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Abstract

This thesis contains a study on the structure of the vertex functions of Quantum

Chromodynamics (QCD) in both linear and non-linear gauges. In particular we

show results for the arbitrary linear covariant gauge at two loops as well as renor-

malizing the one loop non-linear Curci-Ferrari gauge and maximal abelian gauge

(MAG). The full minimal subtraction MS and momentum subtraction (MOM)

scheme renormalization of QCD is performed in all three gauges. This is carried

out for an arbitrary colour group at one loop for the maximal abelian gauge and

at two loops for the arbitrary linear covariant and Curci-Ferrari gauges. From the

n loop MS results the (n+1) loop β-functions and anomalous dimensions can be

constructed in the respective gauges for each MOM scheme. This is demonstrated

in all of the gauges considered. In addition to analysing the vertex functions at

the symmetric subtraction point for both the MS and MOM schemes, we also

consider an operator insertion into the quark 2-point function at the asymmetric

point with an interpolating parameter. This requires a new configuration setup

and introduces new master integrals which we determine. The scalar, vector

and tensor operators are considered along with W2 and ∂W2, the twist-2 Wil-

son operators for moment n = 2. The operator renormalization is performed at

two loops in the MS and modified regularization invariant (RI′) scheme, both

of which are preferred schemes of the lattice. Following the construction of the

conversion function for the scalar operator for checking purposes, the amplitudes

are presented for all other operators in the MS scheme.
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Chapter 1

Introduction

Upon the successes of quantum electrodynamics (QED) in the 1940’s as a field

theory, it was Yang whose interest in the strong interaction led him, in part-

nership with Mills, to construct a prototype quantum field theory of the strong

interaction modelled closely on QED and its symmetries. Unable to define a

suitable set of Feynman rules for their theory, which only satisfied SU(2) gauge

invariance if self interactions were allowed, the gauge theory was put on hold with

findings published in 1954. It was not until the discovery of asymptotic freedom

of Yang-Mills theories, [1, 2], via the counter-intuitive result for the one loop

β-function that non-abelian gauge theory became a strong candidate theory of

the strong interaction. At high momenta the gauge theory behaved like a "free"

theory, therefore gauge theory was asymptotically free.

The discovery that gauge theory was asymptotically free was a key advancement

in physics, with its importance first remarked upon in June 1972, [3]. In the

years following, gauge theory was shown to be renormalizable. The theory be-

came known as quantum chromodynamics (QCD), first referred to as QCD in [4]

with credit for the name given to Gell-Mann. QCD is a renormalizable quantum

field theory describing the quanta of the strong interaction; quarks and gluons.

These elementary constituents of hadrons were first independently proposed by

Gell-Mann and Zweig with the name quark accredited to Gell-Mann, [5]. Gell-

Manns Eightfold Way in 1961, [6], was the first time baryons and mesons had

been classified, and paved the way in some sense for the standard model. In 1964

a triangular "Eightfold Way" pattern was proposed, known as the quark model

and was put forward by both Gell-Mann and Zweig. This model consisted of

three quarks which were all that was needed at the time to describe all known

particles that were not leptons. These quarks were called up, down and strange.
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Although mathematically sound, the problem with the model was that no indi-

vidual quark had ever been seen in nature, a problem which still exists today. At

that moment in time QCD did not have a solid set of Feynman rules, nor had the

predicted quarks or gluons been observed as free particles. It was not until the

late 1960’s that experiments led by Friedman, Kendall and Taylor at the Stan-

ford Linear Accelerator Centre (SLAC) produced evidence that quarks did exist.

The experiments were similar to those by Geiger and Marsden in 1908 which

had detected that the nucleus contained protons and neutrons, [7]. At around

the same time a similar experiment was being carried out at the European Or-

ganization for Nuclear Research (CERN), also investigating the the structure of

the proton. Instead of firing electrons at the proton, which was the technique

at SLAC, neutrinos were used. This experiment confirmed the results at SLAC;

protons contained smaller constituents. The experimental evidence that quarks

existed was coming together. Friedman, Kendall and Taylor were awarded the

Nobel prize in 1990 for their contributions to the discovery of these quanta of the

strong force.

With the discovery of more particles came the need to introduce more quarks.

The three new quarks predicted were much heavier than the others and were not

discovered until several years after the up, down and strange quarks had been

confirmed. The fourth in the family, the charm quark, was found in 1974 with the

discovery of the J/ψ particle. Finally the top quark was spotted in 1995 at Fermi-

lab [8, 9] with a mass of 175GeV. There were now six flavours of quark; up, down,

strange, charm, bottom and top, which completed the quark model, [7]. In 1979,

gluons, which were predicted in QCD to be the carrier of the strong force, the

force that binds quarks so tightly together was discovered via electron-positron

annihilation at the Deutsches Elektronen-Synchrotron (DESY), [10]. These glu-

ons played the same role as the photon in QED, where the photon is the carrier

of the electromagnetic force.

In QCD, where calculations have been possible overall there has been good agree-

ment between theory and observation. For this reason it is generally accepted

that QCD is the best and most realistic quantum field theory describing the

strong nuclear force at both the microscopic (quarks and gluons) and macroscopic

(hadronic) level. Despite the problem that quarks are thought to be absolutely

confined. QCD and the electroweak theory form what is called the Standard

Model, which is the basis of all physics except for gravity. With the existence
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of the Higgs boson confirmed, this only strengthens the model which has so far

never been disproved.

The name given to the phenomenom that quarks and gluons are particles that

are never seen in nature was confinement, [4]. Confinement prevents coloured

quarks and gluons from being experimentally detected since in our world we can

only observe particles in colourless states; colour is permanently confined. The

confinement problem and its underlying mechanism is still very much unsolved.

As QCD has prospered in phenomenological applications the proof of confine-

ment has become one of the biggest and most important problems in theoretical

physics, [12]. The infrared region is the area of interest for studying confinement

and since standard perturbative calculational techniques do not suffice in the in-

frared region this makes the problem of confinement very difficult to probe. To

properly study the infrared region requires the development of non-perturbative

approaches. Focusing on the confinement problem lies outside the scope of our

research and computational ability, however we have chosen to study and com-

pute results for gauges we believe to be important in understanding some of the

hypothesised mechanisms of confinement.

Lattice studies of vertex functions have improved in recent years with strong focus

on ideas for testing gluon confinement, [13]. The lattice measures vertex func-

tions non-perturbatively and requires matching to the high energy limit. To aid

investigation, the perturbative structure of the 3-point vertices of QCD have been

computed [14], mainly at two loops in linear covariant gauges following intense

activity in understanding the propagators. Higher loop order results for the QCD

Green’s functions computed perturbatively can be used to assist in Schwinger-

Dyson analysis, [4, 15, 16, 17], as well as reducing error estimates on infrared

measurements computed non-perturbatively. As well as linear gauges, multiloop

information for non-linear gauges is also of importance. The interest in under-

standing the low energy properties of Yang Mills theories may in fact be best

described using gauges non-linear in nature. There is research [18, 19, 20, 21, 22]

looking in to gluon effective mass effects in QCD and it has been argued that

if mass was dynamically generated for the gluon then this may lead to a better

understanding of confinement. ’t Hooft suggested that some components of the

gluon field may acquire dynamically generated masses due to the condensation

of abelian monopoles originating from the diagonal elements of the group alge-

bra. This implies that low energies may be best described by an abelian theory.
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This is where our motivation in studying the maximal abelian gauge lies. Lattice

activity to persue this hypothesis will be interested in results computed in the

maximal abelian gauge as in this gauge the gluon and ghost fields are split into

their diagonal and off-diagonal counterparts. Studying this gauge may give us an

insight in to any strange behaviour exhibited in either sector. Exact details of

how the gauge group is decomposed are presented in chapter 5.

The aim of this thesis is to coherently demonstrate how we performed the full

MS and MOM renormalization of massless QCD in the Maximal Abelian Gauge

(MAG) for an arbitrary colour group at one loop. As a preliminary to this in-

depth and technically difficult calculation we first consider the arbitrary linear

covariant gauge. By considering a linear covariant gauge one can develop the nec-

essary skills and computational techniques needed to renormalize and compute

in a much simpler gauge fixing before moving to a more complicated non-linear

gauge choice, such as the MAG. Although we do not compute the two loop ex-

plicit calculation of the MAG within this thesis due to the technical difficulty in

developing the correct and consistent colour algebra at higher loop orders, we do

however consider calculations in preliminary gauges at two loops. This includes

our second calculation prior to tackling the MAG, namely the (non-linear) Curci-

Ferrari gauge, which we encounter in chapter 4.

The structure of Part 1 of the thesis is as follows. We review the QCD Lagrangian

and how it is formulated including the Lie algebra, properties of QCD and gauge

fixing for multiple gauge choices. We discuss renormalization, in particular the

techniques used and the schemes chosen after regularization. After discussing

the MS and MOM schemes in depth we then follow this with a summary of re-

sults where we explicitly show the renormalization constants and amplitudes in

both schemes. The mappings which define the coupling constant in one scheme

in terms of a coupling constant in another scheme are constructed and the for-

mulation of the three loop β-functions and anomalous dimensions in all MOMi

schemes are given. Unlike the MS scheme the MOMi schemes are defined at the

vertex functions where i ∈ {Aa
µA

b
νA

c
σ, ψψ̄A

a
µ, c

ac̄bAc
µ} as discussed in chapter 2,

see (2.1.62). This results in three different MOM schemes for the three vertices

we consider at the symmetric subtraction point. For convenience we call these

schemes MOMg, MOMq and MOMh respectively. Studying these vertex func-

tions at the symmetric subtraction point means that all of the external momenta

individually squared are set equal to each other. This greatly simplifies our inte-
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gral reduction.

Since the MAG is non-linear in nature it is useful to consider another prepara-

tory non-linear gauge, which is of interest in its own right. Closely related to the

MAG is the Curci-Ferrari gauge which we consider in chapter 4. We repeat the

process in chapter 4 for this non-linear gauge and present our results. Although

it is not necessary to study both the arbitrary linear covariant gauge and the

Curci-Ferrari gauge in as much detail as we have done prior to the MAG it is

extremely useful for background and insight, as well as a safe method in ensur-

ing computational technique and programming is correct before tackling a more

complicated problem. Errors could occur may these tedious preliminary steps not

be taken to prevent such an oversight, and so we proceed with the Curci-Ferrari

gauge in the section following the analysis of the arbitrary linear covariant gauge,

discussing its properties and a summary of results. The Curci-Ferrari gauge is

of particular interest because of its strong relation to the MAG, where in the

abelian sector the MAG and Curci-Ferrari results agree. The maximal abelian

gauge will be described in depth in the section following, where we construct the

MAG Lagrangian and any new group theory results required for the one loop

renormalization. We then present the mappings for the MAG between the MS

and MOMi schemes and also our calculation of the 2-loop β-function and anoma-

lous dimensions for all MOMi schemes. We summarize with a discussion on all

three gauges, their similarities and importance within the study of QCD.

Due to the page limit imposed on this document it is only possible to present

analytic results for one of the three vertex functions. We choose to display results

analytically for the ghost-gluon vertex since this has the simplest structure. This

vertex also differs between schemes, with results in the Curci-Ferrari gauge dif-

ferent in this vertex to that of the linear covariant gauge, even for the case when

the Landau limit is taken. This is not the case for the other two vertices where

they agree in this limit. Their results are presented numerically.

In Part 2 we consider an operator insertion in a massless quark 2-point function

for an interpolating momentum configuration, away from the symmetric subtrac-

tion point, and its direct application in lattice gauge theory. This extends work

carried out in Part 1 where only the symmetric point was considered. The asym-

metric point is a much more desired computational setup by lattice theorists since

there is more flexibility in results which will therefore enable lattice specialists
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to achieve better precision results on the lattice. Computing the amplitudes for

the scalar, vector and tensor operators in the MS scheme, we construct the con-

version function for the scalar operator for the RI′ scheme. Both MS and RI′

are schemes commonly associated with lattice calculations when renormalizing

operators. Reproducing the results of [133] for the scalar conversion function at

the asymmetric point we then display the amplitudes for the remaining operators

renormalized in the MS scheme only. This is also carried out for the deep inelastic

scattering (DIS) operators. Moving away from the symmetric point means more

complicated master integrals appear within the calculation. The introduction of

new masters along with a new configuration setup is the reason we dedicate a

separate section of our thesis to this work.
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Chapter 2

Background

2.1 Notation and conventions

The standard model is a renormalizable quantum field theory comprising of the

electromagnetic, weak and the strong nuclear forces. It consists of three gauge

groups, each representing one of the three forces, with an overall gauge symmetry

of SU(3) × SU(2) × U(1). These unitary groups provide the basis for all gauge

theories of the standard model. The combination of the electromagnetic and weak

forces, aptly named the electroweak force covers the SU(2) × U(1) symmetries

with the remaining SU(3) sector of the Standard Model corresponds to the theory

best describing all particle physics. This quantum field theory is called Quantum

Chromodynamics (QCD) and is based on a Yang Mills theory [12] with an SU(3)

gauge group. This special unitary group is represented as a set of unitary 3 × 3

traceless hermitian matrices, each with determinant 1. The word special meaning

that all Nc×Nc matrices U in the group SU(Nc) must have detU = +1 compared

to a unitary group satisfying |detU | = 1. Since the dimension of SU(Nc) is

determined by N2
c − 1 the result, in the case of SU(3) is a basis of eight matrices

satisfying

Tr
(

λAλB
)

= 2δAB . (2.1.1)

Although unconventional, we define our colour indices a, b, c as upper case A,B,C.

