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Abstract

One of the goals of this article is to describe a wide class of control strategies, which includes
the traditional relaxed strategies, as well as the so called randomized strategies which appeared
earlier only in the framework of semi-Markov decision processes. If the objective is the total
expected cost up to the accumulation of jumps, then without loss of generality one can consider
only Markov relaxed strategies. Under a simple condition, the Markov randomized strategies
are also sufficient. An example shows that the mentioned condition is important. Finally,
without any conditions, the class of so called Poisson-related strategies is also sufficient in the
optimization problems. All the results are applicable to the discounted model, they may be
useful also for the case of long-run average cost.
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1 Introduction

Continuous-time jump Markov processes, especially Markov chains with the discrete state space X,
form a well developed branch of random processes, see, e.g., [2, 24]. After the infinitesimal generator
(transition rate) q(dy|x) is fixed, the model is well defined. It can be studied by constructing the
canonical sample space and investigating the so called point process; one can directly pass to the
transition probability through the Kolmogorov equations. In any case, the model is the same.
One can also consider the case of time-dependent transition rate, but in this article we study the
homogeneous model.

If we look at the control problem, where the transition rate q(dy|x, a) depends on the action
a, we face at least two different standard models. If the actions can be changed only at the jump
epochs (such actions may also be randomized), then the model is called “Exponential Semi-Markov
Decision Process” (ESMDP). If, e.g., two actions a1 and a2 are chosen with probabilities p(a1) and
p(a2) = 1−p(a1), then the sojourn time in state x has the cumulative distribution function (CDF)
1 −

[
p(a1)e

−qx(a1) + p(a2)e
−qx(a2)

]
. Here and below, qx(a) is the parameter of the exponentially

distributed sojourn time in state x under action a. The term “Continuous-Time Markov Decision
Process” (CTMDP) is for the model where the actions are relaxed: roughly speaking, the actual
transition rate at a time moment t is

∫
A
q(dy|x, a)π(da|t), where π(da|·) is a predictable process

with the values in the space of probability distributions on the action space A. For example,
if π({a1}|t) = π(a1) = 1 − π(a2) = π({a2}|t) then the sojourn time in state x has the CDF
1− e−π(a1)qx(a1)−π(a2)qx(a2). Below, we say “randomized/relaxed strategies”, rather than actions.
General semi-Markov decision processes, where the sojourn times are not necessarily exponential,
were studied in [8, 14, 24], where one can find more relevant references. As soon as the sojourn
times are exponential (under a fixed action a and a current state x), CTMDP are much more
popular: see articles and monographs [7, 9, 10, 11, 16, 20, 23, 25] and references therein. In the
case of discounted total expected cost, an excellent discussion of different models can be found in
[7]. One of the main results is as follows: for any (relaxed) control strategy in CTMDP, there is
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an equivalent (randomized) strategy in ESMDP (and vice versa) meaning that, for any cost rate,
the values of the objectives for the corresponding strategies in those two models coincide. In this
connection, we have to underline that relaxed strategies are usually not realizable in practice, but
randomized strategies can be easily implemented.

In the current article, we use the name CTMDP, but consider a wide class of strategies con-
taining not only any combination of standard relaxations and randomizations (hence covering the
traditional CTMDP and ESMDP), but absolutely new strategies like a Brownian motion between
the jumps, if the action space is A = R. To be specific, we investigate the case of the total expected
cost, but the developed approach can be useful for other problems, e.g., with the long-run average
cost. Note that the discounted cost, including the case of the varying discount factor, is a special
case of the total (undiscounted) cost. We allow the transition rate to be non-conservative and
arbitrarily unbounded, so that the accumulation of jumps is not excluded.

The main results of the current work are as follows.
– For any control strategy, there is an equivalent Markov purely relaxed strategy (Theorem 2).
Here and below, “equivalent” means that the objective values coincide for any given cost rate.
– Under a weak condition, e.g. in the discounted case, for any control strategy, there is an equivalent
Markov randomized strategy (Theorem 1) and an equivalent mixture of (simple) deterministic
Markov strategies (Theorem 3).
– In general, there can be a relaxed strategy for which no-one randomized strategy is equivalent
(Example 2).
– Without any conditions, for any control strategy, there is an equivalent “Poisson-related ξ-
strategy” (Theorem 5) which is somewhat similar to the so called switching policy [7], but the
switching moments as well as the corresponding actions are random. Note, such Poisson-related
strategies are easily implementable.

The following remark explains the novelty of the current work and its connection to the previous
results and the known methods. As was mentioned (see also Section 5), the discounted cost is a
special case of the considered model. Such CTMDP was investigated in [7] where the statements
similar to theorems 1 and 2 were proved. Generally speaking, we use the same method of attack,
but all the proofs must be carefully rewritten because of the following: a) The occupation measures
can take infinite value; b) Markov randomized strategies are not sufficient in optimization problems.
The latter is confirmed by Example 2. To cover this gap, we introduce the new sufficient class of
Poisson-related ξ-strategies.

The CTMDP under study and the control strategies are introduced in Section 2; the main
results are formulated in sections 3,4,5 and 6; the proofs are postponed to Appendix. A couple of
illustrating examples are given in Section 7.

2 Model description

The following notations are frequently used throughout this paper. N is the set of natural numbers
including zero; δx(·) is the Dirac measure concentrated at x, we call such distributions degenerate;
I{·} is the indicator function. B(E) is the Borel σ-algebra of the Borel space E, P(E) is the
Borel space of probability measures on E. F1

∨
F2 is the smallest σ-algebra containing the two

σ-algebras F1 and F2. R+
△
= (0,∞), R0

+
△
= [0,∞), R̄ = [−∞,+∞], R̄+ = (0,∞], R̄0

+ = [0,∞]. The
abbreviation w.r.t. (resp. a.s.) stands for “with respect to” (resp. “almost surely”); for b ∈ R̄,
b+

△
= max{b, 0} and b−

△
= min{b, 0}. If X and Y are Borel spaces and P is a probability measure

on Ω = X×Y, then, for an integrable function F (X,Y ), we denote E[F (X,Y )|X = x] the regular
conditional mathematical expectation. In other words, E[F (X,Y )|X = x] is such a measurable
function f on X that E[F (X,Y )|X] = f(X) P -a.s. If Z is an additional Borel space then function
E[F (X,Y, z)|X = x] : X × Z → R has the same meaning. (This function is measurable [1,
Prop.7.29].) Here and usually below, the capital letters denote random variables, and little letters
are for their values. The bold letters denote spaces. Equations which involve such conditional
expectations, hold a.s. without special remarks.

The primitives of a continuous-time Markov decision process (CTMDP) are the following ele-
ments.
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• State space: (X,B(X)) (arbitrary Borel).

• Action space: (A,B(A)) (arbitrary Borel), A(x) ∈ B(A) is the non-empty space of admissible

actions in state x ∈ X. It is supposed that K △
= {(x, a) ∈ X ×A : a ∈ A(x)} ∈ B(X ×A)

and this set contains the graph of a measurable function from X to A.

• Transition rate: q(dy|x, a), a signed kernel on B(X) given (x, a) ∈ K, taking nonnegative val-

ues on ΓX \{x} with ΓX ∈ B(X). We assume that q(X|x, a) ≤ 0 and q̄x
△
= supa∈A(x) qx(a) <

∞, where qx(a)
△
= −q({x}|x, a).

• Cost rates: measurable R̄-valued functions ci(x, a) on K, i = 0, 1, 2, . . . , N .

• Initial distribution: γ(·), a probability measure on (X,B(X)).

• Additional Borel space (Ξ,B(Ξ)), the source of the control randomness.

Actually, the space (Ξ,B(Ξ)) can be chosen by the decision maker, but it is convenient to introduce
it immediately, in order to describe the sample space. The role of the space Ξ will become clear
after the description of control strategies.

We introduce the artificial isolated point (cemetery) ∆, put X∆
△
= X ∪ {∆}, A∆

△
= A ∪ {∆},

Ξ∆ = Ξ ∪ {∆}, and define A(∆)
△
= ∆, q(Γ|∆,∆)

△
= 0 for all Γ ∈ B(X∆), α(x, a)

△
= q({∆}|x, a) △

=
qx(a) − q(X \ {x}|x, a) ≥ 0 for (x, a) ∈ K. The state ∆ means, the process is over, i.e. escaped
from the state space. We also put ci(∆,∆) = 0.

Given the above primitives, let us construct the underlying (measurable) sample space (Ω,F).

Having firstly defined the measurable space (Ω0,F0)
△
= (Ξ×(X×Ξ×R+)

∞,B(Ξ×(X×Ξ×R+)
∞)),

let us adjoin all the sequences of the form

(ξ0, x0, ξ1, θ1, x1, ξ2, . . . , θm−1, xm−1, ξm, θm, ∆, ∆, ∞, ∆, ∆, . . . )

to Ω0, where m ≥ 1 is some integer, ξm ∈ Ξ, θm ∈ R̄+, θl ∈ R+ , xl ∈ X, ξl ∈ Ξ for all nonnegative
integers l ≤ m− 1. After the corresponding modification of the σ-algebra F0, we obtain the basic
sample space (Ω,F).

Below,
ω = (ξ0, x0, ξ1, θ1, x1, ξ2, θ2, x2, . . .).

For n ∈ N \ {0}, introduce the mapping Θn : Ω → R̄+ by Θn(ω) = θn; for n ∈ N, the mappings
Xn : Ω → X∆ and Ξn : Ω → Ξ∆ are defined by Xn(ω) = xn and Ξn(ω) = ξn. As usual,
the argument ω will be often omitted. The increasing sequence of random variables Tn, n ∈ N is
defined by Tn =

∑n
i=1 Θi; T∞ = limn→∞ Tn. Here, Θn (resp. Tn, Xn) can be understood as the

sojourn times (resp. the jump moments, the states of the process on the intervals [Tn, Tn+1)). We
do not intend to consider the process after T∞; the isolated point ∆ will be regarded as absorbing;
it appears when θm = ∞ or when θm < ∞ and the jump xm−1 → ∆ is realized with intensity
α(x, a). The meaning of the ξn components will be described later. Finally, for n ∈ N,

Hn = (Ξ0, X0,Ξ1,Θ1, X1, . . . ,Ξn,Θn, Xn)

is the n-term (random) history. As usual, capital letters Ξ, X,Θ, T,H denote random elements;
the corresponding small letters are for their realizations.

The random measure µ is a measure on R+ ×Ξ×X∆ with values in N ∪ {∞}, defined by

µ(ω; ΓR × ΓΞ × ΓX) =
∑
n≥1

I{Tn(ω) < ∞}δ(Tn(ω),Ξn(ω),Xn(ω))(ΓR × ΓΞ × ΓX);

the right continuous filtration (F)t∈R0
+
on (Ω,F) is given by

Ft = σ{H0} ∨ σ{µ(]0, u]×B) : u ≤ t, B ∈ B(Ξ×X∆)}.

3



The controlled process of our interest

X(ω, t)
△
=
∑
n≥0

I{Tn ≤ t < Tn+1}Xn + I{T∞ ≤ t}∆

takes values in X∆ and is right continuous and adapted. The filtration {Ft}t≥0 gives rise to the

predictable σ-algebra on Ω×R0
+ defined by P △

= σ{Γ×{0} (Γ ∈ F0),Γ×(u,∞) (Γ ∈ Fu−, u > 0)},
where Fu−

△
=
∨

t<u Ft. See [16, Chap.4] for more details. X(t) is traditionally called a controlled
jump (Markov) process, but in fact, on the constructed sample space, the process X(t) is fixed
(not controlled). It will be clear that the probability measure on (Ω,F) is under control, not the
process. Anyway, we will follow the standard terminology.

