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Summary

Background: Many cells are remarkably proficient at tracking
very shallow chemical gradients, despite considerable noise
from stochastic receptor-ligand interactions. Motile cells
appear to undergo a biased random walk: spatial noise in
receptor activity may determine the instantaneous direction,
but because noise is spatially unbiased, it is filtered out by
time averaging, resulting in net movement upgradient. How
nonmotile cells might filter out noise is unknown.
Results: Using yeast chemotropic mating as a model, we
demonstrate that a polarized patch of polarity regulators
‘‘wanders’’ along the cortex during gradient tracking. Com-
putational and experimental findings suggest that actin-
directedmembrane traffic contributes towandering by diluting
local polarity factors. The pheromone gradient appears to bias
wandering via interactions between receptor-activated Gbg
and polarity regulators. Artificially blocking patch wandering
impairs gradient tracking.
Conclusions: We suggest that the polarity patch undergoes
an intracellular biased randomwalk that enables noise filtering
by time averaging, allowing nonmotile cells to track shallow
gradients.

Introduction

Many cells track extracellular chemical gradients to
direct cell migration (chemotaxis) or growth (chemotropism).
Whereas swimming bacteria compare chemical concen-
trations at different times (temporal gradient sensing) [1],
eukaryotes compare chemical concentrations on the up-
and downgradient sides of the cell (spatial gradient sensing)
[2]. These cells can track remarkably shallow gradients
[3–6]. Because the instantaneous noise stemming from
stochastic receptor-ligand interactions would often exceed
the tiny gradient signal [6, 7], cells are thought to use time
averaging to filter the consistent spatial signal from the
random noise [8]. Chemotaxing cells can perform time
averaging via a biased random walk [7]: although noise influ-
ences instantaneous trajectory, over time random fluctua-
tions in different directions cancel out, leaving net movement
upgradient.
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Because a biased random walk requires movement,
nonmotile gradient-tracking cells presumably employ some
other form of time averaging. Themating response of the yeast
Saccharomyces cerevisiae provides a genetically tractable
system in which to study chemotropic gradient tracking [9].
Haploid yeasts of opposite mating types orient polarized
growth up pheromone gradients to find and fuse with mating
partners. How do such nonmotile cells filter noise to orient
growth upgradient?
The direction of growth in yeast is dictated by the conserved

Rho-family GTPase Cdc42, which orients actin cables that
direct vesicle delivery and growth toward the polarization
site [10]. Cdc42 clusters in a cortical ‘‘polarity patch’’ with
other polarity regulators, including the Cdc42 guanine nucleo-
tide exchange factor (GEF) Cdc24 and the scaffold protein
Bem1, which is thought to facilitate a positive-feedback loop
that contributes to Cdc42 polarity [11]. In a pheromone
gradient, the polarity patch is generally located on the upgra-
dient side of the cell, resulting in growth in that direction.
Pheromone binds to G protein-coupled receptors, generating
free Gbg that can recruit Cdc24 via the scaffold protein
Far1 [12, 13]. Thus, ligand-bound receptors can spatially bias
Cdc42 activation.
In shallow gradients, the internal Cdc42 gradient must be

much steeper than the external pheromone gradient to result
in polarized growth and mating projection formation. In fact,
Cdc42 becomes highly polarized even in uniform pheromone,
when it is oriented toward a ‘‘default site’’ specified by the
bud-site-selection protein Rsr1 [14]. Polarity is established
even when all spatial information is removed by exposing
rsr1D cells to uniform pheromone, implying that mating
polarity can be initiated by random stochastic fluctuations
that are then amplified by positive feedback. Positive feed-
back provides a mechanism to generate a steep Cdc42
gradient from a shallow (or even flat) pheromone gradient.
Positive feedback is self-reinforcing, so once specified,

growth orientation should remain stable. However, cells that
initiate polarized growth in the ‘‘wrong’’ direction reorient to
better align with the gradient over time [4, 15]. How is positive
feedback overcome to allow repositioning or redefining of the
cell’s front?
We find that in cells exposed to nonsaturating concentra-

tions of pheromone, the polarity patch wanders around the
cell cortex. The degree of wandering depends on the phero-
mone concentration, and cells engineered to block wandering
can no longer effectively reorient to track a pheromone
gradient. Our findings suggest that vesicle traffic overcomes
positive feedback to promote an intracellular ‘‘random walk’’
by the polarity patch, which is biased by the pheromone
gradient to enable nonmotile cells to correct errors in growth
orientation and effectively track shallow gradients.

Results

A Wandering Polarity Patch in Subsaturating Pheromone
Cdc42 and other polarity proteins localize to the tip of the
pointy mating projection in saturating pheromone [9]. Because
the population of cell-surface receptors is saturated, such
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Figure 1. A Wandering Polarity Patch in Cells Exposed to Subsaturating Pheromone

(A) Mating projection morphology is correlated with pheromone concentration. DIC images show MATa bar1 cells (DLY10065) treated with the indicated

concentration of a factor for 2.5 hr.

(B) Polarity protein distribution is unaffected by pheromone concentration. Fluorescence images and averaged cortical distributions of Bem1-GFP

(Experimental Procedures; Figures S1A and S1B) at the indicated concentrations are shown.

(C and D) The polarity patch wanders in subsaturating pheromone. BEM1-GFP cells (DLY10065) were filmed at the indicated a factor concentrations; 15min

patch centroid tracks (black, same cells; color, other cells) are shown at right (Experimental Procedures; Figures S1D–S1F).

