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ABSTRACT  

Variant B (VB) of cystatin C has a mutation in its signal peptide (A25T), 

which interferes with its processing leading to reduced secretion and partial retention 

in the vicinity of the mitochondria. There are genetic evidences of the association of 

VB with Alzheimer’ disease (AD) and age-related macular degeneration (AMD). 

Here we investigated aggregation and amyloid propensities of unprocessed VB 

combining computational and in vitro studies. Aggregation predictors revealed the 

presence of four aggregation-prone regions, with a strong one at the level of the signal 

peptide, which indeed formed toxic aggregates and mature amyloid fibrils in solution. 

In the light of these results, we propose for the first time the role of the signal peptide 

in pathogenesis AD and AMD.   

 

 

 

 

HIGHLIGHT BULLETS 

Variant B precursor of the cysteine proteinase inhibitor cystatin C has been previously 

associated with increased risk of developing Alzheimer’s Disease and exudative Age-

related Macular Degeneration.  

 

We show here that the leader sequence of the variant B precursor cystatin C presents 

high aggregation and amyloidogenic propensity.  

 

Retention of the leader sequence in the incompletely processed variant can contribute 

to deleterious protein aggregation linked to pathogenesis of AD and AMD.   
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1. Introduction 

Human Cystatin C belongs to the cystatin superfamily of reversible inhibitors 

of cysteine proteases encompassing the papain and legumain families [1]. The mature 

cystatin C is a monomeric protein composed of a polypeptide chain of 120 amino 

acids (13,343 Da) [2,3]. The general fold of monomeric inhibitors of the cystatin 

superfamily has been defined by the crystal structure of chicken cystatin. It is 

composed of a long helix running across a five-stranded antiparallel β-sheet [3,4] 

(Fig. 1A). Cystatin C is produced and found in most tissues and body fluids with 

particular higher concentrations in the cerebrospinal fluid, owing to expression by the 

choroid plexus. Cystatin C is involved in many biological functions, ranging from 

bone reabsorption, modulation of inflammatory response, anti-viral and anti-bacterial 

properties, cell proliferation and growth, tumor metastasis, and to astrocyte 

differentiation during mouse brain development [5–9]. 

Wild type (WT) cystatin C has been found in amyloid deposits in the brain 

arteries of elderly people [10,11], while the rare mutation L68Q causes Hereditary 

Cystatin C Amyloid Angiopathy (HCCAA) [12,13], a condition in which the patients 

present fatal cerebral hemorrhage in early adulthood. In vitro, both WT and L68Q 

cystatins C produce amyloid fibrils [12,14,15]. Interestingly, in vitro and in vivo 

studies have shown that WT cystatin C binds to soluble Aβ protecting this peptide 

from oligomerization. In addition, cystatin C has been co-localized with Aβ deposits 

in senile plaques and the vascular cell wall. Altogether, these results suggest that 

cystatin C might be a neuroprotective protein in Alzheimer’s disease (AD) acting as a 

modulator of amyloidosis [16–18].  

In the eye, cystatin C is abundantly expressed by the retinal pigment 

epithelium (RPE) [19–21], the monolayer of cells essential for maintaining the 
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homeostasis of the neuroretina and the blood-retina barrier. RPE dysfunction is 

central to the pathogenesis of age-related macular degeneration (AMD), with various 

cellular processes contributing to the onset and progression of the disease including: 

cellular debris accumulation in drusen [22], changes to the underlying Bruch’s 

membrane (BM) with and without breakage of the blood/retina barrier [23], impaired 

clearing of protein aggregates and/or damaged organelles [24,25]. 

