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1 Introduction

This paper considers a nonhomogeneous continuous-time Markov decision process (CTMDP) in a

Borel state space on a finite time horizon with N constraints.

To the best of our knowledge, the majority of the current literature on constrained CTMDPs

considers an infinite time horizon; see e.g., [5, 9, 10, 13, 14, 25] and [9, 12, 29] dealing with the

total discounted and long-run average rewards, respectively. For unconstrained CTMDPs on a

finite horizon, we mention e.g., [3, 11, 8, 19, 26, 28], which establish the optimality equation. The

constrained optimal problem for a CTMDP on a finite horizon has received less attention, see e.g.,

[20], which is closely related to the present paper. In [20] for rewards in special forms (linear
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in the system state) on a finite state space, the authors reduced the constrained finite horizon

CTMDP problem to a deterministic optimal control problem through the Kolmogorov equations,

by investigating which, the maximum principle for the CTMDP problem was established. The

present paper follows a different method from [20]; our investigations are based on the study

of occupation measures, and the reduction of the CTMDP problem to a constrained optimality

problem over the set of all occupation measures. Compared to [20], we do not require any special

form on the rewards/costs, and the model is in a general Borel state space. Furthermore, our main

result asserting the optimality of a Markov policy, which is a mixture of deterministic Markov

policies, was not obtained or mentioned in [20].

More precisely, we will deal with the constrained CTMDP on a finite horizon under suitable

conditions similar to those imposed in [9, 11, 12, 14, 25, 27], which, except for [11], all deal with

CTMDP problems on an infinite time horizon. In particular, our model admits the following: (1)

the transition rates may be unbounded and depend on time; (2) the reward/cost rates may be time-

dependent and unbounded from both above and below; (3) the states space and the action space

are both general Borel spaces; and (4) the performance criterion to be optimized is the expected

finite horizon rewards, while N constraints are imposed on similar expected finite horizon costs.

The main results and contributions of the present paper are as follows. First, we introduce

the appropriate notion of an occupation measure of a policy for the finite horizon CTMDP. The

occupation measure in the present paper is necessarily different from and more detailed than the

occupation measure for infinite horizon models; see [13, 14, 25]. The space of occupation measures

is characterized, and its convexity and compactness with respect to some appropriate topology

are shown under the imposed conditions. The characterization result allows one to rewrite the

constrained CTMDP optimal control problem as a constrained static optimization problem over the

set of occupation measures. We show that the occupation measure of each given policy coincides

with the one of some Markov policy; see Theorem 4.1. Then the compactness result leads to

the existence of an optimal policy for the original constrained CTMDP optimal control problem

(see Theorem 5.1). Second, we show that each extreme point of the performance vector space

is generated by a deterministic Markov policy, and in turn establish the existence of an optimal

Markov policy, which is a mixture of no more than N + 1 deterministic Markov policies; see

Theorem 5.2. Similar results were known in [1, 7, 23] for discrete-time Markov decision processes

and [14, 15, 24, 25] for CTMDPs on an infinite time horizon. However, to the best of our knowledge,

such results on the optimality of the mixture of deterministic Markov policies have not been reported

in the current literature on finite horizon CTMDPs as considered in this paper.

The rest of the paper is organized as follows. In Section 2 we introduce the constrained optimal

control problem for the finite horizon CTMDP. After giving some preliminaries in Section 3, the

properties of occupation measures are examined in Section 4. The main optimality results on
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the existence of a constrained-optimal policy are given in Section 5. We finish the paper with a

conclusion in Section 6.

2 Optimal control problem

In what follows, for each Borel space X, we denote its Borel σ-algebra by B(X). Unless stated

otherwise, by measurability we mean the Borel measurability. For each subset Γ of X, denote by

Γc its complement, and by IΓ the indicator function. For a finite signed measure µ, |µ| denotes its
total variation.

The nonhomogeneous CTMDP model with N constraints is a collection

M := {S,A,A(t, x)(t ≥ 0, x ∈ S), q(·|t, x, a), (rk(t, x, a), gk(x))Nk=0}, (2.1)

consisting of the following elements:

(a) a nonempty Borel space S equipped with the Borel σ-algebra B(S), called the state space,

whose elements are referred to as the states of a system;

(b) a nonempty Borel space A equipped with the Borel σ-algebra B(A), called the action space,

whose elements are referred to as the actions (or decisions) of a decision-maker (or controller);

(c) a family {A(t, x), t ≥ 0, x ∈ S} of nonempty subsets A(t, x) of A, where each A(t, x) denotes

the set of actions available to a controller when the system is in state x ∈ S at time t, and it

is assumed that A(t, x) ∈ B(A), and there is a measurable mapping f : [0,∞)× S → A such

that f(t, x) ∈ A(t, x) for all t ≥ 0 and x ∈ S;

(d) transition rates q(·|t, x, a), a Borel measurable signed kernel on S given [0,∞)×K, satisfying

0 ≤ q(D|t, x, a) < +∞ for all (t, x, a) ∈ K and x /∈ D ∈ B(S), being conservative in the sense

of q(S|t, x, a) ≡ 0 and stable in the sense of

q∗(x) := sup
t≥0,a∈A(t,x)

q(t, x, a) < ∞ ∀ x ∈ S, (2.2)

where

K := {(t, x, a) : t ≥ 0, x ∈ S, a ∈ A(t, x)}

is assumed to be a Borel measurable subset of [0,∞)× S ×A, and

q(t, x, a) := −q({x}|t, x, a) ≥ 0

for all (t, x, a) ∈ K. For the future reference, let

q̃(Γ|t, x, a) := q(Γ− {x}|t, x, a)

for each Γ ∈ B(S).
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(e) the reward rate r0 and the cost rates rk are Borel measurable (real-valued) functions on K,

while the Borel measurable functions g0 and gk on S, k = 1, . . . , N, denote the terminal

reward and cost rates, respectively.

Next, we give an informal description of the evolution of a CTMDP with the model (2.1).

Roughly speaking, the controller observes the system state continuously in time. If the system

remains at the state x at time t, he/she chooses an action a ∈ A(t, x) according to some given

policy, as a consequence of which, the following happens:

(i) Immediate rewards/costs rk(t, x, a)dt are received.

(ii) A transition from state x to some state in D (with x /∈ D) occurs with probability

q(D|t, x, a)dt+ o(dt), or the system remains at state x with probability 1− q(x|t, x, a)dt+ o(dt).

To formalize what is described above, we now describe the construction of a CTMDP. Let

S∆ := S
∪
{∆} (with some isolated point ∆ ̸∈ S), Ω0 := (S × (0,∞))∞, and the sample space be

Ω := Ω0
∪

{(x0, θ1, x1, . . . , θk, xk,∞,∆,∞, . . .)| x0 ∈ S, xl ∈ S, θl ∈ (0,∞), ∀ 1 ≤ l ≤ k, k ≥ 1},

and let F be the Borel σ-algebra on Ω. Then we obtain the measurable space (Ω,F). For each k ≥ 0

and e := (x0, θ1, x1, . . . , θk, xk, . . .) ∈ Ω, let hk(e) := (x0, θ1, x1, . . . , θk, xk) denote the k-component

internal history, and define

T0(e) := 0, Tk+1(e) := θ1 + θ2 + . . .+ θk+1, Xk(e) := xk.

In what follows, the argument e ∈ Ω is always omitted. Let T∞ := limk→∞ Tk, and define the state

process {ξt} by

ξt :=

{
xk, if Tk ≤ t < Tk+1,

∆, if t ≥ T∞,

for each t ≥ 0.

