf et al., 2012). However, comparisons made in the North Pacific and Atlantic 
 

355 Oceans indicate that this method could lead to N2 fixation underestimates of 50 % (Wilson et 
 

356 al. 2012; Benavides et al. 2013), or greater depending on the composition of the diazotroph 
 

357 community (Großkopf et al., 2012). 
 
 

358 
 

359 
 

360 
 

361 

Compared with near surface waters of similar latitudes, including the tropical western South 

Pacific (< 1 nmol L-1 d-1; Moisander et al. 2010), western equatorial Pacific (< 40 nmol L-1 d- 

1; Bonnet et al. 2009), eastern tropical South Pacific (ca. ≤ 1 nmol L-1 d-1; Dekaezemacker et 

al. 2013), and the tropical South Pacific Gyre (≤ 3 nmol L-1 d-1; Raimbault & Garcia 2008), 

362 
 

363 

the maximum conservative rates of N2  fixation reported here during the Austral winter (91 

nmol  L-1   d-1) are  relatively high.  Indeed, our  observations, along with  those previously 

364 reported (Montoya et al., 2004; Raes et al., 2014) support the proposition that the tropical 
 

365 waters  of  northern  Australia  are  a  “hotspot”  of  diazotroph  activity within  the  Southern 
 

366 Hemisphere. However, our data also demonstrate significant temporal and spatial variability 
 

367 in  N2   fixation  in  this  region,  which  we  propose  is  driven  by  the  highly  dynamic  and 
 

368 heterogeneous nature of the resident diazotroph populations. 
 
 

369 Across our data-set, the majority of N2  fixation activity was observed within the USF, and 
 

370 USF N2 fixation rates were greater in winter than spring, with mean rates ten-times higher in 
 

371 the ATS and seven-times greater in the Coral Sea. While it must be noted that Trichodesmium 
 

372 
 

373 

is known to release some of the N2 it fixes as dissolved organic nitrogen (Glibert and Bronk, 

1994), and therefore a proportion of 15N-N2  fixed could have been transferred to the USF 

374 during the incubation, these increased USF rates occurred in parallel to an increase in the 
 

375 relative  abundance  of  δ− and γ−proteobacterial  nifH  sequences  and  γ-24774A11  nifH 
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376 transcripts.  This  highlights  the  potential  importance  of  heterotrophic  diazotrophs  to 
 

377 biogeochemical cycling during the winter across these two quite different regions. 
 
 

378 This  study  provides  the  first  detailed  characterisation  of  active  diazotroph  populations 
 

379 throughout northern Australia. It must be noted that amplicon sequencing approaches can 
 

380 only reconcile relative abundances, and therefore do not allow for the absolute quantification 
 

381 of  colonial  versus  single-celled  diazotrophs,  and  that  it  is  difficult  to  directly  equate 
 

382 diazotroph  communities  to  N2    fixation  activity.  However,  we  identified  a  range  of 
 

383 photoautotrophic, photoheterotrophic and heterotrophic bacteria which share high similarities 
 

384 in nifH sequences to those recovered from similar oceanic environments (e.g. Langlois et al. 
 

385 2005; Bombar et al. 2013; Moisander et al. 2010; Thompson et al. 2014; Moisander et al. 
 

386 2014). 
 
 

387 Despite  its  shelf  sea  nature,  ATS  diazotroph  communities  typically  resembled  those  of 
 

388 similar  latitudes,  such  as  the  tropical  Atlantic  Ocean,  where  Trichodesmium  dominates 
 

389 (Langlois et al., 2005; Foster et al., 2009; Goebel et al., 2010). However, heterotrophic 
 

390 groups  were  also  a  feature  of  ATS  communities,  and  we  observed  a  shift  from 
 

391 γ−proteobacterial to δ-proteobacterial phylotypes between spring and winter. Conversely, 
 

392 Coral Sea communities contained a greater diversity of cyanobacterial phylotypes, including 
 

393 ecotypes of UCYN-A alongside a lower frequency of Trichodesmium sequences, as well as 
 

