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Abstract  

Objective 

To determine the frequency of provision and main providers (veterinary surgeons, 

nurses or trainees) of manual ventilation in UK veterinary practices.  Furthermore, to 

determine the variation in peak inspiratory (inflation) pressure (PIP), applied to a lung 

model during manual ventilation, by three different groups of operators (inexperienced, 

experienced and specialist), before and after training.  

Study Design 

Questionnaire survey. Development of a lung model simulator with real-time biometric 

(manometry) feedback capability and its testing as a training tool on operators with a 

range of experiences.  

Methods 

Postal questionnaires were sent to 100 randomly selected veterinary practices. The lung 

model simulator was manually ventilated, in a staged process over three weeks, with 

and without real-time biometric feedback (PIP display), by three groups of volunteer 

operators: inexperienced, experienced and specialist.  

Results 

The questionnaires determined that veterinary nurses were responsible for providing the 

majority of manual ventilation in veterinary practices, mainly drawing on theoretical 

knowledge rather than any specific training. Thoracic surgery and apnoea were the main 

reasons for provision of manual ventilation. Specialists performed well when manually 

ventilating the lung model, regardless of feedback-training. Both inexperienced and 

experienced operators showed significant improvement in technique when using the 

feedback training tool: variation in PIP decreased significantly until subjects provided 

manual ventilation at peak inspiratory pressures within the defined optimum range.  
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Preferences for different forms of feedback (graphical, numerical or scale display), 

revealed that the operators’ choice was not always the method which gave least 

variation in PIP.   

Conclusions and Clinical Relevance 

This study highlighted a need for training in manual ventilation at an early stage in 

veterinary and veterinary nursing careers and demonstrated how feedback is important 

in the process of experiential learning. A manometer device which can provide 

immediate feedback during training, or indeed in a real clinical setting, should improve 

patient safety. 
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INTRODUCTION 

Artificial ventilation techniques, both manual and mechanical, can be used to either 

support or completely replace spontaneous ventilation, for example during anaesthesia 

or cardiopulmonary resuscitation. Whilst manual ventilation may be most appropriate 

for the short-term support of ventilation, for example during post induction apnoea, 

mechanical ventilators are more convenient for the provision of prolonged ventilatory 

support. Mechanical ventilators, however, may not always be available in veterinary 

practices, or staff may be unfamiliar with their use, such that manual ventilation 

(‘bagging’), may be required (Redondo et al. 2007). 

 

The potential problems associated with the provision of artificial ventilation are 

manifold, and range from macroscopic and microscopic lung damage to impairment of 

cardiovascular function and fluid retention (Leroy 1827; Sladen et al. 1968; Dreyfuss & 

Saumon 1998; Mutlu & Factor 2000; Vassilev & McMichael 2004; Clare & Hopper 

2005; Dugdale 2007a; de Beer & Gould 2013). The correct degree of lung inflation 

when performing manual ventilation is usually judged by watching how far the animal’s 

chest rises, although, if there is a manometer within the anaesthetic breathing system, 

then peak inspiratory pressures of 10-25cmH2O are usually advocated for animals with 

a healthy respiratory system (Dugdale 2007a & b). Most small animal breathing 

systems, however, at least of the non-rebreathing type (T-piece, Bain, Magill and Lack), 

do not have integral manometers, making objective assessment of manual ventilation 

impossible. 

 

A study in premature lambs where physicians were asked to provide manual ventilation 

using a self-inflating (resuscitation-type) bag, demonstrated large variations in applied 



 6 

peak inspiratory/inflation pressure (PIP) and tidal volumes; and the large inflation 

pressures commonly delivered were considered potentially harmful (Resende et al. 

2006). Although Karsdon and colleagues (1989) demonstrated that inclusion of a 

manometer decreased the variation in PIP during manual ventilation of a human baby 

mannequin, this has yet to been demonstrated across different species, different 

operators and under differing circumstances; this formed the basis of this study. 

 

 

The use of simulation devices in medical and veterinary training can help to develop 

clinical skills whilst ensuring that actual patients are not put in danger (Ziv et al. 2003; 

Scalese & Issenberg 2005). Simulation-based medical education can provide context-

sensitive learning and promote the development of competence in a 

technical/practical/clinical skill (Epstein 2007; Kneebone & Baillie 2008). Whilst 

simple simulators risk promoting the development of technical expertise in isolation, i.e. 

without integrating other skills such as team-work and communication, the best 

simulators recreate the characteristics of routine clinical practice (Kneebone & Baillie 

2008). 