This is to ease notation later on when we consider the maximal abelian gauge

where the colour group is split. Above we have introduced the Gell-Mann λ-

matrices specific to SU(3), [23]. This set of matrices play a role that is equiva-

lent to that of the Pauli matrices of SU(2). For completeness the conventional
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representation of the Gell-Mann λ-matrices are

λ1 =

⎛

⎜

⎝

0 1 0

1 0 0

0 0 0

⎞

⎟

⎠
, λ2 =

⎛

⎜

⎝

0 −i 0

i 0 0

0 0 0

⎞

⎟

⎠
, λ3 =

⎛

⎜

⎝

1 0 0

0 −1 0

0 0 0

⎞

⎟

⎠
,

λ4 =

⎛

⎜

⎝

0 0 1

0 0 0

1 0 0

⎞

⎟

⎠
, λ5 =

⎛

⎜

⎝

0 0 −i

0 0 0

i 0 0

⎞

⎟

⎠
, λ6 =

⎛

⎜

⎝

0 0 0

0 0 1

0 1 0

⎞

⎟

⎠
,

λ7 =

⎛

⎜

⎝

0 0 0

0 0 −i

0 i 0

⎞

⎟

⎠
, λ8 =

1√
3

⎛

⎜

⎝

1 0 0

0 1 0

0 0 −2

⎞

⎟

⎠
. (2.1.2)

Although the most popular to use, the Gell-Mann λ-matrices are only one of

several possible representations of the infinitesimal generators of SU(3). With the

property of unitarity this set of matrices is called the fundamental representation,

[24]. The commutators of these λ-matrices define the SU(3) structure constants

[

λA,λB
]

= 2ifABCλC (2.1.3)

where it is understood that the repeated index implies the sum over all eight gluon

colour states, as is consistent with Einstein’s summation convention. The objects

fABC are the colour group structure constants and are anti-symmetric under the

exchange of any two indices for all SU(Nc). For SU(3) where the colour indices

run from 1, . . . , 8 this implies, [24],

f 123 = 1 , f 147 = f 246 = f 257 = f 345 =
1

2
,

f 156 = f 367 = −1

2
, f 458 = f 678 =

√
3

2
(2.1.4)

with all other fABC = 0. In the fundamental representation, which is the most

basic irreducible representation, it is traditional to define the generators of the

gauge group by

TA =
1

2
λA , (A = 1, . . . , 8) (2.1.5)

where TA are Hermitian operators. By irreducible we mean that a matrix or set

of matrices cannot be decomposed into block diagonal form. These infinitesimal

operators of the group form a Lie Algebra defined by the commutation relation
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similar to (2.1.3)

[

TA, TB
]

= ifABCTC (2.1.6)

in which the Jacobi identity can be determined using the general result for the

commutators

[TA, [TB, TC ]] + [TB, [TC , TA]] + [TC , [TA, TB]] = 0

ifBCE[TA, TE] + ifCAE[TB, TE] + ifABE[TC , TE] = 0

i2fBCEfAEDTD + i2fCAEfBEDTD + i2fABEfCEDTD = 0

−
(

fBCEfAED + fCAEfBED + fABEfCED
)

TD = 0

⇒ fADEfBCE + fACEfDBE + fABEfCDE = 0 (2.1.7)

which all structure constants satisfy. It is important to emphasise that throughout

our work we use both the adjoint and fundamental representations when dealing

with gluons and fermions respectively. The elementary Casimirs that commute

with all generators of the group are defined as

Tr
(

TATB
)

= TF δ
AB

TATA = CF I

fACDfBCD = CAδ
AB (2.1.8)

where A and F in the subscript represent the adjoint and fundamental repre-

sentations respectively. Using these definitions of the Casimirs we are able to

simplify expressions and are free to calculate in a general SU(Nc) gauge group.

Again we have used Einstein’s summation convention which can be seen explic-

itly where we have dropped the indices when writing TATA = CF I instead of

ΣATA
IJT

A
JK = CF δIK where I, J run over 1 ≤ I ≤ NF where NF is the dimension

of the fundamental representation. This is to be understood throughout.

Although it is preferable to compute in an arbitrary gauge for an arbitrary colour

group where the same set of analytic results can be analysed for several gauge

groups and colour structures simultaneously, there are occasions where we present

our results numerically in terms of the true QCD special unitary group SU(3).

This is mainly due to the sheer size of expressions and our choice in presentation.
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In SU(3) the Casimirs take the following values

CF =
4

3
, TF =

1

2
, CA = Nc = 3 . (2.1.9)

Now that we have discussed the basic properties of the group algebra of QCD it

is necessary to determine the QCD Lagrangian. When constructing a Lagrangian

for a new gauge theory it is useful to first consider the basic Dirac Lagrangian

describing the free fermion field

L = iψ̄(x)∂/ψ(x)−mψ̄(x)ψ(x) (2.1.10)

with the convention c = ! = h
2π = 1 and m represents the mass of the quark. Al-

though we have included a mass term here for illustrative purposes, we note that

throughout our work we do not consider a mass term for the quark lagrangian,

choosing to explore only massless QCD. By choosing a massless regime chiral

symmetry is naturally preserved. Here the notation ∂/ is shorthand for the con-

traction of the partial derivative with the Dirac γ-matrices. The same shorthand

can be used when contracting momenta with γµ, i.e.

p/ = γµpµ (2.1.11)

where γµ is a Dirac matrix, with µ as its Lorentz vector index, considered in

d-dimensions and satisfying the Clifford algebra

{γµ, γν} = γµγν + γνγµ = 2I4ηµν (2.1.12)

where ηµν is the metric tensor in d-dimensional Euclidean space satisfying η µ
µ = d

and I is the 4× 4 identity matrix defined as

I4 =

⎛

⎜

⎜

⎜

⎜

⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎠

. (2.1.13)

Throughout this thesis µ, ν are our Lorentz indices. Since we are working in d-

dimensions we must develop the γ-algebra for 1 ≤ µ ≤ d. We want the γ-algebra

in d-dimensions as we will be using dimensional regularization later when we

renormalize the theory. In dimensional regularization this requires calculating in

14



d = 4− 2ϵ dimensions. Assuming γµγµ = d it follows that

γµγνγ
µ = (−γνγµ + 2ηµν) γ

µ

= −γνγµγµ + 2γν

= (2− d) γν . (2.1.14)

We assume the basic trace rules in d-dimensions hold:

Tr [γµγνγσ] = 0 for any odd number of γ’s

Tr [γµγν ] = 4ηµν

Tr [γµγνγσγρ] = 4 [ηµνησρ − ηµσηνρ + ηµρηνσ] . (2.1.15)

We encounter γ-matrices and their traces when evaluating Feynman diagrams

containing fermion loops. The matrix γ5 is not considered in any of our calcula-

tions since it does not generalise to d-dimensions and we are always in the chiral

limit where the quarks are massless and so we never encounter them in practice.

However for completeness we briefly show the basic properties of γ5 where it

exists strictly in 4-dimensions

(γ5)† = γ5 , {γ5, γµ} = γ5γµ + γµγ5 = 0 (2.1.16)

where µ = 0, 1, 2, 3 in four dimensional spacetime and γ0, γ1, γ2, γ3 are all 3 × 3

matrices such that

γ5 = γ5 =
i

4
εµνρσγ

µγνγργσ =

(

0 I2

I2 0

)

(2.1.17)

where ε is the Levi-Civita symbol specific to d = 4 and I2 is the 2 × 2 identity

matrix. Since we are only interested in massless QCD the Lagrangian reduces to

L = iψ̄(x)∂/ψ(x) (2.1.18)

where ψ is a three-vector representing the quarks. Here each three-component

represents a colour charge, the same charge carried by the gluons (the mediators

of the strong force). There are three different quark colours

ψ(x) =

⎛

⎜

⎝

ψred(x)

ψblue(x)

ψgreen(x)

⎞

⎟

⎠
, ψ̄(x) =

(

ψ̄red(x) , ψ̄blue(x) , ψ̄green(x)
)

(2.1.19)
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for each flavour, where we recall that there are six known flavours to date; up,

down, strange, charm, bottom and top. This colour charge was introduced by

Greenberg as a way of solving the problem that the quark model violated the

Pauli exclusion principle, [25], which says that no two electrons can occupy the

same state, [26]. Since the quarks have half integer spin this rule also applies to

them. Although in nature there exist six flavours we have chosen to work with an

arbitrary number of flavours. The flavour of a quark is distinguished by the index

i on ψi(x) where 1 ≤ i ≤ Nf . In QCD the flavour index has no dynamical role.

We do note however that in nature we are only allowed colourless states; another

reason to support why we do not see quarks and gluons as isolated particles in

nature.

An important property of the Lagrangian for any theory is that it must be in-

variant under local gauge transformations. It is straightforward to see that the

Dirac Lagrangian (2.1.18) is invariant under global transformations of the form

ψ(x) → Uψ(x) and ψ̄ → ψ̄(x)U † with U = eiΛ (2.1.20)

where Λ is a 3 × 3 unitary (Λ†Λ = 1) Hermitian (Λ = Λ†) matrix, independent

of spacetime variable x. However imposing this transformation locally, i.e. by

setting Λ to be a function of x,

ψ(x) → U(x)ψ(x) , ψ̄ → ψ̄(x)U †(x) (2.1.21)

we see that local gauge invariance is not satisfied,

iψ̄(x)γµ∂µψ(x) → iψ̄(x)γµ∂µψ(x) + iψ̄(x)U †(x)γµ(∂µU(x))ψ(x) . (2.1.22)

Instead we are left with an extra term that appears as a result of the partial

derivative acting on U which now depends on x and therefore does not commute

past the partial derivative as easily as before (2.1.20). In order to rectify this

problem we require a derivative that transforms covariantly. By introducing a

covariant derivative, Dµ, to replace the partial derivative, ∂µ, appearing in the

Lagrangian (2.1.18) local gauge invariance is restored. The covariant derivative

is defined to be

Dµ = ∂µ + igAµ(x) . (2.1.23)
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Note that some authors choose to define the covariant derivative with a minus

sign in front of g, where g is the coupling constant. Above Aµ is the group-valued

(Aµ(x) = AA
µ (x)T

A) gauge potential or gluon field transforming as an adjoint

representation of SU(3) with colour index A running from 1, . . . , 8. This gauge

field transforms locally as

Aµ(x) → U(x)Aµ(x)U
†(x) +

i

g
(∂µU(x))U †(x) . (2.1.24)

Acting on the quark fields the covariant derivative transforms like

Dµψ(x) → U(x)Dµψ(x)

Dµψ(x) = (∂µ + igAµ(x))ψ(x)

Dµψ(x) = ∂µψ(x) + igAA
µ (x)T

Aψ(x) (2.1.25)

where TA are the generators of the group, (2.1.5), and AA
µ (x) is the vector po-

tential. The covariant derivative of a group valued object, X, satisfies, [27]

DµX = ∂µX + ig [Aµ, X] (2.1.26)

such that the covariant derivative acting on the gauge field Aµ is given by

DµAν = ∂µAν + ig [Aµ, Aν ]

(DµAν(x))
A TA = (∂µA

A
ν (x)− gfABCAB

µ (x)A
C
ν (x))T

A

(DµAν(x))
A = ∂µA

A
ν (x)− gfABCAB

µ (x)A
C
ν (x) (2.1.27)

where we have applied (2.1.6) since the Aµ fields commute. To be consistent

when comparing results between gauges we have chosen to define the covariant

derivative acting on the fields using equation (2.1.26) throughout our work. The

Curci-Ferrari gauge which is considered in Chapter 4 shares the same definitions

as the linear covariant gauge. However, additional definitions need to be intro-

duced when considering the MAG due to the unique nature of the gauge fixing.

We derive these definitions in Chapter 5.

A commutation relation exists between the covariant derivatives giving

[Dµ, Dν ] = ig (∂µAν − ∂νAµ + ig [Aµ, Aν ]) (2.1.28)
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from which we define the field strength tensor by

Gµν = ∂µAν − ∂νAµ + ig [Aµ, Aν ] (2.1.29)

and its group valued definition

GA
µν = ∂µA

A
ν − ∂νA

A
µ − gfABCAB

µA
C
ν . (2.1.30)

The field strength tensor is what distinguishes QCD from QED, essentially giving

rise to asymptotic freedom due to the gluon self-interactions. Incorporating this

gauge invariant term in to the Lagrangian we now have the complete QCD La-

grangian expressed in terms of bare parameters, where the subscript, o, indicates

the bare parameter, given by

L = −1

4

(

GA
oµν

)2
+ iψ̄oD/oψo + Lgf (2.1.31)

where the
(

GA
oµν

)2
term contains the cubic and quartic gluon self-interactions.

By definition
(

GA
oµν

)2
is gauge invariant under the transformation

Gµν → UGµνU
† . (2.1.32)

Recall that we are only interested in massless QCD and so our Lagrangian does

not contain an explicit mass term for any field.

The importance of the Lagrangian is that it tells us what interactions we can

have in our theory. We have seen that it must be constructed using local gauge

symmetries. Our Lagrangian as it stands is invariant under local SU(3) gauge

transformations, but it is more appropriate to consider a general Lie group, to

which we can specify a gauge group later on. The extra parameters introduced

by unspecifying a gauge group will allow us to cross check results.

2.1.1 Gauge fixing

Before we can define and calculate the Feynman diagrams that encode the inter-

actions between fields originating from the interacting terms in the Lagrangian

we must first fix the gauge. It is not possible to do any perturbative calculations

until the gauge is fixed for two important reasons. Firstly the degrees of freedom

in the original theory are incorrect. This must be dealt with before any meaning-

ful calculations can take place otherwise results obtained will be unphysical and

18



therefore have no relation to nature. The second of our problems comes when we

try to determine the gluon propagator. To successfully construct the propagator

we need to be able to invert the gluon Lagrangian (the quadratic in Aµ piece).

This is not possible without first including additional terms which allow us to

invert the matrix.

An appropriate gauge choice can greatly simplify calculations. We do this by

introducing gauge fixing terms to the original Lagrangian. The role played by

the gauge fixing terms is to reduce the number of degrees of freedom in the theory,

eliminating the unphysical degrees of freedom in the gauge field AA
µ . Faddeev and

Popov, [28], proposed a condition in the form

FA [Aµ] = 0 (2.1.33)

which must be satisfied, where FA is some function on the gauge field Aµ, [29].

The standard gauge fixing condition for an arbitrary (linear) covariant gauge is

the Landau gauge fixing condition

FA [Aµ] = ∂µAa
µ = 0 (2.1.34)

commonly referred to in the literature as the Lorentz condition or Lorentz gauge.

