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ABSTRACT 
 

A simple expression is developed for covariance-matrix correction in stochastic model updating.  The 
need for expensive forward propagation of uncertainty through the model is obviated by application 
of a formula based only on the sensitivity of the outputs at the end of a deterministic updating process 
carried out on the means of the parameters. Two previously published techniques are show to reduce 
to the same simple formula within the assumption of small perturbation about the mean. It is shown, 
using a simple numerical example, that deterministic updating of the parameter means can result in 
correct reconstruction of the output means even when the updating parameters are wrongly chosen. If 
the parameters are correctly chosen, then the covariance matrix of the outputs is correctly 
reconstructed, but when the parameters are wrongly chosen is found that the output covariance is 
generally not reconstructed accurately. Therefore, the selection of updating parameters on the basis of 
reconstructing the output means is not sufficient to ensure that the output covariances will be well 
reconstructed. Further theory is then developed by assessing the contribution of each candidate 
parameter to the output covariance matrix, thereby enabling the selection of updating parameters to 
ensure that both the output means and covariances are reconstructed by the updated model. This latter 
theory is supported by further numerical examples.    
 
Keywords: Stochastic model updating, covariance matrix, parameter selection. 
 
 
1.0 Introduction 

One of the first attempts to address the problem of updating or ‘correcting’ finite element models was 
the statistical approach proposed by Collins, Hart, Hasselman and Kennedy in 1974 [1]. Since that 
time much attention has been concentrated mainly on deterministic model updating methods, 
including particularly parameterisation of finite element models for updating and regularisation of the 
generally ill-posed model-updating problem. Details can be found in references [2-4].  Very recently, 
new research has addressed the problem of stochastic model updating, which we review briefly in the 
following paragraphs.  
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Jacquelin et al. [5] developed a model updating technique using random matrix theory resulting in a 
mean stiffness and covariance matrix representing the structural uncertainty in a global way from 
measured variability in natural frequencies and modes shapes. Adhikari and Friswell [6] used a 
sensitivity approach to update distributed parameters, typically the bending rigidity EI of a beam, 
represented as random fields using the Karhunen-Loève expansion. Goller et al. [7] addressed the 
problem of insufficient information by the application of multi-dimensional Gaussian kernel densities 
derived from sparse modal data. This allowed design insensitivity to be quantified, so that the 
proposed method could be said to be robust. Mthembu et al. [8] used Bayesian evidence for model 
selection.  

Early examples of Bayesian model updating include the work of Beck and Katafygiotis [9, 10] 
whereby experimental data is used to progressively revise the updating parameters expressed by a 
posterior probability density function. One problem with the Bayesian approach has been the large 
computational effort associated with sampling using Markov chain Monte-Carlo (MCMC) algorithms. 
This has now been largely overcome as demonstrated by Goller et al. [11] using parallelisation of the 
updating code together with the transitional MCMC algorithm, which identifies parameter regions 
with the highest posterior probability mass. Zhang et al. [12] used the polynomial chaos expansion as 
a surrogate for the full FE model as well as an evolutionary MCMC algorithm where a population of 
chains is updated by mutation to avoid being trapped in local basins of attraction.  

The problem of variability in the dynamics of nominally identical test pieces seems to have been 
addressed first by Mares et al. [13, 14] using a multivariate gradient-regression approach. This was 
combined with a minimum variance estimator so that the means of the resulting distributions 
represented the most likely parameters of a next-tested structure and the standard deviations could be 
interpreted as indicators of confidence in the means. Hua et al. [15] were the first to consider the 
uncertainty of multiple nominally-identical test pieces from the frequentist viewpoint, where the 
distribution is meaningful in terms of the ‘spread’ of updating parameters. They used a perturbation 
approach, as did Haddad Khodaparast et al. [16], the latter showing excellent results using first-order 
perturbation whereas the method described in [15] required the computation of second-order 
sensitivities. Govers and Link [17] extended the classical sensitivity model-updating method by a 
Taylor series expansion of the analytical output covariance matrix and obtained parameter mean 
values and covariances. This technique has since been demonstrated very effectively, and compared to 
an interval updating method [18], using data obtained by repeated disassembly and reassembly of the 
DRL AIRMOD structure [19, 20]. Fang et al. [21, 22] used a response-surface surrogate for the full 
FE model together with Monte-Carlo simulation (MCS). Hypothesis testing by analysis of variance 
(ANOVA) using the statistical F-test evaluation was applied to determine the contribution of each 
updating parameter (or a group of parameters) to the total variance of each measured output. If the F-
test returned a value that exceeded a threshold, then the chosen parameter was deemed to contribute 
significantly to the variance of the output. 