(E) Wandering occurs on the upgradient side of the cell (gradient: 0–11.9 nM a factor in YEPD, indicated in red).

(F) Mean-squared displacement (MSD: error bars represent SEM) for the centroid of the wandering Bem1-GFP patch in cells (DLY10065) treated with

pheromone as indicated.

(G and H) Cells gradually reorient growth to align with the gradient. DIC images (G) and growth orientation angles (H) at the indicated times (gradient

as in E) are shown. Perfect alignment is 0�, dashed line.

Scale bars represent 5 mm unless otherwise noted. All fluorescence images are deconvolved, inverted maximum projections.
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cells cannot track gradients. Cells actually tracking a gradient
form broad rather than pointy projections [4, 15–17]. Similarly,
cells in uniform, nonsaturating pheromone formed broad
projections (Figure 1A). (To precisely control pheromone
concentration, all of our strains lack the Bar1 protease that
degrades a factor.)

Variations in cell morphology could stem from differences in
polarity protein distribution [18]. We monitored polarity using
Bem1-GFP, which is fully functional, unlike GFP-Cdc42 [19].
The distribution of Bem1-GFP did not differ significantly in
cells exposed to low or high concentrations of pheromone
(Figure 1B; see also Figure S1 available online). Instead, the
Bem1-GFP patch fluctuated in intensity and ‘‘wandered’’
around the cortex in cells exposed to low pheromone (Fig-
ure 1C and Movie S1). Other components of the polarity
patch, including the GEF Cdc24 and activated Cdc42,
behaved similarly (Figure S1C). In contrast, Bem1-GFP was
stably localized to the projection tip in cells exposed to high
pheromone (Figure 1D and Movie S1). To quantify patch
wandering, we tracked the centroid of the Bem1-GFP patch
(Figures 1C, 1D, and S1). The average area covered by the
patch centroid during wandering (mean-squared displace-
ment, or MSD) grew more rapidly at low pheromone con-
centrations (Figure 1F), confirming that the patch exhibits
dose-dependent wandering. Cells exposed to high concentra-
tions of pheromone exhibited little wandering even before
forming a projection (Figure S1G). Cells tracking a gradient
of pheromone in a microfluidics device also exhibited a
wandering polarity patch, predominantly on the upgradient
side of the cell (Figure 1E and Movie S2). The degree of
wandering in gradient-treated cells was comparable to that
in cells exposed to low uniform pheromone (Figure 1F).
Highly polarized Cdc42 would direct secretion to a

narrow window, but if Cdc42 shifts to a new location, secre-
tion should follow. Over time, this would result in distributed
growth over a broad region, despite the tightly polarized
instantaneous distribution of polarity regulators. If the
wandering patch spent more time on one side of the projec-
tion tip, then growth would ‘‘turn’’ in that direction. Indeed,
when cells initially grew a projection misaligned with the pher-
omone gradient, they slowly reoriented growth upgradient
(Figures 1G and 1H and Movie S2) [4, 8, 15], suggesting that
polarity-patch wandering may facilitate error correction
during gradient tracking.
These findings indicate that there is a process that over-

comes positive feedback to perturb polarity-patch integrity
and promote wandering. Moreover, high-concentration
pheromone reduces wandering, raising the question of how
wandering is constrained by pheromone. One obvious candi-
date is the bud-site-selection protein Rsr1, which uses internal
cues to specify the ‘‘default’’ site to which cells polarize in
uniform pheromone [14].



Figure 2. Wandering Is Constrained by Rsr1 and by Gbg-Far1 at High

Pheromone Concentration

(A) RSR1 cells make pointier projections than rsr1D cells. DIC images of WT

(DLY10065) and rsr1D (DLY10066) cells treated with 15.6 nM a factor in

YEPD for 2.5 hr are shown.

(B) Maximum curvature (Experimental Procedures; Figures S2A–S2C) for

the same cells at different pheromone concentrations. Box: median and

quartiles (n > 67 cells).

(C) The patch wanders more in rsr1D cells than in RSR1 cells. Wandering

MSD for Bem1-GFP in WT (DLY10065) and rsr1D (DLY11740) cells at the

indicated a factor concentrations (nM) (n > 19 cells) are shown. RSR1 traces

from Figure 1F.

(D) The patch wanders in cdc24-m1 rsr1D cells (DLY11638) even at high

pheromone concentration (594 nM in CSM). Deconvolved, inverted
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Rsr1 and Gbg-Far1-Cdc24 Constrain Wandering
Mating projections of RSR1 cells appeared pointier than those
of rsr1D cells (Figure 2A) [20]. Maximum curvature (a quantita-
tive measure of pointiness; Figures S2A–S2C) increased with
pheromone concentration, with RSR1 cells pointier than
rsr1D cells at all concentrations (Figure 2B). MSD grew more
slowly in RSR1 cells than rsr1D cells (Figure 2C), suggesting
that Rsr1 constrains the wandering, yielding pointier mating
projections.
Even rsr1D cells exhibited reduced wandering and pointier

