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We develop a mechanistic model that describes the transport of gyrotactic cells with

propulsive force and propulsive torque that are not parallel. In sufficiently weak

shear this yields helical swimming trajectories, whereas in stronger shear cells can

attain a stable equilibrium orientation. We obtain the stable equilibrium solution

for cell orientation as a function of the shear strength and determine the feasibility

region for equilibrium solutions. We compute numerically the trajectories of cells in

two dimensional vertical channel flow where the shear is non-uniform. Depending on

the parameter values, we show that helical swimmers may display classical gyrotac-

tic focussing towards the centre of the channel, or can display a new phenomenon

of focussing away from the centre of the channel. This result can be explained by

consideration of the equilibrium solution for cell orientation. In this study we con-

sider only dilute suspensions where there is no feedback from cell swimming on the

hydrodynamics, and both cell-wall and cell-cell interactions are neglected.
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I. INTRODUCTION

Phytoplankton are microscopic organisms that live in aquatic environments, and many

species swim using either flagella such as Heterosigma akashiwa1 or using cilia such as

Paramecium2. Phytoplankton are important for the environment since they consume carbon

dioxide and release oxygen. A certain amount of this carbon is transported to the deep ocean

when phytoplankton die which makes the oceans the largest sink of carbon dioxide3. There

is also interest in using phytoplankton in biotechnology, from the production of biofuels

to high-value products, such as β-carotene4. Intensive bioreactor culture systems typically

consist of arrays of tubes which are pumped or bubbled, and it has been hypothesized that

efficient bioreactor designs might aim to make use of the swimming motion of the cells

themselves4.

The swimming behaviour of phytoplankton is determined by a range of internal and

external factors. Various species of phytoplankton are gravitactic, that is they swim upwards

on average in still fluid which can be beneficial for reaching regions of optimal light. For

some species this is due to being bottom-heavy - the centre of gravity for these cells is offset

from the centre of buoyancy, and the combination of the effects of gravity with the buoyancy

force gives rise to a gravitational torque which serves to reorient the cell allowing it to swim

upwards. However, in shear flow the cells may be reoriented from the vertical due to viscous

torques5. For a vertical pipe containing downwelling fluid, gravitactic cells can accumulate

near the centre6, a phenomenon known as gyrotactic focussing. As recently predicted7,8, such

a modification of the spatial distribution of algae in tubes alters significantly the effective

axial transport of cells. Furthermore, the interaction of gyrotactic swimmers with complex

flow fields can lead to a rich variety of spatial dynamics9.

It has been observed that many phytoplankton do not swim in a straight line, rather

they undergo helical trajectories10–12. Several explanations have been proposed for the ubiq-

uity of helical movement among micro-organisms. Over a century ago, Jennings 13 postu-

lated that the helical trajectory allows an otherwise asymmetric organism to move along

a nearly straight trajectory. The term helical klinotaxis was introduced by Crenshaw 10 to

demonstrate how organisms can modify their helical motions in order to undergo phototaxis

and chemotaxis. Recently Bearon 14 proposed a mechanistic model based on Heterosigma

akashiwa to generate upwards helical trajectories. Further mechanistic understanding of
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how helical swimming motions can be generated was provided by Pak and Lauga 15 , who

demonstrated how a squirmer model can swim in a helical path if the net force and torque

are not parallel. Using the mechanistic model for helical swimming, Bearon 14 showed how in

the presence of uniform vertical shear, cells could avoid swimming into regions of downwards

flow and retain upwards net transport.

The interaction between cells and the boundaries of a channel is addressed in some stud-

ies. Cells swimming near a wall may change their speed2, or change their trajectories from

straight to circular as the case of E. coli16. The cell-cell interaction may cause changes in the

reorientation due to velocity gradients: a flow field created by a cell induces a disturbance

flow around the second cell which then influences the velocity and orientation of the first

cell16. The model we present here is only valid for dilute suspensions where there is no feed-

back from cell swimming on the hydrodynamics, and both cell-wall and cell-cell interactions

are neglected.

