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ABSTRACT
Semi-Supervised Learning (SSL) techniques have found many

applications where labeled data is scarce and/or expensive to obtain.
However, SSL suffers from various inherent limitations that limit its
performance in practical applications. A central problem is that the
low performance that a classifier can deliver on challenging recogni-
tion tasks reduces the trustability of the automatically labeled data.
Another related issue is the noise accumulation problem – instances
that are misclassified by the system are still used to train it in fu-
ture iterations. In this paper, we propose to address both issues in
the context of emotion recognition. Initially, we exploit the comple-
mentarity between audio-visual features to improve the performance
of the classifier during the supervised phase. Then, we iteratively
re-evaluate the automatically labeled instances to correct possibly
mislabeled data and this enhances the overall confidence of the sys-
tem’s predictions. Experimental results performed on the RECOLA
database demonstrate that our methodology delivers a strong perfor-
mance in the classification of high/low emotional arousal (UAR =
76.5%), and significantly outperforms traditional SSL methods by at
least 5.0% (absolute gain).

Index Terms— Multimodal emotion recognition, enhanced
semi-supervised learning

1. INTRODUCTION

In the field of automatic emotion recognition, an increasing number
of researchers and developers are trying to apply research achieve-
ments to real-life applications, such as, video games [1], service
robots [2], or health care systems [3]. However, a major challenge
for these applications is the limited amount of labeled data that are
yet necessary to develop robust Machine Learning systems. Indeed,
the great majority of emotional databases that are publicly available
at present have only a few hours of annotated instances, and even
less for specific applications, such as autism [1, 2] or depression in
elderly [4], which is by far not comparable with the datasets avail-
able to train automatic speech recognition systems [5].

One simple way to deal with this issue of data scarcity is to ag-
glomerate multiple databases and train an emotion recognition sys-
tem on the agglomerated dataset [6]. Such procedure makes how-
ever the recognition task even more complex because the variabil-
ity over the different corpora (e.g., microphone, room impulse re-
sponse) is hard to compensate [6, 7]. Other techniques that have
gained a strong momentum in the last few years focus instead on
unlabelled data. The main reason is that, unlike labeled databases,
unlabelled instances are broadly available. One of the most attractive
techniques is based on Semi-Supervised Learning (SSL) [8, 9], as it
aims to use these data without the intervention of human annotators.

Many studies have shown the benefits of SSL for emotion recog-
nition [10, 11, 12, 13]. However, most of these studies have focused
on a single modality – either on audio [11], video [10, 8], or physiol-
ogy [9]. Nowadays, multimodality has been increasingly and widely
implemented for emotion recognition [14, 15, 16]. The main reasons
are not only the broad availability of cameras and microphones, but
more importantly the combination of various modalities can boost
the emotion recognition accuracy [15, 17, 18], since each modality
can provide complementary information. For SSL, these informa-
tion is simply ignored in previous work in the context of emotion
recognition.

Another long-standing issue of SSL is the performance degra-
dation as the learning process evolves over time [19, 20]. This is
because the selected data are sometimes misclassified by the sys-
tem and then accumulated in the training set. As a consequence,
the model becomes less precise, and the noise accumulation leads
to a negative vicious circle [21, 19]. We therefore propose in this
paper a novel SSL approach that: (i) exploits the complementarity
of audio-visual data to perform robust emotion recognition, and (ii)
sequentially re-evaluates previously selected data to tackle the issue
of noise accumulation.

The remainder of this paper is organized as follows. The pro-
posed method is described in detail in Section 3. This method is
then evaluated by an emotion recognition task in Section 4. Finally,
conclusions and future work are given in Section 5.