This condition reduces the number of independent components of Aµ from four

to three, [30], as

∂0A0 + ∂1A1 + ∂2A2 + ∂3A3 = 0 . (2.1.35)

In other words one component is dependent on the other three. However, the

Faddeev-Popov construction (2.1.34) was originally presented for Landau type

gauges and was found only to be valid for covariant gauges. Once gauge invariance

had been broken by introducing these non gauge invariant ghost terms via the

Faddeev-Popov gauge fixing procedure a new symmetry needed to be introduced

to guarantee unitarity and ensure gauge independent results emerged for physical

quantities. Although ’t Hooft was working on this at the same time, Slavnov and

Taylor were first to generalise a set of offshell identities extending the Ward-

Takahashi identities of QED, [31, 32], that must be fullfilled. We discuss these

identities and their practical purpose in depth in section 2.1.2. For a non-linear

gauge fixing such as the MAG the definition of (2.1.33) is more involved. A more

general, and in many ways easier way of gauge fixing was discovered by Becchi,
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Rouet, Stora and Tyutin, [33, 34, 35], who proposed a way of using symmetry

arguments, in particular global symmetries to define a set of gauge fixing terms

which satisfied the global gauge symmetries

δAA
µ = −Dµc

A (2.1.36)

δcA = −g

2
fABCcBcC (2.1.37)

δc̄A = bA (2.1.38)

δbA = 0 (2.1.39)

where δ is the BRST transform that anticommutes with the ghost fields cA and c̄A,

where c̄A is the anti-ghost. These ghost particles are unphysical fields which can

mathematically be included in a theory but which never directly contribute to the

physics. They restore unitarity, which without ghosts was found to be violated

at the one loop level. The role of the ghost degrees of freedom is to cancel the

longitudinal component of the gluon propagator, leaving it fully transverse and

physical in the quantum theory, [28, 36, 37, 38]. The quarks and anti-quarks also

transform in a BRST way as

δψiI = igcA
(

TA
)

IJ
ψiJ (2.1.40)

δψ̄iI = −igcA
(

TA
)

IJ
ψ̄iJ (2.1.41)

where lower case i here corresponds to the flavour index and upper case I is

the group spinor index on a quark. Valid in the gauge fixed theory this BRST

invariance, which can be applied to both linear and non-linear gauges effectively

replaces gauge invariance. Since we consider multiple gauge fixings within this

thesis we define the gauge fixing conditions, [39, 41], in the form of (2.1.33) below

FA
Landau[Aµ] = ∂µAA

µ

FA
CF[Aµ, c̄, c, b] =

{

∂µAa
µ +

α
2 b

a
CF − α

4 gf
abcc̄bcc for A ∈ {a, b, c}

FA
MAG[Aµ, c̄, c, b] =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∂µAi
µ +

αp

2 b
i
MAG for A ∈ {i, j, k}

(DµAµ)
a + αp

2 b
a
MAG − α

2 gf
abic̄bci − α

4 gf
abcc̄bcc

for A ∈ {a, b, c}
(2.1.42)

where, in the case of the MAG gauge fixing A ∈ {i, j, k} denotes the diagonal and

A ∈ {a, b, c} the off-diagonal generators of the Lie algebra. This splitting of the
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gauge group is discussed in more depth in chapter 5. Here bA are the commuting

auxiliary Nakanishi-Lautrup fields, [40, 42] coming directly from imposing BRST

symmetry. For a full derivation of the BRST transforms in the arbitrary linear

covariant and non-linear Curci-Ferrari and maximal abelian gauges refer to Ap-

pendix A.

Returning to (2.1.31) and imposing the method of Faddeev and Popov (2.1.34)

we get the full QCD gauge fixed Lagrangian for an arbitrary (linear) covariant

gauge

Ltotal = Lgauge invariant + Lgf + Lghost (2.1.43)

L = −1

4

(

G a
µν

)2
+ iψ̄D/ψ − 1

2α

(

∂µAa
µ

)2 − c̄a∂µD
µca . (2.1.44)

It is natural to combine both Lgf and Lghost such that

LGF = Lgf + Lghost (2.1.45)

since when gauge fixing the Curci-Ferrari and maximal abelian gauges the ghosts

couple to physical fields. The textbook approach of (2.1.43) is inapplicable in

non-linear gauges since the gauge fixing term, Lgf, and ghost term, Lghost, are

not treated separately. Throughout this thesis when we refer to the gauge fixing

term it will be of the combined form (2.1.45), i.e. LGF.

Introduced via gauge fixing is the arbitrary gauge parameter α, and ca, c̄ a repre-

sent the interacting scalar particles called ghosts. To reiterate, these Grassmann

variables are unphysical particles which are inserted on a purely mathematical

level and do not contibute to the overall physics. Since they are Grassmann

variables they anti-commute with

cac̄b = −c̄bca . (2.1.46)

This above method of fixing the gauge is not unique and our overall result should

always be independent of our gauge choice. This corresponds to choosing a co-

ordinate system in order to perform a calculation, [44]. No matter what set of

coordinates one uses the result should always be consistent. On introducing the

ghost fields it is appropriate to give the definition of the covariant derivative
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acting on this particular field, based on (2.1.26) as

Dµc
a = ∂µc

a − gfabcAb
µc

c . (2.1.47)

It may seem non-trivial that these ghost fields should then couple to Aµ for certain

gauge fixings, however the ghosts only occur in the internal part of the diagram,

i.e. in closed loops and never as incoming or outgoing physical particles, leaving

the physics intact. Without the addition of ghost fields unitarity would be vio-

lated.

In the step prior to obtaining (2.1.44) it is possible to write (2.1.45) of the form

LGF = −
(

FA [Aµ]
)2

2α
− c̄a

(

δFA [Aµ]

δΛb

)

cb (2.1.48)

where Λ was defined in (2.1.20). In the case of the arbitrary (linear) covariant

gauge a clear choice can be made for FA [Aµ] to obtain (2.1.44). For FA
CF and

FA
MAG, the gauge fixed part of the Lagrangian for the Curci-Ferrari gauge and

MAG respectively, we can introduce the more appropriate BRST symmetry to

define the gauge fixing terms. Transforming our definition of LGF in (2.1.48) to

be

LGF = δ
[

c̄a
(

FA [Aµ, c, c̄, b]
)]

(2.1.49)

which accommodates all three gauge fixings defined in (2.1.42) and performing a

BRST transformation on each of the fields the following can be obtained, [67],

LLinear
GF = − 1

2α
(∂µAa

µ)
2 − c̄a∂µDµc

a , (2.1.50)

LCF
GF = − 1

2α
(∂µAa

µ)
2 − c̄a∂µDµc

a

+
g

2
fabc∂µAa

µ c̄
bcc +

αg2

8
f eabf ecdc̄acbc̄ccd , (2.1.51)

LMAG
GF = − 1

2α

(

∂µAa
µ

)2 − 1

2αp

(

∂µAi
µ

)2
+ c̄a∂µ∂µc

a + c̄i∂µ∂µc
i

+ g

[

fabkAa
µc̄

k∂µcb − fabcAa
µc̄

b∂µcc − 1

α
fabk∂µAa

µA
b
νA

k ν

−fabk∂µAa
µc

bc̄k − 1

2
fabc∂µAa

µc̄
bcc − 2fabkAk

µc̄
a∂µc̄b

−fabk∂µAk
µc̄

bcc
]
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+ g2
[

facbd
d Aa

µA
b µc̄ccd − 1

2α
fakbl
o Aa

µA
b µAk

νA
l ν + fadcj

o Aa
µA

j µc̄ccd

−1

2
fajcd
o Aa

µA
j µc̄ccd + fajcl

o Aa
µA

j µc̄ccl + falcj
o Aa

µA
j µc̄ccl

−f cjdi
o Ai

µA
j µc̄ccd − α

4
fabcd
d c̄ac̄bcccd − α

8
fabcd
o c̄ac̄bcccd

+
α

8
facbd
o c̄ac̄bcccd − α

4
fabcl
o c̄ac̄bcccl +

α

4
facbl
o c̄ac̄bcccl

−α
4
falbc
o c̄ac̄bcccl +

α

2
fakbl
o c̄ac̄bckcl

]

. (2.1.52)

The gauge fixing terms for the linear covariant and Curci-Ferrari gauges have

been checked and verified explicitly with [79, 104, 126]

The properties and construction of the MAG gives rise to two independent arbi-

trary gauge fixing parameters, α and αp. Adding an above gauge fixing term to

the Lagrangian forces gauge invariance to break, since the gauge fixing terms are

gauge dependent. BRST symmetry preserves some remnant of this lost gauge

symmetry. It is taken for granted that the original terms in each Lagrangian are

BRST invariant since gauge invariance implies BRST invariance and the gauge

fixing term in each Lagrangian ensures that any extra terms added will not affect

the original terms in (2.1.31). We construct and display the BRST transforma-

tions and their relations, in particular the b-fields, for both the CF gauge and

MAG, whilst discussing this technique in more detail in Appendix A. Once the

gauge is fixed, ensuring all additional terms satisfy FA [Aµ] = 0 we can proceed

to calculating with this now complete Lagrangian.

2.1.2 Renormalization

An important property of QCD is that it is a renormalizable theory. Let us

explain what this means by considering the complete QCD Lagrangian for an

arbitrary (linear) covariant gauge fixing, (2.1.44). If one were to naively start

computing quantum corrections to the Green’s functions with this Lagrangian

as their starting point they would encounter Feynman diagrams that are infinite

in four dimensions. This is problematic since it would be impossible to obtain

meaningful physical results due to the infinities appearing within the calculation.

These infinities are a result of divergent Feynman integrals contained within cer-

tain Feynman diagrams. Generally there are two types of divergence; these are

known as infrared (IR) and ultraviolet (UV). Ultraviolet behaviour occurs at high

energies whereas infrared occurs at low energies. A procedure called renormal-

ization was introduced to tackle such infinities. Renormalization theory is based
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on the UV divergences, as these can be handled systematically. Renormalization

is a systematic and mathematically consistent method of redefining the variables

of a theory in a way that removes these infinities. It simply means re-expressing

results of the theory via physical (measurable) quantities. There are a num-

ber of ways in which one can renormalize massless QCD and there are several

regulators which can be used. The three most popular regulators are cut-off,

lattice regularization and dimensional regularization, each with their own advan-

tages and disadvantages. As QCD is a real world gauge theory we must ensure

gauge symmetry is preserved, as mentioned in the previous section. This auto-

matically excludes the use of cut-off renormalization since this technique breaks

gauge symmetry. Lattice regularization preserves this gauge symmetry but does

not preserve Lorentz symmetry which is necessary for obtaining measurable re-

sults independent of coordinate system and/or direction i.e. the results have the

same value in all frames. Lattice also requires super computers and is costly to

implement. In order to ensure gauge symmetry and Lorentz symmetry are con-

served we use dimensional regularization developed by ’t Hooft and Veltman in

[45] and also [46, 47]. This type of regularization is the most popular approach

used in practical calculations with the basic idea behind it being to reduce the

number of dimensions over which one integrates, resulting in the divergences dis-

appearing, [48]. But how do we know what dimension to work in?

Consider an integral commonly encountered in one loop calculations. When mass

m is small and negligible, then

∫

d4k

(k2 −m2)2
→
∫ Λ

ε

d4k

(k2)2
= lnΛ− ln ε (2.1.53)

which tends to infinity when ε→ 0 or Λ → ∞, where the integral is considered in

4-dimensional Minkowski space. We see that the integral will diverge at large mo-

menta k2. To avoid our integral diverging we can choose a regulator to transform

the ill-defined integral into a well-defined one. This means considering the same

integral integrated over ddk where d is some arbitrary number of dimensions. For

d = 4 we have a divergence. For d > 4 our integral will continue to diverge,

and so this leaves us with the choice d < 4. For this value of d we see that the

integral is now convergent and can be calculated explicitly, [49]. Hence for d < 4

logarithmic divergences which are encountered in quantum field theories vanish.

24



In other words when using dimensional regularization we have the following

∫

ddk
∂

∂kµ
f(k2) = 0 . (2.1.54)

In dimensional regularization the space-time dimension d becomes a complex

variable and can be written as d = 4− 2ϵ where ϵ is the regularizing parameter.

Singularities manifest themselves as poles in ϵ where the physical limit ϵ → 0

brings us to our real-world 4-dimensional space-time after renormalization, [50].

When renormalizing a theory we introduce renormalization constants, or scaling

factors, Zi, that cancel the divergences in the theory. How one removes the diver-

gences is known as the renormalization scheme. These schemes can vary in their

definitions, from absorbing only the divergences, which when using dimensional

regularization manifest themselves as poles in ϵ, to the renormalization constants

also absorbing a finite piece in addition to the divergences. Let us demonstrate

how these renormalization constants look in practice. Recall for example the QCD

Lagrangian for an arbitrary (linear) covariant gauge (2.1.44). We can redefine the

theory with

Aµ
o =

√

ZAA
µ , go = µϵZgg , ψo =

√

Zψψ , cao =
√

Zcc
a , αo =

ZA

Zα
α . (2.1.55)

In renormalization Zi is the quantity we want to fix in order for it to cancel out

the divergences in the theory. The way in which we define this set of renormal-

ization constants is simply a matter of convention, since our overall results will

ultimately be independent of the scheme. If it was possible to calculate all orders

of perturbation theory physical results would be independent of the renormaliza-

tion scheme chosen. The specifics of scheme definitions will be discussed later. In

gauge theories, such as QCD, there are relations between the renormalization con-

stants in consequence of the Slavnov-Taylor identities. In our work [51] and the

work of [14] the renormalization constants have been constructed such that the

Slavnov-Taylor identities [31, 32] are automatically satisfied. Let us demonstrate

this. In [52] the Slavnov-Taylor identities are defined to be

ZF (qqg)
1

Z2
=

Z̃1
(ccg)

Z̃3

=
Z(ggg)

1

Z3
,

Z(gggg)
4

Z3
=

(

Z(ggg)
1

Z3

)2

(2.1.56)

where there is a renormalization constant corresponding to each interaction term

in the Lagrangian. Particularly ZF
1 , Z̃1 and Z1 are the renormalization constants
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for the quark-gluon, ghost-gluon and triple-gluon vertices respectively and Z3, Z̃3

and Z2 are the gluon, ghost and quark wave function renormalization constants.