projections at higher pheromone concentrations (Figures 2B
and 2C). What underlies concentration-dependent restraint
of patch wandering? Upon ligand binding, pheromone recep-
tors catalyze local release of free Gbg, which recruits Far1-
Cdc24 from the cytoplasm, leading to local Cdc42 activation
[12, 13]. A mutation that prevents the Far1-Cdc24 interaction
(cdc24-m1) [12] resulted in dramatically wandering patches in
rsr1D cells, even in saturating concentrations of pheromone
(Figures 2D and 2E and Movie S3), consistent with previous
reports [21]. Vesicle-trafficking markers colocalized with
wandering polarity markers in cdc24-m1 rsr1D cells, confirm-
ing that secretion follows a wandering polarity patch (Figures
S2D–S2F). Dramatic patch wandering resulted in widely
distributed growth, precluding projection formation [21]
(Figure 2E, inset). Thus, Rsr1 and Gbg-Far1-Cdc24 each
provide parallel constraints on wandering at high pheromone
concentration. An additional, unknown mechanism also
contributes to dose-dependent wandering, because even
cdc24-m1 rsr1D ‘‘unconstrained’’ cells exhibited less wander-
ing at higher concentrations of pheromone (Figure S2G).
All constraints are relaxed in subsaturating pheromone,
suggesting that wandering is a physiologically important
phenomenon at pheromone concentrations relevant to
gradient tracking.

Vesicle Traffic Provides a Potential Mechanism to Drive

Wandering
We compared the ‘‘unconstrained’’ wandering in rsr1D cdc24-
m1mutants with simulated diffusion on the surface of a sphere
(see Computational Methods section in Supplemental Experi-
mental Procedures). For diffusion, the MSD initially increases
with slope 4Dt (where D is the diffusion coefficient and t is
time) but then plateaus at 2R2 as it is constrained by cell geom-
etry (where R is the radius of the sphere). With a diffusion
coefficient matched to the initial MSD slope of the wandering
patch, MSD initially grewmore steeply than predicted for diffu-
sion (Figure 3A), suggesting that wandering direction is not
entirely random (see below).
A potential wandering mechanism is suggested by recent

work modeling cell polarity in vegetative yeast cells, where
actin-independent positive feedback establishes and main-
tains polarity. Positive feedback involves GTP-Cdc42-medi-
ated recruitment of a cytoplasmic complex containing Bem1,
a Cdc42 effector, and the GEF Cdc24. Cdc24 activates neigh-
boring Cdc42, leading to recruitment of more Bem1 complex,
which activates more Cdc42, and so on [11]. Because vesicles
deliver membrane that lacks Bem1 complexes, vesicle fusion
maximum projections of Bem1-GFP at different times (min:sec) are shown.

Colored tracks: 15 min centroid trajectories from representative cells.

(E) Wandering MSD for cdc24-m1 rsr1D (DLY11638) and rsr1D (DLY10066)

cells in 0.3 mM a factor (n > 24 cells). Inset: DIC images of cdc24-m1 rsr1D

cells are shown.

Scale bars represent 5 mm unless otherwise noted.



Figure 3. Wandering, but Not Polarity Establishment, Requires F-Actin and Myo2

(A) Comparison of wandering (blue: from Figure 2E) with simulated diffusion (red: D = 0.0016 mm2/s) on the surface of a 4 mm diameter sphere.

(B) Schematic: fusion of a vesicle off-center from the polarity peak would shift the peak away from the fusion site. x axis: cortical position; y axis: con-

centration of Cdc42.

(C) Peak shift (black) resulting from simulated fusion of a single vesicle depends on the distance between the fusion site and the center of the peak

(for comparison, the shape of the Cdc42 concentration profile is shown in green).

(D) Wandering is reduced upon actin depolymerization. cdc24-m1 rsr1D (DLY11306) cells in 59.4 nM a factor were treated with 200 mM Lat-A (sufficient to

dismantle actin patches: Figure S3A) or DMSO (control).

(E) Polarity establishment is actin independent. WT (DLY11742), rsr1D (DLY11740), cdc24-m1 (DLY11094), and cdc24-m1 rsr1D (DLY11079) cells were

treated with 0.3 mM a factor and 200 mM Lat-A. Deconvolved, inverted maximum projections of Bem1-GFP at different times show cells completing

cytokinesis and then polarizing. Scale bar represents 5 mm.

(F) Cdc42 recycles rapidly. Average kinetics (mean6 SEM) of GFP-Cdc42 FRAP in DLY13898 cells treated with a factor (3 mM in CSM) and DMSO or Lat-A as

indicated (n > 11 cells). Inset: distribution of fitted t1/2. Each dot is one cell. Box: median and quartiles. p value from Student’s t test.

(G) Polarity is gradually lost in Lat-A. DLY11742 cells were pretreated for 90min with 0.3 mM a factor, then exposed to DMSO or 200 mMLat-A. The% of cells

(mean 6 SEM) with polarized Bem1-GFP or Spa2-mCherry was scored (n > 100 cells).

(H) Wandering is reduced in myo2-16 mutants. cdc24-m1 rsr1DMYO2 (DLY11079) and cdc24-m1 rsr1Dmyo2-16 (DLY12404) cells were imaged in a factor

(0.6 mM in CSM) at 34�C (restrictive formyo2-16mutants: Figure S3B), and cdc24-m1 rsr1DMYO4 (DLY11638) and cdc24-m1 rsr1Dmyo4D (DLY14160) cells

were imaged in a factor (0.3 mM in CSM) at 30�C (n > 34 cells).
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transiently dilutes the local polarity regulators, perturbing the
polarity patch [22].

Using a recently developed mathematical model [22], we
asked how vesicle fusion might affect polarity-patch location.
If a vesicle fuses off-center from the polarity peak, diluting
polarity regulators there, the polarity peak is predicted to shift
away from the vesicle fusion site, because positive feedback is
stronger on the opposing side. The degree of peak shift
depends on where the vesicle fuses relative to the peak center
(Figures 3B and 3C). Thus, vesicle fusion would lead to a shift
in peak position, away from the vesicle.

