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distributions that can be estimated from
Kaplan-Meier curves

Trevor F. Cox?* and Gabriela Czanner®

This paper introduces a new simple divergence measure between two survival distributions. For two groups of
patients, the divergence measure between their associated survival distributions is based on the integral of the
absolute difference in probabilities that a patient from one group dies at time t and a patient from the other
group survives beyond time t and vice versa. In the case of non-crossing hazard functions, the divergence measure
is closely linked to the Harrell concordance index, C, the Mann-Whitney test statistic and the area under a
Receiver Operating Characteristic curve. The measure can be used in a dynamic way where the divergence
between two survival distributions from time zero up to time t is calculated enabling real-time monitoring of
treatment differences. The divergence can be found for theoretical survival distributions or can be estimated non-
parametrically from survival data using Kaplan-Meier estimates of the survivor functions. The estimator of the
divergence is shown to be generally unbiased and approximately normally distributed. For the case of proportional
hazards, the constituent parts of the divergence measure can be used to assess the proportional hazards assumption.
The use of the divergence measure is illustrated on the survival of pancreatic cancer patients. Copyright (© 0000
John Wiley & Sons, Ltd.

Keywords: crossing hazard functions; divergence measures; Kaplan-Meier curves; Kullback-Leibler
divergence; multidimensional scaling

1. Introduction

Time-to-event data frequently occur in medicine, e.g. death-times of patients on standard care versus those for patients
on a new intervention. Data collected, perhaps in a clinical trial, are generally analysed using standard techniques, such
as Kaplan-Meier curves and by testing the equivalence of the survival distributions using the log-rank test, e.g. [1]. The
log-rank test is optimal for the case of proportional hazards, but other tests that are more powerful have been proposed for
when proportional hazards cannot be assumed; see for example the review article by [2]. However, simply carrying out
a test of the null hypothesis that two survival curves are identical should not be the end of the statistical analysis, except
perhaps if a test of equivalence has been carried out and it is deemed that the survival curves are the same, but even then
some further description of the common survival curve would be needed. For differing survival curves, further analysis
would highlight the differences in survival between the two groups and one way to measure this is by a divergence measure
between the two distributions.

Survival distributions are usually compared over all time, or at least for the time period where data are available.
However, some authors have considered the case where distributions are compared dynamically, see for example [3, 4]
where test statistics are monitored over time. A real-time comparison measure of two survival distributions that changes
over time could be used as a complement to hypothesis testing.
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In this paper, it is assumed that there are two groups, F and G, with continuous survival functions Sg(t), S¢(t) and
corresponding density functions, f(¢) and g(¢), although for some results in this paper, continuity is not necessary. Without
loss of generality, it is also assumed that f and g have support on (0, 00). Let the corresponding cumulative distribution
functions (cdf) be F(¢) and G(¢).

In general, one frequently used measure of divergence between two continuous densities f and g is the Kullback-
Leibler measure (KL). It is the principal information function introduced by [5] and it measures the discrepancy between
two theoretical continuous density distributions, also known as relative entropy of X and Y:

K(f,9) = /0 " f@) {J;Eg}dm

Now K (f, g) is non-negative, shift and scale invariant and is asymmetric with equality of K(f,g) and K (g, f) holding
if and only if f(z) = g(x) a.e. Clearly, K(f, g) is not a metric because it is asymmetric and it does not satisfy the triangle
inequality. A symmetric extension was introduced by Kullback and Leibler as K(f, g)+K (g, f). Typically, K(f,g) is
estimated in two steps by first estimating the parameters of the densities, f and g, and then substituting these parameter
estimates into the formula of the KL divergence, see e.g. [6]. Perez-Cruz [7] proposed an estimate based on the empirical
distribution functions obtained from two independent samples, and showed that this estimate converges almost surely to
the actual true divergence. Apart from not being symmetric, another disadvantage of the KL divergence is that it was
not designed as a function of time, i.e. it is not dynamic. However, a dynamic extension of the KL divergence principle
to survival data is due to Ebrahimi and Kirmani [8] who proposed a measure of divergence between two residual-life
distributions. Later, a dual KL. divergence measure was proposed between two past-lives distributions by Di Crescenzo
and Longobardi [9]. The divergence of Ebrahimi and Kirmani is

D(f,g;t) —/0 SF(x)l {g(x)/SG(f) }d .

This measure is dynamic and for the case of proportional hazards this divergence measure can be shown to be constant.
However, this measure is not symmetric, i.e. D(f,g;t) # D(g, f;t) and in some distributions the integrand will be
negative, i.e. for some z

In{f(z)Sa(z)} — In{g(z)Sr(x)} < 0.

This paper proposes a new divergence measure between two survival distributions where the main criteria for the
measure were that it had to be practical, have medical motivations, be symmetric, non-negative and be dynamic enabling
real-time monitoring of treatment differences. It needed to be effectively estimated from empirical distributions, i.e.
without making assumptions of the parametric representation and without needing parameters to be estimated and, lastly,
it needed to be easy interpreted. The new divergence measure can be used to measure the overall difference between two
survival curves or used to see where curves start to separate in time, which can happen when two treatments are equally
efficacious early on after start of treatment, but then one becomes more efficacious than the other as time passes. For
several groups, pairwise divergences can be calculated and used to describe differences among all the groups. The new
divergence measure can be used to test for equivalent survival curves, but this is not seen as the primary purpose of the
measure. In fact, the measure is very closely allied to the test statistic proposed by Cox [10] for testing equivalence of
survival curves and it is argued later that this test should be used in preference to the divergence measure for the purpose of
hypothesis testing. In general, the estimate of the divergence measure is shown to be approximately unbiased and normally
distributed. Data on survival of pancreatic cancer patients are used to illustrate the use of the new divergence measure.

