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Abstract 

Classical pole-placement theory requires that every degree of freedom shall be accessible to 
sensing but in physical systems there are often obstructions that make sensing at certain 
degrees of freedom impractical. In the classical formulation of the pole placement problem 
the input vector which determines the actuator gains is given and the pole placement problem 
is linear. If the input vector is not known and it is desired to find the gains of actuators and the 
gains of the measured state subject to some constraints then the problem becomes nonlinear 
since the unknown parameters multiply each other. It is shown that this nonlinear active 
vibration control problem is rendered linear by the application of a new double input control 
methodology implemented in conjunction with a receptance-based scheme where full pole 
placement is achieved while some chosen degrees of freedom are free from both actuation and 
sensing. A lower bound on the maximum number of degrees of freedom inaccessible to both 
actuation and sensing is established. A numerical example is provided to demonstrate the 
working of the method using the new double-input approach. 

Keywords: Active vibration control; partial pole placement; inaccessible degrees of freedom; 
double-input control; receptance method. 

1. Introduction 

The eigenvalue assignment problem has many potential applications in structural dynamics, 
including the improvement of the stability of dynamic systems, avoidance of the damaging 
large-amplitude vibrations close to resonance, and adaptive changes to system behaviour. A 
variety of eigenvalue assignment algorithms have been developed over several decades, 
namely, eigenvalue assignment by state feedback [1, 2], eigenvalue assignment by output 
feedback [3-8], robust eigenvalue assignment problem [9-15], to name but a few. In practice, 
there may be a large number of eigenvalues but only a few that are undesirable. Therefore, 
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partial pole placement, where some eigenvalues are required to be relocated and the 
remaining poles are rendered unchanged, is of practical value in suppressing vibration and 
stabilising dynamic systems. Saad [16] proposed a projection algorithm for the partial 
eigenvalue assignment for first-order systems. Datta et al. [17] developed a closed-form 
solution to the partial pole assignment problem by state feedback control in systems 
represented by second order differential equations. The method has been generalised for the 
case of multi-input control [18, 19]. Chu [15] proposed a partial pole assignment method with 
state feedback for second-order systems. The robust partial pole placement problem was 
investigated in [20-23]. The problem of optimising the control effort in partial eigenvalue 
assignment was addressed by Guzzardo et al. [24]. Partial pole placement with time delay was 
also considered [25-27]. 

Ram and Mottershead [28] developed a new theory known as the receptance method for 
eigenvalue assignment in active vibration control using experimental measurements. While in 
conventional pole placement methods analytical models are required, in the method of 
receptances, measured modal data are used instead of system matrices. Therefore, the 
receptance method has a wealth of advantages. There is no need to estimate or know the mass, 
stiffness and damping matrices, no need to estimate the unmeasured state using an observer or 
a Kalman filter and no need for model reduction. By virtue of partial controllability, a partial 
pole placement approach using measured receptances for single-input and multi-input 
feedback control was proposed by Tehrani et al. [29]. Very recently, Ram and Mottershead 
[30] developed a new theory of receptance-based partial pole placement by using partial 
observability. A series of experimental tests were carried out to demonstrate the capability of 
the receptance method in active vibration suppression [29, 31-33].  

In the traditional application of active vibration control by partial pole placement with state 
feedback the input vectors are assumed to be given and the calculated vectors of the control 
gain are therefore in general fully populated. Consequently, to realize the control in practice it 
is required to sense the state at each degree of freedom. In applications, however, some of the 
degrees of freedom may not be physically accessible to actuation and sensing simultaneously. 
That is, there exist some inaccessible degrees of freedom.   

The purpose of the paper is quite different from sparse controllability problem [34, 35] 
whereby optimisation is applied to ensure controllability (and separately observability) with 
as few variables as possible, leading the fewest total number of sensors and actuators. The 
present work is motivated by engineering practicality where not every degree of freedom is 
available for sensing, and if it is not available for sensing it is not available for actuation 
either. One example is the helicopter rotor blade requiring active vibration control but 
inaccessible to both actuation and sensing. 

