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Abstract. This paper considers the discounted continuous-time Markov decision processes
(MDPs) in Borel spaces and with unbounded transition rates. The discount factors are allowed to
depend on states and actions. The main attention is concentrated on the set Fg of stationary poli-
cies attaining a given mean performance g up to the first passage of the continuous-time MDP to an
arbitrarily fixed target set. Under suitable conditions, we prove the existence of a g-mean-variance
optimal policy that minimizes the first passage variance over the set Fg using a transformation tech-
nique, and also give the value iteration and policy iteration algorithms for computing the g-variance
value function and a g-mean-variance optimal policy respectively. Two examples are analytically
solved to demonstrate the application of our results.
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1. Introduction. The present paper studies a so-called first passage g-mean-
based variance minimization problem for a discounted continuous time Markov deci-
sion process (MDP) in Borel spaces.

As an important class of stochastic optimal control problems, continuous-time
MDPs have been widely studied; see [6, 23, 24, 25] for instance. One of the most
commonly used performance measures for continuous-time MDPs, which is further
considered in the present paper, is the expected discounted reward criterion; see
[6, 21] for finite state and action spaces, [16, 17, 24, 25] for denumerable state spaces
and bounded transition rates, [6, 23] for denumerable states but unbounded transition
rates, [2, 11] for (general) possibly uncountable state spaces and bounded transition
rates, and [3, 5, 7, 22] for possibly uncountable state spaces and unbounded transition
rates. In all the mentioned works, the focus is on the existence and computation of
an optimal policy.

In many real situations, there exist more than one such optimal policies, and
thus it is meaningful to identify the policies which are with the smallest variance in
this class of optimal policies. The corresponding variance minimization problem is
considered in [14, 15], where the authors focus on discounted continuous-time MDPs
in a finite or countable state space and with a bounded reward rate. On the other
hand, a risk-averse decision maker might prefer a policy with a reasonable mean
performance g (not necessarily the value function) but also a very attractive variance
performance. In fact, the Nobel laureate Markowitz suggests in [19] that one should
select a policy with a mean-variance performance in the efficient frontier in the set
of all attainable mean-variance vectors to incorporate the trade-off between the mean
and variance performance; see also [4, 20, 27]. In light of this, in the present paper we
consider the so called g-mean-based variance minimization problem, and aim at the so
called g-mean-variance optimal policies, i.e., those with the minimal variance out of
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the concerned class of policies, whose mean performance is given by the function g. In
this connection, the g-mean-based variance minimization problem is a generalization
of the variance minimization problem considered in [14, 15].

To the best of our knowledge, the g-mean-based variance minimization problem
for discounted continuous-time MDPs was firstly considered in [10], where, however,
the controlled process is assumed to be in finite state and action spaces. The variance
minimization problems considered in [14, 15] are also restricted to the denumerable
state spaces, and bounded transition and reward rates. In the present paper, we
consider the g-mean-based variance minimization problem for discounted continuous-
time MDPs in Borel state and action spaces with possibly unbounded transition and
reward rates. Furthermore, we allow the following more general features as compared
to [10, 14, 15] in our model (see also Remark 2.4 for greater details):

(i) The mean and variance of the discounted total reward for each policy are
valuated up to the (random) first passage time of the controlled process to
a target set, instead of over the infinite time horizon. Such the first pas-
sage optimality, as considered also in [1, 18] for discrete-time MDPs and in
[8] for continuous-time MDPs in denumerable state spaces with the mean
performance measure, has rich applications to, e.g., reliability, where one is
interested in the mean performance of a system before it fails, and the target
set can be taken as the collection of failure states of the system.

(ii) The discount factors are state-action-dependent in response to, e.g., the fact
that the interest rate offered by a bank may differ with the investor’s decision
of depositing in a fixed long-term saver account or in a flexible short-term
basic account, and the interest may also change with the amount of the
depositing money of the investor. (Due to this and the above features, the
resulting continuous-time MDP model is the extension of those in [1, 5, 6, 7,
9, 10, 16, 22, 23, 24, 25, 26].)

To solve the first passage g-mean-based variance minimization problem, we first
need to deal with the first passage mean optimality problem in Borel spaces, which
gives preliminary facts for analyzing the first passage g-mean-based variance mini-
mization. Thus, the main contributions of the present paper are as follows.

(1) (On the first passage mean-optimality.) We show that the mean-value func-
tion is the unique solution to the first passage mean-optimality equation by
a value iteration technique, and also establish the existence and an approxi-
mation algorithm of a first passage mean-optimal policy; see Theorem 3.4.

(2) (On the first passage g-mean-based variance minimization.) Based on the
characterization of the class of policies with the given mean performance g,
by reducing the first passage g-mean-based variance minimization problem to
a first passage mean minimization problem, we show the existence of a first
passage g-mean-variance optimal policy, and provide its characterization by a
so-called first passage g-mean-based variance optimality equation. A value it-
eration algorithm is justified for computing the g-variance value function too;
see Theorem 4.4 below. Moreover, a policy iteration algorithm for computing
a first passage g-mean-variance optimal policy is given in Theorem 4.5.

(3) (On applications.) To demonstrate the application of our results, we present
two examples, which are solved in closed-forms, and which can be used to
show the difference among the three kinds of discount factors; see Proposition
5.2 for the details.

The rest of this paper is organized as follows. In Section 2 we formulate the
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mathematical model and state the optimality problems under consideration. In Sec-
tion 3, some technical preliminaries about the existence of mean-optimal policies and
the calculation of the mean-value function are given. The existence and computation
(approximation) of g-mean-variance optimal policies together with the g-mean-based
variance optimality equation is established in Section 4. In Section 5 we explicitly
solve two examples to illustrate our main results. Finally, we finish this paper with
some remarks in Section 6.

2. Optimal control problem. Notation. If X is a Borel space, we denote by
B(X) the Borel σ-algebra, and by Dc the complement of a set D in B(X) with respect
to X. For any real-valued measurable function V ≥ 1 on X, a real-valued measurable

function u on Dc is called V -bounded if ∥u∥V := supx∈Dc
|u(x)|
V (x) < ∞. Denote by

MV (D
c) the Banach space of all V -bounded measurable functions on Dc.

The concerned continuous-time MDP model is specified by the eight-tuple

M := {S,A, (A(x) ⊆ A, x ∈ S), q(·|x, a), r(x, a), α(x, a), B, g}(2.1)

with the following components.
• S is the nonempty Borel state space.
• A is the nonempty Borel action space.
• A(x), a Borel subset of A, denotes the set of all admissible actions at the
state x ∈ S. The set K := {(x, a)| x ∈ S, a ∈ A(x)} of admissible state-
action pairs is assumed to be a Borel subset of S × A, and to contain the
graph of a measurable mapping from S to A.