2. A divergence measure for survival distributions

The functions, Sr(t), Sc(t), f(t) and g(¢t) have already been defined. Let Ar(¢) and A (t) be the associated hazard
functions. Consider |SFr(t)g(t) — Sa(t) f(t)| which, when multiplied by dt, is essentially the difference in probabilities
that a patient from one group dies in the interval [¢,¢ + 0t) and a patient from the other group outsurvives him/her and
vice versa. The proposed measure of the divergence, Dr¢, between the survival distributions, S and S and dropping
the argument ¢ in functions for convenience, is

DFG:/ |Srg — Sa fl. (D
0
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Evaluation of the integral in equation (1) is generally not straightforward because of the absolute difference between Sgg
and S¢ f. However, for the case of non-crossing hazard functions with Spg > S¢ f (or vice versa) for all ¢,

DFG:/ (SFQ—SGf)ZQ/ Spg—1=2Pr(Tp >Tg) - 1,
0 0

using integration by parts and where 77 and T are survival times of subjects randomly chosen from groups F and
G respectively. Alternatively, Dpg =1 —2 fooo Scf and so for the case of non-crossing hazard functions, any of the
following three formulae for calculating Dp¢ can be used

2/ Spg—l
0

Note that fooo Srf = 0.5 for any survival distribution and so Drpr = 0. The range of the divergence measure is [0, 1].

To put the divergence measure in context, it is closely linked to Pr(T% > T¢), especially for the case of non-crossing
hazard functions. The quantity, Pr(T% > T ), which, together with its estimated value, have been widely used in the
past. It has been suggested that Pr(Tr > T) be a measure of effect size as an alternative to the usual effect size based
on means [11]. When there is no censoring, Pr(Tr > T¢) is equal to the Mann-Whitney test statistic [12, 13], is equal
to the area under a Receiver Operating Characteristic (ROC) curve [14, 15] and equal to Harrell’s concordance index C
[16, 17]. These connections are discussed by Schemper et al. [18], together with the connection to the average hazard
ratio as defined by Kalbfleisch and Prentice [19]. Here, we are using Pr(7% > T(;) in the different context as a divergence
measure, which possibly could be calculated from the other manifestations of Pr(7T% > T) (Harrell’s C, etc.), but not
when hazard functions cross.

The concept of “divergence by time ¢” is a useful measure to chart the progress of the divergence as time progresses.
This is defined as

b )

/O " (Srg - Saf)

2/00st—1’. )
0

t
Dre(t) = / Swg — Scfl,
0

or using the other formulae in (2) if appropriate.
Example Let Sp = exp(—t) and Sg = exp{—(1.3t)3-52}. Figure 1(a) shows these survival distributions, Figure 1(b) the

density functions, Figure 1(c) the hazard functions, Figure 1(d) fg Srg and fot Sq f and Figure 1(e) the divergence up to
time ¢. The first distribution is an exponential and the second a Weibull chosen so that the distributions have the same
median (0.69). Clearly the hazard functions cross and so the formula in (1) has to be used for calculating the divergence.
The divergence up to time ¢ rapidly increases from zero, flattens at the point where the hazard functions cross and then
increases again, reaching a plateau at approximately ¢ = 1.1 and giving total divergence of 0.533. The reason for choosing
this somewhat contrived example is that medical practitioners (and statisticians) loosely compare survival curves by simply
quoting the median survival. In this example the medians are equal, but clearly the survival curves are very different from
one another as indicated by the large divergence. So in practice, it might be useful to quote both the median survival times
and the divergence.

2.1. Divergence for proportional hazards

For the case of proportional hazards, A\¢ = yAr, where <y is the hazard ratio. Integrating Srg by parts gives

t t
[ sea+ [ Sar=1-se@satt)
0 0
and hence . .
/ SrScAa —|—/ SpScAr =1— Sp(t)Sa(t).
0 0

Substituting yAp for Ag, gives

/0 Saf = [1- Sp(t)Sa(®)]/(1+7), / Spg = [1— Sp()Sa(t)y/(1+7)

and thus [ Spgand [ S¢ f are in the proportions v : 1 for all ¢(> 0) and

Dre =|(vy=1)/(y+ 1] 3)

Consequently, v = (1 4+ Dpg)/(1 — D) or the reciprocal of this value, depending on which survival distribution is
chosen for the baseline hazard function.
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Figure 1. Plots of (a) survival curves, (b) density functions, (c) hazard functions, (d) integrals fg Srg and f[;‘ Sc f to time ¢ and (e) Dp¢ (t) for the survivor distributions
Sr = exp(—t) and Sg = exp{—(1.3t)>:°2}.

2.2. Dpg is a metric for the case of proportional hazards

To show Dp¢ is a metric, the following properties have to be established: (i) Dpg > 0, (ii)) Dpg =0 < Dp = S¢,
(i) Dpg = Dgr and (iv) Drpg < Dpg + Dgp. Itis possible to find counterexamples to show that D¢ is in general not
a metric. This can be done by randomly choosing parameter values for three Weibull distributions with scale and shape
parameters, (), 7), calculating Drg, Dy and Dgy numerically and then noting which sets of parameter values give
divergencies that do not satisfy the triangle inequality. One counterexample is given by the parameter values (1.2,3.1),
(2.1,1.7) and (3.4, 2.0) leading to divergences 0.475, 0.647 and 0.153. It should be noted that the triangle inequality held
most of the time and when it did not, the value of Drpg + Dgyg — Dpy was close to zero..

However, for the proportional hazards case, Dp¢g is a metric. Let Sp, Sg and Sy be three survival functions with
proportional hazards where S = S}, Sy = S} and, without loss of generality, let vy > v¢ > 1.

Conditions (i) and (iii) are clearly satisfied. For (ii), if Sp = S¢g, then Dpg = 0 trivially. Conversely, if Dpg = 0, then
using the third formulain (2), [ S¢ f = % Hence [ S} f = % Upon integration it is easily seen that v = 1 showing S
and S¢ to be identical. To show (iv),

yu — 1
vy +1

:'YH_'YG
YH + Y6

Dppg =

and then

Drc + Dra — Dgr
Drg + Dgu — Drm
Dry + Dgu — Dra

(va = 1)(va + 3vm + 3vave +74)/A,
(ve — D(ve — 1)(ve —a)/A,
(va —va)Bva + 3y +veve + 1) /A,

where A = (v¢ + 1)(vm + 1)(vm + 7¢) and hence all three quantities are non-negative, confirming (iv).
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Figure 2. Two simple survival curves for illustration of the calculation of f Spg and f S’G f: (a) estimated survival functions, (b) estimated density functions and (c) estimation
of Sp g and Sa f