In this paper, a simple formula is developed for covariance updating that can be applied without the 
use of expensive forward propagation by MCS to determine the output covariance matrix. Two 
previous stochastic model updating methods are shown to be equivalent to the same formula with the 
assumption of small perturbations about the mean. It is demonstrated using a 3-degree of freedom 
model that the choice of updating parameters is critical to this process. If the correct parameters are 
chosen, then the output covariance matrix is reconstructed faithfully. However, this is generally not 
the case when wrongly chosen parameters are used, even though the output means may be accurately 
reconstructed. It is shown that the scaled output covariance matrix may be decomposed to allow the 
contributions of each candidate parameter to be assessed. Use of the classical linearised sensitivity 
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permits the assessment to be carried out efficiently. Numerical examples are used to illustrate the 
performance of the technique.    

 

2.0  Updating the Covariance Matrix 

The stochastic model updating problem may be expressed as, 

 ( ) ( ) 11

e e
j jj ++

− = − +z z S θ θ ε   (1) 

by the assumption of small perturbation about the mean. In equation (1) the over-bar denotes the 

mean, ,e ez z  are experimentally measured outputs, typically natural frequencies and mode-shape 

terms, 1j +θ  is the ( )1
th

j +  estimate of parameter distribution to be determined, with mean 1j +θ .  The 

mean sensitivity matrix is denoted by ( )j j=S S θ  and 1j +ε
 
represents errors introduced from various 

sources including inaccuracy of the model and measurement imprecision. 

Model updating of the means is a deterministic problem [16, 17] given by,   

 ( )( )1
e a

j j j j j+ = + −θ θ T z z θ   (2) 

where ( )a
j jz θ is the a predicted output of the model at the thj iteration. The transformation matrix jT  

is the generalised pseudo inverse of the sensitivity matrix jS ,  

 ( ) 1T T
j j j jε ϑ

−
= +T S W S W S   (3) 

and εW  and ϑW  are weighting matrices, to allow for regularisation of ill-posed sensitivity equations 

[4].  

It is seen from equation (1) that the matrix of output covariances is given by, 

 ( ) ( ) ( )1 1 1 1, , ,e e T
j j j j j jCov Cov Cov+ + + +∆ ∆ = ∆ ∆ +z z S θ θ S ε ε   (4) 

 ;e e e
j∆ = − ∆ = −z z z θ θ θ   (5) 

Then, if the error covariances are deemed to be small, an estimate of the parameter covariances may 
be obtained by inversion, using (3) to obtain, 

 ( ) ( )1 1, ,e e T
j j j jCov Cov+ +∆ ∆ = ∆ ∆θ θ T z z T   (6) 

Equation (6) allows for the computation of ( )1 1,j jCov + +∆ ∆θ θ using only the transformation matrix, 

jT , obtained at the final step of deterministic updating of the means and the measured output 

covariance.  It avoids expensive forward propagation of uncertainty through the model required by 
alternative approaches. In Appendix 1 it is shown that equation (6) may be developed 



4 

 

straightforwardly from expressions given previously by Haddad Khodaparast et al. [16] and Govers 
and Link [17]. 

 

3.0 Numerical Examples – Covariance Updating 

The example considered is the 3 degree of freedom mass-spring system shown in Figure 1 and used in 
references [13], [16] and [18].  

