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ABSTRACT

A simple expression is developed for covariancedmabrrection in stochastic model updating. The
need for expensive forward propagation of uncetyainrough the model is obviated by application
of a formula based only on the sensitivity of thepoits at the end of a deterministic updating Bsce
carried out on the means of the parameters. Twaqusly published techniques are show to reduce
to the same simple formula within the assumptiosroéll perturbation about the mean. It is shown,
using a simple numerical example, that determmigfidating of the parameter means can result in
correct reconstruction of the output means evemwhe updating parameters are wrongly chosen. If
the parameters are correctly chosen, then the ieowa& matrix of the outputs is correctly
reconstructed, but when the parameters are wrattybgen is found that the output covariance is
generally not reconstructed accurately. Therefibve selection of updating parameters on the bdsis o
reconstructing the output means is not sufficienemsure that the output covariances will be well
reconstructed. Further theory is then developedassessing the contribution of each candidate
parameter to the output covariance matrix, themmigbling the selection of updating parameters to
ensure that both the output means and covariameggeonstructed by the updated model. This latter
theory is supported by further numerical examples.

Keywords: Stochastic model updating, covariance matrix, patamselection.

1.0 Introduction

One of the first attempts to address the problemmpafting or ‘correcting’ finite element models was
the statistical approach proposed by Collins, Hddsselman and Kennedy in 1974 [1]. Since that
time much attention has been concentrated mainlydeterministic model updating methods,
including particularly parameterisation of finitement models for updating and regularisation ef th
generally ill-posed model-updating problem. Detads be found in references [2-4]. Very recently,
new research has addressed the problem of starhastiel updating, which we review briefly in the
following paragraphs.



Jacquelin et al. [5] developed a model updatingrigie using random matrix theory resulting in a
mean stiffness and covariance matrix representiegstructural uncertainty in a global way from
measured variability in natural frequencies and esodhapes. Adhikari and Friswell [6] used a
sensitivity approach to update distributed paramsetiypically the bending rigiditfl of a beam,
represented as random fields using the Karhunemd.@&pansion. Goller et al. [7] addressed the
problem of insufficient information by the appliwat of multi-dimensional Gaussian kernel densities
derived from sparse modal data. This allowed desigensitivity to be quantified, so that the
proposed method could be said to be robust. Mtheetlkal. [8] used Bayesian evidence for model
selection.

Early examples of Bayesian model updating include work of Beck and Katafygiotis [9, 10]
whereby experimental data is used to progressimalise the updating parameters expressed by a
posterior probability density function. One problevith the Bayesian approach has been the large
computational effort associated with sampling usitarkov chain Monte-Carlo (MCMC) algorithms.
This has now been largely overcome as demonstbgtéibller et al. [11] using parallelisation of the
updating code together with the transitional MCMGodthm, which identifies parameter regions
with the highest posterior probability mass. Zhanh@l. [12] used the polynomial chaos expansion as
a surrogate for the full FE model as well as anwianary MCMC algorithm where a population of
chains is updated by mutation to avoid being trdppdocal basins of attraction.

The problem of variability in the dynamics of nomililly identical test pieces seems to have been
addressed first by Mares et al. [13, 14] using dtimawiate gradient-regression approach. This was
combined with a minimum variance estimator so ttiet means of the resulting distributions
represented the most likely parameters of a nexédestructure and the standard deviations could be
interpreted as indicators of confidence in the msediua et al. [15] were the first to consider the
uncertainty of multiple nominally-identical testepes from the frequentist viewpoint, where the
distribution is meaningful in terms of the ‘spread’updating parameters. They used a perturbation
approach, as did Haddad Khodaparast et al. [16]latter showing excellent results using first-orde
perturbation whereas the method described in [Egjuired the computation of second-order
sensitivities. Govers and Link [17] extended thassical sensitivity model-updating method by a
Taylor series expansion of the analytical outpwac@nce matrix and obtained parameter mean
values and covariances. This technique has sirere d@monstrated very effectively, and compared to
an interval updating method [18], using data oladiby repeated disassembly and reassembly of the
DRL AIRMOD structure [19, 20]. Fang et al. [21, 28ed a response-surface surrogate for the full
FE model together with Monte-Carlo simulation (MCH)ypothesis testing by analysis of variance
(ANOVA) using the statisticaF-test evaluation was applied to determine the dmrion of each
updating parameter (or a group of parameters)dddtal variance of each measured output. Iffthe
test returned a value that exceeded a threshad, ttte chosen parameter was deemed to contribute
significantly to the variance of the output.