2.3. Kullback-Leibler divergence for proportional hazards

For the symmetric Kullback-Leibler divergence, KLpc = K(f,9) + K(g, f) = [(f — 9){In(f) — In(g)}. Using the
equations, g/S¢ = vf/Sr and S = S}. for the proportional hazards case, it is easily shown after some algebra that

12
KLpg="1" o)

3. Calculating the divergence from data

The integral [ Spg can be estimated using empirical survival distributions. Let there be Ny and N observations from
the two groups respectively, where random censoring may have occurred. Let Sr and Sg be the Kaplan-Meier estimates
of the two survival distributions, e.g. [1]. (Figure 5 shows fifteen of these for a cancer example described in Section 4.)
Rather than using the Kaplan-Meier step function as an estimate of the survival distribution, where the function is constant
between adjacent calculated survival probabilities, instead, survival probabilities are linearly interpolated between the
adjacent points. The probability density functions, f and g will be estimated as piecewise constant functions obtained
from the slopes of the estimated survival function. This is illustrated in Figure 2 where (a) shows two very simple Kaplan-
Meier plots (dashed and dotted lines) and the estimated distribution functions to be used in the calculations (solid lines)
and (b) the estimated density functions where the constant intervals are open to the right (vertical lines are displayed to
aid visualisation). To estimate | Sgg, the points of change in values of Sp and of S¢ are amalgamated and then Sy and
g are calculated for each of the new change point intervals and then used for the estimates S ¢ and similarly for Se f
These estimated functions each form a sequence of trapeziums as shown in Figure 2(c). It can easily be shown that the
pairwise trapeziums for Sp g and S¢ f have their sloping top sides parallel. The integral f 0 Sp g s then just a sum of areas

of trapeziums for Spg up to time ¢ and similarly for fo Saf.
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In practice, let there be N amalgamated intervals covering the range of the estimated survival distributions and let their
values be Fy(= 1), Fy, ... , Fiv and Go(=1),G1,...,Gn at the time points, to(= 0),1,...,ty, defining the intervals.
Then the trapeziums for [ Sgg have coordinates

{t:,0} {ti, Fi(Gi — Gig1)/(tiva — ti) },
{tiv1, 08 {(tiv1, Figr(Gi — Gigr) /(tivr — 1)},

with areas (F; + Fi11)(G; — Gi41)/2. Adding these areas gives the estimate of [ S¢ f as

N N-1
i=0
and similarly for [ Sy
—_— N—1
/ng = {FyGo — Z(FiHGi — F,Giy1) — FnGN}/2. (6)
i=0

-

If the hazard functions Ar and A do not cross, then D¢ can be estimated by | f Spg — f S¢ f]. If the hazard functions

do cross, at a point ¢y say, then Dp¢ has to be estimated by the sum of f Srg — f S f calculated for 0 <t < ¢y and

L —

[ Saf — [ Srg calculated for ¢ > tg, or vice versa to make the quantities positive. A simple method for deciding if and

—_—

where the hazard functions cross, is to plot [ Spg and [ S¢ f against ¢ and look for a clear global maximum. If there is
one, the crossing point of the hazard functions is estimated as the point at which this maximum occurs.

Note, the estimates (5) and (6) added together give 1 — FiyG v as required since, for the population survival functions,
fot Srg + f(f Saf =1— Sp(t)Sc(t). If the step Kaplan-Meier functions had been used, then the sum of the two estimates
would not have been equal to this required value.

An alternative approach would be to calculate the estimates of [ Spgand [ S¢ f (or written as [ SpdSe and [ ScdSF)
using Riemann-Stieltjes integrals, [ FdG and [ GdF, circumventing the previous arguments about areas of trapeziums.
However, the argument via trapeziums is more intuitive, the same comment applies regarding the step Kaplan-Meier
functions not giving correct values and a connection of Dpe to a test for the equivalence of survival functions, based on
PP-plots, would probably have been missed. This will be described later. The Riemann-Stieltjes approach does however
allow consideration of the asymptotic distribution of Dre.

If the last data point is censored in each group, the cut-off for the divergence will be the minimum time of the
last data points, one from each group. If an assumption that the decay in the survival curves after this cut-off point,
tmazx say, is the same for both survival curves, then the overall divergence will be the same as the divergence seen
at tmax. For example, let Sp(t) = Sp1(t)I{t < tmax} + Sp1(tmax) exp(—At)I{t > tmax} and S¢(t) = S () I{t <
tmazx} + Sgi(tmazx) exp(—At)I{t > tmax} where I{.} is the indicator function. Then it is easily seen that for ¢t > tmax,

fg Srg — fot Saf = Otmax Sr191 — Otmar Sc1.f1, showing the divergence does not increase after time tmazx.

3.1. The distribution of ﬁpg

Appendix 7.1 shows how the variance of Dpg(t) can be estimated using the estimated variance of the Kaplan-Meier
function at the jump points. First the F;’s and G;’s are related back to the original jump points, labelled F; and G;. Then
after some matrix algebra it is shown that

E(Dre) ~ FTAG, var(Dpg) ~ tr(AT®pAdc) — tr(ATFFTAGGT),

where A, ®r and ® are defined in the Appendix. Appendix 7.2 shows that D ra(t) is asymptotically unbiased (N large
rather than ¢ large) with an asymptotic normal distribution. A counting process approach using martingales to show this is
outlined.