In the present paper the input and control-gain vectors are determined and the resulting 
interactions between unknown terms that would normally lead to nonlinearity are 
circumvented by the use of a new double input control involving position, velocity and 
acceleration feedback. This enables the retained modes to be separated into two sets resulting 
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in a linear system of constrains. Further constraints are applied to assign the other modes and 
it is seen that the nonlinear problem of determining input vectors and the control gains for 
partial pole placement with inaccessible degrees of freedom is converted into a linear one. A 
lower bound on the maximum number of degrees of freedom completely cleared of both 
sensing and actuation is then established using purely linear analysis. Since the main objective 
is the introduction of a new concept, we address for simplicity the case involving distinct 
eigenvalues in both open and closed loops. Systems with repeated eigenvalues will be 
considered in further work beyond the scope of the present article.  

Section 2 of this paper establishes the basis for the analysis that follows. In Sections 3 and 4 
the necessary equations are established for partial pole placement with inaccessible actuators 
and sensors represented by zero terms in the input vector and the control-gain vectors. Section 
5 establishes the solvability conditions that enable lower bounds on the maximum numbers of 
inaccessible actuators and sensors to be determined. Then in Section 6 a lower bound on the 
maximum number of degrees of freedom inaccessible to both actuation and sensing is 
achieved by equating the solutions obtained in the previous section. A numerical example is 
used to demonstrate the working of the proposed theory.  

2. Motivation 

The motion of the n  degree of freedom system 

 + + =Mx Cx Kx 0&& & ,  (1) 

where M , C  and K  are symmetric nn ×  matrices and where M  is positive-definite and C  
and K are positive-semidefinite, may be altered by state feedback control 

 ( )u t+ + =Mx Cx Kx b&& &   (2) 

where 

 ( ) T Tu t = +f x g x&  (3) 

and where b , f  and g  are real vectors denoting force-distribution  and control-gain terms. 

The quadratic eigenvalue problem corresponding to the open loop system (1) is given by 

 ( )2 , 1,2, ,2k k k k nλ λ+ + = =M C K v 0 L . (4) 

The self-conjugate set of n2  poles, { } n

kk
2

1=λ , with corresponding eigenvectors { } n

kk
2

1=v  that 

satisfy (4) are the eigenpairs of the open-loop system. 

Similarly, the eigenvalue problem of the closed loop system (2) is 
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 ( )( )2 , 1,2, ,2T T
k k k k nµ µ+ − + − = =M C bf K bg w 0 L . (5) 

with the self-conjugate set of n2  poles, { } n

kk
2

1=µ , and corresponding eigenvectors { } n

kk
2

1=w . The 

eigenvalues of the open-loop system are assumed to be distinct, as are those of the closed-
loop systems, the case of repeated roots and defective systems is to be considered in further 
work beyond the scope of the present article. 

To regulate the dynamic of the open loop system (1) it is frequently required to alter a subset 
of eigenvalues. Since the eigenvalues may be ordered arbitrarily, without loss of generality 

we may assume that the 2 2m n≤  poles of the self-conjugate set { }2

1

m

k k
λ

=
 associated with (4) 

are required to be changed to a predetermined self-conjugate set { }2

1

m

k k
µ

=
 by the applied 

control force. To avoid spillover it is further requested that { } { }2 2

2 1 2 1

n n

k kk m k m
µ λ

= + = +
= . These 

conditions may be thus written in the form 

 
1,2,..., 2

2 1,2 2,..., 2 .
k

k
k

k m

k m m n

µ
µ

λ
=

=  = + +
 (6) 

The classical problem of partial pole placement by state feedback control is formulated as 
follows. 

Problem 1: Partial pole assignment by state feedback control  

Given: M , C , K , b  and a self-conjugate set { }2

1

m

k k
µ

=
 

Find: f , g  such that the poles of (5) form the closed-conjugate set (6).  

Datta, Elhay and Ram [17] gave a closed form solution to Problem 1. Their solution showed 

for example that when we choose 1eb = , where ke  is the k-th unit vector, the solution 

generally leads to fully populated vectors of control gains f  and g . The physical meaning is 

that the state feedback control may be implemented in general by one actuator and n  sensors 
measuring the complete state of the system in real time. In practice, however, some of the 
degrees of freedom may not be accessible to both sensing and actuation. For brevity we will 
refer to such degrees of freedom as the inaccessible degrees of freedom.  

Since the degrees of freedom may be numbered arbitrarily, without loss of generality we may 
assume that the last p  degrees of freedom are inaccessible. Let 

 ( ) ( ) ( )2 2 2T T T
k k k kσ = + +e b e f e g , (7) 

then the condition 
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1

0
n

k
k n p

σ
= − +

=∑ , (8) 

implies that there is no need to sense or actuate the last p  degrees of freedom since every 

term in (8) is non-negative and therefore 0=== kkk gfb  for npnpnk ,...,2,1 +−+−= .  