 

The initial aim of this study was to produce a simulator device which could provide the 

operator with immediate biometric feedback of their manual ventilation technique in 

terms of the peak inspiratory/inflation pressure (PIP) applied to a model lung. The main 

aim was then to test this simulator in a ‘familiar/recognisable’ clinical environment, on 

three different groups of operators (inexperienced, experienced and specialist), to 

determine whether exposure to real-time feedback improved their technique and, upon 

withdrawal of that feedback, whether their training/skill was maintained over time.  
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The hypotheses were: i) that specialist operators would out-perform less experienced 

operators; ii) that less experienced operators would attain rapid training and iii) that this 

training would be retained for the period of the study (3 weeks). This study also 

incorporated a survey of manual ventilation procedures at practices across the UK. 
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MATERIALS AND METHODS 

Questionnaire design and implementation 

After ethical approval by the University of XX Ethics Committee, the questionnaire 

(Appendix 1) was sent out to 100 small animal veterinary practices across England, 

Wales and Scotland. These were chosen by randomly selecting towns and cities from a 

list (Wikipedia contributors, 2008), using random numbers. The place was then typed 

into a search engine (Yell Limited, 2008) with “small animal veterinary practice” and 

again random numbers were used to select the practice. The questionnaire consisted of 

three open-ended questions and seven close-ended questions. The questions within it 

aimed to obtain information about when, why, how and by whom manual ventilation 

was provided, plus any training received, and how often patients required manual 

ventilation. The responses were anonymous so other questions were included to 

establish the size of the practice and to identify if bigger practices provided manual 

ventilation more often compared to smaller practices.   

 

Construction of the Simulator  

A lung model (Figure 1) was made from a 2 Litre reservoir bag (Intersurgical Ltd, 

Berkshire, UK) and a 5 Litre plastic container as follows. The 2 Litre reservoir bag was 

used as the lung. The 5 Litre container was used to simulate the chest; the side of the 

container was cut away and a 0.5 mm thickness latex rubber sheet was stretched and 

fixed across the open side to act as a diaphragm. The side of the container was used 

instead of the base so that when the reservoir bag ‘lung’ was inflated, the diaphragm 

would rise and therefore appear to be like the animal’s chest rising underneath a drape. 

The neck of the plastic container was sealed with cold-setting silicone elastomer around 

a length of tubing which was connected to the bag inside. This ensured that the lung 
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model was a closed system.  The lung model had the properties of compliance and 

elasticity and was designed to mimic the properties of the respiratory system of a 10-15 

kg dog. 

 

Manual ventilation of the lung model was performed by squeezing the black rubber, 

antistatic 2 Litre reservoir bag (Phoenix Medical Ltd, Lancashire, UK), of a Bain 

(Mapleson D) breathing system (Intersurgical Ltd, Berkshire, UK), the adjustable 

pressure-limiting (APL) valve of which was closed. Oxygen (BOC, Manchester, UK), 

was used to fill the test system and was delivered, at a regulated flow, from a Boyle 

International II anaesthetic machine. Prior to operators performing manual ventilation of 

the mock-lung, the system was pre-filled with oxygen (to a pressure of 0.5 cmH2O) and 

then during manual ventilation the oxygen flowmeter was set at 0 L minute-1 (i.e. once 

the closed system was ‘full’, no further inflow was required). This was to reduce any 

variation in PIP delivered due to the operators not being familiar with operation of the 

APL valve. 

 

The room used was set up to be as similar to a clinical setting as possible: the lung 

model was placed on an operating table and covered by a drape (Figure 1).   

 

Manometer feedback system 

The manometer system was connected at the junction of the Bain breathing system and 

the mock lung. A U-tube water manometer was used to calibrate the electronic pressure 

transducer and to determine the relationship between voltage (V) and pressure (cmH2O). 

