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Abstract 

Pneumolysin-macrophage interactions in Streptococcus pneumoniae infection 

Hesham A Malak 

Streptococcus pneumoniae is a common human pathogen that accounts for more than 
1 million deaths every year. Nasopharyngeal colonisation by S. pneumoniae is a 
necessary precursor to pneumonia and invasive disease and, thus, is a promising target 
for intervention. Pneumococcal virulence factors that maintain long-term carriage are 
of interest to the improvement of pneumococcal vaccines which currently fail to 
provide the required protection against >92 known serotypes of S. pneumoniae. The 
C-type lectin family member mannose receptor (MR) is expressed by macrophages 
and dendritic cells and has been identified as a non-opsonic receptor for S. 
pneumoniae in the lung. However, its functional role in pneumococcal infection has 
not been revealed, nor has its impact on nasopharyngeal carriage been assessed.  I 
used MR-deficient mice and bone marrow derived macrophages to study the role of 
this receptor in the clearance of S. pneumoniae. Macrophages up regulate MR 
expression in response to pneumococcal infection both in vitro and in vivo, via a 
process dependent upon pneumococcal capsular polysaccharides and pneumolysin 
toxin. Furthermore, MR-expressing macrophages accumulate in the nasopharynx and 
draining cervical lymph nodes of mice during pneumococcal carriage.  MR-/- 
macrophages are significantly attenuated in their ability to kill S. pneumoniae D39 in 
vitro and show reduced production of both inflammatory and immunomodulatory 
cytokines and chemokines, as compared to WT macrophages, in response to S. 
pneumoniae. MR is required for upregulation of expression of TLR-2 on macrophages 
in response to pneumococcal infection in vitro and also contributes to the activation of 
the NLRP3 inflammasome and the production of IL-1β.  Domain four of the 
pneumococcal toxin pneumolysin binds MR, demonstrating that MR contributes 
directly to host-pathogen interactions. MR-/- mice have a defect in control of 
pneumococcal proliferation in the nasopharynx in the first 48 hours post-infection but 
accumulation of MR+ macrophages in the nasopharynx in wild-type mice takes place 
over weeks, suggesting a dual role of MR in control of both innate and adaptive 
immunity. The ability of MR+ macrophages to induce the differentiation of T 
regulatory cells in vitro suggests that they may contribute to the maintenance of 
prolonged carriage, in addition to their role in early clearance of colonising bacteria. 
Proteomic analysis reveals that pneumococcal infection induces a wide range of 
cellular processes in macrophages, with pro-inflammatory and apoptotic pathways 
particularly prominent. Macrophages infected with pneumolysin-deficient 
pneumococci produce high levels of proteins associated with healing and repair and 
are less geared towards inflammation, demonstrating the ability of pneumolysin to 
shape immune responses during infection. Taken together, my data add to our 
understanding of the interactions between S. pneumoniae and the host immune 
system. MR is a key contributor to macrophage responses against the pneumococcus 
and pneumolysin is both a crucial virulence factor and an inducer of host immune 
responses. 
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Chapter 1: Introduction 
 

1.1 Streptococcus pneumoniae 

1.1.1 Description 

Streptococcus pneumoniae (the pneumococcus) is a Gram-positive bacterium with 

distinctive diplococcoid morphology. It is encapsulated, alpha-hemolytic, and a facultative 

anaerobe that can be distinguished from other streptococcal species by optochin test, due to 

its sensitivity to this antibiotic. Individual cells are between 0.5 - 1.25 micrometers in 

diameter. Like other streptococcal species, they are catalase negative and able to ferment 

glucose to lactic acid (Struthers et al, 2003, Ryan et al, 2004, Frost et al, 2010).  

The pneumococcus is a major human pathogen that was first recognized as a common cause 

of pneumonia in the late 19th century and has been the focus of much research since.  The 

spectrum of pneumococcal disease includes pneumonia, bacteremia, sepsis, peritonitis, 

osteomyelitis, acute sinusitis, endocarditis, otitis media, cellulitis, pericarditis, and brain 

abscesses (Ryan et al, 2004). Recent work has also revealed a large burden of pneumococcal 

meningitis in developed countries and in large parts of Africa (Trivedi et al, 2010).  

The pneumococcus is normally present in the nasopharynx of healthy adults (5-10%), and 

healthy children (20- 40%) in developed countries (Harboe et al, 2012). Faden et al. has 

shown that the nasopharyngeal flora in children usually established during the first weeks of 

their lives (Faden et al., 1997). The pathogen is believed to transmit more often in certain 

crowded environments (Brooks et al, 2010, Hamborsky and Kroger, 2015). Although 

mainly a harmless commensal in the nasopharynx, the pneumococcus can cause a range of 

diseases when it reaches other, normally sterile sites.  Susceptibility to the pneumococcus is 

significantly age-related with the greatest disease burden in children under 5 years of age 
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and adults over 65 (Trivedi et al, 2010). Whereas the immaturity of the immune system is 

mainly responsible for poor protection in the former, the underlying causes of sensitivity in 

older adults is more complex including immune senescence and other cofactors (Gonçalves 

et al., 2016).  

 

1.2 S. pneumoniae as a pathogen 

1.2.1 Pneumococcal disease 

Streptococcus pneumoniae has been recognized as a significant human pathogen for over 

100 years and continues to be a common cause of diseases and mortality worldwide. The 

pathogen has been considered to be one of the most common bacterial respiratory 

pathogens, as it has been shown to be the main cause of meningitis and community-acquired 

pneumonia (CAP) in developed countries, which has greater than 20% mortality rates, with 

death usually the result of overwhelming septicemia (Rudan et al., 2008). Worldwide, 

mortality rates are unacceptably high; for example, pneumococcal septicemia is responsible 

for around 25% of preventable deaths in children under the age of 5 and more than 1.2 

million infant deaths per year (Denny et al., 1986). Also, it has been reported that more than 

800,000 children die annually in developing countries as a result of pneumococcal disease, 

particularly pneumonia (O’Brien et al., 2009). Furthermore, the pneumococcus has been 

shown to be the leading cause of acute otitis media (AOM) in developed countries among 

children (McEllistrem et al., 2005). Interestingly, in countries with high rates of HIV-1 

infections, there are also increased rates of pneumococcal pneumonia and bacteremia cases, 

mostly in young adults (Berkley et al., 2005). The pneumococcus inhabits the mucosal 

surface of the upper respiratory tract, and can be cultured from the naso–oropharynx of 

humans and, infrequently, other large animals that live in close proximity to humans. 
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Although colonisation at this site seems to be asymptomatic, if the pathogen gains access to 

the lower airway, then a rapid inflammatory response develops which can lead to invasive 

disease (Kyaw et al., 2002, Bogaert et al., 2004).  

 

1.2.2 Pneumococcal colonisation 

S. pneumoniae has evolved over time to live in the human population, and to colonize the 

mucosal surfaces of the upper respiratory tract. The success of pneumococcal survival in the 

human population is verified by 1.9 - 5.8 billion individuals thought to be inhabited with 

pneumococcus at any given time (Bogaert et al., 2004, Rudan et al., 2008, O’Brien et al., 

2009). Although S. pneumoniae has the ability to cause severe invasive disease, most 

pneumococcal-colonized people will not exhibit any clinical symptoms.  

Colonisation is usually followed by the distribution of the pneumococcus to other 

individuals, leading to transmission within the population (Faden et al, 1990, Bogaert et al., 

2004, Malley et al., 2007). Bacterial acquisition and carriage rates are influenced by many 

different factors such as: geographical area, age, genetic background, and socioeconomic 

conditions (Bogaert et al., 2001, Adrian et al., 2004). In addition, the rates of carriage are 

different among the 90 identified pneumococcal capsular serotypes (Park et al., 2007), 

which express antigenically and structurally different capsular polysaccharides (Calix et al., 

2012). Protection against pneumocccal diseases is facilitated by opsonin-dependent 

phagocytosis. Antibody and complement-dependent opsonisation that initiates the classic 

complement pathway is believed to be the main immune mechanism by which the host 

protects itself against infection with the pneumococcus (Paton et al., 1993). Pneumococcal 

clearance depends on the interaction of type-specific antibodies (IgG, IgA, IgM), 

neutrophils and complement or phagocytic cells from liver and spleen (Bruyn et al., 1992). 
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The local host immune response has a significant regulatory role in the trafficking of 

microbes in the upper part of the respiratory system (Weinberger et al., 2009). A weak 

mucosal immune response may lead to persistent and periodic colonisation and 

subsequently infection, while a rapid immune response to the pathogen will lead to 

abolishment of colonisation and preclude re-colonisation (Harabuchi et al., 1994). As 

mucosal immunity develops earlier than systemic immunity, and is thought to be well 

developed by 6 months of age (Ghaffar et al., 1999, Bogaert et al., 2004), the early change 

in pneumococcal carriage rates is believed to be associated with the maturation of the 

immune system, since children at the age of 2 have been shown to generate weak antibody 

responses to thymus independent antigens for example; pneumococcal capsule 

polysaccharide (CPS) (Douglas et al., 1983, Abdullahi et al., 2008), and generate notably 

smaller amounts of anti-capsular IgG than their mother following colonisation with a 

particular serotype (Soininen et al., 2001). Some research has also revealed that IgG and 

secretory IgA antibodies against pneumococcal capsular polysaccharides and surface 

associated proteins have been detected in children’s saliva in response to pneumococcal 

colonisation (Simell et al., 2001).  

Furthermore, another study by Rodenburg et al. demonstrated salivary immune responses in 

children to the 7-valent pneumococcal conjugate vaccine in the first 2 years of life 

(Rodenburg et al., 2012).  At 12 months, higher serum and saliva IgG-levels were observed 

against vaccine serotypes when compared to controls (Non-vaccinated kids), which 

continued for most serotypes until 24 months. Salivary IgG-levels were 10-20 fold lower 

compared to serum IgG, conversely, the IgG-levels in saliva and serum were greatly 

associated. Salivary and serum IgA-levels were greater at 12 months in children compared 

with controls. Greater salivary IgA levels stayed present for most serotypes till 24 months. 

Salivary IgA increased more than IgG, following carriage of serotypes 19F, 6B and 23F. In 
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conversion to IgG, salivary IgA-levels were similar to serum levels, suggesting local 

production of IgA. Interestingly, it has been suggested that competition for the space in the 

nasopharynx could affect the age associated prevalence of S. pneumoniae, since, while the 

rate of pneumococcal carriage decreases, colonisation of another nasopharyngeal resident 

such as Staphylococcus aureus increases, from about 10% to 50% at the age of 10 years 

(Bogaert et al., 2004). Moreover, a report by Faden et al. has proposed that interspecies 

competition develops and interfere with the natural composition of the nasopharyngeal flora 

during pneumococcal carriage (Faden at al., 1997). The balance between the microbial 

invaders and the local flora is significant. For example: α-haemolytic oral Streptococci (part 

of the resident flora) prevent colonisation by S pneumoniae, S aureus and H influenzae 

(Faden et al., 1997). The importance of this action was also shown by Ghaffar et al. (1999), 

when they demonstrated a competitive balance between α-haemolytic Streptococci and S 

pneumoniae and H influenzae that could be affected by the usage of antibiotics (Ghaffar et 

al., 1999). However, Madhi et al. has shown that the colonisation patterns for 

pneumococcus, S. aureus and H. influenzae did not change among HIV-infected and HIV-

uninfected children (Madhi et al., 2005). Furthermore, a negative association has been 

reported between viridans streptococci and S pneumoniae, H influenzae, and M catarrhalis, 

since typically one pathogen (H. influenza) becomes predominant during upper respiratory 

tract infections (Faden et al., 1990, Ghaffar et al., 2002). Another study has showed that 

there were no constant variations in the carriage rates of S. pneumoniae, S. aureus, M. 

catarrhalis, and H. influenzae were observed over time (Spijkerman et al., 2012).  

In addition to the huge shifts in pneumococcal serotypes, persistent high nasopharyngeal 

occurrence rates of H. influenzae and S. aureus were identified between young children and 

their parents following presentation of 7-valent pneumococcal conjugate vaccine (PCV-7). 

Pericone et al, have shown from in-vitro studies that a positive relationship exists between S. 
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pneumoniae and N. meningitides (Pericone et al., 2000). S pneumoniae growth is increased 

in the presence of H. influenzae, the growth rate was mediated by the catalase produced by 

H. influenzae. On the other hand, the growth of H. influenzae was reduced in the presence of 

the pneumococcal culture supernatant or pneumococci, the growth rate were affected by the 

presence of hydrogen peroxide, which known to be produced by pneumococcus as a 

mechanism for limiting competitive flora (Pericone et al., 2000). 

 

1.2.3 Mechanisms of colonisation  

Experimental colonisation studies in adults have been used to determine the host factors that 

could affect sensitivity to the acquisition of S. pneumoniae and its consequent clearance 

(McCool et al., 2002). More recently, Ferreira et al. validated that pneumococcal carriage in 

humans resulted in systemic and mucosal immunological responses that led to protection 

against re-colonisation and invasive pneumococcal infections (Ferreira et al., 2013). These 

findings show that carriage stimulates the production of both mucosal and systemic 

antibodies, which are generally strain and type specific. Although high levels of serotype-

specific anti-capsular antibodies are generated following administration with the 

pneumococcal polysaccharide conjugate vaccine (PCV), it is not fully understood whether 

the relatively small amounts that are produced by colonisation are effective at improving 

clearance. In this respect, it has been observed that after childhood, carriage rates fall down 

among the different pneumococcal serotypes, which suggests that exposure to earlier 

colonisation events leads to immunity that is not strictly serotype-specific (Lipsitch et al., 

2005). The pneumococcal external surfaces are protected and covered by a polysaccharide 

capsule. Capsular polysaccharides are varied, and about 100 different capsular serotypes 

have been defined so far (Malley and Anderson, 2012). The polysaccharide capsule is one of 
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the most significant virulence factors of pneumococci since it protects the microbe from 

phagocytosis by host immune cells (Kadioglu et al., 2008). Recent studies have determined 

the structure of capsular polysaccharide for various serotypes using advanced analytical 

technologies, providing explanation of genetic basis for the capsular types, and 

demonstrating the improvement of highly efficient pneumococcal conjugate vaccines 

(Habib et al., 2014, Geno et al., 2015, Park et al., 2015). Low expression levels of capsule 

will lead to increased complement and antibody deposition on the pneumococcal surface 

and consequently increased clearance by the immune system (Magee et al., 2001). 

Polysaccharide capsules are highly immunogenic since host antibodies deliver protection 

against homologous serotype infections by the stimulation of opsonophagocytosis. Capsule 

antigenicity is type-specific, although cross-reaction can occur due to common shared 

polysaccharides (Bruyn et al., 1992). Hyams et al. investigated the effects of capsular 

serotype on S. pneumoniae interactions with complement (Hyams et al., 2010). Significant 

differences in the deposition of C3b/iC3b were observed on opaque-phase variants of 

serotype 4 (TIGR4), 6A and 23F strains although the thicknesses of the capsule layers were 

similar. There was increased deposition of C3b/iC3b on TIGR4, 6A and +23F strains, and 

these variances remained even in serum depleted of immunoglobulin G, suggesting 

pneumoccocal resistance to complement-mediated immunity is dependent on the capsular 

serotype rather than capsule thickness. The layer under the capsule is the cell wall. It 

consists of a mixture of polysaccharides and teichoic acid that function as an anchor for cell 

wall associated surface proteins (Bruyn et al., 1992). The cell wall is the main cause of the 

strong inflammatory response that accompanies pneumococcal infections, as it activates the 

complement cascade, encourages the influx of inflammatory cells and induces cytokine 

production (Bruyn et al., 1991). To support this, a study by Moronal et al. has revealed that 

attachment of capsular polysaccharide to the cell wall of Streptococcus pneumoniae type 2 

is required for invasive disease (Morona et al., 2006). Nasopharyngeal colonisation by S. 
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pneumoniae requires attachment to the epithelial lining of the respiratory tract. Successful 

adherence to nasopharynx epithelium has been considered to be the first important step to 

initiate the pathogenesis of pneumococcal asymptomatic carriage and diseases (Andersson 

et al., 1983). Asymptomatic colonisation initiates on non-inflamed resting epithelium by the 

binding of the pneumococcus to cell surface sugars (N-acetyl-glycosamine).  Adherence to 

these carbohydrates is facilitated by some of the cell-wall-associated surface proteins such 

as pneumococcal surface adhesin A (PsaA) (Swiatlo et al., 2002). This surface protein is 

thought to be significant since it contributes to the hydrophobic and electrostatic surface 

features of the pneumococcus and facilitates partial adherence to host cells through 

physicochemical, non-specific interactions (Swiatlo et al., 2002). The identification of PsaA 

peptides has also showed to be important in the development of pneumococcal vaccine.  

Singh et al. has illustrated spleen and cervical lymph node (CLN) -derived T helper (Th) 

lymphocyte cytokine responses to PsaA peptides after challenging mice with S. pneumoniae 

strain EF3030 (Singh et al., 2014). Some of these peptides were responsible about the high 

responses and proliferation of interferon-γ, IL-2, IL-5 and IL-17, and the moderate 

responses of IL-10 and IL-4 by ex vivo re-stimulated splenic and CLN CD4+ T cells that 

isolated from challenged BALB/c mice with the pneumococcal strain EF3030.  

The establishment of long-term pneumococcal colonisation and the transformation of 

asymptomatic colonisation to invasive infection require the help from several pneumococcal 

virulence factors at different structural sites (Orihuela et al., 2004). For example, the 

stimulation of local inflammatory factors during concurrent viral infections such as Tumour 

Necrosis Factor (TNF) and Interleukin1 (IL-1) are required for the transformation of 

asymptomatic colonisation to invasive diseases (Tuomanen et al., 1997). This inflammatory 

cascade affects the types and the number of receptors expressed on target epithelial and 

endothelial cells, facilitating greater pneumococcal adhesion and invasion.  
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1.3 Pneumococcal virulence factors  

The pathogenicity of S. pneumoniae has been attributed to several virulence factors, the 

most significant being the capsule, and the toxin pneumolysin. The polysaccharide capsule 

helps the pneumococcus avoid phagocytosis and encourages its escape from host immune 

defenses (Chen et al., 2005). Pneumolysin is another significant virulence factor and a key 

driver of inflammation during pneumococcal infections. Both capsule and pneumolysin 

have been shown to have a wide range of important functions at different sites in the human 

or animal host.  These include involvement in nasopharyngeal carriage and contributions to 

invasive diseases. Several studies in this field have been motivated by the understanding that 

the pneumococcal capsule and the multifunctional toxin PLY could be promising 

pneumococcal vaccine candidates. Inflammation is believed to be responsible for many of 

the symptoms of pneumococcal diseases (Johnston, 1991, Musher, 1992), and so the 

inflammatory properties of pneumolysin could be directly responsible for the high morbidity 

and mortality associated with pneumococcal infections. More details will be given in the 

next sections about these two factors, with a focus on their structures, functions and role in 

virulence. 

 

1.3.1 Pneumococcal capsule  

The pneumococcal polysaccharide capsule is 200-400 nm thick. It covers the outer layer of 

S. pneumoniae, and covalently attaches to the external part of the cell-wall peptidoglycan 

(Skov-Sorensen et al., 1988, Sorensen et al., 1990). There are 92 structurally and 

serologically described capsular serotypes of S.pneumoniae (Henrichsen, 1995, Kadioglu et 

al., 2008, Yother, 2011). Pneumococcal capsule structures vary between linear polymers 

composed of two monosaccharaides or more, to branched polysaccharides that have one to 
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six monosaccharaides in combination with extra side chains (Sorensen et al., 1990). The 

capsules of most serotypes of pneumococci are highly charged at physiological pH, which 

could directly influence the interaction with phagocytes (Lee et al., 1991). Another common 

feature among these different types of capsules is that none display a net positive charge 

(Hammerschmidt et al., 2005). The production of capsule is required for S. pneumoniae 

virulence, and is anti-phagocytic in non-immune hosts (Austrian, 1981, Hathaway et al., 

2012). Although, non-encapsulated strains of S. pneumoniae have been associated with 

some superficial infections (Martin et al., 2003, Crum et al., 2004), clinical samples from 

different sterile sites are encapsulated, and  unprompted  non-encapsulated products of these 

pneumococcal strains are mainly a virulent.                                                                  

Furthermore, some studies show that the virulence of pneumococci is correlated with the 

thickness of the pneumococcal capsule (MacLeod and Krauss, 1950, Kung et al., 2014) and 

different serotypes vary significantly in their capacity to cause infections (Austrian, 1981). 

Differences in the thickness of the capsule could lead to resistance to phagocytosis, alter 

stimulation of humoral immune responses, and confer adaptation to colonisation of different 

niches of the human body. Thicker capsules have shown reduction in entrapment within 

mucus (Nelson et al., 2007, Kung et al., 2014), and in opsonophagocytosis, leading to 

increased survival of the pathogen in the blood stream (Hyams et al., 2010). Whereas, 

thinner polysaccharide capsules offer an advantage to pneumococci to adhere to host tissues, 

due to the greater exposure of adhesion molecules (Magee & Yother, 2001, Kung et al., 

2014). Exciting data have demonstrated that pneumococcal capsule can block the Fc region 

in IgG or complement component iC3b in order to prevent their interaction with the 

appropriate receptors on phagocytic cells (Musher, 1992, Hyams et al., 2010). Also, some 

data showed that pneumococcal capsule could form a protective shield to inhibit 

pneumococcal phagocytosis and killing by macrophages and neutrophils (Mitchell, 2003, 



 
11 

Wartha et al., 2007, Kadioglu et al., 2008, Levitz et al., 2012) and reduce the amount of 

complement (mainly C3b) deposited on the surface of the pathogen (Abeyta et al., 2003, 

Mitchell, 2003).  This affords S. pneumoniae the advantage of colonizing and infecting 

different niches of the host (Ogunniyi et al., 2002, Hathaway et al., 2012). One study 

reported that the pneumococcal capsule could provide a noticeable level of resistance to 

antibiotic-induced autolysis, resulting in antibiotic tolerance in clinical isolates (Fernebro et 

al., 2004). Interestingly, the degree of toleration varied remarkably between the capsular 

serotypes. Although S. pneumoniae strains express different capsular types that show 

noticeable differences in virulence, non-capsular factors are also clearly significant (Kelly et 

al., 1994, Nesin et al., 1998, Hathaway et al., 2012). Recent molecular epidemiological 

analysis has determined that features that are mainly associated with a specific clonal type, 

as well as capsular serotype, influence the chance of pneumococci to cause serious 

infections in humans. A subsequent study demonstrated the contribution of host factors in 

which clinical isolates that had great human invasion potential presented significantly 

diverse virulence and infection kinetics in BALB/c mice when compared to C57BL/6 mice 

(Sandgren et al., 2005, Hathaway et al., 2014). 

 

1.3.2 Pneumolysin  

The pneumococcal toxin pneumolysin (PLY) was first described as a hemolysin produced 

by pneumococci in 1905 (Libman, 1905). PLY is a 53kDa intracellular soluble protein that 

belongs to the cholesterol-dependent cytolysin (CDC) family (Alouf and Geoffroy, 1991, 

Boulnois, 1992) It is expressed by virtually all pneumococcal isolates, and its amino acid 

sequence is well conserved (Lock et al., 1996, Kirkham et al., 2006).  Several early studies 

described the biological effects of pneumolysin on polymorphonuclear leukocytes, and these 

were determined at the sub-lethal concentrations of the toxin in the absence of cell lysis 
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(Johnson et al., 1981). Some experiments demonstrated that PLY was present in the 

cytoplasm of the bacteria and was not secreted, a discovery which has essential 

consequences to understand the role of pneumolysin in the processes of disease (Johnson, 

1977). PLY is released upon lysis of the pathogen, for instance, as a result of autolysis, 

impulsive bacterial cell death, due to phagolysosome degradation, or antibiotic treatment. 

One recent work suggested that PLY could be attached to the cell wall of the 

pneumococcus, however the mechanisms of active export have not been identified and the 

finding has not been replicated (Price & Camilli, 2009, Price et al, 2012). Moreover, an 

important study in mice showed that purified pneumolysin is a protective immunogen 

against pneumococcal infections in pneumonia models (Paton et al., 1983). This work led to 

many other investigations in order to develop pneumolysin-based vaccines, which may still 

play a significant role in reducing the frequency of pneumococcal infections in humans in 

the future.  

 

1.3.2.1 The structure of Pneumolysin  

PLY is a mono polypeptide chain that consists of 471 amino acids (Walker et al., 1987). 

Pneumolysin oligomerizes in the cellular membrane of target cells leading to formation of a 

ring-shaped pore. The transmembrane pore is composed of 40 monomer subunits that are 

260 Å in diameter. The toxin undergoes sequences of remarkable changes in structure 

during its transformation from a soluble monomer to a membrane-inserted oligomer form 

(Tilley et al., 2005). It has been thought that the oligomers are responsible for both the 

cytolytic activity of pneumolysin and the cell modulatory events induced at sub-lytic 

concentrations. A pneumolysin homology model (Figure 1.2) shows that the toxin is long 

and rod shaped and composed of four domains (domains 1-3 form the N-terminal fragment 

and domain 4 forms the C-terminal part) that have particular functions in the formation of 
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membrane pores (Baba et al., 2001). Domain-4 has been identified to be necessary for 

cholesterol binding, and for the haemolytic activity of PLY (Gilbert et al., 1999, Tilley et 

al., 2005). 

 

 

 

 

 

 

 

Figure 1.1. Structural model of the pneumococcal toxin pneumolysin. PLY has four domains; domain 1 
(blue), domain 2 (green), domain 3 (red) with two groups of alpha helices (highlighted in orange) that play a 
significant role in the formation of pore in the host transmembrane, and domain 4 (yellow) associated with 
membrane binding (picture source; Tilley et al., 2005). 

 

 

1.3.2.2 The role of pneumolysin in pathogenesis 

The cytotoxic and hemolytic activities of PLY have been well defined over the last 70 years 

of research (Cohen et al., 1942, Halbert et al., 1946, Kreger & Bernheimer, 1969). The 

oligomeric pores formed at high concentration cause cell lysis (Boulnois, 1992). However, 

the toxin also has several important functions at lower concentrations, most of which have 

been demonstrated both in vitro and in vivo. PLY at sub-lytic concentrations has an ability 

to alter the function of immune cells (Mitchell et al., 1993, Alexander et al., 1998), 

encourage the production of proinflammatory cytokines such as interleukin-1β and tumor 
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necrosis factor alpha (TNF-α) by human monocytes (Houldsworth et al., 1994), prevent 

ciliary beating on human respiratory epithelial cells (Feldman et al., 1990, Feldman et al., 

1991), damage alveolar epithelial barriers (Rubins et al., 1993) and the upper part of the 

respiratory tract (Feldman et al., 1990), and reduce neutrophil respiratory burst but stimulate 

their recruitment (Paton et al, 1983). PLY is also known to initiate the classical pathway of 

complement (Mitchell, et al., 1991, Paton et al., 1993), prevent the proliferation of 

lymphocytes and the synthesis of antibodies (Ferrante et al., 1984), and induce cytokine 

synthesis and CD4+ T‑cell activation and chemotaxis (Hirst et al., 2004, Kadioglu et al., 

2004). However, it is not clear if any of these features of the pneumococcal protein are 

necessary for virulence. The significance of pneumolysin as a key pneumococcal virulence 

factor was revealed clearly when PLY-negative pneumococcus was shown to be avirulent in 

mice when compared to the wild-type strain (Berry et al., 1989, Canvin et al., 1995).  The 

PLY-deficient strain grew more slowly in the lungs, and showed reduced induction of 

cellular inflammatory responses (Canvin et al., 1995, Kadioglu et al., 2000). Although the 

levels and expression of pneumolysin may vary from strain to strain or serotype to serotype, 

several studies confirm that PLY is essential for pneumococcal virulence during pneumonia 

(Berry et al., 1995, Canvin et al., 1995, Rubin et al., 1996, Alexander et al., 1998, Jounblat 

et al., 2003), For instance, Alexander and colleagues (Alexander et al., 1994) discovered 

that mice immunized with sub-lethal doses of PLY were protected from nine strains of S. 

pneumoniae, although no protection was detected against a tenth strain. Another 

immunization study performed by Paton et al. exposed that inactivated PLY toxoid could 

provide sufficient protection against invasive pneumococcal infection in toxoid immunized 

mice (Paton et al., 1983). Moreover, the immunization of mice with PLY prolongs their 

survival after challenge with lethal doses of different serotypes of S. pneumoniae (Paton et 

al., 1983, Lock et al., 1988, Alexander et al., 1994). Pneumolysin is important for the spread 

of pneumococcus from the lungs to the bloodstream (Berry et al., 1989, Berry et al., 1999, 
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Kadioglu et al., 2002, Orihuela et al., 2004). In addition, some studies reveal that in 

bacteraemic infection the expression of pneumolysin is correlated with disease severity and 

high numbers of pneumococci in the blood (Berry et al., 1999, Orihuela et al., 2004). 

Conversely though, in the absence of the toxin, high numbers of the bacteria were tolerated 

in the bloodstream without any visible signs of infection (Kadioglu et al., 2000), suggesting 

pneumolysin is a major driver of pathology during tissue infection, but that its role is 

diminished once pneumococci reach the blood. It would appear therefore that Ply is a key 

virulence factor whose main function is restricted to the mucosal surfaces of the upper and 

lower airways.  

 

1.4 Host defense systems 

1.4.1 Innate immune response to S. pneumoniae  

The term “innate immune system” covers a broad range of host defenses, involving 

mucociliary clearance, complement, neutrophils and macrophages. Innate immunity behaves 

as a non-specific defense that is able to identify and react rapidly against many pathogens. 

On the other hand, the adaptive immune system consists of pathogen antigen specific host 

defenses, coordinated by T and B cells. Pathogen recognition by the innate immune system 

is commonly achieved throughout a specific set of germline-encoded receptors without 

capacity for immunological memory. The arms of the immune system do not, however, 

work in isolation, since innate immunity plays important roles in the induction and 

development of the adaptive immune system. Therefore, in order to understand how these 

two immune systems recognize and respond to the pneumococcus, the next two sections will 

discuss these interactions in detail. 



 
16 

The responses of mucosal immunity in humans are a primary determinant of whether 

colonisation is cleared or long-term carriage arises. Immune response to S. pneumoniae is 

mediated mainly through the inflammatory response in the nasopharyngeal mucosa 

employing phagocytes such as neutrophils and macrophages, which identify and engulf and 

kill the pathogen, with the initiation of Th17 cells being necessary to maintain the 

recruitment of neutrophils and clear infection (Gonçalves et al., 2016).  

The significance of neutrophil infiltration into lungs was revealed when a study by 

Kadioglu et al. showed that in mouse lungs infected with serotype 2 (D39) a significant 

infiltration of neutrophils was seen within 12 h of infection. Lung tissues were greatly 

infiltrated with neutrophils within 24 h, however their amounts were significantly 

decreased by 48 h post-infection. Interestingly, the number of neutrophils where higher 

than macrophages at equivalent time points, suggesting the importance of neutrophils in 

response to S. pneumoniae infections (Kadioglu et al., 2000). Furthermore, Van Rossum et 

al. has exposed noticeable inflammatory responses in mice during the first three days of 

pneumococcal colonisation. The inflammation in upper respiratory tract lavage was 

defined by the infiltration of neutrophils into the luminal spaces, however the influx of 

these cells did not aid bacterial clearance (Van Rossum et al., 2005). It has been observed 

that the accumulation of neutrophils was correlated with the increase of chemokine 

macrophage inflammatory protein-2 (MIP-2) production, which was dependent upon 

pneumolysin (PLY)-mediated pore formation, and the activation of mitogen-activated 

protein kinase p38 signaling pathways (Ratner et al., 2006). A recent study by Wilson et al. 

has shown that protection against serotype 19F S. pneumoniae lung infection after 

nasopharyngeal colonisation requires the response of neutrophils, since host protection was 

absent in neutrophil-deficient mice (Wilson et al., 2015). 

 



 
17 

Inflammation is mainly controlled by the recognition of bacteria through Toll-like 

receptors (TLR’s), leading to activation of both inflammatory and modulatory signaling 

pathways (Van Rossum et al., 2005). These include the activation of TGF-β pathways to 

modulate epithelial barrier function and IL-6 signaling to recruit inflammatory mediators 

such as neutrophils into the luminal surface and thus help in the clearance of the bacteria 

(Beisswenger et al., 2009). Pneumococcal colonisation in mice has been shown to be more 

severe in the absence of TLR-2 (Van Rossum et al., 2005), TLR-4 and MyD88 (TLR 

signaling molecule) (Malley et al., 2003). Stimulation of isolated alveolar macrophages to 

generate TNF-α in response to heat-killed pneumococci is TLR-2 dependent (Knapp et al., 

2004). Conversely, the immunohistochemical staining of infected lungs from TLR-2-/- mice 

has revealed that macrophages were generating high level of TNF-α comparable to that 

from wild-type mice. TLR-4 has also been suggested to be significant in pneumolysin-

dependent activation of macrophages since TLR-4 mutant mice were susceptible to lethal 

infection after intranasal colonisation with pneumolysin-positive pneumococci than were 

control mice (Malley et al., 2003). However, in contrast to this earlier study, a more recent 

paper by McNeela and colleagues have showed that PLY has the ability to increase the 

production of cytokines independently of TLR4 (McNeela et al., 2010), as PLY and heat-

killed S. pneumoniae stimulated splenocytes were able to generate both IFN-γ and IL-17 

independently of TLR-4.   

 

1.4.1.1 The role of macrophages in response to pneumococcal infection 

In the respiratory tract, resident macrophages (alveolar macrophages) are the main effector 

cells in the early stages of host defense against respiratory infections (Janeway et al., 2006), 

due to their ability to phagocytose pathogens that may reach the terminal bronchioles and 

alveoli (Gordon et al., 2003). Macrophages have been considered as a significant innate 
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immune cells that have roles in the initiation and resolution of tissue inflammation (Gordon 

et al., 2003). Macrophages regulate the host inflammatory response to infection through 

production of antimicrobial molecules, the generation of cytokines and chemokines, and the 

presentation of microbial antigens on MHC, thus connecting innate to adaptive immunity 

(Martinez-Pomares and Gordon, 2012). However, the particular role for macrophages in 

host defence against pneumococcal infections is unclear. 

Pneumococcal pneumonia cases have been examined and investigations have been made to 

study the mechanisms responsible for the resolution of inflammation and restoration of 

tissue homeostasis (Zychilnsky et al., 1997). These have revealed that long-term 

inflammation, which leads to organ failure and tissue damage, does not happen because of 

the persistent pro-inflammatory incidents alone, but could also as the result of inefficient 

resolution processes  (Dockrell et al., 2012). Macrophages have been identified as key cells 

in this resolution process, in particular through phagocytosing apoptotic polymorphonuclear 

cells (PMNs) (Franke-Ullmann et al., 1996). During pneumococcal pneumonia, 

macrophages are the first line leukocytes to respond to pathogen encounter, since they have 

the ability to phagocytose and kill pneumococci (Kadioglu et al., 2004). Macrophages could 

also assist the killing process of phagocytosed pneumococci and keep the invasion of the 

pneumococcus into the bloodstream at the minimum (Marriott et al., 2006). The work of 

several laboratories has revealed that macrophages play significant roles in the elimination 

of pneumococci and the resolution of severe inflammation (Gratz et al., 2011). The killing 

and phagocytosis of pneumococci by macrophages in vitro is associated with the induction 

of apoptosis, which plays an essential role in host defence against pneumococcal infections 

(Cole et al., 2014). Also, phagocytosis of pneumococci has shown to be affected by the 

polysaccharide capsule and several pneumococcal proteins including pneumolysin and 

pneumococcal surface protein A or C (Preston and Dockrell, 2008). The degree of inhibition 
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to macrophage phagocytosis varies by capsule type and the strain that is able to colonize, as 

thick capsules (as compared to the thin ones), provide more protection for the 

pneumococcus against macrophage phagocytosis (Weinberger et al., 2009). However, when 

large numbers of S. pneumoniae attack the lower airways, neutrophils are recruited 

immediately and they become the leading phagocytic cells, particularly in the severely 

inflamed lung (Knapp et al., 2003). A study by Basran et al. has demonstrated that in human 

neutrophils are immediately recruited during inflammation, and could regulate the amount 

and outcome of the inflammatory response (Basran et al., 2013), throughout the release of 

significant cytokines and chemokines such as IL-1β and CXCL8 in patterns that reliant on 

the fundamental inflammatory stimulus. MΦs are subsequently relegated to the role of 

clearance of apoptotic neutrophils. Phagocytosis of neutrophils by macrophages will lead to 

reduction in the secretion of pro-inflammatory cytokines and induction of anti-inflammatory 

cytokines such as interleukin-10 (IL-10) and transforming growth factor-β (TGF-β) 

(McGrath et al., 2011). The recruitment of neutrophils into infected sites is very important 

to clear invading pneumococci (McNamee et al., 2006). This process is initiated by the 

production of chemokines, which could be released by macrophages (Standiford et al., 

1996). During pneumococcal pneumonia, the induction of specific chemokines and the 

recruitment of neutrophils require upstream signaling from macrophages and, in particular, 

production of the early response cytokines such as TNF-α, IL-6 and IL-1β (Jones et al., 

2005). The generation of these cytokines is mediated by several transcription factors, such 

as nuclear factor-kappa B (NF-kB). Of the NF-kB proteins, p50 is the only detectable 

protein in the nuclear fractions of lung during acute respiratory infection (Mizgerd et al., 

2008). Saccani et al. demonstrated that pneumococcal-infected WT mice show an ability to 

control and limit the production of pro-inflammatory cytokines and inhibit inflammatory 

lung damage that is absent in p50 knockout mice (Saccani et al., 2006).  
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Several studies by Knapp et al. have shown the importance of macrophages against 

pneumococcal infections and investigated the effect of macrophage depletion on the host 

response to pulmonary infections; these studies have shown that macrophages are required 

for bacterial clearance and to reduce inflammation in lungs (Knapp et al., 2003) (Knapp et 

al., 2006). Furthermore, Harvey et al. demonstrated the impact of the pneumococcal toxin 

pneumolysin on the macrophage response to Streptococcus pneumoniae (Harvey et al., 

2014). Strains that expressed cytolytic Ply were found to produce an important increase in 

IL-1β release from macrophage-like cells compared to the non-cytolytic PLY, confirming 

that pore formation is required for the activation of the NLRP3 inflammasome. The 

cytolytic activity of PLY in the D39 background was also found to induce the expression of 

GM-CSF, IFNβ (IFNB1) and p19 subunit of IL-23 (IL23A) when compared to the non-

hemolytic and Ply-deficient D39 mutants. 