394 heterotrophic diazotrophs. The composition of Coral Sea diazotroph populations appears 
 

395 similar to those found within the wider tropical and subtropical South Pacific (Moisander et 
 

396 al., 2010, 2014; Halm et al., 2012). However, a seasonal shift in the composition of Coral Sea 
 

397 populations  was  also  observed,  such  that  the  relative  abundance  of  UCYN-A  ecotypes 
 

398 decreased while γ−24774A11 increased between spring and winter respectively. Previously, 
 

399 Moisander  et  al.  (2014)  reported  the  distribution  of  γ−24774A11  to  be  ubiquitous  and 
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400 relatively homogeneous  in  South  Pacific  surface  waters  during  the  Austral  autumn.  By 
 

401 examining spatial and temporal patterns in diazotroph community dynamics, we show that 
 

402 the distribution and relative abundance of γ−24774A11 is variable and that the significance of 
 

403 this group may increase during the Austral winter. 
 
 

404 Surprisingly, no significant differences between surface and cmax diazotroph communities 
 

405 were  observed  in  the  present  study,  with  Trichodesmium,  UCYN-A1  and  γ−24774A11 
 

406 sequences  all  detected  down  to  120  m  below  surface.  Previously,  Trichodesmium  and 
 

407 unicellular  diazotrophs  have  been  shown  to  have  differential  depth  distributions  in  the 
 

408 western South Pacific Ocean, with Trichodesmium and γ−24774A11 most abundant in upper 
 

409 euphotic  zone  waters  and  UCYN-A  more  abundant  deeper  within  the  water  column 
 

410 (Moisander et al., 2010, 2014). We found that all three of these groups were relatively 
 

411 abundant in both surface and cmax waters depending on the sampling region and season. We 
 

412 also detected nifH expression by Trichodesmium 90 m below surface, and UCYN-A1 and 
 

413 γ−24774A11 100 m below surface, indicating that all three groups were active at depth too. 
 

414 This  suggests  that  the  physicochemical  variables  identified  to  be  potential  drivers  of 
 

415 diazotroph distribution in the present study, were most relevant over horizontal rather than 
 

416 vertical scales, which could be due to similarities between surface and cmax physicochemical 
 

417 signatures (Supplementary Table 1). 
 
 

418 The differences in diazotrophic taxa and N2 fixation activity observed between the ATS and 
 

419 Coral  Sea  during  both  seasons  are  likely  attributable  to  the  observed  physicochemical 
 

420 conditions, including higher SST, lower salinities and higher nutrient concentrations in the 
 

421 ATS compared with the Coral Sea, features which are characteristic of the study regions 
 

422 (Condie and Dunn, 2006; Alongi et al., 2011; Ceccarelli, 2011). In particular, SST was 
 

423 identified as a strong indicator of the dominant diazotrophic taxa in our study regions. We 
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424 observed that Trichodesmium dominated communities in the warmer waters of the ATS, 
 

425 displaying maximum relative abundances when SST was > 27 °C, while UCYN-A dominated 
 

426 communities in the cooler Coral Sea waters, although maximum relative abundances of 
 

427 UCYN-A1 transcripts occurred when SST was ~26 °C during the spring. Previously, UCYN- 
 

428 A have been shown to occur at specific temperature optima between 24-26 °C in the western 
 

429 South Pacific (Moisander et al., 2010, 2014). In contrast, during the cooler winter sampling, 
 

430 when  SST  in  the  Coral  Sea  was  closer  to  24  °C,  we  observed  an  increase  in  relative 
 

431 abundances of γ-24774A11, while the relative abundance of UCYN-A decreased 
 

432 substantially. Maximum relative abundances of γ-24774A11 occurred where SST was ~25 
 

433 °C,  and  maximum  γ-24774A11  nifH  expression  occurred  at  25.8  °C,  suggesting  a 
 

434 temperature optima around 25-26 °C for this group. Recently, the occurrence of the  γ- 
 

435 24774A11 clade has been found to be positively, non-linearly correlated with temperature, 
 

436 with maximum abundances associated with surface waters > 26 °C (Moisander et al., 2014). 
 