• q(·|x, a) specifies the transition rates, that is, the following conditions are
satisfied:
T1 : for each fixed (x, a) ∈ K, q(·|x, a) is a signed measure on B(S), while

for each fixed D ∈ B(S), q(D|·, ·) is a measurable function on K;
T2 : for all (x, a) ∈ K and x ̸∈ D ∈ B(S), 0 ≤ q(D|x, a) < ∞;
T3 : q(S|x, a) = 0, and for each x ∈ S,

q∗(x) := sup
a∈A(x)

q(x, a) < ∞,(2.2)

where q(x, a) := −q({x}|x, a) ≥ 0.
• The real-valued function r(x, a) denotes the reward rate and is assumed to be
Borel-measurable on K. (Since r(x, a) is allowed to take positive and negative
values, it can be also interpreted as a cost rate rather than a reward rate.)

• The measurable function α(x, a) > 0 is the state-action-dependent discount
factor.

• The measurable set B ∈ B(S) is any given target set.
• The measurable function g on S is any given expected mean performance.

Definition 2.1. A (stationary) policy f is a measurable mapping from S to A
such that f(x) ∈ A(x) for each x ∈ S. The set of all such policies is denoted by F .

Suppose the decision maker adopts a policy f . Then the continuous-time MDP
evolves like the following. If the current state is x(t) ∈ S at time t ≥ 0, the process
stays there for a sojourn time, whose tail function is given by

e−q(x(t),f(x(t)))t,

and if q(x(t), f(x(t))) > 0, then the new state obeys the distribution given by

q(dy \ {x(t)}|x(t), f(x(t)))
q(x(t), f(x(t)))

.
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For any initial distribution γ on S and f ∈ F , as in [5, 7, 9, 22] one can construct a
probability space (Ω,F , P f

γ ) and a Markov jump process {x(t), t ≥ 0} with values in
S, which evolves as described in the above. In particular, for each t > 0, x ∈ S, x ̸∈
D ∈ B(S),

P f
γ ((x(0) ∈ D) = γ(D),

P f
γ (τ1 ≤ t|x(0) = x) = 1− e−tq(x,f(x)),(2.3)

P f
γ (τ1 ∈ dt, x(τ1) ∈ D|x(0) = x) = e−tq(x,f(x))q(D|x, f(x))dt,(2.4)

where

τ1 := inf{t > 0 : x(t) ̸= x(0)}(2.5)

denotes the first jumping time of {x(t), t ≥ 0}. The expectation operator associated
with P f

γ is denoted by Ef
γ . We will write P f

γ and Ef
γ as P f

x and Ef
x , respectively,

when γ is a Dirac measure concentrated at x ∈ S.
Assumption A. There exist a measurable function w ≥ 1 on S, constants c >

0, b ≥ 0, and M > 0 such that
(1)

∫
S
w(y)q(dy|x, a) ≤ cw(x) + b for all a ∈ A(x) and x ∈ S; and

(2) q∗(x) ≤ Mw(x) for all x ∈ S, with q∗(x) as in (2.2).
Assumption A ensures that the process {x(t), t ≥ 0} is nonexplosive under each

policy f [9, 22] (i.e., P f
x (x(t) ∈ S) ≡ 1), and it is also required for the finiteness of

the expected first passage reward VB(x, f) defined in (2.7) below.
For the given target set B ∈ B(S), we denote by

τB :=

{
inf{t ≥ 0 : x(t) ∈ B} if {t ≥ 0 : x(t) ∈ B} ̸= ∅,
+∞ otherwise

(2.6)

the first passage time to B of the process {x(t), t ≥ 0}. In particular, τB = ∞ if
B = ∅.

Definition 2.2. (The first passage discounted mean and variance criteria.) For
each x ∈ S and f ∈ F , the mean of the first passage discounted total reward for f is
defined as

VB(x, f) := Ef
x

[ ∫ τB

0

e
−
∫ t

0
α(x(s),f(x(s)))ds

r(x(t), f(x(t)))dt
]
,(2.7)

and the variance of the first passage discounted total reward for f is given by

σ2
B(x, f) := Ef

x

[( ∫ τB

0

e
−
∫ t

0
α(x(s),f(x(s)))ds

r(x(t), f(x(t)))dt− VB(x, f)
)2]

.(2.8)

To state the optimality problem we are concerned with, let us introduce some notation
as below. Let

V ∗
B(x) := sup

f∈F
VB(x, f) ∀ x ∈ S(2.9)

denote the mean-value function (of the first passage mean criterion).
By (2.6) we see that τB = 0 when the initial state x(0) is in B, and thus it follows

from (2.7) and (2.8) that VB(x, f) = σ2
B(x, f) = 0 for all x ∈ B and f ∈ F . Hence, in

the coming arguments we will restrict our attention to the initial states in Bc.
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For the given g, let Fg be the set of all policies with the performance g on Bc,
i.e.,

Fg := {f ∈ F |VB(x, f) = g(x), x ∈ Bc}.

The condition of Fg ̸= ∅ will be given in Lemma 4.1 below.
Just as Markowitz’s mean-variance portfolio problem [4, 20, 27], we assume that

the set Fg is nonempty throughout this paper, and then consider the following so-
called first passage g-mean-based variance minimization problem:

Pg : minimize σ2
B(x, f) over all f ∈ Fg for all x ∈ Bc.(2.10)

In particular, when g is taken as the mean-value function V ∗
B for the special case

that B = ∅ and α(x, a) is a constant, the corresponding V ∗
B-mean-based variance

minimization problem is the variance minimization problem in the previous literature
[10, 14, 15] for the case of infinite horizon, denumerable states, and a constant discount
factor, whereas the variance minimization problem for the first passage continuous-
time MDPs with varying discount factors has not been studied yet.

Definition 2.3. (a) A policy f∗ ∈ F is said to be (first passage) mean-optimal
if

VB(x, f
∗) = V ∗

B(x) ∀ x ∈ Bc.(2.11)

(b) A policy f∗ ∈ Fg is called (first passage) g-mean-variance optimal if

σ2
g(x) := inf

f∈Fg

σ2
B(x, f) = σ2

B(x, f
∗) ∀ x ∈ Bc,

where the function σ2
g on Bc is called the g-variance value function.

Remark 2.4.
(a) When α(x, a) is a positive constant (denoted by α) and B = ∅, it follows from

(2.6) and (2.7) that VB(x, f) = Ef
x

[ ∫∞
0

e−αtr(x(t), f(x(t)))dt
]
=: Vα(x, f),

which is the infinite horizon discounted reward criterion and widely studied;
see [2, 5, 6, 7, 9, 10, 16, 22, 23] for instance. Moreover, When α(x, a) de-
pends on states only (denoted by α(x)) and B = ∅, then the VB(x, f) =

Ef
x

[ ∫∞
0

e
−
∫ t

0
α(x(s))ds

r(x(t), f(x(t)))dt
]
=: Vα(x)(x, f), which is the same as

in [26].
(b) In Corollary 5.6 below we have VB(x, f) ̸= Vα(x, f) ̸= Vα(x)(x, f) for some f ,

which shows the difference between the first passage discounted criterion and
the infinite horizon discounted criterion [5, 6, 7, 9, 10, 16, 22, 23].