 

 

 

 

 

 

 

Figure 1. Three degree of freedom mass-spring example 

 

The nominal values of the parameters of the ‘experimental’ system are: ( )1.0kg 1,2,3im i= = ,

( )1.0N/m 1,2, ,5ik i= = K  and 6 3.0N/mk = . The erroneous random parameters are assumed to have 

Gaussian distributions with mean values,
1 2 5

2.0 N/mk k kµ µ µ= = =  and standard deviations 

1 2 5
0.3N/mk k kσ σ σ= = = . The true mean values are the nominal values with standard deviations 

1 2 5
0.2 N/mk k kσ σ σ= = =  (20% of the true mean values). Parameters 1 2,k k  and 5k  are assumed to be 

independent. 

Case 1 – Consistent set of updating parameters 

This example comprises a consistent updating problem where three uncertain stiffnesses, 1 2 5, ,k k k , are 

deemed to be responsible for observed variability in the three natural frequencies of the system. 
Equations (6) and (20) (Appendix 1) above were applied and the initial cloud of predicted natural 
frequencies was made to converge upon the cloud of ‘measured’ natural frequencies as shown in 
Figure 2. The measured data consisted of 30 separate measurement points (30 points in the 3 
dimensional space of the natural frequencies) and the predictions were represented by 1000 points, 
needed for forward propagation by Latin hypercube sampling (LHS) with imposed correlation from a 

normal distribution ( )( ), ,j n j j jN Cov∈θ θ θ θ , in order to determine j∆z from j∆θ .  

Figure 2 shows the results produced by the two methods, where it is apparent that the updated 
covariance ellipses from the two solutions are almost indistinguishable from each other or from the 
covariance ellipse of the ‘measured’ data. Note that the covariance ellipses on the scatter plots 
encompass 95% of the data (2-sigma ellipses). 
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a) f1 vs f2. b) f1 vs f3 . 

 

 

c) f2 vs f3. 

Figure 2. Frequency scatter plots (Case 1). 

 

Typical convergence characteristics are shown in Figure 3 and the updated parameter values are given 
in Table 1. The adopted convergence criterion was that the deviation of the predicted eigenfrequencies 
with respect to the reference ones should be less than a specified tolerance.  

The CPU times shown in Table 1 are determined with respect to the solution from equation (6). It is 
seen that for this particular 3 degree of freedom problem, calculation of the parameter covariance 
matrix is approximately 300 times faster by equation (6) than by equation (20) (Appendix 1). 

Updating is carried out using equation (6) for (i) an extended set of updating parameters with noisy 
data, and (ii) an inconsistent set of wrongly chosen updating parameters in the following Cases 2 and 
3. 
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Table 1. Parameters and eigenfrequencies values. 

 Reference 
30 obs. Initial (error %) 

Updated (error %) 
Eq(20) 

1000 obs. 

Updated (error %) 
Eq (6) 

�����   [N/m] 1.001 2.0 (99,73) 1.001 (-0.03) 1.014 (1.26) 
�����   [N/m] 0.992 2.0 (101.55) 0.993 (0.06) 0.966 (-2.68) 
�����   [N/m] 1.001 2.0 (99.84) 1.001 (-0.02) 1.008 (0.69) 
���   [N/m] 0.197 0.3 (52.59) 0.194 (-1.59) 0.194 (-1.36) 
��	   [N/m] 0.208 0.3 (44.58) 0.213 (2.35) 0.211 (1.40) 
��
   [N/m] 0.211 0.3 (41.94) 0.211 (-0.05) 0.211 (-0.11) 
��   [Hz] 0.1586 0.2030 (28.02) 0.1586 (-0.00) 0.1586 (-0.00) 
��   [Hz] 0.3180 0.3960 (24.54) 0.3180 (-0.00) 0.3180 (-0.00) 
��   [Hz] 0.4505 0.4823 (7.06) 0.4505 (-0.00) 0.4505 (0.00) 

# Iterations - - 9 6 
CPU time ratio - - ~300 1 

 

Case 2 – Noisy Data 

In this case zero-mean Gaussian noise with coefficient of variation (CoV) [ ]5 5 3 % is added to the 

measured eigenvalue data and the number of updating parameters is increased from 3 to 5, i.e. 

