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Abstract

A number of high order variational models for image denoising have
been proposed within the last few years. The main motivation behind
these models is to fix problems such as the staircase effect and the loss of
image contrast that the classical Rudin-Osher-Fatemi model [Phys. D, 60
(1992), pp. 259–268] and others also based on the gradient of the image
do have. In this work, we propose a new variational model for image
denoising based on the Gaussian curvature (GC) of the image surface
of a given image. We analytically study the proposed model to show
why it preserves image contrast, recovers sharp edges, does not transform
piecewise smooth functions into piecewise constant functions and is also
able to preserve corners. In addition, we also provide two fast solvers for
its numerical realization. Numerical experiments are shown to illustrate
the good performance of the algorithms and test results.

AMS subject class: 68U10, 65F22, 65K10.
Keywords: Denoising, variational models, regularization, augmented La-

grangian method.

1 Introduction

Image denoising is the technique used to approximate a true image from an
observed noisy image. There exist many different ways to achieve this goal. For
instance, spatial linear filtering [19], linear and nonlinear anisotropic filtering
using a partial differential equation (PDE) [25, 35], Wavelet-based methods
[36, 13, 14], Markov-Random-Field-based methods [34] and variational methods
[28, 1] just to mention a few have been proposed in the past.

Among variational methods, maybe the most popular and deeply analyzed
model is the Total Variation (TV) image denoising model also known as the
ROF model [26]. Although, on one hand, this model is extremely good in

∗C. Brito-Loeza and V. Uc-Cetina are with Facultad de Matemáticas, Universidad
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removing noise and preserving edges and image contours, on the other hand, it
makes smooth regions of the images to look blocky creating a visually unpleasant
effect and has also the tendency to reduce the image contrast of low scale objects
[30]. We note that a Bregman based approach [18] can improve the restoration
in a large extent but not in theory. In this paper, we propose a new high
order model based on the Gaussian curvature of the image surface. We will
show analytically in a future section that our model does not suffer from the
aforementioned problems and still is capable of removing noise fairly from the
image while keeping edges and contours sharp.

Our model finds its foundations in the recent works: [22] where some curva-
ture approximation is used for image denoising, [6] where mean curvature (MC)
is used for surface fairing, the work in [41] where MC of the image surface is
proposed for 2-D denoising and [15] where the analogue of the total variation
denoising model in the context of geometry processing is introduced. On one
hand [6, 22, 41], are successful examples of a high order models sharing many
of the good properties already mentioned for our model. In fact, we will use
through out this manuscript some of the techniques developed in [41] to prove
some of our arguments. On the other hand, up to our knowledge, [15] is the
very first work to introduce the Gaussian curvature of the surface as a tool to
develop a variational model for geometric processing.

A very frequent occurring type of noise in nature is additive and has Gaussian
probability distribution with zero-mean and given variance σ. Therefore a noisy
image can be mathematically modeled with the equation

f(x, y) = u(x, y) + η(x, y) (1)

where f = f(x, y) is the known noisy image, u = u(x, y) is the unknown true
image and η = η(x, y) is the unknown additive noise all of them defined on a
domain Ω ⊆ R2. From the variational point of view, the task of removing noise
can be accomplished by solving a minimization problem such as

min
u

{∫
Ω

(f − u)2 dxdy + αR(u)

}
(2)

where α > 0 is a tuning parameter which can be optimized if the underlying
noise variance is estimated [40] and R(u) a given regularizer. Maybe the most
popular selection so far for the regularizer R(u) is the total variation of u defined
as
∫

Ω
|∇u| dxdy. This regularizer was proposed for the denoising ROF model

in [26]. The ROF model yields very good results when the image is piecewise
constant by being capable of removing image noise while preserving edges of
objects. However, it also has some well known drawbacks such as the loss of
image contrast and the staircase effect, the latter very unfortunate when the true
image is smooth or piecewise smooth causing the restored image to have some
artifacts and to look blocky. Although some effort has been made [23, 27, 12]
to numerically reduce the staircase effect, some researchers just recently started
turning to higher order models looking for better solutions. In this direction are
for instance the works presented in [39, 22, 21] which tested different ways of
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combining second order derivatives in the regularizer, MC-based models [6, 41]
which use the L1 norm of the MC as regularizer and the Total Generalized
Variation (TGV) model [5] which is based on obtaining the optimal balancing
between the first and second derivative of the image. Consequently, this model
prefers piecewise smooth images over staircase images in terms of penalization.

In particular, there are two models, [41] and [7], both based on a well known
geometric entity: mean curvature, which are closest to ours. These two models
differ on that [41] use as regularizer the MC of the surface implicitly generated
by the image while [7] use the MC of the level lines of the image. The popu-
larity of mean curvature has grown within the last years because in addition to
removing noise, is also able to keeping edges and contours of objects sharp and
to preserving corners, smooth regions and image gray-scale intensity contrasts
as well. Mean curvature based regularizers have been proposed for different
imaging applications. For instance, in [41] for image denoising, [10] for image
registration, [8, 24] for image inpainting, and [42] for segmentation.

1.1 Review

We will review in more detail the two models that we have identified as closest to
ours: the image denoising model using the mean curvature of the image surface
[41] and the image denoising model using the curvature of the level-lines of the
image [7].

