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INTRODUCTION	12	

	13	

African	horse	sickness	(AHS)	is	an	infectious,	non-contagious,	vector-borne	viral	disease	14	

of	equids.	Possible	references	to	the	disease	have	been	found	from	several	centuries	ago,	15	

however	the	first	recorded	outbreak	was	in	1719	amongst	imported	European	horses	in	16	

Africa	 [1].	 	 AHS	 is	 currently	 endemic	 in	 parts	 of	 sub-Saharan	Africa	 and	 is	 associated	17	

with	case	 fatality	 rates	of	up	 to	95%	in	naïve	populations	 [2].	No	specific	 treatment	 is	18	

available	 for	AHS	and	vaccination	 is	used	 to	 control	 the	disease	 in	South	Africa	 [3;	4].	19	

Due	to	the	combination	of	high	mortality	and	the	ability	of	the	virus	to	expand	out	of	its	20	

endemic	 area	 without	 warning,	 the	 World	 Organisation	 for	 Animal	 Health	 (OIE)	21	

classifies	AHS	as	a	 listed	disease.	Official	AHS	disease	free	status	can	be	obtained	from	22	

the	OIE	on	fulfilment	of	a	number	of	requirements	and	the	organisation	provides	up-to-23	

date	detail	on	global	disease	status	[5].	24	

	25	

AHS	virus	(AHSV)	is	a	member	of	the	genus	Orbivirus	(family	Reoviridae)	and	consists	26	

of	nine	different	serotypes	[6].	All	nine	serotypes	of	AHSV	are	endemic	in	sub-Saharan	27	



Africa	 and	outbreaks	of	 two	 serotypes	have	occurred	elsewhere	 [3].	 	Major	 epizootics	28	

associated	with	AHSV-9	were	reported	in	the	Middle	East,	western	Asia	and	India	[7;	8]	29	

in	 1959-1961,	 and	 in	 North	 Africa	 and	 Spain	 in	 1965-1966	 [9].	 	 A	 second	 epizootic	30	

occurred	 in	 the	 western	 Mediterranean	 region	 (Spain,	 Portugal	 and	 Morocco)	 during	31	

1987-1991,	this	time	caused	by	AHSV-4.	[10].	There	have	been	no	further	outbreaks	in	32	

Europe.	However,	there	have	been	recent	epizootics	caused	by	AHSV-2,	4,	6,	7,	8	and	9	in	33	

eastern	and	northern	parts	of	Africa	[11;	12].		34	

	35	

The	principal	vectors	 for	transmission	of	AHSV	are	Culicoides	biting	midges,	which	are	36	

ubiquitous	on	farms	throughout	most	of	the	inhabited	world	[13;	14].	The	geographical	37	

distribution	 and	 seasonal	 occurrence	 of	 AHS	 are	 entirely	 dependent	 on	 those	 of	 the	38	

vector	 and	 the	 dynamics	 and	 behaviour	 of	 Culicoides	 are	 therefore	 essential	 to	39	

understanding	the	disease	[15].	40	

	41	

It	 has	been	 suggested	 that	 recent	 changes	 in	 the	 global	 distribution	of	 several	 vector-42	

borne	 viral	 diseases	 may	 be	 associated	 with	 climate	 change	 and	 the	 increasing	43	

international	movement	of	animals	and	animal	products	[16].	This	has	 led	to	concerns	44	

that	some	vector-borne	diseases,	 including	AHS,	will	 increasingly	 threaten	parts	of	 the	45	

world	currently	considered	disease-free	[17-19].	This	review	will	discuss	key	aspects	of	46	

AHS,	 focusing	 in	particular	on	 the	evidence	 to	support	concerns	 that	an	epizootic	may	47	

occur	in	AHS-free	countries	and	the	response	plans	in	place	at	the	current	time.		48	

	49	

DISEASE	TRANSMISSION	50	

	51	

African	horse	sickness	is	not	contagious	by	direct	or	indirect	contact	and	biological	viral	52	

transmission	 occurs	 during	 blood-feeding	 by	 Culicoides.	 Mechanical	 transmission	 by	53	

other	 biting	 flies	may	 be	 possible,	 but	 is	 unlikely	 to	 play	 a	 significant	 role	 in	 disease	54	



transmission	 [4].	Parenteral	 inoculation	of	 infected	blood	has	been	 shown	 to	 transmit	55	

the	 virus	 between	horses,	 although	 avoiding	 re-use	 of	 needles	 and	 syringes	 and	basic	56	

biosecurity	measures	 should	 prevent	 this	 from	 posing	 a	 risk	 [20;	 21].	 	 African	 horse	57	

sickness	 is	 almost	 exclusively	 a	 disease	 of	 equids	 and	 is	 not	 considered	 zoonotic,	58	

although	 disease	 associated	 with	 the	 virus	 has	 been	 described	 in	 humans	 following	59	

nasal	exposure	to	virus	from	broken	vaccine	vials	[22].	Disease	has	also	been	reported	60	

in	dogs	(usually,	but	not	exclusively,	 following	ingestion	of	virus	 infected	meat),	which	61	

are	considered	dead-end	hosts	[23;	24].		62	

	63	

Vector	 infection	 occurs	when	Culicoides	feed	 on	 a	 viraemic	 vertebrate	 host.	 In	 horses,	64	

the	 viraemic	 phase	 typically	 lasts	 only	 2-8	 days;	 however,	 reservoir	mammalian	 host	65	

species	 (as	detailed	below)	have	a	more	prolonged	period	of	 infectivity	 [4].	 Following	66	

ingestion	by	a	vector-competent	female	Culicoides,	the	virus	replicates	in	the	insect	gut	67	

then	 translocates	 and	 replicates	 in	 the	 salivary	 glands	 before	 infection	 of	 the	 next	68	

mammalian	host	[14].	69	

PATHOPHYSIOLOGY	AND	CLINICAL	SIGNS	70	

Following	inoculation	during	vector	feeding,	viral	replication	occurs	within	the	regional	71	

lymph	nodes	of	the	bite	area	before	haematogenous	dissemination	throughout	the	body	72	

to	 the	 endothelial	 cells	 of	 multiple	 target	 tissues	 [25].	 Viral	 multiplication	 in	 these	73	

tissues	gives	rise	to	a	secondary	viraemia	of	varying	duration	and	titre,	depending	upon	74	

a	number	of	host	and	serotype	factors	[3].	The	underlying	pathology	of	AHS	in	the	target	75	

organs	 is	 vascular	 endothelial	 damage	 with	 subsequent	 effusion,	 cardiovascular	76	

compromise	and	haemorrhage.		77	

	78	



The	 incubation	 period	 of	 AHS	 is	 between	 2-10	 days,	 depending	 on	 viral	 load,	 viral	79	

virulence	 and	 host	 factors	 [4].	 Four	 different	 clinical	 forms	 of	 AHS	 are	 recognised,	80	

depending	on	the	target	organs	and	severity	of	disease	[4].		81	

	82	

PERACUTE	 PULMONARY	 FORM	 (‘Dunkop’)	 –	 The	 peracute	 form	 is	 characterised	 by	83	

rapidly	 progressive	 respiratory	 failure	 and	 usually	 occurs	 when	 AHSV	 infects	 fully	84	

susceptible	horses.	Recovery	is	the	exception	with	>95%	case	fatality	rates	common	[4].		85	

Clinical	signs	include	pyrexia	(up	to	41°C),	severe	respiratory	distress,	forced	expiration,	86	

profuse	sweating	and	paroxysmal	coughing	 [4].	The	onset	of	dyspnoea	can	be	sudden,	87	

with	death	occurring	as	little	as	30	minutes	after	the	onset	of	clinical	signs	(Figure	1).	88	