An alternative method is to use bootstrap samples to estimate the standard deviation of Dpg. These two approaches
were compared using pairs of exponential survival distributions with various rates and amount of censoring. One thousand
bootstrap draws were used. Detailed results are not given here since the agreement between the two approaches was
always very good with maximum difference 0.003. For instance using A\r = 1.0, A\¢ = 2.0, Np = 100, Ng = 100 with
20% censoring, the estimated standard deviation using the method described above was 0.081 and using the bootstrap,
0.080.
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Figure 3. Kaplan-Meier plots and Dra (t) for pancreatic cancer survival

3.2. Example: Divergence of survival distributions for pancreatic cancer patients

The ESPAC-3 trial was one in a series of pancreatic cancer trials aimed at improving treatment for patients for whom
the collective five-year survival rate is less than 5%. Patients in the trial underwent surgical resection and were then
randomised to chemotherapy by either Fluorouracil plus Folinic Acid (F) or Gemcitabine (G). The five-year survival rate
for patients who are able to have surgery can be up to 15%. The initial results from the trial are reported in [20]. The
median survival time (95% CI) for the F arm was 23.0 (21.1-25.0) months and for the G arm, 23.6 (21.4-26.4) months.
The log-rank test for testing the equivalence of the survival distributions gave a test statistic value of 0.70 on 1 degree of
freedom, with p = 0.39. Some key prognostic factors for pancreatic cancer are: lymph node involvement where the cancer
has spread to the lymph nodes (yes/no), resection margin where pathology determines whether the surgical margin is clear
of cancer cells (negative/positive) and tumour grade a measure of how closely tumour cells resemble ordinary cells, where
“well differentiated” means that tumour cells appear very similar to ordinary cells, “moderately differentiated”, less so
and “poorly differentiated” that the tumour cells are markedly different.

The example here illustrates the divergence of the survival distributions for the two groups Resection Margin = positive
and Resection Margin = negative. The data are also used in Section 4 where several groups are considered based on
treatment and three prognostic factors. Figure 3(a) shows the Kaplan-Meier curves for the two groups. There is a clear
survival advantage for the negative group. The log-rank statistic has value 26.4 on 1 df (p < 0.0001); the median survival
times for the two groups are 23.4 and 18.2 months. Figure 3(b) shows the divergence measured up to time ¢. Clearly the
survival curves do not diverge until approximately 7 months and then the divergence steadily increases to a value 0.13 at
15 months but then remains more or less constant but ending at a value of 0.16 overall. The pointwise 95% confidence
intervals are also given. They show that the null hypothesis of zero divergence would be rejected leading to different
survival curves. A point of clarity is needed here. Suppose the data had arisen from the same survival distribution or
distributions that were very close, and so the divergence is zero or close to zero. The estimated divergence would have been
close to zero and could be positive or negative depending on whether [ SpdSe — [ SqdSr or [ SqdSr — [ SpdSg was
used. Upon taking the modulus, the asymptotic distribution would change from normal to half-normal with consequences
for the confidence intervals. We prefer to keep things simple and allow graphs with negative divergencies, although one
knows they are not possible theoretically.

3.3. The connection with D¢ with a test statistic for the equality of survival functions

Cox [10] proposed a test statistic for testing the equality of survival functions based on PP-plots, where one Kaplan-
Meier curve is plotted against another. The test statistic is defined as the absolute area between the resulting curve and the
diagonal from (0, 0) to (1, 1). For illustration, Figure 4 shows a PP-plot (solid line) for two small samples of survival times.
The area between the PP-plot and the diagonal can clearly be seen. Also plotted is the piecewise linear function of S¢
against Sy used in estimating the divergence (dotted line). For large sample sizes, these two functions will be very close.
In the figure, the area of the trapezium highlighted by the horizontal shading is 0.5(F; + F;11)(G; — G;4+1) and the area of
the trapezium highlighted by the vertical shading is 0.5(G; + G41)(F; — F;+1). It can be seen that the sum of the areas of
the set of trapeziums parallel to the horizontal will be the estimate of [ SpdS¢ and the sum of those parallel to the vertical
axis, f SadSr. The difference in these is D ra which can be seen to be twice the area between the piecewise linear
function and the diagonal. Hence the connection with the test statistic. Note, the test statistic could have been defined
using the piecewise linear function and then the test statistic and Dp¢ would be identical. However, if survival curves

I
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Figure 4. The connection between a test based on PP-plots and D@ the solid line is the PP-plot and dotted line a plot of the Sa against Sk

cross (which would be seen by the plotted functions in Figure 4 crossing the diagonal) or the hazard functions cross, then
this agreement will not hold. (If hazard functions do not cross, then survival curves cannot cross, but if survival curves do
not cross it does not imply that hazard functions do not cross.) In practice, testing equivalence of survival curves is best
carried out using the area test statistic, leaving D¢ to measure divergence. Another argument against using Dre to test
for equivalent survival curves is that crossing hazard functions need to be detected before calculating the divergence. This
is somewhat subjective but can be done. It is similar to the problem with the log-rank statistic which fails for crossing
survival curves [21, 22] or where proportional hazards are far from reality. The statistic proposed by [10] is robust against
all these situations.

3.4. Comparison of D and Kullback-Leibler divergence

Pérez-Cruz [7] shows how the Kullback-Leibler divergence can be estimated from the empirical distribution functions
obtained from two samples. The estimate uses a similar approach to the one used in this paper. It is shown that the estimate
is better than one using estimates of density functions given by [6]. Briefly, the estimator suggested for K (f,g) is as
follows. Let 21, ..., z, and y1, .. ., ¥, be independent, ordered random samples from distributions F' and G respectively.
Let the empirical cdf for F be Fi(z) =n~'3."" | U(x — x;) where U(x) is the unit step function with U(0) = 0.5 and
similarly for G. The empirical distribution functions are linearly interpolated as described previously for the proposed
divergence measure. Then the estimate of K (f, g) is

where dﬁ'(xl) = F(LEZ) — F(xZ — 1), d{Ll =T; — Tj—1, dé(yl/) = é(yl/) — é(yi’fl) and dyi/ =Yir — Yi'—1, and where
y;s 1s the sample value from G that is the smallest one of all those that are greater than x;. Pérez-Cruz does not consider
the case of censored data, but this can be easily allowed for in the formula for the estimator. The equivalent estimator,
K (g, f) can be 31m11arly constructed and then K L rq calculated by combining the two.