In this paper, a simple formula is developed forar@mnce updating that can be applied without the
use of expensive forward propagation by MCS to rdgitee the output covariance matrix. Two
previous stochastic model updating methods are showe equivalent to the same formula with the
assumption of small perturbations about the meais. demonstrated using a 3-degree of freedom
model that the choice of updating parameters tgcatito this process. If the correct parametees ar
chosen, then the output covariance matrix is rg¢oacted faithfully. However, this is generally not
the case when wrongly chosen parameters are ugad tlegough the output means may be accurately
reconstructed. It is shown that the scaled outputiéance matrix may be decomposed to allow the
contributions of each candidate parameter to besass. Use of the classical linearised sensitivity
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permits the assessment to be carried out effigiehlimerical examples are used to illustrate the
performance of the technique.

2.0 Updating the Covariance Matrix

The stochastic model updating problem may be egprkas,

(-29)=5(0-0) , +5.. (1)
by the assumption of small perturbation about tleam In equation (1) the over-bar denotes the
mean, z°,Z° are experimentally measured outputs, typicallyuratfrequencies and mode-shape

terms,0,,, is the( +1)" estimate of parameter distribution to be deterchirveth meand,,,. The

mean sensitivity matrix is denoted 53( = S(ﬁj) ande ,, represents errors introduced from various

i+l

sources including inaccuracy of the model and nreasent imprecision.

Model updating of the means is a deterministic [@o[16, 17] given by,

0,.,=0,+T,(z°-2°(9)) 2)

j j

where Z} (ﬁj ) is the a predicted output of the model at jHeteration. The transformation matrl'ﬁj

is the generalised pseudo inverse of the sengitivittrix éj ,
= _[(GT\z/ & lar
T, _(Si WS, + W&) S 3)

and W, and W, are weighting matrices, to allow for regularisataf ill-posed sensitivity equations
[4].

It is seen from equation (1) that the matrix ofputitcovariances is given by,
Cov(Az*,Az°)='S Co\(0,,,08,,,)S| + Cofe;.,5 ,,) 4)
Az°=27°-7% NO=0-0 (5)

Then, if the error covariances are deemed to bdl,samaestimate of the parameter covariances may
be obtained by inversion, using (3) to obtain,

Cov(10,,,00,,,) =T, CofAz®,Az°) T (6)

JAGR

l+1)using only the transformation matrix,

Equation (6) allows for the computation ©bv(A9

j+10
'_I'j, obtained at the final step of deterministic updatof the means and the measured output

covariance. It avoids expensive forward propagatb uncertainty through the model required by
alternative approaches. In Appendix 1 it is showrattequation (6) may be developed



straightforwardly from expressions given previoully Haddad Khodaparast al. [16] and Govers
and Link [17].

3.0 Numerical Examples — Covariance Updating

The example considered is the 3 degree of freedass+spring system shown in Figure 1 and used in
references [13], [16] and [18].

kg
k
7N VW Wl
/ m, k, k, m; /
i S Y
% k2 m,
2V

Figure 1. Three degree of freedom mass-spring example

The nominal values of the parameters of the ‘expenial’ system arem =1.0kg(i= 1,2,3,

k =1.0N/m(i =12,.. 5 andk; =3.0N/m. The erroneous random parameters are assumed/¢o ha
Gaussian distributions  with mean valugs, =4, =4, =2.0N/m and standard deviations
o, =0, =0, =0.3N/m. The true mean values are the nominal values siiindard deviations

o, =0, =0, =0.2N/m (20% of the true mean values). Paramelerk, andk, are assumed to be

independent.

Case 1 — Consistent set of updating parameters

This example comprises a consistent updating pnollbere three uncertain stiffnessksk,, k;, are

deemed to be responsible for observed variabifityhie three natural frequencies of the system.
Equations (6) and (20) (Appendix 1) above were iagpand the initial cloud of predicted natural
frequencies was made to converge upon the clouchefsured’ natural frequencies as shown in
Figure 2. The measured data consisted of 30 sepanatsurement points (30 points in the 3
dimensional space of the natural frequencies) hadptedictions were represented by 1000 points,
needed for forward propagation by Latin hypercumaping (LHS) with imposed correlation from a

normal distributione)j ON, (§j ,Cov(ej 0, )) in order to determinézj from A0, .