The model introduced by Zhu and Chan in [41] is based on the curvature of
the surface S induced by some image u(x, y) through the mapping (x, y, u(x, y)).
The authors in [41] defined their 2-D variational image denoising model as the
following minimization problem:

min
u

{∫
Ω

(f − u)2 dxdy + α

∫
Ω

|κM | dxdy
}
. (3)

where

κM = ∇ ·

(
∇u√
|∇u|2 + 1

)
. (4)

A related but different model was proposed in [21] where curvature is ap-
proximated and not solved directly. The model (3) was studied in [7] by using
the curvature of the image level lines

κM = ∇ ·

(
∇u√
|∇u|2 + ε

)
(5)

where the regularizing parameter ε has been added to avoid division by zero.
It is clear that both models, [7] and [41], are the same when ε → 1. This

apparently slight change has dramatic effects to the model’s solution. On one
hand, small ε let us to recover sharp edges easily but on other hand the numerical
solution gets much harder to obtain by means of the classical methods. In
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[7] a fast nonlinear multigrid method was developed for both models but its
performance showed to be much better for [41] than for [7]. A simple explanation
maybe found looking at the ellipticity of κM . When ε = 1 the ellipticity of κM
is much larger than that obtained when ε → 0. The ellipticity of the diffusion
PDE one needs to solve either for [41] or [7] depends strongly on κM therefore
multigrid methods will perform much better in the former case.

The above observation prompted the motivation of looking for a new model
in between the former two but at the same time sharing their nice properties:
large ellipticity and sharp reconstructions.

The use of geometric entities to create new variational models maybe an
advantage since all tools from the field of differential geometry are available to
us helping to get a better insight of these models. There are also good solvers
for (3), for instance: the augmented Lagrangian method from [43], the nonlinear
multigrid method proposed in [7, 10], the homotopy method from [16] and the
iterative method from [29].

Mean curvature has already been used in a different way to denoise an image.
Recently, Bertalmı́o and Levine [4] showed that when an image is corrupted by
additive noise, the curvature of the level sets of the image is less affected by
it. Based on this observation, they designed a method to obtain better results
by applying it to the curvature image and then reconstructing from it a clean
image, rather than denoising the original image directly. Although they used
mean curvature, we believe that Gaussian curvature would be a good candidate
as well. In that sense, the model we propose here could be adapted to Bertalmı́o
and Levine’s model. Also related is the model from [31] where the authors
proposed a compound denoising model fo first and second order derivatives.

A related work to image denoising using the curvature of the image surface
is the surface fairing model presented by Elsey and Esedoglu [15]. There the
authors proposed the analogue of the total variation denoising model in the con-
text of geometry processing by defining a new regularizer based on the Gaussian
curvature of a closed surface and using it to remove noise in 3D objects. Their
model preserves sharp edges and corners such as the MC model does in 2D de-
noising. Hence, a natural question arises from here: Is the Gaussian curvature
based regularizer suitable for image denoising? The objective of this paper is
to provide an answer to this question.

The outline of this paper is as follows. In §2 we introduce the new Gaussian
curvature based regularizer. In §3 we carry out the analysis of the proposed
model. In §4 two different iterative methods: the two-step (TS) method and the
augmented Lagrangian (ALM) method are proposed for the numerical solution
of the GC model. In §5, we present experimental results to highlight the virtues
of the model and numerical evidence to show the very good performance of both
numerical algorithms. Finally in §6 we present our conclusions.
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2 The new Gaussian curvature regularizer for
image denoising

As we explained in the previous section, and motivated by the good results of
the 3D fairing model of Elsey and Esedoglu, we explore here a GC based model
for 2D image denoising.

The GC of a 3D surface S represented implicitly by the zero level set function
φ is given by

κG =
∇φH∗(φ)∇φT

|∇φ|4
(6)

where ∇φ = (φx, φy, φz) is the gradient vector, |∇φ| =
√
φ2
x + φ2

y + φ2
z the

gradient norm,

H(φ) =

 φxx φxy φxz
φyx φyy φyz
φzx φzy φzz

 and

H∗(φ) =

 φyyφzz − φyzφzy φyzφzx − φyxφzz φyxφzy − φyyφzx
φxzφzy − φxyφzz φxxφzz − φxzφzx φxyφzx − φxxφzy
φxyφyz − φxzφyy φyxφxz − φxxφyz φxxφyy − φxyφyx

T

are the Hessian matrix H(φ) and its adjoint H∗(φ). The derivation of this
formula can be found in [17].

Consider an image function u(x, y) and think of S as the graph of u. Then
we can use the relation φ = u(x, y)− z to get a formula for κG. With this new
set of coordinates, the gradient is given by ∇φ = (ux, uy,−1)T and the Hessian
and its adjoint can be expressed as follows

H(φ) =

 uxx uxy 0
uyx uyy 0
0 0 0

 ,

H∗(φ) =

 0 0 0
0 0 0
0 0 uxxuyy − uxyuyx

 .

Therefore the Gaussian curvature of the image surface reads

κG =
uxxuyy − uxyuyx
(u2
x + u2

y + 1)2
. (7)

Now we are ready to formulate our new model using the functional

R(u) =

∫
Ω

∣∣∣∣uxxuyy − uxyuyx(u2
x + u2

y + 1)2

∣∣∣∣ dxdy (8)
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as a regularizer. Note that the numerator in the definition of κG is equal to
the determinant of the Hessian of u. Therefore the new image denoising model
based on the GC of the image surface may be written as

min
u
E(u) =

{∫
Ω

(f − u)2 dxdy + α

∫
Ω

∣∣∣∣ det(H(u))

(|∇u|2 + 1)2

∣∣∣∣ dxdy} . (9)

To find the solution of the GC model, ones has to solve the Euler-Lagrange
equation

α∇ ·
(

4|uxxuyy − uxyuyx|
N 3

∇u
)

+∇ ·B1 +∇ ·B2 + u− f = 0 (10)

with boundary conditions

(−uxy, uxx) · ν = 0, (uyy,−uyx) · ν = 0,−B1 · ν = 0, and −B2 · ν = 0

where definitions for B1 and B2 along with derivation of this PDE can be found
in Appendix A.