On defining a renormalization constant per field, as we have done in (2.1.55), one

can directly relate Celmaster and Gonsalves’ definitions to ours such that

Z3 = ZA , Z̃3 = Zc , Z2 = Zψ (2.1.57)

and those corresponding to the vertices

ZF (qqg)
1 = Z(qqg)

g Zψ
√

ZA , Z̃1
(ccg)

= Z(ccg)
g Zc

√

ZA ,

Z(ggg)
1 = Z(ggg)

g ZA

√

ZA (2.1.58)

where our definition of the renormalization constants are on the right hand side

of the equals sign while the Slavnov-Taylor definitions are on the left. Defining

our renormalization constants this way ensures that the Slavnov-Taylor identities

(2.1.56) are naturally satisfied, since they imply that

Z(ggg)
g

√

ZA

∣

∣

∣

MS
= Z(qqg)

g

√

ZA

∣

∣

∣

MS
= Z(ccg)

g

√

ZA

∣

∣

∣

MS
(2.1.59)

for all three vertices in the MS scheme. Celmaster and Gonsalves, [52], also define

a relation between the 3- and 4-point gluon functions in (2.1.56) with, in terms of

our definition of the renormalization constants, Z(gggg)
4 = Z2(ggg)

g Z2
A which must

be satisfied for the theory to be consistent. This ratio between the (n + 1) and

n-point functions must hold for all n. Therefore with our redefinition of the renor-

malization constants the Slavnov-Taylor identities are naturally satisfied via this

construction and so proving that Zg

√
ZA is equivalent for all 3-point functions

is enough to prove that the Slavnov-Taylor identities hold. Although the way

in which the renormalization constants are defined should be independent of the

physics, our way of defining the Z’s builds the above identities into the definitions

which in turn saves us the trouble of separately checking the identities again later

on. When renormalizing the fields it is vital to take into account the renormal-

ization of the arbitrary gauge parameter α, as just like the coupling constant g,

the renormalization of the gauge parameter can be different in different schemes.

This becomes apparent in the next chapter where we relate the coupling con-

stants in two schemes to one another. The renormalized Lagrangian is now given

in terms of renormalized parameters

L = −1

4
ZA

(

G a
µν

)2 − Zα
2α

(

∂ µAa
µ

)2
+ iZψψ̄D/ψ − Zcc̄

a∂µD
µc a (2.1.60)
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where the renormalized coupling constant is embedded in the covariant deriva-

tives and field strength tensor. Notice how in (2.1.55) the renormalized coupling

constant comes with a pre-factor of µϵ. When using a regularization scheme

we must include an associated mass scale. For dimensional regularization this

mass scale is µ which is introduced in order to ensure the coupling constant is

dimensionless in d-dimensions, [14]. After re-expressing the results for physical

quantities via renormalized parameters we can remove the regularization, [53]. In

d-dimensional regularization, removing the regularization simply means taking

the limit ϵ → 0 since dimensional regularization is something of a mathematical

procedure. We note that physical expressions only make sense in this limit, [54].

Now that we have chosen the gauge in which we are calculating in, and dimen-

sional regularization as our regulator, we next have the task of choosing which

scheme to work in. The most popular scheme choice in QCD is the modified

minimal subtraction (MS) scheme. This is a modification of the MS scheme,

[55, 56], first formulated by ’t Hooft. Both the MS and MS schemes fall into the

class of mass independent renormalization schemes. Rather than using the MS

prescription of 1
ϵ

being absorbed into the renormalization constants, MS requires

that 1
ϵ
− γE + ln(4π) is absorbed, [57], where γE is the Euler-Mascheroni con-

stant. This keeps the expressions for the renormalized Green’s functions much

simpler, and hence the reason this scheme has been adopted as the most popu-

lar to use in practical calculations. With high order multiloop results previously

calculated and readily available in this scheme, MS has become the standard ref-

erence scheme. However, at one loop it is possible to map between the MS and

MS schemes by taking the limit 1
ϵ
→ 1

ϵ
− γE + ln(4π) and vice-versa, [57]. At

higher loop orders however this mapping is less trivial. In the MS scheme at two

loops the renormalization constants have the form

Zi(aMS) = 1 +
zi1
ϵ
aMS +

(zi22
ϵ2

+
zi21
ϵ

)

a2
MS

+O(a3
MS

) (2.1.61)

where we have chosen to define our coupling constant a, in relation to the gauge

coupling constant as a = g2

16π2 and use this definition throughout.

An additional scheme to consider is the momentum subtraction (MOM) scheme.

Although fewer results exist to the same multiloop precision in this scheme, the

MOM scheme is an improvement on the MS scheme in that it is a physical scheme

choice. The MOM scheme is based upon the 3-point vertices of the Lagrangian,
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where the determination of the renormalized coupling constant requires calculat-

ing the vertex corrections at the symmetric subtraction point. Original MOM

schemes were developed by Celmaster and Gonsalves in 1979, [52]. Only recently

in [14, 58] have results been obtained for the renormalization of the triple gluon,

quark-gluon and ghost-gluon vertices for the MOMi schemes at two loops. The i

here refers to the vertex at which the renormalization has been applied. Within

this thesis i ∈ {Aa
µA

b
νA

c
σ, ψψ̄A

a
µ, c

ac̄bAc
µ} where no other 3-point vertices are

considered. We define the MOMi schemes explicitly in further detail in section

2.1.5. This large gap between developing the MOMi schemes and computations

being able to take place in these schemes illustrates the technical difficulty of

moving to this scheme at higher orders. In the thirty years between [52] and

[14, 58] came the development of the Laporta algorithm, [60], which greatly sped

up algebraic operations, and many master integrals which were unknown in 1979

were now solved, enabling computations in the momentum subtraction schemes

to continue.

2.1.3 Feynman rules

Next we require the Feynman rules. The Feynman rules allow us to translate a

Feynman diagram into a set of mathematical instructions which we then solve

using integration. Each Lagrangian determines a particular set of Feynman rules

specific to that gauge, [29, 26]. It is not to be assumed that the Feynman rules

in one gauge are identical to those in another. A perfect example of this is the

addition of a Feynman rule to describe the quartic ghost interaction which exists

in a non-linear gauge fixing such as Curci-Ferrari but not in the Landau gauge.

The Feynman rules are directly derived from the Lagrangian. In essence the

free Lagrangian determines the propagator whilst the interaction terms define

the vertex rules. We define our set of Feynman rules for each setup in Appendix

C. Note that we never consider individual diagrams, only the overall sum of all

contributing diagrams. In massless theories dimensional regularization regularizes

both types of infinities so it is never clear where the poles in ϵ originate from. In

calculating the sum of all diagrams we are able to compute the amplitudes and

by the nature of these diagrams some divergences will naturally cancel.

2.1.4 Momentum configuration and technical aspects

Having discussed the method of renormalization in depth we now move on to de-

tailing the techniques used within our calculations. Unlike past computations in
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this area that have been studied for the exceptional case, where the linear combi-

nation of the external momentum is zero, in our setup for the three point vertices

we choose not to nullify any external momenta, instead using a non-exceptional

momentum configuration. We choose this setup since despite nullification of an

external leg simplifying a calculation, this nullification can create spurious IR

divergences of which there is no consistent way of dealing with these mathemat-

ically. It is also a more desired setup for those wishing to analyse the results.

The three Green’s functions we consider throughout Part 1 of this thesis in each

gauge are

⟨AA
µ (p)A

B
ν (q)A

C
σ (r)⟩ , ⟨(ψiI(p))α(ψ̄

jJ(q))βAC
σ (r)⟩ and ⟨cA(p)c̄B(q)AC

σ (r)⟩ (2.1.62)

representing the triple-gluon, quark-gluon and ghost-gluon vertices respectively

with momentum conservation along p+q+r = 0. Although many authors choose

not to explicitly show spinor indices on the quark fields we include them here to

help ease our explaination of choosing a tensor basis later on. The vertices are

considered at the symmetric subtraction point in which the sum of the squares

of the three external momenta are set equal to each other i.e.

p2 = q2 = r2 = (p+ q)2 = − µ2 , (2.1.63)

where µ is the same associated mass scale defined earlier to ensure the coupling

constant is dimensionless in d-dimensions. In (2.1.63) one could regard this as a

kinematical variable different from the scale which makes the coupling constant

dimensionless in d-dimensions. In this case when the variables are different one

would have additional terms involving logarithms of ratios of these scales through-

out all of our amplitudes. We choose to keep the scales the same throughout as

they can readily be restored by a coupling constant rescaling. We will assume

this throughout the thesis. Note here that we have only two independent exter-

nal momenta, p and q, with r = − p − q, again reiterating the fact that we do

not nullify any external momenta. The diagrams are set up with the momentum

defined in Figure 2.1 where we always choose the top leg to be the gluon. We can

write each of our three vertices as follows, [14],

⟨AA
µ (p)A

B
ν (q)A

C
σ (−p− q)⟩|p2=q2=−µ2 = fABC Σggg

µνσ (p, q)|p2=q2=−µ2

⟨(ψIi(p))α(ψ̄
Jj(q))βAC

σ (−p− q)⟩|p2=q2=−µ2 = δijTC
IJ

(

Σqqg
σ (p, q)

) β

α
|p2=q2=−µ2

⟨cA(p)c̄B(q)AC
σ (−p− q)⟩|p2=q2=−µ2 = fABC Σccg

σ (p, q)|p2=q2=−µ2 ,
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r

p q

Figure 2.1: Incoming external momenta for the one loop triangle graph.

(2.1.64)

where ggg, qqg and ccg represent the triple-gluon, quark-gluon and ghost-gluon

vertex functions respectively. We note that (2.1.64) is used for calculations in all

three gauges, considered in the subsequent chapters. The colour group tensors

associated with each vertex naturally factor out at leading order and next-to-

leading order (NLO), i.e. the diagrams considered at the symmetric point which

contribute to the triple-gluon vertex are directly proportional to fabc and so this

can be factored out. Whether this is true for all orders is not yet known. Sim-

ilarly with the quark- and ghost-gluon vertices. This factorization of the colour

tensors is a property of symmetric point calculations for 3-point vertices which

allows us to purely focus on the Lorentz component. ΣV
µ1...µn

(p, q) are the Lorentz

amplitudes for the vertex V , where V ∈ {ggg, ccg, qqg}. This decomposes further

into scalar amplitudes

Σggg
µνσ (p, q)|p2=q2=−µ2 =

14
∑

k=1

Pggg
(k)µνσ(p, q)Σ

ggg
(k) (p, q)

(

Σqqg
σ (p, q)

) β

α
|p2=q2=−µ2 =

6
∑

k=1

(

Pqqg
(k)σ (p, q)

) β

α
Σqqg

(k) (p, q)

Σccg
σ (p, q)|p2=q2=−µ2 =

2
∑

k=1

Pccg
(k)σ(p, q)Σ

ccg
(k) (p, q) . (2.1.65)

where PV
(k) µ1...νn

(p, q) are the basic tensors for each vertex, V , and ΣV
(k)(p, q)

are the scalar amplitudes. For the triple-gluon vertex we have Pggg
(k)µνσ(p, q) with
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1 ≤ k ≤ 14, where k can be called the channel of the amplitude. For example

channel 1 would be when k = 1, where it is our convention to choose channel

1 to correspond to the tree level vertex. A prescription for choosing the tensor

basis is explicitly shown in Appendix B where we note that the tensor basis is

dependent on the Green’s functions and not on the gauge choice. Once we have

the tensor basis we project out the amplitudes for each individual channel k using

the projection technique of [61]. For the triple-gluon vertex there are 14 channels,

since 1 ≤ k ≤ 14. This is achieved using the projection matrices presented in

Appendix B. The amplitudes play an important role in the construction of the

renormalization constants and we present the results for the amplitudes in all

chapters for each scheme.

As previously mentioned it is appropriate within this thesis to present the ma-

jority of our results numerically, particularly those of chapters 3 and 4 where

results are calculated up to NNNLO and these results displayed analytically are

of considerable length. For this reason we present the numerical values for the

various functions that arise in the master integrals of [62, 63, 64, 65]. These are

ζ3 = 1.20205690 , ζ2 = π
6
2 = 1.64493407 , ψ′

(

1
3

)

= 10.09559713 ,

ψ′′′
(

1
3

)

= 488.1838167 , s2
(

π
2

)

= 0.32225882 , s2
(

π
6

)

= 0.22459602 ,

s3
(

π
2

)

= 0.32948320 , s3
(

π
6

)

= 0.19259341 , (2.1.66)

where ψ(z) is the derivative of the logarithm of the Euler Γ-function and ζn is the

Riemann zeta function. The Euler Γ-function Γ(z) is a special function defined

for ℜ(z) > 0 by

Γ(z) =

∫ ∞

0

e−ttz−1dt (2.1.67)

satisfying the functional equation

zΓ(z) = Γ(z + 1) (2.1.68)

such that for any integer z we have Γ(z) = (z − 1)Γ(z − 1) and it follows that

Γ(z+1) = z! for all positive integer z. In dimensional regularization we have the

following definition

Γ(ϵ) =
1

ϵ
(1 + γEϵ+O(ϵ)) (2.1.69)
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where

γE = lim
n→∞

[

n
∑

i=1

1

i
− ln(n)

]

= 0.5772156649 . . . (2.1.70)

is the Euler-Masceroni constant.

At the symmetric point the following functions arise for various arguments,

sn(z) =
1√
3
ℑ
[

Lin

(

eiz√
3

)]

(2.1.71)

where Lin(z) is the polylogarithm function and n defines the loop order. As a

result of computing 3-point and, in the case of non-linear gauge fixings, 4-point

functions at one loop in a non-exceptional momentum configuration dilogarithms

appear. The dilogarithm [66] is defined by the integral

Li2(z) = −
∫ z

0

dt
ln(1− t)

t
(2.1.72)

or the sum

Li2(z) =
∞
∑

n=1

zn

n2
(2.1.73)

for |z| ≤ 1. Similarly Li3(z) would be

Li3(z) =
∞
∑

n=1

zn

n3
. (2.1.74)

A combination of harmonic polylogarithms appear in our results, which have been

presented in published work, [14, 67], as

Σ = H(2)
31 + H(2)

43 . (2.1.75)

This combination is specific to a symmetric point computation. As explained in

[67] we now record this combination of harmonic polylogarithms within our thesis

as

Σ = H(2)
31 + H(2)

43 =
1

36
ψ′′′
(

1
3

)

− 2π4

27
(2.1.76)

rather than leaving results in terms of Σ.
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2.1.5 Definition of renormalization schemes

Following the thorough definition of the MS scheme in section 2.1.2 we now fo-

cus on the explicit definition of the MOM renormalization schemes. Let us first

discuss the similarities between both non-physical and physical schemes. When

renormalizing, the Lagrangian has the same form as in (2.1.60). However in the

MOM schemes the renormalization constants contain both the divergent and fi-

nite parts, compared to just the divergences being removed in the MS scheme.