In addressing the problem of state feedback control with inaccessible degrees of freedom we 
may thus attempt to modify Problem 1 to the problem of finding b , f  and g  subject to the 

constraint (8). Problem 1, which is linear, would then be changed to a non-linear problem 
since the unknowns elements of b  interact with the unknown elements of f  and g  

nonlinearly.  

It will be shown in this paper that with a new double-input controller taking form  

 ( ) ( )1 2u t u t+ + = +1 2Mx Cx Kx b b&& &  (9) 

where, 

 ( )1
T Tu t = +f x g x&& &  (10) 

 ( )2
T Tu t = +f x g x&  (11) 

it is possible to solve in a linear fashion the partial pole placement with inaccessible degrees 

of freedom. In (9) the vectors 1b and 2b  represent the distributions of control forces. The  

magnitudes of individual terms denote amplification factors to be applied to the inputs 1u and 

2u . The closed loop quadratic eigenvalue problem associated with (9) in conjunction with (10) 

and (11) then becomes 

 ( ) ( )( )2 2
1 1 2 2 , 1,2, ,2T T T T

k k k k k k k nµ µ µ µ+ + = + + + =M C K w b f b g b f b g w L . (12) 

The control force on the right-hand-side of  (12) may be rewritten as 

 ( )( ) ( ) ( )2
1 1 2 2 1 2

T T T T T T
k k k k k kµ µ µ µ+ + + = + +b f b g b f b g w b b f g w  (13) 

so that the eigenvalue problem (12) becomes 

 ( ) ( )( )2
1 2 , 1,2, ,2T T

k k k k k k k nµ µ µ µ+ + = + + =M C K w b b f g w L  (14) 

 and the condition (8), with  

 ( ) ( ) ( ) ( )2 2 2 2

1 2
T T T T

k k k k kσ = + + +e b e b e f e g  (15) 
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ensures that there is no need to actuate or sense the last p  degrees of freedom of the 

controlled system (9). 

The problem under consideration is thus  

Problem 2: Partial pole assignment with inaccessible degrees 

Given: M , C , K , { }2

1

m

k k
µ

=
 and np <<0  

Find: 1b , 2b , f  and g  such that the poles of (14) form the set (6) and the 

condition (8), in conjunction with (15), is satisfied.  

3. Immovable and assigned eigenvalues  

We begin by writing the open-loop and closed-loop eigenvalue problems, (4) and (14), as 

 ( )2 , 1, 2,..., 2k k k k nλ λ+ + = =M C K v 0  (16) 

and 

 ( ) ( )( )2
1 2 , 1, 2,..., 2T T

k k k k k k k nµ µ µ µ+ + = + + =M C K w b b f g w  (17) 

with the understanding that 

 , 2 1,2 2,...,2k k k m m nµ λ= = + +  (18) 

and{ }2

1

m

k k
µ

=
are assumed to be distinct from { } n

kk
2

1=λ .  

It is apparent that the right-hand-side of (17) is asymmetric, so that the closed-loop eigenvalue 

problem may be expressed in terms of the left eigenvector kz , 

 ( ) ( )( )2
1 2 , 1, 2,..., 2T T T T

k k k k k k k nµ µ µ µ+ + = + + =z M C K z b b f g   (19) 

It follows from (17) that k kµ λ=  and k k=w v whenever 

 ( ) 0T T
k kλ + =f g v   (20) 

and from (19) that k kµ λ=  and k k=z v  when 

 ( )1 2 0T
k kλ + =v b b   (21) 

We now partition the set of unchanged eigenvalues { } { }2 2

2 1 2 1

n n

k kk m k m
µ λ

= + = +
= , closed under 

conjugation, so that those eigenvalues with indices 2 1, , 2k m τ= + K , rendered unchanged by 
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virtue of (20), are separated from those with 2 1, , 2k nτ= + K , given by satisfaction of (21) 

and m nτ≤ ≤  . To summarise, there are 2m  eigenvalues to be assigned arbitrarily, ( )2 mτ −  

that are unchanged due to (20) and ( )2 n τ− unchanged due to (21) as shown in Fig. 1 

 

 

Fig. 1 Eigenvalues assigned and retained 

 

To ensure that { } { }2 2

2 1 2 1k kk m k m

τ τµ λ
= + = +

=  we re-write equation (20) in the form 

 