2. PREVIOUS WORK

Two main SSL approaches have been proposed for emotion recogni-
tion in the literature: Self-Training (ST) [22, 12, 8] and Co-Training
(CT) [13, 9, 12]. The work in [22] applied ST to multiple emotional
corpora. This was further extended by combining Active Learning
[12], which more efficiently reduced the human annotation work and
improved the learning performance. Because the ST procedure re-
quires little annotation work from human, it has been considered as a
useful option to enhance the robustness of an existing emotion clas-
sifier [22, 12, 8]. Whereas in CT, the mutual agreement between
two distinct ‘views’ (i.e., classifiers) of an unlabeled instance is used
to consider its inclusion in the training set [23]. The work done by
Zhang et al. [12] and Liu et al. [13] has shown the capability of CT
for retrieving the emotion information on unlabeled data via sepa-
rating the feature sets into two ‘views’ in the speech domain. The
work in this paper is a further step in continuation of the authors’
previous work on exploiting unlabeled data for emotion recognition
by exploiting multiple modalities and a refined SSL algorithm.
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Algorithm 1: Enhanced multimodal Self-Training (emmST).
Initialize: Number of additional selected data per learning

iteration n, and predefined iteration times I
1 for i = 1, ..., I do
2 Tandem features x = [xa,xv]; % one view
3 (Optional) Li

s ← upsample(Li);
4 Train classifier hi := f(Li

s(x, y)|Li(x, y));
5 Classification (y′

x, C(y′
x))← hi(∀x ∈ U); %

re-evaluate the whole original unlabeled set
6 Set ni = i× n;
7 Copy Si from U , size(Si) = ni, and satisfy

C(y′
x)

∀x∈Si

≥ C(y′
x′)

∀x′∈(UrSi)

;

8 Li+1 = L0 ∪ Si;
9 end

3. ENHANCED MULTIMODAL SEMI-SUPERVISED
LEARNING

Let us assume a small set of labeled audio-visual data L0 =
{(xai,xvi, yi), i = 1, . . . , NL}, and a large set of unlabeled audio-
visual data U = {(xai,xvi), i = 1, . . . , NU}, where xa ∈ Xa and
xv ∈ Xv denote the feature vectors in the audio and visual domains,
respectively; y ∈ Y is the domain category; and NL and NU indi-
cate the number of labeled and unlabeled instances, respectively. It
should be noted that, NL is much smaller than NU (NL � NU ) due
to the well-known limited availability of labeled data in the field of
emotion recognition.

3.1. Self-Training and Co-Training

As mentioned in Section 2, ST and CT are two frequently used SSL
approaches. For ST, a classifier is firstly trained with the original
human-labeled data set L. After that, the classifier is used to rec-
ognize the unlabeled data set U . Typically, the unlabeled data S
that are recognized with high confidence C(x), together with their
predicted labels, are added to the original training set (L ∪ S), and
removed from the unlabeled data set (U r S). The classifier is then
retrained with the updated training set and this process is repeated
several times until a predefined stopping criterion is met.

To cease the learning process, several criteria can be imple-
mented, for example, (i) no performance improvement is shown on
the evaluation set, (ii) a predefined repeating times is matched or
(iii) no target data remains in the unlabeled data set. Note that, in
this paper, the second stopping criterion is chosen through all of the
experiments to ease performance comparison.

Compared with ST, where the classifier uses its own prediction
to teach itself, CT tries to exploit the mutual information between
two models (‘views’ or feature domains) –X1 andX2, each of which
uses its predictions to teach not only itself but also the other one.
Specifically, each ‘view’ is used to create two ‘good’ classifiers h1

and h2, and each classifier is tested on the unlabeled data set U . The
unlabeled data (S = S1 ∪S2) predicted with high confidence values
C(x) are then added (together with the new label) to the training set
(L∪S) and removed from the unlabeled data set (UrS). Afterwards,
the two classifiers are retrained from the new training set based on
the corresponding feature sets, and the process is repeated until the
stopping criterion is met.

CT relies on two assumptions [23]: (a) sufficiency – Each ‘view’

Algorithm 2: Enhanced multimodal Co-Training (emmCT).
Initialize: Number of additional selected data per learning

iteration n, and predefined iteration times I
1 for i = 1, ..., I do
2 for x = xa, xv do % two views
3 (Optional) Li

s ← upsample(Li);
4 Train classifier hi := f(Li

s(x, y)|Li(x, y));
5 Classification (y′

x, C(y′
x))← hi(∀x ∈ U); %

re-evaluate the whole original unlabeled set
6 Set ni = i× bn/2c;
7 Copy S from U , size(S) = ni, and satisfy

C(y′
x)

∀x∈S
≥ C(y′

x′)
∀x′∈(UrS)

;

8 Si =
⋃
S

9 end
10 Li+1 = L0 ∪ Si;
11 end

is sufficient for classification on its own. That is, the two hypotheses
f1 : X1 7→ Y and f2 : X2 7→ Y are good enough for recognition; (b)
conditional independence – The ‘views’ are conditionally indepen-
dent given the class label [23], that is, p(yi|x)← p(yi|x1)p(yi|x2).