A comparison of D re and KL r¢ was carried for the case of proportional hazards. Random samples from a pair of
exponential distributions with parameter values 1 and « were simulated and then D rc and KL rq calculated from (3) and
(4). This was done one thousand times and means, standard deviations and mean square error (mse) found. Table 1 shows
the results for sample sizes n; = ny = 100, with and without censoring and for n; = ny = 1000. For each value of ~ the
true values of Dpg and KL FG are also shown. Although the scales of the two divergence measures are dlfferent it can be
seen that Dpq outperforms KL ¢ in terms of accuracy and precision. Note, the standard deviation for KL Fe tends to be
very large and for large values of v, K L is very much under estimated. (This reflects what was seen in [7] in that the
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Table 1. Comparison of Dpe and KL r¢ for proportional hazards

¥ Drez mean sd mse KLpg mean sd mse

ny = ng = 100 1.0 0 0.064 0.049 0.006 0 0.008 0.225 0.051
1.2 0.091 0.098 0.066 0.004 0.033 0.025 0.235 0.055
1.5 02 0199 0.077 0.006 0.167 0.079 0.246 0.068
2.0 0333 0331 0.077 0.006 0.5 0.197 0.278 0.169
30 05 0502 0.068 0.005 1333 0343 0.342 1.098

ny =ng = 100 1.0 0 0.064 0.047 0.006 0 -0.039 0.245 0.061
with 20% censoring 1.2 0.091 0.102 0.068 0.005 0.033 -0.037 0.237 0.071
.5 02 0202 0.077 0.006 0.167 -0.014 0.270 0.105
2.0 0.333 0.338 0.077 0.006 0.5 0.046  0.303 0.298
30 05 0500 0.065 0.004 1333 0.106 0.329 1.616

n1 = ng = 1000 1.0 0 0.020 0.016 0.001 0 0.002 0.071 0.005
1.2 0.091 0.091 0.027 0.001 0.033 0.036 0.076 0.006
1.5 02 0199 0.026 0.001 0.167 0.138 0.084 0.008
2.0 0333 0332 0.024 0.001 0.5 0.365 0.107 0.030
30 05 0500 0.021 0.000 1333 0.722 0.186 0.409

Table 2. Estimation of the hazard ratio by Cox regression and by Dre

Cox PH Dra
v mean sd mse  mean sd mse

ny =ng =100 1.0 1.015 0.150 0.023 1.143 0.117 0.034
1.2 1.207 0.177 0.031 1.230 0.174 0.031
1.5 1518 0221 0.049 1.521 0.249 0.063
20 2013 0311 0.097 2.028 0.357 0.128
3.0 3.090 0.517 0276 3.091 0591 0.357

ny =ng =1000 1.0 1.002 0.046 0.002 1.042 0.034 0.003
1.2 1202 0.055 0.003 1.201 0.064 0.004
1.5 1.500 0.068 0.005 1.499 0.081 0.007
20 1997 0.094 0.009 1.998 0.107 0.011
3.0 3.006 0.147 0.022 3.004 0.168 0.028

estimate of K (f,g) can require sample sizes of order 10° or 10° to work well.) A similar table (not shown here) to Table
1 was constructed for standardised values, i.e. dividing by the true values of Dpg and K L and still Dpg was superior
to K Lpg.

3.5. Estimation of the hazard rate using Dre

Using (3) it is possible to estimate the hazard ratio from the divergence, Drg, for the case of proportional hazards.
Although it is not particularly proposed that the measure of divergence is used to estimate the hazard ratio generally, it is
interesting to compare its performance in doing so with that using Cox proportional hazards regression. Table 2 shows the
results of simulations using the exponential distributions used for Table 1. The values of +, mean estimates of  together
with standard deviations and mse are shown for the two methods. It can be seen that the method based on D r¢ does not
perform quite so well as that for Cox PH, but the results are very close especially when ~ is not close to unity.



Statistics
1n MGdlClIlG T. E. Cox, G. Czanner

Table 3. Divergencies/Dissimilarities (x 100)

F GFFF G F GGG GT FGTFFG

L 1 1 1 1 L L L 1 L L L L L L

r r r r r r r r R R R r r R R

WMWMPWMMMMMP P P P
FLr’W 0 11 5 39 3 20 20 21 46 36 36 43 57 55 62
GIrM 0 4 13 23 29 26 28 21 39 40 43 57 54 62
FIrW 0 8 10 23 23 24 17 37 37 41 54 53 62
FIrM 0 23 19 17 16 11 30 30 33 48 44 54
FIrP 0 13 10 10 7 20 21 24 37 34 40
GLW 0 2 2 32 18 18 24 41 41 48
FLr-M 0 1 5 13 15 22 35 43 37
GL™™M 0 4 13 14 20 35 33 43
GIRM 0 16 16 18 32 30 38
GLRM 0 3 10 25 26 36
FLRM 0 8 23 36 30
GLrP 0 17 16 22
FLrP 0 1 8
FLRP 0 9
GLRP 0

4. Divergence of survival distributions for pancreatic cancer patients

The following is a further example using the pancreatic survival data described in Section 3.2. From the prognostic factors
lymph node involvement, resection margin and tumour grade, together with treatment, twenty four sub-groups can be
defined where each will be labelled by four characters: G or F for treatment, L or 1 for lymph node involvement as
positive or negative respectively, R or r for resection margin positive or negative and W, M, or P for tumour grade of
well, moderate and poorly differentiated. For example GRIM is the subgroup of patients who received Gemcitabiine, had
positive resection margin, had no lymph node involvement and had moderately differentiated tumours. The survival data
was split into these groups of patients, but only those fifteen groups that had more than twenty patients were retained for
analysis.

Figure 5 shows the Kaplan-Meier plots for all the groups illustrating the range of survival curves. The divergence was
measured between each pair of survival distributions and placed in a dissimilarity matrix as shown in Table 3. The order
of the subgroups has been chosen so that the dissimilarity matrix is in anti-Robinson form, i.e. the row/column order is
chosen so that the smaller dissimilarities are closer to the diagonal than the larger dissimilarities and this gives a form of
clustering of the subgroups, see [23].

Nonmetric multidimensional scaling (MDS) [24], was used on the divergences considered to be dissimilarities between
groups. (Multidimensional scaling covers several multivariate analysis techniques where the aim is to represent objects as
points in a low dimensional space, usually Euclidean, so that distances between pairs of points match as well as possible
the original dissimilarities calculated between the pairs of objects. Various dissimilarity measures are used in practice,
e.g. Euclidean distance or Minkowski metric. Common methods of scaling are classical scaling and non-metric scaling.
For non-metric scaling, STRESS is a measure of the fit of the configuration of points representing the objects to the
dissimilarities; a value of the STRESS of 20% suggests a poor fit, 10% fair, 5% good and 2% an excellent fit.)