Evidently, Tk (k ≥ 1) denotes the k-th jump moment of {ξt}, Xk−1 is the state of the process on

[Tk−1, Tk), and θk plays the role of the sojourn time at state Xk−1. We formally put q(·|t,∆, a∆) :≡
0, rk(t,∆, a∆) :≡ 0, A(t,∆) :≡ {a∆}, A∆ := A ∪ {a∆}, where a∆ /∈ A is an isolated point.

Take the right-continuous family of σ-algebras {Ft}t≥0 as the internal history of the marked

point process {Tk, Xk, k ≥ 0}, that is, Ft := σ(Tm ≤ s,Xm ∈ Γ,Γ ∈ B(S), s ≤ t,m ≥ 0). Let P be

the σ-algebra of predictable sets on Ω × [0,∞) related to {Ft}t≥0, that is, P := σ({Γ × {0},Γ ∈
F0} ∪ {Γ × (s,∞),Γ ∈ Fs−, s > 0}), where Fs− := ∨t<sFt; see Chapter 4 in [21] for details. A

real-valued function on Ω× [0,∞) is called predictable if it is measurable with respect to P.

Definition 2.1. A policy is a P-measurable transition probability π(da|e, t) on B(A∆) from Ω ×
[0,∞), which is concentrated on A(t, ξt−), where ξt− = lims↑t ξs. A policy π(da|e, t) is called Markov

4



if there is a stochastic kernel ϕ on A given [0,∞) × S such that π(da|e, t) = ϕ(da|t, ξt−(e)) and

ϕ(A(t, x)|t, x) ≡ 1. We will denote by ϕ = ϕ(da|t, x) a Markov policy. A Markov policy ϕ is

called deterministic Markov whenever there exists a A-valued Borel measurable function f(t, x) on

[0,∞) × S such that ϕ(da|t, x) is a Dirac measure concentrated at f(t, x). Such a deterministic

Markov policy will be denoted by f for simplicity.

We denote by Π the set of all policies, by Πr
m the set of all Markov policies, and by Πd

m the set

of all deterministic Markov policies.

Theorems 4.13 and 4.19 or (4.38) in [21] imply that each policy π(da|e, t) can be characterized

by the following expression

π(da|e, t) = I{t=0}π
0(da|x0, 0) +

∑
k≥0

I{Tk<t≤Tk+1}π
k(da|x0, θ1, x1, . . . , θk, xk, t− Tk)

+I{t≥T∞}δa∆(da), (2.3)

where π0(da|x0, 0) is a stochastic kernel on A given S concentrated on A(0, x0), π
k(k ≥ 1) are

stochastic kernels on A given (S × (0,∞))k+1 concentrated on A(t, xk), and δa∆(da) denotes the

Dirac measure at the point a∆.

Evidently, for any policy π ∈ Π and D ∈ B(S), the random measure

mπ(D|e, t)dt :=
∫
A
q(D|t, ξt−, a)π(da|e, t)I{ξt− /∈D}dt (2.4)

is predictable. Note that mπ(D|e, t) in (2.4) defines the jump intensity of the process {ξt}, which
together with (2.3) gives the following representation

mπ(D|e, t) = I{t=0}m
π
0 (D|x0, 0) +

∑
k≥0

I{Tk<t≤Tk+1}m
π
k(D|x0, θ1, x1, . . . , θk, xk, t− Tk),

where mπ
k(D|x0, θ1, x1, . . . , θk, xk, t − Tk) :=

∫
A q(D|t, xk, a)πk(da|x0, θ1, . . . , θk, xk, t − Tk)I{xk /∈D}

for Tk < t ≤ Tk+1, m
π
0 (D|x0, 0) :=

∫
A q(D|0, x0, a)π0(da|x0, 0)I{x0 /∈D}, see [22] for details.

Let the policy π be fixed. By a theorem of Jacod’s, given the initial distribution γ on B(S),
there is a unique probability measure P π

γ on (Ω,F) under which the random measure mπ defined

in the above is the unique dual predictable projection of the random measure on B((0,∞) × S)

defined by
∑

n≥1 δ(Tn,Xn)(dt, dx); see more details and the relevant definitions in Chapter 4 of [21]

or [22]. This fact is useful in the proof of Lemma 3.3 below. Let us recall the more explicit

construction of the measure P π
γ on the measurable space (Ω,F) given in [12, 14, 25]. Let H0 = S

and Hk = S × ((0,∞]× S∆)
k, k = 1, 2, . . .. The measure P π

γ on H0 = S is given by P π
γ (D) = γ(D)

for all D ∈ B(S). Suppose that the measure P π
γ on Hk has been constructed. Actually, P π

γ will be

a measure on (Ω,F), but here, with slight abuse of notation we use it also to denote its marginal

projection onto the space of k-component histories Hk. Then P π
γ on Hk+1 is determined by the
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following formula:

P π
γ (Γ× (dt, dx)) :=

∫
Γ
P π
γ (dhk)I{θk+1<∞}m

π
k(dx|hk, t)e−

∫ t
0 mπ

k (S|hk,v)dvdt, (2.5)

P π
γ (Γ× (∞,∆)) :=

∫
Γ
P π
γ (dhk){I{θk+1=∞} + I{θk+1<∞}e

−
∫∞
0 mπ

k (S|hk,v)dv},

where Γ ∈ B(Hk). According to the Ionescu Tulcea theorem, there exists a unique probability

measure P π
γ on (Ω,F), which has a projection on Hk satisfying (2.5). Let Eπ

γ be its corresponding

expectation operator.

Let T ∈ (0,∞) be a fixed finite terminal time. For each policy π ∈ Π, we define

V (π, rk, gk) = Eπ
γ

[∫ T

0

∫
A
rk(t, ξt, a)π(da|e, t)dt+ gk(ξT )

]
, k = 0, 1, . . . , N, (2.6)

provided that the expectations are well defined.

Let the numbers, dk, k = 1, 2, . . . , N, be the constrained constants. We denote by

U = {π ∈ Π : V (π, rk, gk) ≤ dk, for k = 1, . . . , N} (2.7)

the set of policies satisfying the N constraints. A policy π ∈ Π is called feasible if it is in U .

Throughout this article, to avoid trivial cases, we suppose that U ̸= ∅, and this assumption will not

be mentioned explicitly below. Then, the constrained optimal control problem under consideration

is as follows:

Maximize V (π, r0, g0) over all π ∈ U. (2.8)

Definition 2.2. A policy π∗ ∈ U is called optimal if

V (π∗, r0, g0) = sup
π∈U

V (π, r0, g0). (2.9)

The main objective of this paper is to show the existence of a Markov optimal policy, which is

a mixture of no more than N + 1 deterministic Markov policies; see Section 5.

3 Preliminaries

In this section, we present some assumptions and preliminary facts that are used to prove our main

results in the subsequent sections.

Assumption 3.1. There exist a continuous function ω ≥ 1 on S and constants c > 0, b ≥ 0,

M > 0 such that

(i)
∫
S q(dy|t, x, a)ω(y) ≤ cω(x) + b, for all (t, x, a) ∈ K;

(ii) q∗(x) ≤ Mω(x) for all x ∈ S, with q∗(x) as in (2.2);
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(iii) |rk(t, x, a)| ≤ Mω(x), |gk(x)| ≤ Mω(x) for each (t, x, a) ∈ K and 0 ≤ k ≤ N .

(iv) L :=
∫
S ω(x)γ(dx) < ∞, where γ is the given initial distribution.

The above condition guarantees that T∞ := limk→∞ Tk is infinite almost surely with respect to

P π
γ under each π ∈ Π, see Lemma 3.1. This fact is essential to the validity of the representation

(3.5) in the proof of Lemma 3.3 below. Parts (iii) and (iv), together with Assumption 3.2, imply

that the Dynkin formula is applicable to the class of functions of interest, see also Remark 3.1

below.