The importance of macrophages in the recognition of the pneumococcal polysaccharide 

capsule has been revealed by Kang et al. who demonstrated the role of the capsular 

polysaccharide of S. pneumoniae (CPS) in the interaction of SIGN-R1 with pneumococci 

(Kang et al., 2004). The study has shown that macrophages expressing the C-type lectin 

SIGN-R1 in mouse spleen have the ability to bind pneumococci and clear the 

pneumococcal capsule from four different serotypes by marginal zone macrophages in vivo 

(Kang et al., 2004). Another study by Zamze et al. has shown that macrophage mannose 

receptor is able to bind the capsular polysaccharide from S. pneumoniae (Zamze et al., 

2002), suggesting a potential role for the mannose receptor in the recognition of S. 

pneumoniae by innate and adaptive immune systems. Another macrophage receptor that 

has been suggested to play a key role in pneumococcal infection is the scavenger receptor 

MARCO (Arredouani et al., 2004). The genetic deletion of this receptor in mice made 

them more susceptible to pneumococcal pneumonia, lack the ability to clear the bacteria 
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from lungs, and increased their morbidity (Arredouani et al., 2004). In vitro isolated 

alveolar macrophages from the knockout mice had lost their capability to bind and engulf 

pneumococci. Another interesting study by Dorrington et al. has revealed that during 

pneumococcal colonisation MARCO is required to response and clear S. pneumoniae from 

nasopharynx, as MARCO -/- mice significantly lost the ability to clear S. pneumoniae from 

the nasopharynx (Dorrington et al., 2013). 

Macrophages have also been described as important mediators for the activation of 

neutrophils through the release of MIP-1/2, granulocyte macrophage colony-stimulating 

factor (GM-CSF), and Keratinocyte chemo-attractant (KC), which are known to be 

involved in the activation and recruitment of neutrophils (Cailhier et al., 2006). 

Interestingly, it has been found that the response of innate immunity to pneumococcal 

infection is weak in the nasopharynx when compared to its response to the pneumococcus 

in either the blood or lungs (Mahdi et al., 2008). Bogaert et al. have also evaluated the 

immune responses of neonatal and infant mice to S. pneumoniae during colonisation 

(Bogaert et al., 2009). Like human infants, infant mice show impaired clearance of 

nasopharyngeal colonisation with S. pneumoniae. Macrophages from neonatal and infant 

mice treated with killed pneumococci in vitro revealed notably reduced cytokine 

production, involving granulocyte colony-stimulating factor, granulocyte-macrophage 

colony-stimulating factor (GM-CSF), macrophage chemo-attractant protein 1, IL-6, IL-1α, 

TNF- α, and INF-γ, while IL-10 expression was considerably increased compared to that in 

macrophages from adult mice. The production of IL-17A from adult immune CD4+ T cells 

was delayed when neonatal macrophages instead of adult macrophages were used as 

antigen-presenting cells. Another study has shown that during nasal infection, 

pneumococcal colonisation was correlated with the release of high levels of significant pro-

inflammatory cytokines by macrophages such as tumor necrosis factor-alpha (TNF-α), 
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Interleukin 6 (IL-6), monocyte chemo-attractant protein-1 (MCP-1), and macrophage 

inflammatory protein-2 (MIP-2), which have been shown previously to be correlated with 

the pathogenesis of S. pneumoniae infections (Mahdi et al., 2008). It is known that both 

TNF-α (a powerful stimulator of inflammation), and IL-6 (a potent activator of 

neutrophils) are required for early responses of macrophages to pneumococcal infections 

(Borish et al., 1996, Dallaire et al., 2001). Mahdi et al has shown that both TNF-α and IL-

6 were released in high amount by macrophages stimulated in the nasopharynx with 

virulent serotype 2 D39, but were released in smaller amounts when cells stimulated with 

PLY-deficient PLN-A (Mahdi et al., 2008). Furthermore, IL-12 has been shown to be 

significant since it encourages the production of Th-1 cytokines that boost neutrophil 

recruitment and enhance the humoral immune response (Arulanandam et al., 1999) 

(Sabirov and Metzger, 2008). Moreover, Das et al. demonstrated that the clearance of 

pneumococcal colonisation is promoted by Macrophage migration inhibitory factor (MIF) 

(Das et al., 2014). Primary human monocyte-derived macrophages and THP-1 

macrophages have shown also that PLY is required for the production of MIF during 

pneumococcal infection, as MIF production required its pore-forming activity and 

phosphorylation of p38-MAPK in macrophages, with constant p38-MAPK 

phosphorylation abolished in the setting of MIF deficiency. Challenge with pneumolysin-

deficient pneumococci showed weak MIF up-regulation, reduced number of macrophages 

in the nasopharynx, and poor clearance (Das et al., 2014). 
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1.4.2 Adaptive immunity to S. pneumoniae 

CD4+ T cells in addition to their independent role in adaptive antigen-specific 

responses have an ability to play a significant role in the early response to 

pneumococcal infections, whereby numbers of CD4+ T cells were decreased in 

MHC-II knockout mice 72hrs after intranasal infection with pneumococcus as 

compared to wild type controls, which revealed a significant role for the T cells in 

response to pneumococcal pneumonia at early stages of infections (Kadioglu et al., 

2004). The susceptibility of these knockout mice to pneumococcal infection was 

enhanced, since the number of pneumococci in blood and lungs was significantly 

elevated when compared to their wild type counterparts. Furthermore, the percentage 

of mortality in knockout mice after 3 days post-infection were 100%, while wild type 

mice survived and resisted the challenge (Kadioglu et al., 2000, Jounblat et al., 2003). 

The pneumococcal toxin pneumolysin has been shown to play an important role in the 

migration of T cells, since pneumolysin-negative pneumococci stimulate less T cell 

migration compared to WT pneumococci, but the mechanism that PLY used to 

stimulate these cells is still unclear and requires more investigation. However, one 

study has reveled that the expression of TLR-4 by T cells could be of relevance 

(Komai- Koma et al., 2004). A study by Malley and colleagues verified an essential 

function for T cells in antibody independent acquired immunity to S. pneumoniae 

colonisation (Malley et al., 2005). However, the migration and activation of CD4+ T 

cells in response to pneumococcal infection during nasopharyngeal colonisation is 

still not clear, despite having been described during pneumonia. It has been shown 

that CD4+ T-cells play an important role in providing acquired protection against 

pneumococcal disease, since mice treated with anti-CD4+ antibodies or MHC-II 

knockouts mice were not protected against pneumococcal infection after vaccination 
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with whole-cells vaccine (WCV) compared to wild-type mice (Malley et al., 2005). 

The significance of CD4+ T cells in response to pneumococcal infections is also 

evident in the increased sensitivity of HIV infected patients to pneumococcal 

nasopharyngeal colonisation (Low et al., 2008) and invasive infection (Dworkin et al., 

2001). Furthermore, T cells have also shown their capability to deliver the required 

co-stimulation to B-cells that in turn encourages class switching to IgG, and the 

initiation of long-term memory responses (McHeyzer-Williams et al., 2009).  

T-helper-1 (Th-1) cells are host immunity effectors that function against extracellular 

bacteria. They produce Interleukin 12 (IL-12) and interferon gamma (IFN-γ), which 

have been shown to provide protection against pneumococcal infections (Kemp et al., 

2002), and carriage (van Rossum et al., 2005). Mice that were lacking IL-12, which 

is known to be a powerful stimulator for Th-1 response, lack the ability to clear 

colonisation inversely to Th-2 deficient mice (van Rossum et al., 2005). Furthermore, 

IL-18 is another common stimulator for Th-1 biased immunity via IFN-γ and an 

interesting study has revealed that mice lacking IL-18 were not able to clear 

pneumococcal colonisation (Paterson et al., 2005).  

IL-17A is another mechanism the immune system uses to provide protection against 

the carriage of pneumococci.  IL-17A is produced predominantly by a subset of T-

cells, called Th-17 cells. These cells have been shown to provide effective protection 

against a wide range of extracellular bacteria such as Klebsiella pneumoniae and S. 

pneumoniae (Happel et al., 2005, Higgins et al., 2006). It has been observed that 

during intranasal vaccination with pneumococcal cell-wall polysaccharides the 

production of IL-17A cytokine by Th-17 was enhanced, while the deletion of 

this cytokine at the time of immunization led to a reduced protective 
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response of vaccination (Malley et al., 2006). Interestingly, the production of 

IL-17A by splenocytes has been described in vivo to be encouraged by the 

pneumococcal toxin pneumolysin (McNeela et al., 2010). Also, another study by 

Li et al. has suggested that IL-17 is significant to limit pneumococcal carriage, and 

can provide novel insight into the design of pneumococcus vaccine (Li et al., 2012).  

The study has showed that the stimulation of type I interferon (IFN) during a first 

non-lethal influenza virus infection is necessary to encourage a lethal S. pneumoniae 

secondary infection. Furthermore, mice lack type I interferon receptor (IFNAR 

knockout mice) successfully cleared the secondary pneumococcal infection from their 

lungs, improved the recruitment of neutrophils, and established an enhanced the 

expression of interleukin-17 (IL-17) relative to wild-type (WT) mice. Interestingly, 

the data has also revealed that lung γδ T cells were responsible for the production of 

IL-17, and their role was compromised during secondary pneumococcal infection of 

WT but not IFNAR KO mice. Also, the adoptive transfer of γδ T cells from IFNAR 

KO mice reduced the sensitivity to the secondary infection with S. pneumoniae in the 

lungs of WT mice. Clearance of S. pneumoniae from the nasopharynx during naïve 

carriage is mediated by the influx of monocytes or macrophages to the upper 

respiratory tract, in particular to the luminal areas, whereas a subsequent encounter of 

carriage will lead to infiltrate of neutrophils only to the nasal spaces (Zhang et al., 

2009). Excitingly, it has been shown that the deletion of IL-17A in both instances 

leads to abolishment of infiltration of both neutrophils and macrophages, and 

consequently reduced clearance of pneumococci from the nasopharynx (Zhang et al., 

2009). In summary, Th-17 cells are required to link the gap between innate and 

adaptive immunity, encouraging the production of antimicrobial products,  and to 

recruit effector immune cells in response to the site of pneumococcal infections.  
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Regulatory T (T-reg) cells are another subpopulation of T cells with well-described 

roles in regulation of immune responses, maintenance of tolerance, inhibition of 

autoimmune disease and prevention of chronic inflammatory diseases. Recent 

evidence proposes that T regulatory cells play a significant role in nasopharyngeal 

colonisation, since children with pneumococcus positive nasopharyngeal swabs had 

larger number of T regulatory cells in their adenoidal tissues when compared to 

children with pneumococcus negative cultures (Zhang et al., 2011). A more recent 

study has revealed that S. pneumoniae encourages an immuno-regulatory response in 

the naso-oropharynx, defined by significant infiltration of T regulatory cells and 

production of transforming growth factor beta (TGF-β), leading to long-term 

asymptomatic carriage. The study has shown that mice intranasally infected with 

PLY-negative mutant of S. pneumoniae D39 (PLN-A), at the same low dose that 

establishes persistent carriage when wild-type (WT) D39 are used, fails to encourage 

carriage but leads to short-term colonisation (Richard et al., 2010). The study 

suggested that the failure to carry high concentrations of D39 or a lower concentration 

of PLN-A could be as a result of an altered balance of pro-inflammatory and anti-

inflammatory cytokine production in the upper airways as compared with low-density 

WT carriage, which stimulates conditions that favor stable carriage. Furthermore, 

Neill et al. demonstrated that pneumococcal colonisation in both mice and humans are 

associated with induction of the immunoregulatory cytokine TGFb (Neill et al, 

2014).  Low-dose nasopharyngeal colonisation in mice induced TGFb production and 

an associated accumulation of T regulatory cells in the nasopharynx.  By contrast, 

high-dose infection or infection with pneumolysin-deficient PLN-A induced a 

response dominated by inflammatory cytokines and which lacked T regulatory cell 

accumulation.  Consequently, carriage was cleared over 7-14 days.  Inhibition of 
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TGFb during low-dose colonisation similarly resulted in an inflammatory driven 

response that cleared colonisation.  Significantly however, this clearance was 

accompanied by dissemination of bacteria to the lungs, suggesting that TGFb-driven 

responses act to limit bacterial dissemination (Neill et al., 2014).  

TGF-β is an immunosuppressive cytokine that has a key role in innate and adaptive 

immunity (Li et al., 2006). The activity of TGF-β limits pro-inflammatory responses 

and stimulates tissues healing after damage (Li Mo et al., 2006). The importance of 

TGF-β in invasive pneumococcal infections has been verified, as the inhibition of 

TGF-β significantly increased the sensitivity of normally disease-resistant mice to 

invasive pneumonia (Neill et al., 2012). The correlation of high levels of TGF-β and 

high regulatory T cell numbers with reduced lung apoptosis indicates that the 

regulation of immune system plays a significant role in inhibiting the dissemination 

of pneumococci by preventing the inflammatory damage to the lung epithelial barrier 

that can be induced by excessive inflammation (Neill et al., 2012).  

 

1.5 Mannose Receptor (MR)  

1.5.1 Description 

MR is a 175-kDa-endocytic protein that belong to the C-type lectin family, as it has 

multiple C-Type Lectin-Like Domains (CTLDs) with a single polypeptide backbone. 

It is a type I membrane protein, which has single transmembrane and cytoplasmic 

domains that play important roles in facilitating MR internalization and recycling. 

MR is expressed mainly by both macrophages, and dendritic cells (DCs) (Janeway et 

al., 2006, Martinez-Pomares, 2012). This receptor has numerous important roles in 
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host immunity including; clearance of endogenous molecules, modulation of cellular 

activation, trafficking and promotion of antigen presentation, promoting T cell 

differentiation and cellular stimulation (Pontow et al., 1993, Stahl and Ezekowitz, 

1998). Mannose receptor consists of two independent carbohydrate-binding domains, 

binding mannosylated and sulfated sugars, respectively (Linehan et al., 1999). 

Carbohydrate-binding function can be abolished through proteolyticleavage and 

alterations in glycosylation and conformation. Although predominantly expressed on 

macrophages and DCs, studies have reported that MR could be detected on the 

surfaces of tracheal cells, hepatic cells, kidney cells, retinal pigment epithelium, and 

lymphatic endothelia (Sallusto et al., 1995, Engering et al., 1997). 

 

1.5.2 MR Structure  

In figure 1.1 MR structure has been showed. MR consists of three extracellular 

domains; an N-terminal cysteine-rich (CR) domain, which is required for Ca2+ 

independent binding to sulphated sugars terminated in SO4-3-galactose (Gal) or SO4-

3/4-N-acetylgalactosamine (GalNAc) (Taylor et al., 2005), a Fibronectin type II 

(FNII) domain which able to detect and bind collagen type I, II, III, and IV (Martinez-

Pomares et al., 2006, Janeway et al., 2006), and the third domain is the C-Type 

Lectin-Like Domains (CTLDs), consisting of eight organized CTLD motifs that are 

responsible for Ca2+ dependent binding to sugars ended with D-mannose and L-

fucose or N-acetylglucosamine (GlcNAc) (East and Isacke, 2002, Taylor et al., 2005, 

Janeway et al., 2006). Mannose receptor is the only protein of the MR family that has 

a functional N-terminal CR domain and the interaction with galactose or GalNAc 

occurs through a neutral-binding pocket in a calcium-independent manner (Leteux et 
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al., 2000, Taylor et al., 2005). The responsible region for sugar binding does not exist 

in the N-terminal CR domain of the other members of the MR family (Liu et al., 

2000). 

 

 

 

 

 

 

 

Figure 1.2. MR is a type I membrane molecule that has three extracellular domains: cysteine-rich 
domain (CRD) (Navy), which binds sulfated glycan in lymphoid tissues. Fibronectin type II (FNII) 
domain (Purple), which binds collagen. The Cytoplasmic tail is another domain that consists of eight 
CTLD motifs (green), which bind endogenous and exogenous molecules, involving allergens and 
pathogens products such as LPS and capsule (Source 
https://www.imperial.ac.uk/animallectins/ctld/mammals/Groups/GroupVI.html). 

 

1.5.3 Initiation of immune responses 

The MR gene has a promoter region with binding sites for two unique transcription 

factors: PU.1 and SP.1. Both these factors are involved in initiation of immune 

responses and are required for proper development of myeloid progenitors (Egan et 

al., 1999). A range of cytokines have been shown to up regulate the expression of MR 

including IL-10, IL-4 and IL-13, and have been linked to the alternative activation of 

macrophages (Doyle et al., 1994, Martinez-Pomares et al., 2003). Also, the anti-
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inflammatory molecules prostaglandin E (PGE) and dexamethasone stimulate MR 

expression on MΦ, while IFN-γ encourages MΦ classical activation and thus down 

regulates the expression of MR (Schreiber et al., 1990). These observations suggest 

MR may play a role in alternative activation, determination of inflammation and 

prevention of self-damage.  

 

1.5.4 Role in immunity  

MR has a wide range of functions in response to infections. For example, MR could 

work as a Pattern Recognition Receptor (PRR) through its CTLD motifs, as fucose, 

mannose, and N-acetylglucosamine are not usually present in mammalian 

glycoproteins as terminal residues. Also, MR has been shown to identify a wide range 

of pathogens including S. pneumoniae and C. albicans (Zamze et al., 2002, Martinez-

Pomares, 2012). However, despite its identified function in the recognition of 

pathogens, the importance of this unique receptor in immunity is not fully understood. 

In the following sections, the role of MR in phagocytosis, antigen processing and 

presentation, and intracellular signaling response to pathogens will be discussed.  

 

1.5.5. Phagocytosis  

The role of MR in phagocytosis is not fully understood. Although mannose receptor 

has been shown to be involved in the phagocytosis of several microbes, including M. 

tuberculosis (Kang et al., 2005), and C. albicans (Marodi et al., 1991), some studies 

have shown that despite the occurrence of mannosylated glycoprotein endocytosis, 

MR was not able to phagocytose M. kansasii or any mannosylated latex beads (Le 

Cabec et al., 2005). Furthermore, several in vivo models have shown that uptake of C. 
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albicans is unaffected in MR -/- mice (Akilov et al., 2007), and MR expression was 

not observed in the early stages of phagosome formation (Heinsbroek et al., 2008). In 

fact, MR can offer pathogens a safe route for entry, as MR engagement leads to the 

inhibition of phagosome maturation and phagosome-lysosome fusion following 

phagocytosis of Mycobacterium avium (Shimada et al., 2010) and mycobacteria 

(Astarie-Dequeker et al., 1999). Many of these studies have confirmed the role of MR 

in phagocytosis by using Mannan, since the sugar acts as a specific inhibitor for MR, 

although the existence of other Mannan binding receptors (dectin-2 and DC-SIGN) 

may influence the efficiency of inhibition. The use of MR-specific antibodies with 

J774 macrophages has been shown to be more reliable and effective, and WT cells 

display greater efficiency of Francisella tularansis ingestion as compared to MR-

blocked cells (Schulert and Allen, 2006).  

 

1.5.6 Antigen processing and presentation  

MR is expressed mainly by macrophages on early Rab5a+ endosomes, which play an 

important role in the recruitment of Rab7 and in the process of maturation to late 

endosomes. The ability of IL-4 and PGE to induce the expression of MR may 

contribute to the recycling of endocytic proteins Rab11+ and Rab7+ from endosomes 

(Wainszelbaum et al., 2006). Thus, MR plays a crucial role in the transportation of 

bound molecules into late endosomes, and is essential for the presentation of pathogen 

antigens. However, the role of MR as an endocytic receptor in the presentation of 

microbial antigens is controversial (Napper and Taylor, 2004, Taylor et al., 2005). 

Several in vitro studies show that blocking MR with either mAb or mannosylated 

ligands enhance both MHC class I, and MHC class II pathways for antigen 
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presentation and induction of T-cell responses (Keler et al., 2004). In addition, an in 

vivo model using knockout mice revealed that MR functions as a catabolic receptor 

for serum glycoproteins (Lee et al., 2003) without showing an important role in 

generating protective immune response against a model infection (Lee et al., 2003).  

Several co-localisation studies have hypothesized an important role for MR in antigen 

presentation as it has been found in association with CD11b and MHC class II 

(Sallusto et al., 1995, Engering et al, 1997, Martinez-Pomares, 2012). Another co-

localization study suggested that MR is vital in the presentation of antigen in the 

context of CD11b and lipoarabinomannan (LAM) with MHC II molecules (Prigozy et 

al, 1997, Engering et al, 1997). The seemingly dichotomous findings of some of these 

studies could be explained by differences in the type of MR ligand used, and the 

possible effect of other PRRs and endocytic receptors that share ligands with MR, 

such as DC-sign and dectin-2. Additionally, a study by Burgdorf et al. has revealed 

that MR in context with MHC class II molecules is able to stimulate release of 

exogenous proteins, and to support the cross-presentation of internalized microbial 

antigens (Burgdorf et al., 2008). 

 

1.5.7 Intracellular signaling  

Several studies have suggested that MR plays important roles in intracellular 

signaling that results in the regulation of gene expression (Yamamoto et al., 1997, 

Chieppa et al., 2003). However, Mannose receptor requires the assistance of other 

receptors in order to initiate cytokine signaling cascades, since the MR cytoplasmic 

domain does not contain any signaling motifs (Zhang et al., 2005). TLR2 is thought to 

be the candidate receptor for this cross talk with MR. A recent study revealed that 
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both TLR2 and MR are required for the secretion of IL-8 in response to Pneumocystis 

carinii (Tachado et al., 2007). The two receptors seem to form a functional complex 

on the surfaces of cells during the microbial recognition process. Another study using 

a different model revealed that MR has a direct role in inducing T cell production of T 

helper 2 and T regulatory cell cytokines but not T helper 1 (Chieppa et al., 2003). 

Furthermore, a study by Pathak et al. confirmed that MR could deliver negative 

signals to inhibit the induction of pro-inflammatory cytokines. The study has shown 

that the engagement of MR leads to up-regulation and induction of expression of 

IRAK-M, which is a negative regulator for TLRs signaling, preventing the 

dissociation of IRAK-1, and IRAK-4 from MyD88 and the formation of IRAK-

TRAF6 complexes (Pathak et al., 2005). 

 

1.5.8 Mannose Receptor in response to S. pneumoniae 

The role of the MR in response to S. pneumoniae is not well defined and more studies 

are needed to investigate how the pneumococcus and MR interact with each other, in 

particular during nasopharyngeal colonisation. Little is known about the role of MR in 

activation and recruitment of other immune cells such as neutrophils during 

pneumococcal infection. With regard to S. pneumoniae and MR interaction, Zamze et 

al. (2002) has shown that MR was able to recognize and bind purified capsular 

polysaccharides from Streptococcus pneumoniae but not from Klebsiella pneumoniae. 

Surprisingly, the recognition was inhibited with D-mannose and also was Ca2+-

dependent. Furthermore, the carbohydrate recognition of Mannose receptor domains 

4–7 was shown to provide sufficient binding toward pneumococcal polysaccharides 

when compared to other domains suggesting that these particular domains are 
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required for the recognition of these capsular polysaccharides. However, no direct 

correlation was found between the structure of pneumococcal polysaccharides and the 

binding to the mannose receptor, proposing that the conformation of the 

polysaccharides may has a significant role in recognition (Zamze et al., 2002). 

However, this study did not cover the interaction of MR with other significant 

pneumococcal virulence factors including pneumolysin. Therefore, this PhD project 

has explored how pneumolysin and MR interact with each other.  This has revealed 

the importance of MR in response to the pneumococcal toxin pneumolysin during 

infection and inflammation. 

 

1.6 Pneumolysin and host immunity 

The inflammatory responses to PLY are well defined, and the enhancement of TNF-

α, IL-1β, IL-6 and IL-8 production has been validated in a range of host immune cells 

including macrophages, dendritic cells, endothelial cells, and epithelial cells 

(McNeela et al., 2010, Luttge et al., 2012, Neill et al., 2014). This activity is believed 

to contribute to the generation of anti-pneumococcal immune responses and to the 

enhancement of pathology. For example, pneumolysin stimulates the production of 

the potent antimicrobial compound nitric oxide (NO), however this is also a strong 

contributor to tissue pathology. NO production by macrophages develops through an 

IFN-γ dependent pathway, which includes the up-regulation of cox-2 gene expression 

(Braun et al., 1999). Several groups have documented that PLY induces production of 

IL-6 and CXCL8 in upper airways cells, and stimulates MAPK, NFκB, and TLR-4 

signaling pathways (Dogan et al., 2011). Interestingly, the degree of PLY-induced 

cytokine production seems to be limited in the presence of the polysaccharide capsule 
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(Kung et al., 2014). Suppression of CXCL8 and MIP-2 production by the 

pneumococcal capsule was detected in a murine model of nasopharyngeal carriage, 

however this phenomenon was only detectable in the absence of pneumolysin. 

Therefore, the polysaccharide capsule may have a role in regulating the pro-

inflammatory response of the toxin in vivo. The mechanisms of S. pneumoniae 

recognition by the innate immune system remain to be fully elucidated although some 

pattern recognition receptors have been implicated, including Toll-like receptors 2 

and 4 (Malley et al., 2003, McNeela et al., 2010). 

 

1.6.1 Recognition by Toll-Like receptors (TLRs) 

Although TLR-4 has long been known to be a key part of the innate immune response 

to Gram-negative infection by its recognition of bacterial LPS, work by Malley et al. 

has also demonstrated an unexpected potential role for this receptor in facilitating 

inflammatory responses to the pneumococcal toxin pneumolysin. The study revealed 

that the expression of TLR-4 and MyD88 protein are essential for the production of 

TNF-a and IL-6 by macrophages, since TLR-4 deficient mice were susceptible to 

acute infection after pneumococcal colonisation (Malley et al., 2003, Malley et al., 

2005). The possible explanation for this unique observation was that PLY binding to 

TLR-4 induced host-mediated apoptosis and thus led to clearance of the bacteria. The 

authors subsequently also showed that PLY interacted directly with TLR-4 during a 

solid phase binding assay, and thus mediated signaling in epithelial cells and 

macrophages (Srivastava et al., 2005). Also, it has been postulated that the interaction 

between pneumolysin and TLR-4 could stimulate the activation of caspase-1, and the 

production of significant cytokines, such as IL-1α, IL-1β and IL-18 (Shoma et al., 
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2008). The activation of caspase-1 has been revealed recently to be reliant on NOD-

like receptor family, pyrin domain-containing 3 (NLRP3) inflammasomes (Fang et 

al., 2011). These inflammatory responses are not dependent on the hemolytic and 

complement-activating activities of PLY, as the mutant type of pneumolysin, which 

lacks these virulent properties, showed the same effects as wild type PLY. The 

significance of this detected interaction was examined during pneumococcal 

colonisation of wild type and TLR4 knock out mice in a nasopharyngeal carriage 

model (Malley et al., 2003). The study showed that TLR4 knock out mice were 

colonized at a greater density and were significantly more likely to develop invasive 

disease than were wild type controls. Consequently, through its ability to recognize 

pneumococcal toxin, TLR4 was able to limit the proliferation of the pneumococcus in 

nasopharynx (Srivastava et al., 2005). Moreover, the importance of TLR4 in the 

recognition of pneumococcal infections seems to be limited since an earlier study 

found that the absence of TLR4 did not affect survival rates of mice infected with the 

pneumococcus, or bacterial counts in blood after intravenous challenge (Benton et al., 

1997). However, the role of TLR4 in pneumococcal infection remains controversial 

and several studies with LPS-free purified PLY showed no significant role for TLR4 

in pneumolysin-induced maturation of dendritic cells or in the stimulation of cytokine 

production (McNeela et al., 2010). Endotoxin-free PLY was able to induce the 

expression of co-stimulatory molecules on dendritic cells, and to boost the secretion 

of cytokines, including IL-12, IL-6, IL-23, TNF-α, IL-1α, and IL-1β, but only in the 

presence of TLR agonists. The synergistic influence of PLY on the responses to TLR 

agonists was completely independent of TLR4. These latest data would suggest that 

the stimulation of PLY-dependent cytokines could occur through a mechanism 

independent from the stimulation of TLR4. 
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1.6.2 Inflammasome activation 

PLY induces the production of IL-1b, which is required for NLRP3 activation, 

demonstrating the role of pneumolysin in the activation of the inflammasome. 

Inflammasome activation is an important step in the maturation process of anti-

pneumococcal immunity, since NLRP3 knockout mice lack the ability to control 

bacterial numbers during pneumococcal pneumonia. The signaling of the 

inflammasome appears to be necessary for the IL-17 responses that have been 

implicated in resistance to pneumococcal pneumonia and carriage (Malley et al., 

2006, Lu et al., 2008), as PLY-deficient S. pneumoniae induce lower production of 

IL-17A and INF-g in mice as compared to wild-type pneumococci. Further supportive 

evidence for the role of NLRP3 in anti-pneumococcal immunity comes from the 

observation that several pneumococcal serotypes, such as serotype 1, 7F and 8 

(Brueggemann et al., 2003, Song et al., 2013), that are associated with enhanced 

bacterial invasiveness, produce PLY with low hemolytic activity that fails to activate 

the inflammasome (Kirkham et al., 2006). The activation of the inflammasome is 

clearly correlated with vigorous immune responses, and with the control of 

pneumococcal numbers, however a potential outcome of stimulation of every 

inflammatory pathway is bystander tissue injury. In a murine model of pneumococcal 

pneumonia, the induction of the inflammasome adaptor molecule ASC and the sensor 

NLRP3 is correlated with increases in pathology and infection score (Hoegen et al., 

2011). ASC knockout mice showed high level of lethality and pneumococcal 

dissemination when compared to NLRP3 knockout mice, despite notably reduced 

cytokine production in both mouse strains (Van Lieshout et al., 2014). This 

observation may be explained by the theory that the attenuation of IL-17, integrin-

αM, and GM-CSF responses combined to reduce the signaling of the adaptive 
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immune response in the ASC knockout mice (Van Lieshout et al., 2014). In contrast 

to the effect of PLY on inflammasome activation (as mentioned above), a recent study 

has demonstrated that pneumolysin could also prevent the generation of inflammatory 

responses in human antigen presenting cells (APCs) such as dendritic cells (Littmann 

et al., 2009). Wild type and PLY knockout serotype 4 (TIGR4) pneumococci were 

used in this study, which revealed that PLY has the ability to enhance the uptake of 

pneumococci by human DCs by 50%. On the other hand, this uptake was correlated 

with increased DC caspase-dependent apoptosis, and this activity was dependent on 

PLY. Moreover, the expression of the pneumococcal toxin was associated with some 

activities including the reduction of cytokine responses by DCs, down-regulation of 

inflammasome activation, and reduction of the expression of co-stimulatory 

molecules on DCs. These experimental results are in contrast to the current evidence 

of the role of the pneumococcal toxin PLY in the activation of the inflammasome, and 

it has been argued that the outcomes suggest dissimilarities in the signaling pathways 

between human and murine cells. Conversely though, several pneumococcal studies 

have described similarities in the inflammatory responses to PLY in human and 

murine cells (McNeela at al., 2010, Witzenrath et al., 2011, Hoegen et al., 2011). 

Hence, the reasons behind these conflicting observations of the special effects of PLY 

on the activity of inflammasome may be due to serotype specific differences although 

more detailed investigation is needed to clarify the issue. 

 

1.6.3 T-cell differentiation 

T cells are crucial for anti-pneumococcal immune responses, as the depletion of T 

cells reduces the clearance of pneumococci in colonisation and pneumonia models 
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(Kadioglu et al., 2000, Kadioglu et al., 2004, Van Rossum et al., 2005). The 

relationship between PLY and T cell immunity is not fully understood, however the 

current data suggests that the toxin is required for the activation of T cells and for 

their production of cytokines (Houldsworth et al., 1994, Kadioglu et al., 2004, 

Kadioglu and Andrew, 2004). These data also shown that during pneumococcal 

pneumonia, T cells respond rapidly to infection and accumulate in the lungs. 

Interestingly, the accumulation of these cells was slower and notably reduced when 

mice were infected with pneumolysin-deficient pneumococci (Kadioglu et al., 2000). 

Furthermore, a recent study has revealed new roles for the pneumococcal toxin PLY 

in the initiation of memory T cell responses and in the proliferation of CD4+ T cells 

isolated from either human nasal-associated lymphoid tissue or human blood in 

response to stimulation with pneumolysin domain 4 (Gray et al., 2014). Moreover, 

memory Th17 responses were prompted in response to PLY, and this is more 

noticeable in cells isolated from carriage-negative children when compared to 

carriage-positive children, where a more regulatory response dominates. These data 

suggest that PLY has a role in the induction of Th17 immunity and thus may provide 

children with protection against future pneumococcal colonisation. In contrast though, 

earlier work had reported that PLY at high concentrations inhibited the proliferation 

of lymphocytes and reduced the production of pro-inflammatory cytokines (Ferrante 

et al., 1984). In general, it seems clear that pneumolysin produced during 

pneumococcal infection has strong influences on the responses of T cells and other 

inflammatory responses that could be activating or inhibitory in nature, depending on 

toxin concentration.  
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1.6.4 Role in pneumococcal carriage 

Nasopharyngeal colonisation with S. pneumoniae is a prerequisite for invasive 

disease; therefore it is essential that we understand the role of host defenses and 

bacterial virulence factors in carriage in order to develop appropriate strategies to 

control and eliminate infection. The first demonstration of the role of Ply in 

pneumococcal infection of the nasopharynx was revealed by Kadioglu et al. 

(Kadioglu et al., 2002). Recent studies in mice have reported that pneumolysin is 

required for prolonged nasopharyngeal colonisation (Richards et al., 2010, Neill et al., 

2014). Several studies have shown that wild-type serotype 2 (D39) pneumococci were 

able to colonize the nasopharynx for more than four weeks without showing any sign 

of clearance or development of severe infection, whereas an isogenic pneumolysin-

negative pneumococcus lacked the ability to establish prolonged colonisation, and 

was cleared completely within one to two weeks post-infection (Kadioglu et al., 2002, 

Richards et al., 2010, Neill et al., 2014). Conversely, an earlier paper had reported that 

a pneumolysin-negative pneumococcus showed low level of adherence to murine 

epithelia cells, however no defect was determined in pneumococcal colonisation 

(Rubins et al., 1998). A recent study by Neill et al. has revealed that D39 

pneumococci and purified PLY induce the production of TGFβ1 from nasopharynx 

and lung epithelium, while PLN-A induces significantly lower levels of this immune 

modulatory cytokine (Neill et al., 2014). This observed activity requires the signaling 

of Toll-like receptors, and is dependent on the efflux of potassium, and the rupture of 

phagosomes, implicating the NLRP3 inflammasome. Significantly, the host TGFβ1 

response to PLY revealed a unique dose response, since high concentrations of PLY 

or pneumococci led to production of INF-γ and reduced the response of TGFβ1, 

whereas intermediate or low doses of PLY or pneumococci encouraged TGFβ1 
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production in a dose- dependent manner. This dose response was evident in the 

outcomes of pneumococcal colonisation with low or high numbers of bacteria. 