Wandering Is Actin Dependent
To test whether actin-directed vesicle traffic contributes to
wandering, we treated cdc24-m1 rsr1D cells with latrunculin-A
(Lat-A) at concentrations sufficient to dismantle F-actin
structures (Figure S3A) [23]. Wandering was greatly reduced
following exposure to Lat-A (Figure 3D), suggesting that
F-actin makes a major contribution to wandering. The residual
wandering in Lat-A-treated cells suggests that an actin-
independent process also contributes.
Although Lat-A inhibited patch wandering, it did not disable

polarity per se. This was surprising, given previous reports
that polarity is actin dependent in pheromone-treated cells
[24]. However, cells effectively established a polarized patch
of Bem1-GFP upon combined exposure to pheromone and
Lat-A (Figure 3E). Furthermore, actin-independent ‘‘symmetry-
breaking’’ polarization occurred even in strains lacking posi-
tional information from Rsr1 or the Gbg-Far1-Cdc24 complex
orboth (Figure3E).Fluorescence recoveryafterphotobleaching
(FRAP) revealed a rapid turnover of GFP-Cdc42 at the polarity
patch that was unaffected by Lat-A (Figure 3F), indicating that



Figure 4. Simulated Wandering due to Vesicle Traffic

(A) The polarity peak shift resulting from simulated off-center fusion of

a single vesicle (Experimental Procedures and Supplemental Experimental

Procedures) depends on peak size (left, dots color matched to inset peaks),

shape (middle), and dynamics (right, all peaks have same size and

shape: inset). Inset x axis is 8.9 mm along cell perimeter, y axis is Cdc42

concentration.

(B) GFP-Cdc42 intensity profiles from ten polarized cells (light blue, line

scans acquired as in Figure S1B) were used to adjust model parameters

to obtain a matching peak (dark blue).

(C) Peak shift (as in Figure 3C) for a polarity peak matching the observed

peak size, shape, and dynamics in vivo.

(D) Simulated wandering due to vesicle traffic from models with ten actin

cables (and cable lifetime as indicated) or random vesicle fusion in the

polarity window (0 cables), compared to wandering in cdc24-m1 rsr1D

mutants (black: from Figure 2E).
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Cdc42 polarization is dynamically maintained in an actin-
independent manner.

When cells pretreated with pheromone were exposed to
Lat-A, the proportion of cells displaying polarized Bem1-GFP
or Spa2-mCherry (another polarity marker [25]) declined
steadily over 3 hr (Figure 3G). Thus, Lat-A causes a gradual
loss of polarity, for unknown reasons. This observation can
explain the discrepancy between our results and those of
Ayscough and Drubin [24], who examined polarity 3 hr after
Lat-A addition.

The type V myosin Myo2 transports vesicles along actin
cables to the plasmamembrane [26, 27], andmyo2-16mutants
at restrictive temperature (Figure S3B) exhibited reduced
wandering compared to isogenic MYO2 control cells (Fig-
ure 3H). In contrast, myo4D mutants lacking a type V myosin
that traffics ER and mRNAs [26] did not impair wandering (Fig-
ure 3H). The contributions of both F-actin and Myo2 to effec-
tive patch wandering led us to ask whether vesicle-mediated
polarity perturbation would yield realistic wandering behavior.

Simulated Wandering of a Polarity Patch

Towhat degree would dilution of local polarity regulators upon
secretory vesicle fusion lead to wandering? We began by
asking how much a single vesicle fusion would shift the peak
of Cdc42 for peaks of different size (amount of Cdc42 in the
peak), shape (full width at half-maximum Cdc42 concentra-
tion), or dynamics (simulated FRAP of Cdc42). We varied
model parameters to obtain peaks that differed in each cate-
gory. In all cases, off-center vesicle fusion led to a shift of
the polarity peak away from the fusion site: small peaks were
shifted more than larger peaks, narrow peaks were shifted
more than broader peaks, and highly dynamic peaks were
shifted less than peaks with slower turnover (Figure 4A). For
a peak matching the size, shape, and FRAP dynamics
observed for GFP-Cdc42 in pheromone-treated cells (Fig-
ure 4B), a single vesicle would shift the peak by up to
w10 nm (Figure 4C).

Yeast cells secrete about 50 vesicles/min (Supplemental
Experimental Procedures). To model stochastic vesicle traffic
(including both exocytosis and endocytosis), we first defined
a ‘‘window’’ representing the polarity patch [28]. Vesicle fusion
occurred with equal probability anywhere in the window, and
endocytosis occurred preferentially in the window [29]. With
the window defined as the 2% of membrane harboring the
highest concentration of Cdc42, the peak wandered very little
(Figure 4D: 0 cables). However, in vivo, vesicles are delivered
to the window by a limited number of actin cables. To simulate
actin-directed transport, we assumed that vesicle fusion only
occurred at actin-cable termini. We considered models with
5–15 cables [30], which were attached at random sites within
the window. Vesicles fused with equal probability at any
of the currently active cable positions. Cables detached from
the cortex with a probability of 1/t per min (t = average cable
lifetime) and were then free to attach to a new random site in
the window. This formulation allows actin cables to track
wandering polarity sites. Wandering behavior in the actin-
containing simulations was much more extensive (Figure 4D
and Movie S4). Wandering was relatively insensitive to the
number of actin cables (Figure S4E) but sensitive to cable life-
time (Figure 4D). Thus, the dilution of polarity factors arising
from actin-directed vesicle trafficking would suffice to cause
a significant degree of wandering.