The following two lemmas summarize some consequences of Assumption 3.1.

Lemma 3.1. Under Assumptions 3.1(i, ii, iv), for each π ∈ Π, the following assertions hold.

(a) Eπ
γ [ω(ξt)] ≤ ect[L+ b

c ], for each t ≥ 0, with L as in Assumption 3.1(iv);

(b) P π
γ (ξt ∈ D) = γ(D) + Eπ

γ

[ ∫ t
0

∫
A q(D|s, ξs−, a)π(da|e, s)ds

]
, for each t ≥ 0 and D ∈ B(S);

(c) P π
γ (ξt ∈ S) = 1, for each t ≥ 0.

Proof. It follows from Lemma 3.1 in [11], see also Proposition 3.1 in [25].

Lemma 3.2. Suppose that Assumption 3.1 holds. Then, for each k = 0, 1, . . . , N,

|V (π, rk, gk)| ≤ (T + 1)MecT [L+
b

c
] ∀ π ∈ Π.

Proof. For each π ∈ Π and 0 ≤ k ≤ N , by Lemma 3.1(a) and Assumption 3.1(iii)

|V (π, rk, gk)| =
∣∣Eπ

γ

[ ∫ T

0

∫
A
rk(t, ξt, a)π(da|e, t)dt+ gk(ξT )

]∣∣
≤

∫ T

0
MEπ

γ [ω(ξt)]dt+MEπ
γ [ω(ξT )]

≤ M

∫ T

0
ect
[
L+

b

c

]
dt+M

[
ecTL+

b

c
ecT
]

≤ (T + 1)MecT [L+
b

c
].

We introduce some additional conditions important for the validity of the relevant statement

in Lemma 3.3 below.

Assumption 3.2. Let the function ω be as in Assumption 3.1. There exist a continuous function

ω′ ≥ 1 on S and constants c′ > 0, b′ ≥ 0 and M ′ > 0 such that

(i)
∫
S ω′(y)q(dy|t, x, a) ≤ c′ω′(x) + b′, for all (t, x, a) ∈ K;
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(ii) ω(x)(1 + q∗(x)) ≤ M ′ω′(x), with q∗(x) as in (2.2);

(iii) L′ :=
∫
S ω′(x)γ(dx) < ∞.

Remark 3.1. The role of Assumption 3.2 is for the finiteness of Eπ
γ [ω(ξt)q

∗(ξt)] for t ≥ 0; see the

assertions in (3.2) and (3.3) in proving Lemma 3.3 below. However, when the transition rates or the

reward functions are bounded (i.e., sup(t,x,a)∈K |rk(t, x, a)| < ∞, supx∈S |gk(x)| < ∞), Assumption

3.2 is not required at least for the relevant statement in Lemma 3.3 below.

Let I := [0, T ]. Given any function ω̄ ≥ 1 on S, a function φ on I × S is called ω̄-bounded

if the ω̄-weighted norm of φ, ∥φ∥ω̄ := sup(t,x)∈I×S
|φ(t,x)|
ω̄(x) , is finite. We denote by Bω̄(I × S) the

Banach space of all ω̄-bounded Borel measurable functions on I × S, and by Cb(I × S) the space

of all bounded continuous functions on I × S. Obviously, Cb(I × S) ⊂ B1(I × S). Let

K := {(t, x, a) : t ∈ [0, T ], x ∈ S, a ∈ A(t, x)}.

Since K = K
∩
([0, T ] × S × A, and K ∈ B([0,∞) × S × A) by the assumption above, K is also a

Borel measurable subset of [0,∞)×S×A). The class of ω̄-bounded Borel measurable functions on

K, denoted by Bω̄(K), is similarly defined.

Consider a function φ ∈ Bω(I ×S). We mention that if φ(t, x) is absolutely continuous in t ∈ I

for each x ∈ S, then there is some measurable function φ′ on I × S satisfying

φ(s, x)− φ(u, x) =

∫ s

u
φ′(t, x)dt, ∀ x ∈ S, 0 ≤ s ≤ u ≤ T.

Then for each x ∈ S, the function φ′(t, x) on I × S coincides with the partial derivative of the

function φ(t, x) in t ∈ I apart from on a null set Lφ(x) ⊂ I with respect to the Lebesgue measure.

With ω and ω′ as in Assumption 3.2, let C1,0
ω,ω′(I × S) := {φ ∈ Bω(I × S) : for each x ∈ S, φ(t, x)

is absolutely continuous in t ∈ I, and φ′ ∈ Bω+ω′(I × S)}.

Lemma 3.3. Suppose Assumptions 3.1(i, ii) and 3.2 are satisfied. Then, the following assertions

hold.

(a) (Dynkin’s formula): for each φ ∈ C1,0
ω,ω′(I × S), under every π ∈ Π,

Eπ
γ

[∫ T

0

(
φ′(t, ξt) +

∫
S

∫
A
φ(t, x)q(dx|t, ξt, a)π(da|e, t)

)
dt

]
= Eπ

γ [φ(T, ξT )]− φ(0, γ),

where φ(0, γ) :=
∫
S φ(0, x)γ(dx).

(b) For each π ∈ Π and h ∈ Bw(I × S),

Eπ
γ

[∫ T

0

∫
S

∫ T

t

∫
A
h(s, x)q(dx|t, ξt, a)π(da|e, t)dsdt

]
= Eπ

γ

[∫ T

0
h(t, ξt)dt

]
−
∫ T

0
h(t, γ)dt,

where h(t, γ) :=
∫
S h(t, x)γ(dx) for all t ≥ 0.
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Proof. (a) Since φ ∈ C1,0
ω,ω′(I × S), it follows from the definition of C1,0

ω,ω′(I × S) above that

|φ(s, y)| ≤ ∥φ∥ωω(y), and |φ′(s, y)| ≤ ∥φ′∥ω+ω′(ω(y) + ω′(y)) (3.1)

for all s ∈ I and y ∈ S. Under the conditions of the statement, we have∫
A

∫
S
|q|(dx|s, y, a)|φ(s, x)|π(da|e, s) ≤ ∥φ∥ω

[ ∫
S−{y}

∫
A
ω(x)q(dx|s, y, a)π(da|e, s) + ω(y)q∗(y)

]
≤ ∥φ∥ω

[ ∫
S

∫
A
ω(x)q(dx|s, y, a)π(da|e, s) + 2ω(y)q∗(y)

]
≤ ∥φ∥ω

[
cω(y) + 2M ′ω′(y) + b

]
∀ (s, y) ∈ I × S. (3.2)

Thus, (3.2) and Lemma 3.1(a) give∫ T

0
Eπ
γ

[∫
A

∫
S
|q|(dx|s, ξs, a)|φ(s, x)|π(da|e, s)

]
ds

≤ ∥φ∥ω
∫ T

0
Eπ
γ

[
cω(ξs) + b+ 2M ′ω′(ξs)

]
ds

≤ T∥φ∥ω[(c+ b)ecTL+ b+ 2M ′ec
′T (L′ +

b′

c′
)] < ∞. (3.3)

Moreover, by (3.1) we have∫ T

0
|φ′(s, ξs)|ds ≤ ∥φ′∥ω+ω′

∫ T

0
(ω(ξs) + ω′(ξs))ds,

which, together with Lemma 3.1(a) (with ω being replaced by (ω + ω′) here), gives

Eπ
γ

[∫ T

0
|φ′(s, ξs)|ds

]
≤ ∥φ′∥ω+ω′Te(c+c′)T [L+ L′ +

b+ b′

c+ c′
] < ∞. (3.4)

