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Abstract

In this paper, we study the structure of optimal contracts in a banking system
when there is no risk of moral hazard. We consider a risk management problem
under a policy that reduces the excessive risk taking behavior by making all
banks bear part of the risk that they transfer to other parties in the market.
First, we characterize the optimal solutions to the risk management problem,
and, second, we find a necessary and sufficient condition under which the “risk
of the tail events” will not be transferred. In particular, we will study the
problem using two known risk measures, Value at Risk and Conditional Value
at Risk, and will show that in these cases the optimal solutions are in the form
of stop-loss policies.

Key words: Deposit insurance, risk measure and premium, Black-Scholes model,
moral hazard, tail events, Var, CVaR, stop-loss policy

1 Introduction

In the light of the 2008 financial crisis and its aftermath, moral hazard has become an
important issue for the policy makers. It is known that moral hazard is responsible
for the excessive risk taking behavior in the financial markets, either taken by hedge-
funds or banks. A moral hazard is a situation when some agents take excessive
risk because the costs of taking risk will not be felt by them. In other words, a
moral hazard occurs since some agents know the potential costs of taking further
risk will be borne by other agents and/or the government. Perhaps the best example
when the moral hazard happened on a large-scale was during the years preceding
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the financial crisis of 2008. In that period, two matters caused the moral hazard:
first, the extensive use of deposit-insurances, which demotivated hedge-funds to be
cautious about their investments and, second, the securitization of mortgage-backed
securities, which demotivated banks to carefully screen the prospective mortgage
holders. In both cases the problem was to shift the risk of the tail events to other
parties, for example insurance companies or security buyers, without taking any
responsibility about losses. For more reading on the impact of deposit-insurances on
the banking system see Collins (1988), Kaufman (1988), Dowd (1996) and Freixas
and Rochet (2008).

Moral hazard was first discussed by Kenneth Arrow (e.g., Arrow (1971)) as an in-
evitable risk caused by altering a policyholder’s incentives when he/she shifts his/her
risk to an insurer1 (see also Heimer (1989)). However, as discussed above, in a bank-
ing system, moral hazard is mainly caused by a risk taking appetite in the absence
of enough prudential policies. While it is widely believed that the minimum capital
requirement can prevent the excessive risk taking behavior by putting banks’ equity
at risk, Hellmann et al. (2000) showed that it also can encourage further risk taking
by harming banks’ franchise values. They show that, by adding deposit-rate controls
as a regulatory instrument, this problem can be partly avoided. However, after 2008,
it is proven that neither these measures nor any other instruments of prudential con-
trol can prevent another crisis if the excessive risk taking behavior, and so the moral
hazard, cannot be controlled. For a good reading on moral hazard during the 2008
financial crisis see Dowd (2009).2

One way to reduce the excessive risk taking behavior is to reduce the banks’
moral hazard problem by making them pay the real cost of their risk taking. One
can consider two different approaches to achieve this: an ex-ante approach by setting
built-in incentives, and an ex-post approach by penalizing the bad behavior (see
similar discussion for market discipline in Freixas and Rochet (2008)). In this paper,
we set an ex-ante approach, where banks have to bear part of any risk that they
introduce to the system. We consider a bank that wants to optimally shift part of
the risk of its position to the other parties in the market (for instance by writing some
insurance contracts). The regulation makes the bank mutualize both the shifted risk,
which is transferred to the system, and the remaining risk, which is borne by the

1This also applies to the financial crisis of 2008, when the deposit-insurances were blamed as
part of the problem.