	89	

CARDIAC	 FORM	 (‘Dikkop’).	 This	 form	 is	 characterised	 by	 oedema,	 which	 is	 usually	90	

preceded	by	3-4	days	of	pyrexia.	The	oedema	starts	in	the	supraorbital	fossa	(Figure	2),	91	

before	extending	to	the	conjunctiva	(Figure	3)	and	then	the	remainder	of	the	head	and	92	

neck.	The	distal	limbs	and	ventral	abdomen	are	only	rarely	affected.	Dyspnoea,	cyanosis,	93	

signs	of	abdominal	pain	and	heart	 failure	also	occur.	The	cardiac	 form	is	 less	clinically	94	

severe	and	more	protracted	 than	 the	pulmonary	 form,	with	 fatality	 in	>	50%	of	 cases	95	

[4].	96	

	97	

MIXED	FORM	–	Cases	with	this	form	are	found	to	have	a	combination	of	pathologies	at	98	

post-mortem,	although	this	is	often	not	detected	clinically.	Pyrexia	and	mild	pulmonary	99	

or	 subclinical	 cardiac	 disease	 are	 followed	 by	 oedema,	 cardiac	 failure	 or	 respiratory	100	

failure	 [4].	 	The	mixed	 form	 is	 the	most	 common	and	comprised	 the	majority	of	 cases	101	

during	the	1987-1990	outbreak	in	Spain	[10].	The	case	fatality	rate	varies	in	the	mixed	102	

form.		103	

	104	



HORSESICKNESS	FEVER	-	This	form	of	disease	is	associated	with	a	mild	fever	that	may	105	

be	subclinical	and	is	seen	only	in	reservoir	species	and	partially	immune	horses	[3;	26].	106	

	107	

DIAGNOSIS	108	

	109	

In	 disease–free	 countries	 any	 suspected	 cases	 of	 AHS	 must	 be	 reported	 to	 the	 State	110	

Veterinary	 Service	 and	 is	 subject	 to	 laboratory	 confirmation	 [4].	 Virus	 isolation	 is	111	

considered	the	gold	standard	for	diagnosis,	however	the	World	Organisation	for	Animal	112	

Health	(OIE)	accepts	molecular	evidence	of	viral	presence	by	polymerase	chain	reaction	113	

(PCR)	 and	 serological	 evidence	 of	 infection	 via	 enzyme-linked	 immunosorbant	 assays	114	

(ELISAs)	[27].	Viral	isolation	is	performed	by	inoculation	of	various	cell	cultures	or	mice	115	

cerebral	 tissue	 and	 the	 process	 can	 take	 several	 days,	 which	 impedes	 the	 control	 of	116	

disease	outbreak	[4].	The	use	of	serology	for	initial	diagnosis	in	an	outbreak	situation	is	117	

limited	 by	 the	 rapid	 mortality	 associated	 with	 AHS.	 Historically	 though,	 serological	118	

testing	by	complement	fixation,	virus	neutralisation	and	enzyme-linked	immunosorbant	119	

assay	 has	 been	 the	 gold	 standard	 for	 identification	 of	 AHSV	 serotypes	 [28-32].	120	

Unfortunately	 these	methods	 are	 difficult	 and	 time	 consuming,	 requiring	 either	 virus	121	

isolation	or	access	 to	 reagents	 that	may	pose	a	potential	biosecurity	 risk.	 Several	PCR	122	

tests	have	demonstrated	rapid,	sensitive	and	reliable	detection	of	AHSV	genetic	material	123	

in	 infected	 blood,	 tissue	 samples,	 homogenised	 Culicoides,	 and	 tissue	 culture	124	

supernatant	and	these	would	be	essential	during	a	disease	outbreak	[33-35].		Not	all	of	125	

the	PCR	methods	available	have	currently	been	validated	by	the	OIE.	126	

	127	

Recently,	 type-specific	 PCR	 assays	 for	 the	 identification	 of	 individual	 AHSV	 serotypes	128	

have	 been	 described,	 which	 would	 be	 potentially	 useful	 for	 guiding	 appropriate	129	

vaccination	and	 control	 strategies,	 as	well	 as	 for	 the	declaration	of	disease-free	 status	130	



after	 an	 outbreak	 [36].	 	 Serological	 testing	 to	 use	 in	 combination	with	 DIVA	 vaccines	131	

(differentiating	infected	from	vaccinated	animals)	is	also	currently	under	evaluation.	132	

	133	

THE	ROLE	OF	RESERVOIR	MAMMALIAN	SPECIES	134	

	135	

No	 equids	 that	 recover	 from	AHS	 remain	 as	 long-term	 carriers	 of	 the	 virus.	 The	 term	136	

‘reservoir’	 refers	 to	 the	 fact	 that	 the	 low	 mortality	 rate	 and	 prolonged	 viraemia	137	

associated	 with	 AHSV	 infection	 in	 these	 equid	 species	 allows	 the	 establishment	 of	138	

continuous	 cycling	 of	 the	 virus	 [3;	 26].	 	 This	 is	 key	 to	 the	 ability	 of	 AHSV	 to	 persist	139	

within	endemic	areas.	In	areas	where	the	virus	is	non-endemic,	it	must	be	reintroduced	140	

(either	within	Culicoides	or	equids)	at	the	start	of	each	outbreak.	141	

	142	

Zebra	are	an	important	reservoir	host	for	AHSV	and	their	role	in	maintaining	the	disease	143	

in	South	Africa	has	been	well	documented	[26].	The	ability	of	certain	AHSV	serotypes	to	144	

persist	intermittently	in	West	Africa	and	Spain,	where	there	are	no	zebra	herds,	suggests	145	

that	other	mammalian	species	may	play	a	role.	Donkeys	almost	certainly	act	as	reservoir	146	

hosts,	particularly	in	northern	parts	of	Africa,	and	have	been	shown	to	become	viraemic	147	

following	inoculation	with	virulent	AHSV	strains	in	the	absence	of	clinical	signs	[37].		148	

	149	

For	AHSV	to	persist	 in	an	area	there	must	be	a	sufficient	density	of	reservoir	hosts	for	150	

continual	cycling	of	the	virus,	which	relies	on	both	climatic	and	geographic	factors	[26;	151	

38].	 	While	the	minimum	size	of	a	reservoir	herd	is	unknown,	the	incidence	of	AHSV	is	152	

much	lower	in	areas	of	South	Africa	where	zebra	herd	sizes	are	less	than	100	[26].	It	is	153	

interesting	to	note	that	there	were	approximately	300	zebra	and	10,000	donkeys	in	the	154	

UK	in	2009,	with	over	half	of	the	donkeys	housed	at	8	sites	belonging	to	a	single	charity	155	

[39].	 Large	 donkey	 herds	 therefore	 exist	 far	 from	 AHS-affected	 regions,	 which	 could	156	

potentially	allow	maintenance	of	a	continuous	AHSV	presence.	157	



	158	

CULICOIDES	BITING	MIDGES	AND	THEIR	ROLE	IN	THE	EPIDEMIOLOGY	OF	AHS	159	

	160	

Culicoides	midges	 are	 among	 the	world’s	 smallest	 and	most	widespread	 insects.	 They	161	

are	 considered	a	biting	nuisance	 to	humans	and	 livestock,	 transmit	viral	 and	parasitic	162	

diseases	 and	 are	 the	major	 cause	 of	 insect	 bite	 hypersensitivity	 (IBH)	 in	 horses	 [40].	163	