(c) The function g and the set B are arbitrarily given but fixed. Hence, when g is
taken as the mean-value function and B is the empty set, our g-mean-based
variance minimization problem is degenerated to the variance minimization
problem in [14, 15].

3. Preliminaries. In this section, we will establish a so-called first passage dis-
counted mean-optimality equation with state-action-dependent discounting, show the
existence of a mean-optimal policy, and also provide a value iteration algorithm for
computing the mean-value function.

For a policy f ∈ F and x ∈ Bc, since the reward r(x, a) can be unbounded, to
ensure the finiteness of VB(x, f), we give the following condition and a fact.

Assumption B. There exist constants α0, c1,M1 > 0 and b1 ≥ 0, such that
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(1) |r(x, a)| ≤ M1w(x) for all x ∈ Bc and a ∈ A(x);
(2) c < α0 ≤ α(x, a) for all x ∈ Bc and a ∈ A(x), with c as in Assumption A(1),

and α(x, a) as in (2.1);
(3)

∫
S
w2(y)q(dy|x, a) ≤ c1w

2(x) + b1 for all x ∈ Bc and a ∈ A(x).
Remark 3.1. In fact, the role of Assumption B(3) is for the finiteness of

Ef
x [w(x(t))q(x(t), f(x(t)))], which is required for the usage of Theorem 3.2 in [26]

in proving Theorem 3.2 below.
Theorem 3.2. Under Assumptions A and B, for each fixed f ∈ F , the following

statements hold.
(a) VB(x, f) is the unique solution within Mw(B

c) to the following equation:

α(x, f(x))u(x) = r(x, f(x)) +

∫
Bc

u(y)q(dy|x, f(x)) ∀ x ∈ Bc.(3.1)

(b) If there is a function u ∈ Mw(B
c) such that

α(x, f(x))u(x) ≥ r(x, f(x)) +

∫
Bc

u(y)q(dy|x, f(x)) ∀ x ∈ Bc.(3.2)

Then, u(x) ≥ VB(x, f) for all x ∈ Bc.
Proof. From the Definition 2.2, we see that the process {x(t), t ≥ 0} can be

ignored when it leaves the set Bc. Thus, we view the {x(t), t ≥ 0} to be absorbed in
some cemetery state (say, ∆ ̸∈ S), and consider a new model

M∆ := {S∆, A∆, (A∆(x) ⊆ A∆, x ∈ S∆), q∆(·|x, a), r∆(x, a), α∆(x, a)}

of standard continuous-time MDPs, where S∆ := S∪{∆}, A∆ := A∪{a∆}, A∆(∆) :=
{a∆},A∆(x) := A(x) for all x ∈ S, q∆(∆|∆, a∆) := 0, r(∆, a∆) := 0, and

q∆(dy|x, a) = q(dy|x, a)IBc(x) for dy ∈ B(S);
r∆(x, a) = r(x, a)IBc(x), α∆(x, a) = α(x, a)IBc(x) + α0IB∪∆(x)

for all x ∈ S∆ and a ∈ A∆(x). Moreover, for any f ∈ F , we define the corresponding
policy f∆ for the model M∆ by f∆(x) := f(x) for all x ∈ S and f∆(∆) := a∆. For
any given f ∈ F , since every state in B ∪ {∆} is absorbing and has null reward for
the model M∆ under f∆, the first passage discounted mean criterion VB(x, f)(x ∈ S)
in (2.7) is obviously equivalent to the classical infinite discounted expected criterion
U(x, f∆) in [26, (2.4)] for the model M∆, and thus the statements (a) and (b) follow
from Theorem 3.2 and Lemma 6.3 in [26], respectively.

Inspired by (3.1), we call the following equation (3.3) the first passage discounted
mean-optimality equation (with state-action-dependent discounting):

sup
a∈A(x)

{
r(x, a) +

∫
Bc

u(y)q(dy|x, a)− u(x)α(x, a)

}
= 0 ∀ x ∈ Bc.(3.3)

A function u in Mw(B
c) satisfying (3.3) is called a solution to the optimality equation.

To show the existence of a solution to the optimality equation (3.3), we introduce
the operator TB as follows: for u ∈ Mw(B

c), let

TBu(x) := sup
a∈A(x)

{
r(x, a)

α(x, a) + q(x, a)
+

∫
Bc−{x} u(y)q(dy|x, a)
α(x, a) + q(x, a)

}
∀x ∈ Bc.(3.4)

Also, we need an additional condition below.
Assumption C. Let w be as in Assumption A, and x ∈ Bc.
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(1) A(x) is a compact set.
(2) For each x ∈ Bc and Borel set D ⊆ Bc, the functions r(x, a), α(x, a), q(x, a),

and q(D \ {x}|x, a) are continuous in a ∈ A(x).
(3) The function

∫
Bc w(y)q(dy|x, a) is continuous in a ∈ A(x).

Remark 3.3.
(a) Assumption C is similar to the standard continuity-compactness hypotheses

for discrete-time and continuous-time MDPs; see, for instance, [5, 6, 12, 24]
and their references.

(b) Under Assumption C(2,3), as in the proof of Lemma 8.3.7(a) in [12], we
can show that

∫
Bc−{x} u(y)q(dy|x, a) is continuous in a ∈ A(x) for each u ∈

Mw(B
c), and so is r(x, a) +

∫
Bc−{x} u(y)q(dy|x, a) in a ∈ A(x).

Under Assumptions A, B and C, it follows from Remark 3.3(b) that for each n ≥ 0
and x ∈ Bc we can legally define

u∗
n+1 := TBu

∗
n, with TB as in (3.4), u∗

0(x) :=
M1b

α0(α0 − c)
+

M1

α0 − c
w(x).(3.5)

Theorem 3.4. Under Assumptions A, B and C, the following assertions hold.

(a) u∗
n ≥ u∗

n+1 for all n ≥ 0, and supn≥0 ∥u∗
n∥w ≤ M1(b+α0)

α0(α0−c) .

(b) V ∗
B(x) = limn→∞ u∗

n(x), and V ∗
B is the unique solution within Mw(B

c) of the
first passage discounted mean-optimality equation (3.3).

(c) For each n ≥ 1, there exists fn ∈ F such that

u∗
n+1(x) =

r(x, fn(x)) +
∫
Bc−{x} u

∗
n(y)q(dy|x, fn(x))

α(x, fn(x)) + q(x, fn(x))
, x ∈ Bc.(3.6)

Moreover, there exists an f∗ ∈ F such that
(c1) f∗(x) is an accumulation point of {fn(x)} for each x ∈ Bc; and
(c2) f∗ is conserving, i.e.,

0 = sup
a∈A(x)

{
r(x, a) +

∫
Bc

V ∗
B(y)q(dy|x, a)− V ∗

B(x)α(x, a)

}
= r(x, f∗(x)) +

∫
Bc

V ∗
B(y)q(dy|x, f∗(x))− V ∗

B(x)α(x, f
∗(x)), x ∈ Bc.