The equation for this latter relationship was entered into the computer programme, 

TestPoint (Version 5.01), and three different types of biometric (quantification of a 
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biological variable, in this case PIP) feedback were displayed on the computer screen, 

one at a time (Figure 2). The three types of feedback available were: a simple scale 

(similar to a thermometer) which filled with colour as the inflation pressure increased; a 

numerical value which simply provided digital feedback of the inflation pressure; a 

graph which plotted a trace of inflation pressure against time as the operator performed 

manual ventilation. 

 

Recruitment of Operators 

After ethical approval (University of XX Ethics Committee), operators were recruited to 

the study, voluntarily, in three groups: inexperienced (n=7), experienced (n=6) and 

specialist (n=3). Inexperienced subjects were those in their 3rd year of an undergraduate 

degree, either Bioveterinary Science (BSc) or Veterinary Science (BVSc) students. 

These students had no prior experience of performing manual ventilation. Experienced 

subjects were in the 5th (final) year of a veterinary degree and had undergone an 

anaesthesia “elective”, i.e. a 4-week clinical rotation with the anaesthesia service, before 

the study. These students would have undergone some limited instruction in manual 

ventilation in clinical patients but, at that time, no breathing systems were equipped 

with manometers so the instruction was limited to demonstration of closure of the APL 

valve before squeezing the bag, watching the patient’s chest rise during delivery of the 

breath, and then opening of the APL valve to allow the patient to exhale passively. 

Specialists were those members of staff with several years of anaesthesia experience 

and with post-graduate qualifications in anaesthesia (Certificate-holders or Diplomates 

in veterinary anaesthesia). 
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Testing of the operators was carried out over a 3-week period. Each week, every 

operator underwent three stages of investigation. In stage 1, the operator was asked to 

perform manual ventilation for 1 minute without any feedback and this was repeated 3 

times in order to find the mean peak inspiratory pressure applied. In stage 2, the 

operator was asked to provide manual ventilation for 3 separate 1-minute epochs, each 

epoch with a different type of feedback. The order in which each operator was shown 

the feedback types was randomised each week. A preferred method of feedback was 

then chosen by the operator and they were allowed an extra minute to perform manual 

ventilation with their chosen method. Finally, for stage 3, feedback was removed and 

the operator was asked to perform manual ventilation again for three sessions of 1 

minute each.  

 

Before beginning stage 1, there was a briefing session in which the equipment was 

explained to each individual operator and they were allowed to ask any questions they 

wanted. They were then allowed a few minutes to familiarise themselves with the 

equipment. No feedback or access to the feedback programme was provided at this 

stage.  

 

For artificial ventilation in dogs, an acceptable peak inspiratory/inflation pressure range 

is 10-20 cmH2O, according to Clarke et al. (2014). For the purposes of this study, an 

acceptable PIP range of 10-20 cmH2O, and an optimum PIP range of 14-18 cmH2O, 

were chosen. These ranges were explained to the operators, although it was expected 

that the inexperienced group would not know how manual ventilation to such pressures 

would feel. Operators were asked to perform manual ventilation to as close to the 

optimum pressure range as they could manage, at a rate of 12 ‘breaths’ per minute, 
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throughout all of the stages. When performing manual ventilation without feedback, the 

operator was asked to ventilate the ‘lung’ at the pressure they thought to be correct. 

 

Statistical Analysis 

Only descriptive statistics were performed with questionnaire data. Simulator data were 

initially entered into an electronic spreadsheet (Excel 2010; Microsoft Corp., Redmond, 

Washington, USA) before analysis using SPSS for Windows Version 16.0 (SPSS Inc., 

Chicago, Illinois, USA). The Anderson-Darling test was used to test for normality of 

continuous data (i.e. PIP) distribution. Normally-distributed data were then compared, 

using t-tests or repeated measures ANOVA with Bonferroni corrections, as appropriate. 

Significance level was set at p < 0.05.   
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RESULTS 

All data analysed were normally-distributed so parametric statistical analyses were 

performed and data are presented as mean values ± SD or mean  SE (standard error of 

the mean) in the text and figures, respectively. 

 

Nature and frequency of manual ventilation 

Of the 100 questionnaires sent out, 39 were returned but three were illegible. For those 

cases requiring manual ventilation, nurses provided this in 74% of cases, whilst vets 

only performed manual ventilation in 22% of cases and animal care assistants provided 

manual ventilation in 4% of cases. Manual ventilation was required, on average, once a 

month, although larger practices reported its necessity three times weekly whereas 

smaller practices nearer once per year. 