In the following section we will analyze some properties of the GC model.
However at this moment we have no mathematical proof of the existence and
uniqueness of its solution remaining an open problem.

3 Analysis of the model

It is important to show that our proposed model (9), provided some conditions
are satisfied, is able to preserve image contrast, edges and corners such as the
MC model does. To achieve this, we will extend the results from [41] for the
MC model to the new GC model and highlight steps unique to it.

3.1 Contrast preservation

In order to show that the GC regularizer preserves image contrast, we need to
prove that it does not depend on the brightness of image objects here represented
by h. To this end, we adopt the analysis method of [41].

• Consider a sharp image f = hχB(0,R) defined on a rectangle Ω = (−2R, 2R)×
(−2R, 2R), where χ is the characteristic function, B(0, R) is an open disk
in R2 centered at the origin with radius R and h > 0.

• Consider the set S of functions defined as

S =
{
g ∈ C2[0, 2R] : g′′(x) ≤ 0 if x ∈ (0, R), g′′(x) ≥ 0 if x ∈ (R, 2R);

there exist R1, R2, 0 < R1 < R < R2 < 2R, such that

g(x) = h if x ∈ [0, R1] and g(x) = 0 if x ∈ [R2, 2R]; g′(R) < −2h/R} .

where g ∈ S is a one variable function which generates an image surface
by rotating about the vertical axis. The resulting rotating function defines
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an image surface (x, y, u(x, y)) in terms of g through u(x, y) = g(r) with

r =
√
x2 + y2. From S, we can choose a convenient sequence of radial

symmetric smooth functions g whose revolution surfaces approach the
graph of f .

One way to construct such a sequence of functions g is by using the sig-
moidal function g(x) = h/(1 + exp(−a(x − c))) where h, c are constants
and letting a→∞. We illustrate this in Figure 1. Clearly as a grows, the
revolution surface approximates the graph of f .

(i) (ii) (iii)

Figure 1: (i) Family of g functions obtained with g(x) = h/(1 + exp(−a(x− c)))
where h = 1, c = −0.5 and a varying from 5 to 40. (ii) - (iii) Revolution surfaces
obtained by rotating g over the z axis with a = 15 and a = 40 respectively.

• The GC regularizer for the chosen sequence will be computed and the
limit taken to show that

∫
κG(f) does not depend on h.

In the Appendix B, it is shown that the GC can be expressed in terms of g
as follows:

κG =
uxxuyy − uxyuyx
(1 + u2

x + u2
y)2

=
g′g′′

r(1 + (g′)2)2
. (11)

Hence, ∫
|κG|dxdy =

∫ 2π

0

dθ

∫ 2R

0

r|κG|dr

= 2π

∫ 2R

0

r

∣∣∣∣ g′g′′

r(1 + (g′)2)2

∣∣∣∣ dr
= 2π

∫ 2R

0

∣∣∣∣ g′g′′

(1 + (g′)2)2

∣∣∣∣ dr.
= π

∫ 2R

0

∣∣∣∣∣−
(

1

1 + (g′)2

)′∣∣∣∣∣ dr. (12)

To compute (12) we proceed by splitting the integral over the two intervals
[0, R] and [R, 2R].
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First, when r ∈ [0, R], g′(0) = 0, g′ ≤ 0, g′′ ≤ 0 therefore κG ≥ 0 and∫
|κG|dxdy = −π

∫ R

0

(
1

1 + (g′)2

)′
dr

= −π
(

1

1 + (g′(R))2
− 1

1 + (g′(0))2

)
=

−π
1 + (g′(R))2

+ π. (13)

Second, when r ∈ [R, 2R], g′(2R) = 0, g′ ≤ 0, g′′ ≥ 0 therefore κG ≤ 0 and∫
|κG|dxdy = π

∫ 2R

R

(
1

1 + (g′)2

)′
dr

= π

(
1

1 + (g′(2R))2
− 1

1 + (g′(R))2

)
=

−π
1 + (g′(R))2

+ π. (14)

Hence for r ∈ [0, 2R],∫
|κG|dxdy =

−2π

1 + (g′(R))2
+ 2π. (15)

However as the revolution surface generated with g approaches the graph of f ,
g′(R)→∞ yielding ∫

|κG|dxdy = 2π. (16)

The last equation, means that the regularizer based on the GC of the image
surface does not depend on h, therefore it is invariant to changes in the gray level
intensities. Our model shares this property with the mean curvature regularizer.

3.2 Edge preservation

We now show that the GC model preserves edges. To show edge preservation
we need to demonstrate that E(f) < E(g) for g ∈ S. Note that E(g) is defined
as

E(g) = α

∫
|κG|dxdy +

∫
(f − g)2dxdy. (17)

The result from [41] gives∫
(f − g)2dxdy ≥ − πh3R

12g′(R)
.
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Hence we only need to focus on the regularization term. From (15) we already
know that ∫

|κG|dxdy =
−2π

1 + (g′(R))2
+ 2π.