Figure 2 shows the results produced by the two ogsthwhere it is apparent that the updated
covariance ellipses from the two solutions are alniadistinguishable from each other or from the
covariance ellipse of the ‘measured’ data. Note tha covariance ellipses on the scatter plots
encompass 95% of the data (2-sigma ellipses).
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Figure 2. Frequency scatter plots (Case 1).
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Typical convergence characteristics are shownguréi 3 and the updated parameter values are given
in Table 1. The adopted convergence criterion Wwasthe deviation of the predicted eigenfrequencies
with respect to the reference ones should be hessa specified tolerance.

The CPU times shown in Table 1 are determined wigipect to the solution from equation (6). It is
seen that for this particular 3 degree of freedaoblem, calculation of the parameter covariance
matrix is approximately 300 times faster by equaf(i®) than by equation (20) (Appendix 1).

Updating is carried out using equation (6) fora() extended set of updating parameters with noisy
data, and (ii) an inconsistent set of wrongly cimogpdating parameters in the following Cases 2 and

3.



Figure 3. Convergence plots (Case 1 - Eq. (6)): a) Mean gabfi¢he estimates; b) Standard

deviation of the estimates - (dash-dotted lineeneice values).

Table 1.Parameters and eigenfrequencies values.

Updated (error %
Rggecr)(la)r;ce Initial (error %) P EQ((ZO) ) Updat(éz ((%r)ror )
' 1000 obs.
ky [N/m] 1.001 2.0 (99,73) 1.001 (-0.03) 1.014 (1.26)
k, [N/m] 0.992 2.0 (101.55) 0.993 (0.06) 0.966 (-2.68)
ks [N/m] 1.001 2.0 (99.84) 1.001 (-0.02) 1.008 (0.69)
o, [N/m] 0.197 0.3 (52.59) 0.194 (-1.59) 0.194 (-1.36)
o, [N/m] 0.208 0.3 (44.58) 0.213 (2.35) 0.211 (1.40)
o, [N/m] 0.211 0.3 (41.94) 0.211 (-0.05) 0.211 (-0.11)
fi [HZ] 0.1586 0.2030 (28.02) 0.1586 (-0.00) 0.1586 (-0.00)
f» [HzZ] 0.3180 0.3960 (24.54) 0.3180 (-0.00) 0.3180 (-0.00)
fz [HzZ] 0.4505 0.4823 (7.06) 0.4505 (-0.00) 0.4505 (0.00)
# Iterations - - 9 6
CPU time ratio - - ~300 1

Case 2 — Noisy Data

In this case zero-mean Gaussian noise with coeffi@f variation CoV) [5 5 Gi % is added to the

measured eigenvalue data and the number of updptirgmeters is increased from 3 to 5, i.e.
k., K,...., k. Here, the erroneous random parameters are assorhedle Gaussian distributions with

mean

g,

values, y =4, =p, =2.0N/m and g4 =, =0.5N/m and

shape sensitivities in order that the updating egoudl) is overdetermined.

standard deviations

« =0, =0, =0.3N/mando, =0, =0.1N/m. It is necessary in this case to include the mode-

Figure 4 shows good agreement between referenceupahated scatter ellipses using a reference

sample with 30 observations and an updated LHS)00 bbservations, generated with the updated
mean values and covariance matrix.

Typical convergence characteristics are shown guré 5, where the standard deviation of the
randomized stiffnessewr( = 0.2N/m) is approximated, but not obtained perfectlyisTis because the

non-randomized stiffnessds, and k, become random variables after updating, as the tegda
covariance matrix also has components relateddsetlnitially non-randomized parameters (Figure

5.b).
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Figure 4. Frequency scatter plots (Case 2 - Eq. (6)).
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Figure 5. Convergence plots (Case 2 - Eq. (6)): a) Mean gabfi¢he estimates; b) Standard
deviation of the estimates - (dash-dotted lineenezice values).