 

The main reasons given for manual ventilation being necessary were thoracic 

radiography/surgery and apnoea, especially post-induction apnoea but also including 

cardiopulmonary arrest. Responses that fell into the thoracic radiography/surgery group 

included: suspected thoracic tumour, oesophageal foreign body, repair of a ruptured 

diaphragm, thoracotomy and pneumothorax. 

 

As for the technique of applying manual ventilation, respondents were asked to note the 

frequency at which manual breaths were given. Responses varied between 3 and 20 

breaths per minute, and included free-text statements such as, ‘normal rate for patient’, 

‘depends on variables such as mucous membrane colour, pulse oximetry values etc.’ 

and ‘no specific frequency’. 
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Training received was variable: 55% of training was theoretical (comprising 50% 

during nurse or veterinary training and 5% as theoretical training during Continuing 

Professional Development courses); 27% reported no formal training but quoted 

personal experience as their source of learning; 18% reported theoretical training 

followed by on-the-job practical training under guidance – but the level of competence 

of the ‘guide’ was not investigated.  

 

Peak Inspiratory Pressure Analysis 

The mean peak inspiratory pressures provided by each operator before and after 

feedback were used to provide mean PIPs for each of the groups. An overall 

improvement in provision of safe PIPs, especially amongst the non-anaesthetists, was 

apparent immediately after training and was maintained across the three week period 

which supported our hypotheses (Figure 3).  

 

Immediately after the first training session, delivered PIPs were reduced in both non-

specialist groups, as assessed by paired t-tests (inexperienced operators, p = 0.03); 

experienced operators, p = 0.05). After training, all PIPs delivered by non-specialists 

were clinically reduced at all subsequent time points, but not all these reductions were 

statistically significant as assessed by repeated measures ANOVA. Compared to week 1 

before any feedback had been received (stage 1), inexperienced operators delivered 

lower PIPs in week 2 pre-feedback (stage 1) (p = 0.13), and statistically significantly 

lower PIPs in week 3 pre-feedback (stage 1) (p = 0.03). Although experienced operators 

delivered lower PIPs in weeks 2 and 3 pre-feedback (stage 1) compared to week-1 

values pre-feedback, neither of these reductions was statistically significant (p = 0.21 

and p = 0.14, respectively). Statistically significant reductions in delivered PIPs were, 
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however, evident between week 1 pre-feedback and week 3 post-feedback in both non-

specialist groups (p = 0.04).  

 

The specialist group (Certificate-holders or Diplomates in veterinary anaesthesia) 

provided PIP within the safe range from the study outset and did not show a significant 

decrease in variation of PIP applied with training or time (for example, week 1 pre-

training to week 3 after training, p = 0.15), although 2 out of 3 did adjust their technique 

to provide optimum PIP values (Figure 4). All three anaesthetists appeared to increase 

the PIPs delivered after feedback, but these changes were not significant.   

 

Results of two-sample t-tests showed no significant differences between the non-

specialist groups at the study outset. There was, however, a statistically significant 

difference between the inexperienced group and the specialist group at week 1 pre-

training (p = 0.02), and between the experienced and specialist groups at week 1 pre-

training (p = 0.05), thus supporting our initial hypothesis. At no other time points did 

any statistically significant differences remain between the non-specialist groups and the 

specialists, as assessed by repeated measures ANOVA, such that all ‘breaths’ were 

delivered at safe PIPs by the non-specialist groups after training.  

 

Feedback Analysis 

When all three groups were combined, and when operators maintained the same 

preference throughout the 3-week period (n = 14), the overall preferred method of 

feedback was the graphical display (Figure 5), yet both the numerical and scale displays 

enabled the least variation in PIP when feedback was real-time. The method of feedback 

which, in real-time, enabled the operators to perform manual ventilation closest to the 
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optimum PIP (taken to be the middle of the optimum range, 16 cmH2O), was the scale 

display (Figure 5). 
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Discussion 

