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1 Introduction

The present paper concerns the average optimality for constrained continuous-time Markov decision
processes (CTMDPs).

The average criteria for CTMDPs have been intensively studied; one can find an extensive list of
references in the recent monographs [20, 39]. Most of the previous literature focuses on the uncon-
strained case, and provides conditions for the existence of a deterministic stationary optimal policy
out of the more general class of policies. Less literature is available for the constrained problem,
where apart from the main long run average cost to be minimized, several other long run averages
must be ensured not to exceed their predetermined levels. It is well known that in general the class of
deterministic stationary policies is not sufficient for constrained problems; in this case, the standard
optimality result is the existence of a randomized stationary policy. In the discrete-time case, every
randomized policy can be implemented by performing the randomization procedure at each decision
epoch in the standard way. However, as explained by Feinberg in [15, 16], it is impossible to perform
the randomization continuously in time. Without a further characterization, it is not clear whether
and how a given randomized stationary optimal policy for a CTMDP can be implemented.

Some recent treatments of constrained average CTMDPs include [14, 22, 37, 38] and Chapter 7 of
[20]. Only a single constraint is considered in [37, 38] and Chapter 7 of [20]. The model considered in
[14] is in finite state and action spaces, for which the author shows the existence of an implementable
optimal policy. The model in Chapter 7 of [20] and [37, 38] (resp., [22]) is in a denumerable (resp.,
possibly uncountable) state space, and the authors show the existence of a randomized stationary
optimal policy, whose implementability is left unaddressed. As a fact of matter, in the present literature
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we seem not to be aware of any results on this implementability issue for general constrained average
CTMDPs in infinite (state and action) spaces. On the other hand, for particular models, one can
mention e.g., [35], where an implementable optimal control is provided for a controlled M/M/1 queue
with a single constraint.

The main objective of the present paper is to show that there exists an implementable randomized
stationary optimal policy for an average CTMDP in Borel spaces with N constraints. Our main
contributions are as follows; under some suitable conditions, we show (a) that every extreme point
of the space of performance vectors corresponding to the set of stable measures is generated by a
deterministic stationary policy (see Theorem 4.1 below); and (b) the optimality of a mixed (randomized
stationary) policy, where the mixture is over no more than N +1 deterministic stationary policies (see
Definition 4.1 and Theorem ?? below). Such an N+1-mixed policy can be implemented as follows; one
could randomly take a deterministic stationary policy out of the no more than N + 1 ones according
to a specific discrete distribution, and uses the selected deterministic stationary policy to control the
process.

To the best of our knowledge, in the previous literature it seems that general results have not
been reported about the optimality of mixed policies for constrained CTMDPs in Borel spaces with
average criteria, though it has been considered for discrete-time problems and CTMDPs with dis-
counted criteria. One method of establishing the optimality of an N + 1-mixed policy is based on
showing first that each extreme point of the space of occupation or stable measures is generated by a
deterministic stationary policy; see, e.g., [2, 3, 6, 16, 21, 34], where [2, 3, 6, 16, 34] deal with discrete-
time problems, and [21] considers the discounted criteria for CTMDPs. It seems that establishing
this characterization result could be quite involving, especially for general CTMDP models in Borel
spaces. Instead, like in [12, 13] and [36] for discrete-time and continuous-time problems with total
undiscounted and discounted criteria and [31] focusing on the performance analysis of queueing net-
works, we pass the average constrained CTMDP problem from the infinite dimensional framework (in
the space of measures) to the finite dimensional framework by investigating the space of performance
vectors.

The rest of this article is organized as follows. We describe the constrained optimal control problem
in Section 2, and then present the preliminaries in Section 3. In Section 4, we formulate and prove
the main results. The verifications of all the imposed conditions in this paper are illustrated with
an example in Section ??. The paper is finished with a conclusion in Section ??. The proofs of the
auxiliary results are postponed to the appendix.

2 Optimal control problem

Notation. I{·} stands for the indicator function. δx(·) is the Dirac measure concentrated at the point
x. B(X) is the Borel σ-algebra of the metric space X.

∨
0≤t<sFt is the smallest σ-algebra containing

all the σ-algebras {Ft, 0 ≤ t < s}. R+ := (0,∞). R0
+ := [0,∞). Z0

+ := {0, 1, . . . }.

The primitives of a CTMDP are the following elements:

{S, (A(x) ⊆ A, x ∈ S), q(·|x, a), γ},

where

• S (state space): a nonempty Borel space endowed with the Borel σ-algebra B(S);

• A (action space): a nonempty Borel space endowed with the Borel σ-algebra B(A);
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• A(x) (admissible action spaces given the states x ∈ S): nonempty subsets of A in B(A) such
that the space of admissible state-action pairs

K := {(x, a) ∈ S ×A : a ∈ A(x)}

is a subset in B(S ×A) and contains the graph of a (Borel) measurable mapping from S to A;

• q(dy|x, a) (transition rates): a signed kernel on B(S) given (x, a) ∈ K, satisfying for each (x, a) ∈
K, q(ΓS \ {x}|x, a) ≥ 0 for all ΓS ∈ B(S), q(S|x, a) = 0, and for each x ∈ S,

q̄x := sup
a∈A(x)

qx(a) <∞,

where

qx(a) := −q({x}|x, a);

• γ(dx) (initial distribution): a probability measure on (S,B(S)).

Given the above primitives, one can refer to Kitaev’s approach for the construction of the under-
lying stochastic basis (Ω,F , {Ft}t≥0, P

π
γ ) and the controlled process {ξt, t ≥ 0} thereon; see [29, 30].

Below we briefly recall it in order to define the necessary terminologies and notations.
Having joint to Ω̃ := (S × R+)

∞ all the sequences of the form

(x0, θ1, x1, . . . , θm, xm, ∞, x∞ ,∞, x∞, . . . ),

where x∞ /∈ S is an isolated point, x0 ∈ S, xl ∈ S, θl ∈ R+, 1 ≤ l ≤ m, and m ≥ 1, we obtain
the sample space (Ω,F), where F is the standard Borel σ-algebra. For each m ≥ 0, define on Ω the
measurable mappings Tm, T∞ and Xm by

T0(ω) := 0, Tm(ω) := θ1 + θ2 + · · ·+ θm, T∞(ω) := lim
m→∞

Tm(ω), Xm(ω) := xm,

and the process of interest {ξt, t ≥ 0} by

ξt(ω) :=
∑
m≥0

I{Tm ≤ t < Tm+1}xm + I{T∞ ≤ t}x∞

for all ω = (x0, θ1, x1, . . . , θm, xm, . . .) ∈ Ω, where and below, 0·x := 0 for each x ∈ S∞ := S
∪
{x∞}.

Let Ft := σ({Tm ≤ s,Xm ∈ ΓS} : ΓS ∈ B(S), s ≤ t,m ≥ 0) for all t ≥ 0, A∞ := A
∪
{a∞},

A(x∞) := {a∞} and Fs− :=
∨

0≤t<sFt, where a∞ /∈ A is an isolated point with qx∞(a∞) = 0.

The predictable (with respect to {Ft}t≥0) σ-algebra P on Ω × R0
+ is given by P := σ(Γ × {0} (Γ ∈

F0),Γ× (s,∞) (Γ ∈ Fs−)), see [30, Chap.4] for more details.