Here we consider a mechanistic model describing a generic swimming cell with net force

and torque that are not parallel, based on the model of Bearon 14 for the alga Heterosigma

akashiwa. We consider the transport in channel flow where the shear is non-uniform. In

section II we describe the model system of ordinary differential equations describing the

cell’s orientation. We obtain the stable equilibrium solution for cell orientation as a func-

tion of shear strength in section III, and determine analytically the feasibility region for

the equilibrium solutions. We also compute numerically the mean horizontal component of

swimming orientation for parameters outside the feasibility region. In section IV we numer-

ically compute trajectories for cells in 2D channel flow and demonstrate that, for certain

parameter values, cells which are helical swimmers in still fluid may focus away from the

centreline of the channel.

II. MODEL

We consider a self-propelled cell which generates a propulsive force in the direction of the

unit vector p and a propulsive torque in the direction of the unit vector n, as depicted in

figure 1. The angle between the vectors p and n is given by γ which may be non-zero. The

propulsive force results in the cell swimming in the direction of p, and the propulsive torque

contributes to determining how the vector p rotates.
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FIG. 1. Diagram of model organism and co-ordinate system. The cell orientation is

described by two unit vectors, p and n. The vector p is represented in spherical polar co-ordinates

by the angles (θp, φp). The angle γ is the (constant) angle between the vectors p and n. The

cell swims in the direction p and is situated in vertical shear flow with velocity V represented by

the vertical arrows. The cell is reorientated due to three torques indicated by the curved arrows:

gravity, of magnitude L0, due to being bottom heavy as indicated by the shaded ellipse; viscosity,

in that it is rotated due to the vorticity of the flow, of magnitude ω, and a propulsive torque of

magnitude T in the direction of n.

To determine how the swimming direction, p, rotates, we also consider the gravitational

torque acting on the bottom-heavy cell, Lg, and the viscous torque exerted by the surround-

ing fluid, Lv
5. Assuming the center of mass to be displaced from the center of buoyancy in

the direction −p, the gravitational torque acting on the cell is given by:

Lg = Lop ∧ k, (1)

where Lo is the magnitude of the maximum gravitational torque and k is a unit vector in

the direction of the vertical z-axis. For a spherical cell swimming at low Reynolds number,

the viscous torque is given by:

Lv = 8πµa3(
1

2
ω −Ω), (2)

where µ is the fluid viscosity, a is the radius of the cell, ω = ∇ ∧ V is the vorticity of

the fluid with velocity V, and Ω is the angular velocity of the cell. Furthermore, at low
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Reynolds number, the total torque on the cell, including the propulsive torque of magnitude

T in direction n will be zero, and so we obtain an expression for the angular velocity of the

cell:

Ω =
1

2B
p ∧ k +Rn +

1

2
ω, (3)

where 1
2B

= Lo

8πµa3
and R = T

8πµa3
are reorientation rates associated with the gravitational

and propulsive torques respectively.

The cell swims according to the following ordinary differential equations14:

dx

dt
= V + vp, (4)

dp

dt
= Ω ∧ p, (5)

dn

dt
= Ω ∧ n, (6)

where x is the cell position, V is the local fluid velocity and vp is the swimming velocity of

the cell.

For simplicity, we consider fluid flow constrained to be in the x − z plane so that the

vorticity is given by ω = ωj where j is a unit vector in the y-direction.

We define the unit vectors p and n in spherical polar coordinates, for example p =

(sin θp cosφp, sin θp sinφp, cos θp) where θp is the angle between p and the vertical, and φp is

the angle between the projection of p onto the horizontal x − y plane and the x-axis. The

constant angle between p and n is defined as cos γ = p · n.

The vector equations for dp/dt and dn/dt can be converted to scalar equations for the

variables sin θp, cosφp, sin θn and cosφn
14. Non-dimensionalising time on 2B we obtain the

governing equations defining cell orientation:

dθp
dt

= − sin θp + Θ sin θn sin(φn − φp) + Ψ cosφp, (7)

sin θp
dφp
dt

= −Θ[sin θn cos θp cos(φn − φp)− cos θn sin θp]−Ψ cos θp sinφp, (8)

dθn
dt

= − sin θp cos(φp − φn) + Ψ cosφn, (9)

sin θn
dφn
dt

= sin θp cos θn sin(φn − φp)−Ψ cos θn sinφn, (10)

where Θ = 2BR and Ψ = Bω are non-dimensional parameters representing the relative

strength of the propulsive and viscous torques compared to the gravitational torque. In
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section IV we will consider channel flow where the vorticity varies with spatial position, and

so the parameter Ψ = Bω(x) will be a function of the cell position.