However, there is a second aspect of renormalization which is to define the point

where the Green’s function is renormalized. In the MOM schemes of Celmaster

and Gonsalves, [52], for both the 2-point and 3-point functions this is the point

where the external momenta squared is −µ2. In particular for the 3-point func-

tions this corresponds to the completely symmetric point (2.1.63). When one

evaluates the 3-point function at this particular symmetric point then the renor-

malization constant is defined so that after renormalization there are no O(a)

corrections at the symmetric point. In other words the renormalization constant

has a finite part removed, unlike MS. The 2-point functions are treated in the

same way for the MOM schemes of Celmaster and Gonsalves.

Our renormalization constants therefore take the form of (2.1.61) where now at

one loop zi1(aMOMi) = A+ Bϵ such that

ZMOMi
i (aMOMi) = 1 +

(

A

ϵ
+ B

)

aMOMi + . . . (2.1.77)

where B represents the finite contribution, in comparison to

ZMS
i (aMS) = 1 +

A

ϵ
aMOMi + . . . (2.1.78)

in the MS scheme. Unfortunately there are infinitely many ways to define a

momentum subtraction renormalization, [58], i.e. we have the freedom to se-

lect which finite parts we absorb into the counterterms subject to respecting the

Slavnov-Taylor identities. In the MOMi schemes we absorb both O(1
ϵ
) and O(1)

pieces in to the renormalization constants as shown above such that no O(a)

pieces remain in the amplitudes at the subtraction point. The benefit of calcu-

lating in this scheme rather than MS is that the scheme is based on the physical

properties of the particles.

Another mass dependent renormalization scheme popular with lattice studies is

33



the modified regularization invariant (RI′) scheme which we consider in Chapter 7.

The coupling constant depends directly on the characteristic external momenta,

[49]. We consider all three renormalization schemes (MS, MOM and RI′) within

our work, constructing results in several gauges for analysis and comparison which

we comment on in the subsequent chapters.

2.2 Reduction of scalar 3-point integrals

The reduction of scalar 3-point integrals are handled by using the computer pack-

age Reduze. As we will mention in the following section, when outlining our

computational approach, Reduze implements the Laporta algorithm to system-

atically reduce scalar integrals to a set of basic master integrals using a technique

known as integration by parts. Reduze works by starting with a topology and

using integration by parts and Lorentz invariance relations to generate relations

involving this topology and lower ones which it can get by pinching certain propa-

gators, [66]. In graph theory this simply means removing an internal propagator.

Any integrals that cannot be ultimately simplified in this way are called master

integrals. Let us consider an l loop diagram with e independent external mo-

menta. An auxilliary topology (or integral family) for any diagram must contain

exactly l
[

1
2(l + 1) + e

]

propagators, otherwise a reduction cannot happen. An

auxilliary topology is an ordered set of all propagators where all scalar products

containing at least one loop momenta ki can be expressed as a linear combination

of propagators from this set, [68]. This means that, for example, in the case of

the two loop ladder topology one must "add" an extra propagator in the form of

a scalar product of the momenta. It is important to understand what Reduze is

doing internally when performing the integral reduction. For this reason we can

illustrate the procedure by hand, in particular applying the Laporta algorithm

to the two loop triangle at the symmetric point. Let us first, as a preliminary

to the two loop 3-point function, consider a simple one loop diagram. A general

definition of a one loop integral containing three propagators is

I1(α, β, γ) =

∫

k

ddk

(2π)d
1

(k2)α((k − p)2)β((k + q)2)γ
(2.2.79)

where α, β, γ take any integer value. Our integral is of the form 1
abc

where a, b, c

are the product of propagators. This integral is represented diagramatically in

Figure 2.2 with internal loop momenta k. Recall that the symmetric point is

defined by the condition (2.1.63) where pq = 1
2µ

2. With each external leg now
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p+ q

q + k

q

k

p

p− k

Figure 2.2: Momentum routing around the one loop triangle graph.

having the same incoming/outgoing momenta this implies that

I1(α, β, γ) = I1(α, γ, β) = I1(β, γ,α) = . . . (2.2.80)

i.e the 3-point function is completely symmetric. Using this symmetry rule we

can represent other integrals in the form I(α, β, γ), for example let us take

I1(2, 1, 1) =

∫

k

ddk

(2π)d
1

(k2)2(k − p)2(k + q)2
. (2.2.81)

Using the symmetry rule we see that I1(2, 1, 1) = I1(1, 2, 1) = I1(1, 1, 2) such that

I1(2, 1, 1) =

∫

k

ddk

(2π)d
1

(k2)2(k − p)2(k + q)2

=

∫

k

ddk

(2π)d
1

k2((k − p)2)2(k + q)2

=

∫

k

ddk

(2π)d
1

k2(k − p)2((k + q)2)2
. (2.2.82)

Applying the rule (2.1.54), performing the explicit differentiation and taking all

terms over to the right-hand side we obtain

0 =

∫

ddk

(2π)d
d

(k2)α((k − p)2)β((k + q)2)γ

−2α

∫

ddk

(2π)d
1

(k2)α((k − p)2)β((k + q)2)γ
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−2β

∫

ddk

(2π)d
k(k − p)

(k2)α((k − p)2)β+1((k + q)2)γ

−2γ

∫

ddk

(2π)d
k(k + q)

(k2)α((k − p)2)β((k + q)2)γ+1
(2.2.83)

where we have used ∂kµ

∂kµ
= d. The above expression can be rewritten as

0 =

∫

ddk

(2π)d
d

(k2)α((k − p)2)β((k + q)2)γ

−2α

∫

ddk

(2π)d
1

(k2)α((k − p)2)β((k + q)2)γ

−β
∫

ddk

(2π)d
k2 + (k − p)2 − p2

(k2)α((k − p)2)β+1((k + q)2)γ

−γ
∫

ddk

(2π)d
k2 + (k + q)2 − q2

(k2)α((k − p)2)β((k + q)2)γ+1
. (2.2.84)

Writing the integrals in terms of I1(α, β, γ) and rearranging we have

0 = (d− 2α− β − γ)I1(α, β, γ)

−β
[

I1(α− 1, β + 1, γ)− p2I1(α, β + 1, γ)
]

−γ
[

I1(α− 1, β, γ + 1)− q2I1(α, β, γ + 1)
]

. (2.2.85)

Taking the most general case by setting α = β = γ = 1 gives

I1(1, 2, 1) =
1

µ2

[

1

2
(d− 4)I1(1, 1, 1)− I1(0, 2, 1)

]

(2.2.86)

where I1(0, 2, 1) and I1(1, 1, 1) are the 2- and 3-point master integrals respec-

tively. This explicitly shows that one can write any integral in terms of the set

of master integrals for that theory as I1(0, 2, 1) is proportional to I1(1, 1, 0). For

completeness

I1(1, 2, 1) =
1

2p2

[

2Γ
(

3− d
2

)

Γ
(

d
2 − 2

)

Γ
(

d
2 − 1

)

(p2)
d
2
−3

(4π)
d
2 Γ (d− 3)

− (d− 4)I1(1, 1, 1)

]

.

(2.2.87)

Now that we have a basic understanding of the Laporta algorithm at one loop

let us consider a two loop 3-point diagram, also at the symmetric point. Most
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generally this can be written as

I2(α, β, γ, δ, ρ) =

∫

k

ddk

(2π)d
1

(k2)α((k − p)2)β((k − l)2)γ(l2)δ((l + q)2)ρ

(2.2.88)

p+ q

qp

p− k

k l

k − l
q + k

Figure 2.3: Momentum routing around a two loop triangle graph.

Figure 2.4: Integral families at one and two loops for the symmetric point.

which we present diagramatically in Figure 2.3. Here we have two internal loop

momenta, k and l. Unlike the one loop case which was symmetric about α, β and

γ, we now do not have as much freedom since there are three basic topologies at

two loops, see Figure 2.4 compared to just one topology for the 3-point function

at one loop level. Shifting the momenta in Figure 2.3 such that

−l → q

k − l → k + q (2.2.89)
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we obtain a triangle subgraph whose internal loop momenta is k. By rerouting

the momenta the external legs of this one loop subgraph are of the form of Figure

2.2. Considering only this subgraph we can apply the Laporta algorithm to the

integral

I2(α, β, γ, δ, ρ) =

∫

k

ddk

(2π)d
1

(k2)α((k − p)2)β((k + q)2)γ(q2)δ((l + q)2)ρ
(2.2.90)

to obtain

0 = (d− 2α− β − γ − δ − ρ)I2(α, β, γ, δ, ρ)

−β
[

I2(α− 1, β + 1, γ, δ, ρ)− p2I2(α, β + 1, γ, δ, ρ)
]

−γ
[

I2(α− 1, β, γ + 1, δ, ρ)− q2I2(α, β, γ + 1, δ, ρ)
]

. (2.2.91)

Setting α = β = γ = δ = ρ = 1 the above becomes

0 = (d− 6)I2(1, 1, 1, 1, 1)−
[

I2(0, 2, 1, 1, 1)− p2I2(1, 2, 1, 1, 1)
]

− [I2(0, 1, 2, 1, 1)− I2(1, 1, 2, 0, 1)] . (2.2.92)

38



−

−

=

+

11

11

1 1 1

1 1

1 1

1

1

1

11 1

1

2

2 2

2

(d− 6)

Figure 2.5: Integral Reduction.

Expressed diagramatically in Figure 2.5 we see that there appears only one in-

tegral that is not a master integral, i.e. the diagram can be expressed in terms

of other topologies. Rearranging (2.2.92) in terms of the unknown integral we

obtain

I2(1, 2, 1, 1, 1) = − 1

µ2
[(d− 6)I2(1, 1, 1, 1, 1)− I2(0, 2, 1, 1, 1)] . (2.2.93)

Re-expressing all integrals in terms of masters dramatically simplifies expressions

and reduces the number of integrals one needs to explicitly solve. At higher loop

orders one can apply the same algorithm as for the one loop case by considering

a subgraph as we have done at two loops. This is how Reduze works internally.

2.3 Computational setup

Here we discuss the computational setup we have used throughout our work. In

order to compute the renormalization of QCD up to and including two loops in

a variety of gauges and schemes we use a combination of programs, [68, 69, 70,
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71]. A computation of this size would be near impossible without using these

tools. We begin by using the Qgraf package [69] to electronically generate all

Feynman diagrams corresponding to each of our Green’s functions. This is done

by specifying the number of loops we wish to calculate to, the loop momenta,

incoming particles and the interactions our theory allows. In our setup we choose

to have all particles incoming, as is consistent with our momentum routing, and

specify no tadpoles, no snails and only graphs that are 1-particle irreducible

(1PI). We call a diagram irreducible if it cannot be split in to two disconnected

graphs by cutting only one internal line. A tadpole diagram is a diagram with

one external leg (or line). We choose not to include tadpoles since graphs of this

type are redundant when considering 1PI graphs only. Since we are in a massless

regime we also have no need to consider snail diagrams due to them vanishing

when applying dimensional regularization. We display both graphs in Figure 2.6

for the benefit of the reader. Tables 2.1 through 2.3 show the total number of

diagrams calculated at one, two and three loops for each gauge.

(a) (b)

Figure 2.6: (a) Snail Feynman diagram, (b) Tadpole Feynman diagram.

The need for such computing tools can be gauged by the sheer number of Feynman

diagrams considered, increasing tenfold when one increases the loop order. Once

the diagrams have been generated for each setup, we identify and order the graphs

into their basic topologies, applying Lorentz and colour indices to the diagrams

automatically. Finally we integrate each diagram using a Mincer, [72], routine

implemented in Form, [70]. Applying the Mincer algorithm to 3-point vertex

functions requires one external momenta of the Green’s function to be nullified.

This is provided that when we nullify an external leg we do not inadvertently in-

troduce infrared singularities. Note that the potential infrared singularities that

arise are only a problem if one considers diagrams on an individual level. By us-
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Green’s Function One loop Two loop Three loop

AA
µA

B
ν 3 18 254

cAc̄B 1 6 78
ψψ̄ 1 6 78

AA
µA

B
ν A

C
σ 8 106 2382

cAc̄BAC
σ 2 33 688

ψAψ̄BAC
σ 2 33 688

Total: 17 202 4168

Table 2.1: Number of Feynman diagrams computed for each 2- and 3-point func-
tion in the arbitrary linear covariant gauge

Green’s Function One loop Two loop Three loop

AA
µA

B
ν 3 19 282

cAc̄B 1 9 124
ψψ̄ 1 6 79

AA
µA

B
ν A

C
σ 8 112 2616

cAc̄BAC
σ 3 49 1097

ψAψ̄BAC
σ 2 33 697

Total: 18 228 4895

Table 2.2: Number of Feynman diagrams computed for each 2- and 3-point func-
tion in the Curci-Ferrari gauge

ing our method of summing all the diagrams these infrared singularities naturally

cancel, and so do not pose as a problem for the QCD Lagrangian. For QCD this

nullification is possible and has allowed for the computation of renormalization

group functions to three loops, for example, [73]. Mincer does not currently

have the capacity to compute 3-point vertices with a non-exceptional momentum

configuration and so cannot be applied directly to a 3-point vertex symmetric

point analysis. The Mincer package can only be applied to at most massless

three loop 2-point functions when considering a non-exceptional setup and works

by implementing a star-triangle relation to recursively reduce topologies of a cer-

tain type into a combination of other more simple topologies. In Mincer this is

done by implementing a separate routine for each topology, therefore optimizing

the programs run time. By reducing the powers of the propagators recursively

the routine stops when it hits the simplest topology, this leaves us with a set

of basic master integrals. Reduze, [68], which was written in GiNaC, [74], in

most ways supersedes Mincer and works by using a C++ implementation of the

Laporta algorithm, [60]. The Laporta algorithm, in contrast to the Mincer pack-

age creates all possible relations between the scalar integrals, thus resulting in a
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Green’s Function One loop Two loop Three loop

AA
µA

B
ν 6 131 6590

cAc̄B 3 81 4006
ψψ̄ 2 27 979

AA
µA

B
ν A

C
σ 23 1291 103548

cAc̄BAC
σ 16 867 66256

ψAψ̄BAC
σ 5 217 13108

Total: 55 2614 194487

Table 2.3: Number of Feynman diagrams computed for each 2- and 3-point func-
tion in the maximal abelian gauge

large degree of redundancy in reducing the graphs. As with Mincer, Reduze

will always give a reduction to a set of basic master integrals. However Reduze

requires more computing time since the algorithm systematically constructs all

integration by parts relations before rewriting the scalar integrals in terms of only

master integrals, as we have seen when implementing the procedure by hand in

the previous section. There is no separate routine for each topology internally

programmed like there is in Mincer. One benefit of using Reduze over Mincer

is that it is not limited. With the Laporta algorithm it is possible to compute

any l-loop and n-point function provided one has a big enough computer and

disk capacity. Reduze constructs a database of all the relations between inte-

grals which is then used to lift out the integrals we require for our computation.