Definition 2.1 A (randomized history-dependent) policy π(·|ω, t) is a P-measurable transition prob-
ability function on (A∞,B(A∞)) concentrated on A(ξt−(ω)). A policy is called randomized Markov
if π(·|ω, t) = πM (·|ξt−(ω), t), where πM (·|x, t) is a stochastic kernel on A∞ given S∞ × R0

+, and
ξt−(ω) := lims↑t ξs(ω). A policy is called randomized stationary if π(·|ω, t) = πS(·|ξt−(ω)), where
πS(·|x) is a stochastic kernel on A∞ given S∞. A policy is called deterministic stationary if π(·|ω, t) =
I{· ∋ ϕ(ξt−(ω))}, where ϕ : S∞ → A∞ is a measurable mapping such that ϕ(x) ∈ A(x) for all x ∈ S∞.
Such policies will be denoted as ϕ for simplicity.
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By the way, the term of randomized policies could be also well called relaxed policies as explained
in [17, 30]; here we nevertheless follow the practice of calling the relaxed policies “randomized” to be
consistent with the majority of the previous literature on this topic [15, 20, 21, 22, 36].

Below we denote by ΠH the class of randomized history-dependent policies, and ΠS the class of
randomized stationary policies.

Under each fixed policy π ∈ ΠH , let us define

νπ(ω, dt× ΓS) :=

[∫
A
π(da|ω, t)q(ΓS \ {ξt−(ω)}|ξt−(ω), a)

]
dt

for each ΓS ∈ B(S). This randommeasure is predictable, and such that νπ(ω, {t}×S) = νπ(ω, [T∞,∞)×
S) = 0, see [29, 30]. Therefore, there exists a unique probability measure P π

γ such that P π
γ (ξ0 ∈ dx) =

γ(dx), and with respect to P π
γ , ν

π is the dual predictable projection of the random measure of the
marked point process (Tm, Xm) with its internal history, see [28, 29, 30]. In what follows, when γ(·)
is a Dirac measure δx(·) concentrated at x ∈ S, we use the degenerated notation P π

x . Expectations
with respect to P π

γ and P π
x are denoted as Eπ

γ and Eπ
x , respectively.

The following condition guarantees the nonexplosiveness of the controlled process under each pol-
icy; see more comments on this after the condition.

Condition 2.1 There exist a continuous [1,∞)-valued function w on S and constants ρ ∈ R, b ≥ 0
such that

(a)
∪∞

l=0 Sl = S, liml→∞ infx∈S\Sl
w(x) = ∞ for an increasing sequence of measurable subsets Sl ⊆ S.

(b)
∫
S q(dy|x, a)w(y) ≤ −ρw(x) + b,∀ x ∈ S, a ∈ A(x).

(c) For any l ∈ Z0
+, supx∈Sl

q̄x <∞, where the sets Sl are from part (a) of this condition.

Here and below we formally adopt the convention that the infimum taken over the empty set is ∞.
Condition 2.1 guarantees that the controlled process {ξt, t ≥ 0} is nonexplosive under each policy

π, i.e.,

P π
x (T∞ = ∞) = 1, ∀ x ∈ S;

see Lemma 2.1. The origin of Condition 2.1 is [7] by M. Chen, where it is shown to be sufficient for
the nonexplosiveness for the (uncontrolled) time-homogeneous Markov pure jump process. Recently,
when the state space is denumerable, F. Spieksma [44] showed that this condition is actually also
necessary for the nonexplosiveness; see also the discussions in the recent paper by M. Chen [9]. It was
brought to our attention by a referee that sufficient conditions for the nonexplosiveness of the time-
inhomogeneous Markov pure jump process were also provided in the less known Chinese literature;
see J. Zheng [47].

For the optimal control problem (1) considered below, we will show that one can concentrate on
stationary policies that induce invariant probabilities; see Proposition 3.2. That result could fail to
hold if the process is explosive (so that in particular Condition 2.1 is violated); see Example 3.1 below.

The next lemma comes from [36].

Lemma 2.1 Suppose Condition 2.1 is satisfied, where ρ ̸= 0. Then, the following assertions hold for
each policy π, x ∈ S and t ≥ 0.

(a) P π
x (T∞ = ∞) = 1.

(b) Eπ
x [w(ξt)] ≤ e−ρtw(x) + b

ρ(1− e−ρt).

4



Let ci(x, a), i = 0, 1, . . . , N, be measurable (real-valued) functions on K, representing the cost
rates, and dj ∈ R, j = 1, 2, . . . , N , be the predetermined constraint constants. Introduce

V (γ, π, g) := lim
T→∞

1

T
Eπ

γ

[∫ T

0

∫
A
g(ξt, a)π(da|ω, t)dt

]
for each measurable function g onK (whenever the right hand side of the above is well defined), whereas
if the initial distribution γ is a Dirac measure concentrated at a state x ∈ S, V (γ, π, g) is written as
V (x, π, g). Then, the constrained average CTMDP optimal control problem under consideration reads

V (γ, π, c0) → min
π∈ΠH

(1)

subject to V (γ, π, cj) ≤ dj , j = 1, 2, . . . , N.

The next statement immediately follows from Lemma 2.1.

Lemma 2.2 Suppose Condition 2.1 is satisfied. If there exists a constant M ≥ 0 such that

sup
a∈A(x)

|ci(x, a)| ≤Mw(x) ∀ i = 0, 1, . . . , N,

∫
S w(y)γ(dy) < ∞, and ρ > 0, where w and ρ come from Condition 2.1, then under each policy
π ∈ ΠH ,

lim
T→∞

1

T
Eπ

γ

[∫ T

0

∫
A
|ci(ξt, a)|π(da|ω, t)dt

]
≤ bM

ρ
∀ i = 0, 1, . . . , N.

Definition 2.2 A policy satisfying all the N constraints in problem (1) is called feasible. A feasible
policy solving problem (1) is called (constrained average) optimal.

Throughout this article, to avoid trivial cases, we take the following assumption as granted, which
is not mentioned explicitly below.

Assumption 2.1 There exists at least one feasible policy to problem (1).

3 Preliminaries

Given any probability measure η on K, one can disintegrate it with respect to its marginal η(dx,A)
to get a unique (in the almost sure sense) stochastic kernel πη(da|x), defining a (possibly randomized)
stationary policy denoted as πη, so that

η(dx, da) = η(dx,A)πη(da|x);

see [23]. Here and below when it simplifies the notations, we may freely regard such η as measures on
S ×A concentrated on K.

Definition 3.1 Suppose Condition 2.1 is satisfied, where ρ > 0, and supx∈S
qx

w(x) < ∞. A probability
measure η on K is said to be stable if∫

S
w(x)η(dx,A) ≤ 1 +

b

ρ
(2)

and ∫
S

∫
A
q(ΓS |x, a)πη(da|x)η(dx,A) = 0 (3)

for all ΓS ∈ B(S). On this occasion, the underlying stationary policy πη is said to be stable, too.
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We denote by D the collection of such stable probability measures on K, and by ΠStable the class of
stable policies. Then it holds that ΠStable ⊆ ΠS . Relation (3) implies that η(dx,A) is an invariant
probability for

∫
A q(·|x, a)πη(da|x); see [8].