Comparison of the simulated wandering with wandering
in vivo (Figure 4D) suggests two conclusions. First, wandering
patch MSD plateaued before reaching the level expected from
the constraint due to cell geometry. This may reflect the pres-
ence of additional constraints on wandering, even in rsr1D
cdc24-m1 mutants. Second, with the assumptions employed
above, the simulated wandering did not recapitulate the
rapidity with which wandering MSD grew in rsr1D cdc24-m1
cells. Moreover, in our simulations the polarity peak
remained intact and did not display the large fluctuations in
intensity observed in vivo (compare Movies S1 and S4).
Thus, either vesicle traffic is more perturbing than we consid-
ered, or other factors must also contribute to wandering (see
Discussion).

Persistence in the Direction of Polarity Patch Wandering

Models with actin cables exhibited more persistent movement
of the polarity site than the model in which vesicles fuse



Figure 5. Wandering Displays Actin-Dependent Persistence in Models and

in Cells

(A) Schematic: the black arrow indicates movement of the patch centroid in

a 1.5 min imaging or simulation interval, and the other arrows show possible

directions of movement in the subsequent interval (purple, forward; blue,

backward). Persistence, P, is the ratio of forward to backward steps.

(B) P values for simulated wandering in models with the indicated numbers

of actin cables and cable lifetimes (green: model with random vesicle fusion

and no cables), as well as experimental P values from movies (red: cdc24-

m1 rsr1D from Figure 3D, n > 54 cells). Dotted line: P = 1 (no persistence).

n > 550 steps for each condition.
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randomly in the polarity window (Figure 5B). Persistence
arises because, over the lifetime of an actin cable, vesicles
have a propensity to fuse at the same location. Thus, if a cable
terminus is off-center from the polarity peak, successive
vesicle fusions guided by that cable would shift the peak
further away from the cable. To quantify the tendency of
wandering trajectories to keep going in the same direction,
we tracked polarity-patch centroid positions at 1.5 min inter-
vals and classified each step as moving ‘‘forward’’ or ‘‘back-
ward’’ relative to the previous step (Figure 5A). We defined
a persistence measure P as the ratio of forward steps to back-
ward steps. Random movement yields P = 1, matching the
model in which vesicle fusion occurred anywhere in the
window (Figure 5B: 0 cables). However, actin-containing
models all had P > 1, with P increasing with cable lifetime (Fig-
ure 5B: DMSO and Lat-A).

To assess whether patch wandering exhibited persistence
in vivo, we applied the same analysis to wandering patches
in rsr1D cdc24-m1 cells. Strikingly, wandering trajectories
showed significant persistence in the presence of actin, but
not in its absence (Figure 5B).

Patch Wandering Is Critical for Error Correction during

Gradient Tracking
If dilution of Bem1 and associated polarity factors is respon-
sible for wandering, then concentrating Bem1 on secretory
vesicles should reduce or eliminate wandering. Simulations
in which vesicles carried a high concentration of Bem1 dis-
played very little wandering, as expected (Figure 6A). Bem1
is normally cytoplasmic but can be tethered to membranes
by fusion to the exocytic v-SNARE Snc2, which is highly
concentrated on secretory vesicles [31]. We tracked the
polarity patch in Bem1-Snc2 and control cells using Spa2-
mCherry, which colocalizes with Bem1 and secretory markers
in wandering patches (Figures S2D–S2F). Consistent with
model predictions, Bem1-Snc2 dramatically suppressed
wandering in rsr1D cdc24-m1 cells (Figure 6B and Movie S5),
as well as in wild-type cells exposed to nonsaturating phero-
mone, resulting in pointy projections (Figure S5A).
If a wandering polarity patch is necessary for gradient

tracking, then preventingwandering should impair cells’ ability
to correct errors in growth orientation. We exposed control
and Bem1-Snc2 cells to a gradient of pheromone and
measured individual projection orientation angles over time.
Initial orientation angles were similarly distributed in Bem1-
Snc2 and control cells (Figure 6C), but the growth orientation
of Bem1-Snc2 cells did not improve with time (Figure S5B
and Movie S6). Whereas control cells that initially oriented
downgradient reoriented to track the gradient, Bem1-Snc2
cells did not reorient (Figure 6D), forming straight projections
even when initial growth was in the ‘‘wrong’’ direction (Fig-
ure 6D inset and Movie S6). These results suggest that
polarity-patch wandering is necessary for gradient tracking.

Discussion

Actin-Independent Positive Feedback Promotes Cell
Polarity during Mating

Yeast cells exposed to uniformpheromonedevelopapolarized
cell ‘‘front’’ (polarity patch), even if they lack Rsr1 [14]. Thus,
pheromone-treated cells can break symmetry in the absence
of spatial cues, suggesting that they employ positive feedback
to develop a polarity site from starting stochastic fluctuations.
We found that symmetry-breaking polarization occurred even
in Lat-A-treated cells, implying that positive feedback is actin
independent. A previous report demonstrated that polariza-
tion of the pheromone receptor can occur in the absence of
F-actin [32]. However, we found that polarity establish-
ment occurred in cdc24-m1 cells, where polarity is spatially
uncoupled from Gbg and the receptor [12], suggesting that
actin-independent feedback occurs at the level of polarity
regulators, downstream of pheromone receptors. Given that
the same polarity regulators polarize in budding and mating
cells, our findings suggest that similar molecular mechanisms
may underlie polarity establishment in both cases.

