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Abstract 

We demonstrated an original ultrafast laser beam shaping technique for material processing 

using a spatial light modulator (SLM). Arbitrary beam intensity shapes are created at imaging 

plane. The size of the shaped beam is approximately 20µm, which is comparable to the 

beam waist at focal plane. Complicated and time-consuming diffraction far-field phase 

hologram calculation based on Fourier transformation is avoided. Simple and direct 

geometric phase masks are used to shape the incident beam at diffraction near-field using a 

spatial light modulator and then reconstruct at the imaging plane of an f-theta lens. A 

polished stainless steel sample is machined by the shaped beam at the imaging plane. The 

shape of the ablation footprint well matches the beam shape. 
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1. Introduction 

In the laser two decades, ultrafast lasers have been widely used for high precision and high 

quality material micro-processing. Materials arranging from metals [1, 2], semiconductors [3], 

dielectrics [4 - 6] to biological tissues [7, 8] can be processed by ultrafast laser pulses with a 

very small heat affected zone around the irradiated area. In recent years, the price of 

commercial ultrafast lasers decreased rapidly and the laser system becomes more and more 

compact. Nowadays, some type of ultrafast laser systems, such as high repetition rate 

picosecond fibre laser systems, have been increasingly employed by manufacturing 

industries.      

 

Due to the well defined ablation threshold, one of the characteristics of ultrafast laser 

material processing is that the shape of the processed area is very close to the laser beam’s 

intensity distribution. This has motivated some efforts in the field of ultrafast laser beam 

shaping.  From the use of amplitude mask projection and diffractive optical elements (DOEs) 

[9] to deformable mirrors [10], different technique has been attempted to shape ultrafast 

laser beams for various applications. Multiple annular beams were generated at focal plane 

by us recently for ultrafast laser micro-drilling with diffractive axicon phases using a spatial 

light modulator (SLM) [11]. Sanner et al. successfully obtained top-hat, doughnut, square, 

and triangle beam shapes at focal plane by programmable wave-front modulations using a 

nonpixelated optically addressed light valve [12, 13]. However, to produce a desired shape 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/80776995?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:z.kuang@liv.ac.uk
mailto:kz518@msn.com


at focal plane (i.e. far field), the phase modulation to the incident laser beam is complicated. 

Although algorithms based on time-consuming iterative calculations, such as Gerchberg-

Saxton[14, 15], were attempted to solve the issue, the accuracy was still not perfect due to 

the complexity nature of light diffraction.      

 

In this paper, we demonstrated an original ultrafast laser beam shaping technique for 

material processing using a spatial light modulator (SLM), which created arbitrary beam 

intensity shapes at imaging plane. The size of the shaped beam is approximately 20µm, 

which is comparable to the beam waist at the focal plane. Complicated diffraction far-field 

phase hologram calculation based on Fourier transformation is avoided here. Simple and 

direct geometric phase masks applied to the SLM shape the incident beam at diffraction 

near-field and then reconstruct at the imaging plane of an f-theta lens (f = 100mm). A 

polished stainless steel sample is machined by the shaped beam at the imaging plane. The 

shape of the ablation footprint on the sample surface well matches the shape of the beam.   

 

2. Experimental and methodology 

2.1 Experimental setup 

Schematic of the experimental setup is shown in figure 1. A laser beam output (Dia. ≈ 1mm, 

tp = 20ps, λ =1064nm, R = 200kHz) from a picosecond fibre laser system (Finanium) passed 

through a half wave plate used for adjusting the linear polarization direction, a beam 

expander (M ≈ ×5), and illuminated a reflective SLM (Holoeye LC-R 2500), oriented at <10 

degree angle of incidence. A pick-off (1%) beamsplitting mirror, placed after the SLM, 

reflected the beam through two positive lenses (f0 = 200mm) formed 4f system to a CCD 

camera-based laser beam profiler (Thorlabs) to observe the reconstructed beam shape.  