Therefore the following inequality is true

E(g) > α

(
−2π

1 + (g′(R))2
+ 2π

)
− πh3R

12g′(R)

= α

(
−2π

1 + (−g′(R))2
+ 2π

)
+

πh3R

12(−g′(R))
. (18)

Now define s = −g′(R) and consider

ζ(s) = α

(
−2π

1 + s2
+ 2π

)
+
πh3R

12s

= α2π

(
s2

1 + s2

)
+
πh3R

12s
. (19)

Note that by definition the domain of ζ is the interval [ 2h
R ,+∞). By defining

C1 = 2π and C2 = πh3R
12 we obtain

ζ(s) =
αC1s

2

1 + s2
+
C2

s
(20)

and

lim
s→∞

ζ(s) = lim
s→∞

αC1s
2

1 + s2
+
C2

s
= αC1. (21)

Further,

ζ ′(s) =
2αC1s

(1 + s2)2
− C2

s2

<
2αC1

s3
− C2

s2

=
2C1

s3

(
α− C2

2C1
s

)
. (22)

Thus selecting α < C2

2C1

2h
R we find that ζ ′(s) < 0 for any s ∈ [ 2h

R ,+∞). In other
words, provided α is less than

αmax <
C2

2C1

2h

R
=
h4

24
, (23)

ζ(s) is decreasing with limit αC1 implying E(g) > αC1.
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From (16) and (17)

E(f) = 2πα = αC1 < E(g) (24)

for any g ∈ S. From here, using the same arguments to those presented in
[41], for any small ε > 0, we can find a smooth function g ∈ S such that
E(g)− ε < E(f) < E(g) hence E(f) = infu∈S E(u).

Since f is a sharp object, this proves that the GC model preserves sharps
edges. In addition, this also shows that for rightly selected α, the image contrast
of f is preserved.

3.3 Corner preservation

To show corner preservation, we follow a similar procedure to the one used
before for contrast preservation. This time, however, a sharp image f = hχZ is
defined on a rectangle Ω = (−R,R) × (−R,R) with Z = (0, R) × (0, R). The
image f is therefore a square with brightness h or a rectangular parallelepiped
when viewed as a 3-D surface.

To generate the new image surface (x, y, ζ(x, y) we have to redefine both:
the one variable function g and the set S. To this end, let

S =
{
g ∈ C2(R) : g(x) = 0 if x < −1, g(x) = 1 if x > 1;

g′′ ≥ 0 in (−1, 0), g′′ ≤ 0 in (0, 1); and 1 ≤ g′(0) ≤ 2} (25)

and define ζ(x, y) in terms of g through

ζ(x, y) =

 hg( 2y
ε ) (x, y) ∈ [ε, R)× (−R,R)

hg( 2x
ε ) (x, y) ∈ (−R, ε)× [ε, R)

hg(2− 2r
ε ) (x, y) ∈ (−R, ε)× (−R, ε)

(26)

with r =
√

(x− ε)2 + (y − ε)2.
From S, and choosing small enough ε, we can construct a convenient sequence

of smooth functions g to approximate the graph of f . The surface z = ζ(x, y)
constructed this way is sufficiently sharp around the edges {x = 0, y ∈ [ε, R)}
and {y = 0, x ∈ [ε, R)} and the corner (0, 0).

It is easy to see that g′ ≥ 0 for Ω1 = [ε, R) × (−R,R), g′′ ≥ 0 for [ε, R) ×
(−R, 0) and g′′ ≤ 0 for [ε, R)× (0, R). Therefore,∫

Ω1

|κG| dxdy =

∫ R

ε

[∫ 0

−R
κG dy −

∫ R

0

κG dy

]
dx

=
2(R− ε)

1 + [ 2h
ε ρ
′(0)]2

(27)

In similar fashion, g′ ≥ 0 for Ω2 = (−R, ε) × [ε, R), g′′ ≥ 0 for (−R, 0) × [ε, R)
and g′′ ≤ 0 for (0, R)× [ε, R) and∫

Ω2

|κG| dxdy =
2(R− ε)

1 + [ 2h
ε ρ
′(0)]2

(28)
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By noticing that in the limit when ε→ 0, ρ′(0)→∞ we find that
∫
|κG| dxdy =

0 in both Ω1 and Ω2. In the last sub-domain Ω3 = (−R, ε)×(−R, ε) approximat-
ing the corner, at each point (x, y) ∈ Ω3 at least one of the principal curvatures
of the surface lies either on a flat region or an edge. Therefore without any cal-
culation we can infer that

∫
Ω3
|κG| dxdy = 0 again. This is, Gaussian curvature

regularization not only is h-independent but has null value in this example as
well.

Hence E(f) = infu∈QE(u) and being f an object with sharp edges and
a corner, this confirms that Gaussian curvature regularization preserves edges
and corners. Although the analysis was done for a simple rectangular object
aligned to the grid the previous result give an insight of the behavior of the GC
regularizer when dealing with objects with corners.

4 Numerical solution

We now consider the numerical solution of model (9) i.e.

min
u

{∫
Ω

(f − u)2 dxdy + α

∫
Ω

∣∣∣∣ det(H(u))

(|∇u|2 + 1)2

∣∣∣∣ dxdy}
which has the Euler-Lagrange equation (10) i.e.

α∇ ·
(

4|uxyuyx − uxxuyy|
N 3

∇u
)

+∇ ·B1 +∇ ·B2 + u− f = 0

with boundary conditions

(−uxy, uxx) · ν = 0, (uyy,−uyx) · ν = 0,−B1 · ν = 0, and −B2 · ν = 0

It can be appreciated that the above equation is a fourth order nonlinear
PDE with diffusion coefficients yielding anisotropic diffusion. In our initial tests,
using the simple gradient descent method as numerical solver, this equation
showed to be very stiff. One way to solve it efficiently is to develop a multigrid
method as in [7]. Here we consider alternative unilevel methods.