The Polarity Patch Wanders in Cells Treated with

Subsaturating Pheromone
Positive feedback in the polarity machinery explains how cells
can form a ‘‘front’’ even in shallow gradients. However, posi-
tive feedback could also be a problem: stochastic noise in
receptor occupancy could set off the hair-trigger amplifica-
tion mechanism to establish a ‘‘front’’ in the wrong direction.
Furthermore, because positive feedback is self reinforcing,
an established polarity site should be difficult to reorient.
And yet, cells that initially misalign growth with respect to
the gradient do reorient over time [4, 15]. Thus, cells must
possess the capability to overcome positive feedback in the
polarity machinery to reorient cell growth.
We report that when cells are exposed to nonsaturating

concentrations of uniform pheromone, the polarity patch
fluctuates in intensity and ‘‘wanders’’ around the cortex.
Imaging at 1.5 min intervals, we found that the patch generally
‘‘moves’’ only a short distance while appearing to remain
intact, but sometimes the patch splits into two or three
distinct spots and can even disappear entirely, reappearing
elsewhere. These behaviors suggest that cells possess a



Figure 6. Concentrating Bem1 on Vesicles

BlocksWandering and Impairs Gradient Tracking

(A) Simulated wandering is blocked by

concentrating Bem1 on vesicles. Simulations

were conducted using the model with 5 actin

cables and 2 min cable lifetime (to match

observed persistence: Figure 5B), with or

without Bem1 concentrated on vesicles.

(B) Wandering in vivo is blocked by Bem1-Snc2.

Wandering of Spa2-mCherry (which co-localizes

with Bem1 and secretory vesicles: Figures

S2D–S2F) was tracked in cdc24-m1 rsr1D strains

with Bem1-GFP (DLY11638) or Bem1-GFP-Snc2

(DLY11759) (n > 17 cells) treated with 59.4 nM

a factor.

(C) Initial growth orientation in a gradient is not

affected by Bem1-Snc2. CDC24 RSR1 strains

with Bem1-GFP (DLY10065) or Bem1-GFP-

Snc2 (DLY10063) were exposed to a gradient

of pheromone (0–11.9 nM a factor in YEPD)

and the first detectable outgrowth in DIC was

scored (each dot is one cell; perfect alignment

is 0�; p value from Kolmogorov-Smirnov test,

n > 37).

(D) Reorientation is impaired by Bem1-

Snc2. Change in orientation angle after 3 hr

in the pheromone gradient (Figure S5B)

is plotted against initial orientation angle (n > 41). Perfect reorientation would yield a line with slope 21; zero reorientation would yield a line with slope

0. Insets: cells with ‘‘incorrect’’ initial orientation; red triangle indicates direction of gradient.
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mechanism that can counteract positive feedback, allowing
patch repositioning.

Although our findings are the first to document wandering
behavior at subsaturating pheromone, wandering was previ-
ously described in cdc24-m1 rsr1D mutants (but not wild-
type or single-mutant cdc24-m1 or rsr1D cells) exposed
to saturating pheromone [21]. This suggests that Rsr1 and
Gbg-Far1-Cdc24 provide parallel mechanisms to restrain
wandering in high pheromone. Our findings imply that both
of these restraints become weaker at lower concentrations
of pheromone and that wandering is a physiologically impor-
tant phenomenon for gradient tracking. Interestingly, motile
polarity patches were recently observed in mating fission
yeast as well, in the accompanying manuscript by Bendezú
and Martin in this issue of Current Biology [33].

Previously, another study documented persistent wavelike
movement of broad polarity-factor crescents in vegetative
rsr1D cells [34]. Subsequent work did not recapitulate this
observation, but instead suggested that the wavelike motion
might be linked to stress from toxic probes and filming
conditions [19]. Nevertheless, Ozbudak et al. [34] proposed
ideas to explain wavelike motion that may apply to wandering
in pheromone-treated cells (see below).

Vesicle Trafficking Contributes to Polarity-Patch

Wandering
Once a polarity patch is assembled, actin cables are oriented
toward the patch, resulting in delivery and fusion of secretory
vesicles at that site. Because most polarity regulators are
thought to be absent from secretory vesicles (including
Bem1, the GEF Cdc24, and all known Cdc42 effectors), the
fusion of a vesicle would transiently dilute the local polarity
regulators. Even if Cdc42 itself were concentrated on vesicles,
mathematical modeling suggests that vesicle traffic would still
perturb the polarity patch [22]. Our simulations indicate that
actin-independent positive feedback reinforces the polarity
peak on the side opposite a vesicle fusion event, resulting in
a net shift of the polarity peak away from the fusion site. This
effect promotes wandering behavior in models with stochastic
actin-directed vesicle fusion, suggesting that vesicle traffic
underlies wandering.
If polarity patch wandering is driven by directed vesicle

traffic, then wandering should depend on actin cables, on
the vesicle-trafficking myosin Myo2, and on vesicle fusion
proteins. We found that eliminating F-actin or reducing Myo2
function severely reduced wandering (we were unable to test
secretory fusion mutants because they lost the polarity patch
at restrictive temperature). This hypothesis further predicts
that wandering would be eliminated by concentrating polarity
regulators on secretory vesicles. We found that fusing Bem1
(a scaffold that binds to many other polarity proteins) to the
v-SNARE Snc2 eliminated wandering.
Another prediction is that actin-mediated vesicle traffic

should move a polarity patch in a persistent manner [34]. If
a polarity peak shifted to one side, there would be a temporal
lag before actin cables relocated to the new peak position.
During the lag, vesicles would continue to traffic preferentially
to the ‘‘old’’ peak position, resulting in continual off-center
fusion events on the same side of the peak, driving motion in
the same direction. Simulating stochastic actin-cable attach-
ment to and detachment from the polarity peak, we found
that the degree of directional persistence depended on cable
lifetime. Statistical analysis of wandering revealed a significant
level of persistence in vivo. In aggregate, the modeling and
in vivo data strongly support the hypothesis that vesicle
trafficking promotes wandering of the polarity patch.