Definition 1 A control strategy is defined as follows

S = {Ξ, p0, ⟨pn, πn⟩, n = 1, 2, . . .},

where p0(dξ0) is a probability distribution on Ξ; for xn−1 ∈ X, pn(dξn|hn−1) is a stochastic kernel
on Ξ given Hn−1 (the space of (n−1)-component histories); πn(da|hn−1, ξn, u) is a stochastic kernel
on A(xn−1) given Hn−1 × Ξ × R+. If xn−1 = ∆, then we assume that pn(dξn|hn−1) = δ∆(dξn)
and πn(da|hn−1,∆, u) = δ∆(da).

A strategy will be called quasi-stationary if the stochastic kernels p(dξn|ξ0, xn−1) and
π(da|ξ0, xn−1, ξn, u) depend on the shown arguments only.

The pn components mean the randomizations of controls; the πn components mean relaxations.
Below, for ΓA ∈ B(A∆), t ∈ R+,

π(ΓA|ω, t) =
∑
n≥1

I{Tn−1 < t ≤ Tn}πn(ΓA|Hn−1,Ξn, t− Tn−1);

the argument ω is often omitted.
If the randomizations are absent, that is, the kernels πn do not depend on the ξ-components,

then we deal with a relaxed strategy. One can omit the ξn components; as a result we obtain the
standard control strategy {πn, n = 1, 2, . . .}; in this case the stochastic kernel

π(ΓA|ω, t) =
∑
n≥1

I{Tn−1 < t ≤ Tn)πn(ΓA|X0,Θ1, . . . , Xn−1, t− Tn−1)

is predictable. (This reasoning holds also if the kernels πn depend only on ξ0.) Such models were
built and investigated by many authors [7, 9, 10, 11, 16, 20, 23, 25]. Note that the realizations of
a relaxed strategy are usually impossible on practice, unless all the transition probabilities πn are
degenerate, i.e. are concentrated at singletons

φn(x0, θ1, . . . , xn−1, u) ∈ A(xn−1). (1)

For a discussion, see [7, p.509]: if, e.g. πn({a1}|x0, θ1, . . . , xn−1, u) = πn({a2}|x0, θ1, . . . , xn−1, u) =
0.5 then the decision maker intends to use the actions a1 and a2 equiprobably at each time moment,
but in this case the trajectories of the action process are not measurable.

On the other hand, if the relaxations are absent, that is, all kernels πn are degenerate and are
described by measurable functions φn like in (1), then the action (or control) process A(t) can be
defined like follows

A(ω, t) =
∑
n≥1

I{Tn−1 < t ≤ Tn}φn(Ξ0, X0,Ξ1,Θ1, . . . , Xn−1,Ξn, t− Tn−1) + I{T∞ ≤ t}∆. (2)

Clearly, the A(t) process is measurable, but not necessarily predictable or even adapted. Be-
low, we call such (purely randomized) strategies as ξ-strategies; they are defined by sequences
{Ξ, p0, ⟨pn, φn⟩, n = 1, 2, . . .}. According to (2), after the history Hn−1 is realized, the decision
maker flips a coin resulting in the value of Ξn having the distribution pn. Afterwards, up to the
next jump epoch Tn, the control A(t) is just a (deterministic measurable) function φn.
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Definition 2 ξ-strategies were defined just above. Purely relaxed strategies introduced earlier will
be called π-strategies. General strategies S can be called π-ξ-strategies. If πn(da|x0, θ1, x1, θ2,

. . . , xn−1, u) = πM
n (da|xn−1, u) for all n = 1, 2, . . . then the π-strategy is called Markov. It is called

stationary if πM
n (da|xn−1, u) ≡ π(da|xn−1).

Suppose a π-ξ-strategy S is fixed. The dynamics of the controlled process can be described
like follows. First of all, Ξ0 = ξ0 is realized based on the chosen distribution p0(dξ0). Recall that
the realized values of random elements are denoted with the corresponding small letters. If p0 is
a combination of two Dirac measures, then in the future this or that control will be applied: p0 is
responsible for the mixtures of simpler control strategies. After that, the initial state X0, having
the distribution γ(dx), is realized. Later, when the realized state xn−1 ∈ X becomes known at
the realized jump epoch tn−1 (n = 1, 2, . . .), the dynamics is controlled in the following way. The
decision maker flips a coin resulting in the Ξn = ξn component having distribution pn(dξn|hn−1);
after that the stochastic kernel πn(da|hn−1, ξn, u) gives rise to the jumps intensity λn(Γ|hn−1, u)
from the current state xn−1 to Γ ∈ B(X∆), where

λn(Γ|hn−1, ξn, u) =

∫
A

πn(da|hn−1, ξn, u)q(Γ \ {xn−1}|xn−1, a); (3)

parameter u > 0 is the time interval passed after the jump epoch tn−1. After the corresponding
interval θn, the new state xn ∈ X∆ of the process X(t) is realized at the jump epoch tn = tn−1+θn.
The joint distribution of (Θn, Xn) is given below. And so on. If θn = ∞ then xn = ∆ and actually
the process is over: the triples (θ = ∞,∆,∆) will be repeated endlessly. The same happens if
θn < ∞ and xn = ∆. Along with the intensity λn, we need the following integral

Λn(Γ, hn−1, ξn, t) =

∫
(0,t]∩R+

λn(Γ|hn−1, ξn, u)du. (4)

Note that, in case qx(a) ≥ ε > 0, Λn(X∆|hn−1, ξn,∞) = ∞ if xn−1 ̸= ∆.
Now, the distribution of H0 = (Ξ0, X0) is given by p0(dξ0) · γ(dx0) and, for any n ∈ N \ {0},

the stochastic kernel Gn on R̄+ ×Ξ∆ ×X∆ given Hn−1 is defined by formulae

Gn({∞} × {∆} × {∆}|hn−1) = δxn−1({∆});

Gn({∞} × ΓΞ × {∆}|hn−1) = δxn−1(X)

∫
ΓΞ

e−Λ(X∆,hn−1,ξn,∞)pn(dξn|hn−1);

Gn(ΓR × ΓΞ × ΓX|hn−1) = δxn−1(X)

∫
ΓΞ

∫
ΓR

λn(ΓX|hn−1, ξn, t) (5)

×e−Λn(X∆,hn−1,ξn,t)dt pn(dξn|hn−1);

Gn({∞} ×Ξ∆ ×X|hn−1) = Gn(R+ × {∆} ×X∆|hn−1) = 0.

Here ΓR ∈ B(R+), ΓΞ ∈ B(Ξ), ΓX ∈ B(X∆).
It remains to apply the induction and Ionescu-Tulcea’s theorem [1, Prop.7.28] or [18, p.294] to

obtain the probability measure PS
γ on (Ω,F) called strategic measure. According to [15, Prop.3.1],

the following formula defines a version of the predictable projection of µ, again a measure on
R+ ×Ξ×X∆

ν(ω; dt, dξ, dx) =
∑
n≥1

Gn(dt− Tn−1, dξ, dx|Hn−1)

Gn([t− Tn−1,∞]×Ξ∆ ×X∆|Hn−1)
I{Tn−1 < t ≤ Tn}

=
∑
n≥1

pn(dξ|Hn−1)λn(dx|Hn−1, ξ, t− Tn−1)e
−Λn(X,Hn−1,ξ,t−Tn−1)∫

Ξ
e−Λn(X∆,Hn−1,ξ,t−Tn−1)pn(dξ|Hn−1)

dt I{Tn−1 < t ≤ Tn}.

Below, when γ(·) is a Dirac measure concentrated at x ∈ X, we use the ‘degenerated’ notation
PS
x . Expectations with respect to PS

γ and PS
x are denoted as ES

γ and ES
x , respectively. The set of

all π-ξ-strategies S will be denoted as ΠS ; the collections of all π- and ξ-strategies will be denoted
as Ππ and Πξ correspondingly.
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We aim to study several classes of control strategies and the associated measures. That is
important for stochastic optimal control. For example, one can consider the following two specific
problems.

1. Unconstrained problem.

W0(S) = ES
γ

[ ∞∑
n=1

∫
(Tn−1,Tn]

∫
A

πn(da|Hn−1,Ξn, t− Tn−1)c
+
0 (Xn−1, a)dt

]

+ES
γ

[ ∞∑
n=1

∫
(Tn−1,Tn]

∫
A

πn(da|Hn−1,Ξn, t− Tn−1)c
−
0 (Xn−1, a)dt

]
(6)

= ES
γ

[∫
(0,T∞)

∫
A

π(da|t)c0(X(t), a) dt

]
→ inf

S∈ΠS

.

Here and below, ∞−∞ △
= +∞.

2. Constrained problem.

W0(S) → inf
S∈ΠS

subject to
Wi(S) ≤ di, i = 1, 2, . . . , N,

 (7)

where all the objectives Wi(S) have the form similar to (6) with function c0 being replaced with
other given cost rates ci(x, a); di are given numbers. All mathematical expectations and integrals
of a real function r are calculated separately for r+ and r− as was demonstrated in (6). As usual, a
strategy S∗ is called optimal (δ-optimal) in the problem (6) or (7) if W0(S

∗) provides the infimum
(is in the δ-neighbourhood of the infimum) and satisfies all the constraints.

The results presented in the current article are also useful for other (constrained) optimal
control problems: see the remark after Theorem 2.

Remark 1 Suppose a strategy S is such that, for some m ≥ 0, all kernels {πn}∞n=1 for xn−1 ̸= ∆
do not depend on the ξm-component. Then one can omit ξm ∈ Ξ∆ and Ξm ∈ Ξ∆ from the
consideration. In this case, instead of the strategic measure PS

γ (dω), we can everywhere use the

marginal P̃S
γ (dω̃) = PS

γ (dω̃ ×Ξ). Here

ω̃ = (ξ0, x0, ξ1, θ1, . . . , xm−1, θm, xm, ξm+1, θm+1, . . .)

and ω̃ × Ξ = (ξ0, x0, ξ1, θ1, . . . , xm−1,Ξ, θm, xm, ξm+1, θm+1, . . .). Below, we omit the tilde and
hope this will not lead to a confusion.

For example, for a purely relaxed strategy S ∈ Ππ, the strategic measure is defined on the space
of sequences

ω = (x0, θ1, x1, . . .).

Another important case is when only the ξ0-component plays a role; then ω = (ξ0, x0, θ1, x1, . . .)
and such a strategy is a mixture of (relaxed) strategies. More about mixtures in Definition 5 and
in Section 4.

Definition 3 Purely deterministic strategies, when the functions φn in (2) do not depend on the
ξ-components, can be equally called π-strategies (with degenerate kernels πn) or ξ-strategies; they
are defined by sequences {φn, n = 1, 2, . . .}; the ξ-components are omitted. We always assume
that φn(hn−1, u) = ∆ if xn−1 = ∆. A deterministic Markov strategy is defined by the mappings
{φn(xn−1, u), n = 1, 2, . . .}. If the mappings φn(xn−1, u) = φ̂n(xn−1) do not depend on u, the
strategy is called simple deterministic Markov. A stationary deterministic strategy is defined by a
function φs(x).

In case the mappings φ̂n(ξ0, xn−1) depend additionally on the ξ0-component, the strategy will
be called a mixture of simple deterministic Markov strategies. A little more general construction
is given below: see Definition 5.