Since the process is nonexplosive, similarly to [2] with a deterministic setup, we write that

(almost surely with respect to P π
γ ) for each 0 ≤ t ≤ T,

φ(t, ξt) = φ(0, x) +

∫ t

0
φ′(s, ξs)ds+

∑
n≥1

∫
(0,t]

∆φ(s, ξs)δTn(ds) (3.5)

with ∆φ(s, ξs) := φ(s, ξs) − φ(s, ξs−). Then, because the random measure mπ is the dual pre-

dictable projection of the random measure
∑

n≥1 δ(Tn,Xn)(dt, dx) on B((0,∞) × S) under P π
γ , we

take expectation in both sides of the above equality and obtain that

Eπ
γ [φ(T, ξT )]

= φ(0, γ) + Eπ
γ

[∫ T

0
φ′(s, ξs)ds

]
+ Eπ

γ

∑
n≥1

∫
(0,T ]

∆φ(s, ξs)δTn(ds)


= φ(0, γ) + Eπ

γ

[∫ T

0
φ′(s, ξs)ds

]
+ Eπ

γ

∑
n≥1

∫
S

∫
(0,T ]

(φ(s, y)− φ(s, ξs−))δ(Tn,Xn)(ds, dy)
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= φ(0, γ) + Eπ
γ

[∫ T

0
φ′(s, ξs)ds

]
+ Eπ

γ

[∫
S

∫
(0,T ]

(φ(s, y)− φ(s, ξs−))m
π(dy|e, s)ds

]

= φ(0, γ) + Eπ
γ

[∫ T

0
φ′(s, ξs)ds

]
+ Eπ

γ

[∫
S

∫
(0,T ]

∫
A
φ(s, y)q(dy|s, ξs−, a)π(da|e, s)ds

]
.

Here, integrability results such as (3.3) and (3.4) validate all the involved operations. Moreover,

for every e ∈ Ω, ξs−(e) = ξs(e) on (0, T ] except finite time points. Hence, part (a) follows.

(b) For each (t, x) ∈ I × S and h ∈ Bw(I × S), let φ(t, x) :=
∫ T
t h(s, x)ds. Then, we have

φ ∈ C1,0
ω,ω′(I × S), φ′(t, x) = −h(t, x), φ(0, x) =

∫ T

0
h(s, x)ds, and φ(T, x) = 0,

which, together with (a), implies (b).

Under ϕ ∈ Πr
m, {ξt, t ≥ 0} is a pure jump Markov process with respect to the probability space

(Ω,F , P ϕ
γ ). We denote by pϕ(t, x; s,D) the Feller’s transition function of {ξt, t ≥ 0}, which satisfies

pϕ(t, x; s,D) = Pϕ
γ (ξs ∈ D|ξt = x),∀ x ∈ S, D ∈ B(S), s ≥ t ≥ 0,

see [6]. For each x ∈ S, t ∈ [0, T ] and ϕ = ϕ(da|t, x) ∈ Πr
m, we introduce that for each measurable

function h on K,

h(s, x, ϕ) :=

∫
A
h(s, x, a)ϕ(da|s, x)

provided that the right hand side is well defined, and put

V (ϕ, rk, 0; t, x) :=

∫
S

∫ T

t
rk(s, y, ϕ)p

ϕ(t, x; s, dy)ds. k = 0, 1, . . . , N. (3.6)

Lemma 3.4. Suppose that Assumptions 3.1 and 3.2(i) hold. For any Markov policy ϕ ∈ Πr
m and

0 ≤ k ≤ N , V (ϕ, rk, 0; t, x) is a solution of the following equation

φ′(t, x) + rk(t, x, ϕ) +

∫
S
φ(t, y)q(dy|t, x, ϕ) = 0 ∀ t ∈ Lc

φ(x), x ∈ S, (3.7)

with the boundary condition φ(T, x) = 0 for each x ∈ S. Here q(D|t, x, ϕ) :=
∫
A q(D|t, x, a)ϕ(da|t, x)

for all x ∈ S, D ∈ B(S) and t ≥ 0.

Proof. By the backward Kolmogorov equation (e.g. Theorem 3.1 in [6]) , we have

pϕ(t, x; s,D) =

∫ s

t

∫
S
q(dz|v, x, ϕ)pϕ(v, z; s,D)dv + δ{x}(D). (3.8)

On the other hand, for each x ∈ S and t ≥ 0,∫ T

t

∫
S
|rk(s, y, ϕ)|

∫ s

t

∫
S
|q|(dz|v, x, ϕ)pϕ(v, z; s, dy)dvds

10



=

∫ T

t

∫ T

v

∫
S
|q|(dz|v, x, ϕ)

∫
S
|rk(s, y, ϕ)|pϕ(v, z; s, dy)dsdv

=

∫ T

t

∫
S
|q|(dz|v, x, ϕ)V (ϕ, |rk|, 0; v, z)dv

≤
∫ T

0

∫
S
|q|(dz|v, x, ϕ)(T + 1)MecT [ω(z) +

b

c
]dv

≤ T (T + 1)MecT [cω(x) + b+ 2ω(x)q∗(x) +
2b

c
q∗(x)] < ∞.

Thus, using Fubini’s theorem, by (3.6) and (3.8) we have

V (ϕ, rk, 0; t, x) =

∫ T

t

∫
S
rk(s, y, ϕ)p

ϕ(t, x; s, dy)ds

=

∫ T

t

∫
S
rk(s, y, ϕ)

∫ s

t

∫
S
q(dz|v, x, ϕ)pϕ(v, z; s, dy)dvds+

∫ T

t
rk(s, x, ϕ)ds

=

∫ T

t

∫ T

v

∫
S
q(dz|v, x, ϕ)

∫
S
rk(s, y, ϕ)p

ϕ(v, z; s, dy)dsdv +

∫ T

t
rk(s, x, ϕ)ds

=

∫ T

t

[∫
S
q(dz|v, x, ϕ)V (ϕ, rk, 0; v, z)

]
dv +

∫ T

t
rk(s, x, ϕ)ds,

and so (3.7) is verified.

4 Occupation measures

In this section, we introduce the occupation measure of a policy for the finite horizon CTMDP, and

present some basic properties of the space of occupation measures.

Definition 4.1. For each π ∈ Π, the occupation measure ηπ of π on K, is defined by

ηπ(dt, dx, da) := Eπ
γ [I{ξt∈dx}π(da|e, t)]dt. (4.1)

Note that ηπ(K) = T , and so {ηπ, π ∈ Π} is a bounded family of measures on B(K).

Remark 4.1. For the sake of comparisons, we mention that the occupation measure for discounted

models on an infinite time horizon in [13, 14, 25] takes the form of

ηπ(dx, da) = α

∫ ∞

0
e−αtEπ

γ [I{ξt∈dx}π(da|e, t)]dt

with a constant discount factor α. Evidently, the occupation measure for the finite horizon CTMDP

as considered in this paper is more detailed.

Now we can rewrite V (π, rk, gk) as an integral with respect to the occupation measure of π as

follows.
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Lemma 4.1. Suppose that Assumptions 3.1 and 3.2 hold. Then, for each π ∈ Π and 0 ≤ k ≤ N ,

V (π, rk, gk) =

∫
K
Hk(t, x, a)η

π(dt, dx, da),

where

Hk(t, x, a) := rk(t, x, a) +

∫
S
gk(y)q(dy|t, x, a) +

1

T

∫
S
gk(y)γ(dy). (4.2)

Proof. It follows from (2.6), (4.1) and Lemma 3.1(b).