3.2. Multimodal Semi-Supervised Learning

In the case of CT, there are two ‘views’ employed to train different
models. In the field of emotion recognition, however, the two ‘views’
normally belong to the same domain/model (e.g., speech) [12, 13].
To refine the unimodal SSL algorithms as discussed in Section 3.1,
multiple modalities (e.g., audio and video) can be used together for
both ST and CT.

To do this, audio and video feature sets are joined (early fusion)
as one set for ST, i.e., x = [xa,xv]. After that, the learning process
proceeds as typical ST algorithms. In this paper, we will refer to
this method as multimodal Self-Training (mmST). However, for CT,
both audio and video feature sets can be served as different ‘views’,
i.e., X1 = Xa, and X2 = Xv compared with the work in [24]. This
method is called multimodal Co-Training (mmCT) in the paper.

3.3. Enhanced Semi-Supervised Learning

As mentioned in Section 1, one main drawback of SSL is noise ac-
cumulation. For traditional SSL, the data selected by machine oracle
are fully trusted and pooled into the training data set. However, some
of these data are mislabeled actually. As the learning process contin-
ues, more and more mislabeled data (noise) might be accumulated
in the training set, eventually leading to a vicious circle of erroneous
learning [21, 19, 25].

To overcome this noise accumulation problem, we propose to
not always trust the machine labeled data. We call this method en-
hanced SSL (eSSL). The core principle of this extension is to main-
tain the previously selected data in the original unlabeled data set at
all learning iterations. By doing this, the previously selected data
will be re-evaluated by the following enhanced model. Therefore, it
is possible to correct mislabeled data in future iterations with an im-
proved model. Naturally, the previously selected instances may not
be selected again in the following learning process, i.e., Si 6⊂ Sj ,
i < j. The advantage of this method is that it guarantees that the
machine oracle will perform better when selecting the unlabeled in-
stances for automatic annotation. The pseudocode describing the



Table 1. Distribution of speakers and instances per partition of the
RECOLA [27]. spks: speakers, POS: positive, NEG: negative.

# spks # arousal
POS NEG

∑
pool 23 623 344 967
eval. 11 366 149 515

algorithms for both enhanced multimodal Self-Training (emmST)
and enhanced multimodal Co-Training (emmCT) are shown in Al-
gorithm 1 and 2, respectively.

4. EMPIRICAL EXPERIMENTS AND RESULTS

In the following, we firstly describe the selected database and acous-
tic/visual feature sets. Then, we focus on evaluating the performance
of the proposed multimodal SSL and its enhanced extension.

4.1. Selected Database

For the purpose of evaluating the different SSL approaches, we chose
the RECOLA database [26, 27]. It includes spontaneous and natu-
ral affective behaviours collected from 46 French speaking partic-
ipants while solving a task in dyads and remotely; 27 females, 19
males, mean age is 22 years and standard deviation is 3 years. The
database includes 9.5 h of continuous and synchronous multimodal
recordings, i.e., audio, video, electrocardiogram, and electro-dermal
activity. Due to consent of the participants to share their data, the
data is reduced to a subset of 34 participants with an overall duration
of 7 hours. Rating of emotion was performed by 6 French-speaking
assistants (3 male, 3 female) using the ANNEMO web-based anno-
tation toolkit [26]. Emotional dimensions (arousal and valence) were
rated time-continuously for the first 5 minutes of each recording by
all raters.

For the purpose of this study, these continuous ratings are further
discretized into a binary category – POSitive and NEGative. To do
this, the audiovisual time series are firstly split into sequential short
segments (instances) according to the voice activity and face detec-
tion [27], i.e., an instance is defined when both voice activity and
face are detected simultaneously. Then we assigned POS or NEG to
each of these instances if the average rating value is above or under
zero; the average of the ratings is normalised to zero-mean for each
recording. The audiovisual instances are finally divided into speaker
independent pool (unlabeled data set) and evaluation sets. Details on
the speakers and the distribution of instances used in this paper are
shown in Table 1. Note that we only used the arousal dimension as
some issues were found on the valence, which we suspect to be due
to the normalisation procedure.