2It is worth mentioning that moral hazard have been extensively studied in the literature of game
theory in particular the principal agent problem, and also recently has received some attention in
venture investment studies, which are unrelated to the risk management discussions of the present
paper.
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bank. By adopting a complete market model as in Merton (1977) 3, we will fully
characterize the optimal contracts and we will see that, in particular cases of Value
at Risk (VaR) and Conditional Value at Risk (CVaR), the contracts are in the form
of stop-loss policies. This motivates banks to take care of the smaller amounts of
the risk, which lie below a certain deductible level, and the greater amounts of the
risk (associated with the tail events), which lie above a certain retention level. Next,
we focus our attention on the risk of the tail events. Briefly, a tail event consists of
all scenarios under which the value of the risk variable is above a certain number4.
This is a risk that, in principal, all banks want to transfer to other parties in the
market. We will establish a necessary and sufficient condition under which the risk
of the tail events is not transferred. We will see that, if the banks use VaR or CVaR
to measure their global risk, the risk of the tail events will not be transferred to
the system. Remarkably, unlike Merton (1977) where the insurance contracts are
considered with unbounded retention levels, because they are in the form of put
options, our no-moral-hazard assumption puts a limit on the upper values of any
contract. The results of this paper can properly be linked to the systemic risk. As a
matterof fact deposit insurances are just financial tolls that transfer the risk of losses
to other parties in the market, and therefore, cannot mitigate the risk of the system.
This means that the tail events cannot be avoided unless the excessive risk taking
behavior is demotivated within an ex-ante (or ex-post) policy, which will be studied
in this paper.

It is worth mentioning that the relation between moral hazard and the risk of the
tail events has previously been studied in the literature of insurance. For instance,
Froot (2001) shows that the insurance companies are reluctant to buy reinsurance
contracts for catastrophe risks, and Bernard and Bernard and Tian (2009) give some
theoretical justification for this behavior.

The rest of the paper is organized as follows: Section 2 introduces the mathemat-
ical notions and notations that we use in this paper. In Section 3 the general set-up
of our risk management problem will be presented. In Section 4 we will present
the solution to the risk management problem under our no-moral-hazard prudential
policies. We also provide criteria with which the regulator can make sure that the
risk of the tail events is not transferred.

3In Merton (1977) the author prices a deposit-insurance like an option
4The concept of the tail events (not exactly with the same name) has been considered in Adrian

and Brunnermeier (2011) for studying the systemic risk.
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2 Preliminaries and Notations

Let (Ω, P,F) be a probability space, where Ω is the “states of the nature”, P is
the physical probability measure and F is the σ- field of measurable subsets of Ω.
Let p, q ∈ [1,∞] be two numbers such that 1/p + 1/q = 1. We denote the space
of all random variables with p’th finite moment with Lp, i.e., Lp = {X : Ω → R :
E (|X|p) <∞}, where E denotes the expectation w.r.t P .

In this paper, we consider only two period of time, 0 and T , where 0 represents
the beginning of the year, when a contract is written, and T represents the end of the
year, when liabilities are settled. Every random variable represents losses at time T .
For any X ∈ LP , the cumulative distribution function associated with X is denoted
by FX .

2.1 Distortion Risk Measures

Let g be a non-decreasing real function from [0, 1] to [0, 1] such that g(0) = 1−g(1) =
0. A distortion risk measure % (see for example Wang et al. (1997) and Sereda et al.
(2010)) is a mapping from Lp to R ∪ {∞} and is introduced as5

%(X) =

0ˆ

−∞

(g(SX(t))− 1) dt+

∞̂

0

g(SX(t))dt, (1)

where SX = 1−FX is the survival function associated with X. In the literature, g is
known as the distortion function. A more convenient representation for a distortion
risk measure can be found in terms of Value at Risk. Let Π(x) = 1− g(1− x). By a
simple change of variable, one can see that the distortion form (1) can be represented
as

%(X) =

ˆ 1

0

VaRt(X)dΠ(t), (2)

where
VaRα(X) = inf{x ∈ R|P (X > x) ≤ 1− α}.

A popular example of a distortion risk measure is Value at Risk (VaR), where Π(t) =
1[α,1](t), for a confidence level 1 − α. A Conditional Value at Risk (CVaR) is a

5This form is a bit more general than the usual definition of a distortion risk measure, since we
assumed for the moment that X could be any member of Lp. Actually, this is a particular form
of the Choquet integral, when the capacity v is given by v(S) = g(P (S)), for any measurable set
S ∈ F .
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distortion risk measure whose distortion function is given by Π(t) = t−α
1−α1[α,1](t), and

can be represented as

CVaRα(X) =
1

1− α

ˆ 1

α

VaRt(X)dt. (3)

In the sequel, we denote sometimes the risk measure % in (2) with %Π to show its
connection with Π.