Other Sources of Wandering

Our simulations of wandering did not quantitatively recapitu-
late the rapid wandering observed in cdc24-m1 rsr1Dmutants,
nor did they exhibit the polarity patch breakups or disappear-
ances observed in vivo. Thus, either vesicle traffic is more
perturbing than we considered in our models, or some other
process also contributes to wandering.
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Onepotential factor that could enhance the perturbing effect
of vesicle traffic is the presence of Cdc42-directed GTPase
activating proteins (GAPs) on vesicles. GAPs contributed to
wavelike polarity patch motion in vegetative cells [34], and
the GAP Bem3 may be concentrated on secretory vesicles
[35]. If vesicles carry GAPs, their fusion would disrupt the
polarity patch to a greater degree than the dilution process
wemodeled. Of course, it is also possible that some nonvesic-
ular Myo2 cargo contributes to wandering.

Although the majority of the wandering (as well as the patch
breakup and disappearance events) was actin dependent,
there was nevertheless a residual level of wandering in Lat-
A-treated cdc24-m1 rsr1D cells. This seems likely to have
arisen from stochastic molecular noise in protein interactions,
which would not be captured by our deterministic model.
Molecular noisemay have limited power to promotewandering
on its own, but it may synergize with vesicle-driven
wandering, and the combination may suffice to account for
the wandering observed in vivo.

A Wandering Polarity Patch Provides the Opportunity

for Noise Filtering
It has long been appreciated that formation of a pointy mating
projection requires a much higher concentration of phero-
mone than that required to induce cell-cycle arrest [36]. We
found that projection morphology was correlated with the
degree of patch wandering: extensive wandering distributed
growth around the cortex, generating fat, rounded projections,
whereas restrainedwanderingmaintained a constant direction
of growth, generating pointy projections. Thus, cell shape
reflects the integral of polarity patch location over time, and
net growth reflects a time average of the polarity-patch posi-
tion. These observations suggest the appealing hypothesis
that the wandering polarity patch provides the same time-
averaging benefit, in terms of noise filtering, as that due to
the biased random walk performed by motile cells tracking
shallow gradients.

If patch wandering enables more effective gradient tracking,
then preventing wandering should reduce cells’ ability to track
gradients. Indeed, when wandering was blocked by con-
centrating Bem1 on vesicles, gradient tracking was greatly
impaired. Although we cannot rule out the possibility that the
Bem1-v-SNARE fusion had additional side effects (Fig-
ure S5C), in sum our findings suggest that polarity-patch
wandering provides the mechanistic basis for the gradient-
induced reorientation and error correction exhibited by yeast
cells tracking gradients.

How Is Wandering Biased by Pheromone Gradients?
If a wandering polarity patch undergoes a ‘‘biased random
walk’’ resulting in net growth upgradient, then wandering
must be biased by the extracellular pheromone gradient. As
discussed above, both Rsr1 and the Gbg-Far1-Cdc24 connec-
tion can restrain wandering in a pheromone concentration-
dependent manner. Intriguingly, genetic manipulations that
impaired gradient tracking also prevented rsr1D cells from
forming pointy mating projections [37]. Because our findings
indicate that forming a pointy projection requires effective
restraint of patch wandering, this correlation suggests that
constraining wandering is important for gradient tracking.

Both active Rsr1 and Gbg-Far1 bind to, and perhaps
activate, the GEF Cdc24 [12, 13, 38–40], but in a pheromone
gradient, Gbg-Far1 is dominant over Rsr1 [41]. Thus, cells in
a pheromone gradient may have two pools of active cortical
Cdc24: one recruited to the polarity patch by positive
feedback and one recruited to locations with free Gbg (i.e.,
ligand-activated pheromone receptors). If the polarity patch
is not correctly aligned upgradient, the pool of Cdc24 localized
by Gbg will be offset from the positive-feedback-localized
pool, resulting in two polarity clusters. Mathematical modeling
suggested that two polarity clusters far apart from each other
in the same cell would compete for cytoplasmic Bem1 com-
plexes, and one patch would grow at the expense of the
other. However, if the clusters were close to each other, then
they would merge into one peak at an intermediate location
[11, 31, 42]. Such competition and merging may enable an
off-center peak of Gbg-localized Cdc24 to bias wandering
of the positive-feedback-generated peak toward the highest
concentration of ligand-bound receptors. The details of
pheromone-induced bias of patch wandering remain to be
determined and offer a rich ground for future studies.

Conclusion

Cells tracking shallow gradients must amplify the gradient to
properly localize polarity factors, and they must filter out
noise from stochastic receptor-ligand interactions. We show
that yeast cells employ actin-independent positive feedback
to amplify the pheromone gradient, resulting in highly
polarized growth. Additionally, cells possess actin-dependent
mechanisms that perturb such positive feedback and allow
repositioning of the polarity site. Computational and experi-
mental findings suggest that the same vesicle trafficking that
enables polar growth also causes polarity-patch wandering.
This intrinsically driven wandering is restrained by increasing
pheromone concentration and provides a potential mecha-
nism to improve the alignment between polar growth direction
and the pheromone gradient. In principle, an intracellular
wandering polarity patch that performs a biased random
walk could enable noise filtering and effective tracking of
shallow gradients, even for nonmotile cells.