Colonisation with high number of pneumococci or PLY-negative bacteria leads to 

transient carriage, while colonisation with low number of pneumococci leads to long-

term carriage. These differences are explained by the altered balance in the responses 

of pro-inflammatory and anti-inflammatory cytokines following colonisation with 

high density of pneumococci or pneumolysin-negative bacteria. Long-term carriage 

was associated with induction of TGFβ1 and T regulatory cell responses that act to 

reduce the production of pro-inflammatory cytokine, and limit the infiltration of 

neutrophils, and consequently allow the maintenance of stable numbers of 

pneumococci in the nasopharynx. However, pneumolysin-negative pneumococci fail 

to induce the production of TGFβ1 and the response of T regulatory cells, and so are 

eliminated from the upper airways by the resulting inflammatory responses. 

Relatedly, colonisation with high-density of bacteria led to induce the response of 

pro-inflammatory cytokines in the airway of epithelial cells, interrupting the induction 

of TGFβ1 production and leading to clearance of the bacteria. When TGFB1 

production was inhibited following colonisation with low numbers of pneumococci in 

mice, carriage was cleared totally within 7-14 days. Clearance was associated with 

dissemination of bacteria from nasopharynx to lungs, suggesting the presence of a 

fine line between inflammatory responses that eliminate colonisation, and those that 

cause damage and poor prognosis. This reported phenomenon could explain the 

observed differences in the virulence of pneumolysin-negative bacteria in different 

experimental models, and would also help to understand why most pneumococcal 

serotypes that express PLY with different hemolytic activity are correlated with 

severe infections, and found rarely in carriage (Douce et al., 2010). In support of this 
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hypothesis, in experimental human pneumococcal carriage (Gritzfeld et al., 2013, 

Ferreira et al., 2013), TGFβ1 levels in nasal wash at 48 h post-pneumococcal 

challenge were associated with the establishment of successful pneumococcal carriage 

(Neill et al., 2014). Individuals in whom carriage was established had significantly 

higher TGFβ1 levels than those in whom carriage failed to establish.  In addition, the 

number of T regulatory cells in nasal associated lymphoid tissue and the inhibitory 

capacity of those cells has been reported to be elevated in pneumococcal carriage in 

children (Pido-Lopez et al., 2011, Zhang et al., 2011). 

The emerging theory from all these data can be described as follows; invasive 

pneumococcal infections could arise from the failure to maintain or stimulate the 

proper response of T regulatory cells during nasopharyngeal colonisation. The cell-

driven responses of TGFβ1 and T regulatory cells have been shown to have a role in 

the induction of immune tolerance to pneumococcal colonisation in the upper 

airways. The significance of this immune tolerance is to preserve tissue integrity and 

thus prevent the dissemination of pneumococci within the host, however this immune 

phenomenon will also inhibit the clearance of pneumococci during colonisation and 

allow maintenance of carriage.  Colonisation with high density of bacteria or with 

pneumolysin-negative pneumococci leads to a failure to induce tolerance and thus 

activates the inflammatory pathways, and pneumococci are either cleared or else 

disseminate within the host through the damaged tissue causing pneumococcal 

pneumonia and invasive infections. Moreover, a recent work has revealed a 

comparable role for T regulatory cells during pneumonia, where they limit 

inflammation and prevent the spread of pneumococci (Neill et al., 2012).   
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1.7 Research aim and vision 

The central aim of this project was to understand how pneumolysin activates and 

potentially drives different mechanisms of host immunity in the nasopharynx during 

colonisation. We have recently demonstrated that the pneumococcal toxin 

pneumolysin is a potent activator of both mucosal and systemic immune responses, 

directly stimulating macrophages and dendritic cells and dramatically amplifying their 

production of pro-inflammatory cytokines independently of TLR-4. We have also 

shown for the first time that pneumolysin activates the NLRP3 inflammasome 

complex leading to release IL-1β, which is required for protection against invasive 

pneumococcal pneumoniae (McNeela et al., 2010). Our recent data reveal an 

interesting dichotomy of PLY; that it is crucial to the pneumococcus for successful 

asymptomatic colonisation of the nasopharynx (Kadioglu et al., 2002, Richards et al., 

2010), without generating pro-inflammatory immune responses, unlike its powerful 

ability to drive inflammation in the lungs during pneumonia. Based on new 

preliminary data, I propose that during nasopharyngeal colonisation, nasal mucosa-

associated macrophages become activated by PLY and subsequently drain to cervical 

lymph nodes to initiate immune responses that act to prevent damage to host tissues 

and systemic pneumococcal dissemination. In order to determine the mechanistic 

detail of these interactions, I will address the following research questions: 

(1) How does pneumolysin induce immune tolerance during nasopharyngeal 

colonisation? 

(2) What is the role of nasal mucosa-associated macrophages in the generation of 

immune tolerance during nasopharyngeal colonisation? 

(3) What are the host-cell signalling pathways activated by pneumolysin during 

colonisation? 
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(4) What are the changes in host and bacterial conditions that allow an 

asymptomatic carrier state to progress to invasive disease? 

 

My hypothesis is that during colonisation of the nasophrynx a state of immune 

tolerance is generated involving pneumolysin and pneumococcal pathogen associated 

molecular patterns (PAMPs). Nasal mucosal-associated macrophages are key to 

initiating this tolergenic state; T-regulatory cells, TGF-β and IL-10 are key to its long-

term regulation. During pneumonia however, a different mechanism operates where 

pneumolysin drives pro-inflammatory responses in alveolar macrophages and 

dendritic cells. Interestingly, mice that clear their lung infection are still colonised by 

the same pneumococcal strain in their nasopharynx (Richards et al., 2010), 

demonstrating that immune responses in the lung have no protective effect in 

nasopharyngeal colonisation. This provides evidence of a different immunological 

mechanism operating in the nasopharynx. Our confocal studies of nasal mucosa and 

cervical lymph nodes during a 14-day pneumococcal nasopharyngeal colonisation 

study revealed a narked increase in CD11c/CD68/CD169/MHC-II positive 

macrophages in the subscapular sinus regions of cervical lymph nodes over time. We 

also showed that these macrophages are present in the nasal mucosa of mice, and 

increase in numbers during early stages of colonisation accompanied by increased 

expression of mannose receptor, which have been shown to bind to pneumococci 

(Zamze et al., 2002). 

 

My hypothesis is that this subset of mannose receptor-expressing, CD68/CD169-

positive macrophages are critical gatekeepers at the nasal mucosal tissue/cervical 

lymph node interface and are the first cells to sample bacteria and present antigen to 
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B- and T-cells in CLN. There is no increase in CLN size during colonisation and no 

change in CLN structure, i.e. B- and T-cells area remain intact and the proportion of 

each area is maintained, indicative of absence of inflammation. Furthermore, 

CD11c/CD68/CD169/MHC-II-positive macrophages are the only cells that increase 

over time, there being no increase in dendritic cells (CD11c/MHC-II-positive but 

CD68/CD169 negative), monocytes, B- or T-cells, or neutrophils in either CLN or 

nasal mucosa. This is in keeping with our previously published FACS analysis of 

leucocyte populations in nasal mucosa and CLN during a 28-day pneumococcal 

nasopharyngeal colonisation study, where we showed that macrophages were the only 

cell type to show significant increases in numbers over time with no significant 

increases in neutrophils, B- or T-cells (Richards et al., 2010). 

It is clear that pneumolysin has pro-inflammatory effects in the lungs based on 

different modes of action; it can stimulate cells directly by its pore-forming activity 

(via NLRP3 activation) but also through non-pore forming NLRP3-independent 

mechanisms. It is likely that NFkB activation is responsible for this mechanism. This 

research will elucidate the different cell signalling pathways pneumolysin activates 

and the pro-inflammatory/protective role of the cells and cytokines induced by 

activation of these pathways during colonisation. The knowledge gained from this 

research will provide the basis for potential treatments focused on preventing the 

transition of colonisation into invasive disease. Furthermore, the knowledge gained of 

pneumolysin-host immune cells interaction in the nasopharynx will inform us of 

correlates of immunity to aid future vaccine development. 
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Chapter 2: Materials and methods 
 

 

2.1 Growth conditions and media: 

S. pneumoniae was grown on Blood agar base (Oxoid) plates supplemented with 5% 

v/v horse blood (Oxoid), with the selective antibiotics required for the different 

mutants (Table 2.1). Under sterile conditions, a full loop of colonies was streaked 

out from the bead stocks or from existing good condition plates, and the n e w  

fresh plates were incubated inverted at 37 °C overnight in a sealed jar. A sweep of 

overnight grown pneumococci was transferred from the plate to 10 ml of sterile 

Brain Heart Infusion (BHI) broth (Oxoid). Cultures were grown overnight for 16-18 

hours at 37 °C, in a strictly closed universal tube (Sterilin). Following overnight 

cultures, stock aliquots were grown for five to eight hours; in 80% (v/v) BHI supplied 

with 20% (v/v) of sterilized Foetal Bovine Serum (FBS, Sigma). These cultures were 

incubated statically at 37°C in a candle jar. Media used in this PhD study were 

prepared according to Table 2.1. 
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Medium name 

 

Recipe 

 

Supplier 

 

 

Blood agar base (BAB) 

 

16g in 400ml dH2O 

Horse Blood 

 

Oxoid, UK 

 

 

Brain heart infusion (BHI) 

 

 

14.8g in 400ml dH2O 

 

Oxoid, UK 

 

 

Luria Broth (LB) 

 

4g NaCl, 2g Yeast extract, 

4g Tryptone in 400ml dH2O 

 

 

NaCl – Fisher Scientific 

Yeast Extract – Oxoid, UK 

Tryptone – Oxoid, UK 

 

 

Dulbecco’s Modified Eagle’s 
Medium (DMEM) 

 

10% foetal bovine serum 
(FBS) 

100 mg/ml Streptomycin 

100 mg/ml Penicillin 

20ng/ml macrophage colony-
stimulating factor (M-CSF) 

 

 

FBS – Sigma 

Streptomycin - Sigma 

Penicillin – Sigma 

M-CSF – R&D system 

 

Table 2.1. Media used in this PhD study 
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2.2 Bacterial strains 

Pneumococcus isolates were distinguished from other bacterial species by Gram 

stain, hemolytic test on blood agar plates, optochin (Ethylhydrocupreine 

hydrochloride) sensitivity and finally by catalase test. Pneumococcal isolates were 

stored at -80 °C for long-term storage in brain-heart infusion media (BHI, Oxoid) 

supplemented with 15% glycerol (Sigma Aldrich). Wild type (WT) serotype 2 S. 

pneumoniae, its mutants and purified proteins were used in this PhD project 

listed in Table 2.2 and Table 2.3. The pneumolysin-deficient mutant was used 

previously by McNeela et al. (McNeela et al., 2010). The capsule-deficient mutant 

was provided kindly by Doctor Kathrin Mühlemann (University of Bern) (Battig and 

Muhlemann, 2007). The pneumolysin mutants were a kind gift from Professor Tim 

Mitchell (University of Birmingham, UK) (Yuste et al., 2005). The pneumolysin and 

capsule mutant DKO D39 was provided kindly by Doctor Lucy Hathaway (University 

of Bern) (Engel et al., 2013). 

 
 
Strain 

 
Serotype 

 
       Strain 
background 

 
Strain 

designation 

 
Source 

 
Antibiotic 
resistance 

 
D39 (WT) 

 
2 

 
WT 

 
7466 

 
 

 
NCTC 

 
- 

 
ΔPLY 

(Pneumolysin 
deletion mutant) 

 
2 

 
D39 

 
- 

Prof. Tim 
Mitchell 

(University of 
Birmingham) 

 

 
 
- 

 
D39-J 

(Capsule negative                  
mutant) 

 
2 

 
D39 

 
 

    -   

Dr Kathrin 
Mühlemann 

(University of 
Bern) 

 
Penicillin 

0.1 µl/ml 
 

DKO D39 
(Capsule & 

pneumolysin    
negative 
mutant) 

 
 

2 

 
 

D39 

 

- 

- 

 
Dr Lucy 

Hathaway 
(University of 

Bern) 

 
Spectinomycin 

0.1 mg/ml 
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Table 2.2. Pneumococcal strains used in this PhD study 

 

 
Strain 

 
Serotype 

 
Strain 

background 
 

 
Strain 

designation 

 
Source 

 
Antibiotic 
resistance 

 
Pneumolysin 
domain 1-3 

 
2 

 
D39 

 
- 

Prof. Tim 
Mitchell 

(University of 
Birmingham) 

 

 
- 

 
Pneumolysin 

domain 4 

 
2 

 
D39 

 
- 

Prof. Tim 
Mitchell 

(University of 
Birmingham) 

 

 
- 

 
eGFP whole 
pneumolysin 

 
2 

 
D39 

 
- 

Prof. Tim 
Mitchell 

(University of 
Birmingham) 

 

 
- 

 
eGFP 

pneumolysin 
domain 1-3 

 
2 

 
D39 

 
- 

Prof. Tim 
Mitchell 

(University of 
Birmingham) 

 

 
- 

eGFP 
pneumolysin 

domain 4 

 
2 

 
D39 

 
- 

Prof. Tim 
Mitchell 

(University of 
Birmingham) 

 

 
- 

 

Table 2.3. Pneumococcal proteins used in this PhD study 

 

 

2.3 Pneumococcal viable counting: 

Sterile round-bottomed 96 well plates (Thomas Scientific) were using to determine 

the number of bacteria in liquid culture or i n  homogenised mouse tissue. Serial 

dilutions from 101-106 were performed by adding 20 µl of the liquid culture or 

homogenised tissues to 180 µl of s ter i le  phosphate-buffered saline (PBS, Sigma), 

in triplicate, according to standard Miles and Misra methodology. 60 µl of each 

dilution was spotted on blood agar plates and incubated inverted overnight in a 
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closed jar at 37 °C. The next day, grown pneumococcal colonies were examined and 

counted from the dilution where between 30 and 100 colonies were visible. The 

number of bacteria was determined as colony forming units (CFUs) per ml, using 

the following equation:  

CFU/ml = (Total number of colonies counted in sector) ÷ 60 (total volume) X 100 

 

2.4 Mice 

WT C57BL/6 and MF-1 outbred mice were used in this PhD study (Purchased from 

Charles River, UK). MR -/- mice (genetically deficient in mannose receptor) were 

generously provided by the laboratory of Dr. Luisa Martinez-Pomares (University of 

Nottingham, Nottingham, U.K.). MR -/- mice were bred at the Biomedical Services 

Unit of the University of Nottingham. Experimental animals were housed in 

individually ventilated cages (IVCs) of up to 5 mice, with ready access to food and 

water, in a specific pathogen free facility at the University of Liverpool. Animals 

were handled according to institutional and UK Home Office guidelines and were 

kept under specific pathogen-free conditions. Females mice were used at 7–10 weeks 

of age. Approval before all experimentation was obtained from the University of 

Liverpool ethics committee and the UK Home Office; project licence 40/3602 and 

personal licence number: (PIL 40/10224).  

2.5 Preparation of infectious dose: 

Aliquots of frozen pneumococci of known CFU/ml were thawed quickly in the palm 

of the hand and centrifuged at 13,000 rpm using a micro-centrifuge (Sigma). The 
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supernatant was discarded and the bacteria were re-suspended in 400 μl of PBS. As 

required, dilution of this stock was performed in PBS to give a final concentration of 

1 x 107 CFU / ml, which provides an infectious dose of 1 x 105 CFU per 10 μl. All 

mice in the same experiment were infected using the same aliquot to ensure 

consistency. 

  

2.6 Carriage study 

Female outbred MF1 (Charles River, UK) mice (7–10 weeks old, 30–35 g) were used 

for infection studies. Mice were lightly anaesthetised with 2.5% (v/v) Isofluorane 

USP (Isocare) over oxygen (1.4–1.6 litres/min), in an anaesthetic box. 10μl of PBS 

containing 1x105 CFUs of S. pneumoniae were administered into the nostrils (equally 

between both nostrils) using a Gilson pipette. The mice were left on their backs 

to recover from the effect of the anesthesia, and to prevent the inoculum from 

discharging from the nose. The dose was confirmed by viable count following 

infection. At pre-chosen time intervals following infection, mice were sacrificed and 

nasopharynx, nasal mucosa and lymph nodes were collected, manually pushed 

through a 30μm cell strainer or else homogenized with an Ultra-Turrax T8 

homogeniser (IKA, Germany). CFU counts from tissue were determined by viable 

count on blood agar plates following Miles and Misra methodology.  

 

2.7 Pneumolysin expression and purification 

Pneumolysin (Ply) was expressed in E. coli and purified as previously described 
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(Mitchell et al., 1989). Briefly, recombinant Ply was expressed in Escherichia coli (E. 

coli) strain MC1061 harboring plasmid pJW208 (which has an IPTG-inducible 

promoter and carries resistance to kanamycin and ampicillin). MC1061 was grown 

overnight in 8 L of Luria-Bertani (Sigma) broth supplemented with 100μg/ml 

ampicillin (Sigma). Bacterial cells were collected by centrifugation (14000xg for 20 

minutes at 4 °C) and washed once in Equilibration buffer (Equilibration buffer (PH7); 

10 mM NaPO3, 250 mM NaCI). Cells were re-suspended in 30 ml of Equilibration 

buffer and disrupted by sonication (Cole-Parmer). The extract supernatants were 

clarified by centrifugation and stored at -20 °C until further use. Pneumolysin was 

purified from cell extracts supernatants using the high- performance Affinity 

chromatography system (GE healthcare). 50 ml of the supernatants were loaded onto 

the purification column and the column was washed with 5 column volumes of 10 

mM equilibration buffer, 10 mM Imidazole, 20 mM Imidazole and 100mM 

Imidazole. Proteins were detected by Bradford assay using the kit supplied (Bio-Rad). 

Pneumolysin concentrations were measured using Nanodrop at 280 nm, then the toxin 

was passed 3 times through an EndoTrap endotoxin removal column (Profos AG, 

Germany) after which LPS was undetectable using the PyroGene Recombinant Factor 

C assay (Lonza; detection limit 0.01 EU/ml) and PLY purity was > 97% as 

determined by SDS-PAGE gel stained with Coomassie brilliant blue R250 (Sigma). 

Purified pneumolysin was filter sterilized and stored at -80°C.  

 

2.8 Pneumolysin quantification 

PLY was measured by Nanodrop spectrophotometer (Thermo Scientific), measuring 

at a wavelength of A280. Briefly, 2 μl of nano-pure water was dropped on the sensor 
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and the system was calibrated. Then the sensor was wiped clean. Following this, 2 μl 

of the buffer that the proteins were being stored in, was added to the sensor as a blank 

control. The protein elutions were then added to the sensor, separately to determine 

the concentrations, and in between each elution measurement the machine was 

blanked and wiped. Pneumolysin concentrations were determined in mg/ml. 

 

2.9 SDS-PAGE and Western blot 

To confirm the molecular weight (M.W) of the purified pneumolysin, and to verify 

that the pneumococcal protein had no other contaminants in the collected elutes, a 

12% v/v SDS-PAGE gels was used. Individual SDS-PAGE gel was prepared using 

the chemical reagents listed in Table 2.3. Cell extracts and the different elutions 

collected from the columns were analyzed for protein content. PLY samples were 

prepared with NuPAGE LDS sample buffer 4X (Invitrogen). The samples were then 

incubated for 4 minutes at 100°C. Then, 16μl of each sample was loaded into separate 

wells in the SDS gel. A 4μl of precision plus protein standard (Bio-rad) was also 

added to each SDS gel, as a molecular weight marker. TGS buffer ((10X)- 250mM 

Tris, 10% SDS, 2M glycine, 1L dH2O) was added to the tank, and the gel was run at 

0.4 amps for1 hour. 

 

 

Reagents 

 

12% Separating Gel 

(15 ml) 

 

5% Stacking Gel 

(5 ml) 
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Nanopure Water 

 

4.9 ml 

 

3.4 ml 

 

30% acrylamide (protogel, 

geneflow) 

 

6 ml 

 

0.83 ml 

 

1.5M Tris HCl pH 8.8 

(Sigma) 

 

3.8 ml 

 

- 

 

1M Tris HCl pH 6.8 

 

- 

 

0.63 ml 

 

10% SDS (Sigma) 

 

0.15 ml 

 

0.05 ml 

 

10% Ammonium 

persulphate (Fisher 

Scientific) 

 

0.15 ml 

 

0.05 ml 

 

TEMED (Sigma) 

 

0.006 ml 

 

0.005 ml 

 

Table 2.3. Chemical reagents used for SDS PAGE gel preparation 

 

Following the preparation of SDS PAGE gel, western blot was performed for each 

protein sample. To start the assay, each filter paper and sponge was equilibrating with 

transfer buffer (0.02M Tris, 0.03M glycine, 20% methanol, 0.03% SDS, 1L dH2O). 
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Western blot apparatus was assembled as shown in Figure 2.4, and the proteins were 

transferred onto a nitrocellulose membrane (G E Healthcare), for 1 hour at 0.25 

Amps. The membrane was then blocked overnight with 5% v/v of milk in TBST 

(10mM tris, 0.15M NaCl2, 0.05% tween 20, 400ml dH2O pH- 8) buffer, at 4°C. Next 

day the membrane was washed 3 times, with TBST buffer. The nitrocellulose 

membrane was then incubated for 2 hours with primary anti-pneumolysin monoclonal 

antibody (Statens Serum Institute, Denmark), at a 1:1000 dilution. Subsequently, the 

membrane was washed three times with TBST, then the membrane was incubated for 

two hours, with the secondary antibody, anti-rabbit IgG, (raised in goat) which was 

conjugated to alkaline phosphatase (Invitrogen). Following this step, the membrane 

was washed again three more times with TBST and 5 ml of BCIP/NBT one-step 

solution (Sigma) were added for 10 minutes to develop the bands. Following this step, 

5 ml of water were added to the membrane to stop the reaction of BCIP/NBT 

solution.  

 

 

 

 

 

 

Figure 2.4. The picture showing the assembly of the Western blot apparatus. 
(Picture from https://www.thermofisher.com/sa/en/home/brands/thermo-scientific/pierce-protein-

biology.html 
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 2.10 Hemolytic assays 

The pneumolysin activity in fractions collected from chromatography columns was 

determined semi-quantitatively. 50 μl of each sample was diluted serially two-fold in 

phosphate-buffered saline (PBS, Sigma) along one row of 12 wells in a 96-well 

microtiter plate (Thermo scientific). 50 μl of 1% (vol/vol) fresh sheep erythrocyte 

(Oxoid) suspension was added to each well, and the plates were incubated at 37°C for 

30 min and then centrifuged at 3,000 xg for 5 min to remove unlysed RBCs and the 

absorbance of the supernatant at 540 nm was measured.  The percentage of 

erythrocytes lysed was plotted against dilution for the protein (Figure 2.5), and the 

pneumolysin activity of the sample was defined as the reciprocal of the estimated 

dilution at which 50% of the erythrocytes would have lysed.  The highest dilution of 

each sample resulting in at least 50% hemolysis was then estimated visually. This 

activity was expressed as hemolytic units (HU) per milliliter. 

 

 

 

 

 

 

Figure 2.5. The hemolytic activity of wild type Ply against 1% (vol/vol) sheep RBCs. 
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2.11 Culturing of Bone marrow derived macrophages (BMDMs) 

BMDMs were prepared by culturing murine bone marrow cells using protocols 

adapted from Lutz et al. (1999) and Davies et al. (2005). Briefly, bone marrow cells 

from wild type C57Bl6 or knockout mice (Table 2.6) (TLR knockout bone marrows 

were provided by the laboratory of Dr. Ed Lavelle, Trinity college Dublin, Dublin, 

Ireland) were flushed aseptically from the femurs and tibia of mice. Macrophages 

were grown in Dulbecco’s Modified Eagle’s Medium (Sigma) 10% v/v fetal calf 

serum (FCS; Sigma), 100 U/ml penicillin, 100 mg/ml streptomycin, and 100 mM L-

glutamine (Sigma) and supplemented with macrophage colony-stimulating factor (M-

CSF; R&D system) (final concentration of 20ng/ml). Cultures were maintained in a 

humidified atmosphere (5% CO2) at 37°C, and medium was replaced on days 3 and 

6. On day 6 of the culture, mature macrophages were plated (6.25x105 cells per well) 

onto 48 well plates (Sigma), and incubated over-night to adhere before adding the 

bacteria. Next day, cells were cultured with media or D39, ΔPly, D39-J, DKO D39 (1 

MΦ: 10 bacteria) and PLY alone (4μg/ml). Following 24 h incubation at 37°C, 

supernatants were collected and stored at -80°C. Macrophages were removed using 

warmed trypsin (5 mg/ml) with 0.02% EDTA and used directly for flow cytometry 

staining and marker detection. 

 

 

Cell Type 

 

Mouse background 

 

Source 
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Mannose receptor knockouts 

BMDM (MR -/-) 

 

C57BL/6 

 

Dr. Luisa Martinez-Pomares 

(University of Nottingham) 

 

Toll-like receptor 2 knockouts 

BMDM (TLR-2 -/-) 

 

C57BL/6 

 

Dr. Ed Lavelle  

(Trinity college Dublin) 

 

Toll-like receptor 4 knockouts 

BMDM (TLR-4 -/-) 

 

C57BL/6 

 

Dr. Ed Lavelle 

(Trinity college Dublin) 

 

Toll-like receptor 2 and 4 

knockouts BMDM (DKO) 

 

C57BL/6 

 

Dr. Ed Lavelle 

(Trinity college Dublin) 

 

Table 2.6. The type of knockouts cells used in this PhD research 

 

 

2.12 MARCO blocking assay 

The macrophage receptor with collagenous structure (MARCO) is a class A 

scavenger receptor. MARCO is inhibited by the Class A scavenger receptor (SR) 

blocker dextran sulfate (DxSO4, Sigma), but not chondroitin sulfate (Control) 

(ChSO4, Sigma), which does not block the SR or MARCO (Bowdish et al., 2009). 
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Briefly, mature macrophages were incubated with 100 μg/ml of dextran sulfate or 

chondroitin sulfate for 30 minutes at 37°C in DMEM media prior to stimulations or 

infections. Macrophages were washed gently with 300 µl of dPBS (Sigma), and then 

cells were stimulated with pneumococcus for 24 h. 

 

2.13 Macrophage images 

Wild type and MR-/- BMDMs were stimulated with D39 and ΔPLY at an MOI of 

1:10.  Macrophages were photographed by phase-contrast microscopy (20X) at 0, 24 

and 72 h post-infections. 

 

2.14 Stimulation of macrophages with pneumococcus and co-culture 

with T cells 

Naïve CD4+ T cells were purified from spleens of C57BL/6 mice (Charles river) 

using magnetic separation with a CD4+ T Cell isolation kit (Miltenyi Biotec). Spleen 

were washed three times with dPBS (Gibco), manually pushed through a 40µm Cell 

strainer (Falcon), and centrifuged for 10 minutes at 300xg. Cell pellets were re-

suspend in 0.5% BSA buffer (Sigma) and counted using a hemocytometer (Thomas 

Scientific). Cell suspensions were labeled with a cocktail of Biotin-conjugated 

antibodies (biotin-conjugated monoclonal antibodies against CD8a, CD11b, CD11c, 

CD19, CD45R (B220), CD49b (DX5), CD105, Anti-MHC Class II, Ter-119, and 

TCRγ/δ), and then passed through a magnetic LS MACS column containing anti-

Biotin MicroBeads. Negative selection of CD4 + T cells were obtained using LS 



 60 

MACS magnetic columns (Miltenyi Biotec) according to the manufacture's 

instructions. The CD4+ T-cells purity was >90% as assessed by flow cytometry. For 

in vitro stimulation, 24 hours pneumococcal stimulated macrophages were washed 

gently with 200 µl of PBS. Purified T-cells were re-suspended in DMEM and added 

gently to the stimulated macrophages at a ratio of 1:15, and incubated for 5 days at 

37°C. Supernatants were collected and stored at -80°C for cytokines detection.  Cells 

were removed using warmed trypsin (5 mg/ml) with 0.02% EDTA and used directly 

for surface marker determination by flow cytometry. 

 

2.15 Enzyme-Linked Immunosorbent Assay (ELISA) 

Supernatants from stimulated cells were collected (approximately 500 µl) and stored 

at -80°C until needed. The levels of IL-6, IL-10, IL-12, IL-1β, INF-γ, IL-17, IL-4 and 

MIP-2 cytokines in the supernatants were determined by ELISA (Table 2.7). 96-well 

plates (NUNC Maxisorp) were coated overnight with 10 µg/ml of IL-6, IL-10, IL-12, 

IL-1β, INF-γ, IL-17, IL-4 and MIP-2 capture antibodies in PBS, at 4 °C.  The 

following day, plates were washed 3 times with PBS + 0.05% v/v Tween 20 (Sigma 

Aldrich), allowing the washing buffer to stand for 20 seconds in the wells before 

continuing with following washes. All wells then were blocked for 2 h at room 

temperature with assay diluent, diluted (4:1) in PBS to prevent non-specific binding. 

Wells were then washed again 3 times as previously described.  Standards and 

samples were added into the wells in duplicate. Supernatants were diluted (1:5) in 

assay diluent for IL-6, IL-12 and IL-1β, diluted (1:10) for MIP-2, and used neat for 

IL-10, INF-γ, IL-17 and IL-4 and left for 2 hours at room temperature. Wells 

were washed before the addition of 10 µg/ml of the detection antibodies and plates 
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were incubated at room temperature for 1 hour. Wells were washed again 3 times with 

the washing buffer and diluted Avidin-HRP (1:1) in assay diluent was added to all 

wells and left at room temperature. After 30 minutes incubation, wells were wash 5 

times as described previously. TMB substrate solution were added to all wells and 

incubated for 15 minutes in dark at room temperature. Colour development action 

was stopped by 0.16M of sulphuric acid (life technologies). Plates were read by 

micro-plate reader at 450nm in order to create the standard curve and determine the 

level of IL-6, IL-10, IL-12, IL-1β, INF-γ, IL-17, IL-4 and MIP-2 in cells 

supernatants. 

 

 

 

Cytokine Name 

 

Type 

 

Kit Brand 

 
Interleukin 6 

(IL-6) 

Mouse eBioscience (Ready-SET-
Go) 

Interleukin 10 

(IL-10) 

Mouse eBioscience (Ready-SET-
Go) 

Interleukin 12 

(IL-12) 

Mouse eBioscience (Ready-SET-
Go) 

Interleukin 1 beta 

(IL-1β) 

Mouse eBioscience (Ready-SET-
Go) 

Interferon gamma 

(INF-γ) 

Mouse eBioscience (Ready-SET-
Go) 

Interleukin 17 

(IL-17) 

Mouse eBioscience (Ready-SET-
Go) 

Interleukin 4 Mouse eBioscience (Ready-SET-
Go) 
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(IL-4) 

Macrophage 
inflammatory protein 2 

(MIP-2) 

Mouse R&D systems 

Table 2.7. ELISA kits used in this PhD research 

 

 

2.16 Cell Survival Analysis 

For analysis of cell survival, macrophages membrane integrity was determined using 

two assays; lactate dehydrogenase (LDH) and PrestoBlue assays. All experiments 

were performed in triplicate cultures. LDH assay was used to measure the released 

LDH from damaged macrophages, as a biomarker for cellular cytotoxicity and 

cytolysis. LDH released into the supernatant was measured using Cytotoxicity 

detection kit (Roche). 96 well tissue culture plates (Sigma) were filled with 100 ul of 

the assay medium. Cells were washed with 300 ul of the assay medium before adding 

them to the 96 wells plate. Cells suspensions were adjusted to a concentration of 2 X 

106 cells/ml, and cells were titrated by two-fold serial dilutions across the plate. 200 ul 

of the standards were diluted in assay medium (1:2) and added to the plate. Cells were 

incubated at 37 °C, 5% CO2, 90% humidity for 30 minutes. Microplates were 

centrifuged at 250xg for 10 minutes and supernatants removed carefully and 

transferred into a new clear 96- well flat bottom microplate (Sigma). LDH activity in 

these supernatants was determined by adding 100 ul of freshly prepared reaction 

mixture to each well, and plate were incubated in dark for 30 minutes at 25 °C. The 

absorbance of the samples was measured at 490 nm and 600 nm using a microplate 

reader.  
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PrestoBlue Cell Viability Assay (Life technologies) was performed following the 

manufacturer's protocol. PrestoBlue is a ready to use cell permeable resazurin-based 

solution that works as an indicator for cell viability. When added to macrophages, the 

reagent is changed by the reducing environment of the viable cell and turns red in 

color, becoming highly fluorescent. This changed color can be determined using 

absorbance measurements. Briefly, pneumococcal treated macrophages were washed 

2 times with 400 µl of Dulbecco's phosphate-buffered saline (dPBS, Life 

technologies), then 250 µl of PrestoBlue reagent were added to the washed cells and 

incubated for 10 minutes at 37ºC. samples absorbance were measured at 570 nm using 

a micro-plate reader.  

 

2.17 Antibodies and flow cytometry 

Flow cytometry was performed on fresh cells suspensions. BMDMΦ or CD4+ T 

cells or Nasal mucosa tissue were incubated for 15 minutes with Fc-block (anti-

CD16/32) and then stained for 20 minutes with the following antibodies in PBS 2% 

fetal bovine serum (FBS):  Anti-CD206-APC (Mannose receptor), anti-CD69-

PE/CY7 (T lymphocyte), anti-GATA3-APC (T helper 2), isotype Ctrl IgG2b-APC, 

isotype Ctrl IgG2b-PE (BioLegend), anti-CD11-b-PE (Macrophages), anti-FOXP3-

PE (Regulatory T cells), anti-RORγt-APC (T helper 17), anti-CD45-FITC (T 

lymphocytes), anti-T-bet-PE (T helper 1) and anti-CD4-PE/CY7 (T helper cells) 

(eBioscience), anti- MARCO-FITC (AbD Serotec), Anti-Gr-1 (eBioscience), Anti-

F4/80 (eBioscience), Anti-CD19 (eBioscience), Anti-CD8 (eBioscience), Anti-CD3 
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(eBioscience) . After staining, cells were washed in PBS 2% FBS and re-suspended 

in 300 µl of PBS and used immediately for data collection using a FACSCalibur 

flow cytometer (BD). Results were analyzed by FlowJo software (version 8.8.3, 

Tree Star).  Reagents for cell fixation and permeabilization for detecting intracellular 

cytokines and Foxp3 were obtained from eBioscience, and staining was performed 

according to the manufacturer’s instructions.  

 

2.18 Immunohistochemistry  

This work was performed at the university of York, York, U.K. by Dr. Alun Kirby. 

For immunofluorescence, Day 1 and day 7 tissue samples of cervical lymph nodes 

(CLN) and nasal mucosal were used and 7 μm sections were cut. Cells were stained 

using the following primary antibodies: BM8 (anti-F4/80), N418 (anti-CD11c), 

M5/114 (anti-MHCII) RM4-5 (anti-CD4), 53-67 (anti-CD8), H57-597 (anti-TCRb) 

(eBioscience), ED3 (anti-CD169) (AbD Serotec), FA11 (anti-CD68) (Acris 

Antibodies, Germany), ERTR9 (anti-SIGNR1) (Bachem), (anti-CD31) biotin, (anti-

CD19), (anti-Meca32) biotin 546, (anti-PNAg) biotin 647, (anti-CD206) (biotin) (BD 

biosciences). Most of the antibodies were directly conjugated to fluorochromes but 

where indicated biotin antibodies were conjugated to secondary antibody Alexa-Fluor 

conjugates (Invitrogen). Sections were mounted in ProLong Gold (Invitrogen) and 

images were taken using a Zeiss Axioplan LSM 510 confocal microscope as single 

optical slices of between 0.8 and 1.0 μm. The images were analyzed using Zeiss LSM 

image browser software v4. 
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2.19 Binding Assay 

According to Martinez-Pomares et al. (2006) and Chavele et al. (2010), Nunc 

Maxisorp 96 well flat-bottomed plates (Sigma) were coated overnight in the range of 

1.25-10 μg/ml (100 μl per well) of: mannose receptor (MR) construct antibody 

(CTLD4-7-Fc), negative control construct (CR-FNII-CTLD1-Fc) (Both constructs 

provided generously by Dr. Luisa Martinez-Pomares, University of Nottingham), 

Mannan-BSA, Galactose (Sigma), Mannose (Sigma) in coating buffer (15 mM 

Na2CO3, 35mM NaHCO3, pH 9.6). Wells were blocked with 200 μl of 20% (v/v) 

FBS in PBS buffer, and then washed three times with 250 μl of PBS with 0.05% (v/v) 

Tween 20 (Sigma). 10 μg/ml of PLY or PdB, or domain 1-3 or domain 4 were added, 

and incubated on shaker at 37oC for 1 h. Wells were washed again with PBS and 

bound proteins were detected using PLY polyclonal antibody (abcam) in blocking 

buffer. Plates were covered with anti-rabbit IgG alkaline phosphatase (abcam) in 

blocking buffer. Bound antibodies were detected in dark using the chromogenic 

substrate pnitrophenylphosphate (pNPP) for 30 mins. 1M of NaOH were added to all 

wells and the developed color was measured at 405nm. 