Definition 3.2 Let f ≥ 1 be a measurable function on S.

(a) A probability measure µ on K (resp., S) is said to be f-bounded if∫
K
f(x)µ(dx, da) <∞ (resp.,

∫
S
f(x)µ(dx) <∞).

The collection of f-bounded probability measures on K (resp., S) is denoted by Pf (K) (resp., Pf (S)).

(b) A measurable function u on K (resp., S) is said to be f -bounded if

sup
x∈S

supa∈A(x) |u(x, a)|
f(x)

<∞ (resp., sup
x∈S

|u(x)|
f(x)

<∞).

(c) The f -weak topology on Pf (K) is the weakest topology such that for each f-bounded continuous
function u on K,

∫
K u(x, a)µ(dx, da) is continuous in µ ∈ Pf (K). This topology is denoted by

τ(Pf (K)).

The f -weak topology on other Borel spaces is similarly defined. The convergence in the f -weak

topology is denoted by “
f→”.

There is a one-to-one correspondence Tf between P1(K) and Pf (K), where f ≥ 1 is a fixed
continuous function on S. Indeed, for each µ ∈ Pf (K), one can define µ̃ ∈ P1(K) by

µ̃(Γ) = Tf (µ)(Γ) :=

∫
Γ f(x)µ(dx, da)∫
K f(x)µ(dx, da)

∀ Γ ∈ B(K); (4)

and given any µ̃ ∈ P1(K), one can define µ ∈ Pf (K) by

µ(Γ) := T−1
f (µ̃)(Γ) =

∫
Γ

1
f(x) µ̃(dx, da)∫

K
1

f(x) µ̃(dx, da)
∀ Γ ∈ B(K). (5)

The next lemma comes from [36, Lem.3.4, Rem.3].

Lemma 3.1 Suppose a continuous function f ≥ 1 on S is fixed. Then the two topological spaces
(Pf (K), τ(Pf (K))) and (P1(K), τ(P1(K))) are homeomorphic, with the mapping Tf defined by (4) being
a homeomorphism. In particular, (Pf (K), τ(Pf (K))) is metrizable because so is (P1(K), τ(P1(K))).

To show the compactness of the set D in (Pw′(K), τ(Pw′(K))) and the existence of an optimal
policy, we impose the following condition; see more discussions on the various consequences of the
imposed condition in the remarks following it.

Condition 3.1 Let w be as in Condition 2.1.

(a)
∫
S g(y)q(dy|x, a) is continuous on K for each bounded continuous function g(·) on S.

(b) There exists a continuous moment function w′ ≥ 1 on S and a constant M ′ ≥ 0 such that
qx ≤M ′w′(x) and supa∈A(x) |ci(x, a)| ≤M ′w′(x) for all x ∈ S and i = 0, 1, . . . , N.
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(c) There exists an increasing sequence of compact sets Km ↑ K such that

lim
m→∞

inf
(x,a)∈K\Km

w(x)

w′(x)
= ∞.

(d) ρ > 0 and
∫
S w(y)γ(dy) <∞, where the constant ρ is as in Condition 2.1.

In case K is itself compact, for verifying this condition one could take w′ ≥ 1 as any w-bounded
continuous function because of the convention that any infimum taken over the empty set is put ∞.

Remark 3.1 It follows from [36, Lem.3.10] that Condition 3.1(c) implies that A(x) is compact for
any x ∈ S.

Remark 3.2 (a) Under Conditions 2.1 and 3.1(b,c), there exists a compact set Km ⊆ K with a large
enough index m such that

sup
(x,a)∈K\Km

w′(x)

w(x)
=

1

inf(x,a)∈K\Km

w(x)
w′(x)

<∞; sup
(x,a)∈Km

w′(x)

w(x)
<∞,

so that the function w′ is w-bounded. This fact also guarantees that the space of stable measures D is
a subset of Pw′(K).
(b) By [23, Rem.5.7.5, p.115], Condition 3.1(c) is satisfied if the following holds: (i) the set {x ∈ S :
A(x) ⊆ G} is open in S for every open set G ⊆ A; (ii) both S and A are σ-compact; and for each

ϵ > 0, there exists a compact set Sϵ ⊆ S such that w(x)
w′(x) ≥ ϵ for all x ∈ S \Sϵ; and (iii) A(x) is compact

for each x ∈ S.

Remark 3.3 Let t0 > 0 be fixed. Condition 3.1 together with Condition 2.1 guarantees the uniform
integrability with respect to the cost rates ci and the precompactness properties of the family {ηπt , t ≥ t0}
of empirical measures in Pw′(K) endowed with the w′-weak topology, where for each t > 0 and policy
π,

ηπt (γ, dx, da) :=
1

t
Eπ

γ

[∫ t

0
I{ξs ∈ dx}π(da|ω, s)ds

]
. (6)

(If γ(dy) = I{z ∈ dy} for some z ∈ S, then we write ηπt (z, dx, da).) Similar properties for empirical
measures also play an important role in the investigations of discrete-time problems; see e.g., Altman
and Shwartz [2] and Altman [3]. In greater detail, it follows from Lemma 2.1(b) that

sup
t≥t0

∫
K

w(x)

w′(x)
Tw′(ηπt )(dx, da) <∞

(Condition 3.1(d) in particular guarantees the inequality). This fact, according to Theorem 12.2.15 of
[24], implies that the family {Tw′(ηπt ), t ≥ t0} is tight, and thus precompact in P1(K) by the Prokhorov
theorem; see Theorem 12.2.16 of [24]. It remains to apply Lemma 3.1. (The same reasoning is also
used in the proof of Proposition 3.1 below to show that the space of stable measures D is precompact
in Pw′(K) endowed with the w′-weak topology. Then Condition 3.1(a) guarantees that D is closed and
thus compact in Pw′(K) endowed with the w′-weak topology.)

It also follows from the tightness of {Tw′(ηπt ), t ≥ t0} and the fact of supt≥t0

∫
Kw

′(y)ηπt (γ, dy, da) <
∞ that under each policy π, {ηπt , t ≥ t0} is uniformly integrable with respect to ci, i = 0, 1, . . . , N
(see Definition A.4 in Altman [3]); recall the fact that the cost rates ci, i = 0, 1, . . . , N are w′-bounded
under Condition 3.1.
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Proposition 3.1 Suppose Conditions 2.1 and 3.1 are satisfied. Then the space of stable measures D
is nonempty, convex and compact in (Pw′(K), τ(Pw′(K))).

Proof. See the appendix. 2

Condition 3.2 For each stable policy πη corresponding to a stable measure η ∈ D, it holds that

V (γ, πη, ci) = lim
T→∞

1

T

∫ T

0
E

πη
γ

[∫
A
ci(ξt, a)πη(da|ξt)

]
dt =

∫
K
ci(y, a)η(dy, da)

for i = 0, 1, . . . , N.