The cystatin C variant type B has been associated as a recessive allele with 

increased risk of AD and exudative AMD [26–30]. This variant results from a SNP in 

the cystatin C gene (CST3) signal/leader sequence 

(1MAGPLRAPLLLLAILAVALAVSPAAG26) (p.Ala25Thr due to a c.G73A 

substitution). The 26-amino acid signal sequence of precursor cystatin C is essential 

for targeting the protein to the ER/Golgi apparatus and processing through the 

secretory pathway [31,32]. The A25T substitution decreases the efficiency of 

cleavage of the signal peptide in the variant B precursor resulting in a protein 

constituted of 146 amino acids that is abnormally processed in the cell [33].  The 

variant B precursor cystatin C is processed less efficiently through the secretory 

pathway resulting in its decreased secretion to the extracellular space, with some of 

the unprocessed molecules diverted from the secretory pathway accumulating 

intracellularly in association with the mitochondrial membrane network [33,34]. The 

reduced secretion and subsequent decreased concentration of mature cystatin C 

extracellularly could explain the enhanced AD and AMD risk observed in 

homozygous patients with variant B.  

Here, due to its association to AD and AMD, we investigate the aggregation 

and amyloid propensity of the variant B, with emphasis on the signal peptide. Using 

two well validated aggregation predictors, namely AGGRESCAN, which was 
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designed to predict aggregation propensity regions in vivo, and Waltz, which predicts 

specific amyloid formation regions [35,36], we found on the immature form of the 

protein, four short aggregation-prone sequences, one of them being the leader peptide 

with very high aggregation/amyloidogenic scores. With these predictions in hands, we 

carried out in vitro experiments with the leader peptide to corroborate its 

amyloidogenicity. Our data unequivocally demonstrated that the leader peptide of the 

variant B cystatin C aggregates instantaneously upon aqueous dilution forming 

positive Thioflavin-T (Th-T) and Congo-red aggregates. ATR-FTIR, TEM and DLS 

confirmed the presence of amyloid in solution. The aggregates were shown to be very 

toxic to neuroblastoma cells cultures. In the light of these results, we propose for the 

first time a role of the leader peptide on the immature (unprocessed) form of variant B 

cystatin C in its association with increased risk of AD and AMD.   

 

2. Materials and Methods 

2.1. Prediction of the peptide aggregation and amyloid propensities  

AGGRESCAN, Waltz, TANGO and Zipper DB Analysis - The intrinsic 

aggregation and amyloid formation propensities of mature and immature cystatin C 

were evaluated by these four methods employing default settings, using as input the 

primary sequence of either the mature protein or the immature form of variant B 

cystatin C. Uniprot Accession Number P01034 (CYTC_HUMAN) and the dbSNP 

Classification code rs1064039 [Homo sapiens].  

  

2.2. Peptides synthesis 

The peptides were purchased from CASLO ApS c/o Scion Denmark Technical 

Universit. The purity was higher than 98 %. The peptide was weighted and diluted in 

DMSO to obtain a stock solution of soluble peptide with a concentration of 3 mM.  

 

2.3. Peptides Aggregation Assays 
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Aggregation was performed at different concentrations as stated in legends. 

Before each experiment, the stock solution was diluted in PBS pH 7.4 and Th-T was 

added at 20 µM (Fig. 2B) or 30 µM (Fig. 2A) final concentrations. The samples were 

incubated at 25oC with no agitation. Samples were excited at 450 nm while emission 

was collected from 400 to 600 nm on a spectrofluorometer Jasco 8200. Intensity at 

482 nm was used to probe amyloid formation. 

 

2.4. Congo red (CR) binding assay 

 The binding of CR to aggregated peptide was evaluated by diluting fivefold 

the incubated peptide in CR, resulting in a final CR concentration of 10  µM, and 

recording the absorbance spectra of the mixture in the 380 to 670  nm range in a Cary 

400 spectrophotometer (Varian). 

 

2.5. Dynamic Light Scattering (DLS) measurements 

 Peptide solutions were let to aggregate at the conditions stated above (100 

µM) and measures were performed at 1 h and after 24 h of aggregation. DLS 

measurements were performed at 25 °C in a Malvern Zetasizer Nano S90 (Malvern, 

Worcestershire, UK). Each sample was measured tree times; average distributions are 

presented. 