In what follows we will present two different and fast ways to obtain the
numerical solution of the Gaussian curvature model. First we will show how to
implement a proven method based on smoothing the noisy vector field generated
from the noisy image and recovering the denoised gray level values by nonlinear
interpolation. This two-step method has already proven successful in different
scenarios [6, 2, 22, 33, 32]. Then we will move to introduce the augmented
Lagrangian method for the GC model.

4.1 A two-step method based on vector field smoothing
and gray level interpolation

Our first selection, is a method where a vector field is constructed from the
noisy image, this vector field is smoothed and gray levels recovered by interpo-
lation. Theses steps are repeated a number of times until a satisfactory result
is obtained. At each step, a second order nonlinear PDE has to be solved.
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In the case of the GC model, the two-step (TS) method is a cyclic process
where the first step is to re-write the regularization part of (9) as a function of
the unit vector N = ∇u/|∇u| and minimize with respect to N . The second
step involves recovering u from N by solving

min
u

{∫
Ω

|∇u| − ∇u ·N dxdy + γ

∫
Ω

(f − u)2 dxdy

}
. (29)

for suitable positive γ = 1/α. The two-step cycle is repeated as many times as
needed. Practically the convergence is fast.

For (9), we need to discuss how the first step can be completely achieved.
However if we redefine N as N = ∇u then,

det(H(u)) = det(∇N) (30)

where ∇N represents a matrix whose rows are the gradient vectors of the com-
ponents of N i.e. the Hessian of u. Due to the new definition of N , the unit
vector condition will not be necessarily satisfied everywhere in the domain. To
fix this problem, N is numerically enforced to be a unit vector using simple
brute force at the end of the first step in every cycle.

The second order partial differential equation that needs to be solved in the
first step comes from following minimization problem:

min
N

R(N , u) ≡
{∫

Ω

∣∣∣∣ det(∇N)

(|∇u|2 + 1)2

∣∣∣∣ dxdy} . (31)

By introducing a small vector variation Ψ = (ε1ψ1, ε2ψ2)T , to N = (N1, N2)T ,
the first order optimality conditions for this problem can be expressed as

dR(N + Ψ)

dε1
= 0 and

dR(N + Ψ)

dε2
= 0. (32)

The above equations, involve differentiating the determinant of a matrix,
say A, with respect a parameter ε. This can be done using the following known
formula:

d

dε
det A(ε) = det A(ε)trace

(
(A−1(ε))

d

dε
A(ε)

)
. (33)

Applying (33) to (32) and after some manipulation, we obtain the Euler-
Lagrange equations of (31)

sign

(
det(∇N)

(|∇u|2 + 1)2

)
∇ · ((N2)y,−(N2)x) = 0 (34)

sign

(
det(∇N)

(|∇u|2 + 1)2

)
∇ · ((−N1)y, (N1)x) = 0. (35)

The whole procedure of the TS method is summarized in Algorithm 1.
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Algorithm 1. TS method

Require: u0 = f , ε > 0, IN1, IN2, OUT
n = 0; compute N0 using f
while n < OUT do
for k=0 to IN1 do

With Nn as initial guess, solve (34) and (35) keeping un lagged

Nk+1
1 = Nk

1 −∆t
(
sign

(
det(∇N)

(|∇un|2+1)2

)
∇ · ((N2)y,−(N2)x)

)
Nk+1

2 = Nk
2 −∆t

(
sign

(
det(∇N)

(|∇un|2+1)2

)
∇ · ((−N1)y, (N1)x)

)
end for
Update N by doing Nn+1 = N IN1

Normalize N = N/∇N
for k=0 to IN2 do

With un as initial guess, solve the following equation keeping Nn+1

lagged

uk+1 = uk −∆t
(
−∇ · ∇uk

|∇uk|+ε +∇ ·N + γ(f − uk)
)

end for
Update un by doing un+1 = uIN2

n = n+ 1
end while

where ε is a small positive value to avoid division by zero

Although, at present time we have no formal proof of the convergence of this
method for the GC model, we will present evidence in the numerical experiments
section showing that in fact this method performs very well when solving the
GC model. Further, in [3] the authors provided a complete proof of convergence
of the very same technique applied to a very similar problem: a variant of the
Euler’s elastica inpainting model and therefore a mean curvature based model.
A similar convergence analysis for the GC model following the steps of [3] will
be part of our future work. Last but not least, the idea of first smoothing a noisy
vector field and recovering smoothed intensity values from it by interpolation
has been successfully tested either for surface fairing problems in [6, 32] or image
denoising and inpainting in [2, 22].

4.2 Augmented Lagrangian Method for the Gaussian cur-
vature based model

Our second method is the augmented Lagrangian method (ALM) which recently
has seen its popularity increased in the image processing community due to the
remarkable results delivered. Some examples of its use for solving variational
models can be found in [38, 9, 37, 43] and references therein.

We will proceed to show how to implement ALM for the Gaussian curvature
based denoising model. To this end, we introduce some basic notation: the
Euclidean space RM×N of matrices M ×N is denoted as V . A gray-scale image

13



u lives in V and its gradient ∇u lives in Q = V ×V . To distinguish between the
inner products and Euclidean norms in each space we use the following notation:
we use (·, ·)V and ‖·‖V to denote the usual inner product and Euclidean norm of
V and similarly (·, ·)Q and ‖·‖Q to denote the same in the space Q. In the latter
case, they are defined as follows: for p = (p1, p2) ∈ Q and q = (q1, q2) ∈ Q,
(p, q)Q = (p1, q1)V + (p2, q2)V and ‖p‖Q =

√
(p,p)Q.