437 Overall, our data are consistent with the observed distributions of these organisms across a 
 

438 range of oceanic provinces (Capone et al., 1997; Mazard et al., 2004; Langlois et al., 2008; 
 

439 Moisander et al., 2010), and supports previous findings that temperature is an important 
 

440 determinant of diazotroph spatiotemporal dynamics. 
 
 

441 Dissolved  silicate  and  phosphate  concentrations,  and  the  concentration  of  the  pigments 
 

442 alloxanthin  and  fucoxanthin,  were  also  identified  as  significant  discriminating  factors 
 

443 explaining some of the heterogeneity between ATS and Coral Sea diazotroph populations. 
 

444 Whether these correlations indicate a direct or indirect effect on diazotroph abundance and 
 

445 consequently  N2   fixation  is  unclear.  Despite  high  silicate  concentrations  and  pigment 
 

446 indications of diatom dominated phytoplankton communities in the ATS, only one OTU 
 

447 associated  with  the  heterocystous  cyanobacterial  symbiont  of  diatoms,  Richelia,  was 
 

448 observed in our sequence data, and this represented a total of only 6 nifH sequences (data not 
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449 shown). The significant negative correlation observed between silicate and UCYN-A1 and γ- 
 

450 24774A11  transcripts,  and  UCYN-A1  and  fucoxanthin,  could  be  indicative  of  shifting 
 

451 phytoplankton communities between the ATS and Coral Sea, given that UCYN-A is known 
 

452 to live in association with a prymnesiophyte host (Thompson et al., 2012; Hagino et al., 2013; 
 

453 Krupke et al., 2013). Currently, the lifestyle (e.g. free-living, particle attached, or symbiont) 
 

454 of γ-24774A11 remains unknown (Langlois et al., 2015), however it has been speculated that 
 

455 it may depend upon phytoplankton produced dissolved organic carbon (Moisander et al., 
 

456 2012, 2014). While strongly co-linear variables were removed from our analyses, silicate was 
 

457 inversely correlated to salinity and positively correlated to temperature, so therefore it could 
 

458 also be indicative of a water mass tracer rather than a biological causation. 
 
 

459 Conversely,  phosphate  availability  is  known  to  directly  influence  N2   fixation  and  nifH 
 

460 expression in natural populations of diazotrophs (Sañudo-Wilhelmy et al., 2001; Rees et al., 
 

461 2006; Turk-Kubo et al., 2012), as well as the oceanic distribution of diazotrophs in general 
 

462 
 

 
463 

(Sohm et al., 2011). In the present study, phosphate concentrations were relatively high (e.g. 
 
0.27 and 0.26 µmol L-1) in the ATS where Trichodesmium and δ-proteobacterial dominated 

 
464 communities were observed. In contrast, in the Coral Sea, where UCYN-A1 and γ-24774A11 

 

465 
 

466 

dominated communities, phosphate concentrations were comparatively low (e.g. 0.09 and 
 
0.07 µmol L-1). This implies a potential role of phosphate limitation in the shift in diazotroph 

 

467 community composition. UCYN-A1 and γ-24774A11 both appear to be broadly distributed 
 

468 throughout low nutrient marine waters (Thompson et al., 2014; Langlois et al., 2015), and it 
 

469 has been hypothesised that these taxa thrive in oligotrophic conditions (Church et al., 2008; 
 

470 Krupke et al., 2014). In line with our findings in the ATS and Coral Sea, Moisander et al. 
 

471 (2014) recently demonstrated that γ-24774A11 was significantly negatively correlated to 
 

472 soluble reactive phosphorous in the western South Pacific. Taken together, our findings 
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473 suggest that UCYN-A and γ-24774A11 increase in relative abundance and activity when 
 

474 oligotrophic conditions prevail. 
 
 

475 While no correlations were observed between the different diazotrophic groups and oxidised 
 

476 forms of N, USF N2  fixation rates exhibited a moderate negative correlation to ammonium 
 

477 concentration,  although  this  is  unlikely  to  be  due  to  an  inhibitory  effect,  because 
 

478 concentrations observed here were below those expected to inhibit N2 fixation (Knapp, 2012). 
 