 

2.20 Uptake Assay 

This assay was performed at the University of Nottingham, Nottingham, U.K. by Dr. 

Luisa Luisa Martinez-Pomares. Both Chinese Hamster Ovary cells; wild type CHO 

and MR -/- CHO were harvest by trypsin/EDTA treatment. The cells suspensions were 

collected and washed twice with DMEM/F12 complete medium to remove trypsin. 

The pellets were re-suspended in 8 mL of medium culture and counted without any 
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further dilution.  On a 24 well plate, 250000 cells/well were plated in DMEM/F12 

complete medium (added of 0.6 mg/mL of geneticin for CHO-MR) and culture 

overnight (500 μl). The cells were washed twice with PBS (500 μlx2). 500 μl of opti-

MEM were added to each well and the cells were incubated for 30 minutes at 

37°C. The medium culture was discharged and 500 μl of each endocytic tracer (PLY, 

D4 and D1-3) were added at 5 μg/mL to the wells and incubated for 1 h at 37°C in the 

dark (covered with aluminum foil). The plates were then washed with PBS (3x 

1mL).  The cells were harvested by trypsin/EDTA treatment adding 200 μl of trypsin / 

EDTA diluted 1:1 with PBS. After 2 minutes at room temperature the cells 

suspensions were transferred to a FACS tube containing 200 μl of 4% p/v 

paraformaldehyde solution (final concentration in the tube 2% p/v). The FACS 

samples were stored in the fridge in the dark until FACS analysis on FC 500 MPL 

Flow Cytometry System, Beckman Coulter.  

 

2.21 The preparation of macrophages for label free quantitative 

proteomics 

Bone marrow cells from wild type C57B16 mice were prepared and cultured as 

mentioned previously in section 2.11 but in the absence of FBS. Proteomic work and 

data analysis were performed by Dr. Stuart Armstrong, at the University of Liverpool, 

Liverpool - U.K. Briefly, macrophages (in triplicate for each condition) were lysed in 

50mM ammonium bicarbonate, 0.1% (w/v) RapiGest (Waters) then heated at 80oC for 

10 minutes before centrifugation at 12,000 xg for 15 minutes. The soluble fraction 

was transferred to low adhesion micro-centrifuge (Eppendorf) tubes. Total protein 

concentration was measured by Pierce™ Coomassie Plus (Bradford) Assay Kit assay 
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(Thermo scientific). Sample protein content and volume was normalised with 50mM 

ammonium bicarbonate.  Samples were then heated at 80¹C for 10 minutes, reduced 

with 3 mM dithiothreitol (Sigma) at 60¹C for 10 minutes then alkylated with 9 mM 

iodoacetimde (Sigma) at room temperature for 30 minutes in the dark.  Proteomic 

grade trypsin (Sigma) was added at a protein:trypsin ratio of 50:1 and samples 

incubated at 37¹C for 16 hrs. Rapigest was removed by adding TFA to a final 

concentration of 1% (v/v) and incubating at 37oC for 2 hrs. Peptide samples were 

centrifuged at 12,000xg for 60 min (at 4oC) to remove the precipitated Rapigest.  

Samples were analysed by on-line nanoflow LC using the Thermo EASY-nLC 1000 

LC system (Thermo Fisher Scientific) coupled with Q-Exactive mass spectrometer 

(Thermo Fisher Scientific). Samples were loaded on a 50cm Easy-Spray column with 

an internal diameter of 75µm, packed with 2µm C18 particles, fused to a silica nano-

electrospray emitter (Thermo Fisher Scientific). The column was operated at a 

constant temperature of 35°C. Chromatography was performed with a buffer system 

consisting of 0.1% formic acid (buffer A) and 80% acetonitrile in 0.1% formic acid 

(buffer B). The peptides were separated by a linear gradient of 3.8 – 50% buffer B 

over 90 minutes at a flow rate of 300nl/min. The Q-Exactive was operated in data-

dependent mode with survey scans acquired at a resolution of 70,000. Up to the top 

10 most abundant isotope patterns with charge states +2, +3 and/or +4 from the 

survey scan were selected with an isolation window of 2.0Th and fragmented by 

higher energy collisional dissociation with normalized collision energies of 30. 

MS/MS scans were acquired at a resolution of 17,500. The maximum ion injection 

times for the survey scan and the MS/MS scans were 250 and 50 ms, respectively, and 

the ion target value was set to 1E6 for survey scans and 1E5 for the MS/MS scans. 

Repetitive sequencing of peptides was minimized through dynamic exclusion of the 
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sequenced peptides for 20s. Thermo RAW files were imported into Progenesis LC–

MS (version 4.1, Nonlinear Dynamics).  Runs were time aligned using default settings 

and using an auto selected run as reference.  Peaks were picked by the software and 

filtered to include only peaks with a charge state of between +2 and +6. Peptide 

intensities were normalised against the reference run by Progenesis LC-MS and these 

intensities are used to highlight differences in protein expression between control and 

treated samples with supporting statistical analysis (ANOVA adjusted p-values) 

calculated by the Progenesis LC-MS software. Spectral data were transformed to .mgf 

files with Progenesis LC–MS and exported for peptide identification using the Mascot 

(version 2.3.02, Matrix Science) search engine. Tandem MS data were searched 

against the mouse (16,868 sequences; 9,451,355 residues) and bovine (6,159 

sequences; 2,427,109 residues) predicted proteomes (Uniprot release 2015_02). 

Mascot search parameters were as follows; precursor mass tolerance set to 10ppm and 

fragment mass tolerance set to 0.02 Da. Two missed tryptic cleavages were permitted. 

Carbamidomethylation (cysteine) was set as a fixed modification and oxidation 

(methionine) set as a variable modification. Mascot search results were further 

processed using the machine-learning algorithm Percolator. The false discovery rate 

was < 1%. Individual ion scores > 13 indicated identity or extensive homology 

(p < 0.05).  Protein identification results were imported into Progenesis LC–MS as 

.xml files. 

 

2.22 Statistical analyses 

Unless otherwise stated, data were analyzed in GraphPad Prism and compared by 

one-way and two-way ANOVA. The Tukey-Kramer multiple-comparison test was 
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used to identify significant differences between individual groups. Results with P 

values < 0.05 were considered significant.  
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Chapter 3: Macrophage-pneumolysin interactions in vitro and in 
vivo 

 

3.1. Introduction: 

The aim of this chapter was to understand how pneumolysin activates and potentially 

drives different mechanisms of host immunity in the nasopharynx during colonization 

since the pneumococcal toxin pneumolysin have shown to be a potent activator of 

both mucosal and systemic immune responses, directly stimulating macrophages and 

dendritic cells and dramatically amplifying their production of pro-inflammatory 

cytokines independently of TLR-4. Also, we have shown for the first time that 

pneumolysin activates the NLRP3 inflammasome complex leading to release IL-1β, 

which is required for protection against invasive pneumococcal pneumoniae 

(McNeela et al., 2010). Our recent data expose an interesting dichotomy of PLY; that 

it is important to the pneumococcus for successful asymptomatic colonisation of the 

nasopharynx (Kadioglu et al., 2002, Richards et al., 2010), without generating pro-

inflammatory immune responses, unlike its powerful ability to drive inflammation in 

the lungs during pneumonia. Based on new preliminary data, I propose that during 

nasopharyngeal colonisation, nasal mucosa-associated macrophages become activated 

by PLY and subsequently drain to cervical lymph nodes to initiate immune responses 

that act to prevent damage to host tissues and systemic pneumococcal dissemination 
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3.2 Macrophages accumulate in the draining lymph nodes of the 

nasopharynx during carriage. 

Confocal imaging of cervical lymph nodes (CLN) during asymptomatic 

nasopharyngeal pneumococcal carriage in mice, identified an accumulation of a 

population of CD68, CD11c, and CD169 expressing macrophages (Figure 3.1). The 

aim of my PhD was to explore the role of these macrophages in anti-pneumococcal 

immunity and to understand how they behave during pneumococcal carriage. 

 

 

 

 

 

 

 

 

Figure 3.1. Confocal microscopy of macrophages in cervical lymph nodes during pneumococcal 
carriage. Cervical lymph node samples from MF1 mice on day 0, 1 and 7 of carriage with Wild type (WT) 
D39 were sectioned and stained with the following surface markers; CD68 (yellow), CD169 (green) and 
CD11c (red) and MHCII (blue), and a composite image. CD11c+ CD68+ CD169+ Pictures were taken 
with objective lens x 10. 
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Figure-3: MHC-II/CD169/CD11c/CD68 stained macrophages in 

cervical lymph nodes and nasal tissue of naïve (A, D), and 

S.pneumoniae serotype-2 (D39) colonised MF1 mice at day 1 (B, 

E), day 7 (C, F) and at day 14 (H) colonisation. Images on right-

hand side labelled (CP) are composite of all 4 stained cells. CLN 

are A-C and H, nasal tissues D-F.  

CD68 stained macrophages in nasal tissue of colonised mice (G) 

Mannose receptor stained macrophages in nasal tissue of naïve 

and day 7 colonised mice (I) 

All confocal images x100 magnification. 
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3.3 Pneumococcal pneumolysin induces mannose-receptor expression 

in vitro and in vivo 

We have previously identified a population of macrophages in the nasopharynx of 

mice undergoing prolonged pneumococcal carriage that express the mannose receptor 

(MR) marker of alternative activation (Neill et al., 2014). To determine whether 

pneumococci induce MR expression, wild type and MR-/- bone marrow derived 

macrophages (BMDM) were incubated with serotype 2 (D39) S. pneumoniae at a 1:10 

ratio.  MR expression was evident on a small proportion (5%) of un-stimulated wild 

type BMDM but not on MR-/- BMDM (Fig 3.2A and B).  Furthermore, D39 induced a 

significant up-regulation in MR expression on wild type but not MR-/- BMDM (Figure 

3.2A).  Pneumococcal-induced changes in MR expression were partially dependent 

upon the pneumococcal toxin pneumolysin as a D39 mutant lacking toxin expression 

(ΔPLY) induced only moderately increased MR expression (Fig 3.2B).  The 

contribution of polysaccharide capsule to pneumococcal-induced MR up-regulation 

appeared minimal as a capsule-deficient D39 strain (D39-J) induced MR up-

regulation to a comparable extent to wild type D39 and a mutant strain deficient in 

both capsule and pneumolysin production (DKO) behaved similarly to ΔPLY (Fig 

3.2B).   
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Figure 3.2. Pneumolysin induces macrophage mannose receptor up-regulation.  Wild type (WT) 
or mannose-receptor deficient (MR-/-), BMDM were incubated with S. pneumoniae D39, pneumolysin-
deficient D39 (ΔPLY), capsule-deficient D39 (D39-J) and D39 lacking both pneumolysin and capsule 
(DKO) for 24 hours at a 1:10 ratio. (A) Expression of MR on BMDM at 24 hours post-infection with 
D39 (Red: MR -/- BMDM + D39) (Gray: WT BMDM + D39). 40.5 are the percentage of macrophages 
expressing mannose receptor. (B) Quantification of MR+ BMDM, gated relative to isotype control 
staining of F4/80+CD11b+ WT BMDM.  Result in figure A a representative of one experiment of at 
least 3 wells per condition; therefore no statistical conclusion can be made. Results in figure B are 
representative of three independent experiments of at least 3 wells per condition. * = p<0.05, ** = 
p<0.01, *** = p<0.005 and ns = not significant in two-way ANOVA analysis with Bonferroni post-
test.  
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3.4 Mannose receptor expressing macrophages rapidly accumulate in 

the nasopharynx following pneumococcal colonisation. 

The induction of MR up-regulation observed in vitro occurred within 24 hours of 

infection.  We previously highlighted an accumulation of MR+ macrophages in the 

nasopharynx in vivo at day 7 post-induction of pneumococcal carriage in mice (Neill 

et al, 2014).  However, in that study we had not examined MR expression in the 

nasopharynx during the earliest stages of pneumococcal colonisation and carriage in 

mice.  When we compared the proportion of macrophages amongst the leukocytes in 

the nasopharynx over the first 24 hours post pneumococcal colonisation we observed 

a significantly rapid increase that was almost entirely attributable to an increase in the 

MR+ fraction of macrophages and that was maintained up to day 7 post-infection (Fig 

3.3A and B). Furthermore, wild type mice infected with D39 had significantly lower 

densities of pneumococcus in the nasopharynx over the first 24 hours of 

pneumococcal carriage when compared to MR-/- mice (Figure 3.3C). Thus, the 

accumulation of MR+ macrophages coincided with the period in which bacterial 

numbers in the nasopharynx stabilized following initial infection in WT mice. 

Interestingly, the absence of MR was correlated with significantly reduced 

polymorphonuclear cell (PMN) recruitment to the nasopharynx over the first 12 hours 

of infection (Figure 3.3D), suggesting an important role for MR in early control of 

bacterial numbers and recruitment of neutrophils during S. pneumoniae carriage. 

Confocal imaging of nasopharynx at day 7 post-infection confirmed the accumulation 

of MR-expression cells (Figure 3.3E).  
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Figure 3.3. Mannose receptor expressing macrophages rapidly accumulate in the nasopharynx 
following pneumococcal colonisation. (A) MR expression on nasopharyngeal F4/80+CD11b+ cells 
from a naïve mouse. Gated area show the numbers of MR expressing macrophages. (B) Wild type mice 
were intranasally infected with 1x105 CFU D39 and nasopharyngeal homogenates were stained for 
flow cytometry.  Data shown are F4/80+CD11b+ cells as a proportion of total CD45+ cells.  Shaded 
bars represent MR+F4/80+CD11b+ cells. (C) Colony-forming units (CFU) per mg nasopharynx. (D) 
Cell number per mg nasopharynx 12 h post infection. (E) MR-stained nasopharyngeal tissue sections 
from naïve (left panel) and S. pneumoniae D39-colonised mice (right panel). Results A and E are 
representative of one experiment of at least 3 wells per condition; therefore no statistical conclusion 
can be made. B, C and D results are representative of three independent experiments of at least 3 wells 
per condition. * = p<0.05, ** = p<0.01, *** = p<0.005 and ns = not significant in two-way ANOVA 
analysis with Bonferroni post-test. 
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Figure-3: MHC-II/CD169/CD11c/CD68 stained macrophages in 

cervical lymph nodes and nasal tissue of naïve (A, D), and 

S.pneumoniae serotype-2 (D39) colonised MF1 mice at day 1 (B, 

E), day 7 (C, F) and at day 14 (H) colonisation. Images on right-

hand side labelled (CP) are composite of all 4 stained cells. CLN 

are A-C and H, nasal tissues D-F.  

CD68 stained macrophages in nasal tissue of colonised mice (G) 

Mannose receptor stained macrophages in nasal tissue of naïve 

and day 7 colonised mice (I) 

All confocal images x100 magnification. 
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3.5 Mannose receptor is important for the regulation of pro-

inflammatory and anti-inflammatory cytokines during pneumococcal 

carriage in vivo 

In line with a defect in neutrophil recruitment, nasopharyngeal homogenates from 

D39-infected MR-/- mice contained markedly less IL-6 than their WT counterparts 

(Figure 3.4).  Furthermore, levels of the immune regulatory cytokine TGF-β were also 

significantly reduced in nasopharyngeal homogenates of MR-/- mice as compared to 

wild type controls (Figure 3.5), suggesting disruption of the normal pathways that 

lead to establishment of a tolerogenic nasopharyngeal environment conducive to 

carriage (Neill et al., 2014).  

 

 

 

 

 

 

 

 

Figure 3.4. MR is important for the production of IL-6 during pneumococcal carriage. WT or MR 
-/- mice were infected with S. pneumoniae serotype 2 D39 for 24 h. ELISA measured cytokine levels in 
nasopharynx supernatants. Results are presented as mean +/-SEM and are representative of three 
independent experiments. * = p<0.05, ** = p<0.01, *** = p<0.005 and ns = not significant in two-way 
ANOVA analysis with Bonferroni post-test.  
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Figure 3.5. WT mice have higher levels of TGF-β during pneumococcal carriage. WT or MR -/- 
mice were infected with S. pneumoniae serotype 2 D39 for 24 h. ELISA measured cytokine levels in 
nasopharynx supernatants. Results are presented as mean +/-SEM and are representative of three 
independent experiments. * = p<0.05, ** = p<0.01, *** = p<0.005 and ns = not significant in two-way 
ANOVA analysis with Bonferroni post-test.  
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3.6 Mannose receptor contributes to macrophage phagocytosis  

I next sought to determine the role of mannose receptor expression on macrophages in 

defense against pneumococcal infection.  In vitro phagocytosis assays performed with 

wild type and MR-/- BMDM revealed a significantly reduced ability to clear 

pneumococcal infection in the absence of MR expression (Figure 3.6A).  When 

pneumococci were incubated with wild type BMDM, bacterial numbers were reduced 

by 99.95% (for D39) or were completely cleared (for pneumolysin-deficient, capsule-

deficient and pneumolysin and capsule-deficient strains) within the first 72 hours 

post-infection as compared to starting dose.  By contrast, when MR-/- BMDMs were 

used, none of the infecting bacterial strains were cleared.  MR-/- BMDM had an 

attenuated ability to clear all pneumococcal strains tested but defense against D39 and 

the capsule-deficient strain was particularly compromised, with a 2-log deficit in D39 

clearance (versus wild type BMDM) and a 5-log deficit in D39-J clearance by 72 

hours post-infection.  To determine whether this effect was due to impaired MR-/- 

macrophage survival and viability during S. pneumoniae infection, BMDM were 

seeded into 48-well tissue culture plates and cultured for 72hrs with D39, ΔPLY, 

D39-J, DKO D39 and purified LPS-free PLY. During, and at the end of, the culture 

period, supernatants were removed and PrestoBlue cell viability reagent was added to 

all wells (including the untreated wells) to determine cell death at day 0, day 1, and 

day 3 (Figure 3.6 B). The PrestoBlue analysis showed few differences in macrophage 

death following exposure to pneumococcal infections. Approximately 50% of both 

WT and MR-/- macrophages had died by day 3 post-infection but the rate of death did 

not differ between WT and MR-/- cells. The exception to this was for ΔPLY treated 

macrophages, where MR-/- cells showed a moderately increased susceptibility to cell 

death as compared to wild type controls (Figure 3.6B). 
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Figure 3.6. MR contributes to macrophage killing of pneumococci. (A) BMDMs from wild type 
(WT) or MR-/- (MRKO) mice were infected with S. pneumoniae D39, pneumolysin deficient ΔPLY, 
capsule-deficient D39-J and pneumolysin- and capsule-deficient DKO for 72 hours. Data show 
bacterial colony forming units (CFU) per ml culture media (MR-/- versus WT BMDM). (B) Survival 
and viability of pneumococcal stimulated WT or MR-/- BMDMs. Samples were washed with Dulbecco's 
phosphate-buffered saline (dPBS), and then stained with PrestoBlue. Samples absorbance was 
measured at 570 nm using a micro-plate reader. Data are a composite of three experiments and each 
data point represents a mean of triplicate wells. * = p<0.05, ** = p<0.01, *** = p<0.005 and ns = not 
significant in two-way ANOVA analysis with Bonferroni post-test.  
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3.7 Cytotoxicity of pneumococcal infection in WT and MR-/- BMDMs 

To evaluate the cytotoxic activity of pneumococcus on WT and MR-/- BMDMs during 

infection, BMDM were incubated with D39 and ΔPLY for 24 and 72hrs. The effect of 

pneumococcus on the morphology of WT and MR-/- cells was determined by phase-

contrast microscopy (20X) at 0 h (Figure 3.7A), 24 (Figure 3.7B), and 72hrs (Figure 

3.7C) post-infection. Untreated WT and MR-/- cells were used as controls (Figure 

3.7A). D39 treated WT and MR-/-macrophages were healthy at 0 h, however some 

sign of cell damage was evident by 24 h of pneumococcal infection, as the cells had 

begun to round up and lose the characteristic macrophage morphology (Figure 3.7B). 

More damage was observed in both WT and MR-/- BMDMs at 72 h post-infection. 

D39 treated MR-/- BMDM showed more cytopathic signs such as rounding of the 

infected cell and fusion with adjacent cells, as compared to D39 treated WT 

macrophages. Moreover, ΔPLY treated WT and MR-/- BMDM also displayed some 

sign of membrane injuries after 24 and 72 h of infection, however the level of damage 

was reduced in ΔPLY treated WT and MR-/- macrophages compared to D39 treated 

cells (Figure 3.7C). These data suggest that the pneumococcal toxin pneumolysin is 

partially responsible for the observed damage. Interestingly, the drop in viability 

during pneumococcal infections at 24 h and 72 h match the morphology changes 

observed in BMDMs at the same time points. 
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Figure 3.7. Cytotoxic activity of pneumococcal infections in WT and MR-/- BMDMs. Cells were 
stimulated with D39 and ΔPLY at an MOI of 1:10. Macrophages were photographed by 20x phase-
contrast microscopy at 0 h, 24, and 72hrs post-infection. (A) Untreated WT and MR-/- Macrophages. 
(B) D39 treated WT and MR-/- BMDMs. (C) ΔPLY treated WT and MR-/- cells. Macrophage cell 
rounding, shrinkage and detachment (Cytopathic signs) are present in D39 and ΔPLY treated WT and 
MR-/- BMDMs at 24 and 72hrs post-infection. 
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3.8 Determination of cell death in WT and MR-/- macrophages 

infected with pneumococcus 

To determine if MR plays a role in preventing macrophage lysis or damage during 

pneumococcal infections, the integrity of the macrophage membrane during 

pneumococcal infections was determined by measuring the level of lactate 

dehydrogenase (LDH) in cell culture supernatants.  LDH is commonly released during 

tissue damage and lysis and the levels of it in supernatant correlate with the extent of 

cell damage. WT and MR-/- BMDMs were infected with D39, ΔPLY, DKO D39 and 

PLY for 24 h. Culture supernatants were collected at 24 h post infection, and LDH 

concentrations were determined. LDH levels were markedly increased in infected 

versus uninfected cells but there were no differences between WT and MR-/- cells 

(Figure 3.8).  Cell damage was markedly reduced during infection with DKO D39 as 

compared to WT D39, ΔPLY or PLY. These data suggest that macrophage death 

occurs independently of MR during pneumococcal infections.  

 

 

 

 

 

Figure 3.8. The determination of cell death in BMDMs infected with pneumococcus. Supernatants 
from infected BMDMs were tested for LDH, a marker of cell damage, to quantify cell death. BMDMs 
were infected with D39, ΔPLY, DKO D39 and PLY for 24 h. Cell death was monitored by the 
concentration of LDH released from damaged cells. Data are a composite of three experiments and 
each data point represents a mean of triplicate wells. Error bars represent standard deviations. * = 
p<0.05, ** = p<0.01, *** = p<0.005 and ns = not significant in two-way ANOVA analysis with 
Bonferroni post-test.  
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3.9 MR contributes to pneumococcal-induced macrophage cytokine 

production 

MR-/- BMDM demonstrated a significant attenuation in cytokine production in 

response to S. pneumoniae infection (Figure 3.9).  Wild type BMDM stimulated with 

D39 produced a mixed cytokine response of inflammatory (IL-1β, MIP-2, IL-6 and 

IL-12) and immunomodulatory (IL-10) cytokines.  The production of all these 

cytokines was reduced when BMDM were stimulated with D39 lacking pneumolysin, 

capsule or both, confirming the importance of these virulence factors in induction of 

host responses.  When MR-/- BMDM were stimulated with D39 or the mutant bacterial 

strains, production of IL-1β, IL-6, IL-12 and IL-10, but not MIP-2 was significantly 

reduced, suggesting MR plays a role in activation of macrophage cytokine signaling 

pathways. Also, cells stimulated with PLY give no response for IL-1β, IL-6, IL-12 

and IL-10, but not MIP-2. However, all cytokines were detected at higher 

concentrations in pneumococcal-infected MR-/- BMDM than in uninfected controls, 

demonstrating that MR-independent pathways to pneumococcal induction of 

macrophage cytokine production exist. 

 

 

 

 

 

 



 86 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9. MR contributes to pneumococcal-induced macrophage cytokine production. BMDM 
from wild type (WT) of MR-/- (MR KO) mice were infected with S. pneumoniae D39, pneumolysin 
deficient ΔPLY, capsule-deficient D39-J and pneumolysin- and capsule-deficient DKO for 24 hours. 
ELISA measured Cytokine levels in cultures supernatants.  Results are presented as mean +/-SEM and 
are representative of three independent experiments.  * = p<0.05, ** = p<0.01, *** = p<0.005 and ns = 
not significant in two-way ANOVA analysis with Bonferroni post-test. 

 

 

MIP-2

Untr
ea

ted D39
ΔP

LY
D39

-J

DKO D
39 Ply 

0

1000

2000

3000

4000
WT
MR -/-

ns

ns ns

ns ns

Pg
/m

l

IL-1β

Untr
ea

ted D39
ΔP

LY
D39

-J

DKO D
39 Ply 

0

500

1000

1500

2000

2500

WT
MR -/-

***

*** ***
ns

Pg
/m

l

IL-6

Untr
ea

ted D39
ΔP

LY
D39

-J

DKO D
39 Ply 

0

500

1000

1500

2000

2500
WT
MR -/-

***

******

ns

Pg
/m

l

IL-10

Untr
ea

ted D39
ΔP

LY
D39

-J

DKO D
39 Ply 

0

500

1000

1500

2000
WT
MR -/-

*

ns ns

ns

Pg
/m

l

IL-12

Untr
ea

ted D39
ΔP

LY
D39

-J

DKO D
39 Ply 

0

500

1000

1500

2000

2500

WT
MR -/-

***

*** ***

**

Pg
/m

l



 87 

3.10 Domain four of pneumolysin binds mannose receptor 

As MR appeared to influence S. pneumoniae-induced macrophage cytokine 

production and as PLY contributed to this process, we next sought to understand the 

mechanisms that initiate macrophage responses to pneumococcal infection.  Binding 

of MR to PLY was assessed using a solid phase binding ELISA. The aim was to 

identify if MR could interact directly with PLY. Galactose was used as a negative 

control (as a sugar that does not bind MR), and Mannan was used as a ligand for the 

CTLD4-7 and CR domains of the MR (a positive control). The mannose receptor 

construct antibody (CTLD4-7-Fc) showed strong binding to PLY (Figure 3.10). To 

identify which domain of PLY was responsible for this interaction with macrophage 

MR, purified PLY domains 1-3 and domain 4 were utilized. Results revealed that 

domain 4 was able to bind the MR construct whereas domains 1-3 showed no binding 

(Figure 3.7). Next, the importance of the hemolytic activity of PLY to MR binding 

was studied using a genetically inactivated PLY toxoid, PdB. The toxoid is also 

known as W433F because it has one amino acid change (Tryptophan to 

phenylalanine) at sequence 433 of PLY. Binding was observed but was significantly 

reduced as compared to WT PLY (Figure 3.10). These data suggest that cytolytic 

activity (or the structure of the cytolytic domain) contributes to PLY binding to 

mannose receptor. These results may explain one mechanism by which S. pneumoniae 

initiates macrophage activation and accumulation during pneumococcal infections via 

specific binding of MR to PLY. 
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Figure 3.10. Binding of recombinant PLY to macrophage mannose receptor. Mannose receptor 
(MR) construct antibody (CTLD4-7-Fc), negative (Neg) control construct (CR-FNII-CTLD1-Fc), 
Galactose (Gal.) and Mannose (Man.) were blocked or incubated in the range of 1.25-10μg/ml with 
10μg/ml of PLY, PdB, domain 1-3 and domain 4 for 1hr at 37oC.  Mannan (Man) was used as a 
specific ligand for CTLD4-7 and CR domains and galactose (Gal) was used as a negative control. 
Bound proteins and constructs were washed and detected using anti-human IgG Fc-specific, alkaline 
phosphatase conjugates, and PLY polyclonal antibody. Binding was determined with p-nitrophenyl 
phosphate substrate or with anti-rabbit IgG alkaline phosphatase. Binding levels were measured at 
405nm. Results are mean of three individual experiments (± SD). 

 

As MR was found to mediate macrophage binding to pneumococci via PLY, we next 
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toxin. The uptake of whole PLY, domain 4, and domain 1-3 by WT CHO cells and 

MR-transfected CHO cells was assessed (Figure 3.11). Galactose was used as a 

negative control, and Mannose was used as a ligand for the CTLD4-7 and CR 
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internalized domain 4 with equal efficiency (Figure 3.11).  These results suggest that 

toxin-MR interaction alone is not sufficient to mediate uptake of toxin by cells.  

 

 

 

 

 

 

Figure 3.11. The uptake of whole PLY, domain 4 and domain 1-3 by CHO cells. Mannose receptor 
(MR) construct antibody (CTLD4-7-Fc), negative (Neg) control construct (CR-FNII-CTLD1-Fc), 
Galactose (Gal.) and Mannose (Man.) were incubated with 5μg/ml of whole PLY, domain 4 and 
domain 1-3 for 1hr at 37oC.  Mannan (Man) was used as a specific ligand for CTLD4-7 and CR 
domains, respectively, and galactose (Gal) was used as a control. Uptake was analyzed using BD 
FACScalibur and CellQuest software. Results are mean of three individual experiments (± SD). 
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3.11 Pneumolysin and capsule are required for pneumococcal-

induced T regulatory, T helper 17 and T helper 1 cell differentiation 

in vitro  

Recent work by our group has revealed that T regulatory cells and macrophages 

accumulate in the nasopharynx during carriage, and a high portion of macrophages 

express MR (Neill et al., 2014). This study proposed that alternative activation of 

macrophages might occur in the nasopharynx of mice during long-term carriage. This 

observation was supported by the determination of high levels of major 

histocompatibility complex class II (MHC II) expression on the MR expressing 

macrophages from low-density (and long-term) WT colonized mice, when compared 

to high-density (and short-term) colonisation. So, to determine the influence of PLY 

on macrophage-induced differentiation of CD4+ T cells, WT BMDM were stimulated 

with D39, ΔPLY, D39-J, DKO D39, or purified PLY for 24 h, and then incubated 

with naïve CD4+ T cells for 5 days. D39-treated macrophages induced differentiation 

of 10-15% CD4+ T cells into T reg cells (Foxp3+), and this was significantly reduced 

when ΔPLY, D39-J or DKO D39-exposed macrophages were used (Figure 3.12). 

Purified PLY-stimulated macrophages induced no T reg differentiation, suggesting 

that PLY alone is insufficient to prime macrophages to induce T reg differentiation 

(Figure 3.12). No differentiation of Th17 or Th2 cells was observed under any 

condition, but some Th1 differentiation was observed in co-culture of WT D39-

exposed BMDM with CD4+ T cells. These data suggest that pneumococci-exposed 

macrophages regulate the differentiation of CD4+ T cells into T reg cells and that 

both LPS-PLY and capsule contribute to the process. These observations were 

confirmed by measuring the levels of lineage-associated cytokines in the supernatants 
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of the cultured cells (Figure 3.13). T cells stimulated with D39 treated macrophages 

produced high levels of IL-10 (T reg-associated) and INF-γ (Th1) when compared to 

ΔPLY, D39-J, DKO, and PLY treated / stimulated cells. Significant IL-17 production 

was also observed (Figure 13) but given the low levels of Th17 differentiation 

observed (Figure 3.12), the source of this cytokine is unclear. No IL-4 production was 

observed under any condition, in line with the lack of Th2 differentiation observed 

(Figure 3.12).  
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Figure 3.12. D39 induces T regulatory cell up-regulation and differentiation. BMDM were 
stimulated with S. pneumoniae D39, pneumolysin-deficient D39 (ΔPLY), capsule-deficient D39 (D39-
J) and D39 lacking both pneumolysin and capsule (DKO) for 24 hours at a 1:10 ratio, activated cells 
were incubated with naïve CD4+ T cells for 5 days at a 1:15 ratio. (A) Percentage of Treg 
differentiation after 5 days of incubation with D39, ΔPLY, D39-J, DKO, and PLY stimulated 
macrophages. (B) Percentage of Th17 differentiation after 5 days of incubation with D39, ΔPLY, D39-
J, DKO, and PLY stimulated macrophages. (C) Percentage of Th1 differentiation after 5 days of 
incubation with D39, ΔPLY, D39-J, DKO, and PLY stimulated macrophages. (D) Percentage of Th2 
differentiation after 5 days of incubation with D39, ΔPLY, D39-J, DKO, and PLY stimulated 
macrophages. . Results are representative of three independent experiments of at least 3 wells per 
condition. * = p<0.05, ** = p<0.01, *** = p<0.005 and ns = not significant in two-way ANOVA 
analysis with Bonferroni post-test.  
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Figure 3.13. D39 induces high levels of IL-10, INF-γ and IL-17 in vitro. BMDM from wild type 
(WT) mice were infected with S. pneumoniae D39, pneumolysin deficient ΔPLY, capsule-deficient 
D39-J, pneumolysin- and capsule-deficient DKO and purified PLY for 24 hours, stimulated cells then 
incubated with naïve CD4+ T cells for 5 days, cytokine levels in cultures supernatants were measured 
by ELISA. Results are presented as mean +/-SEM and are representative of three independent 
experiments.  * = p<0.05, ** = p<0.01, *** = p<0.005 and ns = not significant in two-way ANOVA 
analysis with Bonferroni post-test.  
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3.12 Mannose receptor is important for the differentiation of CD4+ T 

cells into T regulatory cells, and cytokine production in vitro  

To determine if the ability of pneumococcal-exposed macrophages to induce the 

differentiation of T reg cells is MR-dependent, wild type and MR-/- BMDM were 

incubated with D39, ΔPLY, D39-J, DKO and purified PLY at a 1:10 ratio / 4μg/ml.  

The presence of MR was associated with the expression of high levels of Foxp3 in T 

cells (about 20%) stimulated with D39 (Figure 3.14A). In these experiments, levels of 

Th1 and Th17 differentiation induced by WT BMDM were higher than seen 

previously, but again, no Th2 differentiation was observed (Figure 3.14).  MR-/- cells 

induced significantly less Th1, Th17 and T regulatory cell differentiation than WT 

controls. Pneumolysin and capsule contributed to T cell differentiation, and 

macrophages treated with DKO pneumococci induced very little T cell differentiation. 