An advantage to computing at the symmetric point becomes apparent (2.2.80)

since the vertex diagrams are symmetric under rotation, resulting in a minimal

set of integrals for a minimal set of topologies.

To clarify, the 2-point functions are evaluated using Mincer whilst all 3-point

vertices are evaluated using Reduze. For the benefit of the reader we present our

systematic approach which is repeated for all calculations set out in this thesis.

Firstly, as discussed above we use Qgraf to generate all diagrams electronically.

We then identify topologies and map the diagrams to the corresponding Mincer

topology as well as including the Lorentz, colour and spinor indices. We do this

so that they are picked up by our next program which rewrites the momentum

flow in a language compatible with Mincer and Reduze. Following this the

Feynman rules for the propagators and vertices are substituted and after this we

multiply by the projection tensors. We rewrite the numerators of the integrals by

stringing the γ-algebra together and evaluate the group algebra. The scalar prod-

ucts are rewritten in terms of propagators including the irreducible propagators
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required for the integral families of Reduze. Once in this form we can apply the

Reduze algorithm to determine the integral reductions. For the 2-point functions

the method runs parallel to this, where one would apply the Mincer algorithm

instead of Reduze. The irreducible numerators are automatically handled within

Mincer. To finish, all master inegrals are substituted, and the remainder of alge-

bra manipulation is done using Form, its threaded version Tform and Reduce.

After applying the Laporta algorithm all that remains is to evaluate the mas-

ter integrals and apply our chosen method of renormalization, which is carried

out last. In the case of our research these master integrals have been previously

determined directly in [62, 63, 64, 65] and summarized in [75]. We map back

to Form notation where Form and its threaded version Tform [71] carry out

any remainding algebraic manipulation. All vertex functions are computed in

terms of bare parameters, following from the technique of [73]. Once all the

graphs/Green’s functions have been computed as functions of bare parameters

and summed, Form is used as a tool to determine the associated counterterms

by rescaling the Green’s functions at the end via the definition of the renormal-

ization constants, i.e. go = Zgg. Once the counterterms have been implemented

the divergence remaining at that particular loop order is absorbed in to the

renormalization constant of the associated Green’s function, [73]. Finally we use

Reduce, [76], alongside Form to manipulate our results into an output we de-

sire. Of course, without such programs computations at high loop order would

be virtually impossible to do, and to such accuracy, by hand. It is appropriate

here to also note that any Feynman diagrams visually presented within this thesis

have been drawn using Jaxodraw, [77, 78].
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Chapter 3

The QCD arbitrary (linear)

covariant gauge

As part of the development process it is important to first check the known re-

sults of a preliminary calculation or simpler model before proceeding on to our

desired calculation. Reproducing these known results serves three purposes: 1) to

ensure our computational method is correct before extending to a more difficult,

yet similar model; 2) to learn and develop the techniques needed to be able to

tackle such problems and 3) to check that current results by other authors, for

example [52, 14] are consistent.

In this chapter we show how the triple-gluon, quark-gluon and ghost-gluon ver-

tices of QCD are computed at the symmetric subtraction point explicitly at two

loops in both the modified minimal subtraction
(

MS
)

scheme and the momen-

tum subtraction (MOM) schemes. Applying the techniques and computational

method disussed in Chapter 2 we determine the conversion functions for the cou-

pling constant, gauge parameter and each wave function, as well as the mappings

between the coupling constants and arbitrary gauge parameters in each scheme.

Using these two loop results along with known three loop MS results, [79], for

the β-function and wave function anomalous dimensions, we are able to construct

the three loop anomalous dimensions for the gluon, quark, ghost and gauge pa-

rameter, in addition to the three loop β-functions in an arbitrary linear covariant

gauge for each MOMi scheme. We note that although results within this chap-

ter have already been published in [14] the renormalization constants are given

here explicitly for the first time. We do note however that these results can be

reconstructed via the details published in [14].
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3.1 Renormalization constants

Although we have described our renormalization procedure in the previous chap-

ter we take this opportunity to describe the technical details of the calculation

in fine detail. So far we have formulated the QCD Lagrangian for an arbitrary

(linear) covariant gauge. We have added our gauge fixing terms and checked that

the full Lagrangian is BRST invariant. We have generated our Feynman dia-

grams using Qgraf and computed the integral reduction using a combination of

Mincer and Reduze to determine the needed master integrals. See Appendix

C for a full list of integrals needed at two loops as well as a discussion on more

general configurations. From this we have then inserted the master integrals and

used Form to renormalize the theory and generate the amplitudes for each chan-

nel. From the amplitudes we have constructed the renormalization constants in

both the MS and MOMi schemes. In all of our calculations we determine the

renormalization constants by following the technique of [73], by first computing

the Green’s functions in terms of bare parameters and then rescaling them at the

end via the definition of the renormalization constants (2.1.55). To determine

each of the renormalization constants to two loops the gluon, ghost and quark

2-point functions are computed first. These determine the one loop contributions

to the renormalization constants ZA, Zc, Zψ and Zα where Zα is the renormaliza-

tion constant for the arbitrary gauge-fixing parameter α. We determine Zg, the

renormalization constant for the MS coupling constant directly from the triple-

gluon vertex. However, as a special feature of the MS scheme the renormalization

constant for the coupling constant can be determined using any one of the ver-

tex functions. This is due to each vertex, once all diagrams have been added

together, being multiplied by a pre-factor. For instance the ghost-gluon vertex

has the pre-factor Z(ccg)
g

√
ZAZc and the quark-gluon vertex Z(qqg)

g

√
ZAZψ. Since

ZA, Zc and Zψ have been fixed at one loop by our wave function renormalization

we can determine Zg using either vertex since

Z(ggg)
g

∣

∣

MS = Z(qqg)
g

∣

∣

MS = Z(ccg)
g

∣

∣

MS (3.1.1)

i.e. a finite solution which implies that the theory is renormalizable. The Slavnov-

Taylor identity is automatically satisfied, [80], as we have already visited in sec-

tion 2.1.2. After determining Zg at one loop from one of the 3-point vertices and

checking that it holds for the other two vertex functions, we can obtain the two

loop renormalization constants by substituting our one loop result for Zg into the

2-point wave function amplitudes. Only once the one loop renormalization con-
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stants are known can they allow for the computation of the subsequent two loop

expressions. Doing so we obtain the two loop contributions to the Z’s, i.e. the

z∗21 and z∗22 terms in (2.1.61). In particular we obtain the two loop piece for ZA

from the gluon 2-point function, Zψ from the quark 2-point function and Zc from

the ghost 2-point function, with the two loop contribution to Zg finally coming

from the vertices. Again, the value of Zg should be consistent across all three

vertices in the MS scheme. This is a property specific to non-physical gauges and

is consistent with our scheme definitions (see section 2.1.5). A table summarizing

from which Green’s functions the respective renormalization constants have been

obtained is included below where (Z∗) have already been, or can be obtained

Green’s Function Ren. constants obtained

ghost 2pt function Zc , Zα

gluon 2pt function ZA (Zα)

quark 2pt function Zψ

ghost-gluon vertex Z(ccg)
g

triple-gluon vertex (Z(ggg)
g )

quark-gluon vertex (Z(qqg)
g )

Table 3.1: Construction of the renormalization constants

via either function. This is useful in MS as a check on the consistency of our

renormalization constants.

Since we have discussed how the renormalization constants were determined we

now present the results below to the order of two loops for arbitrary SU(Nc) for

generality starting with the wave function renormalization constants

ZA(a,α)
∣

∣

∣

MS
= 1 +

[

CA

(

13

6
− α

2

)

− 4

3
TFNf

]

a

ϵ

+

[

1

ϵ2

[

C2
A

(

−17

24
α +

α2

4
− 13

8

)

+ CATFNf

(

2

3
α + 1

)]

+
1

ϵ

[

C2
A

(

−11

16
α− α2

8
+

59

16

)

+ CATFNf

(

−5

2

)

− 2CFTFNf

]]

a2 +O
(

a3
)

Zα(a,α)
∣

∣

∣

MS
= 1 +O

(

a3
)

Zc(a,α)
∣

∣

∣

MS
= 1 +

[

CA

(

3

4
− α

4

)]

a

ϵ
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+

[

1

ϵ2

[

C2
A

(

−35

32
+

3

32
α2

)

+ CATFNf

(

1

2

)]

+
1

ϵ

[

C2
A

(

95

96
+
α

32

)

+ CATFNf

(

− 5

12

)]]

a2 +O
(

a3
)

Zψ(a,α)
∣

∣

∣

MS
= 1− αCFa

ϵ
+

[

1

ϵ2

[

CFCA

(

3

4
α +

α2

4

)

+ C2
F

(

α2

2

)]

+
1

ϵ

[

CFCA

(

−25

8
− α− α2

8

)

+ TFNfCF

+ C2
F

(

3

4

)]]

a2 +O
(

a3
)

(3.1.2)

and finally for the coupling constant renormalization constant

Z(ggg)
g (a,α)

∣

∣

∣

MS
≡ Z(ccg)

g (a,α)
∣

∣

∣

MS
≡ Z(qqg)

g (a,α)
∣

∣

∣

MS

= 1 +

[

CA

(

−11

6

)

+
2

3
TFNf

]

a

ϵ

+

[

1

ϵ2

[

C2
A

(

121

24

)

+ T 2
FN

2
f

(

2

3

)

+ TFNfCA

(

−11

3

)]

+
1

ϵ

[

C2
A

(

−17

6

)

+ TFNfCF + TFNfCA

(

5

3

)]]

a2

+ O
(

a3
)

. (3.1.3)

Note that we have chosen not to label the variables a and α here to save on

space when presenting results. When variables are not labelled it is understood

that they correspond to the scheme defined on the function on the left hand side

of the equals sign. For example ZA(a,α)
∣

∣

MS implies a = aMS and α = αMS,

where aMS is the coupling constant specific to the MS scheme. Since the coupling

constant gets renormalized it becomes scheme dependent, as with the gauge pa-

rameter. Again in the MS scheme, Zg is independent of the vertex and so can be

determined using either the ghost-gluon, quark-gluon or triple-gluon vertex. For

the momentum subtraction schemes this is not the case. For the MOMi schemes,

where MOMi indicates one of the three MOM schemes as defined in section 2.1.5,

the renormalization is done in a similar way. However, recall that our renormal-

ization constants must now include both the O
(

1
ϵ

)

and finite O(1) pieces. Based

on this condition alone we can see that this will cause problems when constructing

the renormalization constants for the vertices, namely the two loop contributions

to the Z’s and the renormalization of the coupling constant, g. Unlike in the MS

scheme where Zg was the same for each vertex, the renormalization constants

now depend upon the vertex at which they are constructed. This means there
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will be three different renormalization constants for the coupling constant which

we label ZMOMg
g

∣

∣

∣

MS
, ZMOMq

g

∣

∣

∣

MS
and ZMOMh

g

∣

∣

∣

MS
, the labels corresponding to

the scheme defined via the triple-gluon, quark-gluon and ghost-gluon vertices re-

spectively. We begin with the scheme corresponding to the ghost-gluon vertex.

For the MOMh scheme the renormalization constants are

Z(ccg)
g

∣

∣

MOMh = 1 +
[

3ψ′
(

1
3

)

α2CA + 24ψ′
(

1
3

)

αCA − 15ψ′
(

1
3

)

CA − 2α2CAπ
2

−27α2CA − 16αCAπ
2 − 162αCA + 10CAπ

2 − 615CA

+240NfTF + 36(−11CA + 4NfTF )
1

ϵ

]

a

216

+

[

(121C2
A − 88CANfTF + 16N2

f T
2
F )

1

24ϵ2

+
(

36
√
3ψ′
(

1
3

)2
α4C2

A + 576
√
3ψ′
(

1
3

)2
α3C2

A
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√
3ψ′
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1
3

)2
α2C2
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√
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(

1
3
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A
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√
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C2
A − 48

√
3ψ′
(

1
3

)

α4C2
Aπ

2
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√
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3

)
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√
3ψ′
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1
3

)
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2
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√
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1
3

)
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√
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1
3

)
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Aπ

2
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3ψ′
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3
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1
3

)

α2CANfTF
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3
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2
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π
6
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A
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6

)
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√
3s2
(

π
6

)

C2
A
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√
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(

π
6

)
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√
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(

π
2

)

α3C2
A

+248832
√
3s2
(

π
2

)

α2C2
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√
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(

π
2

)

αC2
A
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√
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C2
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√
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(
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CANfTF
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√
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π
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√
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]

a2 + O(a3) .