Remark 3.4 Suppose Conditions 2.1 and 3.1 hold. Then Condition 3.2 is satisfied if under each
stable policy π, the controlled process is positive Harris recurrent. (Remember, a stable policy π is
stationary.) Indeed, in this case, under each stable policy π, there is a unique invariant probability
ηπ, and by Theorem 1 of [18], for each z ∈ S, as t → ∞, ηπt (z, dx,A) converges to the unique
invariant probability ηπ(dx) setwise, where ηπt is defined by (6). It follows from Remark 3.3 that
necessarily ηπt (z, dx,A) converges to ηπ(dx) in the w′-weak topology for each z ∈ S, and furthermore,∫
S η

π
t (z, dx,A)w

′(x) <∞ and
∫
S w

′(y)ηπ(dy) <∞. Now according to Theorem 2.4 of [42], Condition
3.2 is satisfied; recall that the functions x ∈ S →

∫
A ci(x, a)π(da|x), i = 0, 1, . . . , N are w′-bounded.

In particular, Condition 3.2 is satisfied by the finite unichain model, which means that the state
and action spaces are both finite, and under each deterministic stationary (and thus each randomized
stationary) policy, the controlled process admits a unique positive recurrent class plus a possibly empty
set of transient states.

Condition 3.2 implicitly reduces to at least the uniqueness of the invariant probability for the
controlled process under each stable policy, although if the cost rates are constant, then Condition 3.2
becomes trivial, without requiring any properties to be exhibited by the controlled process.

Lemma 3.2 Suppose Conditions 2.1, 3.1 and 3.2 are satisfied, and the functions ci, i = 0, 1, . . . , N,
are all lower semicontinuous on K. Then,

(a) for any i = 0, 1, . . . , N,
∫
K ci(x, a)η(dx, da) is lower semicontinuous in η ∈ Pw′(K) (equipped with

the w′-weak topology);

(b) for each policy π, there exists a stable measure η ∈ D with an associated stable policy πη such that

V (γ, πη, ci) ≤ V (γ, π, ci), i = 0, 1, . . . , N.

Proof. See the appendix. 2

As a consequence of Lemma 3.2, for problem (1) it suffices to consider the class of stable policies,
and problem (1) can be reformulated as∫

K
c0(x, a)η(dx, da) → min

η∈D
(7)

s.t.

∫
K
cj(x, a)η(dx, da) ≤ dj , j = 1, 2, . . . , N.

Proposition 3.2 Suppose Conditions 2.1, 3.1 and 3.2 are satisfied, and ci(x, a) (i = 0, . . . , N) are
all lower semicontinuous on K. Then, there is an optimal solution to problem (7), and thus a stable
optimal policy exists for the constrained average CTMDP problem (1).

8



Proof. See the appendix below. 2

The following example shows that if Condition 2.1 is not satisfied, then there might not be any
optimal stationary policy that induces an invariant probability (c.f. Proposition 3.2).

Example 3.1 Let S = {0,±1,±2, . . . }, A = {a1, a2} = A(0), A(x) = A for all 0 ̸= x ∈ S. Let
0 < µ < λ < 2µ be fixed constants such that λ+ µ = 1. Consider the transition rate given by

q0(a1) = q({1}|0, a1) = λ = q0(a2) = q({−1}|0, a2);
qx(a) = q({x− 1}|x, a) = 1, ∀x ∈ {−1,−2, . . . }, a ∈ A;

q({x+ 1}|x, a) = λ2x, q({x− 1}|x, a) = µ2x, qx(a) = 2x, ∀x ∈ {1, 2, . . . }, a ∈ A.

Let us fix a single cost rate given by

c0(x, a) = 0, ∀ x ∈ {0, 1, . . . }, a ∈ A;

c0(x, a) = −1, ∀ x ∈ {−1,−2, . . . }, a ∈ A,

We introduce the notation

π({a1}|0) = γ ∈ [0, 1], π({a2}|0) = 1− γ.

Note that the process is controlled only at the state 0, and so a stationary policy π(da|x) is fully
specified by the constant γ ∈ [0, 1].

Under the stationary policy π with γ ∈ [0, 1) being arbitrarily fixed, it is evident that there does not
exist any invariant probability for

∫
A q(·|x, a)π(da|x). In other words, any stationary policy π(da|x)

specified by some γ ∈ [0, 1) does not induce an invariant probability.
When γ = 1, the stationary policy becomes deterministic, under which there is a unique invariant

probability p given by

p({x}) = 0, ∀x = −1,−2, . . . ;

p({x}) =
(
1− λ

2µ

)(
λ

2µ

)x

, ∀ x = 0, 1, 2, . . . .

Therefore, the deterministic stationary policy given by f0(0) = a1 is the unique stationary policy that
induces an invariant probability.

It is obvious that the deterministic stationary policy f∗(0) = a2 is optimal with

V (0, f∗, c0) = −1 < V (0, f0, c0) = 0,

which thus strictly outperforms the unique stationary policy f0 that induces an invariant probability.
In the previous example (c.f. [4]), under the policy f0, the controlled process is explosive. To avoid

the explosiveness, we imposed Condition 2.1. 2

We finish this section with some additional notations, conditions and technical results, which are
to be used in the next section. For each x ∈ S, let Â(x) ⊆ A(x) be an arbitrarily fixed nonempty
compact subset of A such that K̂ := {(x, a) : x ∈ S, a ∈ Â(x)} is measurable and contains the
graph of a measurable mapping from S to A. We consider the so-called Â-CTMDP model {S, (Â(x) ⊆
A, x ∈ S), q(·|x, a), γ}, which is a specific sub-model of {S, (A(x) ⊆ A, x ∈ S), q(·|x, a), γ}. Let α > 0
be arbitrarily fixed. Then we define the following discounted criterion for the Â-CTMDP model
(restricted to the class of deterministic stationary policies):

V α
cλ⃗
(ϕ̂, x) := Eϕ̂

x

[∫ ∞

0
e−αtcλ⃗(ξt, ϕ̂(ξt))dt

]
, (8)

9



with the value function being denoted by

V α
cλ⃗
(x) := inf

ϕ̂
V α
cλ⃗
(ϕ̂, x), (9)

where the infimum is taken over the class of deterministic stationary policies ϕ̂ for the Â-CTMDP
model, and

cλ⃗(x, a) :=
N∑
i=0

λici(x, a),

with λ⃗ := (λ0, · · · , λN ) ∈ RN+1. Clearly, V α
cλ⃗
(ϕ̂, x) and V α

cλ⃗
(x) depend on Â(·), but we do not indicate

this dependence in the denotations for brevity.

Condition 3.3 Let w and w′ be as in Condition 3.1.

(a) The functions ci, i = 0, 1, . . . , N, are continuous on K.

(b) There exist constants M ∈ R and ρ′ > 0, b′ ≥ 0 such that for each x ∈ S, a ∈ A(x),

(qx + 1)w′(x) ≤ Mw(x);

∫
S
q(dy|x, a)w′(y) ≤ −ρ′w′(x) + b′.

In case the state space S is denumerable and the model is unichain, the previous conditions have
the following consequences.

Proposition 3.3 Suppose Conditions 2.1, 3.1, and 3.3 are satisfied, the state space S is denumerable,
and each deterministic stationary policy is unichain. Then the following assertions holds.