Foxp3 was used as a surface maker for T reg cells, RORgt as a surface marker for 

Th17 cells, Tbet as a surface marker for Th1 cells, and GATA3 as a surface marker 

for Th2 cells. CD4+ T cells cultured with pneumococcal-exposed MR-/- macrophages 

also produced significantly less cytokine than those cultured with WT macrophages 

(Figure 3.15).  Wild type BMDM stimulated with D39 induced the production of 

inflammatory (IL-17 and INF-γ) and immunomodulatory (IL-10) cytokines from T 

cells. The production of all these cytokines was reduced when cells were stimulated 

with pneumolysin deficient ΔPLY, capsule-deficient D39-J, pneumolysin- and 

capsule-deficient DKO and purified PLY.  These data suggest a role for MR in the 

induction of host responses via T cell differentiation and cytokine production.  These 

processes require the presence of PLY and capsule. 
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Figure 3.14. Mannose receptor is required for CD4+ T cell differentiation. BMDM were 
stimulated with S. pneumoniae D39, pneumolysin-deficient D39 (ΔPLY), capsule-deficient D39 (D39-
J) and D39 lacking both pneumolysin and capsule (DKO) for 24 hours at a 1:10 ratio, activated cells 
were incubated with naïve CD4+ T cells for 5 days at a 1:15 ratio. (A) Percentage of Treg 
differentiation after 5 days of incubation in the presence of absence of MR, (B) Percentage of Th17 
differentiation after 5 days of incubation in the presence of absence of MR. (C) Percentage of Th1 
differentiation after 5 days of incubation in the presence of absence of MR. (D) Percentage of Th2 
differentiation after 5 days of incubation in the presence of absence of MR. Foxp3, RORgt, Tbet and 
GATA3 were used as markers for the differentiations of T reg, Th17, Th1 and Th2. Results are 
representative of three independent experiments of at least 3 wells per condition. * = p<0.05, ** = 
p<0.01, *** = p<0.005 and ns = not significant in two-way ANOVA analysis with Bonferroni post-test.  
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Figure 3.15. Mannose receptor is important for production of CD4+ T cell cytokines in vitro. 
BMDM from wild type (WT) or MR -/- mice were infected with S. pneumoniae D39, pneumolysin 
deficient ΔPLY, capsule-deficient D39-J, pneumolysin- and capsule-deficient DKO and purified PLY 
for 24 hours. Stimulated cells were then incubated with naïve CD4+ T cells for 5 days, cytokine levels 
in cultures supernatants were measured by ELISA. Results are presented as mean +/-SEM and are 
representative of three independent experiments.  * = p<0.05, ** = p<0.01, *** = p<0.005 and ns = not 
significant in two-way ANOVA analysis with Bonferroni post-test.  
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3.13 TLR-2 is important for the expression of mannose receptor in 

response to pneumococcal infections 

TLR-2 is a major pattern recognition receptor for Gram-positive bacteria. I have 

demonstrated here that mannose receptor also plays a key role in response to 

pneumococcal infection; therefore I sought to determine if the two receptors may have 

interacting, complementary or redundant roles in anti-pneumococcal immunity. WT 

BMDMs stimulated with D39 induced the up-regulation of expression of MR (Figure 

3.16), while TLR-2 and TLR-4 double knockout BMDMs showed no detectable 

changes in expression of MR at 24 h post-infection (Figure 3.16). The pneumococcal-

induced up-regulation of MR occurs via a TLR2-dependent signaling pathway, as 

D39 induced up-regulation of MR in TLR4-/- BMDM but no change in MR expression 

was detected in TLR2-deficient BMDM (Figure 3.16).  
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Figure 3.16. TLR-2 has an important role in the induction of MR expression. Wild type (WT), or 
Toll-like receptor 2 deficient (TLR-2 -/-), or toll-like receptor 4 deficient (TLR-4 -/-), or double 
knockouts toll-like receptor 2 & 4 (DKO TLR2 & TLR-4) BMDMs were incubated with S. 
pneumoniae D39 for 24 hours at a 1:10 ratio. Quantification of MR+ BMDM, gated relative to isotype 
control staining of F4/80+CD11b+ WT BMDM. Results are representative of three independent 
experiments of at least 3 wells per condition.  
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3.14 Pneumolysin and TLR-2 are both required for the up-regulation 

of MR and the production of IL-6 

The role of the pneumococcal toxin pneumolysin in the induction of pro-

inflammatory cytokines such as IL-6 has previously been described (McNeela et al., 

2010). McNeela et al. have shown that PLY and TLR-2 are required for the secretion 

of IL-6 by dendritic cells (McNeela et al., 2010). In this thesis, I have shown that both 

TLR-2 and PLY are required for the up-regulation of MR. I have also shown that MR 

enhances the secretion of IL-6. Therefore, to find out the link between these two 

phenomena, WT, TLR-2 -/-, TLR-4 -/- and DKO TLR-2 & 4 BMDMs were stimulated 

with D39 and ΔPLY for 24 h. Here I again show that WT BMDMs stimulated with 

D39 produced a large amount of IL-6 compared to ΔPLY (Figure 3.17), confirming a 

role for the pneumolysin in inducing IL-6 production. Also, TLR-2 -/- pneumococcus 

stimulated cells have shown significant reduction in IL-6 amount when compared to 

either WT or TLR-4 -/- cells, proposing a key role for the TLR-2 in the generation of 

IL-6 by macrophages. Our data here suggest that PLY and TLR-2 but not TLR-4 are 

more important for the expression of MR, which has shown to be important for the 

release of IL-6 by BMDMs, as in the absence of either PLY or TLR-2, very small 

amounts of IL-6 were detectable.  These results may support the findings of McNeela 

et al. that showed no role for TLR-4 in anti-pneumococcal responses. 
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Figure 3.17. PLY and TLR-2 are required for the production of IL-6. BMDMs from WT or TLR-2 
-/-, TLR-4 -/-, or DKO TLR-2 & 4 mice were stimulated with S. pneumoniae serotype 2 D39 and 
pneumolysin deficient ΔPLY for 24 hours. ELISA measured Cytokine levels in cultures supernatants. 
Results are presented as mean +/-SEM and are representative of three independent experiments.  * = 
p<0.05, ** = p<0.01, *** = p<0.005 and ns = not significant in two-way ANOVA analysis with 
Bonferroni post-test.  
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3.15 Pneumococcal pneumolysin is dispensable for pneumococcal-

induced changes in the expression of MARCO in vitro 

A recent study by Dorrington et al. has revealed that the macrophage receptor with 

collagenous structure (MARCO), which belongs to the family of class A scavenger 

receptor molecules, has a key role in defence against pneumococcal infections 

(Dorrington et al., 2013). The study revealed that mice that lack MARCO were 

incapable of clearing pneumococcal colonisation as MARCO-deficient mice recruited 

lower numbers of neutrophils and macrophages to the site of colonisation when 

compared to wild type mice. However, the influence of the pneumococcal toxin PLY 

on the expression of MARCO was not studied. As MR and MARCO are related 

molecules, I hypothesised that S. pneumoniae may induce MARCO up-regulation on 

macrophages via a PLY-dependent pathway. Here I show that D39 or ΔPLY 

stimulated wild type BMDMs up-regulate MARCO expression at 24 h post-infection 

when compared to uninfected BMDM (Figure 3.18). These data demonstrate that the 

pneumococcal toxin PLY is not required for pneumococcal-induced changes in the 

expression of MARCO.  
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Figure 3.18. PLY is not required for pneumococcal-induced changes in MARCO expression. Wild 
type (WT) BMDMs were stimulated with S. pneumoniae D39 or pneumolysin-deficient D39 (ΔPLY) 
for 24 hours at a 1:10 ratio. Expression of MARCO on WT BMDMs at 24 h post-infection with D39 
(Black line), ΔPLY (Dashed line), and un-stimulated cells (Solid histogram). Result is a representative 
of one experiment of at least 3 wells per condition; therefore no statistical conclusion can be made.  

 

Moreover, Dorrington et al. has suggested that MARCO is required for TLR-2 

mediated immune responses and the clearance of pneumococcal colonisation in 

murine nasopharynx. My research further demonstrates that TLR-2-/- BMDMs 

stimulated with D39 do not up-regulate expression of MARCO (Figure 3.19).  

Intriguingly, TLR-4-/- BMDMs also failed to up-regulate MARCO expression in 

response to infection (Figure 3.19), demonstrating that the up-regulation of MARCO 

is dependent upon both TLR-2 and TLR-4 (Figure 3.19).  
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Figure 3.19. TLR-2 is important for the expression of MARCO. Toll-like receptor 2 deficient 
(TLR-2 -/-), or toll-like receptor 4 deficient (TLR-4 -/-) or TLR-2 TLR-4 DKO BMDMs were infected 
with S. pneumoniae D39 for 24 hours at a 1:10 ratio. Expression of MARCO on TLR-2 -/- (Dashed 
line), or TLR-4 -/- (Black line), or TLR-2 TLR-4 DKO (Dotted line), or un-stimulated BMDMs (Solid 
histogram). Result is a representative of one experiment of at least 3 wells per condition; therefore no 
statistical conclusion can be made. 
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3.16 MARCO is required for the production of IL-6 and MIP-2 

Since the expression of both MARCO and MR by macrophages increased during 

pneumococcal infection, I next sought to determine if MARCO expression contributes 

to pneumococcal-induced cytokine expression in a manner analogous to that of MR. 

MARCO, like MR, influenced BMDM production of IL-6 during pneumococcal 

infection (Figures 3.20). MARCO-blocked BMDMs stimulated with D39, ΔPLY, 

D39-J, DKO, and PLY displayed a remarkable reduction in the production of IL-6 at 

24 h post-infection as compared to untreated controls (Figure 3.20). Unlike MR, 

however, MARCO also contributed to MIP-2 production.  MARCO-blocked BMDMs 

produced significantly less MIP-2 during infection that untreated controls (Figure 

3.21). These data suggest that MARCO contributes to the release of IL-6 and MIP-2 

by macrophages during infection. 

 

 

 

 

 

 

Figure 3.20. IL-6 production requires MARCO and is pneumolysin and capsule dependent. WT 
or MARCO blocked with dextran sulphate BMDMs were infected with S. pneumoniae serotype 2 D39, 
pneumolysin deficient ΔPLY, capsule-deficient D39-J, pneumolysin- and capsule-deficient DKO, and 
PLY for 24 hours. ELISA measured Cytokine levels in cultures supernatants. Results are presented as 
mean +/-SEM and are representative of three independent experiments.  * = p<0.05, ** = p<0.01, *** 
= p<0.005 and ns = not significant in two-way ANOVA analysis with Bonferroni post-test.  
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Figure 3.21. MIP-2 production requires MARCO and is pneumolysin and capsule dependent. WT 
or MARCO blocked with dextran sulphate BMDMs were infected with S. pneumoniae serotype 2 D39, 
pneumolysin deficient ΔPLY, capsule-deficient D39-J, pneumolysin- and capsule-deficient DKO, and 
PLY for 24 hours. ELISA measured Cytokine levels in cultures supernatants. Results are presented as 
mean +/-SEM and are representative of three independent experiments.  * = p<0.05, ** = p<0.01, *** 
= p<0.005 and ns = not significant in two-way ANOVA analysis with Bonferroni post-test.  
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3.17 MR and MARCO make significant contributions to 

pneumococcal-induced up-regulation of IL-6  

Our research has revealed that MR or MARCO could play important roles in the 

recruitment of neutrophils during pneumococcal infection, as they both contribute 

independently to the enhancement of IL-6 production by macrophages after 24 h of 

serotype 2 S. pneumoniae infections. Abrogation of either pathway failed to 

completely abolish pneumococcal-induced IL-6 production, so I next sought to 

determine if combined inhibition of both MR and MARCO would have an additive 

effect.  To do this, MARCO was blocked on MR-/- BMDM and IL-6 responses 

compared to WT BMDM. MARCO blocked MR-/- cells produced markedly less IL-6 

at 24 h post-infection compared to WT BMDMs, but some pneumococcal-induced IL-

6 production was still evident (Figure 3.22). Consistent with previous experiments, 

both PLY and capsule were found to contribute to induction of IL-6 production and 

stimulation with DKO D39 induced virtually no IL-6 production.  However, these 

experiments confirmed that there are MR and MARCO-independent pathways to 

pneumococcal-induced IL-6 production.  
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Figure 3.22. MR and MARCO are required for IL-6 production. WT or MR -/- and MARCO 
blocked BMDMs were infected with S. pneumoniae serotype 2 D39, pneumolysin deficient ΔPLY, 
capsule-deficient D39-J, pneumolysin- and capsule-deficient DKO, and PLY for 24 hours. ELISA 
measured Cytokine levels in cultures supernatants. Results are presented as mean +/-SEM and are 
representative of three independent experiments.  * = p<0.05, ** = p<0.01, *** = p<0.005 and ns = not 
significant in two-way ANOVA analysis with Bonferroni post-test.  
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3.18 MyD88 is required for pneumococcal-induced macrophage IL-6 

I have shown that MR and MARCO are involved in the up-regulation of IL-6 

production by macrophages following S. pneumoniae infection. MyD88 is a common 

adapter of Toll-like receptor signalling and has been shown to be key for the 

activation of NF-κB (Yamamoto et al., 2014), and for the production of INF-α 

(Kawai et al., 2004).  To determine whether the MyD88 adapter was involved in the 

induction of IL-6 production, WT or MyD88-/- BMDMs were treated with D39, Δ 

PLY, D39-J and DKO for 24 h. MyD88-/- cells did not produce any IL-6 in response 

to pneumococcal infection (Figure 3.23), while WT BMDMs stimulated with D39 

produced high levels of IL-6. MyD88 may be important for the TLR-induced 

upregulation of MR and MARCO or else for signaling downstream of MR and 

MARCO binding to pneumococcal ligands. 

 

 

 

 

 

 

 

Figure 3.23. MyD88 is essential for the production of IL-6. BMDMs from WT or MyD88 -/- mice 
were stimulated with S. pneumoniae serotype 2 D39, pneumolysin deficient ΔPLY, capsule deficient 
D39-J, and pneumolysin and capsule deficient DKO D39 for 24 hours. ELISA measured Cytokine 
levels in cultures supernatants. Results are presented as mean +/-SEM and are representative of three 
independent experiments.  * = p<0.05, ** = p<0.01, *** = p<0.005 and ns = not significant in two-way 
ANOVA analysis with Bonferroni post-test.  
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3.19 pneumolysin and capsule are both required for the activation of 

the NLRP3 Inflammasome 

Since my work so far has suggested that both PLY and capsule are required for the 

induction of macrophages responses, the contribution of these two virulence factors in 

the initiation of innate immune responses was investigated. Inflammasome activation 

is a key step in immune response activation following identification of pathogens.  

The inflammasome triggers the activation of significant pro-inflammatory cytokines 

including interleukin-1β (IL-1β) (Latz et al., 2013). It is known that PLY is required 

for the activation of the NLRP3 inflammasome and production of IL-1β (McNeela et 

al., 2010). To determine whether capsule also contributes to this process, NLRP3 -/- 

BMDMs were treated with D39, ΔPLY, D39-J, DKO, and PLY for 24 h. NLRP3 -/- 

cells produced no IL-1β production in response to pneumococcal infection whereas 

WT BMDM produced the cytokine under all infection conditions (Figure 3.24). 

However, the production of this pro-inflammatory cytokine from WT cells was 

reduced in the absence of pneumolysin (ΔPLY), in the absence of capsule (D39-J) 

and the absence of both pneumolysin and capsule (DKO), confirming that both PLY 

and capsule contribute to the induction of IL-1β.   
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Figure 3.24. Pneumolysin and capsule both are required for the activation of NLRP3. BMDM 
from WT or NLRP3 -/- mice were infected with S. pneumoniae D39, pneumolysin deficient ΔPLY, and 
capsule-deficient D39-J and pneumolysin- and capsule-deficient DKO for 24 hours. ELISA measured 
Cytokine levels in cultures supernatants.  Results are presented as mean +/-SEM and are representative 
of three independent experiments.  * = p<0.05, ** = p<0.01, *** = p<0.005 and ns = not significant in 
two-way ANOVA analysis with Bonferroni post-test.  
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3.20 Inflammasome (NLRP3) is important for the production of IL-6 

in response to pneumococcal infections 

Next, the importance of NLRP3 for the induction of key pro-inflammatory cytokines 

such as IL-6 was investigated, since the production of IL-6 by macrophages is 

important for the recruitment of neutrophils in response to pneumococcal infections. 

NLRP3 -/- BMDMs stimulated with D39, ΔPLY, D39-J, DKO, and PLY showed a 

remarkable decrease in IL-6 production at 24 h post-infection as compared to WT 

BMDM (Figure 3.25). Interestingly however, unlike IL-1β, the production of IL-6 did 

not critically depend on NLRP3. WT BMDMs stimulated with D39 generate a large 

amount of IL-6 when compared to other serotype 2 mutants ΔPLY, D39-J, DKO, and 

PLY, suggesting that the inflammasome and pneumococcal virulence factors 

contribute to the stimulation of IL-6 production in response to S. pneumoniae 

infection. 

 

 

 

 

 

Figure 3.25. NLRP3 is required for the production of IL-6. BMDM from WT or NLRP3 -/- mice 
were infected with S. pneumoniae serotype 2 D39, pneumolysin deficient ΔPLY, capsule-deficient 
D39-J and pneumolysin- and capsule-deficient DKO for 24 hours. ELISA measured Cytokine levels in 
cultures supernatants. Results are presented as mean +/-SEM and are representative of three 
independent experiments.  * = p<0.05, ** = p<0.01, *** = p<0.005 and ns = not significant in two-way 
ANOVA analysis with Bonferroni post-test.  
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3.21 Discussion: 

S. pneumoniae is a pathogen of global significance causing diseases of high morbidity 

and mortality. The global disease burden due to this pathogen has significant impact 

on the health care resources of developing and under-developed countries. 

Nasopharyngeal colonisation is essential for the pneumococcus to initiate localized or 

systemic infections. The ubiquitous production of pneumolysin by S. pneumoniae and 

the high degree of conservation of the PLY gene between strains suggest that the 

toxin plays a significant role in key phases of the pathogen life cycle (Rubins et al., 

1998, Kadioglu et al., 2008). Using a murine model of long-term nasopharyngeal 

colonisation our lab has previously shown that pneumolysin is required for successful 

colonisation, as PLY deficient strains were cleared from the nasopharynx (Kadioglu et 

al., 2002, Richards et al., 2010). Furthermore, our previous studies have revealed the 

ability of PLY to induce expression of cytokines in dendritic cells and macrophages 

(McNeela et al., 2010). In this thesis, I have investigated the role of MR in anti 

pneumococcal immunity in the presence and absence of pneumococcal pneumolysin. 

Our lab had previously identified a population of MR-expressing macrophages in the 

nasopharynx of mice undergoing prolonged pneumococcal carriage (Richards et al., 

2010).  

 

3.21.1 Mannose Receptor 

Our lab has previously shown that MR-expressing macrophages accumulate in the 

nasopharynx over 7 days of pneumococcal carriage by a process that is partially 

pneumolysin dependent (Neill et al., 2014). Here, I have demonstrated a rapid 

increase (within 24 hours) in the proportion of MR-expressing macrophages in the 
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nasopharynx, and confirmed that this is sustained up to day 7 post infection. 

Furthermore, my work showed that MR plays a key role in promoting the 

phagocytosis of pneumococcus by BMDMs in vitro, since MR-/- cells lack the ability 

to clear D39 within 24 h post-infection. This data was supported by Macedo-Ramos et 

al., who confirm that MR is involved in the internalization of S. pneumoniae by 

Schwann cells (Macedo-Ramos et al., 2014). Yamamoto and colleagues have 

previously shown that MR is required for the production of IL-1beta, IL-6, and GM-

CSF, but not MIP-2, and KC in response to Candida albicans infection (Yamamoto et 

al., 1997). Similarly, here I demonstrate that WT S. pneumoniae induces high levels 

of IL-6, IL-1β, IL-10, IL-12 and MIP-2 production in WT macrophages, while levels 

of all these cytokines/chemokines bar MIP-2 were significantly reduced in 

supernatants from D39-infected MR-/- cells. My study suggests an interesting model in 

which macrophages become highly activated when infected with pneumococci in the 

presence of PLY and capsule together, whereas significantly less activation occurs in 

the absence of either component and cytokine production is almost completely 

abolished in the absence of both. Furthermore, the absence of IL-6 production in 

PLY-stimulated macrophages is likely due to the absence of TLR ligands to trigger 

inflammasome activation and thus IL-6 production (McNeela et al., 2010). However, 

PLY alone induces noticeable levels of MIP-2 in both WT macrophages and MR-/- 

cells by a yet to be identified pathway.  MR appears to be dispensable for MIP-2-

production as no significant differences were observed between WT and MR-/- cells. 

In contrast, MR seems to play a significant role in induction of macrophage 

production of IL-6, IL-1β, IL-10 and IL-12, as these factors were markedly reduced in 

D39-infected MR-/- macrophages when compared to the WT cells. These data support 

the notion that MR mediates selected cytokine responses to pneumococcus, whereas 
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some chemokine responses may be facilitated by other macrophage receptors. MR is 

an essential component of macrophages, providing a critical defense against 

pathogens including S. pneumoniae (Gordon, 2003). PLY is a potent activator for 

both mucosal and systemic immune responses, directly stimulating macrophages and 

amplifying their production of pro-inflammatory cytokines (McNeela et al., 2010). 

The role of PLY in up-regulating macrophage MR expression has been demonstrated 

for the first time in my studies. I also provide the first evidence for direct binding of 

PLY to MR, mediated through PLY domain 4. To support this, a recent study has 

revealed that human L-ficolin, which is a recognition molecule that has structure 

related to that of mannose receptor, can activate complement by binding to 

pneumolysin (Ali et al., 2013). My findings suggest that MR is essential to activate 

macrophages and contribute to their production of pro-inflammatory cytokines in 

response to S. pneumoniae infection. 

 

3.21.2 The Role of Pneumolysin 

PLY is crucial for S. pneumoniae to asymptomatically colonize the nasopharynx with 

minimal induction of pro-inflammatory immune responses (Kadioglu et al., 2002) 

(Richards et al., 2010, Neill et al., 2014), in marked contrast to its ability to drive 

inflammation in the lungs during pneumonia. Pneumolysin has been identified as the 

main pneumococcal cytotoxin that is released by the bacterial cells during autolysis 

(Rubins et al., 1998). The effect of pneumolysin on the morphology of BMDM 

confirmed its cytotoxicity, as cells stimulated with pneumolysin deficient ΔPLY 

showed less damage and fewer cytopathic signs than D39-treated cells. It is possible 

that pneumolysin stimulates tolerogenic immune mechanisms in the nasopharynx in 
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contrast to its action in the lungs. One potential model, supported by my data, is that 

during nasopharyngeal colonisation, nasal mucosa-associated macrophages become 

activated by pneumolysin and subsequently drain to cervical lymph nodes to initiate 

immune responses that may act to prevent damage to host tissue and systemic 

pneumococcal dissemination. Such action may be mediated by Foxp3+ T regulatory 

cells, which have been shown to play key roles in the modulation and inhibition of 

inflammation in the context of infection (Sakaguchi et al., 2010). These cells are well 

known to play important roles in limiting infection-associated inflammation, and 

resolving tissue damage post-infection (Mills, 2004, Barnes and Powrie, 2009) but, 

the role of T regulatory cells and other immune-modulatory cytokines during S. 

pneumoniae infection is limited and needs further investigations. However, recent 

studies have provided evidence for the important protective role that T regulatory 

cells play during invasive pneumococcal pneumonia (Neill et al., 2012) and carriage 

(Neill et al., 2014). The protective effects of T regulatory cells during carriage were 

also observed by Pido-Lopez et al. who demonstrated that the response of CD4 T cells 

to pneumococci increase gradually at the site of colonisation. The presence of 

regulatory T cells was detected at the peak of CD4 T cell responses, leading to 

inhibition of anti-pneumococcal CD4 T cell responses (Pido-Lopez et al., 2011). The 

association of regulatory T cells with carriage was echoed by Zhang and colleagues, 

who demonstrated that regulatory T cells with suppressive function were present in 

higher proportions in the nasopharynx of pneumococcal carriers than non-carriers 

(Zhang et al., 2011). The study suggested that the presence of T reg in nasal-

associated lymphoid tissue could play a key role in the persistence of pneumococcus 

in children. 
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3.21.3 Macrophages and T cell Differentiation 

To further explore the involvement of T regulatory cells and immunomodulatory 

cytokines in response to S. pneumoniae infections, mutant strains of serotype 2 

pneumococcus were used to stimulate BMDMs to access contributions of 

pneumococcal factors to the differentiation of CD4+ T cells into T regulatory cells 

during pneumococcal infection. BMDMs stimulated with D39 enhanced the 

differentiation of CD4+ T cells into T regulatory cells and, to a lesser extent, Th17 

and Th1 cells.  PLY-deficient D39 was less effective at inducing differentiation of all 

three T cell subsets. The reduced levels of IL-10, IL-17 and INF-gamma in 

supernatants of ΔPLY-stimulated cells versus D39-stimulated controls supported 

these conclusions. My data indicate that both PLY and capsule stimulate macrophages 

to induce the maturation of T regulatory cells. Interestingly, PLY and capsule also 

stimulated expression and production of RORgt and IL-17 by Th17 and Tbet and 

INF-gamma by Th1, confirming a key role for both PLY and capsule in the 

generation of both immune tolerance and inflammatory responses during 

pneumococcal infection. Similarly, McNeela and colleagues have shown that PLY-

expressing pneumococcal strains are able to induce high levels of IL-17 and INF-

gamma production by splenocytes in vitro when compared to pneumolysin deficient 

strains (McNeela et al., 2010). The importance of IL-17 in pneumococcal carriage has 

been described by several studies. A recent study has revealed that Th17 cells have a 

protective role during pneumococcal carriage in human nasopharynx, due to their 

ability to produce IL-17 that drives pro-inflammatory responses, recruitment of 

macrophages and neutrophils, and the clearance of colonisation. This study showed 

this immune response was promoted by domain 4 and not domain 123 of PLY (Gray 

et al., 2014).  
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Moreover, animal studies have also suggested that Th17 cells play a key role in 

facilitating the clearance of nasopharyngeal colonisation of S. pneumoniae (Lu et al., 

2008, Zhang et al., 2009). In mouse models, Th17 cells that express IL-17 have been 

shown to generate protection in response to different respiratory pathogens (O'Connor 

et al., 2010). Furthermore, an important role for IL-17 signaling in bacterial clearance 

has been described in murine models for several mucosal pathogens, proposing that 

the Th17 pathway could be the main mechanism in the clearance of bacteria at 

mucosal surfaces (Curtis et al., 2009, O'Connor et al., 2010). A recent study has 

revealed that during pneumococcal carriage in mice, antigen-specific CD4+ Th17 cell 

immunity reduces colonisation equally by an antigen-expressing strain and a co-

colonized antigen-negative strain, consequently minimizing the advantage of escape 

from this type of immunity by antigenic variation (Li et al., 2012). 

 

3.21.4 Mannose Receptor and T cell Differentiation 

Since MR was found to bind the pneumococcal toxin PLY (my data), and 

pneumococcal capsule (Zamze et al., 2002), the influence of MR on the 

differentiation of CD4+ T cells into T regulatory cells was studied. MR was found to 

contribute to the induction of expression of Foxp3, RORgt and Tbet in T cells. 

Accordingly, MR also contributed to the induction of IL-10, IL-17, and INF-gamma 

production by T cells. These data validate that MR has a key impact on the generation 

of T regulatory cells, Th17 and Th1 and associated pro- and anti-inflammatory 

cytokines. Previously, Chieppa et al proposed a direct role for mannose receptor in 

mediating T regulatory, but not Th1, chemokine and cytokine induction (Chieppa et 

al., 2003).  
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MR seems to be more important in providing protection against pneumococcal 

infections, in particular in stimulating pro-inflammatory responses, since my study 

revealed that the absence of MR led to significant reduction in the production of IL-17 

and INF-gamma by Th17 and Th1 receptively. Therefore, I propose that MR is 

necessary to generate protective immunity against S. pneumoniae, particularly against 

the pneumococcal toxin and capsule. Here I show that during pneumococcal 

nasopharyngeal colonisation, nasal mucosa-associated macrophages become 

activated, via the binding of pneumococcal ligands to both pattern recognition 

receptors (including TLR-2) and MR (Figure 26). I have shown here that large 

amounts of IL-6 are produced by the activated macrophages, contributing to the 

recruitment of PMN to the site of infection.  MR-expressing macrophages also 

contribute directly to control of bacterial colonisation via phagocytosis.   

 

3.21.5 Mannose Receptor and Phagocytosis 

Studies investigating the contribution of the MR to phagocytosis have yielded 

conflicting results. MR has been showed to be involved in the phagocytosis of several 

pathogens including Candida albicans (Marodi et al., 1991) and Mycobacterium 

tuberculosis (Kang et al., 2005). Here I have shown that MR was required for the 

phagocytosis of serotype 2 D39, pneumolysin-negative ΔPLY, capsule-negative 

D39-J and pneumolysin and capsule-negative DKO D39. However, some other 

studies have described different observations and concluded that MR is not important 

for microbial phagocytosis, since CHO cells expressing MR were not able to 

phagocytose Mycobacterium kansasii (Le Cabec et al., 2005), Leishmania donovani 

and Leishmania major (Akilov et al., 2007). In addition, Lee et al. demonstrated that 
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MR-/- mice do not differ from WT mice in both the humoral response to candida 

antigens or phagocytosis of Candida albicans (Lee et al., 2003). 

 

3.21.6 A Model For Mannose Receptor Function 

My data suggest that MR-expressing macrophages play dual roles in pneumococcal 

carriage (Figure 26).  In early infection they play a direct antimicrobial role through 

the phagocytosis of pneumococci and also recruit effector cells such as neutrophils via 

chemokine and cytokine production.  Later, during long-term pneumococcal carriage, 

activated macrophages may drain to cervical lymph nodes (CLN) to initiate immune 

responses that act to prevent damage to host tissues and systemic pneumococcal 

dissemination. This includes the stimulation of differentiation of T cells into 

regulatory T cells, leading to production of large amounts of IL-10 and TGF-β. These 

anti-inflammatory cytokines will recruit more regulatory T cells into the nasopharynx 

leading to maintenance of stable pneumococcal carriage and prevention of damage to 

host tissues. Stimulation of Th1 and Th17 cell differentiation by MR-expressing 

macrophages may contribute to control of bacterial proliferation in the nasopharynx. I 

confirm here that both the pneumococcal toxin pneumolysin and macrophage MR 

have key roles in encouraging macrophage induction of T cell differentiation. These T 

cells are likely key to maintenance of a state of immune tolerance in nasopharynx 

during pneumococcal colonisation. 
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Figure 3.26. The role of MR in generating anti-inflammatory responses during pneumococcal 
infections. NP = nasopharynx, LN = lymph node. 
 

 

3.21.7 The Inflammasome 

Pneumolysin drives the activation of the NLRP3 inflammasome and the release of IL-

1β from macrophages and dendritic cells (McNeela et al., 2010). Here I demonstrate 

that pneumococcal capsule also contributes to this process as the dual pneumolysin 

and capsule mutant DKO D39 induced significantly less IL-1β production from 

macrophages than either single mutant (ΔPLY and D39-J). Moreover, the NLRP3 

inflammasome has been shown to be required for protection against invasive 

pneumococcal pneumonia and for the generation of IL-1β by dendritic cells (McNeela 

et al., 2010). Here I show that the inflammasome contributes to the induction of IL-6 
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production in macrophages, which is important for the recruitment of neutrophils in 

response to infection.  

 

3.21.8 Toll Like Receptors 

A recent study has revealed that TLR-2 is required for MARCO to generate sufficient 

immune response against pneumococcal infections (Dorrington et al., 2013). A 

separate study demonstrated that MARCO and TLR-2 are required for macrophage 

cytokine responses to M. tuberculosis (Bowdish et al., 2009). I have now shown that 

the up-regulation of MR by S. pneumoniae is similarly TLR-2-dependent, since 

TLR2-deficient BMDMs stimulated with D39 did not induce the expression of MR, 

suggesting that MR and TLR-2 may work as co-receptors in response to S. 

pneumoniae infections. In support of such a hypothesis, Tachado et al. have shown 

that MR interacts with TLR2 during the recognition of Pneumocystis carinii (Tachado 

et al., 2007). Interestingly, I observed that the release of IL-6 by BMDMs that was 

triggered by D39 was TLR-2 dependent, as TLR-2-/- cells stimulated with ΔPLY 

released very low levels of cytokine. TLR-4 was found to have no significant 

involvement in either the expression of MR or the production of IL-6, which is in line 

with the findings of McNeela et al. who demonstrated that dendritic cells were able to 

generate pro-inflammatory cytokines in response to PLY independently of TLR-4 

(McNeela et al., 2010). The importance of TLR-2 in response to pneumococcal 

infections has been revealed by several studies. A study by Echchannaoui et al. 

demonstrated that TLR-2 -/- mice infected with serotype 3 pneumococcus succumbed 

to infection more rapidly that WT mice and had significantly greater bacterial loads in 

the brain (Echchannaoui et al., 2002). Furthermore, another study by Knapp et al. has 
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shown that TLR-2 is required for the early inflammatory response to pneumococcal 

pneumonia in mice (Knapp et al., 2004). MyD88 is a key adaptor molecule for the 

TLR family and activates the transcription factor NF-κB (Takeuchi et al., 2000, 

Arancibia et al., 2007). Here I have shown that MyD88 is required for the release of 

IL-6 by S. pneumoniae-infected BMDM. 

 

3.21.9 The Role of MARCO 

Both TLR-2 and MARCO have been shown to play a key role in activating 

macrophage cytokine responses to M. tuberculosis (Bowdish et al., 2009), and I have 

investigated the role of these receptors in response to S. pneumoniae. My data shows 

that both TLR-2 and TLR-4 are required for up regulation of MARCO expression in 

response to pneumococcal infection.  In contrast to MR, PLY does not appear to play 

a role in the regulation of MARCO expression on macrophages as similar levels of 

MARCO up regulation were observed following infection with D39 or ΔPLY.  

Dorrington et al. have revealed the importance of MARCO in the clearance of 

pneumococcal colonisation in murine nasopharynx (Dorrington et al., 2013). Here I 

have shown that BMDM stimulated with D39 up-regulate MARCO.  A study by 

Arredouani et al. revealed that Bronchoalveolar lavage (BAL) fluid from MARCO -/- 

mice infected with serotype 3 S. pneumoniae produced higher amounts of MIP-2 and 

TNF-α when compared to WT mice (Arredouani et al., 2004). By contrast, I have 

shown that inhibition of MARCO in vitro attenuates production of both IL-6 and 

MIP-2 in BMDMs stimulated with serotype 2 S. pneumoniae.  The observed 

differences between the data of Arredouani and colleagues and my results could be 

due to the use of different serotypes of pneumococcus, the use of different mouse 
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strains or differences in doses and timings of infection. Collectively, these data point 

to a significant function for macrophage MARCO in mounting an effective regulated 

innate immune response against pneumococcal infection. Another significant finding 

from my study is that both MR and MARCO play key roles in the generation of IL-6, 

which is known to be involved in the recruitment of neutrophils during S. pneumoniae 

infection (Neill et al, 2014). MR-/- and MARCO-blocked BMDMs produced very 

small amounts of IL-6 when compared to WT cells. These data clarify that both MR 

and MARCO are important components of anti- S. pneumoniae responses. 

 

3.21.10 Conclusions and Implications 

Several previous studies performed by our group have shown that nasopharyngeal 

colonisation generates some level of host immunity to pneumococcus, however this is 

either ineffective in clearance of carriage or else other immune mechanisms exist that 

allow or tolerate colonisation (Richards et al., 2010, Ferreira et al., 2013, Neill et al., 

2014). My PhD study shows that macrophage MR is vital for the recognition and 

phagocytosis of S. pneumoniae. However, my hypothesis is that during colonisation 

of the nasopharynx a state of immune tolerance is generated that is driven by 

pneumolysin and MR. Nasal mucosa-associated macrophages are key to initiating this 

tolerogenic state; T- regulatory cells, IL-10 and TGF-β are key to its long-term 

regulation. Here I have shown that S. pneumoniae uses PLY to maintain colonisation 

in host nasopharynx via induction of macrophage MR. In particular, pneumococcus 

use PLY to trigger the alternative activation of nasal-associated macrophages via its 

binding to MR. This type of activation will stimulate the differentiation of T cells into 

regulatory T cells, which will lead to generation of large amounts of the anti-
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inflammatory cytokines IL-10 and TGF-β, leading to suppression of the pro-

inflammatory responses at infection sites and therefore maintaining the presence of 

pneumococcus in host nasopharynx.  

I propose that therapeutic blockade of MR might result in the classical activation of 

macrophages, and thus the induction of pro-inflammatory cytokine production and the 

recruitment of immune effector cells that would clear pneumococcal infection from 

host nasopharynx.  My findings have implications for the vaccines based around PLY 

and its derivatives. PLY could be used as a mucosal adjuvant to generate protective 

immunity against pneumococcal infections. PLY has been shown previously to 

function as a potent activator of both mucosal and systemic immune responses 

(McNeela et al., 2010), and to boost IgG and IgA antibodies titres to pneumococcal 

protein PsaA (Douce et al., 2010). However, these observed phenomena rely on the 

cytolytic activity of PLY. Therefore, I suggest that PLY could be used in a 

formulation with carbohydrate antigens (such as Mannan) that could block MR and 

prevent the alternative activation of macrophages, leading to classical activation and 

the induction of Th1 and Th17 responses and associated production of protective IFN-

γ and IL-17 that are known to stimulate immunity against pneumococcal infections 

(McNeela et al., 2010).  Th1 and Th17 cells have been confirmed to be required for 

protection in response to both repeated invasive challenges and pneumococcal 

carriage in mice (Malley et al., 2006).  
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Chapter 4: Proteomic analysis of pneumococcus-stimulated 
macrophages 

 

4.1. Introduction 

The pneumococcal toxin pneumolysin (PLY) has been shown to activate mucosal and 

systemic immune response. My previous chapter has revealed interactions between 

pneumolysin and both innate and adaptive immunity.  

The aim of the work described in this chapter was to study the proteome of 

pneumococcal–stimulated bone marrow derived macrophages (BMDMs) in order to 

answer some important questions such as; what type of proteins are expressed in 

response to pneumococcal infection in the presence or absence of pneumolysin, what 

is the rate of protein production and degradation, how do proteins interact with each 

other, and which protein pathways are specifically triggered by pneumolysin. The 

knowledge gained from answering these questions will inform us of correlates of host 

immunity, to significantly increase our understanding of PLY function and potentially 

aid future vaccine development. 

 

 

4.2 Pneumococcus stimulates the expression of a wide range of 

proteins by macrophages. 