As was mentioned, the space Ξ can be chosen by the decision maker. Let us look at several
possibilities.
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Definition 4 Suppose Ξ = A and the relaxations are absent, i.e. we deal with a ξ-strategy, and the
functions φn in (2) have the form φn(hn−1, ξn, u) = ξn, so that the argument ξ0 never appears and
thus can be omitted. Then such a strategy will be called a standard ξ-strategy. It will be denoted as
S = {A, pn, n = 1, 2, . . .} and below we usually write An (or an) instead of Ξn (or ξn), n = 1, 2, . . ..
If we consider only such strategies then we deal with the so called ESMDP [7, p.498]. In case
pn(dξn|hn−1) = pn(dan|hn−1) = pMn (dan|xn−1) (n = 1, 2, . . .), the standard ξ-strategy will be called
Markov; it will be called stationary if the kernels pn(dan|hn−1) = ps(dan|xn−1) do not depend on

n. A Markov standard ξ-strategy with the degenerate kernels pMn (dan|xn−1) = δφ̂n(xn−1)(dan),
n = 1, 2, . . . is obviously simple deterministic Markov. The collection of all Markov (stationary)
standard ξ-strategies will be denoted as ΠM

ξ (Πs
ξ), they are often denoted as pm and ps instead of

S, correspondingly.

Another meaningful case corresponds to the Skorohod space Ξ = DA[0,∞), the space of right
continuous A-valued functions of time with left limits, endowed with the Skorohod metric [5,
Ch.3,§5]. Here we assume that the metric in A is fixed, such that A is a Polish space (separable
and complete). Now, DA[0,∞) is again a Polish space [5, Ch.3,Th.5.6] and hence Borel. Again
suppose the relaxations are absent, i.e. consider a ξ-strategy, and put

φn(ξ0, x0, ξ1, θ1, . . . , xn−1, ξn, u) = ξn(u).

Lemma 1 The mapping (ξn, u) → ξn(u) is measurable.

The proofs of this and other statements are given in Appendix.
Now it is clear that the action (control) process A(t) given by (2) is well defined (that is,

measurable) for any ξ-strategy. For example, if A = (−∞,+∞) then, under appropriately cho-
sen distributions pn, the A(t) process may be a Brownian motion. Such possibilities were never
considered before.

Definition 5 Consider a ξ-strategy S = {Ξ, p0, ⟨pn, φn⟩, n = 1, 2, . . .} satisfying the following
conditions: Ξ = Ξ0 ×A, so that ξ = (ξ0, a); the stochastic kernels

pn(dξ
0
n, dan|ξ00 , x0, a1, θ1, x1, a2, . . . , θn−1, xn−1)

depend only on the shown components, and φn(hn−1, (ξ
0
n, an), u) = an. We call S a mixture of

standard ξ-strategies

Sξ00 = {A, p̂n(da|ξ00 , x0, a1, θ1, . . . , xn−1)
△
= pn(Ξ

0 × da|ξ00 , x0, a1, θ1, . . . , xn−1), n = 1, 2, . . .}.

The elements a0 and ξ0n, n = 1, 2, . . . play no role, and we omit them. (See Remark 1.) Since only
the marginal distributions p̂0(dξ

0
0) = p0(dξ

0
0×A) and p̂n(dan|ξ00 , x0, a1, θ1, . . . , xn−1) are important,

we denote such a mixture as {Ξ0 ×A, p̂0, p̂n, n = 1, 2, . . .}.
We call S a mixture of simple deterministic Markov strategies Sξ00 = {φ̂ξ00

n , n = 1, 2, . . .} in
case ∀ξ00 ∈ Ξ0

p̂n(ΓA|ξ00 , X0, A1,Θ1, . . . , Xn−1) = I{ΓA ∋ φ̂
ξ00
n (Xn−1)} PS

γ -a.s. n = 1, 2, . . . ,

where {φ̂ξ00
n , n = 1, 2, . . .} is a simple deterministic Markov strategy. Note, we do not require

φ̂
ξ00
n (x) to be Ξ0 ×X-measurable. More about such mixtures in Section 4.

According to the definitions, the intersection of ξ-strategies and π-strategies coincides with the
set of purely deterministic strategies. Its subset, the class of stationary deterministic strategies,
is the intersection of stationary π-strategies and ξ-strategies. This class is a subset of simple
deterministic Markov ξ-strategies, and also a subset of stationary standard ξ-strategies. Under the
compactness-continuity conditions, this set is sufficient for solving many specific single-objective
optimal control problems [10, 23]. One can easily establish other relations between the introduced
classes of strategies. Note that a mixture of standard ξ-strategies is not a π-strategy.
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Let us remind that, if we consider only standard ξ-strategies, then in fact we deal with ESMDP.
On the other hand, if we consider only π-strategies, then we are in the framework of traditional
CTMDP.

According to Remark 1, slightly modified sample spaces are associated with different types of
strategies which are again denoted in different ways. For the reader’s convenience, we summarize
the main notations in Table 1.

Table 1:
Strategy Sample space
General (π-ξ-strategy)
S = {Ξ, p0, ⟨pn, πn⟩, n = 1, 2, . . .} ∈ ΠS Ω = {(ξ0, x0, ξ1, θ1, x1, ξ2, θ2, . . .)}

Purely randomized (ξ-strategy)
S = {Ξ, p0, ⟨pn, φn⟩, n = 1, 2, . . .} ∈ Πξ Ω = {(ξ0, x0, ξ1, θ1, x1, ξ2, θ2, . . .)}

Purely relaxed (π-strategy)
S = {πn, n = 1, 2, . . .} ∈ Ππ Ω = {(x0, θ1, x1, θ2, . . .)}

Purely deterministic
S = {φn(x0, θ1, . . . , xn−1, s), n = 1, 2, . . .} Ω = {(x0, θ1, x1, θ2, . . .)}

Simple deterministic Markov
S = {φ̂n(xn−1), n = 1, 2, . . .} Ω = {(x0, θ1, x1, θ2, . . .)}

Standard ξ-strategy
S = {A, pn(hn−1), n = 1, 2, . . .} Ω = {(x0, ξ1 = a1, θ1, x1, ξ2 = a2, θ2, . . .)}

Markov standard ξ-strategy
S = {A, pMn (dan|xn−1), n = 1, 2, . . .} = pM ∈ ΠM

ξ Ω = {(x0, ξ1 = a1, θ1, x1, ξ2 = a2, θ2, . . .)}

Stationary standard ξ-strategy
S = {A, ps(da|x)} = ps ∈ Πs

ξ Ω = {(x0, ξ1 = a1, θ1, x1, ξ2 = a2, θ2, . . .)}

Mixture of standard ξ-strategies
{Ξ0 ×A, p̂0(dξ

0
0), p̂n(dan|hn−1), n = 1, 2, . . .} Ω = {(ξ0, x0, a1, θ1, x1, a2, θ2, . . .)}

We introduced the new, more rich set of strategies ΠS , and one of the targets is to establish
the sufficiency of smaller classes (π-strategies, ξ-strategies, mixtures, and so on).

3 Occupation measures and sufficient classes of strategies

Definition 6 For a fixed strategy S ∈ ΠS, we introduce the occupation measures

ηSn (ΓX × ΓA) = ES
γ

[∫
(Tn−1,Tn]∩R+

I{Xn−1 ∈ ΓX}πn(ΓA|Hn−1,Ξn, t− Tn−1)dt

]
, n = 1, 2, . . . ,

where ΓX ∈ B(X),ΓA ∈ B(A). Note, measure ηSn may be not finite, e.g. if Θn = ∞.
If S is a standard ξ-strategy, or a mixture of standard ξ-strategies, then

ηSn (ΓX × ΓA) = ES
γ [I{Xn−1 ∈ ΓX}I{An ∈ ΓA}Θn] , n = 1, 2, . . .

For any non-negative function r(x, a), for any S ∈ ΠS ,

ES
γ

[ ∞∑
n=1

∫
(Tn−1,Tn]∩R+

∫
A

πn(da|Hn−1,Ξn, t− Tn−1)r(Xn−1, a)dt

]
=

∞∑
n=1

∫
X×A

r(x, a)ηSn (dx, da).

(8)
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In the previous expressions, one can write open intervals (Tn−1, Tn), leading to the same occu-
pation measures and cost functionals.

Now, after we introduce the sets DS = { {ηSn}∞n=1, S ∈ ΠS}, Dπ = { {ηSn}∞n=1, S ∈ Ππ,
S is Markov} and Dξ = { {ηSn}∞n=1, S ∈ Πξ with Ξ = A, ξ-strategy S is Markov standard}, the
problems (6) and (7) can be reformulated as

∞∑
n=1

∫
X×A

c0(x, a)ηn(dx, da) → inf
{ηn}∞

n=1∈DS

and
∞∑

n=1

∫
X×A

c0(x, a)ηn(dx, da) → inf
{ηn}∞

n=1∈DS

subject to
∞∑

n=1

∫
X×A

ci(x, a)ηn(dx, da) ≤ di, i = 1, 2, . . . , N,


correspondingly.

Condition 1 (a) qx(a) > 0 for all (x, a) ∈ K.
(b) ∃ε > 0 : ∀x ∈ X infa∈A(x) qx(a) ≥ ε.

As explained in Section 5, the classical discounted model satisfies the requirement 1-(b). Cer-
tainly, if qx(a) = 0 for some (x, a) ∈ K, and that state x cannot be reached under any control
strategy S, then one can consider the state space X \ {x}. Similarly, if qx(a) ≡ 0 for all a ∈ A(x)
and ∀i = 0, 1, 2, . . . , N , ∀n = 1, 2, . . . ci(x, a) ≡ 0 for all a ∈ A(x), then one can denote that state
x as ∆ (meaning, the process escaped from the state space X). The situation, when qx(a) = 0 and
ci(x, a) ̸= 0 for a reachable state x and for some i and a ∈ A(x), is more delicate.

Theorem 1 Suppose Condition 1-(a) is satisfied. Then, for any π-ξ-strategy S, there is a Markov

standard ξ-strategy Sξ such that η
Sξ
n ≥ ηSn for all n = 1, 2, . . .. Hence, Markov standard ξ-strategies

are sufficient for solving optimization problems (6) and (7) with negative costs ci.
If Condition 1-(b) is satisfied, then DS = Dξ. Hence, Markov standard ξ-strategies are sufficient

in the problems (6) and (7).

It follows from the proof given in Appendix that one can slightly weaken Condition 1-(b):
DS = Dξ if, for any control strategy S,

δXn−1(X)e−Λn(X∆,Hn−1,Ξn,∞) = 0 PS
γ -a.s. for all n = 1, 2, . . . (9)

Besides, if a particular π-ξ-strategy S is such that equality (9) is valid, then there is a Markov

standard ξ-strategy Sξ such that η
Sξ
n = ηSn for all n = 1, 2, . . . .

Corollary 1 All the statements of Theorem 1 remain valid if we consider only quasi-stationary
π-ξ-strategies and stationary standard ξ-strategies.

Theorem 2 DS = Dπ. Thus, Markov π-strategies are sufficient in the problems (6) and (7).

According to Theorems 1, 2, Markov π-strategies or Markov standard ξ-strategies are also
sufficient in other (constrained) optimization problems where the objectives are expressed in terms
of the occupation measures {ηn}∞n=1; for example, in case of the following long-term average cost:

lim
n→∞

n∑
k=1

∫
X×A

c0(x, a)ηk(dx, da)

n∑
k=1

ηk(X×A)

→ inf
{ηn}∞

n=1∈DS

.

Moreover, the cost rates ci can also depend on the transition number n (see (6)). This remark also
concerns theorems 3 and 5.
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4 Mixtures of simple deterministic Markov strategies

As was mentioned, the distribution p0 is responsible for the mixtures. Suppose, for example, S1

and S2 are two simple deterministic Markov strategies defined by φ̂1
n(x) and φ̂2

n(x), n = 1, 2, . . .

correspondingly, which give rise to the strategic measures PS1

γ andPS2

γ on the space

Ω = (X∆ × R̄+)
∞ (10)

(see Remark 1 and the table at the end of Section 2). Now, take Ξ = {1, 2}, p0(1) = p ≥ 0,
p0(2) = 1 − p ≥ 0 and consider the ξ-strategy S = {Ξ, p0, φn(ξ0, x) = φ̂ξ0

n (x), n = 1, 2, . . .}.
(Components pn are of no importance here.) This will be an elementary mixture of two simple
deterministic Markov strategies.