As discussed by Bearon 14 , in the absence of flow, Ψ = 0, this dynamical system describes

helical swimming trajectories, and as flow is introduced, the system displays more complex

behaviour. Equations (7-10) were solved numerically in Matlab R2014a using the ode45

solver.

III. CELL ORIENTATION AS A FUNCTION OF VORTICITY

To understand the cell dynamics, we first consider equilibrium solutions for the cell

orientation, that is consider solutions p = pe and n = ne for constant vectors pe and

ne. In this section, we shall assume all parameters are positive. From equations (5-6), if we

assume p and n are not parallel, we see that the angular velocity, Ω, given by equation (3),

must be zero for the orientation to be at equilibrium.

Taking the dot product of Ω = 0 with p, and the unit basis vectors i, j and k yields:

Θ cos γ + Ψpey = 0,

pey + Θnex = 0,

−pex + Θney + Ψ = 0,

nez = 0,

which can be solved to find the unit vector pe.

When the propulsive torque is zero, Θ = 0, provided that Ψ ≤ 1, cells attain a stable

equilibrium orientation given by5:

pe = (Ψ, 0,
√

1−Ψ2). (11)

Including a propulsive torque, Θ 6= 0, modifies the stable equilibrium orientation to14:

pex = Ψ−Θ

√
1−

(cos γ

Ψ

)2

, (12)

pey = −Θ

Ψ
cos γ, (13)

pez =
√

1− (pex)
2 − (pey)

2. (14)

To determine the feasibility region for this equilibrium solution in Θ−Ψ parameter space,

we require that the components of p are real. In particular taking cos γ
Ψ
≤ 1 ensures pex ∈ <,
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and by substituting equations (12,13) into the condition (pex)
2 + (pey)

2 < 1 we obtain a

quadratic for Θ:

Ψ2 − 2ΘΨ

√
1−

(cos γ

Ψ

)2

+ Θ2 < 1 (15)

which ensures pez ∈ <. To identify where the equilibrium solution is feasible in Θ − Ψ

parameter space, we solve this constraint for Θ to obtain:

Ψ ≥ cos γ. (16)

Ψ

√
1−

(cos γ

Ψ

)2

− sin γ ≤ Θ ≤ Ψ

√
1−

(cos γ

Ψ

)2

+ sin γ, (17)

or equivalently the second equation can be written as a constraint on Ψ:√
Θ2 − 2Θ sin γ + 1 ≤ Ψ ≤

√
Θ2 + 2Θ sin γ + 1. (18)

In figure 2, these equations demarcate the outer boundary of the region where equilibrium

solutions exist. Note that the behaviour for Θ = 0 displays a singular behaviour, in that

the lower bound Ψ ≥ cos γ is not required to be satisfied for an equilibrium solution to

exist. This is because in the absence of a propulsive torque which rotates the cells, an

equilibrium solution can be found for arbitrarily small shear rates. However on introducing

a propulsive torque, at low shear rates, the cells undergo helical trajectories and so do not

have an equilibrium orientation.

We now consider the behaviour of cells outside the region of parameter space where the

equilibrium is feasible. In the absence of a propulsive torque, Θ = 0, when the vorticity is

sufficiently strong such that the equilibrium is not feasible, Ψ > 1, cells tumble with period

of oscillation given by τ = 2π√
Ψ2−1

. Note we correct this expression by a factor of 2 from that

derived previously17 and referenced by Pedley and Kessler 5 . For Θ = 0, the average cell

orientation over an oscillation that is constrained to the x− z plane is given by:

px =
1

T

∫ T

0

sin θ(t)dt =
1

T

∫ 2π

0

sin θ

Ψ− sin θ
dθ, (19)

= Ψ−
√

Ψ2 − 1. (20)

Note that px = 1 for Ψ = 1, which agrees with the equilibrium solution. In figure 3,

we compute px numerically for a range of parameters. In figure 3(b-d) we see that for

weak shear (small Ψ), the average value of px is the same for helical swimmers as for non-

helical swimmers. That is the average value is the same as the equilibrium orientation
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FIG. 2. Equilibrium feasibility region: (a) γ = π
4 , (b) γ = π