Murine BMDMs were stimulated for 24 h with serotype 2 D39 or pneumolysin-

negative ΔPLY. Stimulated/infected cells and uninfected control cells were used for 

label free quantitative proteomics.  Figure 4.1 show the heat map for the proteins 
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expressed by BMDMs at 24 h post pneumococcal infection. The heat-map is an 

interactive visualization tool that gives an overview of the relative abundance of 

proteins within a selected set of samples. Here the heat map was used as a tool to 

compare expression of groups of proteins under different infection conditions.  

 

In Figure 4.1, the expressed proteins are grouped together using hierarchal clustering 

(using the GENE-e software). Similar patterns of proteins abundance are grouped 

together. For example, the proteins that go up in one group of samples are grouped 

together. Here my data show an overview comparison between un-stimulated 

BMDMs, BMDMs stimulated with D39, and BMDMs stimulated with ΔPLY at 24 h. 

The colours represent the relative abundance of the expressed proteins, a protein with 

the highest intensity (relative to the other samples) is red and a protein with lowest 

intensity is blue. Distinct expression patterns can be seen for untreated and D39-

infected cells, with the pattern for ΔPLY more variable between repeat samples, but 

still more similar to each other than to either untreated or D39-infected cells (Figure 

4.1).   
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Figure 4.1. Heat map depiction of protein groups evident as being regulated due to pneumococcal 
infections of BMDMs. BMDMs were stimulated for 24 h with D39 or ΔPLY (at a ratio of 1:10). 
Protein groups were selected for presentation based intensity measurements.  
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Furthermore, the volcano plots in Figure 4.2A and B show an overall view of the 

differences between untreated cells and D39, and between D39 and ΔPLY. A full list 

of differentially expressed proteins can be found in Appendix 1 and 2 of this thesis. 

The volcano plot is beneficial for displaying significant differences in expression 

together with fold change. The vertical axis corresponds to statistical significance (− 

log base 10 (p value)) and the horizontal axis represents average fold change between 

conditions. Data points in the top right and left rectangles correspond to proteins with 

both small p-values and large fold changes. This information together with biological 

information about each protein is useful for identifying the important proteins for 

further investigation. 
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Figure 4.2. Volcano plots showing fold changes and statistically significant differences in 
expression of BMDM proteins following pneumococcal infection. Statistical significance versus fold 
change for (A) untreated cells and D39 (B) D39 and ΔPLY. The vertical axis represents –log base 10 
of the p-value and the horizontal axis denotes average fold change on the log base 2 scale. The 
horizontal reference line corresponds to a p-value cut-off of 0.05, the Bonferroni adjusted significance 
criteria. The two vertical lines correspond to a 2-fold change. 

 

 

B 

A 
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Next, to identify and determine the importance of these differentially expressed 

proteins, a ternary plot of normalized protein abundances in macrophages treated with 

D39 or ΔPLY Streptococcus pneumoniae, compared to untreated cells was created. 
Figure 4.3 shows a wide range of protein abundances in macrophages stimulated with 

D39 and pneumolysin-negative ΔPLY.  

 

Both D39 and ΔPLY induced up-regulation and down-regulation of expression of a 

wide range of different proteins by macrophages at 24 h post-infection. Up-regulated 

proteins were divided into 3 groups; proteins up-regulated in D39 infection only (red 

circles in Figure 4.3), proteins up-regulated in ΔPLY infection only (Blue) and 

proteins up-regulated with both D39 and ΔPLY (Purple).   

 

These proteins are listed with their functions in Table 4.1. Down-regulated proteins 

were also divided into 3 groups; proteins down regulated in D39 infection (Orange), 

proteins down regulated in ΔPLY infection (Yellow) and proteins down regulated in 

both D39 and ΔPLY infection (Green).  These proteins are also listed with roles in 

Table 4.2. 
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Figure 4.3. Ternary plot of normalized protein abundances in macrophages treated with D39 or 
ΔPLY Streptococcus pneumoniae compared to control. Protein abundance was measured using a 
label free proteomic approach. Only proteins with > 2 unique peptides and a q –value <0.05 were 
included in the analysis. Highly up-regulated or down-regulated proteins (normalised abundance >70, 
<70 >20) are highlighted by solid colours (see key). Proteins with no significant changes between 
conditions are displayed in black. The numbers along the three sides of the triangle represent the 
proportion of the total signal that belongs to each of the three groups. For each point the summed value 
should equal 100. 
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Group 

 

Protein ID 

 

Protein name 

 

 

Fold-change 

 

P value 

 

Up-regulated in D39 

 

 

P29477 

 

Nitric oxide synthase, 
inducible 

 

 

1185.429408 

 

 

0.015203081 

 

 

Up-regulated in D39 

 

P10889 

 

C-X-C motif chemokine 
2 

 

 

1185.429408 

 

 

0.014117147 

 

 

Up-regulated in D39 

 

P50396	

 

 

Rab GDP dissociation 
inhibitor  

 

1185.429408 

 

 

0.013176004 

 

 

Up-regulated in D39 

	

P50446	

 

 

Keratin, type II  

 

929.1203468 

 

 

0.016466426 

 

 

Up-regulated in D39 

 

	

P00920	

 

 

Carbonic anhydrase 2 

 

838.4744593 

 

 

0.017433144 

 

 

Up-regulated in D39 

	

O35744	

 

 

Chitinase-like protein 3 

 

763.9433962 

 

 

0.017329313 

 

 

Up-regulated in D39 

	

Q05769	

 

 

Prostaglandin G/H 
synthase 2 

 

763.9433962 

 

 

0.016462847 

 

 

Up-regulated   in ∆PLY 

 

Q05117 

 

 

Tartrate-resistant acid 
phosphatase type 5 

 

 

2369.408276 

 

 

0.016971881 
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Up-regulated in ∆PLY 

 

Q8K4B2 

 

Interleukin-1 receptor-
associated kinase 3 

 

 

2042.593341 

 

 

0.02036519 

 

Up-regulated in ∆PLY 

 

 

P16056 

 

 

Hepatocyte growth factor 
receptor 

 

2042.593341 

 

 

0.02036519 

 

 

Up-regulated in ∆PLY 

 

 

Q61549 

 

 

Adhesion G protein-
coupled receptor E1 

 

 

1795.00627 

 

 

0.023758143 

 

 

Up-regulated in 
∆PLY 

 

 

P18581 

 

 

Cationic amino acid 
transporter 2 

 

1795.00627 

 

 

0.023758143 

 

 

Up regulated in D39 
and ∆PLY 

 

P10810 

 

 

Monocyte differentiation 
antigen CD14 

 

 

1152.43833 

 

 

0.022467051 

 

 

Up regulated in D39 
and ∆PLY 

 

 

Q91XB0 

 

 

Three-prime repair 
exonuclease 1 

 

61.92289593 

 

 

0.021218882 

 

 

Up regulated in D39 
and ∆PLY 

 

 

P42230 

 

 

Signal transducer and 
activator of transcription 

5A 

 

 

1152.43833 

 

 

0.020102098 

 

 

 

Up regulated in D39 
and ∆PLY 

 

 

 

P56394 

 

 

 

Cytochrome c oxidase 
copper chaperone 

 

 

 

29.25381444 

 

 

 

0.02121448 

 

 

Up regulated in D39 
and ∆PLY 

 

P53690 

 

Matrix 
metalloproteinase-14 

 

29.25381444 

 

0.020365901 
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Up regulated in D39 
and ∆PLY 

 

 

Q9Z2H6 

 

 

C-type lectin domain 
family 4 member D 

 

1152.43833 

 

 

0.019096994 

 

 

Up regulated in D39 
and ∆PLY 

 

 

Q05915 

 

 

GTP cyclohydrolase 1 

 

26.27554637 

 

 

0.019582597 

 

 

Up regulated in D39 
and ∆PLY 

 

 

Q9CQR2 

 

 

Interleukin-1 beta 

 

932.9262673 

 

 

0.023566755 

 

 

Up regulated in D39 
and ∆PLY 

 

 

P10749 

 

 

Guanylate-binding 
protein 5 

 

477.8402832 

 

 

0.027264445 

 

 

Up regulated in D39 
and ∆PLY 

 

 

Q8CFB4 

 

 

Z-DNA-binding protein 
1 

 

28.4982512 

 

 

0.026324292 

 

 

Up regulated in D39 
and ∆PLY 

 

 

Q9QY24 

 

 

Endothelial protein C 
receptor 

 

932.9262673 

 

 

0.029681794 

 

 

Up regulated in D39 
and ∆PLY 

 

 

Q64695 

 

 

Palladin 

 

26.27554637 

 

 

0.030831831 

 

 

Up regulated in D39 
and ∆PLY 

 

Q9ET54 

 

Interferon-induced 
protein with 

tetratricopeptide repeats 
3 OS= 

 

28.4982512 

 

 

0.029925013 

 

 

Up regulated in D39 
and ∆PLY 

 

Q9D154 

 

Leukocyte elastase 
inhibitor A 

 

783.6580645 

 

0.029070012 
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Up regulated in D39 
and ∆PLY 

 

P01582 

 

Interleukin-1 alpha 

 

932.9262673 

 

 

0.031788732 

 

 

Up regulated in D39 
and ∆PLY 

 

P54987 

 

Cis-aconitate 
decarboxylase 

 

73.50328166 

 

 

0.032597066 

 

 

Table 4.1. Proteins up-regulated during pneumococcal infection. The table shows proteins up 
regulated by S. pneumoniae D39 or ΔPLY, which may contribute to the pathogenesis of pneumococcus 
or may play immune roles in response to pneumococcal infection. 

 

 

 

 

Group 

 

Protein ID 

 

Protein name 

 

Fold-change 

 

P value 

 

Down-regulated in D39 

 

P09405 

 

Nucleolin 

 

563.5648005 

 

0.038757849 

 

Down-regulated in D39 

 

Q9EQU5 

 

Protein SET 

 

409.1634853 

 

0.036312847 

 

Down-regulated in D39 

 

P09581 

 

Macrophage colony-

stimulating factor 1 

receptor 

 

524.0163934 

 

0.036384641 

 

Down-regulated   in 

D39 

 

Q9EPK2 

 

Protein XRP2 

 

409.1634853 

 

 

0.034110601 
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Down-regulated in D39 

 

Q9EST5 

 

Acidic leucine-rich 

nuclear phosphoprotein 

32 family member B 

 

368.7522769 

 

0.032104095 

 

Down-regulated in D39 

 

Q8C0P5 

 

Coronin-2A 

 

351.3992285 

 

0.032648691 

 

Down-regulated in D39 

 

Q9Z1T1 

 

AP-3 complex subunit 

beta-1 

 

321.1713379 

 

 

0.030930339 

 

 

Down-regulated in D39 

 

 

Q61239 

 

 

Protein 

farnesyltransferase/geran

ylgeranyltransferase 

type-1 su 

 

20.2649208 

 

 

0.035666615 

 

 

Down-regulated in D39 

 

 

P22366 

 

 

Myeloid differentiation 

primary response protein 

88 

 

524.0163934 

 

 

0.033968205 

 

 

Down-regulated in 

∆PLY 

 

Q9CR09 

 

Ubiquitin-conjugating 

enzyme 1 

 

304.4285714 

 

 

0.011042398 

 

 

Down-regulated in 

∆PLY 

 

Q3UVL4 

 

Vacuolar protein sorting-

associated protein 51 

homolog 

 

220.7688113 

 

 

0.01411326 
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Down-regulated in 

∆PLY 

 

 

Q3V3R1 

 

 

Mono-functional C1-

tetrahydrofolate 

synthase, mitochondrial 

 

183.4294775 

 

 

0.015797896 

 

 

Down-regulated in D39 

and ∆PLY 

 

P02088 

 

 

Hemoglobin subunit 

beta-1 

 

369.9502538 

 

 

0.019693972 

 

 

Down- regulated in D39 

and ∆PLY 

 

Q8BVF2 

 

 

Phosducin-like protein 3 

 

342.1605634 

 

 

0.015627666 

 

 

Down- regulated in D39 

and ∆PLY 

 

A2AGT5 

 

Cytoskeleton-associated 

protein 5 

 

318.2541485 

 

 

0.022483393 

 

 

Down-regulated in D39 

and ∆PLY 

 

Q07113 

 

 

Cation-independent 

mannose-6-phosphate 

receptor 

 

307.5113924 

 

 

0.019482527 

 

 

Down- regulated in D39 

and ∆PLY 

 

P16546 

 

 

Spectrin alpha chain, 

non-erythrocytic 1 

 

191.2866142 

 

 

0.017481556 

 

 

Table 4.2. Proteins down-regulated during pneumococcal infection. Proteins down-regulated in 
macrophages during pneumococcal D39 or ΔPLY infection, which may contribute to the pathogenesis 
of pneumococcus or may play immune roles in response to pneumococcal infection. 
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4.3 Deep analysis for the up-regulated proteins  

Using the protein lists identified in the groupings of my ternary plot, I next sought to 

highlight the differences in response between D39- and ΔPLY-stimulated BMDMs, 

and to define the molecular functions for the up-regulated proteins.  The aim of this 

analysis was to get a ‘snapshot’ inside the macrophage during pneumococcal 

infection. To do this, I grouped proteins that were up regulated (relative to untreated 

cells) during D39 infection (Figure 4.4A), ΔPLY infection (Figure 4.4B) and during 

both D39 and ΔPLY infections (Figure 4.4C) into different clusters based upon their 

molecular functions.  These groups were; binding activity, catalytic activity, enzyme 

regulator activity, nucleic acid binding/transcription factor activity, receptor activity, 

structural molecule activity and transporter activity. Most of the up-regulated proteins 

displayed catalytic and binding activities. 
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Figure 4.4. The molecular functions for the proteins up regulated in BMDM during pneumococcal 
infection. (A) The pie chart shows the molecular functions for the up-regulated proteins with D39. (B) 
The molecular functions for the up-regulated proteins with ΔPLY (C) the molecular function in both 
D39 and ΔPLY.  
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Next, I aimed to define proteins that were up regulated significantly with D39 (Table 

4.3), ΔPLY (Table 4.4) or in both conditions (Table 4.5). 

 

4.4 Proteins up regulated during D39 infection 

 

Protein Code 

 

Protein Name 

 

  Stimulus 

 

Chi3l3 

Gdi1 

Cxcl2 

Nos2 

Car2 

Ptgs2 

Krt6a 

 

 

Chitinase-like protein 3, 

Rab GDP dissociation inhibitor alpha, 

C-X-C motif chemokine 2, 

Nitric oxide synthase, inducible 

Carbonic anhydrase 2 

Prostaglandin G/H synthase 2 

Keratin, type II cytoskeletal 6A 

 

 

 

 

D39 

 

 

Table 4.3. D39 up-regulated proteins. Protein codes and names of proteins that were up regulated by 
BMDMs during D39 infection. The data were generated from the Panther database. 

 

Chi3l3 is known as chitinase 3-like protein 3, a lectin that binds to a wide range of 

particles. It is composed of 398 amino acids. It has the ability to bind saccharides with 

a free amino group (such as glucosamine or galactosamine), oligomeric saccharides, 

chitin and heparin. It has chemotactic activity for T-lymphocytes, eosinophils and 

bone marrow cells and, plays a significant role in inflammation and allergy (Chang et 

al., 2001, Harbord et al., 2002). 
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Gdi1 is known as a guanosine diphosphate (GDP) dissociation inhibitor 1. It is 

composed of a 447 amino acids that work to regulate the GDP/GTP exchange reaction 

of most Rab proteins through blocking the dissociation of GDP from them, and the 

subsequent binding of GTP to them. It may also play a role in cell motility regulation 

(Gupta et al., 2013). 

Cxcl2 is a chemokine (C-X-C motif) ligand 2 that consists of 100 amino acids. It is 

Chemotactic for human polymorphonuclear leukocytes (Tekamp-Olson et al., 1990), 

however it does not induce chemokinesis or an oxidative burst (Shao et al., 1998).  

Nos2 is known as nitric oxide synthase 2. It consists of 1144 amino acids and is able to 

promote the production of nitric oxide (NO). The importance of this protein in 

macrophages has been described, since NO mediates tumoricidal and bactericidal 

activities (Kone et al., 1995). The protein is also involved in inflammation, enhancing 

the synthesis of pro-inflammatory mediators such as IL6 and CXCL8 (Kim et al., 

2005). 

Car2 is known as Carbonic anhydrase 2. It consists of 259 amino acids. The protein is 

crucial for osteoclast differentiation and bone resorption. It also contributes to the 

regulation of intracellular pH in the duodenal upper villous epithelium during proton-

coupled peptide absorption (Simpson et al., 2010). 

Ptgs2 is prostaglandin synthase 2. It is composed of 604 amino acids. It mediates the 

formation of prostaglandins, which functions as a main mediator of inflammation 

(Wang et al., 2005). Its up-regulation has been correlated with improved epithelial 

adhesion, phenotypic changes, resistance to tumor angiogenesis and apoptosis. In 

cancer cells, changes in the protein increase production of prostaglandin E2, which has 
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essential roles in modulating proliferation, motility and resistance to apoptosis 

(Manieri et al., 2012). 

Krt6a is known as keratin 6A and is composed of 564 amino acids. It is epidermis-

specific type I keratin, which is involved in wound healing (Rotty and Coulombe, 

2012). The protein is also involved in the activation of follicular keratinocytes after 

wounding, however it does not has a major role in the proliferation of keratinocytes or 

their migration (Wojcik et al., 2000).  

 

4.5 Proteins up regulated during ΔPLY 

 

Protein Code 

 

Protein Name 

 

Stimulus 

 

Irak3  

Slc7a2  

Acp5 

Met 

 

 

Interleukin-1 receptor-associated kinase 3  

Low affinity cationic amino acid transporter 2, 

Tartrate-resistant acid phosphatase type 5  

Hepatocyte growth factor receptor  

 

 

 

ΔPLY 

 

Table 4.4. ΔPLY up regulated proteins. Protein codes and names of proteins that were up regulated 
by BMDMs during infection with pneumolysin-negative pneumococci. The data were generated from 
the Panther database. 

 

 

IRAK3 is a 596 amino acids protein known as interleukin-1 receptor-associated 

kinase 3 or IRAK-M and is a negative regulator of Toll-like receptor (TLR) signaling 

(Kobayashi, 2002). It has the capability to inhibit the dissociation of IRAK1 and 
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IRAK4 from the TLR signaling complex (Rosati and Martin, 2002). This inhibition 

process could occur by either blocking the phosphorylation of IRAK1 and IRAK4 or 

stabilizing the receptor complex (Kobayashi et al., 2002). TLR-mediated signaling 

processes identify various substances from microbial and non-microbial sources, and 

relay signals downstream to trigger the expression of several pro- and anti- 

inflammatory cytokines (Li, 2004). The signaling of TLR is regulated throughout a 

series of intra-cellular proteins involving IRAKs. There are four different IRAK 

proteins; IRAK1, IRAK2, IRAK M, and IRAK 4) (Janssens and Beyaert, 2003), 

between which IRAK-4 is significant for activating transcription factor NFκB and 

thus activating the inflammasome (Li et al., 2002) (Man and Kanneganti, 2015).  Up 

regulation of the inhibitory IRAK-3 suggests the TLR signaling is negatively 

regulated during D39 infection. 

Slc7a2 is a protein composed of 698 amino acids. It is known as solute carrier family 

7 (cationic amino acid transporter, y+ system), member 2.  It is a low-affinity, high 

capacity permease, which is involved in the transport of the cationic amino acids such 

as lysine ornithine and arginine macrophages activation (Yeramian et al., 2006). 

Acp5 is known as Tartrate-resistant acid phosphatase type 5 and is composed of 327 

amino acids. Its may have a role in the process of bone resorption (Huttlin et al., 

2010). 

Met is the Hepatocyte growth factor receptor. It is a receptor tyrosine kinase, which 

transduces signals from the extracellular matrix into the cytoplasm via binding to 

hepatocyte growth factor ligand (Prat et al., 1991). Met also regulates several 

physiological processes involving proliferation, morphogenesis, scattering and 

survival. The protein has a significant role in wound healing, organ regeneration and 
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tissue remodeling. During embryonic development, Met signaling plays a key role in 

the maturation and migration of muscles and neuronal precursors, and kidney 

formation (Bladt et al., 1995). 

 

4.6 Proteins up regulated during both D39 and ΔPLY infections 

 

Protein Code 

 

Protein Name 

 

Stimulus 

 

IL1a 

Serpinb1a 

Cd14 

Stat5a 

Clec4d 

IL1b 

Procr 

Palld 

Ifit3 

 

Interleukin-1 alpha, 

Serine protease inhibitor 1A, 

Monocyte differentiation antigen CD14, 

Signal transducer and activator of transcription 5A 

C-type lectin domain family 4 member D 

Interleukin-1 beta 

Endothelial protein C receptor  

Palladin 

Interferon-induced protein with tetratricopeptide repeats 3 

 

 

 

 

 

D39 and ΔPLY 

 

 

Table 4.5. Proteins up regulated in both D39 and ΔPLY. Protein codes and names of proteins that 
were up regulated by BMDMs during infection with both D39 and ΔPLY. The data were generated 
from the Panther database. 

 

IL1a is interleukin 1 alpha (composed of 271 amino acids). It is produced by 

stimulated macrophages. IL-1A encourages the proliferation of thymocyte by the 
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release of IL-2, maturation and proliferation of B-cells, and stimulates fibroblast 

growth factor activity (Nicklin et al., 1994). The protein is involved in the 

inflammatory response, and has been identified as an endogenous pyrogen (Hu et al., 

2003). 

Serpinb1a is a serine peptidase inhibitor, clade B, member 1a. It is composed of 379 

amino acids and has a role in regulating neutrophil protease activity and therefore 

forms complexes with elastase, cathepsin G, chymotrypsin and proteinase-3 (Benarafa 

et al., 2002).  

CD14 is known as Monocyte differentiation antigen CD14. It functions as a co-

receptor with TLR4 to mediate the response of innate immune cells to bacterial 

lipopolysaccharide (LPS) (Drage et al., 2009). It acts via MyD88, TIRAP and TRAF6 

leading to the activation of NF-kappa-B, cytokine production and the inflammatory 

responses (Jiang et al., 2005). It is also a co-receptor for TLR2 in response to 

diacylated and triacylated lipopeptides (Zhao et al., 2011).  

Stat5a is signal transducer and activator of transcription 5A. It consists of 794 amino 

acids. It may mediate the cellular responses to Stem cell factor (SCF) cytokines and 

other growth factors (Muraoka-Cook et al., 2006). The protein has two important 

functions including signal transduction and activation of transcription (Jones et al., 

1999).  

Clec4d is a C-type lectin domain family 4 and consist of 215 amino acids. It works as 

an endocytic receptor that is involved in antigen presenting cells during the uptake of 

antigen, clearance of the antigen, and presentation to T cells (Balch et al., 1998). 

IL1b is Interleukin-1 beta. It is a pro-inflammatory cytokine. The protein was initially 
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discovered as the major endogenous pyrogen that is able to induce the synthesis of 

prostaglandins, influx and activation of neutrophils, T-cell activation and cytokine 

production, activation of B-cells and antibody secretion, and fibroblast proliferation 

and collagen production (Mariathasan et al., 2006, Qu et al., 2007). Pneumolysin 

activates the NLRP3 inflammasome and triggers the release of IL-1β from 

macrophages and dendritic cells (McNeela et al., 2010). Also, the NLRP3 

inflammasome has been shown to be essential for protection against pneumococcal 

pneumonia and for the generation of IL-1β by dendritic cells (McNeela et al., 2010). 

Procr is a protein C receptor that binds activated protein C. It is composed if 238 

amino acids. It enhances protein C activation by the thrombin-thrombomodulin 

complex. The protein plays a significant role in the protein C pathway controlling 

blood coagulation (Liang et al., 1999).  

Palld is known as a palladin, which is a cytoskeletal-associated protein. It is 

composed of 1123 amino acids. This protein is essential for organization of normal 

actin cytoskeleton (Parast and Otey, 2000). It has an important role in establishing cell 

morphology, cell adhesion, motility, and cell-extracellular matrix interactions in a 

wide range of cell types (Liu et al., 2007). 

Ifit3 is known as interferon-induced protein with tetratricopeptide repeats 3. The 

protein acts as an inhibitor for viral processes, proliferation, cell migration, signaling, 

and viral replication (Lee et al., 1994).  
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4.7 Involvement of the up regulated proteins in biological processes 

Next, I aimed to examine the involvement of these up-regulated proteins in BMDM 

biological processes such as; immune system processes, developmental processes and 

metabolic processes.  

The contributions of these proteins to BMDM biological processes are presented in 

Figure 4.5.  A number of processes were represented, but metabolic and cellular 

pathways were particular prominent. Cellular processes include cell transport, cells 

diffusion, the Krebs cycle and homeostasis.  

 

 

 

 

 

 

 

 

 

Figure 4.5.  The involvement of D39 up-regulated proteins in the biological process of BMDMs. 
BMDMs were stimulated with D39 at a ratio of 1:10 for 24 h. Bar charts show the number of proteins 
involved in each biological process. Data generated by Panther classification system. 
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Furthermore, I have showed that during ΔPLY infection, proteins involved in 

metabolic pathways were again up regulated  (Figure 4.6).  

 

 

 

 

 

 

 

 

 

Figure 4.6.  The involvement of ΔPLY up-regulated proteins in the biological process of BMDMs. 
BMDMs were stimulated with ΔPLY at a ratio of 1:10 for 24 h. Bar charts show the number of 
proteins involved in each biological process. Data generated by Panther classification system. 

 

 

Proteins up-regulated in both D39 and ΔPLY infection are involved in diverse 

biological processes (Figure 4.7).  However, once again, metabolic processes feature 

heavily, as do cellular processes and the response to stimulus. Biological regulation is 

known as any process that regulates the occurrence, rate or level of any biological 

process function. While, biological process is a known sequence of events or 

molecular functions.  
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A process is a group of molecular events that have defined start and end. Cellular 

processes include cell transport, cells diffusion, the krebs cycle and homeostasis. In 

summary, Figure 4.8, a composite of Figures 4.5, 4.6 and 4.7, shows the collective 

response of BMDMs to pneumococcal infection at 24 h.  

 

 

 

 

 

 

 

 

 

Figure 4.7.  The involvement of up-regulated proteins with D39 and ΔPLY in the biological 
process of BMDMs. BMDMs were stimulated with either D39 or ΔPLY at a ratio of 1:10 for 24 h. Bar 
charts show the number of proteins involved in each biological process. Data generated by Panther 
classification system. 

 

 

 

 

 

N
um

be
r o

f p
ro

te
in

s 

Biologica
l ad

hesio
n 

Biologica
l re

gulati
on 

Cellu
lar 

proces
s 

Develo
pmental 

proces
s 

Apoptotic 
proces

s 

Resp
onse t

o sti
mulus 

Organism
al p

roces
s 

Metab
olic 

proces
s 

Local
iza

tion 

Immune sy
stem

 proces
s 



 150 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8.  The collective response of macrophages to pneumococcal infections. BMDMs were 
stimulated with either D39 or ΔPLY at a ratio of 1:10 for 24 h. Bar charts show the number of proteins 
involved in each biological process. Data generated by Panther classification system. 
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4.8 Interactions between up regulated proteins 

Next, I identified the described interactions between proteins up regulated with either 

D39 or ΔPLY, as it is essential to understand how these proteins interact with each 

other inside BMDMs in the presence or absence of pneumolysin during S. 

pneumoniae infection.  

 

In Figure 4.9, the interactions between proteins that were up regulated following 

stimulation with D39 (Figure 4.9A) or ΔPLY (Figure 4.9B) were examined. Data in 

Figure 4.9A, suggest that some of the up-regulated proteins during D39 infection may 

have direct interactions with each other and their expression may rely on each other. 

Binding activity has been described between Nos2 and Ptgs2 proteins (Blue line, 

Figure 4.9A) Co-expression has been identified for Nos2 and Chi3l3, and Ptgs2 and 

Cxcl2 (Gray line, Figure 4.9A). Figure 4.9B reveals that proteins up regulated during 

ΔPLY infection have no direct link to each other and therefore may function in 

different pathways. However, co-expression has been observed for Irak3 and Slc7a2 

(Gray line, Figure 4.9B). 

 

I also examined the relationships between proteins up regulated in both D39 and 

ΔPLY infection.  In Figure 4.10, the interactions between proteins are shown. Here the 

data demonstrate a direct relationship between Il1a and Il1b resulting in binding, 

catalysis and reaction activities. Also, the data here has shown that Cd14 is responsible 

for the activation of Clec4d, which is known to function as an endocytic receptor 

during the uptake of antigen, clearance of the antigen, and presentation to T cells 
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(Balch et al., 1998). However, no direct correlation has been identified with the other 

proteins described in Figure 4.10, although co-expression has been identified with 

Clec4d, Il1b and Cd14 (Gray line, Figure 4.10). 

 

Figure 4.11 show a summary of the interactions between all the proteins up regulated 

by BMDMs during infection with serotype 2 S. pneumoniae at 24 h. Co-expression 

has been observed between Chi3l3 and Nos2, Chi3l3 and Serpinb1a, Serpinb1a and 

Ptgs2, Ptgs2 and Met, Ptgs2 and Cxcl2, Ptgs2 and Il1b, Ptgs2 and Il1a, Il1a and Il1b, 

Il1b and Irak3, Il1a and Irak3, Slc7a2 and Irak3, Il1b and Clec4d, Cxcl2 and Clec4d, 

Cxcl2 and Cd14, and Cd14 and Clec4d (Gray lines, Figure 4.11). Also, catalysis 

activities were identified between Stat5a and Met, Il1a and Irak3, Il1b and Irak3, Il1a 

and Il1b, and Irak3 and Cd14 (Purple lines, Figure 4.11).  

 

Furthermore, binding relationships were determined between Il1b and Irak3, Il1a and 

Il1b, and Irak3 and Cd14 (Blue lines, Figure 4.11). Reaction has been observed 

between Il1b and Irak3, Stat5a and Met, Il1a and Il1b, and Irak3 and Cd14 (Black 

lines, Figure 4.11). Finally, Ptgs2 and Stat5a regulate each other expression, as do Il1a 

and Irak3 (Yellow lines Figure 4.11). 
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Figure 4.9.  Proteins up-regulated during S. pneumoniae infection. BMDMs were stimulated with 
D39 or ΔPLY at a ratio of 1:10 for 24 h. (A) The interaction between proteins up-regulated with D39. 
(B) The interaction between proteins up-regulated with ΔPLY. String protein–protein interaction 
display with known and predicted functional partners, presenting direct correlation between up-
regulated proteins. Data generated by String data base system. 
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Figure 4.10.  Proteins up-regulated with both D39 and ΔPLY. BMDMs were stimulated with D39 
or ΔPLY at a ratio of 1:10 for 24 h. String protein–protein interaction display with known and 
predicted functional partners, presenting direct correlation between up-regulated proteins. Data 
generated by String data base system 
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Figure 4.11. All proteins up regulated during pneumococcal infection. BMDMs were stimulated 
with D39 or ΔPLY at a ratio of 1:10 for 24 h. String protein–protein interaction display with known 
and predicted functional partners, presenting direct correlation between up-regulated proteins. Data 
generated by String data base system. 
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4.9 Deep analysis for the down-regulated proteins  

In Figure 4.12 the molecular functions for the proteins down-regulated during D39 or 

ΔPLY infection are presented. These proteins are responsible for 5 different 

molecular functions (Figure 4.12A-C); binding activity, catalytic activity, enzyme 

regulator activity, receptor activity and structural molecule activity. About 59% of the 

down-regulated proteins had catalytic or binding activity. Identifying the proteins that 

contribute to these significant molecular functions is necessary to understand how 

macrophages response to pneumococcus. 
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Figure 4.12. The molecular functions for the proteins down-regulated during pneumococcal 
infection. (A) The pie chart shows the molecular functions for the down-regulated proteins with D39. 
(B) The molecular functions for the down-regulated proteins with ΔPLY (C) the molecular function for 
proteins down regulated in both D39 and ΔPLY. 
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Next, I aimed to define proteins that were down regulated significantly with D39 

(Table 4.6), ΔPLY (Table 4.7) or in both conditions (Table 4.8).  

 

4.10 Proteins down regulated during D39 infection 

 

Protein Code 

 

Protein Name 

 

Stimulus 

 

Ncl 

Set 

Csf1r 

Rp2 

Anp32b 

Ap3b1 

Fnta 

 

Myd88 

 
 

 

Nucleolin, 

Protein SET 

Macrophage colony-stimulating factor 1 receptor 

Protein XRP2 

Acidic leucine-rich nuclear phosphoprotein 32 family member B 

AP-3 complex subunit beta-1 

Protein farnesyltransferase/geranylgeranyltransferase type-1 subunit 

alpha 

Myeloid differentiation primary response protein MyD88 

 

 

 

 

 

D39 

 

 

Table 4.6. D39 down regulated proteins. Protein codes and names of proteins down-regulated during 
D39 infection. The data were generated by Panther database. 

 

Ncl, known as Nucleolin, is a major nucleolar protein that is present in eukaryotic 

cells. It is believed to have a key role in pre-rRNA transcription and ribosome 

assembly. Also, it has been shown to play a role in the process of transcriptional 

elongation (Yang et al., 1994).  

Set is identified as SET nuclear oncogene. It is a multitasking protein involved in 
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biological processes such as transcription, apoptosis, nucleosome assembly and 

histone chaperoning (Rogowski et al., 2009). The protein is composed of 289 amino 

acids.  Set protein is part of a complex that inhibits apoptosis following attack by 

cytotoxic T lymphocytes upon T cell receptor stimulation (Fan et al., 2003).  

Csf1r is a Tyrosine-protein kinase that functions as a cell-surface receptor for colony 

stimulating factor (CSF) 1, which plays an important role in the proliferation, 

regulation of survival and differentiation of hematopoietic precursor cells, in 

particular mononuclear phagocytes, such as monocytes and macrophages (Dai et al., 

2002). This protein is also able to promote the production of pro-inflammatory 

chemokines in response to CSF1, and thus plays a significant role in inflammatory 

processes and innate immunity (Wei et al., 2010).  

Rp2 is identified as Protein XRP2. It acts as a GTPase-activating protein (GAP) 

involved in trafficking between the Golgi and the ciliary membrane. The protein is 

composed of 347 amino acids. It is also involved in protein localization (Huttlin et al., 

2010). 

Anp32b is acidic (leucine-rich) nuclear phosphoprotein 32 families, member B and is 

a multifunctional protein composed of 272 amino acids. It functions as a cell cycle 

progression factor as well as a cell survival factor (Matilla and Radrizzani, 2005). It is 

an anti-apoptotic protein that functions as a caspase-3 inhibitor (Huttlin et al., 2010). 

Fnta is known as farnesyltransferase, CAAX box, alpha; that contributes to the 

transfer of a farnesyl or geranyl-geranyl moiety from farnesyl or geranyl-geranyl 

pyrophosphate to a cysteine at the fourth position from the C-terminus of proteins 

containing the C-terminal sequence Cys-aliphatic-aliphatic-X leading to regulate the 
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catalytic activity such as cellular metabolism and motility, inside cells (Bon et al., 

2011). The alpha subunit is believed to participate in a stable complex with the 

substrate. This protein is composed of 377 amino acids (Luo et al., 2003). 

Myd88 is a key adapter protein involved in the Toll-like receptor and IL-1 receptor 

signaling pathways during the response of the innate immune system to infection 

(Burns et al., 1998). The protein acts via IRAK1 and IRAK2, leading to activation of 

NF-kappa-B, to trigger the secretion of cytokines and the inflammatory response 

(Janssens et al., 2002). Also, it increases the transcription of IL-8 and is involved in 

the signaling pathway of IL-18 (Adachi et al., 1998). Furthermore, MyD88 has been 

shown to mediate signaling in intestinal epithelial cells since it is required for 

maintenance of gut homeostasis and controls the expression of the anti-microbial 

lectin in the small intestine (Vaishnava et al., 2011).  
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4.11 Proteins down regulated during ΔPLY 

 

Protein Code 

 

Protein Name 

 

Stimulus 

 

Krt14 

Ufc1 

Vps51 

Mthfd1l 

 
 

 

Keratin, type I cytoskeletal 14, 

Ubiquitin-fold modifier-conjugating enzyme 1, 

Vacuolar protein sorting-associated protein 51 homolog, 

Monofunctional C1-tetrahydrofolate synthase, mitochondrial 

 

 

 

ΔPLY 

 

 

Table 4.7. ΔPLY down regulated proteins. Protein codes and names of proteins down-regulated 
during ΔPLY infection. The data were generated by Panther database. 

 

Krt14, Keratin 14 type 1 is responsible for stimulating KRT5-KRT14 filaments to 

self-organize into large bundles (Huttlin et al., 2010), leading to enhancement of the 

mechanical properties that are involved in resilience of keratin in-between filaments 

in vitro (Lee et al., 2012). 