There	are	currently	over	1400	different	species	of	Culicoides	identified,	with	around	30	164	

of	 these	 thought	 to	 be	 capable	 of	 virus	 transmission	 and	 over	 50	 different	 viruses	165	

isolated	 from	midges	worldwide	[14;	41;	42].	 	Comparisons	with	the	arboviral	disease	166	

bluetongue	 (BT)	 are	 often	 made	 when	 considering	 AHS,	 as	 the	 viruses	 share	 vector	167	

Culicoides	species	within	Africa	and	both	have	made	 incursions	north	 into	Europe	 [13;	168	

16;	 43].	 The	 most	 relevant	 Culicoides	 species	 when	 considering	 AHSV	 and	 BT	 virus	169	

(BTV)	are	shown	in	Table	1.	The	life-cycle	of	Culicoides	includes	the	egg,	4	larval	stages,	170	

the	 pupa	 and	 the	 adult	 [44].	 As	 only	 female	 adults	 blood-feed,	 they	 are	 of	 primary	171	

importance	when	considering	virus	transmission.	172	

	173	

Light	 traps	 are	 the	 standard	 sampling	 method	 for	 collecting	 Culicoides	 midges	 when	174	

conducting	 epidemiological	 investigations	 and	 much	 of	 the	 evidence	 supporting	 the	175	

AHSV	 and	 BTV	 vector	 roles	 of	 certain	 Culicoides	 species	 is	 based	 on	 associations	176	

between	disease	occurrence	and	species	abundance	as	measured	by	light	trapping	[45-177	

48].	It	is	poorly	defined	how	the	numbers,	species	composition	and	physiological	status	178	

of	 light	 trap	 catches	 relate	 to	 the	 Culicoides	 actually	 feeding	 on	 a	 natural	 host	 and	179	

alternate	methods	including	CO2-baited	traps	and	aspiration	from	hosts	require	further	180	

investigation	[49-53].	181	

	182	

In	Africa,	 the	most	commonly	 implicated	AHSV	vectors	are	C.	imicola,	which	makes	up	183	

over	 90%	 of	 species	 caught	 using	 light-traps	 in	 AHS	 endemic	 areas,	 and	 C.	 bolitinos	184	



which	has	more	recently	been	recognised	as	an	alternative	vector	in	some	regions	[41;	185	

54].		It	is	important	to	consider	the	evidence	available	to	support	the	AHSV	vector	roles	186	

of	 these	 species.	 Biting	 insects	 have	 long	 been	 suspected	 to	 transmit	 AHSV	 and	 the	187	

disease	was	first	induced	in	horses	following	inoculation	with	Culicoides	extract	in	1944	188	

[13].	 The	 ability	 of	 Culicoides	 to	 actually	 transmit	 AHSV	 was	 more	 convincingly	189	

demonstrated	when	the	North	American	BTV	vector,	C.	variipennis	(now	C.	sonorensis),	190	

was	shown	to	be	an	efficient	laboratory	vector	for	AHSV	following	oral	inoculation	[55].	191	

Remarkably,	transmission	between	live	equid	hosts	has	still	not	been	demonstrated	for	192	

any	Culicoides	 species.	 Epidemiological	 studies	 have	 added	 some	 evidence	 to	 support	193	

this	theory	by	demonstrating	spatial	and	temporal	associations	between	the	abundance	194	

of	 C.	 imicola	 (as	 caught	 by	 light	 traps)	 and	 the	 incidence	 of	 AHS	 in	 Spain,	 Portugal,	195	

Morocco	and	South	Africa	[45-48].		196	

	197	

Traditionally,	 Culicoides	 species	 are	 identified	 based	 on	 several	 morphological	 traits.	198	

The	 wing	 pattern	 in	 particular	 is	 very	 important,	 with	 variations	 in	 venation,	 colour,	199	

marking	 pattern	 and	 covering	 by	 short	 hairs	 used	 for	 differentiation.	 Other	 features,	200	

including	thoracic	colouring,	antennae	and	abdominal	spermathecae,	are	also	used	[56;	201	

57].	 Unfortunately,	 identification	 of	many	 species	 requires	 a	 specialised	 knowledge	 of	202	

insect	morphology	that	is	no	longer	readily	available	[58;	59].	Given	the	importance	of	203	

several	 of	 these	 species	 in	 arboviral	 transmission,	 polymerase	 chain	 reaction	 (PCR)	204	

assays	have	 recently	been	developed	 to	provide	 rapid	 and	accurate	 identification	 [59;	205	

60].	206	

	207	

The	 ability	 of	Culicoides	 to	 cause	outbreaks	of	AHS	 is	 dependent	 on	 the	production	of	208	

large	numbers	of	midges	that	can	only	occur	when	the	appropriate	weather	conditions	209	

and	 biotic	 environment	 allow	 the	 development	 of	 large	 populations	 [14].	 The	210	

epidemiology	of	AHSV	is	therefore	closely	linked	to	climatic	and	meteorological	factors	211	



with	 seasonal	 outbreaks	 occurring	 in	 endemic	 countries	 almost	 always	 following	212	

periods	 of	warm,	wet	weather,	which	 allows	maximum	 larval	 development	 and	 adult	213	

survival	 [14].	 In	 southern	Africa,	 climatic	 conditions	 favourable	 to	 large	epizootics	are	214	

often	triggered	by	the	El	Niño	Southern	Oscillation	[61].	215	

	216	

Because	 of	 difficulties	 associated	with	 data	 collection	 and	 the	 lack	 of	 transmission	 of	217	

significant	human	pathogens,	Culicoides	research	has	been	limited	compared	to	that	on	218	

many	other	insect	vectors.	Recent	epizootics	of	Culicoides	associated	arboviral	diseases	219	

in	 previously	 unaffected	 parts	 of	 the	 world	 (including	 those	 caused	 by	 BTV	 and	220	

Schmallenberg	virus)	have	led	to	a	significant	increase	in	knowledge,	although	there	is	221	

still	 much	 unknown.	 As	 effective	 environmental	 control	 of	 Culicoides	 numbers	 is	222	

impractical,	recent	research	has	focused	on	methods	to	predict	when	and	where	disease	223	

outbreaks	can	occur	[14].	A	key	 issue	has	been	the	need	to	 identify	areas	of	 the	world	224	

with	or	without	competent	vector	species	and	the	knowledge	of	species	distribution	is	225	

now	 extensive,	 although	 incomplete.	 Significant	 recent	 developments	 have	 included	226	

molecular	methods	 of	 species	 differentiation	 and	 the	 development	 of	more	 advanced	227	

modelling	 systems	 to	 predict	 Culicoides	 distribution	 and	 abundance,	 two	 critical	228	

parameters	 when	 examining	 the	 risk	 of	 AHS	 [14;	 48;	 59;	 60;	 62].	 Unfortunately,	 the	229	

significant	 variation	 in	 Culicoides	 abundance	 found	 at	 the	 local	 scale	 limits	 the	230	

applications	of	these	models	at	present	[63;	64].		231	

	232	

SCENARIOS	FOR	AN	AHS	OUTBREAK	IN	DISEASE-FREE	REGIONS	233	

	234	

An	outbreak	of	AHS	requires	the	presence	of	the	virus,	suitable	equid	hosts,	competent	235	

vector	 species	 of	 Culicoides	and	 appropriate	 climatic	 and	 geographical	 conditions	 for	236	

vector-host	 interaction	 [65].	 	 The	 following	 five	 scenarios	 must	 be	 considered	 when	237	

assessing	the	risk	in	AHS-free	regions:	238	



	239	

1	-	ALTERED	GLOBAL	DISTRIBUTION	OF	KNOWN	AHSV	VECTOR	SPECIES	240	

	241	

The	effects	of	climate	change	may	alter	the	distribution	of	the	known	vectors	of	AHSV.	242	