Case 3 - Inconsistent updating parameter set

Case 3 presents an example of an inconsistentingdatoblem where the updating parameter set
does not include all the uncertain parameters resple for the observed variability in the referenc
responses. As in the previous cases, the refedateewere produced with randomizedk, andk;,
while the updating parameter set is composel d, and k;, i.e., the uncertaitk; is not included in

the updating parameter set. In this case regutemsaas applied withV, =1 W, =0.1x|

Figures 6 and 7 show the results of the updatingess - the reference sample is that given in €ase
The scatter plots of Figure 6 show that the outpei&ns are reconstructed faithfully but the chofce o
an inconsistent set of updating parameters ha#edsn large errors in the reconstructed covaganc
ellipses. The updating parametdgsk,, k; are fully converged after 30 iterations as showirigure

7. This result demonstrates that the selectiorpdating parameters on the basis of reconstrudtiag t
output means is not sufficient to ensure that thigpwt covariances will be well reconstructed. The
problem to be addressed in the following sectigrihisrefore, to define a procedure for parameter
selection prior to model updating that ensures thaput covariances as well as mean values are
reconstructed accurately.
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Figure 7. Convergence plots (Case 3 - Eg. (6)): a) Mean gatfi¢he estimates; b) Standard
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4.0 Selection of Parameters for Stochastic Model Updatp

Equation (1) may be cast in scaled form using thipud and parameter standard deviations,

where the subscrip} is omitted for reasons of simplicity, althougtsitould be understood that for

2723 || [0, 02, 0,02, 05 02| |06

g, 0,00, 0,08, o, 00, T,
z,-7, 04 02, Oy, 02, Ty, 07, || [ 6,6,

o, )|=|o,08, o, 00, o, 00, g, )|+& (7)
22| |92, %02, 902 (g

o, 0,08, 0,00, g, 00 ] 0,

parameter selection purposgs 0 to indicate an initial parameter estimate.

If the chosen parameters are independent, thecotragiance matrix is given by the identity matrix,

Co

-4

Oy

9/,_5/
L 0-9

(4

(8)



Assuming the errog in equation (7) to be independent of the pararsetken the output covariance
matrix may be expressed as,

CO\{ZP__Zp, Z“:‘{*] =55 + Co\z,¢) ©)

whereS is the scaled matrix of sensitivities.

Equation (9) may be expanded so that,

Cov{ﬁ, il %Jz 5% TS5, t..t s s +CoVEE) (10)
JZD 0'%

wheres, denotes th&™ column of the scaled sensitivity mati&. The terms, sng on the right-

hand-side of equation (10) therefore representsctimeribution of thek™ parameter to the scaled
output covariance matrix. We would like to seldudse parameters that make the most significant
contributions.

The matrix of measured output covariances may pesgeged by its singular value decomposition as,

CO\/{ﬁ,ﬂ} =UzU’ (11)

sz qu

From the right-hand-sides of equations (10) andl i{li& seen that the number of parameters that

contribute toCov , must be equal to the number of non-zero singudares.

The range ofCoV, , is spanned by the columns Of corresponding to the non-zero

singular values,

azp a-z?l

range{Cox{ﬁ ﬂ]] = spafU,,,) (12)

Z — —
The projection ontdJ,,, of the contribution of each parame#r to Cov{ "U i : & %J, i.e. each
term on the right-hand-side of equation (10), enthiven by,
Slak = Uz U;osak (13)

Ideally, if a paramete6, makes a non-zero contribution, thel) must be given exactly by a linear

combination of the columns dfi;,,, so thats, ands’, are identical. In practice they will be



different due to the presence of the error t@uv(?,,é) in equation (10). The cosine distance may be

used to assess the closeness'(;k)ito S »

T U
& = 6

s

Hsek

1-cogy, = (14)

where, denotes the angle betwespands’, . The cosine distance takes a value between zelro an

unity and, in practice, if less than a chosen tiokk
1-cogy, <g, (15)

then 8, may be deemed to be a contributing parameter.

g, o,

so that there are columns bfcorresponding to small (theoretically zero) singwalues. Otherwise

it is not possible to recognise wrongly selectedapeeters. This means that there must be more
outputs than parameters.