2 1 2 1 2 1

2 2 2 2 2 2

2 2 2

,

T T
m m m

T T
m m m

T T
τ τ τ

λ
λ

λ

+ + +

+ + +

 
 

   = =    
 
 

v v

f v v
Q 0 Q

g

v v

M M
. (22) 

Likewise equation (21) may be recast to ensure { } { }2 2

2 1 2 1

n n

k kk kτ τ
µ λ

= + = +
=  

 

2 1 2 1 2 1

1 2 2 2 2 2 2

2

2 2 2

,

T T

T T

T T
n n n

τ τ τ

τ τ τ

λ
λ

λ

+ + +

+ + +

 
 

   = =    
 
 

v v
b v v

Φ 0 Φ
b

v v

M M
. (23) 

The rows of Q  and Φ  are independent when the retained eigenvalues of the open-loop 

system are distinct. 

The assignment of 2m eigenvalues { }2

1

m

k k
µ

=
 is achieved as in [30] by the satisfaction of 

characteristic equations arranged in the form, 

 
 

= 
 

f
P e

g
%  (24) 

where 
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 ( ) ( )
1 1 1

12 22 2 2
1 2

2 2 2

1

1
, ;

1

T T

T T
m

k k k k

T T
m m m

µ
µ µ µ µ

µ

−

   
   
   = = + + + = ∈
   
   
    

r r

r r
P r M C K b b e

r r

% �
MM M

. (25) 

The rows of P are independent when the assigned eigenvalues { }2

1

m

k k
µ

=
 are distinct. 

4. Degrees of freedom free of actuation and sensing 

Let us assume that the number of inaccessible actuators is 1p , 10 p n< < , the number of 

inaccessible sensors is 2p , 20 p n< <  and zero entries are placed in the last 1p  terms of 1b  

and 2b  and in the last 2p terms of f  and g . Since there is no restriction on the choice of 

degrees of freedom to be assigned zero entries, we may write 

 

1

1

1

21

2

,

n p

n p

n

− +

− +

 
 

   = =    
 
  

E

Eb
E 0 E

b

E

M
.  (26) 

In addition, 

 

2

2

1

2,

n p

n p

n

− +

− +

 
 

   = =    
 
 

E

Ef
E 0 E

g

E

M
. (27) 

where kE  is a 2 2n×  matrix 

 
T
k

k T
k n+

 
=  
 

e
E

e
. (28) 

The rows of E  and  E  are by definition independent. 

5. Lower bounds on the maximum numbers of inaccessible actuators and sensors 

In this section conditions are established that determine lower bounds on the maximum 
numbers of inaccessible actuators and sensors. These include the existence of nontrivial 

solutions for the force-distribution terms ( )1 2

TT Tb b  and that such solutions are always 

admitted when ( )1 1p τ≤ − . Then the conditions under which exact solutions are admitted for 
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the control gains ( )TT Tf g  are established. It is shown that certain identical exact solutions 

are available for ( )2p n τ≤ −  to guarantee at least ( )n τ−  null terms in f  and g . Thus the 

lower bounds on the maximum numbers of inaccessible actuators and sensors are found to be 

( )1 1 1p p τ= = −(
 and ( )2 2p p n τ= = −(

 respectively. 

We begin by establishing the necessary systems of equations. Thus, by combining equations 
(23) and (26), 

 1

2

    
=    

    

bΦ 0

bE 0
  (29) 

and also equations (22), (24) and (27), 

 ;

   
     = =             

e P
f

S 0 S Q
g

0 E

%

  (30) 

The inaccessible actuators and sensors are denoted by vanishing entries placed in the last 1p  

terms of 1b  and 2b  and in the last 2p terms of f  and g respectively. Thus, 

 
( )

( )

( )

( )

1 2

1 2

1

1 11

2 2

1 1

;
p p

p p

× ×

× ×

  
  

      
= =      

     
  

   

b f

0 0b f

b gb g

0 0

%%

% %
  (31) 

Then equations (22), (23) and (24) may be recast in the form, 

 [ ] ( ) ( )1 1

1
1 2 1 2: ,1: : , 1:2

2

; ;n p n n p− + −

 
= = = 

 

b
Φ Φ 0 Φ Φ Φ Φ

b

%

%
  (32) 

 
( ) ( )

( ) ( )

2 2

2 2

1 2: ,1: : , 1:21 2

1 2 1 2: ,1: : , 1:2

;
;