In the proof of Theorem 3, we construct the most general mixture of simple deterministic
Markov strategies (see also Definition 5).

Theorem 3 Let

Ddm = { {ηSn}∞n=1, S = {Ξ0 ×A, p̂0(dξ
0
0), p̂n(dan|ξ00 , xn−1), n = 1, 2, . . .}

are mixtures of simple deterministic Markov strategies {φ̂ξ00
n , n = 1, 2, . . .} }.

and

Dst = { {ηSn}∞n=1, S = {Ξ0 ×A, p̂0(dξ
0
0), p̂n(dan|hn−1), n = 1, 2, . . .}

are mixtures of standard ξ-strategies}.

Then Dξ = Ddm = Dst.

5 Non-conservative transition rate and discounting

The possible gap

α(x, a)
△
= qx(a)− q(X \ {x}|x, a) = q({∆}|x, a) ≥ 0

can be understood as the discount factor.

Let us denote q̂x(a)
△
= q(X \ {x}|x, a) and, for an arbitrary π-ξ-strategy S, consider the jump

intensities

λ̂n(Γ|hn−1, ξn, u)
△
= λn(Γ ∩X|hn−1, ξn, u)

and

Λ̂n(Γ, hn−1, ξn, t) = Λn(Γ ∩X, hn−1, ξn, t)

= Λn(Γ, hn−1, ξn, t)−
∫
(0,t]

∫
A

α(xn−1, a)πn(da|hn−1, ξn, u) du.

For the same spaces Ω and Hn, we construct the strategic measure P̂S
γ (with the corresponding

expectation ÊS
γ ) using stochastic kernels Ĝ defined by the same formulae (5), where λ and Λ are

replaced with λ̂ and Λ̂. The only difference with PS
γ is that now the artificial state ∆ never appears

together with a finite sojourn time θ. In other words, the controlled process does not escape from
the state space at a finite time moment.

Theorem 4 For any ΓX ∈ B(X), ΓA ∈ B(A),

ηSn (ΓX × ΓA) = ÊS
γ

[∫
(Tn−1,Tn]∩R+

I{Xn−1 ∈ ΓX}πn(ΓA|Hn−1,Ξn, t− Tn−1)e
−B(t)dt

]
,

where

B(t) = I{X(t) ∈ X}
∫
(0,t]

∫
A

α(X(u), a)π(da|u)du

is the (random) discounting process.
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Now formula (6) takes the form:

W0(S) =
∞∑

n=1

∫
X×A

c0(x, a)η
S
n (dx, da) = ÊS

γ

[∫
(0,T∞)

∫
A

π(da|t)c0(X(t), a)e−B(t)dt

]
→ inf

S∈ΠS

.

In the simplest case α(x, a) ≡ α > 0 we have the standard discounted model investigated e.g.
in [7, 11, 20].

6 Sufficiency of ξ-strategies, general case

Example presented in Section 7 shows that, if Condition 1 is not satisfied, then it can happen that,
for a π-strategy S, there is no equivalent Markov standard ξ-strategy having the same occupation
measures. Below, we describe a more general class of ξ-strategies which turns to be sufficient in
the general case.

Definition 7 A Poisson-related ξ-strategy S = {Ξ, ε, p̃n,k(da|xn−1), n = 1, 2, . . . , k = 0, 1, 2, . . .}
is defined by a constant ε > 0 and a sequence of stochastic kernels p̃n,k(da|x) from X∆ to A∆

with p̃n,k(A(x)|x) = 1. Here Ξ = (R × A)∞, and for n = 1, 2, . . . the distribution pn of Ξn =
(τn0 , α

n
0 , τ

n
1 , α

n
1 , . . .) given Hn−1 is defined as follows:

• pn(τ
n
0 = 0|hn−1) = 1; for i ≥ 1, pn(τ

n
i ≤ t|hn−1) = 1− e−εt;

• for all k ≥ 0, pn(α
n
k ∈ ΓA|hn−1) = p̃n,k(ΓA|xn−1);

• finally,

φn(ξ0, x0, ξ1, θ1, . . . , xn−1, ξn, t− Tn−1) = I{τn0 + . . .+ τnk < t− Tn−1 ≤ τn0 + . . .+ τnk+1}αn
k .

The ξ0 component plays no role and is omitted. Note, function φn does not depend on ξ0, x0, . . . , xn−1

and is denoted as φn(ξn, t− Tn−1) in the proof of Theorem 5.

Such a strategy means that, after any jump of the controlled process X(t), we simulate a
Poisson process and apply different randomized controls during the different sojourn times of that
Poisson process.

Theorem 5 For any control strategy S, there is a Poisson-related ξ-strategy SP such that {ηSn}∞n=1 =

{ηSP

n }∞n=1. The value of ε > 0 can be chosen arbitrarily.

7 Examples

Example 1 shows that, if a π-strategy S is stationary then the occupation measures {ηSn}∞n=1

may be not generated by a stationary standard ξ-strategy. The reverse statement is also correct:

not any one sequence {ηS̃n}∞n=1, coming from a stationary standard ξ-strategy S̃, can be generated
by a stationary π-strategy.

Let X = {1}, A = A(1) = {a1, a2}, γ(1) = 1, q1(a1) = λ > 0, q1(a2) = 0. For an arbitrary
stationary π-strategy S we have,

either ηS1 (1, a1) < ∞ and ηS1 (1, a2) < ∞ (if π(a1|1) > 0 ),

or ηS1 (1, a1) = 0 and ηS1 (1, a2) = ∞ (if π(a1|1) = 0 ).

If, for a stationary standard ξ-strategy S̃, p(a2|1) ∈ (0, 1) then ηS̃1 (1, a1) = 1−p(a2|1)
λ ∈ (0,∞),

ηS̃1 (1, a2) = ∞ and ηS̃1 cannot be generated by a stationary π-strategy. If π(a1|1) ∈ (0, 1) then
ηS1 (1, a1) ∈ (0,∞), ηS1 (1, a2) ∈ (0,∞) and such an occupation measure cannot be generated by a
stationary standard ξ-strategy.
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Example 2 illustrates that Markov standard ξ-strategies (as well as stationary standard ξ-
strategies and stationary π-strategies) are not sufficient in optimization problems.

Consider the following continuous-time Markov decision process, very similar to the one de-
scribed in [9, Ex.3.1]. X = {1}, A = A(1) = (0, 1], γ(1) = 1, q1(a) = a, c0(x, a) = a, N = 0. Note
that q(X \ {1}|1, a) = 0 and q(X|1, a) = −q1(a) = −a < 0. After introducing the cemetery ∆
with α(1, a) = q({∆}|1, a) = q1(a), we obtain the standard conservative transition rate q. In this
model, we have a single sojourn time Θ = T , so that the n index is omitted.

It is obvious that, for any Markov standard ξ-strategy pM (which is also stationary),

ηp
M

({1} × ΓA) = EpM

γ

[∫
(0,T ]∩R+

I{A(t) ∈ ΓA}dt

]
=

∫
ΓA

pM (da|1) · 1
a

and

W0(p
M ) = EpM

γ

[∫
(0,T ]∩R+

A(t)dt

]
=

∫
A

a ηp
M

({1} × da) =

∫
A

a
1

a
pM (da|1) = 1.

For an arbitrary stationary π-strategy Sπ, we similarly obtain

ηSπ ({1} × ΓA) = π(ΓA)

/∫
A

a π(da)

and

W0(Sπ) =

∫
A

a ηSπ ({1} × da) = 1.

On the other hand, under an arbitrarily fixed κ > 0, for the purely deterministic strategy
φ(1, u) = e−κu, the (first) sojourn time Θ = T has the cumulative distribution function (CDF)

1− e
−1+e−κθ

κ , so that Pφ
γ (Θ = ∞) = e−

1
κ . Under an arbitrarily fixed U ∈ (0, 1] we have

ηφ({1} × (U, 1]) = Eφ
γ

[∫
(0,Θ]∩R+

I{e−κu ∈ (U, 1]}du

]
= Eφ

γ

[∫
[e−κΘ,1)∩R+

I{y ∈ (U, 1]}dy/(κy)

]

=
1

κ

∫ ∞

− lnU
κ

[− lnU ](e−κθ · e
−1+e−κθ

κ )dθ +
1

κ

∫ − lnU
κ

0

κθ(e−κθ · e
−1+e−κθ

κ )dθ

+
1

κ
[− lnU ] · e− 1

κ = [− lnU ]
1

κ
(−e−

1
κ + e

U−1
κ ) + θ

[
1− e

−1+e−κθ

κ

]∣∣∣∣− lnU
κ

0

−
∫ − lnU

κ

0

[
1− e

−1+e−κθ

κ

]
dθ +

1

κ
[− lnU ] · e− 1

κ =

∫ − lnU
κ

0

e
−1+e−κθ

κ dθ

=

∫ 1

U

e
−1+a

κ

κa
da,

so that measure ηφ({1} × da) is absolutely continuous w.r.t. the Lebesgue measure, the density

being e
−1+a

κ

κa and

W0(φ) =

∫
A

a ηφ({1} × da) = 1− e−
1
κ . (11)

According to Theorem 1, there is a Markov standard ξ-strategy Sξ such that ηSξ ≥ ηφ. It is

given by formula (16). One can also build the Poisson-related ξ-strategy SP such that ηS
P

= ηφ,
using the proof of Theorem 5. The detailed calculations can be found in [22]. Finally, it is clear
that infS∈ΠS W0(S) = 0: see (11) with κ → ∞, but the optimal strategy does not exist because
Θ > 0 and c0(x, a) > 0. Note also that, if we extend the action space to [0, 1] and keep q1 and
c0 continuous, i.e., q1(0) = c0(0) = 0, then stationary deterministic strategy φ∗(x) = 0 is optimal
with W0(φ

∗) = 0.
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9 Conclusion

In the optimal control theory, the researchers traditionally start with a wide class of control strate-
gies and prove the sufficiency of a small collection of easily implementable strategies, e.g., a unique
strategy, if a particular problem is exactly solved. For example, in [10, 11, 20, 23, 25], starting from
general relaxed strategies, the authors prove the sufficiency of stationary deterministic strategies
(stationary relaxed strategies in constrained problems). In the current article, the new very gen-
eral set of control strategies is introduced, and a series of theorems state the sufficiency of Markov
relaxed, randomized, Poisson-related strategies and mixtures of Markov deterministic strategies.
Note, the cost rate and the transition rate can be unbounded and accumulation of jumps is not
excluded.

Theorem 5 about sufficiency of Poisson-related strategies can be a starting point for involving
the results in discrete-time Markov decision processes (DTMDP) like the Linear Programming
approach developed e.g. in [13, 18]. Under very mild conditions, it will be possible to prove the
sufficiency of stationary randomized strategies. Remember, Example 2 in Section 7 shows that,
in general, stationary strategies are not sufficient in optimization problems. This fact is known
also in the discrete-time case [19, §§2.2.11,2.2.12,2.2.13]. Transformation to discrete time is a well
known trick [21]. In this connection, Theorem 5 will lead to the DTMDP with possible transitions
to the same state (loops). These ideas will be developed in [22].

We consider the sufficiency of randomized and Poisson-related strategies more valuable com-
pared with the traditional relaxed strategies because the latter ones cannot be realized on practice
if they are not purely deterministic: the trajectories of the action process are not measurable. The
word “sufficient” refers to the total expected cost/reward. If one is also interested in the variance
of the total cost, then the current results and conclusions are not relevant.