Ufc1 is known as Ubiquitin-fold modifier-conjugating enzyme 1. The protein is 

involved in the tranferase activity of Eukaryotic cells, since it has the ability to form 

an intermediate via a thioester linkage with ubiquitin-like protein 1 (UFM1), which is 

required for a number of cellular processes (Carninci et al., 2005). 

Vps51 functions as part of the GARP complex, which is known to be involved in the 

retrograde transport from early and late endosomes to the trans-Golgi network (TGN) 



 162 

(Carninci et al., 2005). The GARP complex is important for the maintenance of 

protein retrieval from endosomes to the TGN, lysosome function, acid hydrolase 

sorting, endosomal cholesterol traffic and autophagy (Huttlin et al., 2010).  

Mthfd1l connects the mitochondria and the cytoplasm in the mammalian model of 

one-carbon folate metabolism. The protein consists of 977 amino acids (Christensen 

et al., 2005). 

 

4.12 Proteins down regulated during both D39 and ΔPLY 

 

Protein Code 

 

Protein Name 

 

Stimulus 

 

Hbb-b1 

Pdcl3 

Ckap5 

Igf2r 

Sptan1 

 

Hemoglobin subunit beta-1 

Phosducin-like protein 3 

Cytoskeleton-associated protein 5 

Insulin-like growth factor 2 receptor  

Spectrin alpha chain, non-erythrocytic 1 

 

 

 

 

D39 and ΔPLY 

 

 

Table 4.8. Proteins down regulated in both D39 and ΔPLY. Protein codes and names of proteins 
down-regulated during both D39 and ΔPLY infection. The data were generated from the Panther 
database. 

 

Hbb-b1 is the Hemoglobin subunit beta-1 protein that is composed of 147 amino 

acids. It is involved in oxygen transport process from the lung to the other peripheral 
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tissues (Carninci et al., 2005). 

Pdcl3 is composed of 240 amino acids. It is known as phosducin-like 3. This protein 

has the ability to modulate the activation of caspases during apoptosis (Wilkinson et 

al., 2004). 

Ckap5 is known as cytoskeleton associated protein 5 and is composed of 2032 amino 

acids. The protein binds to the plus end of microtubules in order to regulate 

microtubule dynamics and organization. Also, it stimulates the nucleation and 

elongation of cytoplasmic microtubule (Huttlin et al., 2010).  

Igf2r is insulin-like growth factor 2 receptor and is composed of 2483 amino acids. 

The main function for this protein is to transport lysosomal acid hydrolase precursors 

from Golgi apparatus to lysosome (Braulke et al., 1999). 

Sptan1 is a protein composed of 2478 amino acids. It is involved in cell adhesion as it 

interacts with calmodulin in a calcium-dependent manner to mediate movement of the 

cytoskeleton at the membrane (Huttline et al., 2010). 
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4.13 Involvement of the down regulated proteins in Biological 

processes 

My next aim was to study the contribution of these down-regulated proteins in 

BMDMs biological processes (Figures 4.13, 4.14. and 4.15). During D39 infection, 

proteins involved in a range of biological processes were downregulated but 

metabolism again featured strongly (Figure 4.13). 

 

 

 

 

 

 

 

 

Figure 4.13.  The involvement of D39 down-regulated proteins in the biological process of 
BMDMs. BMDMs were stimulated with D39 at a ratio of 1:10 for 24 h. Bar charts show the number of 
proteins involved in each biological process. Data generated by Panther classification system. 

 

Many of the proteins downregulated either in ΔPLY infection (Figure 4.14) or in both 

infections (Figure 4.15) were involved in cellular processes. Figure 4.16 shows a 

summary for all proteins down regulated by BMDMs during infection with serotype 2 

S. pneumoniae. 
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Figure 4.14.  The involvement of ΔPLY down regulated proteins in the biological process of 
BMDMs. BMDMs were stimulated with ΔPLY at a ratio of 1:10 for 24 h. Bar charts show the number 
of proteins involved in each biological process. Data generated by Panther classification system. 

 

 

 

 

 

 

 

 

 

Figure 4.15.  The involvement of the down regulated proteins with D39 and ΔPLY in the 
biological process of BMDMs. BMDMs were stimulated with either D39 or ΔPLY at a ratio of 1:10 
for 24 h. Bar charts show the number of proteins involved in each biological process. Data generated 
by Panther classification system. 
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Figure 4.16.  All down regulated proteins by BMDMs during infection with serotype 2 S. 
pneumoniae at 24 h. BMDMs were stimulated with either D39 or ΔPLY at a ratio of 1:10 for 24 h. 
Bar charts show the number of proteins involved in each biological process. Data generated by Panther 
classification system. 
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4.14 Interactions between up regulated proteins 

Next, I aimed to analyse the interactions between proteins down regulated during 

either D39 or ΔPLY infection. Figure 4.17 shows the interactions between proteins 

that had been stimulated with D39 (Figure 4.17A) or ΔPLY (Figure 4.17B).  

Co expression has been observed between Set and Ncl (Gray line, Figure 4.17A). 

Also, Figure 4.17A shows that Anp32b and Set, both of which are downregulated 

during D39 infection, have been described to react together (Black line) and to bind 

one another (Blue line). Figure 4.17B and 4.17C demonstrate that no direct links or 

interactions have been established between proteins downregulated during ΔPLY 

infection or those downregulated in both D39 and ΔPLY infection.  

 

Figure 4.18 show a summary for all the down-regulated proteins during infection with 

pneumococcus at 24 h.  
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Figure 4.17.  Proteins down regulated during S. pneumoniae infection. BMDMs were stimulated 
with D39 or ΔPLY at a ratio of 1:10 for 24 h. (A) The interaction between proteins down regulated 
with D39. (B) The interaction between proteins down regulated with ΔPLY. (C) Proteins down 
regulated with both D39 and ΔPLY. String protein–protein interaction display with known and 
predicted functional partners, presenting direct correlation between up-regulated proteins. Data 
generated by String data base system. 
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Figure 4.18. A summary for down regulated proteins by BMDMs during S. pneumoniae infection. 
BMDMs were stimulated with D39 or ΔPLY at a ratio of 1:10 for 24 h. String protein–protein 
interaction display with known and predicted functional partners, presenting direct correlation between 
up-regulated proteins. Data generated by String data base system. 
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4.15 Discussion 

S. pneumoniae is a common pathogen responsible for diseases of high morbidity and 

mortality and one which has a major influence on the health care resources of 

developing and under-developed countries. Colonisation of the nasopharynx is 

important for the pneumococcus to initiate localized or systemic infections. The near 

universal production of pneumolysin by S. pneumoniae clinical isolates and the high 

degree of conservation of the PLY gene between pneumococcal strains suggest a 

significant role for this toxin in the pathogen life cycle (Kadioglu et al., 2008). 

Furthermore, the pneumococcal toxin pneumolysin has been demonstrated to activate 

mucosal and systemic immune response (Rubins et al., 1998). In my previous chapter 

I have described a series of interactions between pneumolysin, innate and adaptive 

immunity.  In this chapter I was aiming to define the type of proteins expressed in 

response to serotype 2 S. pneumoniae infections in the presence or absence of 

pneumolysin, to highlight the differences between proteins up-regulated/down 

regulated with D39 or ΔPLY, to examine the contribution of these proteins to 

BMDMs molecular functions and biological processes, and to study the interactions 

of these differentially expressed protein with one another. I have presented proteome 

data that give an overview of what is happening inside the BMDMs during infection 

with serotype 2 S. pneumoniae in the presence or absence of pneumolysin.  Both my 

heat map data and volcano figures have revealed that, by 24 hours post-infection, 

BMDM had significantly altered expression of a wide range of proteins.  

Furthermore, many of the proteins for which expression increased or decreased 

differed between D39 and ΔPLY infection, suggesting that PLY influences host 

protein expression. Interestingly, several of the differentially expressed proteins have 



 171 

been shown to be associated with the activation of the immune system in response to 

infection.  

 

4.15.1 Proteins up regulated during pneumococcal infections 

Chi3l3 is a lectin protein that binds a wide range of particles. Several studies have 

demonstrated a key role for this protein in inflammation. In particular, Chi3l3 has 

been shown to have chemotactic activity for T-lymphocytes, eosinophils (Owhashi et 

al., 2000), macrophages (Lee, 2009) and bone marrow polymorphonuclear leukocytes 

in vitro (Chang et al., 2001, Harbord et al., 2002). Many of the chitinase family 

proteins such as Chi3l3 are expressed in macrophages and epithelial cells of the lung, 

functioning as host first-line defense against exogenous agents, particularly chitin-

containing pathogens (Homer et al., 2006, Mizoguchi, 2006). Interestingly, 

Wohlkönig et al. have revealed the chemical similarity between chitin and 

peptidoglycan (a major component of bacterial cell walls), since chitinases can cleave 

peptidoglycan (Wohlkönig et al., 2010). A recent study by Lee has revealed that 

exogenous chitin stimulates the response of macrophages and regulates adaptive type 

2 allergic inflammation. This study demonstrates that chitin, or perhaps structurally 

similar peptidoglycan, could activate macrophages by interacting with surface 

receptors such as macrophage mannose receptor (MR) and toll-like receptor 2 (TLR-

2) (Lee, 2009). My data suggest that pneumolysin is required for the up regulation of 

Chi3l3 protein.  This process may lead to increased macrophage responsiveness to 

infection and lead to downstream recruitment of T lymphocytes or neutrophils. Ptgs2 

was also up regulated during D39 infection. It acts as an enzyme that is involved in 

the production of prostaglandin in response to mucosal damage. It is also known to 
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affect downstream responses such as proliferation and apoptosis (Wang et al., 2005). 

During inflammation, damage signals and cytokines signal via Myd88 to trigger the 

activation of NF-κB and to induce Ptgs2 transcription (Wu et al., 2005). A study by 

Manieri et al. showed that Ptgs2 is required for wound repair, since Ptgs2 knockout 

mice had defects in wound repair when compared to WT mice (Manieri et al., 2012). 

During D39 infection, pneumolysin-driven damage in BMDMs may drive Ptgs2 

production in order to trigger the wound healing response. Here I suggest that 

pneumolysin play a key role in the up regulation of Ptgs2 by BMDMs. Cxcl2 is 

another protein that I found to be up regulated during D39 infection. The protein has 

been shown to be chemotactic for human polymorphonuclear leukocytes (Tekamp-

Olson et al., 1990), however it does not induce chemokinesis or an oxidative burst 

(Shao et al., 1998). A recent study by Roualt et al. has revealed that during human 

obesity the hypertrophied white adipose tissue (WAT) generates several inflammatory 

mediators, including cytokines such as IL-6 and TNF-α, and chemokines such as 

chemokine ligand 2 (CXCL2) and IL-8. The expression of CXCL2 mRNA was 

greater in macrophages when compared to other WT cells and positively associated 

with macrophages inflammatory markers IL-6 and TNF-α. Another finding from this 

study was that CXCL2 activated the adhesion of the neutrophils, its selective cell 

targets, to endothelial cells in vitro (Rouault et al., 2013). My data here propose that 

the pneumococcal toxin pneumolysin contributes to the up regulation of Cxcl2 and 

therefore is likely to increase recruitment and adhesion of neutrophils to infection 

sites. Nos2, up regulated by BMDMs stimulated with D39, stimulates the production 

of nitric oxide (NO). A study by Kone et al. has shown that NO has bactericidal 

activity (Kone et al., 1995) and enhances the synthesis of pro-inflammatory mediators 

such as IL6 and CXCL8 (Kim et al., 2005). Two recent studies have revealed that 
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during mycobacterial infection, the non-covalently attached mycobacterial cell wall 

glycolipid di-O-acylated trehalose (DAT) down-regulates the expression of inducible 

nitric oxide synthase (iNOS) and the production of nitric oxide (NO) in macrophages, 

which are important components in the response of the immune system against 

mycobacteria, leading to inhibition of two important features of adaptive immunity; 

the production of cytokines and the proliferation of T cells (Saavedra et al., 2006) 

(Espinosa-Cueto et al., 2015). A study by Marriott et al. has shown also that 

phagocytosis of pneumococci by human monocyte-derived macrophages stimulated 

the up regulation of iNOS and the production of NO (Marriott et al., 2006), which 

have shown previously to functions as potential mediators for both antimicrobial host 

defense and apoptosis induction during macrophage response to pneumococci 

(Bogdan, 2001). My data here show that pneumolysin is vital for the up regulation of 

Nos2 protein by macrophages, since this protein was up regulated only with D39 and 

not with ΔPLY. Here I may suggest that both Nos2 and pneumolysin are required for 

the activation of macrophages and the production of pro-inflammatory cytokines.  

IRAK3 was up regulated by BMDMs during infection with ΔPLY but not D39.  

Rosati and Martin have revealed that IRAK3 play a key role in blocking the 

dissociation of IRAK4 from the Toll- like receptor signaling complex, which is 

necessary for the activation of both the transcription factor NFκB and the NLRP3 

inflammasome (Rosati and Martin, 2002). Inflammasomes are defined as molecular 

proteins that are commonly activated upon cellular infection leading to the maturation 

of interleukin-1β (IL-1 β) and recruitment of immune cells such as neutrophils and 

macrophages to site of infections (Schroder and Tschopp, 2010). It is well know that 

pneumolysin has the ability to trigger the activation of the NLRP3 inflammasome and 

the release of IL1β from macrophages and dendritic cells (McNeela et al., 2010). 
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IRAK3 up regulation in the absence of pneumolysin suggests a weakened induction of 

inflammatory responses. Met, up regulated during ΔPLY, but not D39 infection, has a 

significant role in wound healing, organ re-generation and tissue re-modeling (Bladt 

et al., 1995). Met has also been revealed to play a key role in B cell differentiation 

(Van der Voort et al., 2000). Met up regulation, taken together with the high 

expression of IRAK3 and the lower levels of CXCL2 and Nos2 in ΔPLY infected 

BMDM suggests that the macrophage response in the absence of pneumolysin is less 

geared towards inflammation and more towards healing and repair. Interleukin 1 

alpha (IL-1α) and interleukin beta (IL-1β) are critically important cytokines that are 

up regulated by BMDMs during both D39 and ΔPLY infection. Both IL-1α and IL-

1β are commonly produced by activated cells including macrophages, epithelial cells 

and neutrophils (Nicklin et al., 1994, Qu et al., 2007).  

IL-1 family cytokines are known to promote immunity. The role of inflammasome 

activation and the stimulation of IL-1 family cytokines including IL-1β in S. 

pneumoniae diseases have been examined. An early study revealed that macrophage 

death results in pneumolysin-dependent release of Il1b, indicating that the 

inflammasome has been activated (Cookson and Brennan, 2001). Furthermore, 

McNeela et al. showed that pneumolysin activates the NLRP3 inflammasome and 

triggers the production of IL-1β from dendritic cells and macrophages (McNeela et 

al., 2010). IL-1β has been shown to be critical to protection against pneumococcal 

pneumonia (McNeela et al., 2010), by encouraging the production of IL-17A, which 

was previously showed to provide protection against pneumococcal infection (Lu et 

al., 2008). Moreover, a recent study by Lemon et al. showed that mice lacking 

interleukin-1 receptor type 1 have fewer neutrophils early after infection, fewer 
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macrophages later in carriage, and persistent pneumococcal colonisation. 

Furthermore, mice treated intranasally with Il-1β clear colonised pneumococci 

(Lemon et al., 2015).  My data show here, showing up regulation of IL-1 family 

cytokines during D39 infection is in line with previous findings that pneumococcus 

activates the inflammasome. Interestingly, the same cytokines were up regulated 

during infection with ΔPLY (in the absence of pneumolysin), which may propose that 

another pneumococcal protein might have the ability to stimulate the activation of 

inflammasomes. CD14 was also up regulated during both D39 and ΔPLY infection. 

The importance of this protein was revealed when several studies demonstrated that 

lipopolysaccharides from gram-negative bacteria and peptidoglycan from gram-

positive bacteria were able to activate cytokine production by monocytes following 

interaction with CD14, leading to activation of Toll-like receptors (Kusunoki et al., 

1995, Gupta et al., 1999, Schwandner et al., 1999). Another study by Yoshimura et al. 

has shown that CD14-dependent NF-κB translocation occurred upon infection of cells 

with Staphylococcus aureus (Yoshimura et al., 1999). This study demonstrated that 

gram-positive bacteria have a key role in triggering intracellular pathways after their 

interaction with CD14 and TLRs. Furthermore, a study by Ebong et al. has shown that 

CD14 is significant for the production of pro-inflammatory and anti-inflammatory 

cytokines, since CD14 knockout mice produce reduced levels of IL-1β, TNF, IL-6 

and IL-10 during sepsis induced by cecal ligation and puncture when compared to 

wild-type mice (Ebong et al., 2001). Increased expression of CD14 by macrophages 

during pneumococcal infection may increased their responsiveness to peptidoglycan 

present in the cell wall of S. pneumoniae, thus aiding their activation and leading to 

the production of important cytokines such as IL-1β, TNF, IL-6. Stat5a, up regulated 

during both D39 and ΔPLY infection has been shown to play a vital role in a range of 
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cellular functions, including differentiation, proliferation, and survival. Stat5 plays a 

significant role in the maintenance of immune function and homeostasis, both of 

which are regulated by IL-2 cytokine signaling (Rani and Murphy, 2015). An early 

study has shown that Stat5 proteins are activated by granulocyte macrophage-colony 

stimulating factor (GM-CSF) in early myeloid differentiation (Yamaoka et al., 1998, 

Lehtonen et al., 2002). GM-CSF is known to play a key role in the maturation and 

activation of monocyte and macrophage functions, which is important for the 

production of pro-inflammatory responses in response to infections (Biethahn et al., 

1999, Lehtonen et al., 2002). Furthermore, another study by Litherland et al. has 

showed that the dysfunction of Stat5 leads to the dysregulation of GM-CSF signaling 

and gene activation in autoimmune macrophages and monocytes (Litherland et al., 

2005). As a result, the study suggest that Stat5 and GM-CSF-induced dysfunction in 

myeloid differentiation and macrophage/monocyte activation has the potential to 

affect the progress and role of myeloid cells as antigen presenting cells (APC) and 

their main function in maintaining immune self-tolerance. Increased Stat5 production 

during D39 and ΔPLY infections likely indicates an activated macrophage state and a 

step on the pathway towards production of key immune defense cytokines such as IL-

2. The C-type lectin receptor Clec4d was up regulated during D39 and ΔPLY 

infections. It has been shown to function as a pattern recognition receptor (PRR), 

shaping immune responses by identifying pathogen associated molecular patterns 

(PAMPs) including peptidoglycan of Gram positive bacteria (Rabinovich et al., 

2012). A study by Stiechen et al. has shown that Clec4d has a protective role in 

resolution of pneumonia caused by Klebsiella pneumoniae (Steichen et al., 2013). WT 

mice infected with a sub-lethal dose of bacteria were able to resolve the infection, 

whereas Clec4d knockout mice were highly susceptible to infection with a huge 
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accumulation of neutrophils in lungs when compared to WT mice. Interestingly, this 

study has revealed that the Clec4d knockout neutrophils did not show any defect 

during the clearance of bacteria, suggesting that Clec4d has a key role in resolution of 

inflammation, probably by helping neutrophil turnover in lungs (Steichen et al., 

2013). Furthermore, a recent study by Wilson et al. has demonstrated that Clec4d 

functions as a key molecule in anti-mycobacterial host defense (Wilson et al., 2015), 

since Clec4d knockout mice infected with M. tuberculosis display greater bacterial 

burdens and increased mortality during infection. The same mice have acute 

pulmonary inflammation, characterized by increased neutrophil recruitment, and 

reduced mycobacterial uptake by pulmonary leukocytes when compared to WT mice 

(Wilson et al., 2015). High levels of production of Clec4d by BMDMs during D39 

and ΔPLY infections may suggest that Clec4d is required to control inflammation 

during pneumococcal infection, perhaps by regulating neutrophil recruitment and 

turnover.  Control of the magnitude of inflammatory responses during pneumococcal 

infection is crucial to disease resistance (Neill et al., 2010). 

My data highlighted key interactions between the proteins that were up regulated by 

BMDMs during pneumococcal infection.  These include Chi3l3, Nos2, Ptgs2, Met, 

IL-1α, IL-1β, Cxcl2, Cd14, Clec4d, Stat5a and Irak3. My data showed that these 

proteins were variously co-expressed, involved in catalysis of one another, bound one 

another, and reacted with and regulated one another. Some of these proteins were not 

up regulated in the absence of pneumolysin, suggesting involvement in toxin-induced 

signaling. Interestingly, a cluster of these interacting proteins (including IL-1α, IL-1β, 

Cd14, IRAK3, Cxcl2) were described previously to be involved in the signaling 

pathway of Toll-like receptors (TLRs), which is a key mechanism by which the 

immune system identifies the molecular patterns that are expressed by pathogens 
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including S. pneumoniae (Akira and Takeda, 2004). The activation of TLRs induces 

the expression of a wide range of proteins that may have key roles in promoting the 

activation of important immune cells such as macrophages (Akira and Takeda, 2004). 

It has been shown previously that the activation of TLR-2 on monocytes during 

mycobacterial infection was required to trigger the activity of IL-1 receptor and IL-

1beta (Liu et al., 2009). The induction of IRAK3 protein by tumor cells was also 

described previously to be mediated by TLR-4 (del Fresno et al., 2005). Furthermore, 

the production of Cxcl2 by monocytes/macrophages has also shown previously to be 

correlated with the expression of TLR-4 (Tsujimoto et al., 2005) and Nos2 has also 

been identified as contributing to the expression of TLR-4 during sepsis (Zhu et al, 

2006). A recent study by Vogel et al. has showed that the expression of Met protein is 

influenced and controlled by TLR-4 (Vogel et al., 2014). Moreover, another study has 

showed also that Stat5a has an important role in the regulation of TLR-2 expression 

(Musikacharoen et al., 2001). Another study has revealed that during the stimulation 

of macrophages with yeast zymosan, Ptgs2 expression was associated with the 

presence of TLR-2 (Hellmann et al., 2015). These data suggest that many of the up-

regulated proteins identified in my study may be related to macrophage recognition of 

infection by pattern recognition. Macrophages have been considered as an important 

immune cells due to their involvement in the initiation and resolution of tissue 

inflammation (Gordon et al., 2002). Also, macrophages have shown the ability to 

regulate the host inflammatory response to infection through production of 

antimicrobial molecules, the generation of cytokines and chemokines, and the 

presentation of microbial antigens on MHC, therefore connecting innate to adaptive 

immunity (Gordon et al., 2002). Taken together, my data here suggest that during 

pneumococcal infection BMDMs function as a first line defense against infection by 
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expressing a wide range of proteins that act at the first stages of induction of 

immunity to initiate and coordinate responses. The up regulated proteins would likely 

induce downstream signaling that would stimulate other immune processes including 

phagocytosis and the recruitment of other immune cells such as neutrophils to sites of 

infections.  

 

4.15.2 Proteins down regulated during pneumococcal infection 

Csf1r was expressed at lower levels in D39 infected BMDM than in uninfected 

macrophages. This protein plays a key role in the proliferation, regulation of survival 

and differentiation of monocytes and macrophages (Dai et al., 2002). A recent study 

by Huynh et al. has revealed that Csf1r was required for the proliferation and 

regulation of macrophages functions in the large intestine of mice during acute 

inflammation induced by dextran sulfate sodium (Huynh et al., 2013). This protein 

has also been shown to promote the production of important cytokines. Another 

recent study has showed that Csf1r was required for the production of CSF-1 and IL-

34 cytokines, which are known to stimulate the development of macrophages and 

monocytes and promote their responses to infection (Yamane et al., 2014). My data 

here showed that Csf1r has down regulated by BMDMs during infection with D39, 

but not ΔPLY, which may point to a role for pneumolysin in prevention of the 

proliferation or activation of macrophages and inhibition of their functions in 

response to infection. Anp32b, down regulated during infection with D39, has been 

reported to function as an inhibitor for caspase-3, and thus act as a negative regulator 

for apoptosis (Shen et al., 2010). Caspase-3 is required to activate death protease, 

catalyzing the specific cleavage of numerous cellular proteins (Huttlin et al., 2010). 
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Apoptosis is a genetic mechanism used by a wide range of immune cells to eliminate 

infected, or damaged cells, to maintain homeostasis tissue, and to provide an effective 

immune response (Adams, 2003). The down regulation of Anp32b by BMDMs during 

D39 infection would reduce the inhibition of caspase 3 and thus stimulate apoptosis. 

BMDMs may utilize this mechanism to trigger apoptosis of infected cells to aid in 

containment of infection. Myd88 was also down regulated during D39 infection and is 

known to be involved in Toll-like receptor and IL-1 receptor signaling pathways 

during the response of the innate immune system to infection (Burns et al., 1998). 

MyD88 has previously been described as a marker of macrophage differentiation 

(Hardiman et al., 1996). A study by Von Bernuth et al. has shown that Myd88 

knockout mice infected intranasally with S. pneumoniae were more susceptible to 

infection when compared to WT mice (Von Bernuth et al., 2012). Another study has 

revealed that MyD88 is important for signaling via all TLRs, except TLR3, and for 

signaling via the interleukin 1 receptor (IL-1R), which is required for the activation of 

NF-κB and inflammasome (Kawai and Akira, 2010). To support this, in my previous 

chapter I have showed that MyD88 is required for the production of IL-1β and 

activation of the inflammasome. Here, my data suggest that Myd88 is down regulated 

during D39 infection, which may reflect a pathogen-driven inhibition of host immune 

responses. A previous study by McNeela et al. demonstrated that pneumolysin is 

required for the activation of inflammasome and for the production of IL-1β 

(McNeela et al., 2010) and so its down regulation here is contrary to expectations.  

Pdcl3 is known to modulate the activation of caspases during inflammation and 

apoptosis. Caspase expression is required for the maturation of lymphocytes 

(Wilkinson et al., 2004). My data here show that Pdcl3 was down regulated during 

pneumococcal infections with both D39 and ΔPLY. This phenomenon may suggest 
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either that the pneumococcus plays a key role in promoting the activation of caspases, 

to trigger apoptosis of host effector cells or else that it is a host-driven response to 

infection as an attempt to clear infected cells and prevent the damaging inflammation 

associated with necrotic cell death.  

 

4.15.3 Proteomic study limitations: 

Proteomic is an expensive method to study large scale of proteins, since it biased 

against certain groups of proteins involving hydrophobic and low abundance proteins 

only. Furthermore, its labeling processes have some limits, because it lacks the ability 

to label proteins without lysine, and therefore require particular equipment for 

visualization, which are very expensive. Analyzing proteomic data is another 

important issue, since it requires the use of different complicated protein resources to 

identify the obtained proteins and their molecular and biological functions. Also, the 

use of proteins classification systems is not easy and may need special training to 

analysis and understand the obtained data.  

 

 

4.15.4 Conclusions and Implications 

Several previous studies performed by our group have shown that nasopharyngeal 

colonisation promotes host immunity to pneumococcus, however this is either 

ineffective in clearance of colonisation or else other immune mechanisms exist that 

allow or tolerate carriage (Richards et al., 2010, Ferreira et al., 2013, Neill et al., 
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2014). My data in this chapter shows that macrophages produce a wide range of 

proteins in response to infection that may play key roles in defense against S. 

pneumoniae. Here I have suggested that S. pneumoniae pneumolysin induces the up 

regulation/down regulation of several proteins to subvert the responses of 

macrophages. However, pneumolysin has also been shown to be required for the 

production of protective pro-inflammatory responses. In particular, PLY triggers the 

production of IL-1 β and the activation of the inflammasome, which has been 

described previously to be important for protection against pneumococcal infection 

(McNeela et al., 2010).  Also, I have shown that pneumolysin is required for the 

production of several significant proteins such as Chi3l3, Ptgs2, Cxcl2 and Nos2 

proteins, which have been shown to be required to trigger the activity of key immune 

cells (such as T-lymphocytes and macrophages) and the production of pro-

inflammatory response (such as IL-6 and TNF). 

My data in this chapter have provided an overall picture for the reaction of 

macrophages in response to pneumococcus. Since infected macrophages express a 

wide range of proteins, my data here suggest that during pneumococcal infection 

macrophages use several mechanisms to deal with pneumococcus.  Some proteins 

were responsible for the activation of macrophages; leading to induction of the 

production of important pro-inflammatory cytokines, other proteins had involvement 

in the apoptosis process, aiding macrophage clearance of infection. However, it is not 

clear to what extent the pneumolysin-induced changes in protein expression benefit 

the host and to what extent they benefit the bacteria.  More research in this area is 

required. My data do suggest, however, that pneumolysin drives the production of 

factors, which will lead to downstream recruitment of T lymphocytes and neutrophils. 

The macrophage response in the absence of pneumolysin is less geared towards 
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inflammation and more towards healing and repair. My data support the proposal that 

pneumolysin could be used as a mucosal adjuvant to produce protective immunity 

against pneumococcal infections, since it drives the expression of key immune-

activating factors.  These data, combined with previous reports that pneumolysin 

functions as a strong activator of both mucosal and systemic immune responses 

(McNeela et al., 2010) and boosts IgG and IgA antibody titres to pneumococcal 

protein PsaA (Douce et al., 2010), suggests its inclusion in vaccine formulations 

would be advantageous.  

 

Chapter 5: Conclusion 
 

 

5.1 Overall summary 

The work presented in this PhD thesis is part of a wider aim to elucidate host-

pathogen interactions in pneumococcal infection, with the long-term goal of 

informing future vaccine design. The pneumococcus is a significant contributor to 

global morbidity and mortality, and treatment and management of infection comes at 

a huge financial cost to society. In particular, pneumococcal disease places a great 

strain on the health care resources of developing and under-developed countries.  

 

Nasopharyngeal colonisation is a vital precursor to localized or systemic 

pneumococcal infection. The pervasive production of pneumolysin by S. pneumoniae 

and the high degree of conservation of the PLY gene between pneumococcal strains 

suggest a significant role for the toxin in key phases of the pathogen life cycle 
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(Kadioglu et al., 2008). Murine models of long-term nasopharyngeal colonisation 

have revealed that pneumolysin is required for successful colonisation, since PLY 

deficient strains are cleared from the nasopharynx (Kadioglu et al., 2002) (Richards et 

al., 2010). However, in addition to its role as a key virulence factor, pneumolysin is 

also a potent stimulator of host immunity, and has been demonstrated to induce 

cytokine expression in dendritic cells and macrophages (McNeela et al., 2010. A 

recent study by Bewely et al. has shown that PLY contributes to macrophage 

activation and production of cytokines including IL-1β (Bewley et al., 2014).  

 

The data in this PhD thesis highlight the key role of pneumolysin in shaping immune 

responses during pneumococcal infection, particularly through interactions with 

macrophages. I have explored the role of MR in anti-pneumococcal immunity in the 

presence and absence of the pneumococcal toxin pneumolysin, since a previous study 

by our lab had identified a population of MR-expressing macrophages in the 

nasopharynx of mice undergoing prolonged pneumococcal carriage (Neill et al., 

2014). My work demonstrates that macrophage MR is important for the recognition 

and phagocytosis of S. pneumoniae. Furthermore, I propose that during 

nasopharyngeal colonisation a state of immune tolerance is generated that is driven, in 

part, by pneumolysin-MR interactions. Nasal mucosa-associated macrophages are key 

to inducing this tolerogenic state; T- regulatory cells, IL-10 and TGF-β are key to its 

long-term regulation. S. pneumoniae may use PLY to maintain colonisation in the 

host nasopharynx through interactions with macrophage MR, encouraging 

macrophage-induced differentiation of regulatory T cells, leading to production of 

anti-inflammatory cytokines including IL-10 and TGF-β that are key to long-term 

maintenance of carriage (Neill et al., 2014). Thus, PLY contributes to the suppression 
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of pro-inflammatory responses to infection and hence facilitates maintenance of 

asymptomatic nasopharyngeal carriage.  

My data suggest that therapeutic blockade of MR could encourage classical activation 

of macrophages, the production of pro-inflammatory cytokines and the recruitment of 

effector immune cells that would clear pneumococcal infection from host 

nasopharynx. Such a strategy would, however, run the risk of tipping the delicate 

immune balance in the nasopharynx in favor of damaging inflammation that might 

facilitate bacterial dissemination.  Further work in this area is required to determine 

whether a therapeutic approach directed towards encouraging classical macrophage 

activation would be efficacious. My study results also have implications for vaccines 

based around PLY and its derivatives. The pneumococcal toxin has been proposed as 

a candidate mucosal adjuvant to generate protective immunity against pneumococcal 

infections, as it has been shown previously to act as a potent activator of both mucosal 

and systemic immune responses (McNeela et al., 2010), and to boost IgA and IgG 

antibodies titres to pneumococcal protein PsaA (Douce et al., 2010). However, these 

observed phenomena rely on the cytolytic activity of toxin. Therefore, I suggest that 

PLY could be used in a formulation with carbohydrate antigens (such as Mannan) that 

could block MR and thus promote classical activation and the induction of Th1 and 

Th17 responses and associated production of protective IL-17 and IFN-γ, which are 

known to stimulate immunity against pneumococcal infections (McNeela et al., 

2010).  However, my proteomic data highlights the complexity of pneumolysin-

induced signaling in immune cells.  The activation of several pro-inflammatory and 

apoptotic pathways in macrophages appeared to be partially PLY-dependent, 

suggesting that any inclusion of PLY or its derivatives as vaccine adjuvants would 

require careful formulation. 
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My proteomic data also demonstrate that macrophages use several mechanisms to deal 

with pneumococcal infection.  Some upregulated proteins were associated with the 

activation of macrophages and the production of key pro-inflammatory cytokines, 

whilst other proteins form part of apoptotic pathways and may reflect a ‘sacrificial’ 

approach used by macrophages to clear infection. It is possible, however, to peer 

through the complexity of pneumococcal-induced protein expression changes in 

macrophages and see some key elements of host defense emerging. Several of the up-

regulated proteins, such as Chi3l3, would likely yield increased macrophage 

responsiveness to infection and lead to downstream recruitment of T lymphocytes or 

neutrophils. Furthermore, there is evidence of macrophages responding to 

pneumolysin-induced cell damage through the up regulation of proteins associated 

with the wound healing response, including Ptgs2. In the absence of pneumolysin, 

macrophages showed a reduction in the induction of several key immune defense 

proteins, including IRAK3 and Met, and the overall picture was of a macrophage less 

geared towards inflammation and more towards healing and repair. Interestingly, a 

number of proteins up regulated in the presence of pneumolysin form part of the 

signaling pathway of Toll-like receptors, supporting previous observations that 

pneumolysin is important in the process of immune cell pattern recognition during 

pneumococcal infection (McNeela et al, 2012). My data support the notion that 

pneumolysin is an important trigger of key pro-inflammatory cytokines such as IL-1β 

and that it aids the activation of NF-κB pathways that are required for the activation of 

the inflammasome. 

Taken together, my studies highlight a dichotomy in pneumolysin-induced host 

responses.  On the one hand, PLY triggers the production of pro-inflammatory 

cytokines and the induction of proteins that have key roles in the activation of 
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immune defense against pneumococcal infections. The cytolytic activity of PLY is 

often key to the initiation of these immune actions. On the other hand, however, the 

binding of PLY to MR seems to be linked with the alternative activation of 

macrophages, leading to reduction in the production of pro-inflammatory mediators 

and increased differentiation of T regulatory cells. Again, the cytolytic domain of 

PLY seems to facilitate binding to MR, since PdB showed reduced levels of binding 

compared to PLY.  

 

The dual role of pneumolysin is matched by a dual role for MR-expressing 

macrophages during pneumococcal carriage.  In early infection macrophages play a 

direct antimicrobial role through the phagocytosis of pneumococci via a process that 

is partially MR-dependent.  They also recruit effector cells such as neutrophils via the 

production of MR-dependent chemokines and cytokines.  Subsequently, during long-

term pneumococcal carriage, activated macrophages may drain to cervical lymph 

nodes to trigger immune responses that act to inhibit host tissue damage and systemic 

pneumococcal dissemination. This involves the stimulation of T cell differentiation 

into regulatory T cells, leading to production of large amounts of IL-10 and TGF-β. 

These anti-inflammatory cytokines will recruit more regulatory T cells into the 

nasopharynx, leading to maintenance of stable pneumococcal carriage and prevention 

of damage to host tissues. MR expression appears to be key to the ability of 

macrophages to induce T regulatory cell differentiation following exposure to 

pneumococci.  However, stimulation of Th1 and Th17 cell differentiation by MR-

expressing macrophages was also observed and this may contribute to control of 

bacterial proliferation in the nasopharynx. I verify here that both the pneumococcal 
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toxin pneumolysin and macrophage MR have important roles in encouraging 

macrophage induction of T cell differentiation. 