A popular example of a risk premium is a Wang’s premium introduced by the
following distortion function known as Wang’s transformation

gβ(x) = Φ
(
Φ−1(x) + β

)
, (4)

where β ∈ R is a real number and Φ is the CDF of the normal distribution with
the mean equal to zero and the standard deviation equal to one. Actually, the
Wang’s premium is used to price a risk variable, however, it is also an appropriate
risk measure if risk is regarded as the price of the risky position. The parameter
β represents the level of risk aversion of an agent, and also represents the agents
expectations from the market risk-premium. That is why we call it the “expected
market risk-premium”. It is not very difficult to see that Πβ(x) = 1 − gβ(1 − x) =
Φ (Φ−1(x)− β).

The family of spectral risk measures which was introduced first in Acerbi (2002),
has the same representation as (2), where Π is also convex. One can readily see
that %Π is positive homogenous, translation invariant, monotone, law invariant and
co-monotonic additive. It can be shown that all law-invariant co-monotone additive
coherent risk measures can be represented as (2); see Kusuoka (2001). A risk measure
in the form (2) is important from different perspectives. First of all it makes a link
between the risk measures theory and the behavioral finance as the form (2) is a
particular form of Choquet utility. Second, (2) contains a family of risk measures
which are statistically robust. In Cont et al. (2010) it is shown that a risk measure

%(x) =
´ 1

0
VaRt(x)dΠ(t) is robust if and only if the support of Π is away from zero

and one. For example Value at Risk is a risk measure with this property.
For more reading on distortion risk measures one can see Sereda et al. (2010),

Wu and Zhou (2006), Balbás et al. (2009) and Wang et al. (1997).

3 Model and Problem Set-up

Let X0 ≥ 0 denote a loss variable for a bank’s business. The bank aims to outsource
part of the risk, denoted by X with values in [0, X0], through a contract. The
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contract’s market-value is E (ϕX), where ϕ is a stochastic discount factor evaluating
risky positions in the market. Therefore, the bank’s global position is composed of
a part whose risk is not transferred, X0 − X, and an amount that is payed for the
contract, E(ϕX). Hence the bank’s global position is X0 − X + E(ϕX). Bank’s
optimal contract will be found by minimizing the global risk

min % (E (ϕX) +X0 −X), s.t. 0 ≤ X ≤ X0.

By cash-invariance property of % this is equivalent to

minE(ϕX) + %(X0 −X), s.t. 0 ≤ X ≤ X0. (5)

Let us now focus our attention on the market evaluation of risk and the stochastic
discount factor. Inspired by Merton (1977), we assume the market is complete and
set up a Black-Scholes model. Assume the following geometric Brownian motion

dSt = µStdt+ σStdWt,

where Wt is the Wiener process, and µ and σ are the drift and volatility, respectively.
One can solve this SDE and find St however, in this paper we will be working with
the discounted process S̃t = exp (−rt)St which can be given by

S̃t = S0 exp

((
m− σ2

2

)
t+ σWt

)
where m = µ − r and r is the risk-free interest rate. In that case, it is known that
the market is complete and the unique martingale measure Q has the density

ϕ =
dQ
dP

= exp

(
−m
σ
WT −

1

2

(m
σ

)2

T

)
.

where T is the time horizon. We will be using the following relation between ϕ and
the price process of the stock, cf Nakano (2004).