4.2. Feature Set

As acoustic features, we chose the same set of Low-Level Descrip-
tors (LLDs) as in the past three INTERSPEECH Computational
Paralinguistic ChallengEs (COMPARE 2013-2015) [28]. It contains
4 energy related LLDs (loudness, RASTA spectrum, RMS energy
and zero-crossing rate), 55 spectral related LLDs (e.g., spectrum
bands, MFCC 1-14, spectral energy, spectral flux/centroid/entropy/
slope, psychoacoustic sharpness, harmonicity, spectral variance/
skewness/kurtosis), and 6 voicing related LLDs (pitch, probability
of voicing, logHNR, jitter, shimmer). These 65 LLDs of speech
with their first order derivate leads to 130 LLDs in total. Functionals

Table 2. Statistical performance comparison between the multi-
modal (audio + video) and the unimodal (audio or video) SSL, the
enhanced (e) and the non-enhanced SSL, on the means of Self-
Training (ST) and Co-Training (CT). initial, last, max., and mean
denote the initial, last, maximum and mean unweighted average re-
calls (UARs) over the 40 learning iterations

average UARs
[%] initial last max. mean
audio, ST 69.8 73.5 73.5 72.2
video, ST 68.3 69.4 71.2 69.9
audio+video, ST 71.5 72.9 73.0 72.6
audio, eST 69.8 73.7 73.9 72.6
video, eST 68.3 70.2 71.3 70.1
audio+video, eST 71.5 74.2 74.2 73.1
audio, CT 69.8 74.1 74.3 73.0
video, CT 68.3 71.3 71.4 70.8
audio+video, CT 71.5 75.0 75.6 74.5
audio, eCT 69.8 73.9 75.0 73.5
video, eCT 68.3 70.6 71.3 70.8
audio+video, eCT 71.5 75.4 76.5 75.1

(min, max, range, mean, variance) are then computed on the LLDs
over an instance, which thus provides 650 acoustic features in total
per segment.

As visual features, we extracted 20 LLDs and their first order
derivate (40 LLDs in total) for each frame in the video recordings.
The 20 LLDs contain 15 facial actions units, head-pose in three di-
mensions, and the mean and standard deviation of the optical flow in
the region around the head – the computation of those features is de-
scribed in details in [27]. Similar to the acoustic features, the same 5
functionals are applied per segment after extracting the frame-based
LLDs, which provides 200 visual features per segment in total.

4.3. Performance Evaluation

In this paper, we focus on the automatic recognition of the arousal.
As classifier, we opted for linear Support Vector Machines (SVMs),
as were used in the series of INTERSPEECH COMPAREs [28], with
a fixed complexity of 0.05. In terms of performance evaluation, we
used the unweighted average recall (UAR). It equals the sum of the
recalls per class divided by the number of classes, and better reflects
the overall accuracy in the presence of imbalanced classes.

Before the SSL process, we randomly selected NL = 50 in-
stances from the pool set with the annotation by human oracle for
initial training, which corresponds to approximately 5% of the whole
pool set. The remaining instances in the pool set are considered as
the unlabeled ones. At each machine-supervised learning iteration,
we selected 20 additional instances for both ST and CT. Specifically,
for the CT each ‘view’ chose an equal number of instances, i.e., each
‘view’ selected 10 instances. Note that, the stopping criterion is de-
fined for an iteration time of I = 40, to ease performance compar-
ison, and the whole learning process is conducted 30 independent
times through all the following experiments.

For the unimodal SSL, the selected instances at each learning
iteration are removed from the unlabeled data pool. The perfor-
mance of the audio or the video based ST (dash) and CT (solid)
is illustrated in Fig. 1 (a) and (b). Specifically, its corresponding
statistical performance is indicated in Table 2. It can be seen that
the audio-based SSL performs better than the video-based SSL for
arousal emotion recognition, which is consistent with the literature
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Fig. 1. Comparison between enhanced and non-enhanced Self-Training ((e)ST) and Co-Training ((e)CT) based on the audio (a), video (b),
and audio-visual (c). The charts show the average unweighted average recalls (UARs) across 30 independent runs (and respective standard
deviations) vs. number of selected instances (Ns).