By Lemma 4.1, we can reduce the optimal control problem (2.8) to the following static opti-

mization problem

Maximize

∫
K
H0(t, x, a)η

π(dt, dx, da) over π ∈ Π, (4.3)

subject to

∫
K
Hk(t, x, a)η

π(dt, dx, da) ≤ dk, k = 1, · · · , N.

In what follows, let P (K) be the collection of Borel measures η on K such that η(K) = T. For

each η ∈ P (K), let η̄(dt, dx) be the marginal of η on I × S, and η(dx) be the marginal of η on S.

Remember, I = [0, T ]. Lemma 9.4.4 in [17] guarantees the existence of ϕ ∈ Πr
m satisfying

η(dt, dx, da) =: η̄(dt, dx)ϕ(da|t, x)

on B(K). We define the following sets

D := {ηπ : π ∈ Π}, (4.4)

Pω̄(K) :=

{
η ∈ P (K) :

∫
S
ω̄(x)η(dx) < ∞

}
, (4.5)

where ω̄ ≥ 1 is a real-valued function on S.

The theorem below characterizes the space of occupation measures.

Theorem 4.1. Under Assumptions 3.1 and 3.2, the following assertions hold.

(a) For each η ∈ Pω(K), it holds that η ∈ D if and only if∫
K

(∫
S

∫ T

t
q(dy|t, x, a)h(s, y)ds

)
η(dt, dx, da)

=

∫ T

0

∫
S
h(s, y)η̄(ds, dy)−

∫ T

0
h(s, γ)ds ∀ h ∈ Cb(I × S), (4.6)

i.e.,

η̄(ds, dy) = γ(dy)ds+

∫
K
I[t,T ](s)q(dy|t, x, a)η(dt, dx, da)ds, (4.7)

on B(I × S).
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(b) For each π ∈ Π, there exists a Markov policy ϕ such that ηπ = ηϕ.

(c) D is convex.

Proof. (a) Fix some η ∈ D. Then for some policy π ∈ Π it holds that η = ηπ. Moreover, it follows

from Lemma 3.1(a) that ηπ ∈ Pω(K). Thus, for any h ∈ Cb(I × S), by the definition of ηπ and

Lemma 3.3(b) we have∫
K

(∫
S

∫ T

t
q(dy|t, x, a)h(s, y)ds

)
η(dt, dx, da)

= Eπ
γ

[∫ T

0

∫
A

∫
S

(∫ T

t
h(s, y)ds

)
q(dy|t, ξt, a)π(da|e, t)dt

]
= Eπ

γ

[∫ T

0
h(t, ξt)dt

]
−
∫ T

0
h(t, γ)dt

=

∫ T

0

∫
S
h(t, x)η̄π(dt, dx)−

∫ T

0
h(t, γ)dt. (4.8)

On the other hand, take any η ∈ Pω(K) such that (4.6) (or equivalently (4.7)) holds for η. Then

there is a Markov policy ϕ satisfying η(dt, dx, da) = η̄(dt, dx)ϕ(da|t, x). We next show η = ηϕ, which

is equivalent to the following:∫
K
h̃(t, x, a)η(dt, dx, da) =

∫
K
h̃(t, x, a)ηϕ(dt, dx, da) ∀ h̃ ∈ Cb(K). (4.9)

The rest verifies (4.9). Since η(dt, dx, da) = η̄(dt, dx)ϕ(da|t, x), for each h̃ ∈ Cb(K), we have∫
K
h̃(t, x, a)η(dt, dx, da) =

∫
K
h̃(t, x, a)η̄(dt, dx)ϕ(da|t, x)

=

∫ T

0

∫
S
h̃(t, x, ϕ)η̄(dt, dx),

which, together with Lemma 3.4 and (4.7) as well as (4.1), gives∫
K
h̃(t, x, a)η(dt, dx, da)

= −
∫ T

0

∫
S

[
∂V (ϕ, h̃, 0; t, x)

∂t
+

∫
S
V (ϕ, h̃, 0; t, y)q(dy|t, x, ϕ)

]
η̄(dt, dx) (by Lemma 3.4)

= −
∫ T

0

∫
S

∂V (ϕ, h̃, 0; t, x)

∂t
η̄(dt, dx) +

∫ T

0

∫
S

∫
S

(∫ T

t

∂V (ϕ, h̃, 0; s, y)

∂s
ds

)
q(dy|t, x, ϕ)η̄(dt, dx)

= −
∫ T

0

∂V (ϕ, h̃, 0; t, γ)

∂t
dt (by (4.7))

=

∫
S
V (ϕ, h̃, 0; 0, x)γ(dx) (4.10)

=

∫
K
h̃(t, x, a)ηϕ(dt, dx, da). (by (4.1)).

Thus, (4.9) is proved, and so (a) follows.

Parts (b) and (c) follow from part (a) and its proof of (a), see (4.9).
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Remark 4.2. Recall that the occupation measures in [13, 14, 24, 25] for infinite horizon discounted

cases are characterized, under similar conditions as in the present paper, by

αη(dy) = αγ(dy) +

∫
S

∫
A
q(dy|x, a)η(dx, da),

where homogeneous transition rates q(·|x, a) are treated, c.f. (4.7) in the previous theorem.

Definition 4.2. For each ω̄ ≥ 1 on S, the ω̄-weak topology on Pω̄(K) is defined as the weakest

topology with respect to which,
∫
K u(t, x, a)η(dt, dx, da) is continuous in η ∈ Pω̄(K) for each con-

tinuous function u on K such that sup(t,x,a)∈K
|u(t,x,a)|

ω̄(x) < ∞. Convergence in the ω̄-weak topology

is signified by
ω̄−→ .

Let P(K) be the collection of all the Borel probability measures on K. For each function ω̄ ≥ 1

on S, we define two mappings, Tω̄ and T ′
ω̄, as follows:

Tω̄ : Pω̄(K) −→ P(K), η 7→ Tω̄(η), where Tω̄(η) is given by

Tω̄(η)(dt, dx, da) :=
ω̄(x)η(dt, dx, da)∫

S ω̄(y)η(dy)
; (4.11)

T ′
ω̄ : P(K) −→ Pω̄(K), µ 7→ T ′

ω̄(µ), where T ′
ω̄(µ) is given by

T ′
ω̄(µ)(dt, dx, da) := T

1
ω̄(x)µ(dt, dx, da)∫

S
1

ω̄(y)µ(dy)
. (4.12)

(Since 1 ≤ ω̄ < ∞ on S, we have 0 <
∫
S

1
ω̄(y) µ̄(dy) < ∞ for any µ ∈ P (K), and thus the mappings

Tω̄ and T ′
ω̄ are well defined.)

Lemma 4.2. For each continuous function ω̄ ≥ 1 on S, P(K) (endowed with the usual weak

topology) and Pω̄(K) (endowed with the ω̄-weak topology) are homeomorphic with Tω̄ being a

homeomorphism.

Proof. See [25].

As a consequence, Pω̄(K) endowed with the ω̄-weak topology is metrizable, provided that the

function ω̄ ≥ 1 is continuous.

Specially, taking ω̄ = ω + ω′ and ω respectively (with ω and ω′ as in Assumption 3.2), we have

the following lemma.