(d) A policy in F is mean-optimal if and only if it attains the maximum in (3.3) with
u(x) being replaced by V ∗

B(x) for all x ∈ Bc, and so f∗ in (c) is mean-optimal.
Proof. (a) By Theorem 3.3 in [26] we see that (a) is true.
(b) and (c) will be proved together. Let u∗(x) := limn→∞ u∗

n(x) for each x ∈ Bc.
For each n ≥ 0 and x ∈ Bc, since u∗

n+1(x) = TBu
∗
n(x), by (3.4) and the dominated

convergence theorem we have

u∗(x) ≥ r(x, a)

α(x, a) + q(x, a)
+

∫
Bc−{x} u

∗(y)q(dy|x, a)
α(x, a) + q(x, a)

∀ a ∈ A(x),(3.7)

which, together with T3, implies

sup
a∈A(x)

{
r(x, a) +

∫
Bc

u∗(y)q(dy|x, a)− u∗(x)α(x, a)

}
≤ 0.(3.8)
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On the other hand, for each n ≥ 1, under Assumption C, Remark 3.3(b) ensures the
existence of fn ∈ F satisfying (3.6)

Since the multifunction x 7−→ A(x) (x ∈ Bc) is compact-valued, and the set
{(x, a) x ∈ Bc, a ∈ A(x)} is also measurable, Propositions D.4 and D.7 in [13] ensure
the existence of f∗ ∈ F such that f∗(x) is an accumulation point of {fn(x)} for each
x ∈ Bc.

Thus, for any fixed x ∈ Bc, there exists a subsequence {fnm(x)} of {fn(x)} such
that the limit limm→∞ fnm(x) = f∗(x) exists and belongs to A(x). Hence, by (3.6)
and the extension of Fatou’s lemma (i.e., Lemma 8.3.7 in [12]) we have

u∗(x) ≤
r(x, f∗(x)) +

∫
Bc−{x} u

∗(y)q(dy|x, f∗(x))

α(x, f∗(x)) + q(x, f∗(x))

which, together with T3, implies

r(x, f∗(x)) +

∫
Bc

u∗(y)q(dy|x, f∗(x))− u∗(x)α(x, f∗(x)) ≥ 0.(3.9)

Thus, by (3.8) and (3.9) we have

0 ≥ sup
a∈A(x)

{
r(x, a) +

∫
Bc

u∗(y)q(dy|x, a)− u∗(x)α(x, a)

}
≥ r(x, f∗(x)) +

∫
Bc

u∗(y)q(dy|x, f∗(x))− u∗(x)α(x, f∗(x)) ≥ 0.(3.10)

This means

sup
a∈A(x)

{
r(x, a) +

∫
Bc

u∗(y)q(dy|x, a)− u∗(x)α(x, a)

}
= 0.(3.11)

Moreover, from (3.10) we have

0 = r(x, f∗(x)) +

∫
Bc

u∗(y)q(dy|x, f∗(x))− α(x, f∗(x))u∗(x)

≥ r(x, f(x)) +

∫
Bc

u∗(y)q(dy|x, f(x))− α(x, f(x))u∗(x) ∀ x ∈ Bc and f ∈ F.

This fact, along with Theorem 3.2, gives VB(x, f
∗) = u∗(x) ≥ VB(x, f) for all x ∈ Bc

and f ∈ F . Therefore, u∗(x) = VB(x, f
∗) = V ∗

B(x). From (3.11) we see that V ∗
B(x)

solves (3.3). To show the uniqueness of the solution to (3.3), let v ∈ Mw(B
c) be an

arbitrary solution to the equation (3.3). The measurable selection theorem together
with Remark 3.3(b) ensures the existence of f ′ ∈ F satisfying

r(x, f ′(x)) +

∫
Bc

v(y)q(dy|x, f ′(x)) = v(x)α(x, f ′(x)),

r(x, f(x)) +

∫
Bc

v(y)q(dy|x, f(x)) ≤ v(x)α(x, f(x)) ∀ f ∈ F.

Hence, Theorem 3.2 yields that v(x) = V ∗
B(x), which shows the uniqueness of the

solution to (3.3). This completes both (b) and (c).
(d) Obviously, it follows from Theorem 3.2(a) and part (b) of this theorem.
Remark 3.5.
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(a) Theorem 3.4(a,b) gives an iteration approach for the calculation of V ∗
B(x).

In particular, since the sequence of iterations {u∗
n} in (3.5) is constructed

from the primitive data in the model (2.1), the corresponding approximation
method to calculate V ∗

B(x) can be implemented.
(b) Theorem 3.4(c,d) show that a mean-optimal policy can be approximated from

the policy sequence {fn} obtained in Theorem 3.4(c).
(c) As the arguments in [6, 23, 24, 25], we can give a policy iteration for com-

puting a mean-optimal policy, but the details are omitted here.

4. On g-mean-variance optimal policies. The main goal of this section is to
show the existence and computation of a g-mean-variance optimal policy, based on
the results established in the previous section.

Since the objective of the g-mean-based variance minimization problem is to min-
imize σ2

B(f) over f in the set Fg, it is helpful to characterize the policies in Fg. To
this end, we need to introduce the following notation

Ag(x) :=

{ {
a ∈ A(x)|r(x, a) +

∫
Bc g(y)q(dy|x, a)− g(x)α(x, a) = 0

}
x ∈ Bc

A(x) otherwise
.

(4.1)

The following fact gives a characterization of Fg in terms of Ag(x).
Lemma 4.1. Under Assumptions A and B, a policy f ∈ Fg if and only if f(x) ∈

Ag(x) for each x ∈ Bc. (Hence, Fg ̸= ∅ if and only if Ag(x) ̸= ∅ for each x ∈ Bc).
Proof. Since Fg is assumed to be nonempty, the function g is in Mw(B

c). It
follows from the uniqueness of the solution to (3.1) and the definition of Fg.

Lemma 4.1 implies that Ag(x) ̸= ∅ for all x ∈ Bc is the condition of Fg ̸= ∅.
Next, we will show that the variance σ2

B(x, f) can be transformed into a mean of
a first passage discounted total utility and another discount factor.

To make arguments more convenient, for each f ∈ F , we denote by

V (2)(x, f) := Ef
x

[(∫ τB

0

e
−
∫ t

0
α(x(s),f(x(s)))ds

r(x(t), f(x(t)))dt

)2
]

the second moment of the first passage total reward∫ τB

0

e
−
∫ t

0
α(x(s),f(x(s)))ds

r(x(t), f(x(t)))dt.

Obviously, it follows from the definitions of σ2
B(f) and Fg that

V (2)(x, f) = σ2
B(x, f) + g2(x) ∀ x ∈ Bc, f ∈ Fg.