1 2 5, , ,k k kK . Here, the erroneous random parameters are assumed to have Gaussian distributions with 

mean values,
1 2 5

2.0 N/mk k kµ µ µ= = = and
3 4

0.5N/mk kµ µ= = and standard deviations 

1 2 5
0.3N/mk k kσ σ σ= = = and

3 4
0.1N/mk kσ σ= = . It is necessary in this case to include the mode-

shape sensitivities in order that the updating equation (1) is overdetermined.  

Figure 4 shows good agreement between reference and updated scatter ellipses using a reference 
sample with 30 observations and an updated LHS of 1000 observations, generated with the updated 
mean values and covariance matrix. 

Typical convergence characteristics are shown in Figure 5, where the standard deviation of the 

randomized stiffnesses ( 0.2iσ = N/m) is approximated, but not obtained perfectly. This is because the 

non-randomized stiffnesses 3k and 4k become random variables after updating, as the updated 

covariance matrix also has components related to these initially non-randomized parameters (Figure 
5.b). 

  
  

a) b) 
Figure 3. Convergence plots (Case 1 - Eq. (6)): a) Mean values of the estimates; b) Standard 

deviation of the estimates - (dash-dotted line: reference values). 
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a) b) c) 
Figure 4. Frequency scatter plots (Case 2 - Eq. (6)). 

 
 

 

  
a) b) 

   

Figure 5. Convergence plots (Case 2 - Eq. (6)): a) Mean values of the estimates; b) Standard 
deviation of the estimates - (dash-dotted line: reference values).  

 
 

Case 3 - Inconsistent updating parameter set  

Case 3 presents an example of an inconsistent updating problem where the updating parameter set 
does not include all the uncertain parameters responsible for the observed variability in the reference 
responses. As in the previous cases, the reference data were produced with randomized1 2,k k  and 5k , 

while the updating parameter set is composed of 1 2,k k and 6k , i.e., the uncertain 5k is not included in 

the updating parameter set. In this case regularisation was applied with , 0.1ϑ ε= = ×W I W I . 

Figures 6 and 7 show the results of the updating process - the reference sample is that given in Case 2. 
The scatter plots of Figure 6 show that the output means are reconstructed faithfully but the choice of 
an inconsistent set of updating parameters has resulted in large errors in the reconstructed covariance 

ellipses. The updating parameters 1 2 6, ,k k k  are fully converged after 30 iterations as shown in Figure 

7. This result demonstrates that the selection of updating parameters on the basis of reconstructing the 
output means is not sufficient to ensure that the output covariances will be well reconstructed. The 
problem to be addressed in the following section is, therefore, to define a procedure for parameter 
selection prior to model updating that ensures that output covariances as well as mean values are 
reconstructed accurately.  
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a) b) c) 
Figure 6. Frequency scatter plots (Case 3 - Eq. (6)). 

 

  
a) b) 

   

Figure 7. Convergence plots (Case 3 - Eq. (6)): a) Mean values of the estimates; b) Standard 
deviation of the estimates - (dash-dotted line: reference values). 

 

4.0  Selection of Parameters for Stochastic Model Updating 

Equation (1) may be cast in scaled form using the output and parameter standard deviations, 
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M

  (7) 

where the subscript j  is omitted for reasons of simplicity, although it should be understood that for 

parameter selection purposes 0j =  to indicate an initial parameter estimate.  

If the chosen parameters are independent, then the covariance matrix is given by the identity matrix, 
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 
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Assuming the error ε%  in equation (7) to be independent of the parameters, then the output covariance 
matrix may be expressed as, 

 ( ), ,
p q

p p q q T

z z

z z z z
Cov Cov

σ σ
 − −
  = +
 
 

SS ε ε% % % %   (9) 

where S%  is the scaled matrix of sensitivities. 