3 , and (c) γ = 7π
16 . The shaded

regions indicate where the equilibrium orientation is feasible, with lower and upper curved bound-

aries given by equation (17) and left-hand vertical boundary given by equation (16). Dark gray

regions indicate that pex > 0 while light gray regions indicate pex < 0. The white region shows the

equilibrium is not feasible. Solid horizontal lines indicate feasibility for (a) Θ = 1, (b) Θ = 1.05,

and (c) Θ = 1. The axes scales in (b) are chosen to highlight the two values of Ψ where pex = 0.

for non-helical gyrotactic swimmers, px = Ψ. However, for helical swimmers, as the shear

increases generating a new equilibrium solution, the average value of px falls, and can become

negative as shown in figure 3(c). In all cases, when the shear increases further and the stable

equilibrium solution is lost, the average value of px decays to zero (data not shown).

IV. CELL TRAJECTORIES IN CHANNEL FLOW

We now consider Poiseuille flow in a vertical channel between two parallel walls separated

by a distance 2L:

V =
U

L2
(x2 − L2)k (21)

where U is the flow speed at the center, and k is a unit vector in z−direction. The vorticity of

the flow is ω = −2U
L2 xj. We non-dimensionalise lengths on L, and time on 2B as previously,
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FIG. 3. Average value of px: Stars indicate the average value for 100 simulations run for 100

time units. The vertical dashed lines are the boundaries of equilibrium feasibility. (a) Θ = 0. (b)

Θ = 1, γ = π
4 . (c) Θ = 1, γ = 7π

16 (d) Θ = 1.05, γ = π
3 . In (a) the solid line is the analytical

average for Θ = 0 given by equation (20) for Ψ > 1 and the equilibrium value for Ψ < 1, given by

pex = Ψ. In (b-d) the black solid lines are the equilibrium value given by equation (12) for values

of Ψ where the equilibrium is feasible. The grey lines are the Θ = 0 equilibrium value, pex = Ψ.

so as to obtain an expression for Ψ, the non-dimensional measure of the viscous torque:

Ψ = −Ψmaxx, (22)

where Ψmax = 2BU
L

. With respect to non-dimensional variables, the governing equation for

cell position, equation (4) is given by:

dx

dt
= Ψmax(x

2 − 1)k + νp (23)
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where ν = 2Bv
L

is the non-dimensional swimming speed which we take equal to 0.1 in the

simulations. We simulated the trajectories of cells swimming in the Poiseuille flow, by solving

equation (23) coupled with the equations for orientation (7-10) with the shear parameter

Ψ(x) given by equation (22). We imposed absorbing boundary conditions on the channel

boundaries such that cells that reach the wall remain there.

If there is no propulsive torque, Θ = 0, cells are focused in the centre of channel as

found by Kessler 6 and as shown in figures 4a and 5a. This can be explained by making

the assumption that the average cell orientation as a function of position is approximately

that given by the average cell orientation for the shear rate at that position as depicted

in figure 3. The equilibrium swimming direction, given by equation (11), has horizontal

component pex = Ψ, where Ψ = −Ψmaxx, and the mean horizontal component of swimming

direction for tumbling cells, given by equation (20), is px = Ψ −
√

Ψ2 − 1. When |Ψ| < 1,

corresponding to the inner region |x| < 1/Ψmax, we have an equilibrium swimming direction

that is towards the centre of the channel. When |Ψ| > 1, corresponding to the outer region

where |x| > 1/Ψmax, the mean value of px is also towards the centre of the channel.

When the propulsive torque is non-zero, Θ 6= 0, we can identify three distinct regions in

the channel. Again, we make the assumption that cell orientation can be described by the

local shear rate, and noting that Ψ is proportional to x, we can interpret figure 3 as a plot

of the average value of px as a function of position, x. In the central region cells swim in

helical paths because the viscous torque is insufficient to balance the propulsive torque and

generate a stable equilibrium swimming orientation. From figure 2 and equations (16) and

(18) we see this occurs when

|x| ≤ 1

Ψmax

max{cos γ,
√

Θ2 − 2Θ sin γ + 1} (24)

Outside this region, within the region of Θ−Ψ parameter space where equilibrium solutions

are feasible, cells attain an equilibrium orientation given by equations (12-14). Finally, near

the walls, if the shear is sufficiently strong the viscous torque will cause the cells to tumble.