Thus, the g-mean-based variance minimization problem Pg in (2.10) is equivalent to
the following problem minimizing the second moment V (2) over Fg:

Qg : minimize V (2)(x, f) over all f ∈ Fg for all x ∈ Bc.(4.2)

For the finiteness of both V (2)(x, f) and Ef
x [w

2(x(t))q(x(t), f(x(t)))] (f ∈ F, x ∈ Bc),
as the introduction of Assumption B for the mean-optimality above, we need the
following condition.

Assumption D. Suppose that the following conditions hold.
(1) 0 < c1 < 2α0, with α0 and c1 as in Assumption B.
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(2) There exist constants c2 > 0 and b2 ≥ 0 such that∫
S

w3(y)q(dy|x, a) ≤ c2w
3(x) + b2 ∀ x ∈ Bc, a ∈ A(x),

with w as in Assumption A.
Theorem 4.2. Under Assumptions A, B and D, the following assertions hold.
(a) V (2)(·, f) is in Mw2(Bc) for each f ∈ F .
(b) V (2)(·, f) is the unique solution in Mw2(Bc) to the equation

2α(x, f(x))u(x) = 2r(x, f(x))VB(x, f) +

∫
Bc

u(y)q(dy|x, f(x)), x ∈ Bc.

Consequently,

σ2
B(x, f) = 2Ef

x

[∫ τB

0

e
−
∫ t

0
2α(x(s),f(x(s)))ds

r(x(t), f(x(t)))VB(x(t), f)dt

]
− V 2

B(x, f)

for each x ∈ Bc and f ∈ F .
Proof. (a) Since 0 < c1 < 2α0 (by Assumption D), there exists 0 < ε0 < 1 such

that 0 < c1 < 2α0(1− ε0). Therefore, for each x ∈ Bc and f ∈ F , by Assumption B
we have

V (2)(x, f) = Ef
x

[(∫ τB

0

e
−
∫ t

0
α(x(s),f(x(s)))ds

r(x(t), f(x(t)))dt

)2
]

≤ Ef
x

[(∫ τB

0

e−tε0α0e−t(1−ε0)α0 |r(x(t), f(x(t)))|dt
)2

]

≤ Ef
x

[(∫ τB

0

e−2ε0α0tdt
)(∫ τB

0

e−2α0(1−ε0)tr2(x(t), f(x(t)))dt
)]

= Ef
x

[
1− e−2ε0α0τB

2ε0α0

(∫ τB

0

e−2α0(1−ε0)tr2(x(t), f(x(t)))dt
)]

≤ 1

2ε0α0
Ef

x

[∫ τB

0

e−2α0(1−ε0)tr2(x(t), f(x(t)))dt

]
≤ M2

1

2ε0α0
Ef

x

[∫ ∞

0

e−2α0(1−ε0)tw2(x(t))dt

]
≤ M2

1

2ε0α0

[ b1
2α0(1− ε0)[2α0(1− ε0)− c1]

+
1

2α0(1− ε0)− c1
w2(x)

]
,

where the second inequality is due to the Cauchy-Schwarz inequality, and the last
inequality follows from Theorem 3.3(a) in [5] with w replaced by w2 here.

(b) For any fixed f ∈ F , and x(0) := x ̸∈ B, by a straightforward calculation we
have

V (2)(x, f) = Ef
x

[(∫ τB

0

e
−
∫ t

0
α(x(s),f(x(s)))ds

r(x(t), f(x(t)))dt

)2
]

= Ef
x

[(∫ τ1

0

e
−
∫ t

0
α(x(s),f(x(s)))ds

r(x(t), f(x(t)))dt

+

∫ τB

τ1

I{τ1<τB}e
−
∫ t

0
α(x(s),f(x(s)))ds

r(x(t), f(x(t)))dt

)2
]

=: I1 + I2 + I3,
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where

I1 := Ef
x

[(∫ τ1

0

e
−
∫ t

0
α(x(s),f(x(s)))ds

r(x(t), f(x(t)))dt

)2
]
,

I2 := Ef
x

[(∫ τB

τ1

I{τ1<τB}e
−
∫ t

0
α(x(s),f(x(s)))ds

r(x(t), f(x(t)))dt

)2
]
,

I3 := 2Ef
x

[(∫ τ1

0

e
−
∫ t

0
α(x(s),f(x(s)))ds

r(x(t), f(x(t)))dt

)
×
(∫ τB

τ1

I{τ1<τB}e
−
∫ t

0
α(x(s),f(x(s)))ds

r(x(t), f(x(t)))dt

)]
.

Note that x(s) = x for all s ≤ τ1, by (2.3) and a direct calculation, we have

I1 =
r2(x, f(x))

α2(x, f(x))
Ef

x

[
1− 2e−α(x,f(x))τ1 + e−2α(x,f(x))τ1

]
=

r2(x, f(x))

α2(x, f(x))

[
1 +

∫ ∞

0

(
e−(2α(x,f(x))+q(x,f(x)))t − 2e−(α(x,f(x))+q(x,f(x)))t

)
q(x, f(x))dt

]
=

1

2α(x, f(x)) + q(x, f(x))
× 2r2(x, f(x))

α(x, f(x)) + q(x, f(x))
.

Moreover, a straightforward calculation, along with the property of conditional ex-
pectation and the strong Markov property, yields

I2 = Ef
x

[(
e−α(x,f(x))τ1I{x(τ1 )̸∈B}

∫ τB

τ1

e
−
∫ t

τ1
α(x(s),f(x(s)))ds

r(x(t), f(x(t)))dt

)2 ]
= Ef

x

[
e−2α(x,f(x))τ1I{x(τ1 )̸∈B}E

f
x

[( ∫ τB

τ1

e
−
∫ t

τ1
α(x(s),f(x(s))ds

r(x(t), f(x(t)))dt
)2

|τ1, x(τ1)
]]

= Ef
x

[
e−2α(x,f(x))τ1I{x(τ1 )̸∈B}V

(2)(x(τ1), f)
]

=

∫ ∞

0

e−(2α(x,f(x))+q(x,f(x)))t

∫
Bc−{x}

V (2)(y, f)q(dy|x, f(x))dt

=
1

2α(x, f(x)) + q(x, f(x))

∫
Bc−{x}

V (2)(y, f)q(dy|x, f(x)).

Similarly, by (2.3)–(2.4) and (3.1) we have

I3 =
2r(x, f(x))

α(x, f(x))
Ef

x

[
e−α(x,f(x))τ1(1− e−α(x,f(x))τ1)I{x(τ1) ̸∈B}

×Ef
x

[ ∫ τB

τ1

e
−
∫ t

τ1
α(x(s),f(x(s)))ds

r(x(t), f(x(t)))dt|τ1, x(τ1)
]]

=
2r(x, f(x))

α(x, f(x))
Ef

x

[(
e−α(x,f(x))τ1 − e−2α(x,f(x))τ1

)
I{x(τ1 )̸∈B}VB(x(τ1), f)

]
=

2r(x, f(x))

2α(x, f(x)) + q(x, f(x))

[
VB(x, f)−

r(x, f(x))

α(x, f(x)) + q(x, f(x))

]
.