;

n p n n p

n p n n p

− + −

− + −

= =    =     = =    

P P P PP P ef
Q Q 0 Q Q Q Qg

% %

%
  (33) 

where, 

 [ ] ( ) ( )1 2
1 2 1 2

1 2

dim 2( ) 2 ; dim 2 2n n p n pτ τ 
= − × − = × − 

 

P P
Φ Φ

Q Q
  (34) 

Lemma 1: There exists a non-trivial solution ( )1 2

TT Tb b  to equation (29) if and only if 

[ ] ( )1 2 1rank 2 n p< −Φ Φ . 
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Proof: The necessary and sufficient condition for the existence of a nontrivial solution to a 
homogeneous system of linear equations is that the rank of the coefficient matrix is smaller 
than the number of unknowns. 

�   

Corollary 1: There always exists a non-trivial solution ( )1 2

TT Tb b  to equation (29) when 

1 1p τ≤ − . 

Proof:  From (34), if 1 1p τ≤ −  then [ ]( )1 2nullity 2≥Φ Φ .  

Therefore, a nontrivial solution is available from, 

 [ ]1
1 2

2

; null
 

= = 
 

b
Nα N Φ Φ

b

%

%
  (35) 

and 1 1p τ≤ − denotes the number of null entries in ( )1 2

TT Tb b . 

□   

Corollary 2: The lower bound on the maximum number of inaccessible actuators is given 

by 1 1p τ= −(
. 

Proof: If 1 1p τ= −  and 2h  of the ( )2 n τ− rows of [ ]1 2Φ Φ  are redundant then 

[ ]( )1 2nullity 2 2h= +Φ Φ  and a further h  inaccessible actuators may be admitted while still 

ensuring that 2( )n τ−  eigenvalues remain unchanged. Therefore the lower bound on the 

maximum number of inaccessible actuators is given when 0h =  so that 1 1 1p p τ= = −(
. 

□  

 Lemma 2: There always exists one or more identical exact solutions ( )TT Tf g  to equation 

(30) for different ( )2p n τ≤ −  when 
2 2

1 2 1 2

1 2 1 2

rank rank
p n p nτ τ= − = −

   
=   

   

P P P P e

Q Q Q Q 0

%
, and any 

other solution requires a greater number of sensors. 

Proof: One or more exact solutions exist when 

2 2

1 2 1 2

1 2 1 2

rank rank
p n p nτ τ≤ − ≤ −

   
=   

   

P P P P e

Q Q Q Q 0

%
so the right-hand-side of equation (33) is 

given by a linear combination of the columns of 
2

1 2

1 2 p n τ≤ −

 
 
 

P P

Q Q
. However, any exact 
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solution when ( )2p n τ= −  is also a solution when ( )2p n τ< −  because the columns of 

2

1 2

1 2 p n τ= −

 
 
 

P P

Q Q
 are included in 

2

1 2

1 2 p n τ≤ −

 
 
 

P P

Q Q
 . Other solutions exists when ( )2p n τ< − but 

are given by the linear combination of a greater number of columns, therefore requiring a 
greater number of sensors. 

□  

Corollary 3: If 
2 2

1 2 1 2

1 2 1 2

rank rank
p n p nτ τ= − = −

   
=   

   

P P P P e

Q Q Q Q 0

%
then the lower bound on the 

maximum number of inaccessible sensors is given by 2p n τ= −(
. 

Proof: If 2l  of the 2τ  rows of 
2

1 2

1 2 p n τ= −

 
 
 

P P

Q Q
 are redundant then 

2

1 2

1 2

nullity 2
p n τ= −

  
  =    

P P

Q Q
l  and a further l  inaccessible sensors may be admitted while 

still ensuring that ( )2 mτ −  eigenvalues remain unchanged and 2m  eigenvalues are assigned.  

Therefore the lower bound on the maximum number of inaccessible sensors is given when 

0=l  so that 2 2p p n τ= = −(
. 