To solve the GC denoising model (9) with the augmented Lagrangian method
we introduce the variables p ∈ Q and v ∈ V and reformulate the problem as
the following constrained optimization problem

min
u∈V,p∈Q

{
GGC(u,p) = RGC(u,p) +

α

2
‖u− f‖2V

}
,

s.t. p = ∇u. (36)

The augmented Lagrangian functional for the above constrained optimiza-
tion problem is as follows:

LGC(v, q;µ) = RGC(v, q) +
α

2
‖v − f‖2V + (µ, q −∇v)Q +

r

2
‖q −∇v‖2Q, (37)

where µ ∈ Q is the Lagrange multiplier and r is a positive constant. The
saddle-point problem for the augmented Lagrangian method for the Gaussian
curvature model is

Find (u,p,λ) ∈ V ×Q×Q
s.t. LGC(u,p,µ) ≤ LGC(u,p,λ) ≤ LGC(v, q,λ) ∀(v, q,µ) ∈ V ×Q×Q.

(38)

To solve the saddle-point problem, the iterative algorithm described in Al-
gorithm 2 is used

Algorithm 2. Augmented Lagrangian method for the Gaussian curvature
based denoising model

Initialize λ0 = 0
for k=0 to MAX do

Compute (uk,pk) as an approximate minimizer of the augmented Lagrangian
functional with the Lagrange multiplier λk i.e.,

(uk,pk) ≈ min
(v,q)∈V×Q

LGC(v, q;λk), (39)

where LGC(v, q;λk) is defined in (37)
update λk+1 = λk + r(pk −∇uk)

end for

In Algorithm 2 we use an alternate minimization procedure to approximate
the solution. This is, we solve two sub-problems, first we solve for u and second
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for p. This process is repeated until the following stopping criteria based on the
relative error of the solution is satisfied:

‖uk − uk−1‖L1

‖uk−1‖L1

< ε (40)

for predefined small ε > 0.

4.2.1 Sub-problem for u

For a given q and λ

min
v∈V

{α
2
‖v − f‖2V − (λk,∇v)Q +

r

2
‖q −∇v‖2Q

}
. (41)

This sub-problem can be efficiently solved using the optimality condition given
by the linear PDE

−r∆v + α(v − f) +∇ · λk + r∇ · q = 0. (42)

Here we use Neumann’s boundary conditions and a preconditioned conjugate
gradient method to find the numerical solution. It is also possible to set periodic
boundary conditions allowing to use Fourier transforms [38].

4.2.2 Sub-problem for p

For a given v and λ

min
q∈Q

{
R(v, q) + (λk, q)Q +

r

2
‖q −∇v‖2Q

}
. (43)

The optimality condition for this sub-problem, with Γ = q2
1 + q2

2 + 1 is

−

((
(q2)y
Γ2

)
x

+

(
−(q2)x

Γ2

)
y

)
− 4SDq1

Γ3
+ λ1 + r(q1 − vx) = 0 (44)

−

((
−(q1)y

Γ2

)
x

+

(
(q1)x
Γ2

)
y

)
− 4SDq2

Γ3
+ λ2 + r(q2 − vy) = 0 (45)

where

D = det(∇(q)) = (q1)x(q2)y − (q1)y(q2)x,

S = sign

(
D

(‖∇u‖2 + 1)2

)
,

Equations (44) and (45) can be solved for q1 and q2 with no need of any
iterative procedure.

Numerous experiments over the KODAK database show enough evidence to
believe that the ALM method for the GC model converges to a solution visually
congruent with the minimization of the variational model introduced in (9).
However a rigorous mathematical proof of convergence will be left for future
work.
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5 Experimental Results

In this section we give some evidence of the denoising properties and some
results using the GC model on different images. All the results presented in this
section for the GC model were obtained using the TS method with ε = 10−2

selected in Algorithm 1.

(i) (ii) (iii) (iv)

(v) (vi) (vii) (viii)

Figure 2: First row, processed images with regularizer parameter set to: (i)
1
2αmax, (ii) αmax, (iii) 2αmax, (iv) 10αmax. Second row, 1D plot of one line of
the image above.

Edge preservation. In Figure 2, we illustrate the edge preservation prop-
erty of the GC model. A synthetic image containing a circular object of radius
R = 50 and contrast h = 1 was created and the maximum allowed value for
the regularization parameter αmax computed using (23). From the first two
columns in Figure 2, it can be observed that provided α ≤ αmax edges remain
very sharp. However for values twice and ten times αmax, see third and fourth
columns in the same Figure, edges start being rounded.

The maximum value αmax in (23) also gives an insight about when edges
will be preserved and noise will be fairly removed. Since αmax is independent
on the radius of the object, noise will be removed in same proportion no matter
the size of the object. We illustrate this phenomenon in Figure 3 where two
different images have been corrupted with a small quantity of Gaussian noise,
σ = 5. We use a very low level noise in order to keep the value of h close to
one, therefore the previously computed αmax remains valid. In Figure 3(ii) we
see the result of denoising a circular noisy object of radius R = 50 using the
GC model with the maximum allowed value for the regularization parameter.
It can be appreciated that noise was fairly removed. In Figure 3(iv) we apply
the same denoising procedure using the very same α for the circular object of
radius R = 250 in the image. Again noise has been fairly removed and edges
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remain sharp.