Figure 6 shows the resulting MDS configuration for groups where labels also contain the median survival times. The
STRESS for the plot was 9%. Within the configuration of points, a curved axis of median survival time can be imagined
with shortest values for the groups in the top right-hand corner, then increasing as the axis sweeps downwards and towards
the left and then sweeping down to the bottom right-hand corner where groups have the longest median survival times.
The groups at the top right-hand corner have poorly differentiated tumours and lymph node involvement. The groups at the
bottom right-hand corner have negative resection margin, have well or moderately differentiated tumours and no lymph
node involvement. The groups in the middle portion of the imaginary axis have better prognosis values than those at the
beginning of the axis but worse than those at the end. Let the following scores be given to the prognosis variables: 1=0,
L=1; r=0, R=1; W=0, M=1, P=2, giving a minimum group score of 0 and a maximum of 4. The group scores tend to start
at 4 at the beginning of the imaginary axis, reduce to 3 and then to 2 when moving along the axis, reaching O or 1 at the
end of the axis. The subgroup that is somewhat anomalous is GLrW and to a lesser extent, FLrW, at the lower left of the
plot. GLrW has a group score of 1 but is placed alongside subgroups with group score 2. Although these patients have well
differentiated tumours, their lymph node involvement reduces their survival compared to those patients with moderately
differentiated tumours but with no lymph node involvement.
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Figure 5. Survival curves for 15 subgroups of pancreatic cancer patients

Nonmetric MDS of divergence dissimilarities
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Figure 6. Nonmetric MDS of divergence dissimilarities for the 15 subgroups of pancreatic cancer patients

For the proportional hazards case, the absolute value of the log hazard ratio, | In(~)| can represent the distance between
two survival distributions and is a metric. Points representing a group of distributions (all with proportional hazards) will
lie on a straight line. Nonmetric MDS was carried on the the logged estimates of the hazard ratios calculated for all pairs
of the pancreatic cancer subgroups. The resulting configuration of points representing the subgroups is not shown here
because the STRESS was 17% suggesting a poor fit, giving evidence that proportional hazards do not apply for all of these
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Figure 7. Assessment of the proportional hazards assumption for the groups FLrM vs FLRP (a and b) and GLRM vs FLRP (c and d) based on D g and on the log(-log(survival))
approach

fifteen survival distributions. If proportional hazards did apply, then the points in the configuration would lie close to a
straight line.

5. Assessing the proportional hazards assumption

In Section 2.1 it was shown that for the proportional hazards situation, fot Srg and fot Sq f are in the proportions v : 1

where 1 is the hazard ratio. So a plot of |, Ot Sef against fg Sp¢ should produce points more or less on a straight line of slope
7. Figure 7(a) shows this plot for two of the pancreatic cancer groups FLrM and FLRP together with a straight line joining
the origin to the point defined by ( fooo Srg, fooo Sc f). Figure 7(b) shows a more traditional plot to assess proportional

hazards, where log{— log(S¢(t))} is plotted against log{—log(Sx(t))} for each group [25]. Here proportional hazards
would imply that the points would lie more or less on a straight line of slope unity where the vertical distance from the
line of slope unity, that passed through the origin, is equal to In(~y). A similar pair of plots are given for the two groups,
GLRM and FLRP in Figures 7(c) and 7(d). Although interpretation of these graphs for assessing proportional hazards
is subjective, the authors’ view is that for the groups FLrM vs FLRP, the original method indicates proportional hazards
but the new method suggests that this is not the case (Figures 7(a) and 7(b)), while for the groups GLRM vs FLRP, both
methods indicate non-proportional hazards (Figures 7(c) and 7(d)).

6. Discussion

This paper has introduced a new divergence measure for survival distributions which can be calculated for theoretical
distributions or non-parametrically from survival data. Although the emphasis was a measure for survival distributions,
it can be easily adapted for more general distributions. The measure is simple in concept and simple to calculate. For
proportional hazards, the divergence measure has been shown to be a metric. Estimation of the divergence from data
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was compared to the estimation of the Kullback-Leibler divergence and was shown to be superior. Estimation of the
hazard ratio using the divergence was nearly as precise and accurate as using Cox proportional hazards regression. A
method for estimating the standard error of the divergence measure was given together with arguments for the asymptotic
distribution. The measure has been illustrated on survival data for pancreatic cancer patients where differences between
survival distributions for two groups and also for multiple groups were based on the divergence measure. For the multiple
group case, non-metric multidimensional scaling was used to summarise, graphically, the pairwise divergencies between
the groups.

Clearly, one statistic cannot fully describe a survival distribution nor the comparison of two. The common description
when comparing survival distributions is to quote the median survival times and the estimate of the hazard ratio, together
with confidence intervals plus the results of a log-rank test. However, as illustrated in Figure 1, median survival times can
be misleading and a hazard ratio might not be appropriate. Would it be good practice to also quote the estimated divergence,
Dpe, between the two survival distributions and its comparison with the estimated expected value under proportional
hazards, as given by (3)? For the GLRM and FLRP cancer subgroups in Figures 5(c) and 5(d), the usuallly quoted statistics
are: medians (95% CI) 13.0 (9.3-15.3) and (17.4 (14.8-24.4) respectively, log-rank statistic = 1.30 (p=0.254) and ¥ = 0.84.
The estimated divergence is 0.43 which does not match with the value of 0.09 if proportional hazards pertained.

In the context of a clinical trial, suppose an independent data monitoring committee is to analyse survival data from two
or more treatment arms every six months for several years. Along with pre-specified tests of hypotheses, the divergence
between the survival distributions up to the present time could be calculated, for instance, to monitor the assumption of
proportional hazards. As more data becomes available, the survival curves get extended in time by those patients enrolled
early in the trial and not experiencing the event of interest, as well as becoming more accurate as more patients are entered
into the database. If there is a true difference in the survival distributions for patients in two different arms of the trial, then
the calculated divergence will probably be small at 6-months, but then increase as more and more divergence calculations
are made as the months pass by, but eventually stabilising at a constant value. The values and pattern of the dynamic
divergence values would add extra insight into the relative efficacies within the two arms of the trial. The divergence
might be especially useful in a multi-arm trial, or if several subgroups are to be compared.