Lemma 4.3. Under Assumptions 3.1 and 3.2, if
∫
S f(y)q̃(dy|t, x, a) is continuous in (t, x, a) ∈ K

for each bounded continuous function f on S, then D is closed in Pω′(K) and in Pω(K). Here

and below, Pω′(K) and Pω(K) are endowed with the ω′-weak topology and the ω-weak topology,

respectively.
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Proof. Note that D ⊆ Pω(K). We only show that D is closed in Pω(K); the other case is absolutely

similar. Take an arbitrary sequence {ηm} in D such that ηm
ω−→ η0 ∈ Pω(K). Let πm ∈ Π be such

that ηm = ηπm . Then, under Assumptions 3.1 and 3.2, by Lemma 3.1 we have∫
S
ω(x)η

m
(dx) =

∫ T

0
Eπm
γ [ω(ξt)]dt ≤ TecT [L+

b

c
] =: M∗ < ∞ ∀ m ≥ 1, (4.13)

which, together with ηm
ω−→ η0, implies∫
S
ω(x)η

0
(dx) = lim

m→∞

∫
S
ω(x)η

m
(dx) ≤ M∗. (4.14)

Thus, to prove η0 ∈ D, by Theorem 4.1(a) it suffices to verify (4.6) with η being replaced by η0.

Indeed, for any h ∈ Cb(I × S), by ηm ∈ D and Theorem 4.1(a) we have∫
K

∫
S

∫ T

t
q(dy|t, x, a)h(s, y)dsηm(dt, dx, da)

=

∫
S

∫ T

0
h(t, x)η̄m(dt, dx)−

∫ T

0
h(t, γ)dt ∀ m ≥ 1. (4.15)

Since ∥h∥ := sup(s,x)∈I×S |h(s, x)| < ∞, by Assumption 3.1 we have∫
S

∫ T

t
|q|(dy|t, x, a)|h(s, y)|ds ≤ T∥h∥(2q∗(x) + cω(x) + b) ≤ T∥h∥(2M + c+ b)ω(x) ∀ x ∈ S.

Moreover, it follows from the dominated convergence theorem that
∫
S

∫ T
t q(dy|t, x, a)h(s, y)ds is

continuous in (t, x, a) ∈ K. Thus, letting m → ∞ in (4.15), we see that (4.6) holds for η0, and so

Theorem 4.1(a) implies that η0 ∈ D. The proof is complete.

For the compactness of D, as in [12, 14, 25] on the infinite horizon, we further introduce the

following condition.

Assumption 4.1. Let ω and ω′ be as in Assumption 3.2.

(i)
∫
S f(y)q̃(dy|t, x, a) is continuous in (t, x, a) ∈ K for each bounded continuous function f on

S; and
∫
S g(y)q̃(dy|t, x, a) is continuous in a ∈ A(t, x) for each (t, x) ∈ I × S and bounded

measurable function g on S.

(ii) There exists an increasing sequence of compact subsets (Km) of K satisfying
∪

mKm = K and

limm→∞ inf(t,x,a)∈K\Km

ω′(x)
ω(x) = ∞, where inf ∅ := ∞.

Remark 4.3. Assumption 4.1 implies that A(t, x) is compact for each (t, x) ∈ I × S; see Lemma

3.10 of [25]. On the other hand, the function ω′(x)
ω(x) in Assumption 4.1(ii) is a so-called strictly

unbounded or moment function, which plays a role in verifying that D is sequentially relatively

compact; for the details, see the proof of Theorem 4.2 below.
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Theorem 4.2. Suppose that Assumptions 3.1, 3.2 and 4.1 hold. Then, D is compact in Pω(K).

Proof. Since Pw(K) is metrizable and D is closed (by Lemma 4.3), it suffices to show that Tw(D) is

sequentially relatively compact in P(K) endowed with the usual weak topology. Indeed, for every

ηπ ∈ D, under Assumptions 3.1 and 3.2, by Lemma 4.2 and (4.11), we have∫
K

ω′(x)

ω(x)
Tω(η

π)(dt, dx, da) =

∫
S ω′(x)ηπ(x)∫
S ω(x)ηπ(x)

≤ 1

T

∫
S
ω′(x)ηπ(x)

=
1

T

∫ T

0
Eπ
γ [ω

′(ξt)]dt ≤ ec
′T [L′ +

b′

c′
] < ∞. (4.16)

Now (4.16) and the Prokhorov theorem (see Theorem 12.2.15 in [17]) imply that {Tω(η), η ∈ D} is

sequentially relatively compact in P(K), and so is D in Pω(K) (by Lemma 4.2 with ω̄ = ω).

5 Existence of optimal policies

This section establishes the existence of a Markov optimal policy, which is a mixture of no more

than N + 1 deterministic Markov policies.

Assumption 5.1. The functions rk(t, x, a), gk(x) (k = 0, 1, . . . , N), and
∫
S ω(y)q̃(dy|t, x, a) are

continuous in (t, x, a) ∈ K. Furthermore, one of the following conditions (i) and (ii) holds:

(i) Either q∗ or each of the functions gk is bounded on S.

(ii) There exists a function ω′′ ≥ 1 on S and constants c′′ > 0, b′′ ≥ 0 and M ′′ ≥ 0 such that

1)
∫
S ω′′(y)q(dy|t, x, a) ≤ c′′ω′′(x) + b′′, ∀ (t, x, a) ∈ K;

2) L′′ :=
∫
S w′′(x)γ(dx) < ∞;

3) There exists an increasing sequence of compact subsets (K ′
m) of K satisfying

lim
m→∞

inf
(t,x,a)∈K\K′

m

ω′′(x)

ω′(x)
= ∞

and
∪

mK ′
m = K;

4) ω′(x)(1 + q∗(x)) ≤ M ′′ω′′(x) for all x ∈ S,

where ω, ω′ are as in Assumption 3.2.

Suppose Assumptions 3.1, 3.2 and 4.1 are satisfied. Then under the first part of Assumption 5.1,

one can show that
∫
S f(y)q(dy|t, x, a) is continuous in (t, x, a) ∈ K for each w-bounded continuous

function g on S; the reasoning is similar to the one in the proof of Lemma 8.5.5 in [17]. If additionally
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Assumption 5.1(i) is satisfied, then Hk is w-bounded and continuous on K, where Hk is defined by

(4.2). The function
∫
K Hk(t, x, a)η(dt, dx, da) is continuous in η ∈ D ⊆ Pω(K) endowed with the

ω-topology. By Theorem 4.2, D is compact in Pω(K). Consequently, problem (4.3) has an optimal

solution. Now one can apply Theorem 4.1 for the existence of a Markov optimal policy for problem

(2.8). If alternatively, Assumption 5.1(ii) is satisfied, then
∫
S gk(y)q(dy|t, x, a) in the definition of

Hk is w′-bounded continuous in (t, x, a) ∈ K, so that
∫
K Hk(t, x, a)η(dt, dx, da) is continuous in

η ∈ D ⊆ Pω′(K) endowed with the ω′-topology. On the other hand, applying the same reasoning

as in the proof of Theorem 4.2, D is compact in Pω′(K) under Assumption 5.1(ii). Therefore, we

can again conclude the existence of a Markov optimal policy for problem (2.8).

The above discussions amount to the following statement.

Theorem 5.1. Under Assumptions 3.1, 3.2, 4.1, and 5.1, there exists a Markov optimal policy for

problem (2.8).

Definition 5.1. A policy π ∈ Π is said to be a mixture of m + 1 deterministic Markov policies

fl, l = 0, 1, 2, . . . ,m, if

ηπ(dt, dx, da) =
m∑
l=0

plη
fl(dt, dx, da),

where pl ≥ 0 for all 0 ≤ l ≤ m, and p0 + · · ·+ pm = 1.

Under Assumption 3.1, we consider the space of performance vectors for the model (2.1) with

the criteria (2.6):

U := {(V (π, r0, g0), . . . , V (π, rN , gN )) | π ∈ Π}. (5.1)

In the proof of the main statement below, we shall make use of the next result, whose proof is

available in [18]; see also [11] for the proof of its version in the case of a denumerable state space.