— .
The test for parameter selection (15) requires ﬁ}m{p—zpﬂj shall be less than full rank,

5.0 Numerical Examples — Parameter Selection
The 3 degree of freedom structure shown in Figusecbnsidered.

Case 4: Two Randomised Parameters

In each of the exercises shown in Figures 8-1H#ta is produced using two randomised parameters.
All six stiffness terms are tested for significanggh initial mean estimates of twice the nominal
values (100% errors) and standard deviations dfthalmean values (50% error). The result of using
both eigenvalue and eigenvector sensitivities @wshin Figures 8a-11a whereas the result of using
only the eigenvalue sensitivities is shown in Fegu8b-11b.

e R e
Figure 8a Cosine distance — 3 eigenvalues, 3 Figure 8b. Cosine distance — 3 eigenvalues
eigenvectors. Randomisddg, k, . only. Randomised,, K, .
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Figure 9a Cosine distance — 3 eigenvalues, 3Figure 9b. Cosine distance — 3 eigenvalues
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Figure 10a Cosine distance — 3 eigenvalues, Figure 10b Cosine distance — 3 eigenvalues

eigenvectors. Randomiséd, k. only. Randomised,, k.
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Figure 11e. Cosine distance — 3 eigenvalues, &igure 11b.Cosine distance — 3 eigenvalues
eigenvectors. Randomiséd, k; . only. Randomised,, ks .

It is clear that in every case the correct pararaetesponsible for variability in the outputs are
identified. In Figures 8b, 9b and 10b not only #re correct parameters selected, but the incorrect
ones are also found. This could be due in patiécsymmetry of the model, where parameterand

k, have the same effect on the eigenvalues, evidersxfample in Figures 8b, 9b and 10b. It is also
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the case that the eigenvalue sensitivities to petenrsk, andk,are the same . In the cases where

these parameters are randomised, the inclusionhef eigenvectors sensitivities improves the
parameter selection, allowing for the selectiowmily the correct parameters as shown on Figures 8a,
9a and 10a. Figure 11 shows results for randomigednd k,. These parameters have distinct

sensitivities and therefore they are correctlydeld by using only the eigenvalue sensitivities@s
be seen in Figure 11b.

Case 5: Three Randomised Parameters

In this case it is necessary to use both eigenwahdeeigenvector sensitivities, so that the nunolber
outputs is greater than the number of parametegainiAthe correct parameters responsible for output
variability are identified in Figures 12 and 13thalugh in both cases additional parameter-cosine-
distances fall below the threshold marked by thehdd line. This is not a problem since it was shown
in Case 2 above that stochastic updating performi with more that the necessary number of
parameters provided that the correct ones aredadlu

1 i

0.9F 0.9F

0.81 0.8

0.7F 0.7F

0.6

g
e
T

1-cos( WK)

0.5F

1-cos( WK)
o
o

0.4

1S
=
T

0.3F

o
w
T

)
i

o
N

01 01

0 : 0

Figure 12, Cosine distance — 3 eigenvalues, 3 Figure 13. Cosine distance — 3 eigenvalues, 3
eigenvectors. Randomiséd, k,, k. . eigenvectors. Randomiség, k,, k.

6.0 Numerical Example — Pin-jointed Truss.

The pin-jointed truss shown in Figure 14 has oveadathensions 5m x1m and is composed of 21
elements in total, each with a stiffness matri>egiby,

K =K[l B }; i=12,..,21

-1 1
8 12 16 20
7 11 15 19
// / 21
@
6 10 14 18

Y

Figure 14.Pin-jointed truss.
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The five diagonal bars of nominal stiffnegfp—‘ =1.485< 16 N/mr are each randomised for updating.

The true mean value of each is equal to the norsiifidess and the standard deviations are given by
o, =0.13%, ,j = 3,7,11,15,1! For the purposes of parameter selection, theairgstimates of all

the mean stiffnesses,,i=1,2,.., 2, are considered to be 70% of the reference vaduesthe
standard deviations are given byj =0.27y,

Parameter selection results are shown in Figurel81% is seen that the correct parameters for
updating are recognised correctly in each caséfefent numbers of outputs.

1 1
0o 0of
08t 08t
07 07

0.6

o
>

05

1-cos( Wk)
o
o

1—cos(ll»'k)

0.4F

o
=
T

0.3F

o
w

o
N

o
[

0
1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

k 8

Figure 15.Cosine distance 110 eigenvalues. Figure 16 Cosine distance =115 eigenvalues.

1-cos( \Vk)

0
12 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

k k

Figure 17. Cosine distance — All eigenvalues. Figure 18, Cosine distance — All eigenvalues and
eigenvectors.