(a) For each λ⃗ ∈ RN+1 and Â-CTMDP model, there exist constants Lc
λ⃗
, αc

λ⃗
> 0 and some state

xc
λ⃗
∈ S such that

|V α
c
λ⃗
(x)− V α

c
λ⃗
(xc

λ⃗
)| ≤ Lc

λ⃗
w′(x) (10)

for all x ∈ S and α ∈ (0, αc
λ⃗
). (Here the Lc

λ⃗
, αc

λ⃗
> 0 and xc

λ⃗
∈ S are possibly dependent on

Â(·) and c
λ⃗
.)

(b) Every deterministic stationary policy is stable. (This holds without requiring apriori Condition
3.3 to hold, or that each deterministic stationary policy is unichain.)

(c) Condition 3.2 is satisfied.

Proof. As for part (b), as in Remark 3.3, one can see that for each t0 > 0, the family {ηft , t ≥ t0}
is tight for each initial state z ∈ S. As a result, the controlled process (under each deterministic
stationary policy) is bounded in probability on average, and now part (b) follows from Theorem 3.1
of [32]. The reasoning in the proof of Theorem 3.13 in [41] applies to show that under the conditions
of the statement, the A-CTMDP model (and thus each of the Â-CTMDP model) is uniformly w′-
exponentially ergodic with respect to all randomized stationary policies. Following from this, parts
(a) and (c) immediately hold; for part (a), further see the reasoning in the proof of Lemma 7.7 of [20].
2

The proof of Proposition 3.3 (see part (a) therein) makes use of the fact that under the conditions
therein, the controlled process in a denumerable state space is uniformly w′-exponentially ergodic
with respect to all stationary policies; see Theorem 3.13 of Prieto-Rumeau and Hernández-Lerma [41],
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whose proof is based on the relevant results for denumerable state discrete-time models in Dekker et
al [10]; see also Spieksma [43]. Since this extension to the case of an uncountable state space is not
yet immediate, we impose the assertions of Proposition 3.3 to hold as in the following condition (for
the case of an uncountable state space).

Condition 3.4 (a) For each bounded measurable function g on S,
∫
S g(y)q(dy|x, a) is continuous in

a ∈ A(x) for each fixed x ∈ S.

(b) Parts (a), (b) and (c) of Proposition 3.3 hold. Furthermore, for each η ∈ D, if η(Z,A) = 0 for
some Z ∈ B(S), then η′(Z,A) = 0 for all η′ ∈ D.

As mentioned in the above, for the verification of the above condition, the validity of (a) of
Proposition 3.3 (see (10)) is the least transparent; it is satisfied if the controlled model is uniformly
w′-exponentially ergodic, for which some sufficient conditions (of the stochastic monotonicity type) in
the uncountable state space case are given in [19], see also [46]. For the last part of Condition 3.4(b),
we mention that it is not needed if the state space is denumerable, or in fact, if the functions u∗1 and
u∗2 in Lemma 3.3 below coincide.

The next result can be useful in verifying the last part of Condition 3.4(b). Its proof has been
omitted.

Proposition 3.4 Suppose Conditions 2.1 and 3.1 are satisfied. If there exists a non-trivial σ-finite
measure ν on S and a positive-valued function g(x, a, y) > 0 on K× S such that

q(D|x, a) =
∫
D
g(x, a, y)ν(dy) ∀ D ∈ B(S), x ̸∈ D, a ∈ A(x).

then Condition 3.4(b) is satisfied.

Remark 3.5 Under Conditions 2.1, 3.1(b,c), 3.3 and 3.4(a), for each x ∈ S,
∫
S u(y)q(dy|x, a) is

continuous in a ∈ A(x) for each measurable function u satisfying supx∈S
|u(y)|
w′(y) <∞. This follows from

the reasoning in the proof of Corollary 2.6 of [40].

Finally we present the following statement about unconstrained average CTMDPs (c.f. [19]), which
serves the proof in the next section.

Lemma 3.3 Suppose Conditions 2.1, 3.1(b,c), 3.3, and 3.4 are satisfied. The following assertions
hold.

(a) For each λ⃗ ∈ RN+1, there exist a constant v∗(λ⃗) ∈ R, w′-bounded measurable functions u∗1, u
∗
2 on

S and deterministic stationary policies φ∗, ψ∗, all of which are possibly λ⃗-dependent, such that
for all x ∈ S,

cλ⃗(x, φ∗(x)) +

∫
S
u∗1(y)q(dy|x, φ∗(x)) = inf

a∈A(x)

{
cλ⃗(x, a) +

∫
S
u∗1(y)q(dy|x, a)

}
≤ v∗(λ⃗);

v∗(λ⃗) ≤ inf
a∈A(x)

{
cλ⃗(x, a) +

∫
S
u∗2(y)q(dy|x, a)

}
= cλ⃗(x, ψ∗(x)) +

∫
S
u∗2(y)q(dy|x, ψ∗(x)).

(b) infπ∈ΠStable
V (γ, π, cλ⃗) = V (γ, φ∗, cλ⃗) = v∗(λ⃗), where φ∗ is as in part (a).

11



(c) If a stable policy π satisfies V (γ, π, cλ⃗) = v∗(λ⃗), then there exists a measurable subset Sλ⃗
π ⊆ S

(depending on π and λ⃗) such that

ηπ(Sλ⃗
π , A) = 1,

and

π(B(x)|x) = 1 ∀ x ∈ Sλ⃗
π ,

where

B(x) :=

{
a ∈ A(x) : cλ⃗(x, a) +

∫
S
u∗2(y)q(dy|x, a) = v∗(λ⃗)

}
,

and ηπ(dx, da) denotes the stable measure corresponding to π.

(d) In case the state space S is denumerable, u∗1 and u∗2 from part (a) coincide, and one can take
ψ∗ = φ∗; B(x) from part (c) is nonempty for each x ∈ S.

Proof. See the appendix below. 2

4 Main results

Definition 4.1 A stable policy (with respect to a stable measure η) is called mixed over a class of
m+ 1 deterministic stationary stable policies φl, l = 0, 1, 2, . . . ,m, if

η(dx, da) =

m∑
l=0

blηl(dx, da),

where ηl are the stable measures corresponding to φl, and the nonnegative constants bl satisfy
∑m

l=0 bl =
1.

Denote by

V := {(V (γ, π, c0), V (γ, π, c1), . . . , V (γ, π, cN )) : π ∈ ΠStable} ⊆ RN+1 (11)

the space of (relevant) performance vectors (generated by stable policies) for the original average
CTMDP model {S,A,A(x), q(dy|x, a), (ci(x, a), di)ki=0, γ}.

Denote by

V := {(V (γ, π, c0), V (γ, π, c1), . . . , V (γ, π, cN )) : π ∈ ΠStable} ⊆ RN+1 (12)

the space of (relevant) performance vectors (generated by stable policies) for the original average
CTMDP model {S,A,A(x), q(dy|x, a), (ci(x, a), di)ki=0, γ}.

Theorem 4.1 Suppose Conditions 2.1, 3.1, and 3.3 are satisfied. Consider the following two situa-
tions:

(a) the state space S is denumerable and the model is unichain;

(b) the state space S is uncountable (Borel), and additionally Condition 3.4 is satisfied.
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In either case, the space of performance vectors V is nonempty, compact and convex, and each extreme
point of V (there exists at least one), say vex, is generated by a deterministic stationary policy, say φ,
i.e.,

vex = (V (γ, φ, c0), V (γ, φ, c1), . . . , V (γ, φ, cN )).