Lemma 5.1. Under Assumptions 3.1, 3.2, 4.1 and the first part of Assumption 5.1, the following

assertions hold.

(a) There exists a unique φ in C1,0
ω,ω(I × S), and a deterministic Markov policy f∗ ∈ Πd

m satisfying

the following optimality equation:

φ′(t, x) + sup
a∈A(t,x)

[r0(t, x, a) +

∫
S
φ(t, y)q(y|t, x, a)] = 0, ∀ t ∈ Lc

φ(x), x ∈ S;

φ′(t, x) + r0(t, x, f
∗(t, x)) +

∫
S
φ(t, y)q(y|t, x, f∗(t, x)) =

φ′(t, x) + sup
a∈A(t,x)

[r0(t, x, a) +

∫
S
φ(t, y)q(y|t, x, a)], ∀ t ∈ I, x ∈ S;

φ(T, x) = g0(x), ∀ x ∈ S. (5.2)
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(b) The policy f∗ and the function φ in (a) satisfy that V (f∗, r0, g0) = supπ∈Π V (π, r0, g0) =∫
S φ(0, x)γ(dx).

We are in position to present the main statement.

Theorem 5.2. Suppose Assumptions 3.1, 3.2, 4.1 and 5.1 are satisfied. Then the following asser-

tions hold.

(a) The space of performance vectors, U , is nonempty, compact and convex.

(b) Each extreme point of U (there exists at least one), say vex, is generated by a deterministic

Markov policy, say f , i.e., vex = (V (f, r0, g0), . . . , V (f, rN , gN )).

(c) There exists an optimal Markov policy, which is a mixture of (N + 1) deterministic Markov

policies.

Proof. (a) For each 0 ≤ k ≤ N, u ∈ Bω′(K) and η ∈ D, let

⟨u, η⟩ :=

∫
K
u(t, x, a)η(dt, dx, da). (5.3)

Then, by Lemma 4.1 and Theorem 4.1 we have

V (π, rk, gk) = ⟨Hk, η
π⟩, for all π ∈ Π, (5.4)

and so

U = {(⟨H0, η⟩, . . . , ⟨HN , η⟩) | η ∈ D}. (5.5)

Since the functions Hk are continuous and ω-bounded (resp., ω′-bounded) on K under Assumption

5.1(i) (resp., Assumption 5.1(ii)), U is nonempty, convex and compact, because so is D. Hence, (a)

is true.

(b) By (a) U admits at least one extreme point, say vex. Below we prove that any given extreme

point vex of U is generated by a deterministic Markov policy by induction with respect to the

number of constraints N .

Consider the case of N = 0 (i.e., U = {⟨H0, η⟩ | η ∈ D}). Then, by the convexity and

compactness of D (proved above), U ⊂ R := (−∞,∞) is a bounded closed interval, and the

two extreme points of U , denoted by vmin and vmax, corresponding to the two end points of the

closed interval, are given by the optimal values of the following two unconstrained finite-horizon

CTMDP problems: ⟨H0, η
π⟩ = V (π, r0, g0) → maxπ∈Π and ⟨H0, η

π⟩ = V (π, r0, g0) → minπ∈Π

respectively. Lemma 5.1 gives the existence of deterministic Markov policies f1 and f2 satisfying

vmax = supπ∈Π V (π, r0, g0) = V (f1, r0, g0), and vmin = infπ∈Π V (π, r0, g0) = V (f2, r0, g0). Thus, (b)

is true for the case of N = 0.
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Suppose that (b) is true for the case of N = n− 1. Then, consider the case of N = n. For any

extreme point vex ∈ U in this case ofN = n, by (5.5) we can write vex = (⟨H0, η
πex⟩, . . . , ⟨Hn, η

πex⟩),
for some πex ∈ Πr

m. Since vex is an extreme point of U , it is not in the interior of U ⊂ Rn+1. So by

the supporting hyperplane theorem [4], there exists a hyperplane

H :=

{
(c0, c1, . . . , cn) ∈ Rn+1 |

n∑
k=0

λkck = ρ∗

}
, (5.6)

where λk and ρ∗ are fixed constants defining H such that

n∑
k=0

λk⟨Hk, η
πex⟩ = ρ∗ ≥

n∑
k=0

λkvk for all (v0, v1, . . . , vn) ∈ U .

Here it is without loss of generality to put λn ̸= 0 for otherwise one just needs to introduce an

appropriate relabeling. This, together with (5.4) and (5.3), implies

V (πex,

n∑
k=0

λkrk,

n∑
k=0

λkgk) = ⟨
n∑

k=0

λkHk, η
πex⟩ = ρ∗ ≥ V (π,

n∑
k=0

λkrk,

n∑
k=0

λkgk) ∀ π ∈ Π.

This means

V (πex,

n∑
k=0

λkrk,

n∑
k=0

λkgk) = sup
π∈Π

V (π,

n∑
k=0

λkrk,

n∑
k=0

λkgk) = ρ∗. (5.7)

Define the set

V := U ∩H, (5.8)

which is nonempty, convex and compact. Note that the extreme point vex is also an extreme point

of V since vex is on H.

Moreover, for any ϕ ∈ Πr
m, t ∈ I, and x ∈ S, let

V λ⃗(t, x) := sup
ϕ∈Πr

m

V (ϕ,Hn
λ⃗
, 0; t, x), (5.9)

where, λ⃗ := (λ0, . . . , λn), and

Hn
λ⃗
(t, x, a) :=

n∑
k=0

λkHk(t, x, a)

for each (t, x, a) ∈ K.

Then, by Lemma 5.1, there exists a policy f
λ⃗
∈ Πd

m such that

V (f
λ⃗
,Hn

λ⃗
, 0; t, x) = V λ⃗(t, x) ∈ C1,0

ω,ω′(I × S), (5.10)

and

V λ⃗ ′
(t, x) +Hn

λ⃗
(t, x, f

λ⃗
) +

∫
S
V λ⃗(t, y)q(dy|t, x, f

λ⃗
)

19



= sup
a∈A(t,x)

(
V λ⃗ ′

(t, x) +Hn
λ⃗
(t, x, a) +

∫
S
V λ⃗(t, y)q(dy|t, x, a)

)
= 0 (5.11)

for all x ∈ S and t ∈ Lc
f
λ⃗
(x).

By (5.4), (5.7), and Theorem 4.1(b) we have

V λ⃗(0, γ) =

∫
S
V λ⃗(0, x)γ(dx) = sup

ϕ∈Πr
m

∫
S
V (ϕ,Hn

λ⃗
, 0; 0, x)γ(dx) = ρ∗. (5.12)

For each x ∈ S, and t ∈ I, let

Â(t, x) :=

{
a ∈ A(t, x) : V λ⃗

t (t, x) +Hn
λ⃗
(t, x, a) +

∫
S
V λ⃗(t, y)q(dy|t, x, a) = 0

}
(5.13)

whenever the set on the right hand side is nonempty; and for (t, x) at which that set is empty, we

put

Â(t, x) := {f
λ⃗
(t, x)},

where f
λ⃗
is the deterministic Markov policy satisfying (5.10). It holds that for each x ∈ S and

t ∈ [0, T ] that ∅ ̸= Â(t, x) ⊆ A(t, x). In what follows, if necessary, we always extend Â(t, x) to

[0,∞)× S by putting Â(t, x) = {f
λ⃗
(t, x)} for each (t, x) ∈ (T,∞)× S.