It can be seen from the figures that the first dlamentk has zero cosine distance. This happens

because the boundary condition prevents any exiersi compression df,, so that all the outputs
are insensitive to it. When the constraints amowed, so the truss is in the free-free condittba,
cosine distance corresponding to paramktdvecomes finite and exceeds the threshold as sirown

Figures 19a and 19b — it is seen correctly Hyais not a randomised updating parameter.
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Figure 19a.Cosine distance — Free-free Figure 19b. Cosine distance — Free-free
condition condition
1°' 10 eigenvalues. 1% 20 eigenvalues.

Having correctly identified the randomised updati@gameters, it is necessary to carry out the
stochastic model updating. The initial values @ tipdating parameters are set to:

k, =0.704, 1k, = 1.2Q4 k,= 0.90 ks;= 0.80, ko= 1.}R

0,
and CoV/(k; )= 2—"-.

My

Il

Updating results are shown in Figures 20-23. It banobserved in Figures 20 and 21 that when
updating is carried out using the first 10 eigeneal then the exact mean values of the parameters
and their covariances are closely approximated.rébenstructed output ellipses are in good but not
guite perfect agreement with the measured data.

22 R [ ———~
I nitial value I initial value
7 [ Updated value | [ updated value
I Exact value 08l I Exact value

Mean values
CoV values

k3 k7 k11 k15 k19
k3 k7 k11 k15 k19 Parameters
Parameters

Figure 20. Identified parameters (Pin-jointed Truss - Eq: (8)jng £' 10 eigenvalues).
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Figure 21. Frequency scatter plots (Pin-jointed Truss - BY. §sing ¥' 10 eigenvalues).

It can be seen in Figures 22 and 23 that whenCGakigenvalues are used in model updating the
updated parameter means and covariances are irstapadfect agreement with the values used to
generate the data. Also, the output covarianceseaomstructed almost exactly.
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Figure 22. Identified parameters (Pin-jointed Truss - Eq: (8ing 20 eigenvalues).
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9.0 Conclusions.

A simple and efficient formula for updating the aaeter covariance matrix is developed using only
the measured output covariances and the transfiomattrix obtained at the final deterministic step
of updating the parameter mean values. Two prevsiashastic model updating techniques are
shown to be equivalent and to reduce to the sammufa within the theory of small perturbations
about the mean.

A simple numerical counter-example is used to desmate a problem: that the means may be
updated correctly even when the updating paramatersvrongly chosen. This shows that parameter
selection for covariance updating requires theafsechniques additional to those already used for
deterministic updating.

It is shown that the measured output covariancerixnahay be decomposed to reveal the
contributions of each independent updating paramétevector is formed from a scaled column of
the sensitivity matrix and the cosine distance esponding to the angle between this vector and its
projection on the space defined by the columnshefdovariance matrix is used to distinguish the
updating parameters from other candidate paraméats might be deemed responsible for the
observed output variability.

Numerical examples are used to demonstrate thetieeperformance of the method in parameter
selection and stochastic model updating.
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Appendix 1:

Haddad Khodaparast et al. [16] gave the followixgression for updating the parameter covariance
matrix,

Cov(08,,,,08,,,) = Co|18,,A8, ) - Coyne, Az )T™ -T Cofrz ,Aq )

jo10

(16)

+'_I'J.Cov(Azj Az, )T'JT +T, CO\(AZG,AZG)TjT

The covarianceﬁ:ov(Aze,Aze), Cov(Azj,Azj)and Cov(ABj,Azj) are readily available from the

data and from forward propagation using the distidm with meanﬁj and Cov(Aej A0, ) .

Equation (16) may be simplified by further applioat of the small-perturbation assumption
expressed as,

0, =T, (z,-2)=T, Az (17)
so that,

Cov(00,,Az,)T" =T, CofAz, Az )T (18)
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T,Cov(Az,,00,) =T, CofAz, Az )T (19)
Substitution of equations (18) and (19) into (8)ds immediately to,

Cov(00,,,,00,,,) = Co(A, A0, ) +T, CoyAz® Az°)T™-T Colez A7 )T7 (20)

which is identical to equation (24) given by Govarsl Link [17] and implemented by forward
propagation ofA0; using a multivariate normal distribution.

Further application of (17) in the third right-haside term of (20) shows that,
T,Cov(Az,,Az, )T = Co\(26, 06, ) (21)
finally resulting in
Cov(n8,.,,,08,,,) =T, CofAz®,Az°) TT (22)

which is identical to equation (6).
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