10 Appendix

Proof of Lemma 1. For any fixed u, the mapping ξn → ξn(u) is measurable [5, Ch.3,Prop.7.1],
so that ξn(u) is a right continuous random process defined on DA[0,∞). It is progressively mea-
surable, e.g. if we consider the trivial filtration Gu ≡ B(DA[0,∞)) [3, T11]; hence the mapping

(ξn, u) → ξn(u) is B(DA[0,∞)× R+)-measurable.

Proof of Theorem 1. Inclusion Dξ ⊂ DS is obvious.
Let us prove that DS ⊂ Dξ if Condition 1-(b) is satisfied. Simultaneously, we will establish the

first assertion of the theorem assuming that qx(a) > 0 for all (x, a) ∈ K.
Let S = {Ξ, p0, ⟨pn, πn⟩, n = 1, 2, . . .} be an arbitrary π-ξ-strategy and introduce the following

occupancy measures (n = 1, 2, . . .) on X×A

ρSn(ΓX × ΓA) = ES
γ

[∫
(Tn−1,Tn]∩R+

I{Xn−1 ∈ ΓX}
∫
ΓA

πn(da|Hn−1,Ξn, t− Tn−1)qXn−1(a)dt

]
,

ΓX ∈ B(X),ΓA ∈ B(A). Note that ρSn(X×A) = 0 if and only if Xn−1 = ∆ PS
γ -a.s.

First of all, let us show that these measures are finite for all n = 1, 2, . . . even if the jump

intensity qx(a) is unbounded. Let πu(·)
△
= πn(·|hn−1, ξ, u) ∈ P(A) assuming xn−1 ̸= ∆, and
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introduce the following finite measures (depending on hn−1, ξ) on P(A):

kn(Γπ, hn−1, ξ) = I{xn−1 ̸= ∆}
∫
(0,∞)

I{πθ ∈ Γπ}G̃n(dθ ×X∆|hn−1, ξ),

Kn(Γπ, hn−1, ξ) = I{xn−1 ̸= ∆}
∫
(0,∞)

∫
(0,θ]

I{πu ∈ Γπ}du · G̃n(dθ ×X∆|hn−1, ξ),

Γπ ∈ B(P(A)), n = 1, 2, . . .

Here

G̃n({∞} ×X∆}|hn−1, ξ) = δxn−1(X)e−Λn(X∆,hn−1,ξ,∞);

G̃n(ΓR ×X∆|hn−1, ξ) = δxn−1(X)

∫
ΓR

λn(X∆|hn−1, ξ, t)

×e−Λn(X∆,hn−1,ξ,t)dt for ΓR ∈ B(R+).

Then, according to Lemma 4.3 [7],

kn(Γπ, hn−1, ξ) =

∫
Γπ

[∫
A

qxn−1
(a)π(da)

]
Kn(dπ, hn−1, ξ). (12)

(Here π ∈ P(A) and
∫
A
qxn−1(a)π(da) play the role of a and q(a) in [7] correspondingly.) Now,

since function qxn−1(a) is non-negative, according to (12), we have∫
P(A)

[∫
A

qxn−1(a)π(da)

]
Kn(dπ, hn−1, ξ)

=

∫
(0,∞)

I{xn−1 ̸= ∆}

[∫
(0,θ]

∫
P(A)

δπs(dπ)

[∫
A

qxn−1(a)π(da)

]
ds

]
G̃n(dθ ×X∆|hn−1, ξ)

= kn(P(A)|hn−1, ξ) = G̃n(R+ ×X∆|hn−1, ξ) ≤ 1, (13)

so that

ρSn(X×A) = ES
γ

[∫
(Tn−1,Tn]∩R+

I{Xn−1 ̸= ∆}
∫
A

πn(da|Hn−1,Ξn, t− Tn−1)qXn−1(a)dt

]

= ES
γ

[
ES

γ

[
I{Xn−1 ̸= ∆}

∫
(0,Θn]∩R+

∫
A

qXn−1(a)πs(da)ds|Hn−1,Ξn

]]
= ES

γ [I{Xn−1 ̸= ∆}kn(P(A),Hn−1,Ξn)]

= ES
γ

[
I{Xn−1 ̸= ∆}G̃n(R+ ×X∆|Hn−1,Ξn)

]
≤ 1, (14)

and the ρSn measure is finite. Remember, G̃n(R+ × X∆|Hn−1,Ξn) > 0 PS
γ -a.s. if Xn−1 ̸= ∆,

because of Condition 1-(a).
For the measures

k̂n(Γπ × ΓX, hn−1, ξ) = I{xn−1 ∈ ΓX}
∫
(0,∞)

I{πθ ∈ Γπ}G̃n(dθ ×X∆|hn−1, ξ),

K̂n(Γπ × ΓX, hn−1, ξ) = I{xn−1 ∈ ΓX}
∫
(0,∞)

∫
(0,θ]

I{πu ∈ Γπ}du · G̃n(dθ ×X∆|hn−1, ξ)

on P(A)×X, the similar calculations result in expressions∫
P(A)×ΓX

∫
A

qx(da)π(da)K̂n(dπ, dx, hn−1, ξ) = k̂n(P(A)× ΓX, hn−1, ξ);

ρSn(ΓX ×A) = ES
γ

[
k̂n(P(A)× ΓX,Hn−1,Ξn)

]
= ES

γ [I{Xn−1 ∈ ΓX}G̃n(R+ ×X∆|Hn−1,Ξn)],

n = 1, 2, . . . (15)

14



Having the occupancy measures ρSn in hand, we introduce the stochastic kernels pMn (defined
ρSn(·,A)-a.s.) coming from formula

ρSn(ΓX × ΓA) =

∫
ΓX

ρSn(dx×A)pMn (ΓA|x).

Note that ρSn(X×A) = 0 if and only if Xn−1 = ∆ PS
γ -a.s., and we put pMn ({∆}|∆) = 1 as usual.

For xn−1 ̸= ∆, one can provide the explicit formula for pMn :

pMn (ΓA|xn−1) =
ES

γ

[∫
(0,Θn]∩R+

∫
ΓA

πn(da|Hn−1,Ξn, u)qXn−1(a)du|Xn−1 = xn−1

]
ES

γ

[∫
(0,Θn]∩R+

∫
A
πn(da|Hn−1,Ξn, u)qXn−1(a)du|Xn−1 = xn−1

] . (16)

Note, the denominator equals 1 under Condition 1(b). Equation (16) holds ρ̂Sn-a.s., where ρ̂
S
n(ΓX) =

ρSn(ΓX×A) is the marginal of ρSn . Below we omit such remarks for equations involving conditional
expectations.

Consider the Markov standard ξ-strategy Sξ = {A, pMn , n = 1, 2, . . .}. Let

ρ̃n(ΓX × ΓA)
△
= E

Sξ
γ [I{Xn−1 ∈ ΓX, An ∈ ΓA}]

be a measure on X×A and prove by induction that ρ̃n ≥ ρSn . Equality ρ̃1(ΓX×A) = ρS1 (ΓX×A) =
γ(ΓX) is obvious. Assume ρ̃n(ΓX ×A) ≥ ρSn(ΓX ×A) for some n ≥ 1. Then, by the definition of
the ξ-strategy Sξ,

ρ̃n(ΓX × ΓA) =

∫
ΓX

ρ̃n(dx×A)pMn (ΓA|x),

so that ρ̃n(ΓX ×ΓA) ≥ ρSn(ΓX ×ΓA) and it remains to show that ρ̃n+1(ΓX ×A) ≥ ρSn+1(ΓX ×A).

ρ̃n+1(ΓX ×A) =

∫
X×A

[∫
(0,∞)

q(ΓX \ {x}|x, a)e−qx(a)tdt

]
ρ̃n(dx, da)

=

∫
X×A

q(ΓX \ {x}|x, a)
qx(a)

ρ̃n(dx, da)

≥ ES
γ

[∫
(Tn−1,Tn]∩R+

∫
A

q(ΓX \ {Xn−1}|Xn−1, a)πn(da|Hn−1,Ξn, t− Tn−1)dt

]
because ρ̃n ≥ ρSn . The cases ρ̃n = 0 or ρ̃n+1 = 0 are not excluded.

On the other hand, using (12), we obtain

ES
γ [I{Xn ∈ ΓX}|Hn−1,Ξn]

=

∫
P(A)

∫
A
π(da)q(ΓX \ {Xn−1}|Xn−1, a)∫

A
π(da)qXn−1(a)

kn(dπ,Hn−1,Ξn)

=

∫
P(A)

∫
A
π(da)q(ΓX \ {Xn−1}|Xn−1, a)∫

A
π(da)qXn−1(a)

∫
A

π(da)qXn−1(a)Kn(dπ,Hn−1,Ξn)

= ES
γ

[∫
(0,Θn]∩R+

[∫
A

πs(da)q(ΓX \ {Xn−1}|Xn−1, a)

]
ds|Hn−1,Ξn

]
,

so that, from (15) we have

ρSn+1(ΓX ×A) = ES
γ

[
I{Xn ∈ ΓX}G̃n+1(R+ ×X∆|Hn,Ξn+1)

]
≤ ES

γ [I{Xn ∈ ΓX}]

= ES
γ

[
ES

γ

[∫
(0,Θn]∩R+

[∫
A

πs(da)q(ΓX \ {Xn−1}|Xn−1, a)

]
ds|Hn−1,Ξn

]]

= ES
γ

[∫
(Tn−1,Tn]∩R+

∫
A

q(ΓX \ {Xn−1}|Xn−1, a)πn(da|Hn−1,Ξn, t− Tn−1)dt

]
≤ ρ̃n+1(ΓX ×A).
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As a result, ρ̃n ≥ ρSn for all n = 1, 2, . . .. All inequalities become equalities under Condition 1-(b)
because here G̃n(R+ ×X∆|hn−1, ξ) ≡ 1.

Clearly, ηSn (ΓX × ΓA) =
∫
ΓX×ΓA

[
1

qx(a)

]
ρSn(dx, da) and, to complete this part of the proof, it

remains to notice that

η
Sξ
n (ΓX × ΓA) = E

Sξ
γ

[
I{Xn−1 ∈ ΓX}I{An ∈ ΓA}ESξ

γ

[∫ Θn

0

ds|Hn−1, An

]]

=

∫
ΓX×ΓA

[
1

qx(a)

]
ρ̃n(dx, da).

We have proved that ηSn ≤ η
Sξ
n for all n = 1, 2, . . .. Under Condition 1-(b), we have equality, so

that DS = Dξ.

For the proof of Corollary 1, it is sufficient to notice that, for quasi-stationary strategy S,

expression (16) for pMn does not depend on n.

Proof of Theorem 2. For an arbitrarily fixed π-ξ-strategy S = {Ξ, p0, ⟨pn, πn⟩, n = 1, 2, . . .},
introduce the following purely relaxed Markov strategy S̃ = {πM

n , n = 1, 2, . . .}:

πM
n (ΓA|xn−1, s) =

ES
γ [πn(ΓA|Hn−1,Ξn, s)e

−Λn(X∆,Hn−1,Ξn,s)|Xn−1 = xn−1]

ES
γ [e

−Λn(X∆,Hn−1,Ξn,s)|Xn−1 = xn−1]
. (17)

Firstly, let us prove that, for any n = 0, 1, . . ., the following joint distributions coincide

ES
γ [I{Θn ∈ ΓR}I{Xn ∈ ΓX}] = ES̃

γ [I{Θn ∈ ΓR}I{Xn ∈ ΓX}], (18)

ΓR ∈ B(R̄+), ΓX ∈ B(X∆).
Formula (18) is valid for n = 0. (We always put Θ0 ≡ 0.) Suppose it holds for some n− 1 ≥ 0.