ϕ = exp

((
1

2
m2/σ2 −m/2

)
T

)(
S̃T
S0

)−m/σ2

(6)

It is then easily seen that ϕ is a decreasing function of the underlying asset S̃T .
After introducing the model, we go back to the loss variable. We assume that the

bank’s loss is given by X0 = L
(
S̃T

)
, where L : R→ R+ is a non-increasing function.
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A natural example is L(x) = S0 exp
(
(log (x/S0))−

)
, where (x)− = min {x, 0}. This

loss function focuses on the scenarios when the return is negative.
Given that ϕ is a decreasing function of the underlying asset S̃T , the Hardy-

Littlewood Inequality implies that

E(ϕX0) =

ˆ 1

0

VaRα(ϕ)VaRα(X0)dα =

ˆ 1

0

VaRα(X0)dΓ(α),

where Γ(x) =
´ x

0
VaRα(ϕ)dα. On the other hand,

P (ϕ ≤ x) = P

(
exp

(
−m
σ
WT −

1

2

(m
σ

)2

T

)
≤ x

)
= P

(
−WT ≤

σ

m

(
log x+

1

2

(m
σ

)2

T

))
= Φ

(
σ

m
√
T

(
log x+

1

2

(m
σ

)2

T

))
,

where Φ is the cumulative distribution function of a normal random variable with
mean zero and variance one. Therefore,

VaRα(ϕ) = exp

(
m
√
T

σ
Φ−1(α)− 1

2

(m
σ

)2

T

)
.

Given this, one can show further that

Γ(x) = Φ

(
Φ−1(x)− m

√
T

σ

)
,

which clearly gives a distortion function associated with a Wang’s premium when

β = m
√
T

σ
(see Wang (2000)).

As it was discussed earlier, we assume that the market regulation is toward avoid-
ing moral hazard. To this end, we set up for an ex-ante policy under which all con-
tracts in the market have to be issued in a way that the losses can be felt by both
the issuer and the holder. Therefore, the contracts have to move co-monotonically
with the total risk. Assuming that a contract is a function of the risk X0, denoted
by f , the contract X = f(X0) is appropriate if the bank bears the risk generated
by the risk variable X0. Therefore, the un-shifted risk, X0 − f(X0), which is borne
by the bank, has to be non-decreasing in X0. On the other hand, since the banks
are rational, they also want to outsource the losses; that is why they consider con-
tracts are non-decreasing in X0. As a result, both the functions x 7→ f(x) and
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x 7→ x − f(x) have to be non-decreasing. To set this economic assumption on a
sound mathematical basis, we introduce the following set of admissible contracts as

A = {f(X0)|f ∈ C},

where
C = {f ≥ 0|f(x) and x− f(x) are non-decreasing}.

Note that all members in C are Lipschitz continuous since for any 0 ≤ x1 ≤ x2 we
have x1−f (x1) ≤ x2−f (x2) and f (x1) ≤ f (x2) which result in 0 ≤ f (x2)−f (x1) ≤
x2 − x1. In particular we have that 0 ≤ f (x) ≤ x , ∀f ∈ C, x ≥ 0.

Now , we rewrite the problem (5) as follows

minE(ϕf(X0)) + %(X0 − f(X0)), s.t. f ∈ C. (7)

It is known that if a function f is Lipschitz continuous, it is almost everywhere
differentiable and its derivative is essentially bounded by its Lipschitz constant. As
a result, C can be represented as

C =

{
f ≥ 0

∣∣∣f(x) =

ˆ x

0

h(t)dt, 0 ≤ h ≤ 1

}
.

We introduce the set of marginal contracts as

D =
{
h : R+ → R+

∣∣∣0 ≤ h ≤ 1
}
.

Definition 1. For any indemnification function f ∈ C, the associated marginal
contract is a function h ∈ D such that

f(x) =

ˆ x

0

h(t)dt, x ≥ 0.

The interpretation of a marginal contract is as follows: if f(x) =
´ x

0
h(t)dt is a

contract, then at each value X0 = x, a marginal change δ to the value of the total
risk will result in marginal change of the contract in the size δh(x). We will see in
the following that in our framework the marginal change of an optimal contract is
either 0 or δ, i.e., h = 0 or 1.
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4 Optimal Solutions and Risk of Tail Events

4.1 Main Results

In this section, we will characterize the optimal solutions to the risk management
problem (7) and discuss the level of the tail risk that can be transferred to the system.
As a tail event we mean {X0 ≥ B}, for some positive number B ∈ R. Indeed, a tail
event is associated with large losses of the position ST . This is the riskiest part of
the position ST and as a matter of fact, this is the part that all banks, under a poor
regulation, would like to get rid of. We say that the risk of the tail events cannot
be transferred if there is B > 0, such that the bank’s optimal contract X = f(X0)
is bounded by B. In the following, we will discuss that transferring the risk of the
tail events is impossible if the risk measures are not too sensitive about big losses.
This will give the regulator a benchmark to avoid risk of moral hazard. We will see
that this is usually the case for the known risk measures such as VaR and CVaR. We
also give examples that the risk of the tail events would be transferred as a result of
optimal decision-making process.