Proof. It is clear that

V = Φ(D) :=

{(∫
K
c0(x, a)η(dx, da),

∫
K
c1(x, a)η(dx, da), . . . ,

∫
K
cN (x, a)η(dx, da)

)
, η ∈ D

}
,

where, under the conditions of the theorem, Φ is a w′-continuous mapping from D to V equipped
with the usual Euclidean topology. Therefore, by [1, Thm.2.34], V is nonempty, convex and compact,
because so is D, according to Proposition 3.1. So by [1, Cor.7.66], V admits at least one extreme
point, say vex. Below we prove that any given extreme point vex of V is generated by a deterministic
stationary policy by induction with respect to the number of constraints N .

Consider the case of N = 0, i.e., consider an unconstrained CTMDP model satisfying Conditions
2.1, 3.1, 3.2, and 3.3 in case the state space S is denumerable, and additionally Condition 3.4 in case
S is uncountable. Then by the convexity and compactness of V proved above, V ⊆ R is a bounded
closed interval, and the two extreme points of V, denoted vmin and vmax, corresponding to the two
end points of the closed interval, are given by the optimal values of the following two unconstrained
average CTMDP problems

V (γ, π, c0) → min
π∈ΠStable

(13)

and

V (γ, π, c0) → max
π∈ΠStable

, (14)

respectively. For problem (13), by Lemma 3.3, there is a deterministic stationary policy, say φ1, such
that

vmin = inf
π∈ΠStable

V (γ, π, c0) = V (γ, φ1, c0).

For problem (14), especially due to the continuity of c0(x, a), its optimal policy is given by the optimal
solution to the problem V (γ, π,−c0) → minπ∈ΠStable

. Therefore, by referring to Lemma 3.3 again, one
can conclude the existence of a deterministic stationary policy, say φ2, such that

vmax = sup
π∈ΠStable

V (γ, π, c0) = − inf
π∈ΠStable

V (γ, π,−c0) = −V (γ, φ2,−c0) = V (γ, φ2, c0).

Thus, the extreme points of V are generated by deterministic stationary policies for the case of N = 0.

Suppose the statement holds for the case of N = k − 1, i.e., suppose for any CTMDP model with
N = k − 1 constraints satisfying the corresponding Conditions 2.1, 3.1, 3.2, and 3.3 in case S is
denumerable, and additionally Condition 3.4 in case S is uncountable, it holds that each extreme
point vex of V is generated by a deterministic stationary policy.

Now consider the case of N = k, i.e., consider a CTMDP with k constraints satisfying Conditions
2.1, 3.1, 3.2, and 3.3 in case S is denumerable, and additionally Condition 3.4 in case S is uncountable.
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It follows from its definition that the extreme point vex = (vex0 , v
ex
1 , . . . , v

ex
k ) is not in the interior of

V ⊆ Rk+1. So by the supporting hyperplane theorem [5], there exists a hyperplane

H =

{
x = (x0, x1, . . . , xk) ∈ Rk+1 :

k∑
i=0

λ′ixi = ρ

}
, (15)

where λ′i ∈ R, i = 0, 1, . . . , k, which are not all equal to zero, and ρ ∈ R are fixed constants defining
the underlying hyperplane, such that

k∑
i=0

λ′iv
ex
i = ρ ≤

k∑
i=0

λ′ivi ∀ v = (v0, v1, . . . , vk) ∈ V .

Here, we take λ′k ̸= 0 without loss of generality, for otherwise one only needs re-order the cost rates.
Note that the above equality and inequality can be equivalently written as

V

(
γ, πex,

k∑
i=0

λ′ici

)
= ρ ≤ V

(
γ, π,

k∑
i=0

λ′ici

)
∀ π ∈ ΠStable, (16)

where πex is a stable policy that generates vex. In other words, πex is an optimal policy to the
unconstrained CTMDP problem V (γ, π,

∑k
i=0 λ

′
ici) → minπ∈ΠStable

, and so

ρ = v∗(λ⃗′), (17)

where λ⃗′ := (λ′0, . . . , λ
′
k), and v

∗(λ⃗′) is as in Lemma 3.3.
Let us define the set

Ũ := H
∩

V, (18)

which is nonempty, convex and compact because so are both H and V. Moreover, vex ∈ Ũ is also an
extreme point of Ũ because Ũ ⊆ V. Below we construct an appropriate auxiliary CTMDP model (see
(20)), whose space of relevant performance vectors is denoted by V̂, which will be proved to coincide
with Ũ .

Recalling the definition of the set B(x) as in Lemma 3.3, we now formally define, for each x ∈ S,
in case S is denumerable

Â(x) := B(x);

and in case S is uncountable

Â(x) :=

{
B(x) if x ∈ Sλ⃗′

πex ,

{ψ∗(x)} if x ̸∈ Sλ⃗′
πex ,

where Sλ⃗′
πex and ψ∗ are from Lemma 3.3.

We have the following three observations.
Observation 1. For each x ∈ S, the corresponding set Â(x) ⊆ A(x) is nonempty compact.

Indeed, we have Â(x) is closed for any x ∈ S because of the definition of Â(x) and the fact that
the function

H(x, a) :=

N∑
i=0

λ′ici(x, a) +

∫
S
u∗2(y)q(dy|x, a) (19)

14



is continuous on A(x) for each x ∈ S by the virtue of [24, Lem.8.3.7]. Now the compactness of Â(x)
follows from its closedness and the compactness of A(x); see Remark 3.1.

The next two observations are obvious in case S is denumerable, so that we shall only justify them
for the case of S being uncountable.
Observation 2. The set

K̂ := {(x, a) : x ∈ S, a ∈ Â(x)} ⊆ K

is in B(S ×A).
Indeed, for each closed subset F ⊆ A,{

x ∈ S : Â(x)
∩
F ̸= ∅

}
=

{
x ∈ Sλ⃗′

πex : inf
a∈A(x)

∩
F
H(x, a) = v∗(λ⃗′)

}
∪{

x ∈ S \ Sλ⃗′
πex : ψ∗(x) ∈ F

}
.

Since A(x)
∩
F is compact, see Remark 3.1, and the function H(x, a) defined by (19) is continuous in

a ∈ A(x) for any x ∈ Sλ⃗′
πex as observed earlier, the function infa∈A(x)

∩
F H(x, a) is measurable on Sλ⃗′

πex

(by [25, 26] and Proposition D.5 in [23]). This, together with the fact that {x ∈ S \Sλ⃗′
πex : ψ∗(x) ∈ F}

is measurable, implies that the set {x ∈ S : Â(x)
∩
F ̸= ∅} is a measurable subset of S, asserting that

the multifunction x → Â(x) is measurable. It follows from this fact and Observation 1 that K̂ is a
measurable subset of S ×A; see [26] or Proposition D.4 of [23].

Observation 3. The set K̂ contains the graph of a measurable mapping from S to A.
Indeed, by Observations 1 and 2 above, Proposition D.5 in [23] ensures the existence of a measurable

mapping g from S to A such that g(x) ∈ Â(x) for each x ∈ S.