The	worldwide	distribution	of	 the	principal	vector,	C.	imicola,	 is	extensive	and	extends	243	

from	South	Africa	 to	southern	Europe	and	 from	western	Africa	 to	southern	China	 [62;	244	

66].	 It	 is	 not	 present	 in	 The	 Americas,	 northern	 Europe	 or	 Australasia,	 although	 the	245	

distribution	 is	 expanding	 northwards	within	 Europe	 and	 studies	 estimate	 that	 it	may	246	

reach	central	Europe	by	the	early	part	of	the	21st	century	[14;	48;	62].	In	addition,	most	247	

of	South	America	and	Southeast	Asia,	and	smaller	regions	of	the	USA	and	Australia	are	248	

already	 considered	 climatically	 suitable	 if	 the	 species	 were	 to	 be	 introduced	 [62].	249	

Vector-species	 of	 mosquito	 have	 been	 introduced	 into	 Europe	 in	 recent	 years	 via	250	

international	tyre	and	plant	trade,	although	similar	movement	of	Culicoides	has	not	yet	251	

been	demonstrated	[67].		252	

	253	

2	-	VECTOR	ROLE	OF	INDIGENOUS	CULICOIDES	SPECIES	(TABLE	1)	254	

	255	

Another	 scenario	 is	 that	Culicoides	 species	 indigenous	 to	AHS-free	 countries	might	 be	256	

able	 to	 transmit	 disease	 if	 the	 virus	 were	 introduced	 [68].	 This	 could	 be	 due	 to	 an	257	

inherent	 ability	 to	 transmit	 the	 virus	 or	 climate	 change	mediated	 effects	 on	 vectorial	258	

capacity	[16].			259	

	260	

Vectorial	capacity	is	the	ability	of	a	vector	to	transmit	a	pathogen	under	field	conditions	261	

and	is	determined	by	several	factors	[69].	Vectorial	capacity	has	been	shown	to	increase	262	

with	 ambient	 temperatures	 of	 27-30°C	 and	Culicoides	 species	 traditionally	 considered	263	

non-vectors	of	AHSV	have	 increased	susceptibility	 to	 infection	 if	 raised	under	warmer	264	



conditions	[70;	71].		It	has	been	predicted	that	the	effects	of	climate	change	will	result	in	265	

UK	 temperatures	 continuing	 to	 rise	 by	 at	 least	 0.2°C	 per	 decade	 for	 the	 foreseeable	266	

future	and,	while	the	relationship	is	by	no	means	straight-forward,	this	is	anticipated	to	267	

increase	the	likelihood	of	competent	AHSV	vectors	being	present	in	the	region	[72].	268	

	269	

Evidence	 for	 a	 potential	 role	 of	 indigenous	 Culicoides	 species	 is	 provided	 by	270	

comparisons	with	BTV	epidemiology.	African	horse	sickness	virus	and	BTV	share	vector	271	

species	(including	C.	imicola)	and	both	have	made	incursions	north	into	Europe	[13;	16;	272	

43].	 	During	the	recent	BT	outbreaks	in	Europe,	disease	occurred	in	regions	where	the	273	

known	vector	species	are	absent	and	indigenous	Culicoides	species	must	therefore	have	274	

acted	as	vectors	 [73].	There	 is	substantial	evidence	 that	Culicoides	 species	 including	C.	275	

pulicaris,	 C.	 punctatus,	 C.	 dewulfi,	 C.	 obsoletus,	 C.	 scoticus	 and	 C.	 chiopterus	 acted	 as	276	

vectors	of	BTV	in	northern	Europe	from	2006	[74;	75].	Temperatures	during	this	time	277	

were	among	the	warmest	recorded	and	this	may	have	significantly	increased	the	ability	278	

of	these	species	to	act	as	BTV	vectors	[19;	76].			These	species	are	therefore	considered	279	

potential	vectors	for	AHSV	in	northern	Europe	and	have	recently	been	shown	to	be	the	280	

most	 abundant	 species	 on	 equine	 premises	 in	 the	 southeast	 UK	 [77].	 Unfortunately,	281	

there	is	very	little	empirical	evidence	available	to	support	this	theory.	In	a	single	study,	282	

AHSV	 was	 isolated	 from	 mixed	 pools	 of	 Culicoides	 in	 Spain	 that	 did	 not	 contain	 any	283	

known	vector	 species,	 but	did	 contain	mainly	C.	pulicaris	and	C.	obsoletus	 [78].	 	 It	was	284	

also	suspected	that	C.	obsoletus	played	a	role	in	AHSV	transmission	in	parts	of	Morocco	285	

[45].	While	 this	 is	 only	 very	 poor	 quality	 evidence,	more	 convincing	 data	 can	 only	 be	286	

obtained	 during	 epizootics,	 by	 which	 time	 it	 is	 too	 late	 to	 implement	 preventive	287	

measures.	The	evidence	is	more	convincing	in	the	USA,	where	C.	sonorensis,	the	primary	288	

North	American	BTV	vector,	has	been	shown	to	act	as	an	efficient	biological	vector	for	289	

AHSV	in	a	laboratory	setting	[55;	79].		290	

	291	



Culicoides	sonorensis	is	absent	 from	much	of	Central	America	and	all	of	South	America	292	

[14].	 Bluetongue	 virus	 is	 endemic	 in	 Central	 America,	where	C.	insignis	 and	C.	pusillus	293	

are	the	vectors	of	primary	importance	and	it	is	suspected	that	the	region	acts	as	a	source	294	

of	BTV	 for	both	North	 and	South	America	 [80].	Although	evidence	 is	 limited,	BTV	has	295	

been	 reported	 to	 be	 present	 in	 large	 parts	 of	 South	 America,	where	C.	insignis	 and	C.	296	

pusillus	are	again	thought	to	be	primary	vectors	[14;	81].	Brazil	 is	of	particular	current	297	

importance,	 given	 the	 upcoming	 2016	 Olympic	 Games.	 Although	 very	 little	 Culicoides	298	

distribution	data	is	available,	a	recent	study	showed	that	C.	insignis	accounted	for	81%	299	

of	livestock-associated	catches	in	Brazil	[82].	This	species	must	therefore	be	considered	300	

of	greater	potential	as	an	AHSV	vector	in	the	region.	301	

	302	

In	Australasia	C.	fulvus,	C.	wadai,	C.	actoni,	and	C.	brevitarsis	are	important	vector	species	303	

for	BTV	[14].	It	has	been	suggested	that	C.	brevitarsis	and	C.imicola	may	share	a	common	304	

ancestry	and	the	competency	of	C.	brevitarsis	for	AHSV	should	therefore	be	investigated	305	

[62;	83].	In	Asia,	BTV	is	transmitted	by	several	vector	species,	although	data	is	limited	in	306	

many	parts	of	the	region.	Of	particular	interest	in	the	region	is	the	presence	of	C.	imicola	307	

in	China	[14].	308	

	309	

When	 considering	 the	 current	 Culicoides	 species	 of	 global	 importance	 relevant	 to	310	

transmission	 of	 BTV	 and	 AHSV	 (as	 summarised	 in	 Table	1)	 it	 is	 clear	 that	 there	 is	 a	311	

dearth	of	basic	research	on	the	vector	competence	of	many	Culicoides	species	for	AHSV.	312	