Equation (9) may be expanded so that, 

 ( )
1 1 2 2

, ,
m m

p q

p p q q T T T

z z

z z z z
Cov Covθ θ θ θ θ θσ σ

 − −
  = + + + +
 
 

s s s s s s ε ε% %K   (10) 

where 
kθs  denotes the thk  column of the scaled sensitivity matrix S% . The term 

k k

T
θ θs s  on the right-

hand-side of equation (10) therefore represents the contribution of the thk  parameter to the scaled 
output covariance matrix. We would like to select those parameters that make the most significant 
contributions.  

The matrix of measured output covariances may be expressed by its singular value decomposition as, 

 ,
p q

p p q q T

z z

z z z z
Cov

σ σ

 − −
  =
 
 

UΣU   (11) 

From the right-hand-sides of equations (10) and (11) it is seen that the number of parameters that 

contribute to ,
p q

p p q q

z z

z z z z
Cov

σ σ

 − −
 
 
 

 must be equal to the number of non-zero singular values. 

The range of ,
p q

p p q q

z z

z z z z
Cov

σ σ

 − −
 
 
 

 is spanned by the columns of U  corresponding to the non-zero 

singular values, 

 ( )0range , span
p q

p p q q

z z

z z z z
Cov

σ σ Σ≠

  − −
   =

    

U   (12) 

The projection onto 0Σ≠U  of the contribution of each parameter kθ  to ,
p q

p p q q

z z

z z z z
Cov

σ σ

 − −
 
 
 

, i.e. each 

term on the right-hand-side of equation (10), is then given by, 

 0 0'
k k

T
θ θΣ≠ Σ≠=s U U s   (13) 

Ideally, if a parameter kθ makes a non-zero contribution, then '
kθs must be given exactly by a linear 

combination of the columns of 0Σ≠U , so that 
kθs and '

kθs  are identical. In practice they will be 



10 

 

different due to the presence of the error term ( ),Cov ε ε% %  in equation (10). The cosine distance may be 

used to assess the closeness of '
kθs to 

kθs , 

 
'

1 cos 1
'

k k

k k

T

k

θ θ

θ θ

ψ− = −
s s

s s
  (14) 

where kψ denotes the angle between 
kθs and '

kθs . The cosine distance takes a value between zero and 

unity and, in practice, if less than a chosen threshold, 

 1 cos k ψψ ε− <   (15) 

then kθ may be deemed to be a contributing parameter. 

The test for parameter selection (15)  requires that ,
p q

p p q q

z z

z z z z
Cov

σ σ

 − −
 
 
 

 shall be less than full rank, 

so that there are columns of U corresponding to small (theoretically zero) singular values. Otherwise 
it is not possible to recognise wrongly selected parameters. This means that there must be more 
outputs than parameters. 

5.0  Numerical Examples – Parameter Selection 
 
The 3 degree of freedom structure shown in Figure 1 is considered. 
 
Case 4: Two Randomised Parameters 
 
In each of the exercises shown in Figures 8-11 the data is produced using two randomised parameters. 
All six stiffness terms are tested for significance with initial mean estimates of twice the nominal 
values (100% errors) and standard deviations of half the mean values (50% error). The result of using 
both eigenvalue and eigenvector sensitivities is shown in Figures 8a-11a whereas the result of using 
only the eigenvalue sensitivities is shown in Figures 8b-11b.  
 

  
Figure 8a. Cosine distance – 3 eigenvalues, 3 

eigenvectors. Randomised 1 2,k k .  
Figure 8b. Cosine distance – 3 eigenvalues 

only. Randomised 1 2,k k . 
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Figure 9a. Cosine distance – 3 eigenvalues, 3 
eigenvectors. Randomised 1 5,k k . 

Figure 9b. Cosine distance – 3 eigenvalues 
only. Randomised 1 5,k k . 

 

  
Figure 10a. Cosine distance – 3 eigenvalues, 3 
eigenvectors. Randomised 1 6,k k . 

Figure 10b. Cosine distance – 3 eigenvalues 
only. Randomised 1 6,k k . 

 

  
Figure 11a. Cosine distance – 3 eigenvalues, 3 
eigenvectors. Randomised 2 6,k k . 