□  

The solution of equation (30) is dependent upon the solution of (29) in that the eigenvalues to 
be assigned must be controllable. This imposes a condition on the solution of (29) that, 

 1

2

0; 1, 2, , 2T T
k k k k m

b
v v

b
λ  
  ≠ =  

 
L   (36) 

or, 

 ( )( )1

1

1:
2

0;T T
k k k k k n p

λ
−

 
  ≠ =  

 

b
v v v v

b

%
% % %

%
  (37) 

Lemma 3: The eigenvalues to be assigned in (30) are controllable when the α is chosen so that 

 0; 1, 2, , 2T T
k k k k mλ  ≠ = v v Nα% % L   (38) 

Proof: 

Equation  (37)  may be obtained by the combination of equation (38) with (35). 
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□  

6. Lower bound on the maximum number of inaccessible degrees of freedom. 

The numbers of degrees of freedom inaccessible to actuation and sensing are 1p  and 2p  

respectively. Our objective is to have equal values for 1p  and 2p so that the number of 

inaccessible degrees of freedom is maximised. It was already shown that the lower bound on 

the maximum numbers of inaccessible actuators is 1 1p τ= −
⌣

and if equation (30) is satisfied 

for 2 2p p n τ= = −(
, the lower bound on the maximum numbers of inaccessible sensors is 

2p n τ= −(
. Therefore, under the solvability condition, a lower bound on the maximum 

inaccessible degrees of freedom may be achieved by equating 1 1p τ= −
⌣

 and 2p n τ= −(
. 

We have already established that the eigenvalues can be separated into three groups: 

•  2m  eigenvalues to be assigned  

• ( )2 mτ−  eigenvalues to be unchanged due to equation (29) and  

• ( )2 n τ−  eigenvalues to be unchanged due to equation (30).  

where n mτ≥ ≥ .  

Equal numbers of degrees of freedom without sensing and actuation can be achieved when 

1 2p p=
⌣ ⌣

, so that 1 nτ τ− = −  and is possible when n  is odd and 
1

2

n
m

+≤ , in which case 

1

2

nτ += .  This case is illustrated in Fig. 2 where it is seen that it corresponds to an optimal 

maximum solution  1 2

1

2

n
p p p

−
= = =
⌣ ⌣

 of equations (29) and (30).  

When n  is even and 
1

2

n
m

+≤  a sub-optimal solution is obtained as shown in Fig. 3. This 

results in two solutions or 1
2 2

n nτ τ= = +  corresponding to 1
2

n
p = − . In practice, 

1
2

nτ = +  is preferable because it requires fewer actuators than sensors. When 
1

2

n
m

+>  and 

mτ ≥ then the only solution available is that denoted by the thick line in Fig. 4. We are free to 
choose any value of p n τ= −  on the thick line and the best available solution is mτ = . This 

solution results in fewer degrees of freedom free of sensing than those free of actuation and, 
as such, is a practical solution because fewer actuators are required than sensors.  

To summarise: 

Case 1 - n  is an odd number and 
1

2

n
m

+≤ : 
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1 1

;
2 2

n n
pτ + −= =   (39) 

Case 2 -  n  is an even number and 
1

2

n
m

+≤ : 

 or 1; 1
2 2 2

n n n
pτ τ= = + = −   (40) 

Case 3 - 
1

2

n
m

+> : 

 ;m p n mτ = = −   (41) 

 

 

Fig. 2 Number of inaccessible degrees of freedom (Case 1) 
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Fig. 3 Number of inaccessible degrees of freedom (Case 2) 

 

 

Fig. 4 Number of inaccessible degrees of freedom (Case 3) 

The procedure for partial pole placement with inaccessible degrees of freedom may be 
summarised as follows: 

1. Determine τ such that the lower bound on the maximum number of inaccessible 
degrees of freedom is achieved;  

2. Choose 1 1p τ= − and 2p n τ= −  and check the solvability of equation (30);  

3. Solve equations (29) and (30). 
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Sufficient conditions for achieving the lower bound of the maximum number of inaccessible 
degrees of freedom are: 

1. The force distribution vector should not be orthogonal to the first 2m modes (by 
choice of vector α ); 

2.  
2 2

1 2 1 2

1 2 1 2

rank rank
p n p nτ τ= − = −

   
=   

   

P P P P e

Q Q Q Q 0

%
. 

 

Example 1: Partial pole placement with inaccessible degrees of freedom 

Consider the open loop system with 

3

10

20

12

 
 
 =
 
 
 

M , 

2.3 1

1 2.2 1.2

1.2 2.7 1.5

1.5 1.5

− 
 − − =
 − −
 − 

C , 

40 30

30 60 30

30 90 30

30 30

− 
 − − =
 − −
 − 

K . 