This	has	led	to	a	reliance	on	BTV	vector	knowledge	as	a	reference	for	AHSV	and	greater	313	

research	effort	is	thus	urgently	required.	In	summary,	it	is	possible	that	the	appropriate	314	

Culicoides	 species	and	climatic	conditions	to	support	an	outbreak	of	AHS	are	currently	315	

present	in	many	AHS-free	countries,	although	more	research	is	urgently	required.		316	

	317	

3-	VIRAL	INTRODUCTION	WITHIN	AN	INFECTED	VERTEBRATE	318	



	319	

There	 has	 been	 a	 rapid	 expansion	 in	 the	 number	 of	 international	 equine	 events	 and	320	

many	horses	routinely	compete	worldwide	[84].	The	risk	of	AHS	entering	OIE	disease-321	

free	 countries	 via	 a	 legally	 transported	 horse	 is	 considered	 very	 low,	 due	 to	 the	322	

stringent	regulations	in	place	and	the	rapid	severity	of	the	disease	[85].		This	perceived	323	

low	 risk	 is	 supported	 by	 a	 recent	 quantitative	 risk	 assessment	 for	 undetected	 AHS	324	

infection	in	a	horse	exported	from	an	infected	country	[86].	Pre-export	quarantine	in	a	325	

vector-protected	 facility	 and	 multiple	 PCR	 tests	 prior	 to	 export	 were	 key	 factors	 in	326	

managing	risk	in	the	models	assessed.	327	

	328	

There	is	still	concern	regarding	the	possibility	of	vector	exposure	during	legal	transit	as	329	

horses	can	be	transported	via	certain	AHSV	infected	countries	as	long	as	they	remain	on	330	

the	plane	  [87].	 	Examples	 include	 the	 transport	of	horses	 from	South	America	 to	 the	331	

UK	 via	 Senegal,	 which	 is	 not	 AHSV	 free.	 The	 OIE	 now	 recommends	 that	 insecticide	332	

impregnated	mesh	be	placed	over	containers	during	transport	of	horses	through	regions	333	

not	free	of	AHSV	[27].	 	Alphacypermethrin-treated	high	density	polyethylene	mesh	has	334	

been	 shown	 to	 reduce	 exposure	 of	 horses	 in	 jet	 stalls	 to	 C.	 imicola	 and	 is	 therefore	335	

recommended,	although	it	is	not	completely	protective	[88].	336	

	337	

The	 presence	 of	 AHSV	 infection	 within	 reservoir	 species	 presents	 a	 more	 difficult	338	

problem.	The	importation	of	 infected	zebra	from	Namibia	to	a	safari	park	near	Madrid	339	

was	 considered	 the	 cause	 of	 the	 1987-1991	 outbreak	 in	 the	 Iberian	 Peninsula	 and	340	

Morocco	 [10].	 The	 longest	 reported	 viraemia	 in	 zebra	 is	 six	 weeks,	 thus	 it	 may	 be	341	

possible	for	an	infected	animal	to	remain	clinically	undetected	during	the	required	40-342	

day	 quarantine	 period	 [26].	 Failure	 of	 compulsory	 paired	 serology	 testing	would	 also	343	

have	 to	occur	 for	virus	entry.	The	 illegal	 transport	of	a	 reservoir	equid	(for	example	a	344	

donkey	moved	from	northern	Africa	into	Europe)	represents	a	definite	risk	that	cannot	345	



be	quantified	[87].	 	The	 likelihood	of	 the	 introduction	of	AHSV	to	Great	Britain	via	 the	346	

legal	 trade	 of	 equine	 semen,	 ova	 and	 embryos,	 meat	 and	 other	 specified	 biological	347	

products	is	considered	to	be	negligible	  [87].	348	

	349	

4	-	VIRAL	INTRODUCTION	WITHIN	INFECTED	CULICOIDES		350	

	351	

There	 are	 two	 possible	 ways	 that	 a	 virus-infected	 Culicoides	midge	 could	 reach	 a	352	

previously	 unaffected	 area.	 The	 first	 is	 within	 a	 plane	 or	 freight	 container	 in	 transit,	353	

especially	 those	 containing	 vegetative	 materials	 such	 as	 packaged	 flowers	 [89;	 90].	354	

While	this	is	well	documented	for	other	vector	insects,	there	is	no	suitable	information	355	

available	for	estimating	the	risk	of	AHSV	introduction	via	inadvertent	transportation	of	356	

Culicoides	 [89;	 91].	 An	 assessment	 of	 the	 risk	 of	 a	 European	 BT	 outbreak	 caused	 by	357	

Culicoides	 movement	 via	 intracontinental	 transport	 and	 trade	 concluded	 that	 large	358	

numbers	of	vectors	would	have	to	be	transported	to	pose	a	significant	risk	[92].	An	even	359	

greater	number	of	Culicoides	would	likely	have	to	be	transported	for	an	extensive	AHS	360	

outbreak,	 as	 the	 number	 of	 resident	 equid	 hosts	 is	 generally	 fewer	 compared	 to	361	

livestock	affecting	BTV	transmission.	362	

	363	

The	 second	 potential	 method	 of	 virus	 introduction	 via	 Culicoides	 is	 wind	 dispersal.	364	

Although	 adult	 Culicoides	 rarely	 fly	 further	 than	 a	 few	 hundred	 metres	 from	 their	365	

breeding	grounds,	they	can	be	passively	dispersed	over	much	greater	distances	if	wind	366	

patterns	 are	 appropriate	 [14].	 The	 wind	 dispersal	 of	 infected	 Culicoides	 has	 been	367	

implicated	as	the	cause	of	the	overseas	spread	of	AHSV	from	Morocco	to	Spain	in	1966	368	

and	BTV	from	mainland	Europe	to	the	UK	in	2007	[93;	94].		369	

	370	

5	-	REVERSION	TO	VIRULENCE	OF	VACCINE	STRAINS	371	

	372	



There	is	concern	that	AHSV	could	be	introduced	to	a	disease-free	region	by	reversion	to	373	

virulence	of	attenuated	vaccine	strains.	There	is	a	theoretical	risk	that	horses	vaccinated	374	

with	live-attenuated	vaccine	may	be	imported	into	AHS-free	regions	and	pose	a	risk	via	375	

vaccine-induced	viraemia,	although	quarantine	requirements	should	preclude	this	risk.	376	

Recently	 an	 AHSV	 strain	 circulating	 in	 The	 Gambia	was	 thought	 highly	 likely	 to	 have	377	

been	derived	from	a	live-attenuated	AHSV-9	vaccine	strain	[95].		The	illegal	importation	378	

and	use	of	 live-attenuated	vaccines	in	AHS-free	regions	also	poses	a	risk.	In	support	of	379	

these	concerns,	both	the	field	transmission	and	re-assortment	of	live	attenuated	vaccine	380	

strains	of	BTV	have	been	demonstrated	in	Europe	[96;	97].	381	

	382	

CONSEQUENCES	OF	AN	AHS	OUTBREAK	IN	OIE	DISEASE-FREE	COUNTRIES		383	

AND	CURRENT	RESPONSE	PLANS	384	

	385	

Another	AHS	epizootic	would	have	severe	consequences	for	equine	welfare	and	industry	386	

in	 affected	 regions.	 During	 a	 three-year	 outbreak	 in	 Asia	 between	 1959-1961	 over	387	

300,000	equids	died	and	in	Spain	110	horses	died	as	a	direct	result	of	AHS	from	1987-388	

1990,	with	a	further	900	slaughtered	as	part	of	control	measures	[10;	98].	The	economic	389	

cost	of	 an	outbreak	of	AHS	 in	 the	Netherlands	has	been	estimated	at	272–516	million	390	