Figure 11b. Cosine distance – 3 eigenvalues 
only. Randomised 2 6,k k . 
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identified. In Figures 8b, 9b and 10b not only are the correct parameters selected, but the incorrect 
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the case that the eigenvalue sensitivities to parameters 4k  and 5k are the same . In the cases where 

these parameters are randomised, the inclusion of the eigenvectors sensitivities improves the 
parameter selection, allowing for the selection of only the correct parameters as shown on Figures 8a, 
9a and 10a. Figure 11 shows results for randomised 2k  and 6k . These parameters have distinct 

sensitivities and therefore they are correctly selected by using only the eigenvalue sensitivities as can 
be seen in Figure 11b. 
 
Case 5: Three Randomised Parameters 
In this case it is necessary to use both eigenvalue and eigenvector sensitivities, so that the number of 
outputs is greater than the number of parameters. Again, the correct parameters responsible for output 
variability are identified in Figures 12 and 13, although in both cases additional parameter-cosine-
distances fall below the threshold marked by the dashed line. This is not a problem since it was shown 
in Case 2 above that stochastic updating performs well with more that the necessary number of 
parameters provided that the correct ones are included. 

  
Figure 12. Cosine distance – 3 eigenvalues, 3 
eigenvectors. Randomised 1 2 5, ,k k k . 

Figure 13. Cosine distance – 3 eigenvalues, 3 
eigenvectors. Randomised 1 2 6, ,k k k . 

 
6.0 Numerical Example – Pin-jointed Truss. 
 
The pin-jointed truss shown in Figure 14 has overall dimensions 5m ×1m and is composed of 21 
elements in total, each with a stiffness matrix given by, 
 

1 1
; 1,2, ,21

1 1ik i
− 

= = − 
K K  

 
  
 
 
 
 
 
 
 
 

Figure 14. Pin-jointed truss. 
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The five diagonal bars of nominal stiffness 81.485 10 N/m
EA

L
= ×  are each randomised for updating. 

The true mean value of each is equal to the nominal stiffness and the standard deviations are given by 
0.135 , 3,7,11,15,19.

j jk k jσ µ= =  For the purposes of parameter selection, the initial estimates of all 

the mean stiffnesses, , 1,2, , 21ik i = K , are considered to be 70% of the reference values and the 

standard deviations are given by 
3

0.27
jk kσ µ=   

Parameter selection results are shown in Figures 15-18. It is seen that the correct parameters for 
updating are recognised correctly in each case of different numbers of outputs.  

  
Figure 15. Cosine distance – 1st 10 eigenvalues. Figure 16. Cosine distance – 1st 15 eigenvalues. 

 

  
Figure 17. Cosine distance – All eigenvalues. Figure 18. Cosine distance – All eigenvalues and 

eigenvectors. 

 

It can be seen from the figures that the first bar element 1k  has zero cosine distance. This happens 

because the boundary condition prevents any extension or compression of 1k , so that all the outputs 

are insensitive to it.  When the constraints are removed, so the truss is in the free-free condition, the 

cosine distance corresponding to parameter 1k  becomes finite and exceeds the threshold as shown in 

Figures 19a and 19b – it is seen correctly that 1k  is not a randomised updating parameter. 
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Figure 19a. Cosine distance – Free-free 
condition 

1st 10 eigenvalues. 

 

Figure 19b. Cosine distance – Free-free 
condition 

1st 20 eigenvalues. 
 

Having correctly identified the randomised updating parameters, it is necessary to carry out the 
stochastic model updating. The initial values of the updating parameters are set to: 

3 7 11 15 193 7 11 15 190.70 ; 1.20 ; 0.90 ; 0.80 ; 1.15µ µ µ µ µ= = = = =k k k k kk k k k k  

and ( )CoV 2 j

j

k

j
k

k
σ
µ

= . 

 
Updating results are shown in Figures 20-23. It can be observed in Figures 20 and 21 that when 
updating is carried out using the first 10 eigenvalues, then the exact mean values of the parameters 
and their covariances are closely approximated. The reconstructed output ellipses are in good but not 
quite perfect agreement with the measured data. 
 