Thus, taking all the above results of I1, I2, I3 into consideration, we obtain

V (2)(x, f) =
2r(x, f(x))VB(x, f) +

∫
Bc−{x} V

(2)(y, f)q(dy|x, f(x))
2α(x, f(x)) + q(x, f(x))

,
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which is equivalent to

2α(x, f(x))V (2)(x, f) = 2r(x, f(x))VB(x, f) +

∫
Bc

V (2)(y, f)q(dy|x, f(x)).(4.3)

On the other hand, Assumptions A and B imply that r(x, f(x))VB(x, f) ∈ Mw2(Bc).
Thus, by Theorem 3.3(a) in [5] and Assumptions B and D we have

Ef
x

[ ∫ τB

0

e
−2

∫ t

0
α(x(s),f(x(s)))ds|r(x(t), f(x(t)))VB(x(t), f)|dt

]
≤ M1||VB ||wEf

x

[ ∫ ∞

0

e−2α0tI{x(t)̸∈B}w
2(x(t))dt

]
≤ M1||VB ||w

[ b1
2α0(2α0 − c1)

+
1

2α0 − c1
w2(x)

]
∀ x ∈ Bc,

which, together with Theorem 3.2 and Assumption D(2), implies that

V (2)(x, f) = 2Ef
x

[ ∫ τB

0

e
−2

∫ t

0
α(x(s),f(x(s)))ds

r(x(t), f(x(t)))VB(x(t), f)dt

]
is the unique solution withinMw2(Bc) to the equation (4.3). Moreover, since σ2

B(x, f) =
V (2)(x, f)− V 2

B(x, f), the proof is completed.
Corollary 4.3. If S is finite, then

σ2(f) = [2diag(α(f))−QB(f)]
−1cg(f)− g2, for all f ∈ Fg,

where

diag(α(f)) := diag(α(x, f(x)), x ∈ Bc),

QB(f) := (q(y|x, f(x)), x, y ∈ Bc),

cg(f) := (2r(x, f(x))g(x), x ∈ Bc)T .

Let

JB(x, f) := 2Ef
x

[ ∫ τB

0

e
−2

∫ t

0
α(x(s),f(x(s)))ds

r(x(t), f(x(t)))g(x(t))dt

]
.

Since VB(x, f) = g(x) for all f ∈ Fg and x ∈ Bc, Theorem 4.2 implies

σ2
B(x, f) = JB(x, f)− g2(x), for each f ∈ Fg and x ∈ Bc.

Therefore, we can conclude that, under suitable Assumptions A, B and D, the problem
Qg in (4.2) (and so the original problem Pg) is equivalent to the following one:

Q∗
g : minimize JB(x, f) over Fg for all x ∈ Bc,(4.4)

which is a first passage mean-optimality problem, and can be solved by combining
Lemma 4.1 and the results developed in Section 3 above.

Note that JB(·, f) is w2-bounded. In order to solve the problem Qg in (4.2), in
spirit of Assumption C above we introduce the hypothesis below.

Assumption C*. Let w be as in Assumption A, and x ∈ Bc.
(1) Assumption C(1,2) are satisfied.
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(2) The function
∫
Bc w

2(y)q(dy|x, a) is continuous in a ∈ A(x).
It follows from the proof of Remark 3.3(b) that, under Assumption C*, the func-

tion
∫
Bc w(y)q(dy|x, a) is continuous in a ∈ A(x) for any fixed x ∈ Bc. Hence,

Assumption C* implies Assumption C, that is, all results in Section 3 still hold when
Assumption C is replaced with Assumption C*.

We next state our main results about the g-mean-based variance minimization
problem.

Theorem 4.4. Under Assumptions A, B, C* and D, the following statements
hold.

(a)σ2
g + g2 is a unique solution within Mw2(Bc) to the so-called discounted g-

mean-variance optimality equation

inf
a∈Ag(x)

{
2r(x, a)g(x) +

∫
Bc

u(y)q(dy|x, a)− 2u(x)α(x, a)

}
= 0,(4.5)

where σ2
g and Ag(x) are as in Definition 2.3 and (4.1), respectively.

(b) For any n ≥ 0, x ∈ Bc, let u′
n+1(x) and hn ∈ Fg be such that

u′
n+1(x) := inf

a∈Ag(x)

{
2r(x, a)g(x)

2α(x, a) + q(x, a)
+

1

2α(x, a) + q(x, a)

∫
Bc−{x}

u′
n(y)q(dy|x, a)

}
=:

1

2α(x, hn(x)) + q(x, hn(x))

[
2r(x, hn(x))g(x) +

∫
Bc−{x}

u′
n(y)q(dy|x, hn(x))

]
with u′

0(x) := −2M1||g||w
[

b1
2α0(2α0−c1)

+ 1
2α0−c1

w2(x)
]
.

Then,
(b1) there exists a g-mean-variance optimal policy (denoted as h∗), such that h∗(x)

is an accumulation point of {hn(x)} for each x ∈ Bc;
(b2) (A value iteration algorithm): (u′

n(x)− g2(x)) ↑ σ2
g(x) (x ∈ Bc) as n ↑ ∞.

(c) A policy f ∈ F is g-mean-variance optimal if and only if f(x) attains the
minimum in (4.5) for every x ∈ Bc with u being replaced by σ2

g + g2.
Proof. In line with the discussions before the statement, for problem (4.4), we

consider a new continuous-time MDP model

M̄ :=
{
S,A, (Ag(x), x ∈ S), q(·|x, a), c̄(x, a), ᾱ(x, a), B

}
,(4.6)

where Ag(x) as in (4.1),

c̄(x, a) := 2r(x, a)g(x), ᾱ(x, a) := 2α(x, a)

for all x ∈ S and a ∈ Ag(x), and the other elements are the same as in (2.1). Then,
by Theorem 4.2 we have

inf
f∈Fg

JB(x, f)− g2(x) = σ2
g(x)

for each x ∈ Bc. For this new model M̄, the corresponding versions of Assumptions
A, B and C are satisfied. The statements follow from Theorem 3.4 applied to model
(4.6).

Using Theorem 4.4(b), we can give a value iteration algorithm for the g-variance
value function, and the details are omitted. Moreover, as the arguments in [6, 23, 24,
25], we can give a policy iteration for computing a g-mean-variance optimal policy.
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For the simplicity of statements of the policy iteration, we only consider the case when
S and A(x) are all finite.

For any given f ∈ Fg, x ∈ Bc, and a ∈ Ag(x), let

uf (x, a) := 2r(x, a)g(x) +
∑
y ̸∈B

JB(y, f)q(y|x, a),

with JB(f) = [2diag(α(f))−QB(f)]
−1cg(f), and

Bf (x) := {a ∈ Ag(x) : uf (x, a) < 2α(x, a)JB(x, f)} .