(3.1.4)

Recall that we are using the same scale µ for the coupling constant as the kine-

matic scale, see (2.1.63). Numerically for the wave function and gauge parameter

renormalization we have

Z(ccg)
A

∣

∣

∣

MOMh
= 1 +

[

(−1.5α− 0.666667Nf + 6.5)
1

ϵ

+0.75α2 + 1.5α− 1.111111Nf + 8.083333
]

a
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+

[

(2.25α2 + αNf − 6.375α + 1.5Nf − 14.625)
1

ϵ2

+(−1.564483α3 − 0.195326α2Nf − 0.486436α2

+2.104062αNf − 6.879690α + 1.893295Nf

−34.834623)
1

ϵ
+ 0.782241303913α4 + 3.884913α3

−0.325543α2Nf + 1.972977α2 + 0.728992αNf − 1.707555α

−24.322251Nf + 106.171599
]

a2 + O(a3)

Z(ccg)
α

∣

∣

MOMh = 1 +O(a3)

Z(ccg)
c

∣

∣

MOMh = 1 +

[

(−0.75α + 2.25)
1

ϵ
+ 3.0

]

a

+

[

(0.84375α2 + 0.75Nf − 9.84375)
1

ϵ2
+ (−0.219741α3

−0.536207α2 + 1.028748α + 1.875Nf − 26.077370)
1

ϵ

−0.024506α2 − 3.395711α− 2.604167Nf + 25.290944
]

a2

+ O(a3)

Z(ccg)
ψ

∣

∣

∣

MOMh
= 1− 1.333333α

(

1 +
1

ϵ

)

a

+

[

α(1.888889α + 3.0)
1

ϵ2
+ (−0.390651α3 + 2.152568α2

+9.953256α + 0.666667Nf − 11.166667)
1

ϵ
− 0.390651α3

−1.847432α2 + 2.377939α + 2.333333Nf − 25.464206
]

a2

+ O(a3) . (3.1.5)

Notice how the two loop contribution to the wave function renormalization con-

stants are now dependent on a particular MOMi scheme compared to the MS

scheme where the Z’s were independent of the 3-point Green’s functions used to

determine them. At one loop, Za, Zα, Zc, Zψ remain scheme independent. It is

only by increasing the loop order that this scheme dependence becomes apparent.

Above, a and α depend on the MOMh scheme, and we have suppressed the argu-

ment (aMOMh,αMOMh) on the renormalization constants. The renormalization

constants for each of the MOMg and MOMq schemes were constructed using the

same techniques and are presented below for completeness. Starting with the

MOMg scheme

Z(ggg)
g

∣

∣

MOMg = 1 +
[

−36ψ′
(

1
3

)

α2CA + 162ψ′
(

1
3

)

αCA − 138ψ′
(

1
3

)

CA
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+384ψ′
(

1
3

)

NfTF − 27α3CA + 24α2CAπ
2 + 162α2CA

−108αCAπ
2 − 243αCA + 92CAπ

2 − 2376CA − 256Nfπ
2TF

+864NfTF + 108 (−11CA + 4NfTF )
1

ϵ

]

a

648

+(121C2
A − 88CANfTF + 16N2

f T
2
F )

a2

24ϵ2

+
[

2592
√
3ψ′
(

1
3

)2
α4C2

A − 23328
√
3ψ′
(

1
3

)2
α3C2

A

+72360
√
3ψ′
(

1
3

)2
α2C2

A − 55296
√
3ψ′
(

1
3

)2
α2CANfTF

−89424
√
3ψ′
(

1
3

)2
αC2

A + 248832
√
3ψ′
(

1
3

)2
αCANfTF

+38088
√
3ψ′
(

1
3

)2
C2
A − 211968

√
3ψ′
(

1
3

)2
CANfTF

+294912
√
3ψ′
(

1
3

)2
N2
f T

2
F + 3888

√
3ψ′
(

1
3

)

α5C2
A

−3456
√
3ψ′
(

1
3

)

α4C2
Aπ

2 − 46656
√
3ψ′
(

1
3

)

α4C2
A

+31104
√
3ψ′
(

1
3

)

α3C2
Aπ

2 + 74196
√
3ψ′
(

1
3

)

α3C2
A

−41472
√
3ψ′
(

1
3

)

α3CANfTF − 96480
√
3ψ′
(

1
3

)

α2C2
Aπ

2

−119880
√
3ψ′
(

1
3

)

α2C2
A + 73728

√
3ψ′
(

1
3

)

α2CANfπ
2TF

+134784
√
3ψ′
(

1
3

)

α2CANfTF + 119232
√
3ψ′
(

1
3

)

αC2
Aπ

2

−1107756
√
3ψ′
(

1
3

)

αC2
A − 331776

√
3ψ′
(

1
3

)

αCANfπ
2TF

−119232
√
3ψ′
(

1
3

)

αCANfTF − 50784
√
3ψ′
(

1
3

)

C2
Aπ

2

+3843072
√
3ψ′
(

1
3

)

C2
A + 282624

√
3ψ′
(

1
3

)

CANfπ
2TF

−3827520
√
3ψ′
(

1
3

)

CANfTF + 497664
√
3ψ′
(

1
3

)

CFNfTF

−393216
√
3ψ′
(

1
3

)

N2
f π

2T 2
F + 774144

√
3ψ′
(

1
3

)

N2
f T

2
F

+81
√
3ψ′′′

(

1
3

)

α3C2
A + 1134

√
3ψ′′′

(

1
3

)

α2C2
A

−11664
√
3ψ′′′

(

1
3

)

αC2
A + 34587

√
3ψ′′′

(

1
3

)

C2
A

−20736
√
3ψ′′′

(

1
3

)

CANfTF − 139968
√
3s2
(

π
6

)

α3C2
A

−69984
√
3s2
(

π
6

)

α2C2
A − 4408992

√
3s2
(

π
6

)

αC2
A

+24214464
√
3s2
(

π
6

)

C2
A − 11197440

√
3s2
(

π
6

)

CANfTF

+279936
√
3s2
(

π
2

)

α3C2
A + 139968

√
3s2
(

π
2

)

α2C2
A

+8817984
√
3s2
(

π
2

)

αC2
A − 48428928

√
3s2
(

π
2

)

C2
A

+22394880
√
3s2
(

π
2

)

CANfTF + 233280
√
3s3
(

π
6

)

α3C2
A

+116640
√
3s3
(

π
6

)

α2C2
A + 7348320

√
3s3
(

π
6

)

αC2
A

−40357440
√
3s3
(

π
6

)

C2
A + 18662400

√
3s3
(

π
6

)

CANfTF

−186624
√
3s3
(

π
2

)

α3C2
A − 93312

√
3s3
(

π
2

)

α2C2
A

−5878656
√
3s3
(

π
2

)

αC2
A + 32285952

√
3s3
(

π
2

)

C2
A
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−14929920
√
3s3
(

π
2

)

CANfTF + 1458
√
3α6C2

A

−2592
√
3α5C2

Aπ
2 − 21870

√
3α5C2

A + 1152
√
3α4C2

Aπ
4

+31104
√
3α4C2

Aπ
2 + 67797

√
3α4C2

A − 10584
√
3α3C2

Aπ
4

−49464
√
3α3C2

Aπ
2 − 11664

√
3α3C2

Aζ3 + 170100
√
3α3C2

A

+27648
√
3α3CANfπ

2TF − 54432
√
3α3CANfTF

+29136
√
3α2C2

Aπ
4 + 79920

√
3α2C2

Aπ
2 + 2916

√
3α2C2

Aζ3

−971028
√
3α2C2

A − 24576
√
3α2CANfπ

4TF

−89856
√
3α2CANfπ

2TF + 349920
√
3α2CANfTF

−8640
√
3αC2

Aπ
4 + 738504

√
3αC2

Aπ
2 + 664848

√
3αC2

Aζ3

+1027890
√
3αC2

A + 110592
√
3αCANfπ

4TF

+79488
√
3αCANfπ

2TF − 349920
√
3αCANfTF

−75304
√
3C2

Aπ
4 − 2562048

√
3C2

Aπ
2 − 2767284

√
3C2

Aζ3

−203067
√
3C2

A − 38912
√
3CANfπ

4TF

+2551680
√
3CANfπ

2TF + 2985984
√
3CANfTF ζ3

−681696
√
3CANfTF − 331776

√
3CFNfπ

2TF

−2239488
√
3CFNfTF ζ3 + 2379456

√
3CFNfTF

+131072
√
3N2

f π
4T 2

F − 516096
√
3N2

f π
2T 2

F

+767232
√
3N2

f T
2
F − 972 ln(3)2α3C2

Aπ − 486 ln(3)2α2C2
Aπ

−30618 ln(3)2αC2
Aπ + 168156 ln(3)2C2

Aπ

−77760 ln(3)2CANfπTF + 11664 ln(3)α3C2
Aπ

+5832 ln(3)α2C2
Aπ + 367416 ln(3)αC2

Aπ

−2017872 ln(3)C2
Aπ + 933120 ln(3)CANfπTF

+1044α3C2
Aπ

3 + 522α2C2
Aπ

3 + 32886αC2
Aπ

3

−180612C2
Aπ

3 + 83520CANfπ
3TF

+216
√
3
(

396ψ′
(

1
3

)

α2C2
A − 144ψ′

(

1
3

)

α2CANfTF

−1782ψ′
(

1
3

)

αC2
A + 648ψ′

(

1
3

)

αCANfTF + 1518ψ′
(

1
3

)

C2
A

−4776ψ′
(

1
3

)

CANfTF + 1536ψ′
(

1
3

)

N2
f T

2
F + 297α3C2

A

−108α3CANfTF − 264α2C2
Aπ

2 − 1782α2C2
A

+96α2CANfπ
2TF + 648α2CANfTF + 1188αC2

Aπ
2

+2673αC2
A − 432αCANfπ

2TF − 972αCANfTF − 1012C2
Aπ

2

+22464C2
A + 3184CANfπ

2TF − 16848CANfTF

+1296CFNfTF − 1024N2
f π

2T 2
F
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+3456N2
f T

2
F

) 1

ϵ

]

a2

279936
√
3

+ O(a3) . (3.1.6)

Numerically the renormalization constants for the wave functions and gauge pa-

rameter are given as

Z(ggg)
A

∣

∣

∣

MOMg
= 1 +

[

0.75α2 + 1.5α− 1.111111Nf + 8.083333

+(−1.5α− 0.666667Nf + 6.5)
1

ϵ

]

a

+

[

(

2.25α2 + αNf − 6.375000α + 1.5Nf − 14.625000
) 1

ϵ2

−0.187500α5 + 0.996035α4 + 0.277778α3Nf + 6.926580α3

+0.531442α2Nf + 10.130529α2 − 1.567892αNf

+28.246854α− 2.561884N2
f + 3.142356Nf + 41.955873

+
(

0.375000α4 + 0.166667α3Nf − 4.367070α3

−0.718698α2Nf − 3.153385α2 − 4.807737αNf

+38.705877α− 1.537130N2
f + 22.176457Nf

−86.472011)
1

ϵ

]

a2 + O(a3)

Z(ggg)
α

∣

∣

MOMg = 1 + O(a3)

Z(ggg)
c

∣

∣

MOMg = 1 +

[

3.0 + (−0.75α + 2.25)
1

ϵ

]

a

+

[

(

0.843750α2 + 0.75Nf − 9.843750
) 1

ϵ2
− 0.75α3

+2.330668α2 + 12.143941α + 4.312919Nf + 1.458303

+
(

0.187500α4 − 1.371035α3 − 2.654739α2

−1.729271αNf + 18.641647α + 7.062814Nf

−43.951850)
1

ϵ

]

a2 + O(a3)

Z(ggg)
ψ

∣

∣

∣

MOMg
= 1 +

[

−1.333333α− 1.333333
α

ϵ

]

a

+

[

α (1.888889α + 3.0)
1

ϵ2
+ 0.333333α4 − 1.437395α3

−8.753944α2 − 3.074260αNf + 12.970224α + 2.333333Nf

−25.464206 +
(

0.333333α4 − 1.437395α3 − 4.753944α2

−3.074260αNf + 20.545541α + 0.666667Nf

−11.166667)
1

ϵ

]

a2 + O(a3) . (3.1.7)
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Finally for the momentum subtraction scheme corresponding to the quark-gluon

vertex we have

Z(qqg)
g

∣

∣

MOMq = 1 +
[

−6ψ′
(

1
3

)

α2CA + 24ψ′
(

1
3

)

αCA + 96ψ′
(

1
3

)

αCF

+78ψ′
(

1
3

)

CA − 48ψ′
(

1
3

)

CF + 4α2CAπ
2 + 27α2CA

−16αCAπ
2 − 54αCA − 64αCFπ

2 − 216αCF − 52CAπ
2

−993CA + 32CFπ
2 + 432CF + 240NfTF

+36(−11CA + 4NfTF )
1

ϵ

]

a

216

+

[

(121C2
A − 88CANfTF + 16N2

f T
2
F )

1

24ϵ

+
(

72
√
3ψ′
(

1
3

)2
α4C2

A − 576
√
3ψ′
(

1
3

)2
α3C2

A

−2304
√
3ψ′
(

1
3

)2
α3CACF

−720
√
3ψ′
(

1
3

)2
α2C2

A + 10368
√
3ψ′
(

1
3

)2
α2CACF

+18432
√
3ψ′
(

1
3

)2
α2C2

F + 7488
√
3ψ′
(

1
3

)2
αC2

A

+25344
√
3ψ′
(

1
3

)2
αCACF − 18432

√
3ψ′
(

1
3

)2
αC2

F

+19080
√
3ψ′
(

1
3

)2
C2
A − 35712

√
3ψ′
(

1
3

)2
CACF

+18432
√
3ψ′
(

1
3

)2
C2
F − 96

√
3ψ′
(

1
3

)

α4C2
Aπ

2

−972
√
3ψ′
(

1
3

)

α4C2
A + 768

√
3ψ′
(

1
3

)

α3C2
Aπ

2

+2160
√
3ψ′
(

1
3

)

α3C2
A + 3072

√
3ψ′
(

1
3

)

α3CACFπ
2

+17280
√
3ψ′
(

1
3

)

α3CACF + 960
√
3ψ′
(

1
3

)