 

2.6. Infrared spectroscopy 

Attenuated total reflectance Fourier transform infrared spectroscopy (ATR 

FT-IR) was used to determine the secondary structure content of the aggregates 

formed at different times during the aggregation kinetics. The experiments were 

carried out using a Bruker Tensor 27 FT-IR spectrometer (Bruker Optics) with a 

Golden Gate MKII ATR accessory. Each spectrum consists of 16 accumulations 

measured at a resolution of 2 cm−1 in a wavelength range between 1,700 and 1,600 

cm−1. Infrared spectra were fitted through overlapping Gaussian curves, and the 

amplitude, mass center, bandwidth at half of the maximum amplitude, and area for 

each Gaussian function were calculated employing a nonlinear peak-fitting equation 

using the PeakFit package (Systat Software, San Jose, CA) 

 

2.7. Transmission Electron Microscopy (TEM) 
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Aggregated samples were diluted in Mili-Q water to 10 µM. 5 µl of the 

solution were absorbed onto carbon-coated copper grids for 5 minutes and blotted to 

remove excess material. Uranyl acetate (2% w/v) was used for negative staining. 

Samples were dried on air for 5 min. Grids were exhaustively scanned with a Hitachi 

H-7000 transmission electron microscope operating at a voltage of 75 kV. 

 

2.8. Neuroblastoma Cell (N2a) Culture and Viability Assay  

N2a cells were cultured in Dulbecco’s modified Eagle’s medium 

supplemented with 10% fetal bovine serum and 2% antibiotic (gentamicin) in a 5% 

CO2 atmosphere for 3 days and then transferred to a 96-well plate and allowed to 

adhere for 24 h (5,000 cells/well). Following cell adhesion, aggregates were added to 

achieve final concentration of 5µM. Cells were challenged for 24 h, and final cellular 

viability was measured by an MTT assay as previously described [37].  
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3. Results and Discussion 

Bioinformatics predicts that the signal peptide of variant B cystatin C is 

aggregation-prone and amyloidogenic 

 AGGRESCAN is considered a reliable program to predict the aggregation 

propensity of proteins in vivo [38] since the aggregation score for each amino acid 

was derived from aggregation assays carried out on a bacterial system [35]. 

AGGRESCAN identifies aggregation-prone regions (APR) as stretches of a given 

sequence at least 5 amino acids long with high aggregation propensity scores [39].  

Recently, the pentapeptide 47LQVVR51 from cystatin C was demonstrated to 

form fibrils in vitro [40]. The same group by using the algorithm AMYLPRED 

identified two other peptides from the core of cystatin C with high aggregation 

propensity. These peptides, namely 56IVAGVNYFLD65 and 95AFASFQIYAV104 (it 

contains a C97A mutation), were also amyloidogenic upon incubation for several 

days at pH 5.5. These peptides numerations are from the mature cystatin C. In our 

Figure 1B, green numeration [41]. 

Figure 1C shows the aggregation propensity scores as predicted by 

AGGRESCAN for the immature (variant B) and mature forms of cystatin C.  As seen, 

according to this algorithm, the mature protein contains three APRs located at 

positions 54-58 (DFAVG), 83-92 (VAGVNYFLDV) and 122-130 (FCSFQIYAV) 

(immature form numeration, orange numeration on Figure 1B). The regions 83-89 

and 122-130 in the immature form correspond to residues 57-66 and 96-104 in the 

processed protein (green numeration on Figure 1B). Therefore, these two APRs 

almost completely overlap with those previously identified using AMYLPRED [42]. 

 Interestingly, the signal peptide present in the immature (uncleaved) protein 

(segment 9-22; LLLLAILAVALAVS) presented even higher aggregation scores than 
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the three previous peptides identified by AGGRESCAN. The primary sequence of 

precursor cystatin C, including the signal peptide, is presented in Figure 1B and the 

aggregation prone regions are highlighted. 

APRs within the primary sequence of proteins are flanked by gatekeeper 

residues such as proline and charged amino acids, which	  modulate aggregation by 

opposing nucleation of aggregates [43,44]. In the case of the four stretches of cystatin 

C identified by AGGRESCAN, we could observe the presence of these gatekeeper 

residues. In particular, in the case of the signal peptide, the sequence is flanked by 

two proline residues at positions 8 and 23 (P-9LLLLAILAVALAVS22-P). Recently, 

our group identified the gatekeeper residues in the amyloidogenic protein 

transthyretin. By replacing one of these residues in the sequence of a peptide derived 

from TTR by a hydrophobic amino acid (K35L), we could convert a non-aggregating 

peptide into a highly aggregation-prone one [45]. 