Define an improvement policy h of f as follows:

h(x) ∈ Bf (x) if Bf (x) ̸= ∅; h(x) := f(x) if Bf (x) = ∅.(4.7)

The policy iteration algorithm:
1. Compute Ag(x) in (4.1), and then get Fg = ⊓x∈SAg(x).
2. Pick an arbitrary f ∈ Fg. Let k = 0, and take fk := f .
3. Policy evaluation: Obtain JB(fk) = [2diag(α(fk))−QB(fk)]

−1cg(fk).
4. Policy improvement: Obtain a policy fk+1 from (4.7) (with fk and fk+1 in

lieu of f and h, respectively).
5. If fk+1 = fk, then stop because fk+1 is mean-variance optimal (by Theorem

4.5 below). Otherwise, increase k by 1 and return to step 3.
Theorem 4.5. Suppose that S and A(x)(x ∈ S) are all finite. Let {fk} be

sequence obtained by the policy iteration algorithm. Then, the following assertions
hold.

(a) JB(fk+1) ≤ JB(fk) and JB(fk+1) ̸= JB(fk) when fk+1 ̸= fk.
(b) There exists a finite number k∗ such that fk∗ is optimal.
Proof. Since S and A(x) are all finite, F (and hence Fg) is also finite. As

in the proof of Theorem 3.2(b), for the continuous-time MDP model (4.6), we get
that any function v ∈ Mw2(Bc) satisfying 2r(x, f(x))g(x) +

∑
y ̸∈B v(y)q(y|x, f(x)) ≤

2α(x, f(x))v(x) implies v(x) ≥ JB(x, f) for all x ∈ Bc. By the definition of fk and
fk+1 in (4.7) and fk+1 ̸= fk, we have

2r(x, fk+1(x))g(x) +
∑
y ̸∈B

JB(y, fk)q(y|x, fk+1(x)) ≤ 2α(x, fk+1(x))JB(x, fk),

which, together with the uniqueness in Theorem 4.2, implies the statement (a). Part
(b) directly follows from the finiteness of Fg and part (a).

Theorem 4.5 shows that a (g-mean-variance) optimal policy can be obtained by
the policy iteration approach in a finite number of iterations.

5. Examples. In this section, we give two examples to illustrate the application
of our main results. The first one with finite states and actions is used to show the
difference between our results and those in the previous literature, and the second
one about a cash flow model shows the potential applications of Theorem 4.4.

Example 5.1. The continuous-time control model we are concerned with is given
as follows: S = {x1, x2, x3};B = {x3}; A(x1) = {a11, a12}, A(x2) = {a21, a22} and
A(x3) = {a31}; the transition rates, q(·|x, a), are defined by

q(x1|x1, a11) = −1, q(x2|x1, a11) =
1

8
; q(x1|x1, a12) = −4, q(x2|x1, a12) = 3;

q(x1|x2, a21) =
3

2
, q(x2|x2, a21) = −2; q(x1|x2, a22) = 1, q(x2|x2, a22) = −1,
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the reward rates r(x, a) and the expected mean performance g(x), are given as

r(x1, a11) = 1, r(x1, a12) = 2, r(x2, a21) = 3, r(x2, a22) =
17

13
; g(x1) = 1, g(x2) = 2.

The policy set F = {f1, f2, f3, f4}, where f1(x1) = a11, f1(x2) = a21; f2(x1) =
a11, f2(x2) = a22; f3(x1) = a12, f3(x2) = a21 and f4(x1) = a12, f4(x2) = a22.

Now we have the following result.
Proposition 5.2. For the control model in Example 5.1, we have the following

assertions.
(a)(On the case of state-action-dependent discount factors.) Suppose that the

discount factors are given by

α(x1, a11) =
1

4
, α(x1, a12) = 1, α(x2, a21) =

1

4
, α(x2, a22) =

2

13
.

Then, the set Fg is equal to {f1, f2}, and the policy f2 is g-mean-variance optimal.
(b)(On the case of state-dependent discount factors.) Suppose that the discount

factors are given by

α(x1, a11) = α(x1, a12) = 4, α(x2, a21) = α(x2, a22) =
1

4
.

Then, the set Fg is equal to {f3}, and the policy f3 is g-mean-variance optimal.
(c)(On the case of a constant discount factor.) Suppose that a constant discount

factor is given by

α(x, a) ≡ 1

4
.

Then, the set Fg is equal to {f1}, and the policy f1 is g-mean-variance optimal.
Proof. Obviously, Example 5.1 satisfies all Assumptions needed in Theorem 4.4.

(a) We next solve a g-mean-variance optimal policy by using the policy iteration
algorithm with the following steps:

1) For each x ∈ {x1, x2}, solving the equation in (4.1) gives that Ag(x1) = {a11}
and Ag(x2) = {a21, a22}. Therefore (by Lemma 4.1), Fg = {f1, f2}.

2) Pick a policy f1 ∈ Fg. Take h0 := f1.

3) Policy evaluation: Obtain JB(h0) = [2diag(α(f1))−QB(f1)]
−1cg(f1) =

(
104
57
112
19

)
.

4) Policy improvement: From (4.7) with h0 and h1 in lieu of f and h respectively,
we obtain a policy h1 given as follows: h1(x1) = a11, and h1(x2) = a22.

5) Since h1 ̸= h0, a further iteration yields h2(x1) = h1(x1) = a11 and h2(x2) =
h1(x2) = a22. Thus, f2 is a g-mean-variance optimal policy.

(b) It follows from the equation in (4.1) that Ag(x1) = {a12} and Ag(x2) = {a21},
and by the policy iteration algorithm we see that f3 is g-mean-variance optimal.

(c) Similarly, we have Ag(x1) = {a11} and Ag(x2) = {a21}, and also see that f1
is g-mean-variance optimal.

Remark 5.3.
(a) Note that the discount factor in Example 5.1 may not be constant. Thus, to

the best of our knowledge, the example here is not covered by the previous
literature on mean-variance optimality problems with any constant discount
factor.
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(b) After a brief look at the optimal policies in Proposition 5.2, we see that the
g-mean-variance optimal policies in the three cases of discount factors are all
different. This verifies the existence of differences between our results and
those in the previous literature.

To further illustrate the application of the obtained results, we introduce a cash
flow model in the following.

Example 5.4. (A cash flow model.) Consider a continuous-time controlled
problem of cash flow in an economic market, in which the amount of the cash is referred
to as the state of cash flow. Thus, the state space of the cash flow is S = (−∞,+∞).
Given the current state of cash flow x ∈ S, a control action a ∈ A(x) is performed by
withdrawing money with the amount −a if a < 0 or taking a supply of money with
the amount a for a ≥ 0. When the current state is x ∈ S and an action a ∈ A(x) is
chosen, a reward r(x, a) is earned. In addition, the amount of cash x is assumed to keep
invariable for an exponential-distributed random time with parameter k(x, a) ≥ 0, and
then the cash flow is supposed to jump to other states with the normal distribution
N(x, 1). Therefore, the transition rates of cash flow is represented by

q(D|x, a) := k(x, a)
[ ∫

D

1√
2π

e−
(y−x)2

2 dy − δx(D)
]

for each D ∈ B(S).(5.1)

Moreover, the discount factor is defined by

α(x, a) := β(x, a) + α ∀ (x, a) ∈ K

with some nonnegative function β(·, ·) on K and some constant α > 0.
For this cash flow model, the decision maker wishes to minimize the variance over

all policies having some given expected reward g before the state of cash flow falls in
some target set B ⊂ S.