(i) (ii)

(iii) (iv)

Figure 3: Two images with circles of radius R = 50 and R = 250 respectively.
Each image has been processed with the maximum allowed value of the regular-
ization parameter for R = 50. In both cases, noise has been removed and edges
preserved.

It is important to notice that edge preservation on the GC model does not
depend upon the size of the object. An opposite behavior can be found in the

MC model where αmax = h4

12R and the model prefers small-sized objects and
large gray scale values.

Actually, this property of the MC model is highlighted in [41] with the argu-
ment that the MC model can be used as a data-driven scale selection approach.
Although certainly it is possible to use this property to ones advantage in some
situations, we believe that for image denoising this may not be a nice feature.
We argue that in noisy images containing objects with many different scales,
one will have to select a given α to guarantee noise removal but must likely this
α will violate the maximum allowed condition for the large objects smearing
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their edges.
The GC model on the other hand does not have this problem.

(i) (ii)

(iii)

Figure 4: (i) Noisy piecewise smooth image (ii) Restored image using the GC
model (iii) 1-D plot of the middle line of the images. Solid blue line is the
groundtruth; solid red line is the noisy line; black circle markers are the GC
result.

Denoising of a smooth synthetic image. In Figure 4, a noisy synthetic
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piecewise smooth image has been restored with the GC model. This figure,
illustrates the good performance of the GC model denoising this type of images.
It can be seen that smooth regions are very well recovered by the model and
noise fairly removed. Figure 4(ii) shows a visually pleasant result while the 1-D
plot of any line presented in Figure 4(iii) shows how very well the solution from
the GC model fits to the true image.

Comparison of GC against popular variational models on a large
database.

To test our model, we decided to use the Kodak image database [20]. To
this end, the resolution of the images was reduced by half and the luminance
channel of each one computed to construct a set of gray scale images. We tested
the total variation based model of Rudin, Osher and Fatemi [26] and the mean
curvature based model [41] on the entire Kodak database and compared the
results against those from our model. The results are presented in Figure 5
where the average increase in PSNR, computed over the entire Kodak database
and using different levels of additive Gaussian noise, is presented. By increase
in PSNR we mean PSNR(u)−PSNR(f) with u defined as the restored image
from a given method and f as the noisy. It is evident from Figure 5 that the
denoised images obtained using the Gaussian curvature model are better in
terms of the PSNR than those obtained using the ROF or the mean curvature
model.

To obtain the results shown in Figure 5, and in order to make a fair com-
parison, we used manually optimized values of α for each model: for the TV
model the values were very close to the known rule of thumb α = σ; for the GC
model the best values were α = 0.1, 0.2, 1, 10, 20 and for the MC model were
σ = 5, 10, 15, 20, 25.

In order to illustrate the quality of reconstruction of the GC model and to
have a point of comparison against the results from the MC and TV models
we are including three denoising examples in Figure 6. The noisy images in the
first column of Figure 6 were created by adding Gaussian noise with σ = 15
to the original clean images taken from the KODAK image database. Visually
we can observe how the GC model preserves edges while fairly removing noise.
The results from the MC model tend to have slightly smoothed edges and the
background is also less clean. The results from the TV model have the well
known problem of blocky regions.

Comparison of GC and TGV models. Finally, we compared our model
against the TGV model [5]. In Figures 7(i) and (ii) we present the resulting
denoised images from the TGV and GC models respectively over a test image
taken from [5]. Figures 7(iii) and (iv) are 3-D surface representations of the (i)
and (ii) images. Clearly no staircase can be noticed. This example highlights
that the outcome from both models are comparable when restoring smooth
images.

CPU-times. We discuss here the CPU-time of both numerical methods
proposed to solve numerically our GC model: the TS and ALM methods. To
get some insight, we selected two popular test images: Lena and Peppers with
three different resolutions, added Gaussian noise with σ = 15 and tested both
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Figure 5: The average increase in PSNR computed over the entire Kodak
database is shown. The GC model delivers the best average increase for all
different levels of noise.

numerical methods. Overall, in the ALM method 6 cycles are needed to get
convergence while the TS method needs only 5 cycles.

In Table 1 we show the average CPU-time taken to process the images for
resolutions of 128× 128, 256× 256, and 512× 512 pixels. As can be seen both
algorithms are very fast in getting the numerical solution delivered being the
augmented Lagrangian method the faster of them. However there is still room
for improvement for the TS algorithm since at each inner step a simple gradient
descent method is being used and 700 iterations run. As part of future work we
shall explore both in a multigrid framework.

6 Conclusion

We have introduced in this paper a new regularizer based on the Gaussian cur-
vature of the image surface. The use of this new regularizer for image denoising
has been studied and analyzed in depth. Synthetic examples has been presented
to highlight the virtues and deficiencies of this Gaussian regularizer. In addition
we have presented two state of the art and fast methods for the numerical solu-
tion of the denoising model. Tests show that the GC results may have a better
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Figure 6: The noisy images in the first column have additive Gaussian noise
with σ = 15. The results from GC model are presented in the second column.
They show edge and contrast preservation as well as a fair removal of noise. The
results from the MC model, in the third column, tend to have slightly smoothed
edges while the background looks not as smooth as expected. The results from
the TV model have the well known problem of blocky regions.