Next, in order to investigate whether these APRs would also exhibit high 

scores for forming amyloid-specific aggregates, the Waltz program was utilized (Fig. 

1D).  As seen, all four segments of cystatin C, including the signal peptide (segment 

10-20 as predicted by this algorithm), presented propensity to form amyloid 

assemblies. In this case, the other identified regions with this property were 56-61 

(AVGEYN), 84-92 (AGVNYFLDV) and 124-130 (SFQIIYAV) (immature form 

numeration, orange numeration on Figure 1B). Both analyses were performed with 

the two protein sequences, but as the only difference present between them is the 

signal peptide, solid and dashed lines appear superimposed.   

We also used other algorithms such as TANGO [46], Zipper DB [47] and 

AMYLPRED2 to analyze the aggregation and amyloid propensity of the cystatin C 

signal peptide. TANGO and AMYLPRED2 predicted the 9-20 and 9-21 stretches to 



	   10	  

be aggregation-prone, respectively, whereas Zipper DB predicted the sequence 9-17 

to be highly amyloidogenic. Because the methods we employed here for 

computational predictions rely on very different principles, the prediction of the 

signal peptide being highly aggregation prone and amyloidogenic was considered to 

be very robust. The intrinsic high hydrophobicity of signal peptides does not always 

implies that they can form typical beta sheet rich ordered amyloid fibrils, as cystatin C 

signal peptide does. To strengthen this very important point, we ran Waltz for 20 

signal peptides of different human proteins randomly chosen from Uniprot (data not 

shown). Interestingly, only 2 out of 20 presented regions that could drive amyloid 

formation (Waltz negative: P30453, P30483, Q9TNN7, P04114, P25774, P08185, 

P16870, P11597, P28325, Q9UBU2, Q9NR61, P16444, P54803, P47871, Q6UWU2, 

P42262; Waltz Positive: Q8NFZ8, P12111).     

 

Variant B Cystatin C signal peptide is able to form amyloid fibrils in vitro  

 Having in silico evidence that the signal peptide presents high aggregation 

propensity and amyloidogenicity, we synthetized the peptide with the mutation A25T 

(1MAGPLRAPLLLLAILAVALAVSPATG26) (Fig. 1B) and incubated it at 

increasing concentrations (5 µM to 100 µM) for 1 h at pH 7.4, 25oC under stagnant 

conditions. As shown in Figure 2A, there was a proportional increase in Thioflavin-T 

(Th-T) emission at increasing concentrations of the peptide, suggesting formation of 

amyloid-like aggregates in solution. Congo red (CR) binding assays were also 

performed to confirm the presence of amyloid-like aggregates (Fig. 2A, inset).  

 In order to follow the aggregation kinetics of the signal peptide, increasing 

concentrations of the peptide were incubated with Th-T and its fluorescence emission 

was collected over time (Fig. 2B).  Notably, even at very low peptide concentration 
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such as 5 µM, maximum emission of Th-T was attained in the first acquisition points, 

with no further change in the fluorescence signal of the probe even after 3 days under 

aggregation conditions. This suggests that aggregation of the signal peptide of 

cystatin C is very fast. We tried several conditions to slow down the aggregation 

process of the signal peptide such as low temperature (4 and 8oC) and addition of 5, 

10 and 15% DMSO to the aggregating buffer without any success (not shown).  

In order to confirm the instantaneous aggregation of the signal peptide, a 

suspension with 50 µM peptide diluted into 30 µM Th-T was filtered through a 0.22 

micrometer filter before measurements. The filter became yellow due to the retention 

of the aggregates bound to Th-T. The filtered solution, when let to aggregate, was not 

able to bind additional Th-T since all soluble peptide was converted into amyloid 

aggregates that were retained in the filter (Fig. 2B, dashed line). 