After the SLM, the laser beam travelled a long distance by multiple reflections on a series of 

mirrors, passed through a scanning galvanometer and reached a focusing F-theta lens (ff-

θ=100mm).  Machining samples were mounted on a three-axis (x, y, z) motion control stage 

(Aerotech), placed under the F-theta lens.  

 
Figure 1: Experimental setup 

 

2.2 Shaping observation by beam profiler  



When applying a geometric phase mask to the SLM, the beam shaped to the mask 

geometry near the SLM surface. However, the beam does not maintain the shape when 

propagating due to the diffraction. The 4f system (AJ = JK = KL = LA’ = f0) between the SLM 

and the beam profiler was established to reconstruct the beam shape at A to A’.  

 

2.3 Shaping reconstruction at imaging plane of focusing lens 

The beam shape at A was also reconstructed at the imaging plane of the F-theta lens, A’’.  

As shown in figure 1, five extra mirrors, D1 to D5, were added to significantly increase the 

distance from the SLM to the focusing F-theta lens, i.e. the object distance. The purpose of 

this was to reconstruct the shape to a small size comparable to the beam waist. The position 

of the imaging plane A’’ can be calculated, based on the thin lens imaging equation below, 
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where, u ≈ 15000mm is the object distance, i.e. the distance from the SLM(A) to the F-theta 

lens(G), f = 100mm is the focal length of F-theta lens and v is the image distance, i.e. the 

distance from the F-theta lens (G) to the image plane (A’’),  

 

𝑣 =  
𝑓𝑢

𝑢−𝑓
≈ 100.67𝑚𝑚  (2) 

 

The gap between the focal and imaging plane is: 

 

𝑥 = 𝑓 − 𝑣 = 0.67𝑚𝑚   (3) 

 

The magnification of the image system is M ≈ 1/150. Since the size of the shaped beam at A 

was approximately 3mm, the size of reconstructed beam at A’’ should be approximately 

20µm, which was comparable to the beam waist at focal plane H, and guaranteed sufficient 

fluence to machine various materials.   

 

3. Results    

Figure 2 shows two geometric phase masks, square and triangle, applied to the SLM at A 

and the correspondent beam profiles observed at A’. As shown, the beam successfully 

shaped to the desired geometries near the SLM surface.   



 
Figure 2: Geometric phase masks, square and triangle, applied to the SLM at A and the 

correspondent beam profiles observed at A’ 

 

Figure 3 demonstrates micrographs of a series of drilling footprints on a polished stainless 

steel sample. The sample was machined at different heights on the Aerotech stage from the 

focal plane H to the image plane A’’. The input laser pulse energy Ep was approximately 5µJ, 

measured before the scanning galvanometer aperture, and the drilling time for each footprint 

was 0.5s, i.e. 100k pulses per footprint. When machining at the focal plane H (i.e. far field), 

the footprints were not shaped to the desired geometries at A due to the diffraction. As 

shown, the shape of footprints gradually changed when approaching the imaging plane A’’, 

and successfully reconstructed the desired geometries (square and triangle) at the image 

plane A’’ with a size of ~ 20µm, comparable to the beam waist.  

 
Figure 3: Micrographs of drilling footprints on a polished stainless steel sample, machined at 

different heights on the Aerotech stage from the focal plane H to the image plane A’’ 

 

By this technique, arbitrary shapes can be obtained at the imaging plane (A’’) with sufficient 

fluence to process different type of materials. As shown in figure 4, the beam shaped to 

circle, ring and star geometries by applying correspondent phase masks on the SLM (A), 

was observed at CCD (A’) and successfully ablated the polished stainless steel sample at 

the imaging plane (A’’). The input laser pulse energy (Ep), measured before the scanning 

galvanometer aperture, was ≈ 5µJ, and the dwelling time to create each footprint was 0.5s, 

allowing 100k pulses input.  



 
Figure 4: Beam shaped to circle, ring and star geometries. First line: geometric masks 

applied on the SLM (A). Second line: 3D beam profiles observed by the CCD (A’).Third line: 

micrographs of machined footprints at surface of the stainless steel sample (A’’). 