Below, λM
n and ΛM

n correspond to πM
n ; these functions, except for Γ ∈ B(X∆), depend only on

xn−1 and s (or t). Since∫
(0,t]∩R+

λn(X∆|hn−1, ξn, s)e
−Λn(X∆,hn−1,ξn,s)ds = 1− e−Λn(X∆,hn−1,ξn,t)

and according to the Fubini Theorem, we have

ES
γ

[
e−Λn(X∆,Hn−1,Ξn,t)|Xn−1 = xn−1

]
= 1−

∫
(0,t]

ES
γ

[
λn(X∆|Hn−1,Ξn, s)e

−Λn(X∆,Hn−1,Ξn,s)|Xn−1 = xn−1

]
ds.

This and other equalities below hold for ES
γ -almost all xn−1 and for ES̃

γ -almost all xn−1. Therefore,

the derivative d
dt ln

(
ES

γ

[
e−Λn(X∆,Hn−1,Ξn,t)|Xn−1 = xn−1

])
is well defined for almost all t and

equals

−ES
γ

[
λn(X∆|Hn−1,Ξn, t)e

−Λn(X∆,Hn−1,Ξn,t)|Xn−1 = xn−1

]
ES

γ [e
−Λn(X∆,Hn−1,Ξn,t)|Xn−1 = xn−1]

= −λM
n (X∆|Xn−1 = xn−1, t),

so that
ΛM
n (X∆, xn−1, t) = − ln

(
ES

γ

[
e−Λn(X∆,Hn−1,Ξn,t)|Xn−1 = xn−1

])
and

e−ΛM
n (X∆,xn−1,t) = ES

γ

[
e−Λn(X∆,Hn−1,Ξn,t)|Xn−1 = xn−1

]
. (19)

Now, for any ΓX ∈ B(X∆),

λM
n (ΓX|xn−1, t)e

−ΛM
n (X∆,xn−1,t) = ES

γ

[
λn(ΓX|Hn−1,Ξn, t)e

−Λn(X∆,Hn−1,Ξn,t)|Xn−1 = xn−1

]
16



due to the definition of the πM
n kernel. Therefore, the conditional distributions

ES
γ [I{Θn ∈ ΓR}I{Xn ∈ ΓX}|Xn−1 = xn−1] = ES̃

γ [I{Θn ∈ ΓR}I{Xn ∈ ΓX}|Xn−1 = xn−1]

coincide and formula (18) holds for n by induction.
Since, by the Fubini Theorem,∫

(0,∞)

λn(X∆|hn−1, ξn, θ)e
−Λn(X∆,hn−1,ξn,θ)

[∫
(0,θ]

πn(ΓA|hn−1, ξn, u)du

]
dθ

=

∫
(0,∞)

[∫
[u,∞)

λn(X∆|hn−1, ξn, θ)e
−Λn(X∆,hn−1,ξn,θ)πn(ΓA|hn−1, ξn, u) dθ

]
du (20)

=

∫
(0,∞)

e−Λn(X∆,hn−1,ξn,u)πn(ΓA|hn−1, ξn, u) du,

we conclude that, for any ΓX ∈ B(X), ΓA ∈ B(A),

ES
γ

[
I{Xn−1 ∈ ΓX}

∫
(Tn−1,Tn]∩R+

πn(ΓA|Hn−1,Ξn, t− Tn−1)dt|Xn−1 = xn−1

]

= I{xn−1 ∈ ΓX}ES
γ

[∫
(0,∞)

e−Λn(X∆,Hn−1,Ξn,u)πn(ΓA|Hn−1,Ξn, u)du|Xn−1 = xn−1

]

= I{xn−1 ∈ ΓX}
∫
(0,∞)

πM
n (ΓA|xn−1, u) · ES

γ

[
e−Λn(X∆,Hn−1,Ξn,u)|Xn−1 = xn−1

]
du

= I{xn−1 ∈ ΓX}
∫
(0,∞)

πM
n (ΓA|xn−1, u)e

−ΛM
n (X∆,xn−1,u)du

(see (19) ), and the last expression, similarly to (20), equals

ES̃
γ

[
I{Xn−1 ∈ ΓX}

∫
(Tn−1,Tn]∩R+

πM
n (ΓA|Xn−1, t− Tn−1)dt|Xn−1 = xn−1

]
.

Therefore,

ηSn (ΓX × ΓA)

=

∫
X∆

ES
γ

[∫
(Tn−1,Tn]∩R+

I{Xn−1 ∈ ΓX}πn(ΓA|Hn−1,Ξn, t− Tn−1)dt|Xn−1 = xn−1

]
m(dxn−1)

= ηS̃n (ΓX × ΓA),

where m(Γ)
△
= ES

γ [I{Xn−1 ∈ Γ}] = ES̃
γ [I{Xn−1 ∈ Γ}] (see (18)).

In case Tn−1 < ∞ and Tn = ∞, the integration is over the open interval (Tn−1,∞).
Proof of Theorem 3. Before starting the proof itself, we need several additional constructions.
For an arbitrary simple deterministic Markov strategy S = {φ̂n, n = 1, 2, . . .}, let

ω̂(ω) = (x0, a1 = φ̂1(x0), θ1, x1, a2 = φ̂2(x1), θ2, . . .) (21)

be the mapping from Ω to

Ω̂
△
= (X∆ ×A∆ × R̄+)

∞. (22)

Let P̂S
γ be the image of PS

γ w.r.t. this mapping and ÊS
γ be the expectation w.r.t. this probability

measure. Note that, if Xn = ∆, then P̂S
γ -a.s. An+1 = ∆,Θn+1 = ∞, Xn+1 = ∆.

Now
ηSn (ΓX × ΓA) = ÊS

γ [Θn I{Xn−1 ∈ ΓX}I{An ∈ ΓA}] . (23)
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The same formula is valid for a standard ξ-strategy S = {A, pMn , n = 1, 2, . . .}. Here, one does not
need to introduce the mapping ω̂(ω) because, for standard ξ-strategies, the sample space already
has the form Ω̂. Nevertheless, we keep the notations P̂S

γ = PS
γ and ÊS

γ = ES
γ for the further

convenience.
According to the definition of the strategic measures, if S is a simple deterministic Markov

strategy or a standard ξ-strategy, then for arbitrary ΓX ∈ B(X∆), ΓA ∈ B(A∆), ΓR ∈ B(R̄+), we
have P̂S

γ (X0 ∈ ΓX) = γ(ΓX);

P̂S
γ (An ∈ ΓA|X0, A1,Θ1, . . . , Xn−1) = pMn (ΓA|Hn−1) (24)

(= I{ΓA ∋ φ̂n(Xn−1)} in case the strategy S is simple deterministic Markov)

P̂S
γ (Θn ∈ ΓR|X0, A1,Θ1, . . . , Xn−1, An) = I{Xn−1 ̸= ∆}

∫
ΓR∩R+

qXn−1(An)e
−qXn−1

(An)tdt

+ I{qXn−1(An) = 0 or Xn−1 = ∆}I{ΓR ∋ ∞}, (25)

P̂S
γ (Xn ∈ ΓX|X0, A1,Θ1, . . . , Xn−1, An,Θn), (26)

= I{Xn−1 ̸= ∆}q(ΓX \ {Xn−1}|Xn−1, An)

qXn−1(An)
+ I{qXn−1

(An) = 0 or Xn−1 = ∆}I{ΓX ∋ ∆}

where
0

0

△
= 0.

Formulae (24) and (26) define the marginal of the measure P̂S
γ on (X∆ ×A∆)

∞ denoted below as

P̂SM
γ , and formula (25) makes it possible to reconstruct P̂S

γ having P̂SM
γ .

Let us show that Dst ⊂ Dξ. For a fixed mixture S = {Ξ0 ×A, p̂0(dξ
0
0), p̂n(dan|ξ00 , xn−1), n =

1, 2, . . .} of standard ξ-strategies, we define

P̂S
γ (dω̂) = PS

γ (Ξ0 × dω̂) =

∫
Ξ0

p̂0(dξ
0
0)P̂

Sξ00

γ (dω̂),

where Sξ00 = {A, p̂n(dan|ξ00 , x0, a1, θ1, . . . , xn−1) n = 1, 2, . . .} is a specific Markov standard ξ-

strategy under a fixed ξ00 ∈ Ξ0. Note that the P̂
ξ00
γ measure is measurable w.r.t. ξ00 [12, C.10].

Recall that, according to Remark 1, the measure PS
γ is defined on Ξ0 × Ω̂ and the measures

P̂Sξ00

γ = PSξ00

γ are defined on Ω̂: see (22) and the table at the end of Section 2. Like previously,

P̂SM
γ is the marginal of P̂S

γ on (X∆ ×A∆)
∞. Formulae (25),(26) remain valid for the mixture S,

as well.
All the measures P̂SM

γ considered above have important common property coming from the
equation (26):

P̂SM
γ (Xn ∈ ΓX|X0, A1, . . . , Xn−1, An, )

= I{Xn−1 ̸= ∆}q(ΓX \ {Xn−1}|Xn−1, An)

qXn−1(An)
+ I{qXn−1(An) = 0 or Xn−1 = ∆}I{ΓX ∋ ∆},

meaning that all of them are strategic measures in the discrete-time Markov Decision Process M
with state and action spaces X∆ and A∆ and with the transition probability

Q(y ∈ ΓX|x, a) =

{
q(ΓX\{x}|x,a)

qx(a)
, if x ̸= ∆, qx(a) ̸= 0;

I{ΓX ∋ ∆} otherwise.

[4, Ch.3,§5].
As is known [18, Lemma 2], there exists a sequence of stochastic kernels pMn (dan|xn−1), n =

1, 2, . . ., i.e. a Markov strategy in M, defining a Markov standard ξ-strategy SM , such that

ÊSM
γ [I{Xn−1 ∈ ΓX}I{An ∈ ΓA}] = ÊSMM

γ [I{Xn−1 ∈ ΓX}I{An ∈ ΓA}], n = 1, 2, . . .

for all ΓX ∈ B(X∆), ΓA ∈ B(A∆). Since formula (25) is strategy-independent, we conclude that

ηSn = ηS
M

n , n = 1, 2, . . . and Dst ⊂ Dξ.
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Now, show that Dξ ⊂ Ddm. Let SM = {A, pMn , n = 1, 2, . . .} be a Markov standard ξ-strategy.

It is known that the strategic measure P̂SMM
γ in M (generated by a Markov strategy pMn ) can be

represented as

P̂SMM
γ =

∫
Ξ0

ξ00 p̂0(dξ
0
0), (27)

where Ξ0, defined as

Ξ0 = {P̂SM
γ , S = {φ̂n, n = 1, 2, . . .} are all possible simple deterministic Markov strategies in M},

(28)
is a Borel space, and p̂0 is a probability measure on Ξ0. For more details see [6, sections 2,3;
Th.5.2].

For a fixed ξ00 ∈ Ξ0 and n = 1, 2, . . ., let ξ0n0 be the marginal of the measure ξ00 :

ξ0n0 (ΓX × ΓA) = ξ00((X∆ ×A∆)
n−1 × ΓX × ΓA × (X∆ ×A∆)

∞),

ΓX ∈ B(X∆), ΓA ∈ B(A∆). The mapping ξ0n0 = fn(ξ00) is measurable and even continu-
ous if we fix the corresponding topologies in the state and action spaces and the weak topolo-
gies in the probability measures spaces. Using Corollary 7.27.1 [1], we see that, for stochas-

tic kernel k(dx, da|ξ0n0 )
△
= ξ0n0 (dx, da), there are measurable stochastic kernels kA(ΓA|x, ξ0n0 ) and

kX(ΓX|ξ0n0 ) = ξ0n0 (ΓX ×A∆) on A∆ and X∆ respectively, such that

ξ0n0 (ΓX × ΓA) =

∫
ΓX

kA(ΓA|x, ξ0n0 )kX(dx|ξ0n0 ).