Experimental Procedures

Yeast Strains and Pheromone Treatment

Standard molecular genetic procedures were employed to generate yeast

strains, listed in Supplemental Information online. a factor (Genway Biotech)

treatment in complete synthetic medium (CSM: MP Biomedicals) plus 2%

dextrose appeared less effective than in YEPD, so concentrations are not

comparable between media.

Live-Cell Microscopy

Cells were grown to mid-log phase in CSM to OD600 = 0.1 and pretreated

with a factor for 1–2 hr prior to imaging. Cells were mounted on a slab of

CSM plus a factor, which was solidified with 2% agarose (Denville

Scientific). Slab edges were sealed with petroleum jelly, and cells were

filmed at 30�C unless otherwise noted. Images were acquired and decon-

volved essentially as described [19], except for images from Movie S1 and

Figure S1C, which were acquired using an Andor Revolution XD spinning-

disk confocal microscope with an Andor Ixon3 897 512 EMCCD camera.

In some cases, two strains were mixed on the same slab to compare

polarity-patch behavior under identical conditions. Genotype was distin-

guished using Spa2-mCherry, which was present in only one strain and

did not affect wandering (data not shown).

Image Analysis

Polarity-patch tracking was performed on deconvolved images using

Volocity software (Improvision). For each time lapse, a single threshold

was applied to select pixels that visually overlapped with polarity patches

(Figure S1). For each cell, three-dimensional coordinates of the thresholded

region centroid were collected for all time points. During filming, stage

positions exhibited some drift. Before plating on the slab, cells were mixed

with 0.2 mm TetraSpeck fluorescent beads (Invitrogen). One bead was
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selected as the ‘‘origin’’ and used to standardize all positional coordinates

from that stage position.

Centroid tracks were used to calculate MSD. For all pairs of time points

ti, tj and corresponding centroid positions pi, pj, the distance between

pi and pj was squared, and the average of these was calculated for each

time interval T = tj2ti. Trajectories from cells in which patches broke up or

disappeared were separated so that only centroid tracks from continuous

trajectories were used to calculate the MSD.

Latrunculin-A Treatment

Cells harboring the actin-patch marker Abp1-mCherry were used to confirm

the efficacy of Lat-A treatment (Figure S3). To track wandering, we pre-

treated cells for 1 hr with 60 nM a factor, collected them by centrifugation,

and resuspended them in CSM + 200 mM Lat-A (Invitrogen) before plating

on a Lat-A slab, prepared as follows: 2 ml of 20 mM Lat-A was added to

a 200 ml slurry of unheated agarose in CSM with a factor. The slurry was

heated in a boiling water bath until the agarose had melted and used to

prepare a slab as above. Control cells were treated with DMSO instead

of Lat-A.

To film polarity establishment (Figure 3E), we mixed cells with 0.3 mM

a factor and 200 mM Lat-A and plated them on a Lat-A slab (as above)

10 min before filming.

To document long-term loss of polarity, we grew cells in YEPD and pre-

treated them for 90 min with 0.3 mM a factor. The culture was split and

treated with either 200 mM Lat-A or DMSO and incubated at 30�C. Samples

were collected every 30 min and fixed for 5 min with 3.7% formaldehyde

(Sigma-Aldrich).

Photobleaching

For FRAP analysis, cells were grown and prepared on a Lat-A slab as above

except that the cells (BAR1) were treated with 3 mm a factor. FRAP analysis

was performed at 30�C on an inverted Olympus IX71 microscope with an

Evolve back-thinned EMCCD camera connected to a Deltavision Imaging

System (Applied Precision). Images were acquired using a 100X (1.40NA)

oil immersion objective and the Deltavision SoftWoRx Resolve 3D capture

program. Photobleaching was achieved by a single 0.1 s laser pulse at

488 nm (25% laser power), and 30 subsequent images were acquired at

adapative time intervals based on an expected recovery t1/2 of 3 s. Mean

fluorescence intensity wasmonitored in a 1.9 mmdiameter circle normalized

to prebleach peak intensity. t1/2 for each cell was determined from a double-

exponential fit to each curve.

Microfluidics

A microfluidics device was operated as previously described [16]. A

gradient of 0–11.9 nM a factor in YEPD was used for all experiments. Media

containing a factor was mixed with 2 mg/ml sulforhodamine 101 (Sigma-

Aldrich) to visualize the gradient. DIC images were analyzed using ImageJ

software (http://rsbweb.nih.gov/ij/index.html). A line was drawn from the

projection tip into the interior of the cell, normal to the tip of the projection.

The angle between the line and the gradient was measured every 30 min.

Orientation measurements were restricted to cells within the linear part of

the gradient, and only cells with unobstructed access up the gradient

were scored. Scoring was terminated if a cell budded or was ‘‘bumped’’

by another cell, changing orientation.

Computational Modeling of Positive Feedback and Vesicle Trafficking

A mathematical model combining an actin-independent reaction-diffusion

polarity system with vesicle exo- and endocytosis [22] was adapted as

described in Supplemental Information.

Supplemental Information

Supplemental Information includes five figures, three tables, Supplemental

Experimental Procedures, and six movies and can be found with this article

online at http://dx.doi.org/10.1016/j.cub.2012.11.014.
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