479 It has been suggested that tropical Australian waters are constantly nitrogen limited (Condie 
 

480 and Dunn, 2006) and across all sites and depths measured, N:P ratios indicated an excess of 
 

481 phosphate relative to  nitrate and ammonium (N:P  ≤ 6). This may confer a  competitive 
 

482 advantage to diazotrophic taxa (Moutin et al., 2008; Knapp, 2012), and suggests that N2 
 

483 fixation could play an important role in helping to alleviate nitrogen limitation within this 
 

484 region. 
 
 

485 However, it is notable that much of the variability between ATS and Coral Sea nifH profiles 
 

486 remained  unexplained  in  our  analysis,  and  despite  combined  analyses  and  stringent 
 

487 standardisation across samples, some rare OTUs in the DNA appeared highly active in the 
 

488 cDNA, potentially indicating a disconnect between relative organismal abundance and N2 
 

489 fixation  activity at  some  locations.  Therefore,  other factors  may have  had  a  significant 
 

490 influence  on  diazotroph  distribution  and  activity,  for  instance,  dissolved  iron  (dFe) 
 

491 availability is known to limit marine N2 fixation (Sohm et al., 2011) and dFe additions can 
 

492 stimulate diazotrophic activity (Moisander  et  al., 2012;  Turk-Kubo  et  al.,  2012).  In  the 
 

493 western South Pacific ocean, Moisander et al. (2012) demonstrated that the abundances of 
 

494 unicellular  diazotrophs,  including  UCYN-A  and  γ-24774A11,  increased  substantially  in 
 

495 response to dFe amendments, but also exhibited signs of iron and phosphorous co-limitation. 
 

496 While we did not measure dFe throughout the ATS and Coral Sea during the present study, 
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497 previous evidence suggests that concentrations of particulate Fe are relatively high in the 
 

498 Timor region of the ATS (Waite et al., 1995), but dFe concentrations may be relatively low 
 

499 (Sohm  et  al.,  2008),  and  Trichodesmium  colonies  have  been  shown  to  experience  Fe 
 

500 limitation in this region (Kustka et al., 2003). While this indicates that dFe availability could 
 

501 have influenced diazotroph distributions during our study, additional work exploring dFe 
 

502 dynamics, and the potential influence on diazotroph diversity and activity in the ATS and 
 

503 Coral  Sea,  is  required  to  further  understand  the  mechanisms  structuring  diazotroph 
 

504 populations and N2 fixation throughout these regions. 
 
 

505 Despite the relatively low concentrations of dissolved inorganic nitrogen, primary production 
 

506 peaks in both the ATS and Coral Sea during the Austral winter (Lyne and Hayes, 2005; 
 

507 Brewer et al., 2007). It was during this season we observed a substantial increase in both 
 

508 unicellular N2  fixation and the relative abundance of heterotrophic nifH sequences. Primary 
 

509 production estimates from the winter sampling are detailed elsewhere (Robinson et al. In 
 

510 Prep.), however using this data we calculated that wintertime USF in the ATS and Coral Sea 
 

511 could supply up to 46 and 42 % respectively of the N required to sustain biomass assimilation 
 

512 from measured primary production rates (assuming Redfield ratios for particulate matter). 
 

513 Thus we propose that primary production here may be enhanced by the influx of newly fixed 
 

514 N mediated by heterotrophic diazotrophs. While it has been argued that the abundances of 
 

515 heterotrophic N2  fixing bacteria in oceanic environments are not considered sufficient to 
 

516 account for measured rates of N2  fixation (Turk-Kubo et al., 2013), a recent large-scale 
 

517 analysis of the abundance and distribution of marine γ−proteobacterial nifH, indicates that 
 

518 this phylotype could play a significant role in oceanic N2 fixation (Langlois et al., 2015). It 
 

519 must be noted that the fate of N fixed by marine heterotrophic diazotrophs has not yet been 
 

520 determined, and as such direct evidence of production supported by heterotrophic N2 fixation 
 

521 is lacking. However, our limited data suggests that heterotrophic diazotrophs are an important 
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522 component of N2 fixing populations throughout tropical northern Australia, and that they may 
 

523 contribute to relatively high USF rates of N2  fixation. Given the apparent importance of 
 

524 heterotrophic diazotrophs in our study region, future research determining the ultimate fate of 
 

525 N fixed by these heterotrophs will be valuable for estimating the extent to which these 
 

526 populations ultimately influence pools of bioavailable N and support primary production. 
 