ALM TS

Size CPU-time # of Cycles CPU-time # of Cycles

512× 512 145.80 sec 6 791 sec 5

256× 256 17.10 sec 6 234.42 sec 5

128× 128 4.87 sec 6 51.65 sec 5

Table 1

PSNR than those of the competing methods MC and TGV. Future work will
explore the full potential of the new GC model or regularizer in other imaging
models e.g. image registration, deblurring and segmentation to mention a few.
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(i) (ii)

(iii) (iv)

Figure 7: (i) TGV result (ii) GC result (iii) 3-D surface from TGV result (iv)
3-D surface from GC result.

Appendix A Euler-Lagrange equation

Here we derive the first order optimality condition or Euler Lagrange equation
for the Gaussian curvature model already introduced in (10). In particular we
concentrate on the regularization term since the first condition for the fitting
term is well known. In the formal derivation we assume that the vector field u
is smooth enough such that gradients are well defined and the variation ϕ has
compact support over Ω so that we can use the divergence theorem to get rid
of the boundary term.

From the definition of R(u) given in (8) and since the denominator is already
positive, we compute the first variation as it is customary using δR ≡ d

dεR(u+
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εϕ)|ε=0

δR =

[
d

dε

∫
Ω

|(u+ εϕ)xx(u+ εϕ)yy − (u+ εϕ)xy(u+ εϕ)yx|
((u+ εϕ)2

x + (u+ εϕ)2
y + 1)2

dxdy

]
ε=0

=

∫
Ω

uxxuyy − uxyuyx
|uxxuyy − uxyuyx|

(uxxϕyy + uyyϕxx − uxyϕyx − uyxϕxy)

(u2
x + u2

y + 1)2
dxdy

−
∫

Ω

4|uxxuyy − uxyuyx|(uxϕx + uyϕy)

(u2
x + u2

y + 1)3
dxdy.

At this point we introduce new notation to simplify the writing of the equations
N = u2

x + u2
y + 1, S = sign(uxxuyy − uxyuyx) where sign() is the sign function

and ν = (ν1, ν2) the normal vector unit. We also make use of the divergence
theorem when required

δR = −
∫

Ω

ϕ

(
Suxy
N 2

)
xy

−
∫
∂Ω

ϕy
Suxy
N 2

ν1dΓ +

∫
∂Ω

ϕ

(
Suxy
N 2

)
x

ν2dΓ

−
∫

Ω

ϕ

(
Suyx
N 2

)
yx

−
∫
∂Ω

ϕx
Suyx
N 2

ν2dΓ +

∫
∂Ω

ϕ

(
Suyx
N 2

)
y

ν1dΓ

+

∫
Ω

ϕ

(
Suxx
N 2

)
yy

+

∫
Ω

ϕy
Suxx
N 2

ν2dΓ−
∫

Ω

ϕ

(
Suxx
N 2

)
y

ν2dΓ

+

∫
Ω

ϕ

(
Suyy
N 2

)
xx

+

∫
Ω

ϕx
Suyy
N 2

ν1dΓ−
∫

Ω

ϕ

(
Suyy
N 2

)
x

ν1dΓ

+

∫
Ω

ϕ

(
4|uxxuyy − uxyuyx|ux

N 3

)
x

−
∫
∂Ω

(
4|u2

xy − uxxuyy|ux
N 3

)
ν1dΓ

+

∫
Ω

ϕ

(
4|uxxuyy − uxyuyx|uy

N 3

)
y

−
∫
∂Ω

(
4|uxxuyy − uxyuyx|uy

N 3

)
ν2dΓ.

In order to drop the boundary terms we ask for

(−uxy, uxx) · ν = 0, (uyy,−uyx) · ν = 0,((
Suyx
N 2

)
y

,−
(
Suxx
N 2

)
y

)
· ν = 0,

(
−
(
Suyy
N 2

)
x

,

(
Suxy
N 2

)
x

)
· ν = 0

Finally, by defining

B1 =

((
Suyy
N 2

)
x

,

(
−Suxy
N 2

)
x

)
(46)

B2 =

(
−
(
Suyx
N 2

)
y

,

(
Suxx
N 2

)
y

)
(47)

it is possible to write the Euler Lagrange equation for the GC model as

α∇ ·
(

4|uxxuyy − uxyuyx|
N 3

∇u
)

+∇ ·B1 +∇ ·B2 + u− f = 0 (48)

with the above boundary conditions.
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Appendix B GC as a function of g

Here we will give a proof for (11). First we compute the derivatives in terms of
g

ux = g′
x

r
,

uy = g′
y

r
,

uxx = g′′
x2

r2
+ g′

y2

r3
,

uyy = g′′
y2

r2
+ g′

x2

r3
,

uxy = uyx = g′′
xy

r2
− g′xy

r3
,

1 + u2
x + u2

y = 1 + (g′)2.

Using the above in (7) we get

κG =
uxxuyy − uxyuyx
(1 + u2

x + u2
y)2

,

=
(g′′ x

2

r2 + g′ y
2

r3 )(g′′ y
2

r2 + g′ x
2

r3 )− (g′′ xyr2 − g
′ xy
r3 )2

(1 + (g′)2)2
,

=
(g′g′′ x

4

r5 + 2g′g′′ x
2y2

r5 + g′g′′ y
4

r5 )

(1 + (g′)2)2
,

=
g′g′′

r5(1 + (g′)2)2
(x4 + 2x2y2 + y4),

=
g′g′′

r5(1 + (g′)2)2
(x2 + y2),

=
g′g′′

r5(1 + (g′)2)2
(r2)2,

=
g′g′′

r(1 + (g′)2)2
.

This completes the proof.
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