Euros	 [99].	 African	 horse	 sickness	 is	 notifiable	 in	 OIE	 disease-free	 countries	 and	391	

suspicion	 must	 therefore	 be	 reported	 immediately	 to	 the	 relevant	 authorities.	 If	 the	392	

virus	 is	 confirmed	 as	 being	 present,	 the	 immediate	 priority	 is	 to	 stop	 the	 virus	 from	393	

spreading	 into	 any	 potential	Culicoides	 vector	 population.	 The	 prevention	 and	 control	394	

plan	for	Great	Britain	is	laid	out	in	the	‘African	horse	sickness	control	strategy	for	Great	395	

Britain’,	which	is	freely	available	online	[21].		A	summary	of	the	measures	that	would	be	396	

taken	in	response	to	a	disease	outbreak	in	the	UK	is	provided	(Figure	4).	397	

	398	

CULLING	OF	HORSES	399	



	400	

In	Great	Britain,	culling	of	horses	infected	or	suspected	to	be	infected	with	AHSV	would	401	

be	 implemented,	 unless	 there	 was	 proof	 that	 the	 virus	 was	 already	 circulating	402	

extensively	 within	 the	 vector	 population.	 No	 compensation	 would	 be	 paid	 for	 culled	403	

horses.	 Exclusions	 from	 culling	 would	 potentially	 be	 available	 for	 animals	 of	 genetic	404	

importance	 if	 they	 can	 be	 immediately	 moved	 to	 fully	 operational	 vector-proofed	405	

facilities.	 In	 practice,	 these	 facilities	 do	 not	 exist	 outside	 of	 quarantine	 centres	 and	406	

laboratories.	 In	 a	 recent	 study	 of	 several	 premier	 equine	 facilities	 in	 the	 southeast	 of	407	

England,	none	had	vector-proof	facilities	available	[77].		In	addition,	the	rapid	mortality	408	

and	disease	 severity	 seen	 in	 naïve	horses	 renders	 debate	 on	moving	 such	horses	 to	 a	409	

protected	facility	as	hypothetical	only.	Public	concerns	on	culling	would	almost	certainly	410	

be	raised	and	it	is	anticipated	that	complex	legal	situations	would	quickly	arise	[100]	411	

	412	

TRACKING	OF	EQUIDS	413	

	414	

Detailed	 information	 on	 equid	 location	 and	 movement	 would	 be	 essential	 during	 an	415	

epizootic.	 Unfortunately	 detailed	 information	 on	 the	 numbers,	 movements	 and	416	

whereabouts	 of	 equids	 is	 not	 currently	 available	 throughout	most	 AHS-free	 countries	417	

[101-103].	 A	 new	 central	 equine	 database	 is	 being	 introduced	 within	 the	 European	418	

Union	 in	 2016;	 however	 there	 are	 currently	 no	 requirements	 to	 record	 transport	 of	419	

horses	within	most	EU	countries	and	modelling	horse	movements	between	countries	is	420	

very	 challenging	 [101].	 The	 USA	 has	 developed	 the	 National	 Animal	 Identification	421	

Scheme	(NAIS),	with	 the	aim	of	recording	all	animal	 identities,	premises	 locations	and	422	

animal	movements.	Unfortunately,	 the	 scheme	has	been	met	with	 resistance	and	does	423	

not	 appear	 to	 be	 an	 active	 program	 [104].	 A	 survey	 conducted	 in	 the	 USA	 in	 2009	424	

revealed	that	only	47%	of	questioned	equine	veterinarians	were	 in	 favour	of	 the	NAIS	425	

(although	the	remaining	53%	were	almost	entirely	neutral	with	only	3.6%	opposed	to	426	



the	 scheme)	 and	 this	was	 considered	very	disappointing	 as	81.6%	of	 the	 respondents	427	

did	 not	 have	 a	 plan	 to	 deal	 with	 clients’	 horses	 during	 a	 disaster	 [105].	 	 In	 much	 of	428	

Australia,	 property	 identification	 codes	 should	 be	 registered	 for	 equine	 premises,	429	

however	there	is	no	national	movement	database.		430	

	431	

VACCINATION	432	

	433	

Annual	vaccination	of	horses	is	the	mainstay	of	controlling	AHS	in	South	Africa,	with	the	434	

first	 highly	 effective	 live	 attenuated	 vaccine	 produced	 in	 1936	 [3;	 4].	 This	 vaccine	435	

currently	contains	 live-attenuated	 forms	of	 seven	of	 the	nine	AHSV	serotypes:	AHSV-5	436	

and	 AHSV-9	 were	 omitted	 due	 to	 safety	 concerns	 and	 regional	 low	 prevalence,	437	

respectively.	In-vivo	cross-protection	between	AHSV-6	and	AHSV-9	and	between	AHSV-438	

5	and	AHSV-8	has	been	demonstrated	in	horses	[106].	Vaccinated	horses	are	generally	439	

considered	well	protected,	although	the	vaccine	cannot	be	relied	upon	to	fully	protect	all	440	

horses	 [4].	 A	 recent	 study	 showed	 that	 16%	of	 immunised	horses	 in	 an	AHS	 endemic	441	

area	were	infected	with	AHSV	over	a	two-year	period	[107].	As	half	of	these	cases	were	442	

sub-clinically	infected,	they	could	have	an	impact	on	disease	epidemiology	if	they	were	443	

illegally	 transported	while	viraemic.	 It	 is	 important	 to	note	 that	 the	authors	 could	not	444	

confirm	 if	 the	 level	of	viraemia	detected	 in	 the	sub-clinically	 infected	horses	would	be	445	

sufficient	to	infect	Culicoides	[107].	446	

	447	

Outside	of	endemic	regions,	vaccination	has	been	successfully	used	to	control	outbreaks	448	

of	 AHS,	 and	 hundreds	 of	 thousands	 of	 horses	 were	 vaccinated	 during	 the	 1966	 and	449	

1987-1990	 outbreaks	 in	 the	 Iberian	 Peninsula	 [10].	 The	 availability	 of	 vaccines	 is	 a	450	

cause	for	concern	and	suggested	European	Union	vaccine	banks	have	yet	to	be	approved	451	

[87].	 In	 addition,	 the	 number	 and	 feasibility	 of	 vaccinations	 to	 be	 effective	 must	 be	452	



considered;	 a	 recent	 UK-based	 study	 predicted	 that	 85%	 uptake	 would	 be	 required	453	

[102].			454	

	455	

As	previously	discussed,	there	are	concerns	about	reversion	to	virulence	of	attenuated	456	

vaccine	 strains.	 	 Thus,	 alternative	 vaccine	 types,	 including	 inactivated	 virus	 and	457	

recombinant	vaccines	are	being	developed,	with	recent	 studies	demonstrating	efficacy	458	

of	recombinant	vaccines	expressing	genes	encoding	 the	outer	capsid	proteins	of	AHSV	459	

[108-112].	 These	 vaccines	 represent	 a	 potentially	 safer	 alternative	 to	 the	 live-460	

attenuated	 types,	 particularly	 for	 use	 in	 non-endemic	 countries,	 and	 allow	461	

differentiation	of	infected	from	vaccinated	animals	as	previously	mentioned.		462	