Here we have the optimal solution

Theorem 1. The solution to the general optimization problem (7) is given by f ∗(x) =´ x
0
h∗(t)dt and

h∗(t) =


1 Γ (FX0(t)) > Π (FX0(t))
0 Γ (FX0(t)) < Π (FX0(t))

h̃(t) otherwise
, (8)

where h̃ could be any function between 0 and 1 on Γ (FX0(t)) = Π (FX0(t)).

Proof. Let f ∈ C. Since f(x) and x− f(x) are both non-decreasing, and also since
VaRt commutes with monotone functions, we get

E(ϕf(X0)) + %(X0 − f(X0))

=

ˆ 1

0

VaRt(f(X0))dΓ(t) +

ˆ 1

0

VaRt(X0 − f(X0))dΠ(t)

=

ˆ 1

0

f(VaRt(X0))dΓ(t) +

ˆ 1

0

(VaRt(X0)− f(VaRt(X0)))dΠ(t). (9)
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Let h ∈ D be the derivative of f , i.e., f(x) =
´ x

0
h(t)dt. Therefore, we have

E(ϕf(X0)) + %(X0 − f(X0))

=

ˆ 1

0

(ˆ VaRt(X0)

0

h(s)ds

)
dΓ(t) +

ˆ 1

0

(
VaRt(X0)−

ˆ VaRt(X0)

0

h(s)ds

)
dΠ(t).

(10)

First, we assume X0 is bounded. By Fubini’s Theorem, (10) gives

E(ϕf(X0)) + %(X0 − f(X0))

=

ˆ 1

0

VaRt(X0)dΠ(t) +

ˆ ∞
0

(ˆ 1

FX0
(t)

dΓ(s)−
ˆ 1

FX0
(t)

dΠ(s)

)
h(t)dt

=

ˆ 1

0

VaRt(X0)dΠ(t) +

ˆ ∞
0

((1− Γ (FX0(t)))− (1− Π (FX0(t))))h(t)dt

=

ˆ 1

0

VaRt(X0)dΠ(t) +

ˆ ∞
0

(Π (FX0(t))− Γ (FX0(t)))h(t)dt, (11)

Now, it is clear that h∗ minimizes (11). It is also clear that we are free to choose the
values of h∗ on Π (FX0(t)) = Γ (FX0(t)). The value of the minimum also is equal toˆ 1

0

VaRt(X0)dΠ̃(t),

where Π̃(x) = min {Γ(x),Π(x)}.
Now, let us in general assume that X0 is not bounded. It is clear that at each

point t, {Π ◦ FX0∧n(t)}n=1,2,... is non-increasing with respect to n. On the other hand,
for any t, there exist nt such that if n > nt then FX0∧n(t) = FX0(t). Therefore, for any
t, we have that Π(FX0∧n(t)) ↓ Π(FX0(t)). Now by Monotone Convergence Theorem
we have that

lim
n→∞

∞̂

0

Π(FX0∧n(t))h(t)dt =

∞̂

0

Π(FX0(t))h(t)dt,

for any function h ∈ D. The same is true if we replace Π by Γ. Using this fact and
that f is non-decreasing, we have

E(ϕf(X0)) + %(X0 − f(X0))

=

ˆ 1

0

VaRt(X0)dΠ(t) +

ˆ ∞
0

(Π (FX0(t))− Γ (FX0(t)))h(t)dt

The rest of the proof follows the same lines after (10).
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Remark 1. As oppose to Merton (1977), where it is assumed that an insurance
contract is similar to an option, our assumptions give raise to the contracts that are
bounded from above. This will be better observe when we study particular cases of
VaR and CVaR in the following section.