  

Figure 20. Identified parameters (Pin-jointed Truss - Eq. (6): using 1st 10 eigenvalues). 
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a) b) c) 
Figure 21. Frequency scatter plots (Pin-jointed Truss - Eq. (6): using 1st 10 eigenvalues). 

It can be seen in Figures 22 and 23 that when all 20 eigenvalues are used in model updating the 
updated parameter means and covariances are in almost perfect agreement with the values used to 
generate the data. Also, the output covariances are reconstructed almost exactly. 

  

Figure 22. Identified parameters (Pin-jointed Truss - Eq. (6): using 20 eigenvalues). 

 

   

a) b) c) 
Figure 23. Frequency scatter plots (Pin-jointed Truss - Eq. (6): using 20 eigenvalues). 
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9.0 Conclusions.  

A simple and efficient formula for updating the parameter covariance matrix is developed using only 
the measured output covariances and the transformation matrix obtained at the final deterministic step 
of updating the parameter mean values. Two previous stochastic model updating techniques are 
shown to be equivalent and to reduce to the same formula within the theory of small perturbations 
about the mean. 

A simple numerical counter-example is used to demonstrate a problem: that the means may be 
updated correctly even when the updating parameters are wrongly chosen. This shows that parameter 
selection for covariance updating requires the use of techniques additional to those already used for 
deterministic updating. 

It is shown that the measured output covariance matrix may be decomposed to reveal the 
contributions of each independent updating parameter. A vector is formed from a scaled column of 
the sensitivity matrix and the cosine distance corresponding to the angle between this vector and its 
projection on the space defined by the columns of the covariance matrix is used to distinguish the 
updating parameters from other candidate parameters that might be deemed responsible for the 
observed output variability. 

Numerical examples are used to demonstrate the effective performance of the method in parameter 
selection and stochastic model updating. 
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Appendix 1: 
 
Haddad Khodaparast et al. [16] gave the following expression for updating the parameter covariance 
matrix, 

 
( ) ( ) ( ) ( )

( ) ( )
1 1, , , ,

, ,

T
j j j j j j j j j j

T e e T
j j j j j j

Cov Cov Cov Cov

Cov Cov

+ +∆ ∆ = ∆ ∆ − ∆ ∆ − ∆ ∆

+ ∆ ∆ + ∆ ∆

θ θ θ θ θ z T T z θ

T z z T T z z T
  (16) 

The covariances ( ),e eCov ∆ ∆z z , ( ),j jCov ∆ ∆z z and ( ),j jCov ∆ ∆θ z  are readily available from the 

data and from forward propagation using the distribution with mean jθ  and ( ),j jCov ∆ ∆θ θ .  

 
Equation (16) may be simplified by further application of the small-perturbation assumption 
expressed as, 

 ( )j j j j j∆ = − = ∆θ T z z T z   (17) 

so that, 

 ( ) ( ), ,T T
j j j j j j jCov Cov∆ ∆ = ∆ ∆θ z T T z z T   (18) 
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 ( ) ( ), , T
j j j j j j jCov Cov∆ ∆ = ∆ ∆T z θ T z z T   (19) 

Substitution of equations (18) and (19) into (16) leads immediately to,  

 ( ) ( ) ( ) ( )1 1, , , ,e e T T
j j j j j j j j j jCov Cov Cov Cov+ +∆ ∆ = ∆ ∆ + ∆ ∆ − ∆ ∆θ θ θ θ T z z T T z z T   (20)

  
which is identical to equation (24) given by Govers and Link [17] and implemented by forward 

propagation of j∆θ using a multivariate normal distribution. 

Further application of (17) in the third right-hand-side term of (20) shows that, 

 ( ) ( ), ,T
j j j j j jCov Cov∆ ∆ = ∆ ∆T z z T θ θ   (21) 

finally resulting in 

 ( ) ( )1 1, ,e e T
j j j jCov Cov+ +∆ ∆ = ∆ ∆θ θ T z z T   (22) 

which is identical to equation (6). 
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