 

527 Our study has shown that the composition and activity of diazotrophs in Australia’s tropical 
 

528 waters  are  highly variable  across  shelf  and  open  ocean  environments.  Overall,  our  rate 
 

529 measurements  confirm  that  diazotroph  activity  is  an  important  process  here,  but  our 
 

530 molecular and statistical analyses suggests that the distinct physicochemical characteristics of 
 

531 these waters drive heterogeneity in populations of photoautotrophic, photoheterotrophic and 
 

532 heterotrophic N2  fixing bacteria. This heterogeneity in turn leads to substantial changes in 
 

533 rates of N2  fixation and the subsequent addition of newly fixed N to the ocean. As such, 
 

534 spatial  (even  within  relatively  localized  boundaries)  and  seasonal  shifts  in  diazotroph 
 

535 diversity and activity must  be considered in future regional and global marine N cycle 
 

536 budgets  and  modelling  efforts.  This  can  only  be  achieved  by further  attempts  to  more 
 

537 
 
 

538 
 
 

539 

precisely map marine diazotrophic processes with increased spatiotemporal resolution. 
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795 Figure Legends 
 
 

Figure 1. Physical and chemical characteristics of surface waters sampled within the ATS 

(stations SS1-8; WS1-12) and Coral Sea (stations SS9-17; WS13-18) during the (A) spring 

and (B) winter. Note the different scales within and between A and B. 

 

Figure 2. Mean N2 fixation rates (± s.e., n = 3) performed by the whole community (WC) and 
 

800 < 10 µm unicellular size fraction (USF) at the surface and chlorophyll maxima during the 
 

spring (SS; A) and winter (WS; B) transects. 
 
 

Figure 3. Relative abundance of nifH OTUs recovered from community DNA (% sequences) 

at the surface and chlorophyll maxima during the spring (SS; A & B) and winter (WS; C & 

D) transects. In parentheses are the closest cultured representatives that share ≥ 90% amino 
 

805 acid identity with the detected sequences. 
 
 

Figure 4. Relative abundance of nifH transcripts detected in surface and chlorophyll maxima 

waters for spring (A & B respectively) and winter (C & D respectively) voyages. 

 

Figure 5. Distance based redundancy analysis  constrained by the significant (P < 0.05) 

explanatory environmental variables for the observed variation in nifH composition within 

810 (A) DNA and (B) cDNA profiles in spring (S) and winter (W). 
 
 

Figure 6. Network analysis demonstrating significant (P < 0.01) associations only, between 
 

(A) phosphate concentrations and (B) silicate concentrations, and other environmental 

variables as well as the relative abundance of expressed nifH OTUs. In addition, significant 

(P < 0.01) associations between (C) OTU4713 of the γ-24774A11 clade and (D) OTU6352 

815 Candidatus Atelocyanobacterium thalassa (UCYN-A1), environmental data and the relative 
 

abundance of other expressed nifH OTUs are also shown. Circular nodes = nifH cDNA 

OTUs, the relative abundance is demonstrated by the relative size of the node; diamond 
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nodes = physical variables; square nodes = dissolved inorganic nutrients; hexagon nodes = 

photosynthetic pigments. Positive linear regressions between nodes are denoted by solid 

820 lines, negative linear regressions are dashed. Line colour represents the strength of the test 
 

statistic, MIC: high > 0.8 < 1 = blue; medium > 0.6 < 0.8 = green; low > 0.47 < 0.6 = black. 
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