Now, we discuss the risk of the tail events. First, we have the following lemma
from discussions in Section 4

Lemma 1. Following all notation above, Γ′(α) = exp
(
m
√
T

σ
Φ−1(α)− 1

2

(
m
σ

)2
T
)

. In

particular Γ′(1) = +∞.

The following theorem is an implication of the previous lemma

Theorem 2. Assume Π is differentiable around 1 and that X0 is unbounded above.
If m 6= 0, the risk of the tail events cannot be transferred iff

lim sup
y→+∞

log (Π′ (Φ (y)))

y
<
m
√
T

σ
.

If m = 0, the tail events cannot be transferred if and only if lim infα→1 Π′(α) < 1.

Proof. By definition, the risk of the tail events cannot be transferred to the market
if there is B > 0 such that X ≤ B, P−a.s. According to Theorem 1, this means{
X = f ∗(X0) =

´ X0

0
h∗(t)dt ≤ B

}
. Since X0 is unbounded above this is equivalent

to the fact that h∗(βn) = 0 for a sequence βn converging to 1. By (8), this is
equivalent to the fact that Γ(βn) < Π(βn). Since Π is differentiable around 1 and
that Γ(1) = Π(1) = 1, it is easy to see that the last inequality is equivalent to
the existence of a sequence αn → 1, such that Γ′(αn) > Π(αn). On its own this
is equivalent to lim supα→1 Γ′(α)/Π′(α) > 1. Using Lemma 1, this inequality is
equivalent to

lim sup
α→1

exp

(
m
√
T

σ
Φ−1(α)− 1

2

(m
σ

)2

T

)
/Π′(α) > 1. (12)

Given that the logarithm function is an increasing function, one can see that the

inequality (12) is equivalent to lim supα→1
m
√
T

σ
Φ−1(α) − 1

2

(
m
σ

)2
T − log Π′(α) > 0.

This implies that for a small positive number δ, m
√
T

σ
Φ−1(α)− 1

2

(
m
σ

)2
T − log Π′(α) >

0,∀α ∈ (1 − δ, 1). If we divide the both sides of this inequality by Φ−1(α), it is
equivalent to

m
√
T

σ
−

1
2

(
m
σ

)2
T

Φ−1(α)
− log Π′(α) > 0, ∀α ∈ (1− δ, 1). (13)

11



Since −
1
2(mσ )

2
T

Φ−1(α)
↑ 0 as α → 1, the inequality (13) is equivalent to lim supα→1

m
√
T

σ
−

log Π′(α)
Φ−1(α)

> 0. If we put y = Φ−1(α), then the theorem is proven for m 6= 0.

If m = 0 then Γ′(α) = 1,∀α ∈ (0, 1). Therefore, lim supα→1 Γ′(α)/Π′(α) > 1, is
equivalent to lim infα→1 Π′(α) < 1.

This theorem provides the regulator with the degree of the risk measure sensitivity
with respect to the large losses, in order to avoid outsourcing the risk of the tail
events.

Remark 2. It can be easily seen that if the risk measure % is a distortion risk
measure given by distortion function gβ as in (4), then lim supy→+∞

log(Π′(Φ(y)))
y

=
β, which is the expected market risk premium. That is why one can consider
lim supy→+∞

log(Π′(Φ(y)))
y

as the generalized excepted market risk premium. With this
in mind, then one can say that the risk of the tail events will not be transferred if an
only if the generalized expected market risk premium is less than the real one. This
makes sense if we look at the problem from an investor point of view: if the expected
market risk premium is higher than the real one, one could tolerate the risk of the
tail event in a hope to receive a higher (spread) premium.

4.2 Corollaries and Examples

Corollary 1. If % = VaRα, then the optimal solution can be described as

X = L

(
S0 exp

((
m− σ2

2

)
T

)
exp

(
σmax

{
WT ,
√
TΦ−1(1− α)

}))
.