The open-loop eigenvalues are 

 

1,2

3,4

5,6

7,8

= 0.0108  0.8736i

= 0.0809  1.6766i

= 0.1336 2.5280i

= 0.3980 4.0208i.

λ
λ
λ
λ

− ±

− ±
− ±

− ±

 

We wish to assign the first two pairs of eigenvalues while the remaining eigenvalues are 
unchanged 

 
1,2

3,4

0.03 1i

0.1 2i.

µ
µ

= − ±
= − ±

 

Following the analysis given in Section 6 the system has 1p =  degree of freedom 

inaccessible when either 2τ =  or 3τ = . Here we choose 2τ =   and then 1 1p =  and 2 2p =  . 

Equation (30) is found to be solvable. The vector ( )1 2

TT Tb b is required to be orthogonal to 

the last two pairs of open-loop eigenvectors 

 1

2

 
= 

 

b
Φ 0

b
 

where  
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5 5 5

6 6 6

7 7 7

8 8 8

T T

T T

T T

T T

λ
λ
λ
λ

 
 
 =
 
 
  

v v

v v
Φ

v v

v v

 

 
[ ]
[ ]

5

7

0.0941 0.2578i 0.0829 0.1727i  0.1056 0.2807i 0.0738 0.1775i

0.0535 0.2107i 0.0220 0.0613i 0.0033 0.0077i 0.0006 0.0014i

T

T

= − + − + − − +

= + − − + − −

v

v
 

* *
6 5 8 7,= =v v v v . 

It is assumed that the fourth degree of freedom is inaccessible.  Then 

 1
4

2

 
= 

 

b
E 0

b
 

where 

 4

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1

 
=  
 

E . 

Then  

 [ ]( ) ( ) ( )
1

1 2 1 2:,1:3 :,5:7
2

, null , and .
 

= = = = 
 

b
Nα N Φ Φ Φ Φ Φ Φ

b

%

%
 

By choosing ( )0.5 1
T=α , we obtain 

 1 2

0.1277 0.2199

0.4544 1.0059
, .

0.3831 0.9057

0 0

−   
   −   = =
   −
   
   

b b  

Also, from  

 3

4

   
     =            

P e
f

E 0
g

E 0

%

 

where 



17 

 

 

1 1 1

2 2 2

3 3 3

4 4 4

T T

T T

T T

T T

µ
µ
µ
µ

 
 
 =
 
 
  

r r

r r
P

r r

r r

, 

 [ ]1 0.0869 + 0.0672i 0.1165 + 0.0848i 0.1399 + 0.0916i 0.2343 + 0.1512iT = − − − −r , 

 [ ]3 0.0547 + 0.0592i 0.0613 + 0.0615i 0.0168 + 0.0162i 0.0278 0.0269iT = − − − −r , 

 * *
2 1 4 3,= =r r r r , 

 ( )1 1 1 1T =e% , 

and 

 3

0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0

 
=  
 

E  

the control gains are found to be  

 

0.4784 17.1376

4.8277 7.3027
,

0 0

0 0

−   
   −   = =
   
   
   

f g . 

The last two terms of g and f are made zero so that there is one totally inaccessible degree of 

freedom and a further degree of freedom where there is actuation but no sensor. 

Now closed-loop system becomes 

 ( ) ( ) ( )1 1 2 2 0T T T T− + − − + − =M b f x C b g b f x K b g x&& &  

with roots given by 

 

1,2

3,4

5,6

7,8

= 0.03 1i

= 0.1 2i

= 0.1336 2.5280i

= 0.3980 4.0208i

µ
µ
µ
µ

− ±

− ±
− ±

− ±

 

which are exactly the prescribed eigenvalues. 
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7. Conclusions 

A new theory for partial eigenvalue assignment by active vibration control in the presence of 
inaccessible degrees of freedom is proposed. A new double input control involving position, 
velocity and acceleration feedback is proposed. The eigenvalues of the open-loop, intended to 
be unchanged, are maintained in the closed-loop system by the application of orthogonality 
conditions on the input and feedback gain vectors, resulting in the appearance of zero terms in 
desired locations corresponding to degrees of freedom inaccessible to both actuation and 
sensing. The methodology is based entirely on linear systems of equations, thereby avoiding 
the need to use nonlinear optimisation routines. A lower bound on the maximum number of 
inaccessible degrees of freedom allowed for precise implementation of partial pole placement 
is given. The theory is of practical value to the vibration control of large-dimension structures 
with many inaccessible degrees of freedom. 
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