Based on the above three observations, we legally have an auxiliary Â-CTMDP model

{S,A, Â(x), q(dy|x, a), (ci(x, a), di)ki=0, γ}, (20)

where q(dy|x, a) and ci(x, a) are understood as their corresponding restrictions on K̂ ⊆ K. It is also an
immediate consequence of those observations that the corresponding versions of Conditions 2.1, 3.1,
3.2, and 3.3 in case S is denumerable, and additionally Condition 3.4 in case S is uncountable, are
satisfied by this auxiliary CTMDP model. In particular, Condition 3.1(c) is satisfied by an increasing
sequence of compact (in the topology relative to K̂) sets K̂m := K̂

∩
Km ↑ K̂, where Km ↑ K are the

compact sets coming from Condition 3.1(c) for the original model. Indeed, this follows from the fact
that

lim
m→∞

inf
(x,a)∈K̂\K̂m

w(x)

w′(x)
= lim

m→∞
inf

(x,a)∈K̂\Km

w(x)

w′(x)

≥ lim
m→∞

inf
(x,a)∈K\Km

w(x)

w′(x)
= ∞,

where the last equality is due to the fact that Condition 3.1(c) is satisfied by the original model. It
is worthwhile to mention that any policy in the auxiliary Â-CTMDP model is also one in the original
average CTMDP model {S,A,A(x), q(dy|x, a), (ci(x, a), di)ki=0, γ}.

We claim that for this auxiliary Â-CTMDP model, the space of relevant performance vectors V̂ is
the same as Ũ defined by (18). To see this, we firstly show

V̂ ⊆ Ũ .
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Indeed, any stable policy for the auxiliary model {S,A, Â(x), q(dy|x, a), (ci(x, a), di)ki=0, γ} is also a
stable policy for the original CTMDP model {S,A,A(x), q(dy|x, a), (ci(x, a), di)ki=0, γ}, implying that
any point in V̂ is also in V. On the other hand, under the conditions of this theorem (especially
Condition 3.4(b) in case S is uncountable), by the definition of Â(x) and Lemma 3.3 (see also (27) in
its proof), we have that any point in V̂ is also in the hyperplane H defined by (15). It follows from
these facts and (18) that V̂ ⊆ Ũ .

Secondly, we show

Ũ ⊆ V̂.

To this end, consider an arbitrary point (V (γ, π, c0), . . . , V (γ, π, ck)) ∈ Ũ , where π is a stable policy
for the original CTMDP model {S,A,A(x), q(dy|x, a), (ci(x, a), di)ki=0, γ} and

V

(
γ, π,

k∑
i=0

λ′ici

)
= v∗(λ⃗′). (21)

In what follows, we show that

(V (γ, π, c0), . . . , V (γ, π, ck)) = (V (γ, π̂, c0), . . . , V (γ, π̂, ck)),

where π̂ is a stable policy for the model {S,A, Â(x), q(dy|x, a), (ci(x, a), di)ki=0, γ}.
In case S is denumerable, we define π̂ by

π̂(da|x) = π(da|x), ∀ x ∈ Sλ⃗′
π

and

π̂(da|x) = I{ψ∗(x) ∈ da}, ∀ x ∈ S \ Sλ⃗′
π ,

where the set Sλ⃗′
π is defined as in Lemma 3.3.

Now consider the case of S being uncountable. By Lemma 3.3(c) and (21) we have

ηπ(S \ Sλ⃗′
π , A) = 0, ηπ

ex
(S \ Sλ⃗′

πex , A) = 0, (22)

which, together with Condition 3.4(b), imply that

ηπ(Sλ⃗′
π

∩
Sλ⃗′
πex , A) = 1. (23)

Here we recall that the sets Sλ⃗′
π , S

λ⃗′
πex are defined as in Lemma 3.3(c). So by Lemma 3.3 and the

definition of Â(x), π(da|x) is concentrated on Â(x) for all x ∈ Sλ⃗′
π

∩
Sλ⃗′
πex . We define a policy π̂ such

that

π̂(da|x) = π(da|x), ∀ x ∈ Sλ⃗′
π

∩
Sλ⃗′
πex

and

π̂(da|x) = I{ψ∗(x) ∈ da}, ∀ x ∈ S \ (Sλ⃗′
π

∩
Sλ⃗′
πex).

In either of the above two cases, π̂ is a stable policy for the auxiliary CTMDP model because (by
(22)-(23) in case S is uncountable)

ηπ(dx, da) = ηπ(dx,A)π(da|x) = ηπ(dx,A)π̂(da|x).
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It follows from the last equalities that

(V (γ, π, c0), . . . , V (γ, π, ck)) = (V (γ, π̂, c0), . . . , V (γ, π̂, ck)) ∈ V̂.

Consequently, Ũ ⊆ V̂ because the point (V (γ, π, c0), . . . , V (γ, π, ck)) ∈ Ũ is arbitrarily fixed.
Therefore, V̂ = Ũ , i.e., the auxiliary Â-CTMDP model

{S,A, Â(x), q(dy|x, a), (ci(x, a), di)ki=0, γ}

has the space of relevant performance vectors the same as the space Ũ defined by (18), as claimed
above. Below we legally study the space Ũ as the space of relevant performance vectors for the auxiliary
Â-CTMDP model {S,A, Â(x), q(dy|x, a), (ci(x, a), di)ki=0, γ}, and since the fixed extreme point vex of
V is also an extreme point of Ũ = V̂, and any deterministic stationary policy for the auxiliary Â-
CTMDP model is also one for the original CTMDP model, to complete the inductive argument, our
objective becomes to show that vex is generated by a deterministic stationary policy for the auxiliary
Â-CTMDP model {S,A, Â(x), q(dy|x, a), (ci(x, a), di)ki=0, γ}.

For the auxiliary model, a deterministic stationary policy generates the point vex = (vex0 , v
ex
1 , . . . , v

ex
k )

if and only if it generates (vex0 , v
ex
1 , . . . , v

ex
k−1) because

vexk =
v∗(λ⃗′)−

∑k−1
i=0 λ

′
iv

ex
i

λ′k
, (24)

see (15)-(18); recall that V̂ = Ũ and λ′k ̸= 0. So it is equivalent to consider the auxiliary CTMDP
model

{S,A, Â(x), q(dy|x, a), (ci(x, a), di)k−1
i=0 , γ}

with only k−1 constraints, for which we denote the space of relevant performance vectors by V̂ ′ ⊆ Rk.
For this CTMDP model with k − 1 constraints, the corresponding versions of Conditions 2.1, 3.1,

3.2, and 3.3 in case S is denumerable, and additionally Condition 3.4 in case S is uncountable, are all
satisfied, because so are they by the auxiliary model {S,A, Â(x), q(dy|x, a), (ci(x, a), di)ki=0, γ} with k
constraints. Since (vex0 , v

ex
1 , . . . , v

ex
k ) is an extreme point of Ũ = V̂, (vex0 , vex1 , . . . , vexk−1) is an extreme

point of V̂ ′, see (24). Therefore, by the inductive supposition, the extreme point (vex0 , v
ex
1 , . . . , v

ex
k−1)

is generated by a deterministic stationary policy φ for the CTMDP model

{S,A, Â(x), q(dy|x, a), (ci(x, a), di)k−1
i=0 , γ}

with k−1 constraints and thus also for the original CTMDP model. It follows from this and (24) that
the originally arbitrarily fixed extreme point vex = (vex0 , v

ex
1 , . . . , v

ex
k ) of V is generated by a determin-

istic stationary policy φ for the original CTMDP model. This completes the inductive argument, and
the statement is thus proved. 2

Appendix

Proof of Proposition 3.1. Note that D is a subset of Pw′(K) by Remark 3.2. The non-emptiness
of D follows from the proof of [22, Thm.3.9(a)], and the convexity of D is evident, following from the
definition of stable measures. Below we prove the compactness of D.