7. Appendix

7.1. Variance of Dpq

First, assume the hazard functions do not cross and so bFG = Zf\;l Fi1G; — F;G;41. Some of the F;’s and G;’s will

be true Kaplan-Meier jump-point values and others will be interpolated from these. Place the F;’s and G;’s in vectors, F
and G. Let the true jump-point values be F;, (i = 1,...,nFr), G;, (i = 1,...,n¢) and place these in vectors F and G. The
interpolation finds weight matrices, Wg and W g that connect F to F and G to G thus

where most of the elements in the weight matrices will be zero.
Now Dpe = FIDG, where D = [d;}], d; j+1 = —1, d; ;-1 = 1, d; ; = 0 otherwise. Hence

Drc = (WpF)'D(WgG) = FI(Wy'DWg)G = FTAG,

where A = W' DWg.
So far, F, G, F and G have beqn considered as obsgrvations,A but now place hats on them and consider them as random
variables. The expected value of Dp¢ is given by E(FT)AE(G) and to calculate the variance,

E(D}) = Erc(FTAGFTAG) = Brc(FTAGGT AF) = Epc{tr(FTAGGTAF)},
where tr is the trace of a matrix. Hence, letting ®p = E(FF7) and ®¢ = E(GG7),
E(D%s) = Ep{tr(FTA®GAFT)} = Ep{tr(ATFFTA®G)} = tr(AT®rA®Gg)}.
Then var(Dp¢) can be written as
var(Dpg) = tr(AT®pA®g) — tr(ATE(F)E(F)TAE(G)E(G)T).

Based on Greenwood’s formula, e.g. [1],

) — ' d; .
E(F) =~ Fi, cov(FiFr) =~ FiFi ; oy =) (i <k),
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where d; is the number of deaths in the interval [t;_1,t;) and n; is the number at risk in the interval. Hence ®r and ®¢
can be found leading to an estimate of var(Dpg).

Note, if the hazard functions cross, then when the calculation is split into two parts, f S’Fg — f S'G f and f S”G f —
f S g, the covariances where JF; is in one section and Fy, is the another have to be negated.

7.2. Asymptotic distribution of Dre

This section illustrates how counting process theory using martingales can lead to the asymptotic distribution of Dp¢.
The reader is referred to texts such as [26, 27] for further details. The following relies heavily on [26] which is a good
introduction to the area. The following notions from counting processes are needed. Let { M (s) : s > 0} be a stochastic
process and {#;} be the filtration (an increasing sequence of o-fields) upon which the stochastic process is defined. The
filtration represents “the past history” of the process. The stochastic process M (t) which is adapted to {H;}, i.e. all o-
fields for M(s) (0 < s < t) are contained in {#;}, is a martingale if E|M (t)| < co and E{(M (t)|Hs} = X (s). In other
words, the expected value of a future value is equal to the present value.

Let a(t) be the hazard rate and A(t) = fot a(s)ds the cumulative hazard rate. A counting process, N (t), counts the
number of events in the time interval [0,¢]. The counting process can be considered as a succession of increments,
dN(t) = N{(t+dt)~} — N(t~) which has the value 1 if a point event happens at time t, and 0 otherwise. Let A be
the rate function of the counting process. Let Y (¢) be the number at risk at time ¢ and assume the usual multiplicative
intensity model, A\(t) = «(t)Y (¢). Then M (¢t) = N(t) — A(t) is a mean zero martingale counting process. The Nelson-
Aalen estimator of A(t) is A(t) = fot{l/Y(s)}*ldN(s) and it can be shown that A(t) — A(t) is also a zero mean
martingale.

A martingale representation for the Kaplan-Meier estimate of the survival function is

Using this framework, asymptotically (sample size tends to infinity), the Kaplan-Meier functions will converge to Sp
and S¢ and S(s7)/S(s) — 1 for both. Then

| $edS6(s) = [ 18~ Se(de — Ar)]ds, - d{Sa(Ac — Ac)}
0 0
= /0 SpdSq — /0 Sp(Ap — Ap)dSe — /O Sp(Ag — Ag)dSe — /0 SpSad(Ag — Ag)
+ / Sp(Ap — Ap)(Ag — Ag)dSq + / SpSq(Ap — Ap)d(Ag — Ag).
0 0

The first term on the right in last equation is a compensator of the process (the mean of the process) and it can be shown
that all the other terms are zero mean martingales, the sum of which is a martingale. Hence fot SpdSe — jot SpdSe is
asymptotically a zero mean martingale.

Now for a martingale M (t), let the time interval [0, ¢] be divided into n equal sub-intervals and let dMj}, = M{k/n} —
M{(k —1)/n}. Then the predictable variation process < M > is

n—oo

< M >, = lim Zval"(de‘H(k-—l)/n)'
k=1

If (i) the sizes of jumps go to zero and (ii) the predictable variation converges to a deterministic function, then M tends to
a normal distribution. This is the martingale central limit theorem.

The predictable variation for the Aalen estimator is fot a(s)ds/Y (s). To intuitively show that A(t) tends to a normal
distribution, consider /nA(t). The jump sizes are \/n/Y (s). For the sample size n tending to infinity, assume Y (t)/n
tends to a predictable process. Then the jump sizes for /nA(t) are of order 1//n and the predictable variation is
fot {Y(s)/n}ta(s)ds which tends to a deterministic function. Thus conditions (i) and (ii) for the martingale central
limit theorem are satisfied.

The martingales within the equation for fot S (s)dSe(s) above depend upon (Ap — Ap) and (Ag — Ag). A similar
intuitive argument suggests that jump sizes for fg SpApdSe in the first martingale are of order 1 /+/n, assuming the jump
dS¢ is order 1/+/n and as A tends to a deterministic process, so does the whole integral. These arguments apply to all the
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martingales in the equation and hence this leads to asymptotic normality. In turn, this implies that the distribution of Dre
tends to normality when the hazard functions do not cross. It is a more complicated situation when the hazard functions
do cross. It the true crossing point were known, then D¢ would tend towards normality. Estimating the crossing point
introduces another random variable upon which D rc has to be conditioned and then the unconditioned distribution of
D¢ found.