For each (t, x) ∈ I ×S, the set Â(t, x) ⊆ A(t, x) is compact because for any fixed (t, x) ∈ I ×S,

the function

G(a) := V λ⃗ ′
(t, x) +Hn

λ⃗
(t, x, a) +

∫
S
V λ⃗(t, y)q(dy|t, x, a) (5.14)

is continuous in a ∈ A(t, x) by the virtue of [17, Lem.8.3.7], and so Â(t, x) is closed. Now the com-

pactness of Â(t, x) follows from this and the compactness of A(t, x); see the discussion immediately

after Assumption 4.1.

Let K̂ := {(t, x, a) : (t, x) ∈ [0, T ]× S, a ∈ Â(t, x)}, and K̂ := {(t, x, a) : (t, x) ∈ [0,∞)× S, a ∈
Â(t, x)}. According to Propositions D4 and D5 of [16], it is not hard to see that the set K̂ is a Borel

measurable subset of [0,∞)×S×A and K̂ contains the graph of a Borel measurable mapping from

[0,∞)× S to A.

Now consider a new CTMDP model with n constraints as follows:

M̂ :=
{
S,A, Â(t, x)(t ≥ 0, x ∈ S), q(dy|t, x, a), (rk(t, x, a), gk(x)))nk=0

}
,

The corresponding versions of Assumptions 3.1, 3.2, 4.1, and 5.1 are all satisfied by the new model

M̂.

Let us consider the space Û of performance vectors of the model M̂, and prove

Û = V (with V defined by (5.8))
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in the following two steps: i) Û ⊆ V, and ii) Û ⊇ V.
The proof of i): By Theorem 4.1, it suffices to restrict the following arguments to the class of

Markov policies. Since each Markov policy in the model M̂ can be regarded as one in the model

M, each performance vector in Û is also in U (i.e., Û ⊆ U). To further show that each performance

vector v̂ in Û is also on H, let

v̂ := (V (π̂, r0, g0), . . . , V (π̂, rn, gn)) = (⟨H0, η
π̂⟩, . . . , ⟨Hn, η

π̂⟩)

with some Markov policy π̂ in the model M̂. Then, it follows from Lemma 3.3(a) and (5.4),

(5.12)-(5.13) that

n∑
k=0

λk⟨Hk, η
π̂⟩ =

∫
K̂
Hn

λ⃗
(t, x, a)ηπ̂(dt, dx, da)

= −
∫
K̂

[
V λ⃗ ′

(t, x) +

∫
S
V λ⃗(t, y)q(dy|t, x, a)

]
ηπ̂(dt, dx, da)

= V λ⃗(0, γ)− Eπ̂
γ [V

λ⃗(T, xT )]

= V λ⃗(0, γ) = ρ∗.

This means that v̂ is on the H, and so Û ⊆ H. Hence, we have Û ⊆ U ∩ H = V.
The proof of ii): For any fixed v ∈ V, by Theorem 4.1(b), v can be rewritten as

v = (⟨H0, η
π⟩, . . . , ⟨Hn, η

π⟩), such that

n∑
k=0

λk⟨Hk, η
π⟩ = ρ∗, for some π ∈ Πr

m. (5.15)

For this Markov policy π, let us define

Γ̂ :=

{
(t, x) ∈ [0, T ]× S :

∫
A

(
V λ⃗ ′

(t, x) +Hn
λ⃗
(t, x, a) +

∫
S
V λ⃗(t, y)q(dy|t, x, a)

)
π(da|t, x) < 0

}
Note that η̄π(Γ̂) = 0. Indeed, suppose for contradiction that η̄π(Γ̂) > 0. Then

0 >

∫
S

∫ T

0
η̄π(dt, dx)

∫
A

(
V λ⃗ ′

(t, x) +Hn
λ⃗
(t, x, a) +

∫
S
V λ⃗(t, y)q(dy|t, x, a)

)
π(da|t, x)

= Eπ
γ [V

λ⃗(T, xT )]− V λ⃗(0, γ) +

∫
S
V (π,Hn

λ⃗
; 0, x)γ(dx) = 0,

where the last equality is by Lemma 3.3(a) and (5.15). Therefore, η̄π(Γ̂) = 0. From this fact

and (5.11), we see that the Markov policy π(da|t, x) is concentrated on Â(t, x) for all almost all

(t, x) ∈ [0, T ]× S with respect to the measure η̄π(dt, dx). Now, there is a set ζ ⊆ [0, T ]× S of full

measure with respect to η̄π(dt, dx), and a Markov policy π̃ satisfying

π̃(da|t, x) = π(da|t, x)

for each (t, x) ∈ ζ; and

π̃(da|t, x) = I{f
λ⃗
(t,x)}(da)

21



for each (t, x) ∈ ([0, T ] × S) \ ζ. It is clear that this Markov policy π̃ is one for the model M̂; see

(5.11). For this Markov policy π̃, the following relation holds:

ηπ(dt, dx, da) = η̄π(dt, dx)π(da|t, x) = η̄π(dt, dx)π̃(da|t, x) = ηπ̃(dt, dx, da),

where the last equality is by Theorem 4.1; see its proof. Consequently,

(⟨H0, η
π⟩, . . . , ⟨Hn, η

π⟩) = (⟨H0, η
π̃⟩, . . . , ⟨Hn, η

π̃⟩) ∈ Û .

Consequently, V ⊆ Û because the point v = (⟨H0, η
π⟩, . . . , ⟨Hn, η

π⟩) ∈ V is arbitrarily fixed.

Therefore, V = Û . Below we legally study the space V as the space of relevant performance

vectors for the model M̂. Since the fixed extreme point vex of V is also an extreme point of

Û = V, and any deterministic Markov policy for the model M̂ is also one for the original model M,

to complete the inductive argument, it remains to show that vex is generated by a deterministic

Markov policy for the model M̂.

For the model M̂, a deterministic Markov policy generates the point vex = (vex0 , vex1 , . . . , vexn ) if

and only if it generates (vex0 , vex1 , . . . , vexn−1) because

vexn =
ρ∗ −

∑n−1
k=0 λkv

ex
k

λn
, (5.16)

recall that λn ̸= 0; see the sentence immediately after (5.6). So, it is equivalent to considering the

auxiliary model

M̂′ := {S,A, Â(t, x)(t ≥ 0, x ∈ S), q(dy|t, x, a), (rk(t, x, a), gk(x))n−1
k=0}, (5.17)

with only n− 1 constraints, for which we denote the space of relevant performance vectors by Û ′.

For the model M̂′ with n− 1 constraints, the corresponding versions of Assumptions 3.1, 3.2, 4.1,

and 5.1 are all satisfied by this model because so are they by the model M̂ with n constraints. Since

(vex0 , vex1 , . . . , vexn ) is an extreme point of V = Û , (vex0 , vex1 , . . . , vexk−1) is an extreme point of Û ′, see

(5.16). Therefore, by the inductive supposition, the extreme point (vex0 , vex1 , . . . , vexn−1) is generated

by a deterministic Markov policy (denoted by f) for the model M̂′. Since f is also in Πr
m for the

model M, it follows from this and (5.16) that the extreme point vex = (vex0 , vex1 , . . . , vexn ) of V is

generated by the deterministic Markov policy f for the model M. This completes the inductive

argument, and (b) is thus proved.

(c) Given parts (a) and (b), the proof of this part of the statement can be similarly proceeded

as in the proof of Lemma 9 and Theorem 5 in [15].

6 Conclusion

In conclusion, for a constrained CTMDP in a Borel state space, where the performance measures

are the expected total rewards over a finite time horizon, under suitable conditions, we showed
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the existence of a Markov optimal policy, which is a mixture of N + 1 deterministic Markov ones,

where N is the number of constraints. To this end, we studied the relevant properties of the space

of occupation measures and the performance vector spaces.
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