 

Characterizing the morphology, secondary structure and toxicity of the 

aggregates formed by the signal peptide of variant B cystatin C 

Next, we used TEM to study the morphology of the species present at 

different times of aggregation (Fig. 3A). Interestingly, although Th-T binding has 

already leveled-off at 1 h under aggregation conditions, the great majority of the 

aggregated material presented an amorphous appearance and only few amyloid fibrils 

were observed at this time (Fig. 3A, left). The binding of Th-T to these amorphous 

species suggests that they already present cross-β fold able to accommodate this 

probe. These species are on-pathway to fibril formation since after 72 h under 

aggregation condition only mature fibrils were observed by TEM (Fig. 3A, right). At 

24 h, it was already possible to see the presence of fibrils but small amorphous 

aggregates still remained (Fig. 3A, middle).  
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In order to get insights into the secondary structural changes that take place 

with the signal peptide upon aggregation, we took advantage of ATR-FTIR (Fig. 3 

B). Left panel shows the FTIR spectra of the peptide dried from a stock solution with 

100% DMSO (continuous line) and those collected during the first hour of 

aggregation.   As seen, in DMSO the peptide presented a unique and broad peak 

centered at 1,660 cm-1, which corresponds to disordered, random coiled structures, 

which is a strong evidence that the peptide is monomeric in DMSO [48–50]. 

In the initial times of aggregation (up to 1 h), the spectra changed and a new 

peak at 1,628 cm-1 appeared, which was assigned to β-sheet structures. At the same 

time, the peak related to random-coil structures (1,660 cm-1) decreased but was still 

present. The presence of β-sheet structures in these initial aggregates explains why 

these species bind Th-T (as shown in Fig. 2), but they are not fully organized, as seen 

by TEM (Fig. 3A, left).  

As aggregation proceeded for longer times (16, 24 and 72 h), the peak of β-

sheet (1,627 cm-1) increased even further, with a concomitant decrease of the peak of 

random coil at 1,660 cm-1. Table 1 summarizes the secondary structural changes that 

take place upon aggregation of the signal peptide of cystatin C.  

Next, to further confirm the difference in sizes of the species formed at 1 and 

24 h, DLS measurements were performed (Fig. 3C). The main sizes of the two more 

prevalent species present at 1 h were 0.194 nm +0.06 nm and 904 +32.14 nm. After 

24 h under aggregation conditions, there were two species present, one with 947 +134 

nm and an extreme large species with 3,008 +500 nm. Interestingly and corroborating 

the FTIR data, the species with around 900 nm were still present at 24 h. Given the 

fact that the aggregation pathways of aggregation-prone proteins are distinct leading 

to the accumulation of a myriad of aggregated species with different size and 
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morphologies, it is difficult to make a direct comparison of the species sizes observed 

here with others. However, initial fibrillar species from Aβ peptide have been shown 

to have sizes from 200 to 700 nm [51,52]. In another study [53], the formation of 

transthyretin fibrillar oligomers of 1,000 nm and mature fibrils with mean size of 

4,000 nm was reported [54], in accordance with our DLS data where early 

aggregating species with 900 nm and mature fibrils with 3,000 nm were detected. We 

performed a calibration assay using a standard solution of silicone particles and the 

expected size was found (342 nm).       

Next, neuroblastoma cell line N2a was used to probe the cytotoxicity of the 

aggregates formed at 1 and 24 h and cell viability was evaluated by MTT assays. Both 

aggregates tested at 5 µM concentration were very cytotoxic, killing ~40 % of the 

cells (Fig. 3D).  

 

Conclusions 

The substitution A25T in the signal peptide of the variant B precursor cystatin 

C compromises its cleavage and/or processing precluding the efficient formation of 

the mature form of the protein, which is secreted from the cells to the extracellular 

milieu where it exerts its biochemical effect as a cysteine protease inhibitor. We have 

modeled the potential impact of the Ala to Thr mutation with AGGRESCAN, Tango 

and Waltz. Neither Tango nor Waltz detected any change in the extension of the 

aggregation-prone regions or in the overall predicted aggregation/amyloid propensity. 