Firstly, we prove that D is precompact in (Pw′(K), τ(Pw′(K))). Since the function w′(·) is contin-
uous, by Lemma 3.1, it is equivalent to proving the set D̃ := Tw′(D), where Tw′ is defined by (4),
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to be precompact in (P1(K), τ(P1(K))), where we recall that the usual weak topology τ(P1(K)) is
metrizable. Then for any η̃ = Tw′(η) ∈ D̃, where η ∈ D, it holds that∫

K

w(x)

w′(x)
η̃(dx, da) =

∫
Kw(x)η(dx, da)∫
Kw

′(x)η(dx, da)
≤
∫
K
w(x)η(dx, da) ≤ 1 +

b

ρ
, (25)

where the first equality is by the definition of the mapping Tw′ , the first inequality is by that w′(x) ≥ 1,
and the second inequality follows from that η ∈ D and the definition of stable measures, see (2). Since
under Condition 3.1(c), the function w

w′ is a moment by [23, Def.E.7], it then follows from (25) that

the family D̃ is tight. Hence, one can refer to Prokhorov’s theorem for the precompactness of D̃. Thus,
D is precompact in (Pw′(K), τ(Pw′(K))).

Secondly, we show that D is w′-closed in Pw′(K). By Lemma 3.1, it suffices to consider the con-

vergence of sequences. So let {ηn} be a sequence in D such that ηn
w′
→ η, where η ∈ Pw′(K). (Here ηn

should not be confused with the empirical measures defined by (6).) Then on the one hand,∫
K
w(x)η(dx, da) = lim

m↑∞

∫
K
min{w(x),m}η(dx, da)

= lim
m↑∞

(
lim
n→∞

∫
K
min{w(x),m}ηn(dx, da)

)
≤ lim

m↑∞
lim
n→∞

∫
K
w(x)ηn(dx, da) ≤ lim

m→∞

(
1 +

b

ρ

)
= 1 +

b

ρ
,

where the first equality is by Levy’s monotone convergence theorem, the second equality is by the
continuity of w and the convergence of {ηn}, and the second inequality is by that ηn ∈ D and the
definition of stable measures, see (2). Hence, (2) is satisfied by the measure η. On the other hand, if
we consider the signed measure defined by

∫
K q(dy|x, a)η(dx, da), which is finite, then for any bounded

continuous function g(·) on S, it holds that∫
S
g(y)

∫
K
q(dy|x, a)η(dx, da) =

∫
K

(∫
S
g(y)q(dy|x, a)

)
η(dx, da)

= lim
n→∞

∫
K

∫
S
g(y)q(dy|x, a)ηn(dx, da)

= lim
n→∞

∫
S
g(y)

∫
K
q(dy|x, a)ηn(dx, da) = 0,

where the second equality is by that
∫
S g(y)q(dy|x, a) is continuous and w′-bounded on K, and

ηn
w′
→ η, and the last equality is by (3). This, by [45, Lem. 2.3], implies that the signed measure∫

K q(dy|x, a)η(dx, da) is equal to zero, and (3) is satisfied by the measure η. Thus, both conditions of
Definition 3.1 are satisfied by η, i.e., η ∈ D. Consequently, D is w′-closed in Pw′(K).

Finally, it follows from the closedness and precompactness that D is w′-compact in Pw′(K). 2

Proof of Lemma 3.2. (a) As in the proof of [36, Lem.A3], for each i = 0, 1, . . . , N, there exists an
increasing sequence of w′-bounded continuous functions ci,m(x, a) on K and a constant c ∈ R such
that ci,m(x, a) ↑ ci(x, a) and supi,m |ci,m(x, a)| ≤ cw′(x) for all (x, a) ∈ K. It follows from this and a

standard argument that for any convergent sequence ηn
w′
→ η, where ηn, η ∈ Pw′(K),

lim
n→∞

∫
K
ci(x, a)ηn(dx, da) ≥

∫
K
ci(x, a)η(dx, da),

i.e.,
∫
K ci(x, a)η(dx, da) is lower semicontinuous in η ∈ Pw′(K).
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(b) This part of the lemma was presented as Theorem 3.9(a) in [22] assuming the continuity of the
cost rates ci(x, a), i = 0, 1, . . . , N . The proof of [22, Thm.3.9(a)] still applies to lower semicontinuous
functions ci(x, a), i = 0, 1, . . . , N ; one only needs legally change the first equality in [22, Eqn.(3.11)]
to inequality “≥” by using the fact in (a). 2

Proof of Proposition 3.2. Under the imposed conditions, for any i = 0, 1, . . . , N, it follows from
Lemma 3.2 (a) that the function

∫
K ci(x, a)η(dx, da) is lower semicontinuous in η ∈ D. Therefore, the

space of feasible stable measures defined by DF := {η ∈ D :
∫
K cj(x, a)η(dx, da) ≤ dj , j = 1, 2, . . . , N}

is w′-closed in D. Since D is w′-compact by Proposition 3.1, DF , as a closed subset of D, is w′-compact,
too. The statement now follows. 2

Proof of Lemma 3.3. Part (a) follows from [19, Thm.4.2] for this statement.
For part (b), it follows from part (a) that for each (x, a) ∈ K

cλ⃗(x, a) +

∫
S
u∗2(y)q(dy|x, a) ≥ v∗(λ⃗) ≥ cλ⃗(x, φ∗(x)) +

∫
S
u∗1(y)q(dy|x, φ∗(x)). (26)

For any stable policy π, let ηπ(dx, da) denote the stable measure corresponding to π. Then from the
first inequality in (26) one obtains

v∗(λ⃗) ≤
∫
K
cλ⃗(x, a)π(da|x)ηπ(dx,A) +

∫
S
ηπ(dx,A)

∫
S
u∗2(y)

∫
A(x)

q(dy|x, a)π(da|x)

=

∫
K
cλ⃗(x, a)π(da|x)ηπ(dx,A) +

∫
S
u∗2(y)

∫
K
q(dy|x, a)π(da|x)ηπ(dx,A)

= V (γ, π, cλ⃗), (27)

where the last equality is by Condition 3.4 and the definition of a stable policy, and the interchanges
of the order of integration are all legal due to Fubini’s theorem.

Similarly, from the second inequality in (26) we have v∗(λ⃗) ≥ V (γ, φ∗, cλ⃗), which, together with
(27) and Condition 3.4, implies the statement of (b).

Part (c) follows from part (a) and (27).
Part (d) can be seen by applying the reasoning presented in Theorem 7.8 in Chapter 7 of [20] (the

conditions assumed therein can be relaxed to the present setup). 2
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