[15, 16, 17, 18, 27, 29]. These improvements show not only in
the initial learning process (69.8% vs. 68.3% of average UAR at
Ns = 0), but also in the following consecutive learning process.
The absolute gain is 3.7% and 4.5% for audio-based ST and CT over
the whole 40 learning iterations, respectively. These gains are higher
than those obtained for video – 1.9% (ST) and 2.1% (CT). These re-
sults can be attributed to the better initial performance of the audio
based model, which is able to correctly label more instances in the
learning process.

The results of the multimodal experiments are depicted in Fig. 1
(c). The initial performance of the model achieved an UAR of
71.5% (see Table 2), which is higher than the performance ob-
tained by either audio (69.8%) or video (68.3%), showing thus the
complementarity of audio-visual features for emotion recognition
[15, 16, 17, 18, 27, 29]. During the CT process, the gain steadily
increases as in the mono-modal experiments, and achieves a top per-
formance of 75.6%. Through the whole 40 learning iterations, the
mmCT has a statistically significant performance improvement com-
pared with either audio or video based CT (p < .001 in Student’s
t-test). Similarly, mmST also outperforms the audio or video based
ST at the significance level of .01 and .001, respectively.

Unlike the afore investigated SSL methods, the eSSL method
selected 20 × i instances at the i-th learning iteration, since the in-
stances selected at any iteration were put back into the unlabeled
pool set and considered as equal as the others for the next data se-
lection. Fig. 1 shows the average performance of the enhanced Self-
Training (eST) and Co-Training (eCT) based on the audio (a), video
(b), and audio-visual (c) features averaged over 30 independent runs.
The best performance is achieved by emmCT with an average UAR
of 76.5%, which improved by 8.2% (one-side z-test, p < .002),
6.7% (p < .01), and 5.0% (p < .05) the initial video, audio, and
audio-visual classifiers, cf. Table 2. A statistical comparison of the
performance in the various experiments indicates that the eSSL per-
forms significantly better (p < .001 in Student’s t-test) than the
conventional SSL in five out of six cases (except the video based
eCT). This suggests that the enhanced learning procedure improves
the quality of the selected instances at each learning iteration.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed the applications of multimodal Semi-
Supervised Learning (SSL) in the context of emotion recognition.
Unlike the conventional SSL for emotion recognition, we combined
the audio and video modalities, which are known to provide com-
plementary views of affective behaviours [15, 16, 17, 18, 27, 29].
Our hypothesis was that a performance improvement to the initially
trained models could result in a more efficient SSL process by reduc-
ing the amount of wrongly labeled data at each iteration. Further-
more, we proposed an enhanced SSL algorithm that allows to cor-
rect wrongly labeled data with subsequent version of the enhanced
model. In our experiments we compared unimodal (audio or video)
and multimodal (audio and video) SSL using both Self-Training (ST)
and Co-Training (CT) strategies.

Our experiments clearly demonstrated that the multimodal SSL
outperforms the traditional unimodal SSL for arousal classification.
For example, the multimodal CT averagely surpasses the audio and
video based CT with about 1.5% and 3.7% of absolute UARs at the
whole learning iterations, respectively. Furthermore, we have shown
that our enhanced SSL model performs significantly better than the
traditional SSL algorithm in most cases. In this case we achieved
the best performance of all experiments by reaching a classification
accuracy of 76.5% (UAR).

In future work, we plan to investigate valence recognition, as
well as other multimodal databases. We also plan to extend the al-
gorithm to process physiological data alongside audio-visual data.
Furthermore, inspired by the work in [12], a cooperative learning
that tries to efficiently share the annotation work between human
and machine oracles will be further considered.
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A. Wendemuth, and G. Rigoll, “Cross-corpus acoustic emotion
recognition: Variances and strategies,” IEEE Transactions on
Affective Computing, vol. 1, no. 2, pp. 119–131, 2010.

[8] I. Cohen, N. Sebe, F. G. Cozman, and T. S. Huang, “Semi-
supervised learning for facial expression recognition,” in Proc.
of ACM SIGMM international workshop on Multimedia infor-
mation retrieval, New York, NY, 2003, pp. 17–22.
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