AGGRESCAN did not identify any change in the extension of the aggregation-prone 

regions and the increase in overall aggregation propensity was only of 0.7%. A model 

of the functional consequences for trafficking and protein aggregation of this variant 

precursor cystatin C is presented in Figure 4. As previously shown, in the 
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extracellular space mature cystatin C interacts with Aβ diminishing its aggregation 

[17,18]. An inefficiently cleaved/processed variant B cystatin C leads on one hand to 

a significantly reduced secretion of the mature cystatin C as shown previously [33,34] 

and, on the other, to the accumulation of full length variant precursor protein 

containing the mutated, highly amyloidogenic leader. On the contrary, the WT signal 

peptide is excised from the normal cystatin c protein during its processing and should 

be completely cleaved. To our knowledge, there is no description of the 

accumulation/aggregation of the WT signal peptide inside RPE cells. In the light of 

our data, it is tempting to suggest that this variant might aggregate into amyloid fibrils 

through the leader peptide, since the other stretches with high aggregation propensity 

are protected in the globular domain of the protein. These aggregates composed of 

uncleaved/unprocessed variant B could be formed either inside or outside the cells 

leading to a gain of toxic function. As demonstrated by Paraoan et al., 2004, this 

variant is retained close to mitochondria walls forming structures resistant to protease 

digestion [34], a characteristic feature of high molecular weight aggregates, including 

amyloid fibrils. Upon aggregation of variant B, other important intra- or extracellular 

protein components could be incorporated into this aggregated material, possibly 

depriving the cell/tissue from a specific function and forming protein aggregates 

otherwise not present in the cells. Additionally, low levels of functional mature 

cystatin C in the extracellular space could be very deleterious, contributing to 

increased proteolytic action at its extracellular sites of activity. Also, there will be less 

available protein to interact with Aβ peptide, thus enhancing its aggregation, which 

may explain the variant B cystatin C association with a higher risk of developing AD.  

As the amyloid deposits are the histological hallmark of AD, drusen are the 

extracellular deposits found in AMD. The presence of Aβ peptide has been reported 
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in patients with severe forms of AMD [55–58]. The involvement of protein 

aggregation in AMD pathogenesis is suggested by the presence of various toxic 

amyloid structures in drusen [56,59] and, indirectly, by the decrease of the AMD risk 

obtained through anti-amyloid treatment in a mouse model [60]. Variant B cystatin C 

aggregation may therefore contribute to AMD pathogenesis. In addition, if this 

mutation avoids the observed partnership between cystatin C and Aβ peptide it can 

account for the higher incidence of AD in homozygous patients. Further work is being 

carried out to investigate amyloid deposits formed by this variant inside RPE cells. 

More experimental approaches are necessary to reveal in full the mechanism of action 

of variant B cystatin C in these major neurodegenerative diseases and we are actively 

pursuing such studies. With the actual lack of any in vitro aggregation experimental 

evidence to link the higher incidence of AD and AMD with variant B, we believe that 

the present study provides the important first clues for further investigations.  
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FIGURE LEGENDS 

 

Fig. 1. Tridimensional structure, primary sequence and in silico aggregation and 

amyloid propensity predictions for WT and variant B cystatin C. (A) A 

monomer-stabilized human cystatin C with an engineered disulfide bond (PDB ID: 

3GAX) [61] reveals the canonical cystatin fold, based on the crystal structure of 

chicken cystatin [62]. In red are the regions pointed out by AGGRESCAN as the 

aggregation prone regions in the protein. (B) The amino acid sequence of the variant 

B precursor cystatin C with the aggregation-prone regions (APR) identified by 

AGGRESCAN in bold and by Waltz underlined. The leader peptide is highlighted in 

yellow. Gatekeeper residues flanking APR of the signal peptide are in blue. We are 

using two numerations, the orange numbering includes the signal peptide and contains 

146 residues, the green numeration corresponds to the processed cystatin C, which 

contains 120 residues.  In (C), the aggregation propensity of both sequences was 

predicted using AGGRESCAN (http://bioinf.uab.es/aggrescan/) using default 

parameters. (D) The same procedure was used to predict the amyloid propensity by 

the algorithm Waltz (http://www.switchlab.org/bioinformatics/waltz). We call 

attention to the fact that continuous lines (mature cystatin C) are superimposed to the 

dashed lines (immature cystatin C). 