	463	

PREVENTION	OF	CULICOIDES-HORSE	INTERACTION	464	

	465	

The	prevention	of	Culicoides	blood-feeding	on	horses	is	an	essential	part	of	controlling	466	

an	AHS	outbreak.	Unfortunately	there	are	very	few	studies	that	assess	methods	used	to	467	

prevent	Culicoides	 from	biting	 horses,	making	 it	 almost	 impossible	 to	 determine	 their	468	

potential	 for	use	during	an	AHS	outbreak	[113].	Despite	Culicoides	triggered	IBH	being	469	

one	of	the	most	common	skin	diseases	of	horses,	the	only	truly	effective	control	method	470	

known	is	complete	allergen	avoidance	[114;	115].	While	moving	horses	to	areas	devoid	471	

of	 Culicoides	 would	 be	 effective	 for	 preventing	 AHSV	 transfer,	 it	 is	 often	 highly	472	

impractical	and	would	be	either	inappropriate	or	forbidden	during	an	epizootic.		473	

	474	

In	South	Africa	it	has	long	been	observed	that	stabling	of	horses	at	night	is	an	effective	475	

method	for	minimising	the	risk	of	contracting	AHS	[116].	However,	the	housing	must	be	476	

constructed	 to	 clearly	 defined	 specifications	 to	 prevent	Culicoides	 entry	 and	 there	 are	477	

various	 levels	 of	 vector	 proofing	 attainable.	 The	 behaviour	 of	 the	 different	 Culicoides	478	

species	is	very	important	when	considering	the	effectiveness	of	housing,	depending	on	479	



whether	 they	 display	 endophilic	 or	 exophilic	 activity	 [117].	 For	 example,	 it	 has	 been	480	

demonstrated	that	catches	of	exophilic	C.	imicola	are	higher	outside	open	stables,	while	481	

catches	 of	 endophilic	 C.	bolitinos	 are	 greater	 inside	 [118].	 This	 suggests	 that	 housing	482	

horses	 in	normal	 stables	with	open	windows	and	 top-doors	may	actually	 increase	 the	483	

biting	risk	from	endophilic	species,	while	reducing	the	risk	from	exophilic	species.	When	484	

simple	 vector	 protection	 (closed	 doors	 and	 gauzed	 windows)	 was	 applied	 to	 equine	485	

housing	 in	 South	Africa,	 there	was	 a	14-fold	 reduction	 in	 the	 catch	of	 both	 endophilic	486	

and	exophilic	species	[118].		Covering	of	entrances	with	mesh	significantly	reduced	the	487	

catches	of	Culicoides	in	stables	in	the	UK	[119].	The	use	of	netting	and	fans	has	also	been	488	

shown	 to	 reduce	 blood-feeding	 by	Culicoides	on	 horses	 in	 various	 housing	 systems	 in	489	

Switzerland	[120].	Use	of	insecticide-impregnated	mesh	rather	than	plain	gauze	is	also	490	

likely	to	further	reduce	the	entry	of	midges	into	animal	housing	and	thereby	reduce	the	491	

midge	attack	and	biting	rate	[119;	121;	122].		Insect	blankets	with	both	neck	and	hood	492	

covers	 have	 been	 shown	 to	 limit	 the	 feeding	 rate	 of	 Culicoides	 on	 horses	 in	 The	493	

Netherlands,	and	the	authors	of	this	study	suggested	that	this	might	be	helpful	to	protect	494	

horses	from	bites	of	AHS-infected	Culicoides	[123].		495	

	496	

The	most	effective	time	periods	during	the	day	to	use	protective	measures	must	also	be	497	

considered.	 As	 Culicoides	are	 crepuscular,	 with	 peak	 activity	 at	 dawn	 and	 dusk,	 it	 is	498	

recommended	 that	 any	 protective	 effects	 are	 focused	 at	 this	 time	 [114;	 124].	499	

Unfortunately,	 many	 Culicoides	 species	 have	 been	 shown	 to	 feed	 during	 the	 day,	500	

potentially	 making	 this	 recommendation	 unsuitable	 for	 completely	 effective	 disease	501	

control	[14;	52;	125].			502	

	503	

The	 UK	 AHS	 regulations	 advise	 that	 deltamethrin	 is	 the	 most	 effective	 insecticidal	504	

product	to	use	against	Culicoides,	although	they	emphasise	that	it	is	not	licensed	in	the	505	

horse	nor	specifically	against	midges	in	any	species	[21].	The	application	of	permethrin	506	



to	 horses	 with	 IBH	 significantly	 improved	 clinical	 signs	 in	 86%	 of	 43	 horses	 [126].		507	

Other	 studies	 in	 horses	 do	 not	 support	 the	 use	 of	 topical	 deltamethrin	 or	 permethrin	508	

solution	 as	 a	 repellent	 to	 prevent	 Culicoides	 from	 biting	 horses	 [127;	 128].	 However,	509	

these	 studies	 did	 not	 investigate	 the	 possible	 insecticidal	 effects	 of	 deltamethrin	 in	510	

reducing	onward	transmission	of	disease	from	viraemic	horses	or	the	numbers	of	adult	511	

Culicoides	within	 an	 area.	 This	 emphasises	 the	 important	 and	 often	 poorly	 defined	512	

distinction	 between	 insecticides	 and	 repellents	 [127].	 Possibly	 the	 most	 direct	513	

indication	of	the	effects	of	the	permethrins	on	the	transmission	of	arboviral	disease	is	a	514	

field	 study	 conducted	 in	 cattle.	 This	 study	 demonstrated	 that	 2-weekly	 application	 of	515	

topical	 permethrin	 did	 not	 reduce	 exposure	 to	 BTV	 as	 measured	 by	 serology	 [129].	516	

Injectable	avermectins	are	used	to	control	ectoparasites	in	many	species,	 including	the	517	

horse.	 Unfortunately	 their	 efficacy	 against	 different	 Culicoides	 species	 varies	518	

significantly,	with	near	toxic	doses	required	in	some	cases	and	there	is	no	data	available	519	

on	their	efficacy	against	European	Culicoides	species	[117].		520	

	521	

N,N-diethyl-3-methylbenzamide	(DEET)	has	been	shown	to	reduce	the	biting	rate	of	C.	522	

impunctatus	 in	 humans	 [130].	 	 The	 application	 of	 15%	 DEET	 impregnated	 mesh	 to	523	

vacuum	 light	 traps	 has	 been	 shown	 to	 significantly	 reduce	 Culicoides	 catches	 when	524	

compared	 to	untreated	mesh	 [131].	Unfortunately,	 there	 is	 in	vivo	evidence	of	adverse	525	

effects	 (including	 hypersteatosis	 and	 dermatosis)	 occurring	 in	 horses	 when	 DEET	 is	526	

applied	 topically	 at	 concentrations	 greater	 than	 15%,	 although	many	 were	 only	mild	527	

[132].	 	 Recent	work	 has	 demonstrated	 that	 a	 combination	 of	DEET	 and	 plant-derived	528	

organic	 fatty	 acids	 may	 provide	 an	 effective	 and	 long-lasting	 repellent	 effect	 against	529	

Culicoides	[133].	 Citronella	 oil,	while	 known	 to	be	 an	 effective	mosquito	 repellent,	 has	530	

been	 repeatedly	 shown	 to	 have	 either	 no	 repellent	 effect	 or	 potentially	 an	 attractant	531	

effect	on	Culicoides	[131;	134].	532	

	533	



Other	 control	 methods,	 such	 as	 the	 use	 of	 chemo-attractants	 to	 bait	 traps	 have	 been	534	

trialled	 in	Scotland	based	on	knowledge	of	host-location	 for	C.	impunctatus	[135].	 	The	535	

host	kairomones	carbon	dioxide	and	1-octen-3-ol	have	been	shown	to	attract	Culicoides	536	

in	 the	 UK,	 although	 effective	 use	 as	 a	 control	 method	 is	 not	 yet	 possible	 [136].	 In	537	