From figure 2 and equation (18) we see this occurs when

|x| ≥ 1

Ψmax

√
Θ2 + 2Θ sin γ + 1. (25)

As a specific example, for the parameters Ψmax = 2, γ = π/4, Θ = 1, solving equation

(18) for |x| we determine that cells may attain an equilibrium orientation when 0.382 ≤
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FIG. 4. Swimming trajectories in a vertical channel: Example trajectories of duration 20

time units with parameters Ψmax = 2 and (a) Θ = 0, (b) Θ = 1, γ = π
4 , (c) Θ = 1, γ = 7π

16 , and

(d) Θ = 1.05, γ = π
3 .

|x| ≤ 0.923. This can also be seen from the feasibility region in figure 2a. Closer to the

centre of the channel, cells retain helical swimming motion, and near the walls, cells will

tumble. However, for these parameters, from figure 3b, the average swimming direction

computed for a fixed shear rate is towards the centre throughout the channel and we thus

see focussing towards the centreline as shown in figure 4b and 5b.

Because of the effect of Θ on the nature of the equilibrium solutions, the focussing be-

haviour may change qualitatively, and we can find focussing away from the centreline as

shown in figures 4c and 5c. This occurs because there is a location away from the centreline

where the horizontal component of swimming is zero, as shown in figure 3c. From equation

(12), solving for pex = 0 gives:

|x| = 1

Ψmax

√
Θ2 ±Θ

√
Θ2 − 4 cos2 γ

2
. (26)

For example, for the parameters Ψmax = 2, γ = 7π/16, we find that equilibria are feasible for

0.0980 < |x| < 0.9952 and pex = 0 when |x| = 0.099 and |x| = 0.49. For these parameters,
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FIG. 5. Distribution of cells across the channel: Horizontal position after 100 time units of

1000 cells initially uniformly distributed across the channel with parameters (a) Θ = 0,Ψmax = 2;

(b) Θ = 1, γ = π
4 , Ψmax = 2; c) Θ = 1, γ = 7π

16 , Ψmax = 2; (d) Θ = 1.05, γ = π
3 , Ψmax = 1. In (d)

grey indicates cells which had initial position |x| > 0.61 and black indicates cells which had initial

position |x| < 0.61.

when 0.099 < |x| < 0.49 we see the equilibrium orientation is away from the centreline

and when 0.49 < |x| < 0.995 the equilibrium orientation is towards the centreline and

we therefore see focussing at the interface, |x| = 0.49 where the horizontal component of

12
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swimming is zero.

As a final example, we select parameters where the roots of pex = 0 are visually distinct

from the feasibility boundary; Ψmax = 1, γ = π/3, Θ = 1.05 (see figures 2b, 3d). We find

that equilibria are feasible for 0.53 ≤ |x| ≤ 1.98 and pex = 0 when |x| = 0.61 or |x| = 0.84.

By examining the sign of the average horizontal component of orientation, we predict that

cells positioned within the central region |x| < 0.61 swim towards the centreline while cells

positioned outside this region swim towards the location |x| = 0.84. Therefore, accumulation

away from the center can be noticed in figures 4d and 5d. Furthermore, in figure 5d we see

how cells with initial position |x| < 0.61 tend to accumulate at the centreline whilst some

cells with initial position closer to the walls are focussed towards the point |x| = 0.84.

V. DISCUSSION

We have analyzed a simple mechanistic model for gravitactic organisms propelled by a

propulsive force and a propulsive torque which are not parallel. The model generates helical

swimming trajectories if the shear is sufficiently weak, but a stable equilibrium orienta-

tion arises at moderate values of shear representing a balance between the viscous torque,

gravitational torque and propulsive torque. We have derived analytic expressions for the

feasibility of the equilibrium orientation states as functions of the model parameters. Gyro-

tactic non-helical swimmers are known to focus in the centre of channel flow, at the point

where the horizontal component of swimming and the shear are zero. We showed this is also

true when the propulsive torque is not too strong; although helical swimming in the central

region resulted in a spread in the distribution. We also discovered that for certain parameter

values, cells focussed away from the centre, as the point where the horizontal component of

swimming is zero can be at a different location from the position of zero shear. We were

able to explain the results of the numerical simulations by comparison with the equilibrium

solutions for orientation.