Consider the mixture S = {Ξ0 ×A, p̂0, p̂n, n = 1, 2, . . .} of standard ξ-strategies Sξ00 , where

p̂n(dan|ξ00 , xn−1)
△
= kA(dan|xn−1, f

n(ξ00)) (see Definition 5) and prove that it is a mixture of simple

deterministic Markov strategies. Since ξ00 = P̂
S(ξ00)M
γ is a strategic measure in the Markov Decision

Process M for some (simple) deterministic Markov strategy S(ξ00) = {φ̂ξ00
n , n = 1, 2, . . .},

kA(ΓA|x, ξ0n0 ) = I{ΓA ∋ φ̂
ξ00
n (x)}

for ξ0n0 (dx×A∆)-almost all x ∈ X∆. Equivalently,

p̂n(ΓA|ξ00 , Xn−1) = I{ΓA ∋ φ̂
ξ00
n (Xn−1)} P̂

S(ξ00)M
γ -a.s. n = 1, 2, . . .

The induction argument, when n = 1, 2, . . ., implies that (for a fixed ξ00 ∈ Ξ0), for the Markov

strategy Sξ00
△
= {p̂n(dan|ξ00 , xn−1), n = 1, 2, . . .} in M, equality P̂Sξ00M

γ = P̂
S(ξ00)M
γ is valid. Here,

with some abuse of notation, Sξ00 is a Markov strategy in M and also a Markov standard ξ-strategy
in the original model. We proved that

p̂n(ΓA|ξ00 , Xn−1) = I{ΓA ∋ φ̂
ξ00
n (Xn−1)} P̂Sξ00M

γ -a.s. n = 1, 2, . . . (29)

As was mentioned above, when returning back to the continuous-time model, the measures

P̂Sξ00M
γ = P̂

S(ξ00)M
γ give rise to the measures P̂Sξ00

γ = P̂
S(ξ00)
γ on Ω̂ (22), simply by applying formula

(25). Now, the equality (29) holds P̂Sξ00

γ -a.s. and hence PS
γ -a.s. because the strategic measure PS

γ

has the form PS
γ (dξ00 , dω̂) = p̂0(dξ

0
0)P̂

Sξ00

γ (dω̂).

Thus S is a mixture of simple deterministic Markov strategies {φ̂ξ00
n , n = 1, 2, . . .} = S(ξ00).

Formula (27) implies that

PSM

γ (dω̂) =

∫
Ξ0

p̂0(dξ
0
0)P

S(ξ00)
γ (dω̂) =

∫
Ξ0

p̂0(dξ
0
0)P

Sξ00

γ (dω̂) = PS
γ (Ξ0 × dω̂).

Hence ηS
M

n (ΓX × ΓA) = ηSn (ΓX × ΓA) for all n = 1, 2, . . .
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We proved that Dξ ⊂ Ddm. Since Ddm ⊂ Dst ⊂ Dξ, the proof is completed.

Proof of Theorem 4. For a fixed n = 1, 2, . . .,

ηSn (ΓX × ΓA)

= ES
γ

[
ES

γ

[
I{Xn−1 ∈ X}

∫
(Tn−1,Tn]∩R+

I{Xn−1 ∈ ΓX}πn(ΓA|Hn−1,Ξn, t− Tn−1)dt|Hn−1

]]

= ES
γ

[
I{Xn−1 ∈ X}

∫
Ξ∆

pn(dξ|Hn−1)

[∫
(0,∞)

∫
(0,θ]

I{Xn−1 ∈ ΓX}πn(ΓA|Hn−1, ξ, u)du

× λn(X∆|Hn−1, ξ, θ)e
−Λn(X∆,Hn−1,ξ,θ) dθ

]]
(change the order)

= ES
γ

[
I{Xn−1 ∈ X}

∫
Ξ∆

pn(dξ|Hn−1)

∫
(0,∞)

(∫
[s,∞)

I{Xn−1 ∈ ΓX}πn(ΓA|Hn−1, ξ, s)

× λn(X∆|Hn−1, ξ, θ)e
−Λn(X∆,Hn−1,ξ,θ) dθ

)
ds

]

= ES
γ

[
I{Xn−1 ∈ X}

∫
Ξ∆

pn(dξ|Hn−1)

∫
(0,∞)

g(Hn−1, s)e
−Λn(X∆,Hn−1,ξ,s) ds

]
,

where, under fixed ξ,ΓA,ΓX, function g is defined as g(hn−1, s)
△
= I{xn−1 ∈ ΓX}πn(ΓA|hn−1, ξ, s).

The last integral can be evaluated, after we notice that

e−Λn(X∆,hn−1,ξ,s) = e−
∫
(0,s)

∫
A

πn(da|hn−1,ξ,u)α(xn−1,a)du

×

[∫
(s,∞)

λ̂(X|hn−1, ξ, v)e
−Λ̂n(X,hn−1,ξ,v) dv + e−Λ̂n(X,hn−1,ξ,∞)

]
,

in the following way:∫
(0,∞)

g(hn−1, s)e
−Λn(X∆,hn−1,ξ,s) ds (change the order)

=

∫
(0,∞)

∫
(0,v)

g(hn−1, s)e
−

∫
(0,s)

∫
A

πn(da|hn−1,ξ,u)α(xn−1,a)duλ̂(X|hn−1, ξ, v)e
−Λ̂n(X,hn−1,ξ,v) ds dv

+

∫
(0,∞)

g(hn−1, s)e
−

∫
(0,s)

∫
A

πn(da|hn−1,ξ,u)α(xn−1,a)du ds× e−Λ̂n(X,hn−1,ξ,∞).

Therefore,

ηSn (ΓX × ΓA) = ES
γ

[
I{Xn−1 ∈ X}

×
∫
R̄+×Ξ∆×X∆

Ĝn(dθ, dξ, dx|Hn−1)

{∫
(0,θ]∩R+

I{Xn−1 ∈ ΓX}πn(ΓA|Hn−1, ξ, v)

×e
−

∫
(Tn−1,Tn−1+v]

∫
A

πn(da|Hn−1,ξ,w−Tn−1)α(Xn−1,a)dw
dv
}]

= ES
γ

[
I{Xn−1 ∈ X}

∫
R̄+×Ξ∆×X∆

Ĝn(dθ, dξ, dx|Hn−1)

×

{∫
(Tn−1,Tn−1+θ]∩R+

I{Xn−1 ∈ ΓX}πn(ΓA|Hn−1, ξ, t− Tn−1)

×e
−

∫
(Tn−1,t]

∫
A

πn(da|Hn−1,ξ,w−Tn−1)α(Xn−1,a)dw
dt
}]

.
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The last expression has the form ES
γ [I{Xn−1 ∈ X} · F (Hn−1)]. Applying the similar, but

simpler calculations, we obtain

ES
γ [E

S
γ [I{Xn−1 ∈ X} · F (Hn−2,Ξn−1,Θn−1, Xn−1)|Hn−2]]

= ES
γ

[
I{Xn−2 ∈ X} ·

∫
Ξ∆

pn−1(dξ|Hn−2)

∫
(0,∞)

∫
X

I{x ∈ X}F (Hn−2, ξ, θ, x)

×λn−1(dx|Hn−2, ξ, θ)e
−Λn−1(X∆,Hn−2,ξ,θ)dθ

]
= ES

γ

[
I{Xn−2 ∈ X}

∫
R̄+×Ξ∆×X∆

Ĝn−1(dθ, dξ, dx|Hn−2)

×e−
∫
(0,θ]

∫
A

πn−1(da|Hn−2,ξ,u)α(Xn−2,a)du I{x ∈ X}F (Hn−2, ξ, θ, x)

]

= ES
γ

[
I{Xn−2 ∈ X}

∫
R̄+×Ξ∆×X∆

Ĝn−1(dθ, dξ, dx|Hn−2)

×
∫
R̄+×Ξ∆×X∆

Ĝn(dθ̃, dξ̃, dx̃|Hn−2, ξ, θ, x)e
−

∫
(Tn−2,Tn−2+θ]

∫
A

πn−1(da|Hn−2,ξ,w−Tn−2)α(Xn−2,a)dw

×

{∫
(Tn−2+θ,Tn−2+θ+θ̃]∩R+

I{x ∈ ΓX}πn(ΓA|Hn−2, ξ, θ, x, ξ̃, t− Tn−2 − θ)

× e
−

∫
(Tn−2+θ,t]

∫
A

πn(da|Hn−2,ξ,θ,x,ξ̃,w−Tn−2−θ)α(x,a)dw
dt

}]
.

Continuing in the same way, we obtain the desired expression.

Proof of Theorem 5. Fix an arbitrary ε > 0. We intend to provide the explicit formulae for
p̃n,k. For a fixed n ≥ 1, we introduce random functions Qk(w) depending on ω ∈ Ω:

Qk(w)
△
=

ε(εw)k−1

(k − 1)!
e−εw−Λ(X∆,Hn−1,Ξn,w), k = 1, 2, . . . , w ∈ R0

+

and (random) function fw(t):

fw(t)
△
= [λn(X∆|Hn−1,Ξn, w + t) + ε]e−Λn(X∆,Hn−1,Ξn,w+t)+Λn(X∆,Hn−1,Ξn,w)−εt, w, t ∈ R0

+.

The Poisson-related ξ-strategy SP under consideration is defined by

p̃n,0(ΓA|xn−1)
△
= ES

γ

[∫
(0,∞)

f0(t)

∫
(0,t]

∫
ΓA

πn(da|Hn−1,Ξn, u)[qXn−1(a) + ε]du dt|Xn−1 = xn−1

]
;

p̃n,k(ΓA|xn−1)
△
=

ES
γ

[ ∫
(0,∞)

Qk(w)
∫

(0,∞)

fw(t)
∫

(0,t]

∫
ΓA

πn(da|Hn−1,Ξn, w + u)[qXn−1(a) + ε]dudtdw|Xn−1 = xn−1

]

ES
γ

[ ∫
(0,∞)

Qk(w)dw|Xn−1 = xn−1

] ,

for k ≥ 1, and we plan to prove that ηSn = ηS
P

n .
Below, Zk is the independent of anything RV having the Erlang(ε, k) distribution. Clearly,

under the control strategy S, the conditional probability PS
γ (Zk < Θn|Xn−1 = xn−1) equals
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ES
γ

[∫
(0,∞)

Qk(w)dw|Xn−1 = xn−1

]
. Similarly, PSP

γ (Zk < Θn|Xn−1 = xn−1) =
∏k

i=1 pi, where

pi =
∫
A

∫
(0,∞)

εe−εwe−qxn−1
(a)wdw p̃n,i−1(da|xn−1), and we are going to prove by induction that

these two probabilities coincide:

PSP

γ (Zk < Θn|Xn−1 = xn−1) = PS
γ (Zk < Θn|Xn−1 = xn−1) = ES

γ

[∫
(0,∞)

Qk(w)dw|Xn−1 = xn−1

]
(30)

Below, in the case of the SP strategy,
∑k

i=1 τ
n
i usually plays the role of Zk.

If k = 1 then

p1 =

∫
A

∫
(0,∞)

εe−εwe−qxn−1
(a)wdwES

γ

[∫
(0,∞)

[λn(X∆|Hn−1,Ξn, t) + ε]e−Λn(X∆,Hn−1,Ξn,t)−εt

×
∫
(0,t]

[qXn−1(a) + ε]πn(da|Hn−1,Ξn, u)du dt|Xn−1 = xn−1

]
.

We move [qxn−1(a) + ε] outside the conditional mathematical expectation and integrate w.r.t. w:∫
(0,∞)

e−εw−qxn−1
(a)w[qxn−1(a) + ε]dw = 1. Here and below, we use the Fubini theorem without

special remarks. After integrating the result by parts w.r.t. t, we obtain:

p1 = ES
γ

[∫
(0,∞)

εe−Λn(X∆,Hn−1,Ξn,t)−εtdt|Xn−1 = xn−1

]
= ES

γ

[∫
(0,∞)

Q1(w)dw|Xn−1 = xn−1

]
.