Scotland	 it	 is	 thought	 to	 be	 impractical	 to	 apply	 insecticides	 or	 undertake	 habitat	538	

manipulation	on	sufficient	scale	to	effectively	control	midges	[137].	Certainly	it	appears	539	

unlikely	that	the	large-scale	coordinated	effort	required	to	manipulate	the	habitat	could	540	

take	place	 in	 time	 to	help	control	an	outbreak	and	environmental	 regulations	prohibit	541	

the	 use	 of	many	 insecticides.	 	 The	 covering	 of	muck	 heaps	 on	 farms,	which	 has	 been	542	

suggested	 as	 a	 smaller	 scale	method	 of	 habitat	manipulation,	 has	 been	 shown	 not	 to	543	

affect	 Culicoides	 abundance	 and	 is	 therefore	 unlikely	 to	 be	 an	 effective	 method	 of	544	

controlling	arboviral	disease	[138].		545	

	546	

CONCLUSIONS	547	

	548	

In	summary,	climate	change	and	globalisation	have	resulted	in	a	myriad	of	factors	that	549	

increase	 the	 risk	 of	AHS	 to	many	parts	 of	 the	world.	 There	 is	 extensive	 evidence	 that	550	

many	AHS-free	regions	now	have	the	conditions	required	to	allow	an	AHS	epizootic	to	551	

occur	 and	 the	 introduction	 of	 AHSV-infected	 equines	 or	 Culicoides	 could	 produce	552	

extensive	and	persistent	epidemics	[16].	An	outbreak	of	AHS	in	any	disease-free	region	553	

would	have	catastrophic	effects	on	equine	welfare	and	industry.	The	OIE	regulations	for	554	

disease-free	countries	are	extensive	and	major	stakeholders	adhere	stringently	to	these	555	

requirements,	making	 the	 risk	 of	 AHS	 entry	 via	 a	 legally	 transported	 horse	 very	 low.	556	

Indeed,	 AHS	 is	 listed	 amongst	 six	 diseases	 for	 which	 the	 OIE	 requires	 additional	557	

mitigation	 measures	 in	 high	 health	 high	 performance	 (HHP)	 horses,	 despite	 these	558	

animals	already	being	managed	within	systems	that	prioritise	horse	health,	biosecurity	559	

and	 disease	 control.	 It	 is	 essential	 that	 international	 equid	 transport	 remains	 closely	560	



monitored	 and	 illegal	 movement	 is	 prevented.	 	 Veterinary	 surgeons	 attending	 cases	561	

with	clinical	findings	consistent	with	AHS,	in	particular	in	any	equids	that	have	travelled	562	

or	are	housed	with	equids	that	have	travelled,	must	remain	vigilant	to	the	possibility	of	563	

the	disease	occurring	in	areas	currently	considered	disease-free.	564	

	565	

Extensive	research	is	required	if	the	equine	industry	is	to	avoid	or	effectively	contain	an	566	

AHS	 epizootic	 in	 disease-free	 regions.	 This	 research	 should	 focus	 on	 four	 key	 areas:	567	

Firstly,	 investigating	 the	 AHSV	 vector	 competence	 of	 certain	 Culicoides	 species;	568	

secondly,	 improving	the	accuracy	of	disease	modelling	by	 increasing	our	knowledge	of	569	

Culicoides	 distribution	 and	 the	 development	 of	 standardised	 recording	 of	 equid	570	

movement;	thirdly,	the	development	of	more	effective	and	practical	methods	to	prevent	571	

blood-feeding	 by	 Culicoides	 on	 horses;	 and	 finally,	 the	 establishment	 of	 vaccination	572	

banks	available	for	use	by	OIE	disease-free	regions	that	can	be	used	in	the	event	of	an	573	

outbreak,	preferably	based	on	recombinant	vaccine	formulas.	574	

	 	575	
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TABLES	AND	FIGURE	LEGENDS	587	

SPECIES	 AHSV	VECTOR	
ROLE	

BTV	VECTOR	
ROLE	

REGIONS	OF	MOST	
IMPORTANCE	

C.	imicola	 Primary	
Importance	

Primary	
Importance	

Africa,	Southern	Europe,	
Asia	

C.	bolitinos	 Primary	
Importance	

Primary	
Importance	

Africa	

C.	brevitarsis	 Unknown	 Primary	
Importance	

Australia	

C.	obsoletus	 Suspected	 Primary	
Importance	

Europe	

C.	scoticus	 Unknown	 Primary	
Importance	

Europe	

C.	chiopterus	 Unknown	 Primary	
Importance	

Europe	

C.	dewulfi	 Unknown	 Primary	
Importance	

Europe	

C.	pulicaris	 Suspected	 Primary	
Importance	

Europe	

C.	punctatus	 Unknown	 Primary	
Importance	

Europe	

C.	magnus	 Unknown	 Lesser	Importance	 Africa	
C.	sonorensis	 Lab	vector	 Primary	

Importance	
North	and	Central	America	

C.	insignis	 Unknown	 Primary	
Importance	

South	and	Central	America	

C.	pusillus		 Unknown	 Primary	
Importance	

South	and	Central	America	

C.	actoni	 Unknown	 Lesser	Importance	 -	
C.	brevipalpis	 Unknown	 Lesser	Importance	 -	
C.	dumdumi	 Unknown	 Lesser	Importance	 -	
C.	filarifer	 Unknown	 Lesser	Importance	 -	
C.	fulvus  	 Unknown	 Lesser	Importance	 -	
C.	furens	 Unknown	 Lesser	Importance	 -	
C.	gulbenkiani	 Unknown	 Lesser	Importance	 -	
C.	milnei	 Unknown	 Lesser	Importance	 -	
C.	nevilli  	 Unknown	 Lesser	Importance	 -	
C.	nubeculosus	 Unknown	 Lesser	Importance	 -	



C.	orientalis	 Unknown	 Lesser	Importance	 -	
C.	oxystoma	 Unknown	 Lesser	Importance	 -	
C.	peregrinus	 Unknown	 Lesser	Importance	 -	
C.	puncticollis	 Unknown	 Lesser	Importance	 -	
C.	stellifer	 Unknown	 Lesser	Importance	 -	
C.	tilineatus	 Unknown	 Lesser	Importance	 -	
C.	tororoensis	 Unknown	 Lesser	Importance	 -	
C.	wadai	 Unknown	 Lesser	Importance	 -	
	588	

Table	1:	The	31	species	of	Culicoides	known	to	play	a	role	in	the	transmission	of	bluetongue	disease	and	their	known	or	589	

suspected	roles	in	African	horse	sickness	virus	transmission.	Those	in	bold	are	more	clearly	implicated	in	field	590	

transmission	of	bluetongue	virus	and	therefore	of	more	importance	when	considering	African	horse	sickness	virus.	591	

Expanded	and	revised	from	Meiswinkel	et	al,	2004	[139].	592	

Figure	1:	Sudden	death	associated	with	peracute	form	of	AHS.	Frothy	fluid	visible	draining	from	nostrils	(photo	credit:	Rudy	593	

Meiswinkel)	594	

	595	
Figure	2:	A	case	of	the	cardiac	form	of	AHS	demonstrating	oedema	of	the	supraorbital	space	and	head.	596	

	597	
Figure	3:	A	case	of	the	cardiac	form	of	AHS	showing	chemosis	and	supraorbital	oedema	(photo	credit:	Maygan	Jennings).	598	

	599	
Figure	4:	Flow	chart	summarising	the	response	to	AHSV	infection	based	on	the	AHS	control	strategy	for	Great	Britain	[21].			600	
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