Two small simulation exercises were carried out to check the normality assumptions. Firstly, one thousand simulated
values of Dp¢ were generated using pairs of exponential distributions and the normality assumptions checked using QQ-
plots and the Jarque-Bera and Lilliefors tests of normality. For sample sizes greater than fifty, normality was confirmed for
D not too close to the extremities, 0 and 1. Also confirmed was that var(D rq) is asymptotically of order n~!. Secondly,
data were generated for crossing Weibull survival distributions, with the crossing point estimated at the point where

—_—

the global maximum of [ Spg (or [ S f as appropriate) was seen. For various sets of parameters of the distributions,

including those used in Figure 1, normality of Drg was tested. Generally, normality was very good for sample sizes
greater than fifty. Note, normality fails when the two underlying survival distributions are equal or very close.

Acknowledgements

The authors would like to thank Prof. JP Neoptolemos for permission to use the pancreatic cancer data, to Prof. PJ Diggle
for helpful comments and two very helpful referees and an associate editor who have been responsible for us producing a
much better version of the paper than that originally submitted for publication.

References

1. Collett D. Modelling Survival Data in Medical Research 3rd Edition, Chapman and Hall/CRC: Boca Raton, 2015.
2. Suciu GP, Lewmeshow S, Moeschberger M. Statistical tests of the equality of survival curves: reconsidering the options. In Handbook of Statistics 23,
Balakrishnan N, Rao CR (eds). Elsevier B.V: Amsterdam, 2004; 251-262.
3. Brittain E, Follmann D, Yang S. Dynamic comparison of Kaplan-Meier proportions: monitoring a randomized clinical trial with a long-term binary
endpoint. Biometrics 2008; 64:189-197. DOI: 10.1111/5.1541-0420.2007.00874.x
4. Gu MG, Follman D, Geller NL. Monitoring a general class of two-sample survival statistics with applications. Biometrika 1999; 86:45-57. DOI:
10.1093/biomet/86.1.45
5. Kullback S, Leibler RA. On information and sufficiency. Annals of Mathematical Statistics 1951; 22:79-86.
6. Wang Q, Kulkarni S, Verdu S. Divergence estimation of continuous distributions based on data-dependent partitions. I[EEE Transactions on Information
Theory 2005; 51:3064-3074. DOI: 10.1109/TIT.2005.853314
7. Perez-Cruz F. Kullback-Leibler divergence estimation of continuous distributions. Proceedings of IEEE International Symposium on Information
Theory 2008; 1666-1670.
8. Ebrahimi N, Kirmani SNUA. A characterisation of the proportional hazards model through a measure of discrimination between two residual life
distributions. Biometrika 1996; 83:233-235. DOI: 10.1093/biomet/83.1.233
9. Di Crescenzo A, Longobardi M. A measure of discrimination between past lifetime distributions. Statistics & Probability Letters 2004; 67:173-182.
DOI: 10.1016/j.s1p.2003.11.019
10. Cox TF. Testing the equivalence of survival distributions using PP- and PPP-plots. International Journal of Statistics in Medical Research 2014;
3:161-173. http://dx.doi.org/10.6000/1929-6029.2014.03.02.10
11. Acion L, Peterson JJ, Temple S and Arndt S. Probabilistic index: an intuitive non-parametric approach to measuring the size of treatment effects.
Statistics in Medicine 2006; 25:591-602. DOI: 10.1002/sim.2902
12. Mann HB, Whitney DR. On a test of whether one of two random variables is stochastically larger than the other. The Annals of Mathematical Statistics
1947; 18:50-60.
13. Newcombe RG. Confidence intervals for an effect size measure based on the Mann-Whitney statistic. Part 1: General issues and tail-area-based methods.
Statistics in Medicine 2006; 25:543-557. DOI: 10.1002/sim.2323
14. Hanley JA, McNeil BJ. The meaning and use of the area under an ROC curve. Radiology 1982; 143:29-36.
15. Brumback LC, Pepe MS, Alonzo TA. Using the ROC curve for guaging treatment effect in clinical trials. Statistics in Medicine 2006; 25:575-590.
DOI: 10.1002/sim.2345
16. Harrell Jr FE. Regression Modeling Strategies — with Applications to Linear Models, Logistic Regression, and Survival Analysis. Springer: New York,
2001.
17. Koziol JA, Jia Z. The concordance index C and the Mann-Whitney parameter Pr(X;Y) with randomly censored data. Biometrical Journal 2009;
51:467-474. DOL: 10.1002/bimj.200800228
18. Schemper M, Wakounig S, Heinze G. The estimation of average hazard ratios by weighted Cox regression. Statistics in Medicine 2009; 28:2473-2489.
DOI: 10.1002/sim.3623
19. Kalbfleisch JD, Prentice RL. Estimation of the average hazard ratio. Biometrika 1981; 68:105-112. DOI: 10.1093/biomet/68.1.105
20. Neoptolemos JP, Stocken DD, Bassi C et al. Adjuvant chemotherapy with Fluorouracil plus Folinic Acid vs Gemcitabine following pancreatic cancer
resection. Journal American Medical Association 2010; 304(10):1073-1081. DOI: 10.1001/jama.2010.1275
21. Mantel N, Stablein DM. The crossing hazard function problem. Statistician 1988; 37:59-64. DOI: 10.2307/2348379



Statistics
1n MGdlClIlG T. E. Cox, G. Czanner

22.

23.
24.
25.
26.

217.

Cheng MY, Qiu P, Tan X, Tu D. Confidence intervals for the first crossing point in two hazard functions. Lifetime Data Analysis 2014; 15:441-454.
DOI: 10.1007/s10985-009-9132-6

Hahsler M, Hornik K and Buchta C. Getting things in order: an introduction to the R package seriation. Journal of Statistical Software 2008; 25:3952.

Cox TF, Cox MAA. Multidimensional Scaling, 2nd edn. Chapman and Hall/CRC: Boca Raton, 2001.

Cantor AB. Survival Analysis Techniques, 2nd edn. Cary, NC: SAS Institute Inc., 2003.

Aalen OO, Andersen PK, Borgan @, Gill RD, Keiding N. History of applications of martingales in survival analysis. Electronic Journal for History of
Probability and Statistics 2009; 5(1):www.jehps.net.

Fleming TR, Harrington DP. Counting Processes and Survival Analysis. Wiley: Hoboken, 1991.