Training of inexperienced operators with the lung-model simulator provided a rapid 

achievement of competence in an important clinical skill, through repetitive practice 

with immediate feedback, without risking patient safety. After training, operators in the 

non-specialist groups delivered lower PIPs. Although not all PIP reductions reached 

statistical significance, the study included only a small number of operators and the 

reductions in PIPs achieved were, nonetheless, clinically significant. Our results support 

the notion that simulation facilitates active (‘experiential’) learning (learning by doing) 

which is student-focused and promotes student engagement by requiring the learner to 

perform meaningful tasks and to think about what they are doing and why (Keegan et 

al. 2012). Effective simulation can provide clinically-relevant (contextual), experiential 

learning which enhances the learner’s critical thinking, problem-solving and decision-

making skills and provides opportunities to assimilate and apply knowledge in a reliable 

but low-risk situation (Martinsen & Jukes 2005; Keegan et al. 2009 & 2012; Lorello et 

al. 2014; Pasquale 2015).  

 

The use of a simple and easily-constructed lung model with provision for real-time 

manometry, giving immediate feedback during repetitive manual ventilation attempts, 

effectively trained non-specialist operators in the safe delivery of manual ventilation, 

and that training was retained for the three-week period evaluated. This simple lung 

model will inevitably have limitations but it adhered to many of the prerequisite features 

of effective medical simulators as listed by Scalese and Issenberg (2005). Although the 

complex viscoelastic properties of the natural thorax and lungs could not be accurately 

reproduced in such a simple model, considerable efforts were made to adjust the model 

by using different materials, different reservoir bag sizes and different membrane 
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thicknesses and tensions to approximate its characteristics to the respiratory system of a 

small, 10-15kg dog. Some experienced users did comment that, while the model lacked 

some viscoelasticity, it did have a realistic feel. Future adjustments of this simple model 

would be difficult because of the lack of further, alternative component parts. The use of 

models/mannequins to train human clinicians, nurses and first-aiders is well-established, 

but such “hands-on” simulations reported in the veterinary literature are more limited 

and, to date, have included tracheal intubation mannequins, vascular access 

mannequins, various surgical models or cadavers and, most recently, haptic models (e.g. 

for practising palpation skills) (Carpenter et al. 1991; Greenfield et al. 1995; Griffon et 

al. 2000; Baillie et al. 2005; Scalese & Issenberg 2005; Keegan et al. 2009).  

 

Both the non-specialist groups applied peak inspiratory pressures that were too high 

pre-feedback (stage 1 in week 1), but they quickly adjusted their technique to deliver the 

correct pressure until, by the final week, they were able to perform manual ventilation to 

PIPs within the optimum pressure range. This demonstrates how an individual can 

utilise timely feedback in order to develop a technical skill. Furthermore, the reduction 

in PIPs, demonstrated after stages 1, 2 and 3 of simulator-training in week-1, were still 

apparent three weeks later, suggesting some retention of the training and/or an effect of 

regular application of the newly acquired skill which would increase operator 

experience. This would be supported by Finer and colleagues (2001), who suggested 

that the reason why respiratory physiotherapists applied manual ventilation with less 

variation in PIP than clinicians was because of their greater experience and maintenance 

of currency in the technique.  

 

Some of the PIPs delivered by the non-specialist groups prior to any feedback (i.e. 
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during stage 1 of week 1 simulator-training), were well above the normal range (e.g. 

reaching 30-40 cmH2O). The only instruction these students had ever received, either 

theoretically or practically, was that they could gauge their performance according to 

how far the “patient’s” chest rose with each delivered breath. This study highlighted that 

this is an inappropriate proxy and a more reliable and objective method of assessing 

manual ventilation performance is required. There is clearly a place for real-time 

feedback of PIP during manual (and indeed mechanical) ventilation, whether in a 

simulated model or in actual patients. The importance of such simulator-based training 

has yet to be established, but this study has suggested that such training should improve 

patient safety. 

 

The specialist group performed well in the initial task, all three delivered manual 

ventilation within the acceptable pressure range (10-20 cmH2O), supporting our initial 

hypothesis. This probably reflected their experience and currency with the technique 

and familiarity with the breathing system used to deliver manual breaths. While two 

specialists delivered breaths within the optimum pressure range (14-18 cmH2O) after 

training, all three operators appeared to increase the PIP delivered after feedback had 

been provided, although these increases were not statistically significant.  