The model leads to some experimentally testable hypotheses concerning how cells aggre-

gate in channel or pipe flow. Specifically to validate our predictions of gyrotactic focussing

away from the centre of the tube, firstly the biological swimming parameters would need

to be extracted from trajectory data in still fluid (e.g. data from Gurarie, Grünbaum, and

Nishizaki 11 and Crenshaw 10), and then experiments would need to be designed with tubes
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of the appropriate dimension and flow of the appropriate range of speeds. Designing ex-

periments to analyze individual swimming trajectories in flow is challenging18,19, but the

predictions from this model are robust to population-level experiments which may be more

feasible to implement6,9.

Throughout the paper we have assumed the cell’s motion is deterministic, however in

reality there is randomness in the cell trajectories. For gyrotactic swimmers, this has been

modelled by a Smoluchowski equation for the probability density function f(p,x, t) for cell

orientation and position20,21:

∂f

∂t
+∇x · (ẋf −D∇xf) +∇p · (ṗf − dr∇pf) = 0, (27)

where ẋ represents the deterministic spatial transport given by equation (4), ṗ is the deter-

minstic rate of change in orientation determined from equation (3), and D and dr are the

translational and rotational diffusion coefficients respectively. Previously it has been shown

that the dominant contribution to diffusion is due to fluctuations in the cell’s swimming

direction as represented by the rotational diffusion coefficient dr. This general formulation

for the distribution function has been recently reviewed for example by Saintillan and Shel-

ley 22 . Averaging the Smoluchowski equation to obtain population-level models describing

dispersion in a pipe will require further theoretical developments23,24. The corresponding

Smoluchowski equation for biaxial helical swimmers will be more complex because of the

extra degree of freedom associated with the vector n associated with the propulsive torque.

Further simulations and experiments are required to understand what the implications are

for the spatial distribution of helical swimmers in more complex flow fields. We note that in

explaining the numerical results of this paper, we took the cell’s orientation to be at equi-

librium; this quasi-steady assumption may not hold in flows where cells experience rapidly

changing shear.

We have here demonstrated how fluid forces can significantly modify swimming trajec-

tories and the resultant spatial distribution of cells. In the situation we have considered of

gyrotactic focussing in a dilute suspension we rarely observed cells encountering the walls

because they tended to swim away from the wall towards the centre of the pipe, and thus

we do not think interactions with the walls plays an important role. Furthermore, whilst

we have neglected cell-cell interactions, which would become important according to our

deterministic predictions of focussing along a vertical line, we anticipate that the first cor-
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rection that is important to make in our model is to include randomness in cell swimming

orientation which would cause the cells to spread diffusively around this vertical focal line.

The results presented here are relevant to studies which aim to employ the microorganism

swimming mechanism in bioreactor design4. Cells can typically be cultured in liquid cultures

to average volume fractions of only 10−3 suggesting that the model proposed here for dilute

suspensions is realizable. It has previously been shown how the transport of active swimmers

in vertical pipes is very different to passive solutes, because of their non-uniform cross-

sectional distribution. For example, gyrotactic cells focus in the central, fastest moving,

region of the pipe and so are transported along the pipe axis more rapidly than passive

solutes. However these models have not considered helical swimmers, which we have here

shown may have a very different cross-sectional distribution. Our model predicts that helical

swimmers which focus away from the centre would have a reduced transport rate compared

to non-helical swimmers.

The area of active suspensions contains rich problems in fluid dynamics. Bioconvection

patterns are commonly observed in laboratory cultures of phytoplankton5 and found in

natural environments25. At higher volume fractions, the swimming stresses exerted on the

fluid can drive fluid motions on spatial and temporal scales much larger than the individual

cells26. Furthermore particle-particle hydrodynamic interactions can lead to strong boundary

accumulations27. It is likely to be interesting to investigate how the forces generated by the

swimmers couple back onto the fluid dynamics leading to yet more complex dynamics.
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