Proof. We know that since % = VaRα, Π(t) = 1[α,1](t). First of all since Γ′(1) = +∞
then Π is greater than Γ around 1. Since Γ is a strictly increasing function between
zero and one, then Γ (FX0(t)) > Π (FX0(t)) if and only if FX0(t) < α. Therefore,

h∗(t) =

{
1 FX0(t) < α
0 FX0(t) ≥ α

.

This results in
X = min {X0,VaRα(X0)} .

Since X0 = L(S̃T ), and since VaR and decreasing functions can commute, we have

X = min
{
L
(
S̃T

)
, L
(

VaRα(S̃T )
)}

= L
(

max
{
S̃T ,VaR1−α(S̃T )

})
.
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On the other hand, since WT ∼ N(0, T ),

VaR1−α(S̃T ) = S0 exp

(
(m− σ2

2
)T + σ

√
TΦ−1(1− α))

)
,

which completes the proof.

Example 1. Let us assume that L(x) = S0 exp
(
(log (x/S0))−

)
. In this case we have

X = S0 exp

((
m− σ2

2

)
T + σY (α)

)
,

where

Y (α) =


√
TΦ−1 (1− α) WT ≤

√
TΦ−1 (1− α) ,

WT

√
TΦ−1 (1− α) < WT < 0,

0 WT ≥ 0.

(14)

Corollary 2. If % = CVaRα then the optimal solution can be described as

X = L

(
S0 exp

(
(m− σ2

2
)T

)
exp

(
σmax

{
WT ,
√
TΦ−1 (1− α∗)

}))
.

where α∗ is a solution to (1− α)Γ(x)− x+ α = 0.

Proof. In this case Π(x) = x−α
1−α1[α,1]. First of all since Γ′(1) = +∞ then Π is greater

than Γ around 1. Note that since the function Γ is strictly increasing and also because
Π is linear between α and 1, the solution to the equation (1 − α)Γ(x) − x + α = 0
is unique. Now, it is clear that Γ (FX0(t)) > Π (FX0(t)) if FX0(t) < α. On the other

hand, if FX0(t) ≥ α then Γ (FX0(t)) > Π (FX0(t)) =
FX0

(t)−α
1−α , as long as FX0(t) < α∗.

Therefore, h∗ equals to one as long as FX0 < α∗. The rest of the proof is similar to
the previous corollary.

As one can see α∗is always greater than α. This means that CVaR allows for
more risk to be transferred rather than VaR. In the following figure we have depicted
the differences between α and α∗.
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Figure 1: The figure depicts α versus α∗ for the parameters T = 1,m = 0.05 and σ =
0.05.

In the following we have depicted the intersection of Γand Π for different levels
of α.
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0.98
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1
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Figure 2: The intersection of Γand Π, for the parameters T = 1,m = 0.05 and σ =
0.05. The curvy line is Γ and the lines in top right of the Π’s for different α =
91, 93, 95, 97 and 99%.

Example 2. Let us assume that L(x) = exp
(
(log (x/S0))−

)
. In this case we have

X = S0 exp

((
m− σ2

2

)
T + σY (α∗)

)
,

where Y is defined by (14).

Corollary 3. If m 6= 0 and % = VaRα or % = CVaRα, the risk of the tail events are
not transferred to the system. If m = 0 and % = VaRα then the risk of tail events are
not transferred to the system whereas the opposite holds for m = 0 and % = CVaRα.
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5 Final remarks

In this paper we developed a framework for studying the deposit insurances and
the risk of tail events. In order to control the risk of moral hazard, inspired by the
excessive risk taking behavior, deposit insurances must have a stop loss structure.
We also studied the risk of tail events and the circumstances that this risk cannot
be avoided. For technical reasons we have chosen to study deposit insurances for
the family of distortion risk measures, including VaR and CVaR. However, for future
research one can consider an extension of our setting to the family of law-invariant
coherent risk measure. This extension would be possible in light of the law-invariant
coherent risk measures’ representation given in Kusuoka (2001). Another extension
is to study this problem in an incomplete market framework. For instance, one can
use the Heston model for pricing the assets in the financial market.
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