 

Fig. 2. Monitoring aggregation of variant B cystatin C signal peptide in vitro. 

Panel A: Increasing concentrations of the signal peptide (5 to 100 µM, as indicated) 

were incubated in PBS (pH 7.4) at 25oC without agitation (aggregation condition). 

After 1 h under this condition, Th-T binding was evaluated by measuring its 

fluorescence emission (Excitation = 450 nm and Emission = 450 to 600 nm). [Th-T] = 
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20 µM. The inset in Panel A shows the spectra of CR alone and in the presence of 

aggregates formed after 24 h of incubation. Panel B displays the kinetics of 

aggregation at different concentrations of the signal peptide (see the legend inside this 

panel) as followed by the intensity of Th-T fluorescence at 482. [Th-T] = 30 µM 

 

Fig. 3. Characterization of morphology, secondary structure content, size 

distribution and toxicity of the aggregates formed by the variant B cystatin C 

signal peptide. (A) Signal peptide at 100 µM was left to aggregate under the 

conditions described in Fig. 2. At 1 h (left images), 24 h (middle images) and 72 h 

(right images) aliquots were withdrawn and imaged by TEM. Bars represent 100, 200 

and 500 nm. (B) Secondary structure changes that take place upon aggregation of the 

signal peptide analyzed by ATR-FTIR. The spectra displayed on the left side are 

those of the soluble peptide (full line), and of the samples aggregated up to 1 h as 

follows: 5 min (dotted), 15 min (short dash), 40 min (dash) and 60 min (large dash). 

On the right are displayed the FTIR spectra of the samples aggregated for longer 

times as follows: 1 h (full), 16 h (dot), 24 h (short dash) and 72 h (dash-dot). 

Secondary structure quantification from the deconvolution of these spectra is 

displayed in Table 1. (C) DLS was used to determine the size of the main species 

present at 1 h (dash-dot line) and 24 h (full line) under aggregating conditions. A 

calibration with silicone particles was performed and is shown in dotted line. (D) 

Toxicity of the aggregates formed at 1 and 24 h on neuroblastoma cells determined by 

MTT assay. In each case, 5 µM of aggregated material was added to the cells in 

culture remaining in contact with them for 24 h before cell viability evaluation.  

 

Fig. 4. Schematic representation of the effects of the A25T mutation on variant B 

precursor cystatin C cell trafficking and its possible implications for protein 

aggregation. On the left, a RPE cell that produces WT cystatin C. Processing of 

cystatin C takes place normally in the ER/Golgi network. The signal peptide is 

cleaved leading to the formation of the mature form of the protein, which is secreted 

from the RPE cells. Outside the cell, cystatin C acts as inhibitor of cysteine proteases. 

Besides, its can interact with Aβ modulating its aggregation properties. On the right, a 
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RPE cell that produces the variant B, which is abnormally processed accumulating in 

the periphery of the mitochondria, probably as an aggregated material induced by the 

presence of the signal peptide. This variant is inefficiently secreted what impairs its 

protective effect against Aβ aggregation. 
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Table 1. Secondary structure changes that take place upon aggregation of 
variant B cystatin C signal peptide measured by FTIR. 

  Inter β-sheet (%) Disordered (%) β-sheet (%) 
Time  1623 – 1641 cm-1  1642 – 1657 cm-1 1674 – 1695 cm-1 

0  - 100 - 
5 min 42.98 37.44  19.57  
15 min 42.07 39.56  18.36  
40 min 41.64  37.23 21.11  

1 h  41.78 38.42 19.79  
16 h 64.02  35.98  - 
24 h 83.55 16.43  - 
72 h 86.22  13.76  - 
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