Suppose
∏k

i=1 pi = ES
γ

[∫
(0,∞)

Qk(w)dw|Xn−1 = xn−1

]
for some k ≥ 1 and prove the same

equality for k + 1 using (30).

k+1∏
i=1

pi = ES
γ

[∫
A

∫
(0,∞)

εe−εv−qXn−1
(a)vdv

∫
(0,∞)

Qk(w)

∫
(0,∞)

[λn(X∆|Hn−1,Ξn, w + t) + ε]

×e−Λn(X∆,Hn−1,Ξn,w+t)+Λn(X∆,Hn−1,Ξn,w)−εt

×
∫
(0,t]

πn(da|Hn−1,Ξn, w + t)[qXn−1 + ε]du dt dw|Xn−1 = xn−1

]

= ES
γ

[∫
(0,∞)

∫
(0,∞)

εt
ε(εw)k−1

(k − 1)!
e−εw−Λ(X∆,Hn−1,Ξn,w+t)−εt

× [λn(X∆|Hn−1,Ξn, w + t) + ε]dt dw|Xn−1 = xn−1

]
(denote s = w + t)

= ES
γ

[
ε

∫
(0,∞)

ε(εw)k−1

(k − 1)!

{∫
(w,∞)

s[λn(X∆|Hn−1,Ξn, s) + ε]e−Λ(X∆,Hn−1,Ξn,s)−εsds

− we−Λ(X∆,Hn−1,Ξn,w)

}
dw|Xn−1 = xn−1

]
(integration by parts w.r.t. s)

= ES
γ

[
ε

∫
(0,∞)

ε(εw)k−1

(k − 1)!

∫
(w,∞)

e−Λ(X∆,Hn−1,Ξn,s)−εsds dw|Xn−1 = xn−1

]

= ES
γ

[
ε

∫
(0,∞)

∫
(0,s)

ε(εw)k−1

(k − 1)!
e−Λ(X∆,Hn−1,Ξn,s)−εsdw ds|Xn−1 = xn−1

]

= ES
γ

[
ε

∫
(0,∞)

(εs)k

(k)!
e−Λ(X∆,Hn−1,Ξn,s)−εs ds|Xn−1 = xn−1

]
,

what we wanted to prove.
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The next step is to prove that

PSP

γ (Xn ∈ ΓX) = PS
γ (Xn ∈ ΓX) (31)

for all ΓX ∈ B(X), n = 0, 1, 2, . . .. This equality is obviously valid at n = 0 because the initial
distribution γ is fixed. Suppose it holds for some n− 1 ≥ 0 and prove that

PSP

γ (Xn ∈ ΓX|Xn−1 = xn−1) = PS
γ (Xn ∈ ΓX|Xn−1 = xn−1). (32)

Clearly, it is sufficient to consider the case Θn < ∞. Using (30) and the property limk→∞
∑k

i=0 τ
n
i =

∞ PSP

γ -a.s., we obtain

PSP

γ (Xn ∈ ΓX|Xn−1 = xn−1)

=
∞∑
k=0

PSP

γ (Xn ∈ ΓX,
k∑

i=0

τni ≤ Θn <
k+1∑
i=0

τni |Xn−1 = xn−1) = ES
γ

[∫
A

∫
(0,∞)

f0(t)

×
∫
(0,t]

πn(da|Hn−1,Ξn, u)[qXn−1(a) + ε]du dt
q(ΓX \ {Xn−1}|Xn−1, a)

qXn−1(a) + ε
|Xn−1 = xn−1

]

+
∞∑
k=1

ES
γ

[∫
A

∫
(0,∞)

Qk(w)

∫
(0,∞)

fw(t)

∫
(0,t]

πn(da|Hn−1,Ξn, w + u)

× [qXn−1(a) + ε]du dt dw
q(ΓX \ {Xn−1}|Xn−1, a)

qXn−1(a) + ε
|Xn−1 = xn−1

]
= ES

γ

[∫
(0,∞)

f0(t)

∫
(0,t]

λn(ΓX|Hn−1,Ξn, u)du dt|Xn−1 = xn−1

]

+
∞∑
k=1

ES
γ

[∫
(0,∞)

Qk(w)

∫
(0,∞)

fw(t)

∫
(0,t]

λn(ΓX|Hn−1,Ξn, w + u)du dt dw|Xn−1 = xn−1

]

= ES
γ

[∫
(0,∞)

e−Λn(X∆,Hn−1,Ξn,t)−εtλn(ΓX|Hn−1,Ξn, t)dt|Xn−1 = xn−1

]

+

∞∑
k=1

ES
γ

[∫
(0,∞)

Qk(w)

∫
(0,∞)

e−Λn(X∆,Hn−1,Ξn,w+t)+Λn(X∆,Hn−1,Ξn,w)−εt

× λn(ΓX|Hn−1,Ξn, w + t)dt dw|Xn−1 = xn−1

]
= ES

γ

[∫
(0,∞)

f0(t)
λn(ΓX|Hn−1,Ξn, t)

λn(X∆|Hn−1,Ξn, t) + ε
dt|Xn−1 = xn−1

]

+
∞∑
k=1

ES
γ

[∫
(0,∞)

Qk(w)

∫
(0,∞)

fw(t)
λn(ΓX|Hn−1,Ξn, w + t)

λn(X∆|Hn−1,Ξn, w + t) + ε
dt dw|Xn−1 = xn−1

]

=
∞∑
k=0

PS
γ (Xn ∈ ΓX,

k∑
i=0

τ̂ni ≤ Θn <
k+1∑
i=0

τ̂ni |Xn−1 = xn−1),

where τ̂0 = 0 and {τ̂i}∞i=1 is a sequence of independent Exp(ε) RVs. Formulae (32) and hence (31)
are proved.

Although the occupation measures may be not finite, formula

ηSn (ΓX × ΓA) = ES
γ

[
ES

γ

[∫
(Tn−1,Tn]∩R+

I{Xn−1 ∈ ΓX}πn(ΓA|Hn−1,Ξn, t− Tn−1)dt|Xn−1

]]

(and the similar formula for SP ) is valid [17, §IV.3]. Therefore, to complete the proof of the

23



theorem, we need to establish equality

DS(ΓA|x) △
= ES

γ

[∫
(Tn−1,Tn]∩R+

πn(ΓA|Hn−1,Ξn, t− Tn−1)dt|Xn−1 = x

]
(33)

= DSP

(ΓA|x) △
= ESP

γ

[∫
(Tn−1,Tn]∩R+

pn(dξn|x)× I{φn(ξn, t− Tn−1) ∈ ΓA}dt

]
,

because ∀ΓX ∈ B(X)

ηSn (ΓX×ΓA) =

∫
ΓX

DS(ΓA|x)PS
γ (Xn−1 ∈ dx); ηS

P

n (ΓX×ΓA) =

∫
ΓX

DSP

(ΓA|x)PSP

γ (Xn−1 ∈ dx)

and the distributions of Xn−1 under the control strategies S and SP coincide. Here and below,
the set ΓA ∈ B(A) is arbitrarily fixed.

Using (30), we obtain

DSP

(ΓA|x)

=

∫
ΓA

p̃n,0(da|x)
1

qx(a) + ε

+
∞∑
k=1

ES
γ

[∫
(0,∞)

Qk(w)dw|Xn−1 = x

]∫
ΓA

p̃n,k(da|x)
1

qx(a) + ε

= ES
γ

[∫
(0,∞)

f0(t)

∫
(0,t]

πn(da|Hn−1,Ξn, u)du dt|Xn−1 = x

]

+

∞∑
k=1

ES
γ

[∫
(0,∞)

Qk(w)

∫
(0,∞)

fw(t)

∫
(0,t]

πn(da|Hn−1,Ξn, w + u)du dt dw|Xn−1 = x

]
.

We evaluate the second term
∑∞

k=1 separately using the abbreviated notations

λ(t)
△
= λn(X∆|Hn−1,Ξn, t), Λ(t)

△
= Λ(X∆,Hn−1,Ξn, t), and π(t)

△
= πn(ΓA|Hn−1,Ξn, t) :

ES
γ

[∫
(0,∞)

ε

∫
(0,∞)

[λ(w + t) + ε]e−Λ(w+t)−εt

∫
(w,w+t]

π(u)du dt dw|Xn−1 = x

]
(denote y

△
= w + t and change the order of integration)

= ES
γ

[∫
(0,∞)

[λ(y) + ε]e−Λ(y)−εy

[∫
(0,y)

εeεw
∫
(w,y]

π(u)du dw

]
dy|Xn−1 = x

]
(integration by parts w.r.t. w)

= ES
γ

[∫
(0,∞)

[λ(y) + ε]e−Λ(y)−εy

[∫
(0,y)

(eεw − 1)π(w)dw

]
dy|Xn−1 = x

]
.

Now

DSP

(ΓA|x)

= ES
γ

[∫
(0,∞)

[λ(y) + ε]e−Λ(y)−εy

∫
(0,y)

eεwπ(w)dw dy|Xn−1 = x

]
(integration by parts w.r.t. y)

= ES
γ

[
lim

Y→∞

{∫
(0,Y )

e−Λ(y)−εy · eεyπ(y)dy − e−Λ(Y )−εY

∫
(0,Y )

eεwπ(w)dw

}
|Xn−1 = x

]
.

24



Since

e−εY

∫
(0,Y )

eεwπ(w)dw ≤ 1

ε
(1− e−εY ) ≤ 1

ε
, (34)

we conclude that

lim
Y→∞

{∫
(0,Y )

e−Λ(y)π(y)dy − e−Λ(Y )−εY

∫
(0,Y )

eεwπ(w)dw

}
=

∫
(0,∞)

e−Λ(y)π(y)dy (35)

if the integral in the righthand side equals +∞. Similarly, equality (35) holds true if limY→∞ Λ(Y ) =
∞ because of (34): limY→∞ e−Λ(Y )−εY

∫
(0,Y )

eεwπ(w)dw = 0.

Suppose now that limY→∞ Λ(Y ) < ∞ and
∫
(0,∞)

e−Λ(y)π(y)dy < ∞. In this case,
∫
(0,∞)

π(y)dy <

∞ and, for an arbitrarily fixed δ > 0, we take Ŷ ∈ (0,∞) such that
∫
(Ŷ ,∞)

π(y)dy < δ. Now, con-

sidering only Y > Ŷ ,

lim
Y→∞

[
e−Λ(Y )−εY

∫
(0,Ŷ ]

eεwπ(w)dw + e−Λ(Y )−εY

∫
(Ŷ ,Y )

eεwπ(w)dw

]
≤ lim

Y→∞
e−Λ(Y )−εY δeεY

because

lim
Y→∞

e−Λ(Y )−εY

∫
(0,Ŷ ]

eεwπ(w)dw = 0

and ∫
(Ŷ ,Y )

eεwπ(w)dw ≤ eεY
∫
(Ŷ ,Y )

π(w)dw ≤ δeεY .

Since δ > 0 was arbitrary, in this case limY→∞ e−Λ(Y )−εY
∫
(0,Y )

eεwπ(w)dw = 0.

Therefore, in any case we have equality (35) and

DSP

(ΓA|x) = ES
γ

[∫
(0,∞)

e−Λ(y)π(y)dy|Xn−1 = x

]
(integration by parts)

= ES
γ

[∫
(0,∞)

λ(y)e−Λ(y)

∫
(0,y)

π(u)du dy + e−Λ(∞)

∫
(0,∞)

π(y)dy|Xn−1 = x

]
= DS(ΓA|x).
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