In conclusion, my data highlight the complexity of host-pathogen interactions, 

especially when the pathogen concerned is also a some-time commensal.  A ‘one size 

fits all’ approach to immune defense is not appropriate when the need to control 

bacterial proliferation must be balanced with the need to maintain tolerance and 

homeostasis in the microbe-rich niche of the nasopharynx. Consequently, the 

interaction between pneumococcus and macrophage is not as simple as an attempt by 

one to kill the other; rather it reveals the delicate balance that exists in the 

nasopharynx, where bacterial colonisation is controlled by resident macrophages but 

is not, on the whole, met with a robust attempt at clearance.  This balance is clear in 

the ability of macrophages to phagocytose and kill pneumococci, however at the same 

time to stimulate the differentiation of T regulatory cells whose actions maintain 

bacterial carriage.  The same balance can be observed in the induction of both pro- 

and anti-inflammatory host signaling by pneumolysin.    

 

5.2 Future prospects 

My work raises some key unanswered questions and paves the way for future 

research. The observation that PLY binds to MR is novel but requires further 

characterization. I have demonstrated that domain 4 is instrumental in this binding 

activity, but the precise binding site has not been characterized. However, the weak 

binding observed with PdB suggested that the substitution of tryptophan for 

phenylalanine in the cytolytic domain disrupts the binding site. Exploring the binding 
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of PLY to MR and understanding the mechanism that PLY uses to trigger the 

alternative activation of macrophages would aid production of PLY derivatives for 

use in future vaccine development. 

Despite the apparent importance of MR for macrophage responses to pneumococci in 

vitro, MR-/- mice displayed only a transiently increased susceptibility to 

pneumococcal carriage. Elucidating which pathways compensate for the MR-deficit 

in vivo would aid our understanding of redundancy within the immune system.  

Furthermore, performing carriage experiments using WT and MR-/- mice with 

different pneumococcal serotypes and with clinical isolates may expose new 

phenotypes. My data reveal the importance of MR during pneumococcal carriage, 

where its ability to bind PLY leads to induction of host signaling and cytokine 

production. It would be of interest to examine the role of MR during acute infection 

(pneumococcal pneumonia, sepsis or meningitis), as macrophages resident in different 

tissues often display very different phenotypic characteristics. So, performing 

pneumonia, sepsis and meningitis experiments using WT and MR-/- mice with 

different serotype of S. pneumoniae may further aid elucidation of the role of 

macrophages MR during pneumococcal infections.  

Although my proteomic data has demonstrated the ability of macrophages to produce 

a wide range of proteins in response to pneumococcal infection, the exact role of the 

implicated signaling pathways is not clear and requires further investigation. Ablation 

of expression of implicated genes, such as Nos2 and Ptgs2, in macrophages may help 

reveal their functions during carriage and disease. 

The cytolytic activity of PLY is required for MR binding, for the generation of 

immune tolerance and for the induction of cytokine production during pneumococcal 
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infection. Interestingly however, some serotype 1 isolates produce a non-haemolytic 

pneumolysin but are still capable of inducing invasive diseases and have been 

associated in particular with empyema (Jefferies et al., 2007). Examining the 

interaction between MR and serotype 1 that produce non-haemolytic PLY using 

invasive dose of bacteria with WT and MR-/- mice could be beneficial and may shown 

other important roles for MR during pneumococcal infections. Also, exploring the 

contribution of the pneumococcal capsule or other pneumococcal virulence factors 

may shed further light on complex disease processes. 

 

MR has previously been described as a marker for the alternative activation of 

macrophages, however my data highlight a broader role for this receptor in 

macrophage activation and in directing responses to pneumococcal infection. PLY has 

long been known to be a potent trigger of innate immunity and my data reveal that 

PLY contributes to the activation of macrophages and to interactions with MR. These 

observations indicate that there is a strong justification for the inclusion of PLY or its 

derivatives in future pneumococcal vaccines and that the induction of MR signaling 

pathways by vaccine components should be considered. 
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Appendices 
 

 

Appendix 1 

List of proteins showing fold changes and statistically significant differences in 

expression of BMDM proteins between untreated (Unt) cells and D39.  

	

Protein	ID	

	

Protein	
Name	

	

Fold-
Change	

	

P-Value	

	

Highest	mean	
condition	

	

Lowest	mean	
condition	

Q9DBG3	 AP2B1_MOUSE	 2.642094804	 0.000115212	 Unt	 D39	

P57776	 EF1D_MOUSE	 3.830880606	 0.000172432	 Unt	 D39	

Q91VC3	 IF4A3_MOUSE	 2.099253882	 0.000276994	 Unt	 D39	

Q9WV80	 SNX1_MOUSE	 2.444609948	 0.000620401	 Unt	 D39	

P08905	 LYZ2_MOUSE		 1.522645975	 0.000752341	 Unt	 D39	
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P54987	 IRG1_MOUSE	 7.179098567	 0.000778451	 D39	 Unt	

P84078	 ARF1_MOUSE		 1.921879929	 0.001737475	 Unt	 D39	

P61161	 ARP2_MOUSE	 2.624891073	 0.001767278	 Unt	 D39	

P08113	 ENPL_MOUSE	 1.894164913	 0.00183959	 D39	 Unt	

O08808	 DIAP1_MOUSE	 4.876600063	 0.001986346	 Unt	 D39	

P60766	 CDC42_MOUSE	 3.062520569	 0.002185952	 Unt	 D39	

P20029	 GRP78_MOUSE	 1.601034316	 0.002239283	 D39	 Unt	

P62334	 PRS10_MOUSE	 2.845010272	 0.002278164	 Unt	 D39	

P10605	 CATB_MOUSE	 3.050879484	 0.002519153	 Unt	 D39	

Q60854	 SPB6_MOUSE	 2.947031808	 0.002778146	 Unt	 D39	

Q11136	 PEPD_MOUSE	 2.550697703	 0.003314946	 Unt	 D39	

P67778	 PHB_MOUSE	 1.658629662	 0.003793509	 D39	 Unt	

Q8BFR5	 EFTU_MOUSE		 1.33201796	 0.003911828	 D39	 Unt	

P62204	 CALM_MOUSE	 1.576142894	 0.004281379	 Unt	 D39	

P27659	 RL3_MOUSE	 2.673556373	 0.004673541	 Unt	 D39	

P63001	 RAC1_MOUSE	 2.818479063	 0.004782323	 Unt	 D39	

P57759	 ERP29_MOUSE	 1.761878777	 0.005749513	 D39	 Unt	

Q8BK67	 RCC2_MOUSE	 30.65803068	 0.006198819	 Unt	 D39	

P70670	 NACAM_MOUSE	 2.746584767	 0.006493338	 Unt	 D39	

Q8BGQ7	 SYAC_MOUSE	 2.219722324	 0.006736873	 Unt	 D39	

P99026	 PSB4_MOUSE	 2.126885269	 0.007075396	 Unt	 D39	

Q61937	 NPM_MOUSE	 1.937943071	 0.007282286	 Unt	 D39	
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P46664	 PURA2_MOUSE	 6.303266999	 0.00749462	 Unt	 D39	

Q8K297	 GT251_MOUSE	 1.462538981	 0.007562828	 D39	 Unt	

Q8BL97	 SRSF7_MOUSE	 4.705153817	 0.007585064	 Unt	 D39	

Q05144	 RAC2_MOUSE		 2.196653035	 0.007664766	 Unt	 D39	

P17918	 PCNA_MOUSE	 2.969341186	 0.007700279	 Unt	 D39	

Q9DBP5	 KCY_MOUSE	 2.887145768	 0.008368744	 Unt	 D39	

P24527	 LKHA4_MOUSE	 2.230816487	 0.009274534	 Unt	 D39	

P50427	 STS_MOUSE	 4.794686763	 0.009421782	 D39	 Unt	

Q05769	 PGH2_MOUSE	 8.607296457	 0.009896371	 D39	 Unt	

Q8BMS1	 ECHA_MOUSE	 2.118807241	 0.009924724	 D39	 Unt	

P29788	 VTNC_MOUSE		 4.949903934	 0.009977579	 D39	 Unt	

Q9D0E1	 HNRPM_MOUSE	 1.870445656	 0.010146052	 D39	 Unt	

P63276	 RS17_MOUSE	 3.676879834	 0.010526276	 Unt	 D39	

Q8R1F1	 NIBL1_MOUSE	 2.645122762	 0.010756155	 D39	 Unt	

P80317	 TCPZ_MOUSE	 1.453195545	 0.01082077	 Unt	 D39	

Q9D8U8	 SNX5_MOUSE	 2.644468347	 0.011729807	 Unt	 D39	

P05063	 ALDOC_MOUSE	 3.796021795	 0.011905855	 Unt	 D39	

P06797	 CATL1_MOUSE	 2.648530744	 0.012002412	 Unt	 D39	

P21981	 TGM2_MOUSE	 1.902548378	 0.012129597	 Unt	 D39	

Q9QUM9	 PSA6_MOUSE	 2.121096208	 0.012334511	 Unt	 D39	

Q3THS6	 METK2_MOUSE	 4.545943534	 0.012350299	 Unt	 D39	

Q9R1P3	 PSB2_MOUSE	 3.512178734	 0.012478139	 Unt	 D39	
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Q8K124	 PKHO2_MOUSE	 2.382353243	 0.013311689	 Unt	 D39	

O70251	 EF1B_MOUSE	 1.984973589	 0.013585568	 Unt	 D39	

P97315	 CSRP1_MOUSE	 3.499073276	 0.01366934	 Unt	 D39	

Q9D1A2	 CNDP2_MOUSE	 1.726085861	 0.014025886	 Unt	 D39	

Q64337	 SQSTM_MOUSE	 5.42823774	 0.014497411	 D39	 Unt	

P60843	 IF4A1_MOUSE		 1.70517327	 0.014498899	 Unt	 D39	

Q8R1F1	 NIBL1_MOUSE	 2.431231881	 0.01532357	 Unt	 D39	

Q9D8Y0	 EFHD2_MOUSE		 3.997444422	 0.015462736	 Unt	 D39	

P98078	 DAB2_MOUSE	 10.61956686	 0.015543638	 Unt	 D39	

Q60932	 VDAC1_MOUSE	 1.426413714	 0.01555357	 D39	 Unt	

P63276	 ACADS_MOUSE	 7.538040735	 0.015578573	 Unt	 D39	

Q60668	 HNRPD_MOUSE		 2.268038403	 0.01570923	 Unt	 D39	

Q8VDJ3	 VIGLN_MOUSE	 8.12976964	 0.015884722	 Unt	 D39	

Q9EQH3	 VPS35_MOUSE	 2.491817843	 0.015943459	 Unt	 D39	

Q9DB77	 QCR2_MOUSE	 1.493454965	 0.01605293	 D39	 Unt	

P63242	 IF5A1_MOUSE	 2.33513008	 0.01608664	 Unt	 D39	

Q07417	 ACADS_MOUSE	 1.431227647	 0.016419739	 D39	 Unt	

Q9D662	 SC23B_MOUSE		 2.052219054	 0.016460305	 Unt	 D39	

Q9R1P0	 PSA4_MOUSE	 7.352451036	 0.01663564	 Unt	 D39	

P05555	 ITAM_MOUSE	 1.231636183	 0.016728992	 D39	 Unt	

Q9R0Q3	 TMED2_MOUSE	 2.722912842	 0.016746322	 D39	 Unt	

P08003	 PDIA4_MOUSE	 1.524511856	 0.017599413	 D39	 Unt	
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P51569	 AGAL_MOUSE	 2.323925998	 0.017682056	 Unt	 D39	

O08807	 PRDX4_MOUSE	 1.555577253	 0.018022643	 D39	 Unt	

P28352	 APEX1_MOUSE	 1.970487615	 0.018147219	 Unt	 D39	

P39054	 DYN2_MOUSE		 1.838192772	 0.018162229	 Unt	 D39	

Q8BKC5	 IPO5_MOUSE	 2.28646132	 0.018173817	 Unt	 D39	

O35841	 API5_MOUSE	 1.689981915	 0.018363087	 D39	 Unt	

Q6P069	 SORCN_MOUSE	 4.880076693	 0.018505487	 Unt	 D39	

Q9R0Q7	 TEBP_MOUSE	 2.498295539	 0.018533458	 Unt	 D39	

Q6ZWN5	 RS9_MOUSE	 2.557465453	 0.01884961	 Unt	 D39	

P57780	 ACTN4_MOUSE		 3.238182515	 0.018881343	 Unt	 D39	

P80314	 TCPB_MOUSE	 2.316149378	 0.019046373	 Unt	 D39	

Q91YT0	 NDUV1_MOUSE	 2.148716125	 0.020075349	 D39	 Unt	

P35441	 TSP1_MOUSE	 1.803642887	 0.020230756	 D39	 Unt	

O08553	 DPYL2_MOUSE		 3.165592997	 0.02026667	 Unt	 D39	

O55131	 SEPT7_MOUSE	 2.828916586	 0.020419327	 Unt	 D39	

Q9EQK5	 MVP_MOUSE		 1.255000804	 0.020816426	 D39	 Unt	

P70372	 ELAV1_MOUSE	 2.821721727	 0.020898504	 Unt	 D39	

Q91V12	 BACH_MOUSE	 5.512172254	 0.021312701	 Unt	 D39	

P17751	 TPIS_MOUSE	 3.610980239	 0.021801044	 Unt	 D39	

P05201	 AATC_MOUSE	 2.937011655	 0.0219596	 Unt	 D39	

P29699	 FETUA_MOUSE	 4.163350326	 0.022169526	 D39	 Unt	

Q6PDM2	 SRSF1_MOUSE	 3.754354879	 0.022219539	 Unt	 D39	
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P97807	 FUMH_MOUSE	 2.020270258	 0.022483025	 D39	 Unt	

Q91VW3	 SH3L3_MOUSE	 5.072936473	 0.022613001	 Unt	 D39	

Q9CY64	 BIEA_MOUSE	 3.23148992	 0.022834834	 Unt	 D39	

Q8K2Q7	 BROX_MOUSE	 6.151405839	 0.02289493	 Unt	 D39	

P51174	 ACADL_MOUSE	 1.639310022	 0.022950091	 D39	 Unt	

P68040	 GBLP_MOUSE	 3.274323429	 0.023208512	 Unt	 D39	

Q6P1B1	 XPP1_MOUSE	 2.033293357	 0.023231434	 Unt	 D39	

Q9JJU8	 SH3L1_MOUSE	 4.864985195	 0.02369873	 Unt	 D39	

P20060	 HEXB_MOUSE	 1.382079497	 0.024442854	 Unt	 D39	

Q9D2G2	 ODO2_MOUSE	 2.420475253	 0.02485812	 D39	 Unt	

Q9Z1Z2	 STRAP_MOUSE	 8.064938086	 0.025195607	 Unt	 D39	

Q922R8	 PDIA6_MOUSE	 1.801758848	 0.025491396	 D39	 Unt	

P26638	 SYSC_MOUSE	 3.412251234	 0.025956644	 Unt	 D39	

Q9CQQ7	 AT5F1_MOUSE	 2.075787207	 0.026446349	 D39	 Unt	

Q9D0K2	 SCOT1_MOUSE	 1.992360989	 0.026560989	 D39	 Unt	

P26443	 DHE3_MOUSE		 1.736682113	 0.02667564	 D39	 Unt	

Q99KV1	 DJB11_MOUSE	 1.743206723	 0.026764301	 D39	 Unt	

Q9CPU0	 LGUL_MOUSE	 6.461886858	 0.026866289	 Unt	 D39	

O70492	 SNX3_MOUSE		 1.504987277	 0.026866483	 Unt	 D39	

P47738	 ALDH2_MOUSE		 1.719026789	 0.027107058	 D39	 Unt	

P62827	 RAN_MOUSE		 3.153217673	 0.027119196	 Unt	 D39	

Q9JIY5	 HTRA2_MOUSE	 1.473621924	 0.02715153	 Unt	 D39	
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P35278	 RAB5C_MOUSE	 1.784884073	 0.027625381	 Unt	 D39	

P50516	 VATA_MOUSE	 1.54471257	 0.02779199	 D39	 Unt	

P09671	 SODM_MOUSE	 2.461180271	 0.027884137	 D39	 Unt	

P60335	 PCBP1_MOUSE		 1.6337891	 0.027935143	 Unt	 D39	

P19973	 LSP1_MOUSE	 3.289875291	 0.027949902	 Unt	 D39	

Q8JZV7	 NAGA_MOUSE	 5.691986805	 0.028467251	 Unt	 D39	

Q60597	 ODO1_MOUSE	 2.519215726	 0.028685462	 D39	 Unt	

Q5SSL4	 ABR_MOUSE	 3.983768834	 0.028800419	 Unt	 D39	

P09405	 NUCL_MOUSE	 2.67107106	 0.028850245	 Unt	 D39	

Q03265	 ATPA_MOUSE	 2.018756482	 0.028973696	 D39	 Unt	

Q3TW96	 UAP1L_MOUSE		 2.241007807	 0.02903345	 Unt	 D39	

Q99KK7	 DPP3_MOUSE	 2.32305289	 0.029573875	 Unt	 D39	

P46638	 RB11B_MOUSE		 3.316836292	 0.029668602	 Unt	 D39	

P14211	 CALR_MOUSE	 2.019503093	 0.029673316	 D39	 Unt	

Q9CQ60	 6PGL_MOUSE	 4.731329217	 0.029950752	 Unt	 D39	

P11835	 ITB2_MOUSE		 1.304994613	 0.030107991	 D39	 Unt	

P28474	 ADHX_MOUSE	 2.016834839	 0.03019735	 Unt	 D39	

Q9R1T2	 SAE1_MOUSE	 5.168798715	 0.030271953	 Unt	 D39	

P62331	 ARF6_MOUSE	 3.58355747	 0.031172405	 Unt	 D39	

O88456	 CPNS1_MOUSE	 1.828285884	 0.031459787	 Unt	 D39	

P14869	 RLA0_MOUSE	 3.201691579	 0.031548301	 Unt	 D39	

O09131	 GSTO1_MOUSE	 3.714377156	 0.031800978	 Unt	 D39	
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P56399	 UBP5_MOUSE	 1.918789615	 0.032125423	 Unt	 D39	

P37040	 NCPR_MOUSE	 2.347487165	 0.03228013	 D39	 Unt	

P47757	 CAPZB_MOUSE	 3.004612868	 0.032303897	 Unt	 D39	

Q8BWT1	 THIM_MOUSE	 1.552746628	 0.032562171	 D39	 Unt	

Q00519	 XDH_MOUSE	 1.788364115	 0.033019745	 Unt	 D39	

Q8BHN3	 GANAB_MOUSE	 1.49620051	 0.033101258	 D39	 Unt	

Q9WUA3	 K6PP_MOUSE		 1.884056903	 0.033361732	 Unt	 D39	

O08539	 BIN1_MOUSE	 3.519075672	 0.033866834	 Unt	 D39	

P28656	 NP1L1_MOUSE	 3.470203602	 0.033904363	 Unt	 D39	

Q8K157	 GALM_MOUSE	 5.018381816	 0.033981346	 Unt	 D39	

Q7TQI3	 OTUB1_MOUSE	 2.55482455	 0.034199928	 Unt	 D39	

P68181	 KAPCB_MOUSE	 2.198801891	 0.03424006	 Unt	 D39	

P12970	 RL7A_MOUSE	 1.282329065	 0.034429882	 Unt	 D39	

P61750	 ARF4_MOUSE	 1.512871418	 0.034724877	 Unt	 D39	

Q78PY7	 SND1_MOUSE	 1.881399008	 0.035174232	 Unt	 D39	

P27773	 PDIA3_MOUSE	 2.01463333	 0.035314008	 D39	 Unt	

P48678	 LMNA_MOUSE	 1.367576811	 0.035353149	 Unt	 D39	

P54071	 IDHP_MOUSE		 1.552802848	 0.035802048	 D39	 Unt	

Q9EST5	 AN32B_MOUSE		 2.535361691	 0.036108395	 Unt	 D39	

P63038	 CH60_MOUSE	 1.949366729	 0.036209871	 D39	 Unt	

Q64152	 BTF3_MOUSE	 3.020205004	 0.03626428	 Unt	 D39	

P56480	 ATPB_MOUSE	 2.293072353	 0.036306369	 D39	 Unt	
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Q99LP6	 GRPE1_MOUSE	 2.754269379	 0.036402523	 D39	 Unt	

P19783	 COX41_MOUSE	 2.437314609	 0.03645526	 D39	 Unt	

P70195	 PSB7_MOUSE	 2.770721871	 0.036498119	 Unt	 D39	

O09061	 PSB1_MOUSE	 2.824434857	 0.037355456	 Unt	 D39	

Q9Z0N1	 IF2G_MOUSE	 3.314348198	 0.037414865	 Unt	 D39	

P25444	 RS2_MOUSE	 2.343217194	 0.037541084	 Unt	 D39	

Q6WVG3	 KCD12_MOUSE	 2.543648214	 0.03766201	 Unt	 D39	

P68510	 1433F_MOUSE		 4.801240245	 0.037731403	 Unt	 D39	

Q8BMF4	 ODP2_MOUSE	 2.149403312	 0.0378437	 D39	 Unt	

Q9JHR7	 IDE_MOUSE	 2.547923571	 0.037898051	 Unt	 D39	

Q9DCH4	 EIF3F_MOUSE	 3.14650385	 0.038057387	 Unt	 D39	

O88844	 IDHC_MOUSE	 3.024283887	 0.038287514	 Unt	 D39	

P70296	 PEBP1_MOUSE	 4.031652328	 0.038563626	 Unt	 D39	

O54984	 ASNA_MOUSE	 2.296059918	 0.038637302	 Unt	 D39	

P97379	 G3BP2_MOUSE	 2.354372109	 0.038912466	 Unt	 D39	

Q3U0V1	 FUBP2_MOUSE	 3.152835456	 0.039204583	 Unt	 D39	

Q9ER72	 SYCC_MOUSE	 2.35614808	 0.039210118	 Unt	 D39	

Q00623	 APOA1_MOUSE	 3.212736695	 0.039360214	 D39	 Unt	

P42125	 ECI1_MOUSE	 1.499813332	 0.039522051	 D39	 Unt	

P16858	 G3P_MOUSE		 3.127622464	 0.039573124	 Unt	 D39	

O89023	 TPP1_MOUSE	 3.199549856	 0.039622313	 Unt	 D39	

P18242	 CATD_MOUSE	 1.509222434	 0.039951335	 Unt	 D39	
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P50544	 ACADV_MOUSE	 2.946350579	 0.040046807	 D39	 Unt	

Q9Z1G3	 VATC1_MOUSE	 1.47861264	 0.04029386	 Unt	 D39	

Q9CQF9	 PCYOX_MOUSE	 2.180315167	 0.040882388	 D39	 Unt	

Q8R180	 ERO1A_MOUSE	 3.312927093	 0.041050063	 D39	 Unt	

P62918	 RL8_MOUSE	 3.954950365	 0.041302551	 Unt	 D39	

Q9DBG5	 PLIN3_MOUSE	 6.829569208	 0.0414462	 Unt	 D39	

Q05816	 FABP5_MOUSE	 3.966757688	 0.041804534	 Unt	 D39	

P97855	 G3BP1_MOUSE	 3.78813305	 0.041936646	 Unt	 D39	

P04117	 FABP4_MOUSE		 3.241224706	 0.042289541	 Unt	 D39	

P62259	 1433E_MOUSE	 4.035116962	 0.042701011	 Unt	 D39	

P97351	 RS3A_MOUSE	 5.472464539	 0.043043129	 Unt	 D39	

P62192	 PRS4_MOUSE	 1.66422613	 0.043205063	 Unt	 D39	

Q9D819	 IPYR_MOUSE	 3.800389898	 0.043238725	 Unt	 D39	

P97311	 MCM6_MOUSE	 3.363087727	 0.04334755	 Unt	 D39	

Q9CY58	 PAIRB_MOUSE	 7.477494732	 0.043545079	 Unt	 D39	

Q62422	 OSTF1_MOUSE	 2.780114377	 0.043661059	 Unt	 D39	

P62082	 RS7_MOUSE	 3.65289741	 0.043902306	 Unt	 D39	

Q00612	 G6PD1_MOUSE		 2.568667346	 0.044238943	 Unt	 D39	

O35855	 BCAT2_MOUSE	 1.32813538	 0.044589075	 D39	 Unt	

P10107	 ANXA1_MOUSE		 1.817930199	 0.044693039	 Unt	 D39	

Q9CZX8	 RS19_MOUSE	 17.56962393	 0.044797288	 Unt	 D39	

Q9CQ65	 MTAP_MOUSE	 4.419225333	 0.044868494	 Unt	 D39	
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Q3U1J4	 DDB1_MOUSE	 4.284537499	 0.044881743	 Unt	 D39	

Q9WTP6	 KAD2_MOUSE	 2.037429119	 0.045131097	 Unt	 D39	

P32261	 ANT3_MOUSE	 3.668509429	 0.045805053	 D39	 Unt	

Q9CRB9	 CHCH3_MOUSE	 1.456131367	 0.045842813	 D39	 Unt	

P53810	 PIPNA_MOUSE		 3.798995926	 0.045844414	 Unt	 D39	

Q9D6J6	 NDUV2_MOUSE	 1.34943135	 0.045869735	 D39	 Unt	

P10639	 THIO_MOUSE	 2.635787531	 0.045896606	 Unt	 D39	

P45952	 ACADM_MOUSE	 1.530815955	 0.046245112	 D39	 Unt	

Q9EPL9	 ACOX3_MOUSE	 1.168656484	 0.046334759	 Unt	 D39	

Q63844	 MK03_MOUSE		 3.34063601	 0.046342643	 Unt	 D39	

A6X935	 ITIH4_MOUSE	 4.842399889	 0.046478132	 D39	 Unt	

P12787	 COX5A_MOUSE	 2.776875402	 0.046532398	 D39	 Unt	

Q8BFZ9	 ERLN2_MOUSE		 1.748801511	 0.046590403	 D39	 Unt	

Q7TMB8	 CYFP1_MOUSE		 5.105871495	 0.047192717	 Unt	 D39	

P68433	 H31_MOUSE	 1.584871069	 0.047265942	 D39	 Unt	

Q3UIA2	 RHG17_MOUSE	 1.730287729	 0.047358708	 Unt	 D39	

Q9JKR6	 HYOU1_MOUSE	 1.8697835	 0.048007162	 D39	 Unt	

Q9CZ13	 QCR1_MOUSE	 1.809981316	 0.048047596	 D39	 Unt	

P14206	 RSSA_MOUSE	 3.341281239	 0.048155008	 Unt	 D39	

Q91VI7	 RINI_MOUSE	 1.465771927	 0.048208237	 Unt	 D39	

O88544	 CSN4_MOUSE	 3.808386202	 0.048486605	 Unt	 D39	

Q3TRM8	 HXK3_MOUSE	 2.024578888	 0.048707328	 Unt	 D39	
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Q9Z204	 HNRPC_MOUSE	 2.842328417	 0.048738434	 Unt	 D39	

Q61598	 GDIB_MOUSE	 3.282097131	 0.04888907	 Unt	 D39	

O70133	 DHX9_MOUSE	 1.912208405	 0.049224289	 D39	 Unt	

Q9QWR8	 NAGAB_MOUSE	 2.723477572	 0.049342799	 Unt	 D39	

Q9WV32	 ARC1B_MOUSE		 3.589822372	 0.049361683	 Unt	 D39	

P28063	 PSB8_MOUSE	 3.305475796	 0.049502182	 Unt	 D39	

P17742	 PPIA_MOUSE		 4.906637115	 0.049504662	 Unt	 D39	

P06745	 G6PI_MOUSE	 3.442409492	 0.049837268	 Unt	 D39	

Appendix 2 

List of proteins showing fold changes and statistically significant differences in 

expression of BMDM proteins between D39 and ΔPLY. 

	

Protein	ID	

	

Protein	Name	

	

Fold-
Change	

	

P	Value	

	

Highest	mean	
condition	

	

Lowest	mean		

condition	

Q9JHU4	 DYHC1_MOUSE	 1.385064657	 0.001661589	 ΔPLY	 D39	

P12970	 RL7A_MOUSE	 2.234302212	 0.001704381	 ΔPLY	 D39	

P20108	 PRDX3_MOUSE	 1.58224077	 0.0017172	 ΔPLY	 D39	

P48036	 ANXA5_MOUSE		 1.28588439	 0.002342855	 D39	 ΔPLY	

O70492	 SNX3_MOUSE		 1.579150389	 0.002850724	 ΔPLY	 D39	

Q61878	 PRG2_MOUSE	 3.034641004	 0.003621433	 ΔPLY	 D39	

O08585	 CLCA_MOUSE	 1.613394599	 0.004924546	 ΔPLY	 D39	

O35744	 CH3L3_MOUSE		 1.364646549	 0.00548276	 ΔPLY	 D39	
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P97370	 AT1B3_MOUSE	 1.054808158	 0.005721293	 D39	 ΔPLY	

Q9QUR6	 PPCE_MOUSE	 5.168609419	 0.006353662	 D39	 ΔPLY	

P56395	 CYB5_MOUSE	 1.537017405	 0.006645976	 ΔPLY	 D39	

P32261	 ANT3_MOUSE	 1.721146325	 0.006923802	 D39	 ΔPLY	

P13020	 GELS_MOUSE	 1.890977297	 0.007786837	 D39	 ΔPLY	

P20029	 GRP78_MOUSE	 1.345579989	 0.00832135	 ΔPLY	 D39	

A1L314	 MPEG1_MOUSE	 2.617543431	 0.008686058	 ΔPLY	 D39	

P24527	 LKHA4_MOUSE	 2.028573122	 0.009167517	 D39	 ΔPLY	

Q9DB20	 ATPO_MOUSE	 1.493838613	 0.011143863	 ΔPLY	 D39	

P56399	 UBP5_MOUSE	 2.298121001	 0.012025566	 ΔPLY	 D39	

P51150	 RAB7A_MOUSE	 1.586118376	 0.01220897	 ΔPLY	 D39	

Q62186	 SSRD_MOUSE	 1.277493982	 0.012750592	 ΔPLY	 D39	

Q60865	 CAPR1_MOUSE	 1.585991359	 0.012864772	 ΔPLY	 D39	

Q9WV80	 SNX1_MOUSE	 1.108313969	 0.013116334	 D39	 ΔPLY	

Q91VC3	 IF4A3_MOUSE	 1.177236218	 0.013579942	 ΔPLY	 D39	

P06800	 PTPRC_MOUSE	 1.823204021	 0.013882324	 ΔPLY	 D39	

Q99KV1	 DJB11_MOUSE	 1.563169748	 0.014842375	 ΔPLY	 D39	

Q9D7X3	 DUS3_MOUSE	 1.849182047	 0.015327191	 ΔPLY	 D39	

O70251	 TRFL_HUMAN	 1.555634515	 0.015612869	 D39	 ΔPLY	

P68433	 H31_MOUSE	 1.869215601	 0.017125267	 ΔPLY	 D39	

Q8R081	 HNRPL_MOUSE	 1.340350662	 0.017305884	 D39	 ΔPLY	

P05063	 ALDOC_MOUSE	 2.681917387	 0.018957952	 D39	 ΔPLY	
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P51174	 ACADL_MOUSE	 1.307318935	 0.019490872	 ΔPLY	 D39	

P68181	 KAPCB_MOUSE	 2.80386122	 0.020674311	 D39	 ΔPLY	

Q3TCN2	 PLBL2_MOUSE	 1.142010233	 0.020945676	 ΔPLY	 D39	

Q8BK67	 RCC2_MOUSE	 4.636331775	 0.022368437	 ΔPLY	 D39	

P28798	 GRN_MOUSE	 1.537182639	 0.022661515	 ΔPLY	 D39	

Q6GQT1	 A2MP_MOUSE	 1.925724344	 0.02271057	 D39	 ΔPLY	

Q60931	 VDAC3_MOUSE	 1.258249325	 0.024180801	 ΔPLY	 D39	

P17225	 PTBP1_MOUSE		 1.217778025	 0.024528721	 D39	 ΔPLY	

O08529	 CAN2_MOUSE	 1.349956566	 0.024998362	 ΔPLY	 D39	

P62204	 CALM_MOUSE	 2.314139439	 0.025116719	 D39	 ΔPLY	

Q91YQ5	 RPN1_MOUSE	 1.628166023	 0.025807444	 ΔPLY	 D39	

Q9JHI5	 IVD_MOUSE	 2.062611836	 0.026707272	 ΔPLY	 D39	

Q9D0E1	 HNRPM_MOUSE	 1.257388349	 0.028044564	 ΔPLY	 D39	

Q9Z0K8	 VNN1_MOUSE	 1.65279028	 0.028972344	 D39	 ΔPLY	

P26443	 DHE3_MOUSE		 1.227011793	 0.029134145	 ΔPLY	 D39	

Q921M7	 FA49B_MOUSE		 1.650489907	 0.031734081	 D39	 ΔPLY	

P08113	 ENPL_MOUSE	 1.321342115	 0.03195283	 ΔPLY	 D39	

P70441	 NHRF1_MOUSE	 3.923073511	 0.032552962	 D39	 ΔPLY	

Q9JHJ0	 TMOD3_MOUSE	 1.30625782	 0.033088606	 D39	 ΔPLY	

Q9D0F9	 PGM1_MOUSE	 1.419436304	 0.033954173	 ΔPLY	 D39	

P68037	 UB2L3_MOUSE	 2.832193126	 0.034192126	 D39	 ΔPLY	

Q9WTP6	 EFTU_MOUSE		 2.199033709	 0.03493641	 D39	 ΔPLY	
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P57759	 ERP29_MOUSE	 1.379524965	 0.035236405	 ΔPLY	 D39	

P63328	 PP2BA_MOUSE	 1.769081599	 0.035439692	 ΔPLY	 D39	

O70251	 ODPA_MOUSE	 1.572032327	 0.035586525	 D39	 ΔPLY	

Q8BWT1	 THIM_MOUSE	 1.410962611	 0.036097463	 ΔPLY	 D39	

Q07417	 ACADS_MOUSE	 1.320823073	 0.036361943	 ΔPLY	 D39	

Q91W90	 TXND5_MOUSE	 1.166905832	 0.036789294	 ΔPLY	 D39	

P97315	 CSRP1_MOUSE	 2.313454053	 0.038402542	 D39	 ΔPLY	

Q9DCX2	 ATP5H_MOUSE	 2.134074444	 0.039190222	 ΔPLY	 D39	

P35486	 ODPA_MOUSE	 1.498517037	 0.040244057	 ΔPLY	 D39	

P61161	 ARP2_MOUSE	 1.446831412	 0.040620191	 D39	 ΔPLY	

Q9EST5	 AN32B_MOUSE		 1.410663597	 0.04190145	 ΔPLY	 D39	

Q8BFR5	 EFTU_MOUSE		 1.44837975	 0.041974635	 ΔPLY	 D39	

Q9Z0J0	 NPC2_MOUSE	 1.549722133	 0.042015485	 ΔPLY	 D39	

P10605	 CATB_MOUSE	 1.099956596	 0.042201885	 ΔPLY	 D39	

P29391	 FRIL1_MOUSE	 1.792616783	 0.042623639	 ΔPLY	 D39	

P42125	 ECI1_MOUSE	 1.353475549	 0.043136793	 ΔPLY	 D39	

P63037	 DNJA1_MOUSE	 1.853756014	 0.043655208	 ΔPLY	 D39	

O70251	 EF1B_MOUSE	 1.672783555	 0.043701083	 D39	 ΔPLY	

Q9DCW4	 ETFB_MOUSE	 1.4144385	 0.043715786	 ΔPLY	 D39	

P35278	 RAB5C_MOUSE	 1.488965019	 0.044043877	 ΔPLY	 D39	

Q02105	 C1QC_MOUSE	 1.608389067	 0.044199533	 ΔPLY	 D39	

P51863	 VA0D1_MOUSE	 1.363642882	 0.044302246	 ΔPLY	 D39	
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P29699	 FETUA_MOUSE	 1.695610269	 0.044990934	 D39	 ΔPLY	

O08795	 GLU2B_MOUSE	 1.739987156	 0.045853753	 ΔPLY	 D39	

P28063	 PSB8_MOUSE	 1.780353668	 0.046235856	 D39	 ΔPLY	

Q9QUM9	 PSA6_MOUSE	 1.531831846	 0.046589335	 D39	 ΔPLY	

P19157	 GSTP1_MOUSE		 1.96747817	 0.048204918	 D39	 ΔPLY	

Q3V3R1	 C1TM_MOUSE	 1.436876232	 0.048655796	 ΔPLY	 D39	

Q9WTP6	 KAD2_MOUSE	 1.914690505	 0.048723097	 ΔPLY	 D39	
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