To ensure the existence of g-mean-variance optimal policies for the cash flow
model, we consider the following hypotheses:

(C1) |k(x, a)| ≤ M(x2+1) and |r(x, a)| ≤ M1(x
2+1) for all x ∈ Bc, a ∈ A(x) with

some positive constants M and M1.
(C2) α > 3M and A(x) is assumed to be compact for each x ∈ Bc.
(C3) k(x, a), r(x, a) and β(x, a) are measurable on K and continuous in a ∈ A(x)

for each fixed x ∈ Bc.
Under the above conditions, we have the following fact.

Proposition 5.5. Under the hypotheses C1–C3, Example 5.4 satisfies Assump-
tions A, B, C∗ and D, and hence (by Theorem 4.4) there exists a g-mean-variance
optimal policy.

Proof. To verify conditions required in Theorem 4.4, let w(x) := x2 + 1 for all
x ∈ S. Then, it follows from (5.1) that∫

S

w(y)q(dy|x, a) = k(x, a)
[ ∫ +∞

−∞

1√
2π

(y2 + 1)e−
(y−x)2

2 dy − (x2 + 1)
]

= k(x, a) ≤ M(x2 + 1).∫
S

w2(y)q(dy|x, a) = k(x, a)
[ ∫ +∞

−∞

1√
2π

(y2 + 1)2e−
(y−x)2

2 dy − (x2 + 1)2
]

= k(x, a)(6x2 + 5) ≤ M(x2 + 1)(6x2 + 5)

≤ 6M(x2 + 1)2,
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which, together with the hypotheses C1–C3, yields Assumptions A, B, C∗ and D(1)
with c := M , b := 0, c1 := 6M , b1 := 0 and α0 := α > 3M . Using a similar
argument, we can also verify Assumption D(2). Thus, by Theorem 4.4, there exists
a g-mean-variance optimal policy.

Corollary 5.6. For the following special data in Example 5.4 with the target
set B := ∅,

r(x, a) := x2 − a2 + 6x+ 6, β(x, a) := 0, α := 6,

k(x, a) :=
1

2
(a− 1

2
x)2, A(x) := [−|x|, |x|], g(x) := x+ 1

for all x ∈ S and a ∈ A(x), then we have
(a) Ag(x) = {−x, x} for all x ∈ S (hence the set Fg is infinite);
(b) the policy f∗(x) = x (x ∈ S) is g-mean-variance optimal, and σ2

g(x) =
1
95x

2

for all x ∈ S.
Proof. Under the data given in Corollary 5.6, the hypothesis C3 is obviously true.

Also, we have

|r(x, a)| ≤ x2 + 6 + 3(x2 + 1) ≤ 9(x2 + 1), k(x, a) ≤ 9

8
(x2 + 1),

which implies the hypotheses C1–C2 with M = 9
8 , M1 = 9 and α > 27

8 . Thus,
Proposition 5.5 ensures the existence of a g-mean-variance optimal policy. To solve
Ag(x) in (4.1), let the given data here in lieu of the ones in (4.1). A direct calculation
yields that Ag(x) = {−x, x} for all x ∈ (−∞,∞). Then, Lemma 4.1 implies that there
exist infinite policies in Fg. To further find a g-mean-variance optimal policy over the
set Fg, (by Theorem 4.4) it only need to seek the policy which attains the minimum
in (4.5) with σ2

g + g2 in lieu of u. Indeed, for each a ∈ Ag(x), we have 2r(x, a)g(x) =
12(x+1)2. Furthermore, we suppose for a moment that σ2

g(x)+g(x) =: k0+k1x+k2x
2,

with some constants k0, k1 and k2 to be specified below. Then, by Theorem 4.4, the
discounted g-mean-based variance optimality equation (4.5) becomes

inf
a∈Ag(x)

{
12(x+ 1)2 +

1

2
k2(a− 1

2
x)2 − 12(k0 + k1x+ k2x

2)
}
= 0.(5.2)

Suppose that k2 > 0 and let ν(x, a) := 1
2k2(a− 1

2x)
2. Then, the minimum of ν(x, a)

over a ∈ Ag(x) is ν(x, x) = 1
8k2x

2. Now, the function in the parenthesis in (5.2) is
further reduced to

(12 +
1

8
k2 − 12k2)x

2 + (24− 12k1)x+ (12− 12k0) = 0,

which implies that k2 = 96
95 , k1 = 2 and k0 = 1. Indeed, k2 = 96

95 shows that our result
based on the hypothesis k2 > 0 is true. Therefore, the g-mean-variance optimal policy
and the g-variance function are given by f∗(x) := x and σ2

g(x) =
1
95x

2 for all x ∈ S.

6. Concluding remarks. To sum up, this paper considered the g-mean-based
variance minimization problem for continuous-time MDPs, in which the state and
action spaces are general, transition and reward rates are unbounded, and in which the
discount factors are state-action-dependent. One focuses on the variance minimization
over the set Fg of all policies, whose total discounted reward (over the first passage
of the controlled continuous-time MDP to some target set) attains a given reward
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g. The g-mean-variance optimality equation was established, and the existence and
characterization of a g-mean-variance optimal policy were given. The value and policy
iteration algorithms were justified, too. In particular, when the states and actions are
all finite, the policy iteration algorithm can be used to obtain a g-mean-variance
optimal policy in finite iterations. The applications of the obtained results were
demonstrated by two analytically solved examples, which can be used to show the
difference among the three kinds of discount factors, and which seem not be covered
by the previous literature on continuous-time MDPs.

Our study on the g-mean-based variance minimization problem is based on the
setup Fg := {f ∈ F | VB(x, f) = g(x) for all x ∈ Bc} (i.e. the all admissible policies
obtaining the given reward g). The advantage of such setup of Fg is that the existence
and computation of a g-mean-variance optimal policy can be established.

Unsolved problems: In fact, it is more adequate for applications that a con-
troller is interested in policies such that the expected discounted reward is at least
the quantity g. Hence, it is more natural and desirable to study the g-mean-based
variance minimization problem (2.10) with Fg defined in one of the following two
cases:

1) Fg := {f ∈ F | VB(x, f) ≥ g(x) for all x ∈ Bc};
2) Fg := {f ∈ F |

∫
S
VB(x, f)γ(dx) ≥

∫
S
g(x)γ(dx)}, with a initial distribution γ

on S.

However, it is a challenge and unsolved problem to consider the g-mean-based
variance minimization problems (2.10) with Fg replaced with one in the two cases
above.
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