 

The majority of operators preferred a method of feedback which was neither that which 

gave the least variation in PIP nor that which enabled manual ventilation to PIPs closest 

to the optimum pressure range. This could pose problems for the construction of such a 

simulator for more widespread/commercial use because if operators do not like the 

optimum form of feedback, they may engage less with this form of training, 
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Compared with the human medical literature, however, veterinary simulation is in its 

infancy. As animal welfare and curricular constraints reduce the availability of live 

patients for students to practice on, yet new veterinary graduate clinical competency is 

in the spotlight, it is likely that the use of simulation will increase in veterinary 

education. Simulators must, however, achieve their intended learning outcomes (i.e. 

their educational use must be validated). Lessons from human anaesthesia suggest that 

simulation is more effective than no instruction and is not inferior to non-simulation 

instruction, but it has not been proven to be broadly superior to non-simulation 

instruction (Lorello et al. 2014). Although the results of this study demonstrated that a 

simple lung simulator with biometric feedback was an effective tool to teach safe 

manual ventilation technique, and was superior to simple theoretical training (watching 

a patient’s chest rise), it remains to be compared with other forms of standardised, 

theoretical instruction. 

  

The questionnaire identified a shortfall in the practical teaching of manual ventilation 

for both veterinary nurses and veterinary surgeons. Nevertheless, evidence for some 

form of training was apparent from the responses regarding the frequency of breaths 

delivered during manual ventilation. That is, the delivered frequencies and reasons 

given for these, appeared clinically appropriate for the differing patients and clinical 

circumstances of each patient. That manual ventilation may not be required on a regular 

basis, however, questions whether any practical training would be usefully maintained 

over a long time-period, and remains to be investigated.  

 

Biases might well have been introduced into both the questionnaire and simulator 
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elements of this study. In addition to response bias, the design of the questionnaire itself 

can be a source of many other biases (Choi et al. 2005; Dean 2015). Any future 

questionnaire-based study should employ the expertise of epidemiologists who deal 

with behavioural research. Recruitment for the simulator study was on a voluntary basis 

and could also have inherently biased the results. This student project, however, did not 

allow sufficient time for larger, non-biased, randomised populations of participants to 

be included. Nevertheless, future studies would aim to recruit much larger populations 

of randomly selected participants to improve the statistical quality of the data. 

 

In conclusion, this study highlighted a need for training in manual ventilation technique 

amongst veterinary surgeons and nurses. Furthermore, a simple lung simulator device, 

displaying immediate feedback regarding delivered PIP, provided rapid, effective 

training and at least short-term maintenance of that training for inexperienced operators. 

Such simulator training should improve patient safety by negating the need for learning 

on actual patients.  
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Figure legends 

 

Figure 1. The lung/chest model was set up beneath a surgical drape, with the Bain 

anaesthetic breathing system connected to the manometer and feedback system. The 

completed lung/chest model (5 Litre plastic container (‘chest’) with one cut-away side 

overlaid with a latex sheet (‘diaphragm’); with 2 Litre reservoir bag acting as the lung 

within the sealed container; the ‘lung’ being connected to the anaesthetic breathing 

system and adapter for pressure monitoring by a small length of appropriately-sized 

tubing.  

 

Figure 2. Screenshot from TestPoint (Version 5.01), showing the 3 types of feedback 

available to the operators. (Top left: Scale display. Top Right: Numerical display. 

Bottom: Graphical display). 

 

Figure 3. Mean peak inspiratory pressures ( standard error) for three groups of 

operators (inexperienced [n=7], experienced [n=6], and specialist [n=3]) across a 3 

week period, before and after feedback on their manual ventilation technique. The 

acceptable pressure range for inflation is bounded by the dashed lines and the optimum 

pressure range by the solid lines.   

 

Figure 4. Mean ( standard error) peak inspiratory pressures before and after feedback 

(in 1 week) for the specialist group (n=3). The acceptable pressure range for inflation is 

bounded by the dashed lines and the optimum pressure range by the solid lines.  
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Figure 5. Operators’ preference for graphical display type of feedback; numerical and 

scale display types of feedback resulted in least variation in peak inspiratory pressure 

during manual ventilation (maximum PIP minus minimum PIP); scale display feedback 

enabled operators to manually ventilate at PIP closest to the optimum peak inspiratory 

pressure of 16 cmH2O. 



 28 

Figure 1 
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Figure 2 
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Figure 3 

 



 31 

Figure 4 
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Figure 5 

 