 

4. Discussions 

4.1 Shaping quality 

Figure 5 shows the beam profiles observed by the CCD and the footprints machined on a 

stainless steel sample when changing the size of geometric mask (i.e. the square size). The 

input laser beam diameter was measured ≈ 6mm. As shown in figure 5, the shaping quality 

is affected by the size of the geometry displayed on the SLM at A. When applying a larger 

sized square (e.g. 5mm×5mm or 4mm×4mm), the machined footprint at image plane did not 

have a good square shape. However, when applying a smaller sized square (e.g. 

3mm×3mm or 2mm×2mm), the machined footprint nicely shaped to the square. The reason 

for this is explained below. 

 

As shown in figure 6, when the size of the geometric mask was large and comparable to the 

input beam size, e.g. 5mm×5mm square, only the low intensity outer part of the Gaussian 

shape was tailored to the geometry while the high intensity central part where the fluence 

reached the ablation threshold was not affected. The machined footprint hence remains the 

original shape. When the size of the geometric mask was much smaller than the input beam 

size, e.g. 3mm×3mm square, the high intensity central part was shaped and hence the 

geometry was machined on the sample at image plane. 



 
Figure 5: Shaping when changing the size of geometric mask (i.e. the square size). First line: 

geometric masks applied on the SLM. Second and third line: 2D and 3D beam profiles 

observed by the CCD. Fourth line: micrographs of machined footprints at surface of the 

stainless steel sample. 

 

 



Figure 6: Schematic showing how the shaping is affected by the size of the geometric mask - 

Upper: The size of geometric mask is too large to shape the high intensity Gaussian beam 

central part where the fluence reaches the ablation threshold, Lower: The size of geometric 

mask is sufficiently small to shape the high intensity central part of Gaussian beam  

 

4.2 Shaping efficiency 

Shaping efficiency was measured by the following method. Firstly, a beam intensity profile 

was obtained by the CCD at A’ when applying a geometric mask (e.g. a square) at A. The 

integral of the shaped area profile (Ishaped) and the entire intensity profile (I0) were then 

recorded, as shown in figure 7. The shaping efficiency (η) is the ratio between Ishaped and I0, 

calculated using the equation below.  

 

η =  
𝐼 𝑠ℎ𝑎𝑝𝑒𝑑

𝐼 0
 × 100%   (4) 

 

 
Figure 7: Shaping efficiency measurement 

 

The graph shown in figure 8 shows the shaping efficiency varies when changing the area of 

the shaped geometry observed at A’ by the CCD. As shown, larger shaping geometry gives 

higher shaping efficiency. This is probably due to the factor that the larger geometry shaped 

more area of the original beam.    

 



 
Figure 8: Shaping efficiency against the area of the shaped geometry observed at A’ by the 

CCD 

 

As demonstrated above, both shaping quality and efficiency are significantly affected by the 

size of the geometric mask. In order to machine a nicely shaped footprint on a sample with a 

high efficiency, the size of the geometric mask should neither be too large nor too small and 

the most appropriate size significantly depends on the input beam diameter. In our case, the 

input laser beam diameter was measured ≈ 6mm and the 3mm × 3mm square was found to 

be appropriate.  

 

5. Conclusions 

An original ultrafast laser beam shaping technique for material processing using a spatial 

light modulator (SLM) was demonstrated in this paper. Arbitrary intensity shapes were 

created at imaging plane of a focusing lens. The size of the shaped beam is approximately 

20µm, which is comparable to the beam waist at focal plane. Complicated far field phase 

hologram calculation is avoided, while a simple and direct geometric phase masks are 

applied to the SLM to shape the input beam at near field and then reconstruct at the imaging 

plane. A polished stainless steel sample was machined by the shaped beam at the imaging 

plane. The shape of the ablation footprint on the sample surface matched the shaped beam 

profile. 
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