α2C2
Aπ

2

+26820
√
3ψ′
(

1
3

)

α2C2
A − 13824

√
3ψ′
(

1
3

)

α2CACFπ
2

−55296
√
3ψ′
(

1
3

)

α2CACF − 2880
√
3ψ′
(

1
3

)

α2CANfTF

−24576
√
3ψ′
(

1
3

)

α2C2
Fπ

2 − 82944
√
3ψ′
(

1
3

)

α2C2
F

−9984
√
3ψ′
(

1
3

)

αC2
Aπ

2 − 65232
√
3ψ′
(

1
3

)

αC2
A

−33792
√
3ψ′
(

1
3

)

αCACFπ
2 − 379872

√
3ψ′
(

1
3

)

αCACF

+17280
√
3ψ′
(

1
3

)

αCANfTF + 24576
√
3ψ′
(

1
3

)

αC2
Fπ

2

+324864
√
3ψ′
(

1
3

)

αC2
F + 46080

√
3ψ′
(

1
3

)

αCFNfTF

−25440
√
3ψ′
(

1
3

)

C2
Aπ

2 − 127512
√
3ψ′
(

1
3

)

C2
A

+47616
√
3ψ′
(

1
3

)

CACFπ
2 + 496224

√
3ψ′
(

1
3

)

CACF

−44352
√
3ψ′
(

1
3

)

CANfTF − 24576
√
3ψ′
(

1
3

)

C2
Fπ

2

−293760
√
3ψ′
(

1
3

)

C2
F − 9216

√
3ψ′
(

1
3

)

CFNfTF

+108
√
3ψ′′′

(

1
3

)

α2C2
A − 144

√
3ψ′′′

(

1
3

)

α2CACF
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−198
√
3ψ′′′

(

1
3

)

αC2
A − 720

√
3ψ′′′

(

1
3

)

αCACF

−1152
√
3ψ′′′

(

1
3

)

αC2
F − 414

√
3ψ′′′

(

1
3

)

C2
A

−864
√
3ψ′′′

(

1
3

)

CACF + 576
√
3ψ′′′

(

1
3

)

CANfTF

+4608
√
3ψ′′′

(

1
3

)

C2
F + 69984

√
3s2
(

π
6

)

α2C2
A

−124416
√
3s2
(

π
6

)

α2CACF + 108864
√
3s2
(

π
6

)

αC2
A

−995328
√
3s2
(

π
6

)

αCACF + 497664
√
3s2
(

π
6

)

αC2
F

−443232
√
3s2
(

π
6

)

C2
A + 1306368

√
3s2
(

π
6

)

CACF

−124416
√
3s2
(

π
6

)

CANfTF + 248832
√
3s2
(

π
6

)

C2
F

−139968
√
3s2
(

π
2

)

α2C2
A + 248832

√
3s2
(

π
2

)

α2CACF

−217728
√
3s2
(

π
2

)

αC2
A + 1990656

√
3s2
(

π
2

)

αCACF

−995328
√
3s2
(

π
2

)

αC2
F + 886464

√
3s2
(

π
2

)

C2
A

−2612736
√
3s2
(

π
2

)

CACF + 248832
√
3s2
(

π
2

)

CANfTF

−497664
√
3s2
(

π
2

)

C2
F − 116640

√
3s3
(

π
6

)

α2C2
A

+207360
√
3s3
(

π
6

)

α2CACF − 181440
√
3s3
(

π
6

)

αC2
A

+1658880
√
3s3
(

π
6

)

αCACF − 829440
√
3s3
(

π
6

)

αC2
F

+738720
√
3s3
(

π
6

)

C2
A − 2177280

√
3s3
(

π
6

)

CACF

+207360
√
3s3
(

π
6

)

CANfTF − 414720
√
3s3
(

π
6

)

C2
F

+93312
√
3s3
(

π
2

)

α2C2
A − 165888

√
3s3
(

π
2

)

α2CACF

+145152
√
3s3
(

π
2

)

αC2
A − 1327104

√
3s3
(

π
2

)

αCACF

+663552
√
3s3
(

π
2

)

αC2
F − 590976

√
3s3
(

π
2

)

C2
A

+1741824
√
3s3
(

π
2

)

CACF − 165888
√
3s3
(

π
2

)

CANfTF

+331776
√
3s3
(

π
2

)

C2
F + 32

√
3α4C2

Aπ
4 + 648

√
3α4C2

Aπ
2

+2673
√
3α4C2

A − 256
√
3α3C2

Aπ
4 − 1440

√
3α3C2

Aπ
2

−1024
√
3α3CACFπ

4 − 11520
√
3α3CACFπ

2

−27216
√
3α3CACF − 608

√
3α2C2

Aπ
4 − 17880

√
3α2C2

Aπ
2

−4860
√
3α2C2

Aζ3 − 73710
√
3α2C2

A + 4992
√
3α2CACFπ

4

+36864
√
3α2CACFπ

2 + 20736
√
3α2CACF ζ3

+38880
√
3α2CACF + 1920

√
3α2CANfπ

2TF

+12960
√
3α2CANfTF + 8192

√
3α2C2

Fπ
4

+55296
√
3α2C2

Fπ
2 + 93312

√
3α2C2

F + 3856
√
3αC2

Aπ
4

+43488
√
3αC2

Aπ
2 + 20736

√
3αC2

Aζ3 + 136728
√
3αC2

A

+13184
√
3αCACFπ

4 + 253248
√
3αCACFπ

2
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+10368
√
3αCACF ζ3 + 444528

√
3αCACF

−11520
√
3αCANfπ

2TF − 25920
√
3αCANfTF

−5120
√
3αC2

Fπ
4 − 216576

√
3αC2

Fπ
2 + 41472

√
3αC2

F ζ3

−311040
√
3αC2

F − 30720
√
3αCFNfπ

2TF

−103680
√
3αCFNfTF + 9584

√
3C2

Aπ
4 + 85008

√
3C2

Aπ
2

+109836
√
3C2

Aζ3 + 115029
√
3C2

A − 13568
√
3CACFπ

4

−330816
√
3CACFπ

2 − 31104
√
3CACF ζ3

−694656
√
3CACF − 1536

√
3CANfπ

4TF

+29568
√
3CANfπ

2TF + 145152
√
3CANfTF ζ3

−79200
√
3CANfTF − 4096

√
3C2

Fπ
4 + 195840

√
3C2

Fπ
2

−290304
√
3C2

F ζ3 + 264384
√
3C2

F + 6144
√
3CFNfπ

2TF

−248832
√
3CFNfTF ζ3 + 430272

√
3CFNfTF

+57600
√
3N2

f T
2
F + 486 ln(3)2α2C2

Aπ

−864 ln(3)2α2CACFπ + 756 ln(3)2αC2
Aπ

−6912 ln(3)2αCACFπ + 3456 ln(3)2αC2
Fπ

−3078 ln(3)2C2
Aπ + 9072 ln(3)2CACFπ

−864 ln(3)2CANfπTF + 1728 ln(3)2C2
Fπ

−5832 ln(3)α2C2
Aπ + 10368 ln(3)α2CACFπ

−9072 ln(3)αC2
Aπ + 82944 ln(3)αCACFπ

−41472 ln(3)αC2
Fπ + 36936 ln(3)C2

Aπ

−108864 ln(3)CACFπ + 10368 ln(3)CANfπTF

−20736 ln(3)C2
Fπ − 522α2C2

Aπ
3 + 928α2CACFπ

3

−812αC2
Aπ

3 + 7424αCACFπ
3 − 3712αC2

Fπ
3

+3306C2
Aπ

3 − 9744CACFπ
3 + 928CANfπ

3TF − 1856C2
Fπ

3

+72
√
3
(

66ψ′
(

1
3

)

α2C2
A − 24ψ′

(

1
3

)

α2CANfTF

−264ψ′
(

1
3

)

αC2
A − 1056ψ′

(

1
3

)

αCACF

+96ψ′
(

1
3

)

αCANfTF + 384ψ′
(

1
3

)

αCFNfTF

−858ψ′
(

1
3

)

C2
A + 528ψ′

(

1
3

)

CACF + 312ψ′
(

1
3

)

CANfTF

−192ψ′
(

1
3

)

CFNfTF − 44α2C2
Aπ

2 − 297α2C2
A

+16α2CANfπ
2TF + 108α2CANfTF + 176αC2

Aπ
2

+594αC2
A + 704αCACFπ

2 + 2376αCACF

−64αCANfπ
2TF − 216αCANfTF − 256αCFNfπ

2TF
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−864αCFNfTF + 572C2
Aπ

2 + 9699C2
A − 352CACFπ

2

−4752CACF − 208CANfπ
2TF − 5892CANfTF

+128CFNfπ
2TF + 2160CFNfTF

+960N2
f T

2
F

) 1

ϵ

)

1

31104
√
3

]

a2 + O(a3) (3.1.8)

for the coupling constant renormalization constant, with

Z(qqg)
A

∣

∣

∣

MOMq
= 1 +

[

(−1.5α− 0.666667Nf + 6.5)
1

ϵ

+0.75α2 + 1.5α− 1.111111Nf + 8.083333
]

a

+

[

(2.25α2 + αNf − 6.375α + 1.5Nf − 14.625)
1

ϵ2

+(−2.496035α3 − 0.609349α2Nf − 3.200129α2

−0.896125αNf + 19.623376α + 0.671627Nf

−22.923368)
1

ϵ
+1.248017α4 + 8.191675α3 − 1.015581α2Nf

+15.117803α2 − 4.271319αNf + 37.418456α

−26.358363Nf + 120.984314
]

a2 + O(a3)

Z(qqg)
α

∣

∣

MOMq = 1 +O(a3)

Z(qqg)
c

∣

∣

MOMq = 1 +

[

(−0.75α + 2.25)
1

ϵ
+ 3.0

]

a

+

[

(0.84375α2 + 0.75Nf − 9.84375)
1

ϵ2
+ (−0.685518α3

−2.514088α2 + 9.780001α + 1.875Nf − 21.954243)
1

ϵ

+1.838599α2 + 10.105127α− 2.604167Nf + 30.788446
]

a2

+ O(a3)

Z(qqg)
ψ

∣

∣

∣

MOMq
= 1− 1.333333α

(

1 +
1

ϵ

)

a

+

[

α(1.888889α + 3.0)
1

ϵ2
+ (−1.218698α3 − 3.847805α2

+7.509922α + 0.666667Nf − 11.166667)
1

ϵ
− 1.218698α3

−7.847805α2 − 0.065396α + 2.333333Nf − 25.464206
]

a2

+ O(a3) (3.1.9)

numerically. Again we make the important remark that the above three vertex
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functions were all calculated at the symmetric subtraction point. The renor-

malization constants, by definition, already satisfy the Slavnov-Taylor identities.

Therefore it is not necessary to check these again since by construction they are

automatically satisfied.

3.2 Results for the vertex functions

Once the renormalization constants are fixed up to our desired loop order (in

the case of the linear covariant gauge fixing this is up to and including two

loops), we can construct the amplitudes. We recall that the amplitudes are

the complete set of terms resulting from the sum of all contributing Feynman

diagrams for each wave function or vertex function. In this section we record

our results for the amplitudes, separately for each channel in both the MS and

MOMi schemes. To reiterate all results computed in this gauge have been done

so independently as a comparison and a check on our computer code prior to

considering other more technical gauges. The results have been published in

[14] and are presented numerically for all three vertices in both schemes. For

this reason, and for comparison later on in Chapters 4 and 5, we present the

amplitudes analytically for only one vertex in both schemes with all other results

presented numerically.

3.2.1 The ghost-gluon vertex

We begin by recording the MS amplitudes and relations analytically at two loops

for the ghost-gluon vertex. Despite the ghost-gluon vertex having the same num-

ber of diagrams as the quark-gluon vertex, the ghost-gluon vertex is chosen to be

the vertex we represent results analytically in for two reasons. Firstly this vertex

is the simplest of the two, with only two channels to consider, i.e. Σccg
(1) (p, q) and

Σccg
(2) (p, q). Secondly the ghost-gluon vertex provides the smallest set of analytic

results for all three vertices since the ghosts are scalars, whereas the quarks are

fermions which involve extra spinor indices and γ-matrices by construction. It is

also the case that in the Curci-Ferrari gauge it is this vertex which is different

from the arbitrary (linear) covariant gauge, as briefly mentioned in our introduc-

tion. For the MS scheme the two independent amplitudes for the ghost-gluon
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vertex are

Σccg
(1) (p, q)

∣

∣

∣

MS
= 1 +

(

288
√
3CA

[

3ψ′
(

1
3

)

α2 + 24ψ′
(

1
3

)

α− 15ψ′
(

1
3

)

− 2α2π2

−16απ2 − 108α + 10π2 − 108
]

a

+CA

[

−216
√
3ψ′
(

1
3

)

α4CA + 2592
√
3ψ′
(

1
3

)

α3CA

−9240
√
3ψ′
(

1
3

)

α2CA + 1920
√
3ψ′
(

1
3

)

α2NfTF

+19368
√
3ψ′
(

1
3

)

αCA + 2304
√
3ψ′
(

1
3

)

αNfTF

+175416
√
3ψ′
(

1
3

)

CA − 78528
√
3ψ′
(

1
3

)

NfTF

+9
√
3ψ′′′

(

1
3

)

α3CA − 171
√
3ψ′′′

(

1
3

)

α2CA

+279
√
3ψ′′′

(

1
3

)

αCA + 999
√
3ψ′′′

(

1
3

)

CA

+19440
√
3s2
(

π
6

)

α3CA − 124416
√
3s2
(

π
6

)

α2CA

+136080
√
3s2
(

π
6

)

αCA + 1275264
√
3s2
(

π
6

)

CA

−497664
√
3s2
(

π
6

)

NfTF − 38880
√
3s2
(

π
2

)

α3CA

+248832
√
3s2
(

π
2

)

α2CA − 272160
√
3s2
(

π
2

)

αCA

−2550528
√
3s2
(

π
2

)

CA + 995328
√
3s2
(

π
2

)

NfTF

−32400
√
3s3
(

π
6

)

α3CA + 207360
√
3s3
(

π
6

)

α2CA

−226800
√
3s3
(

π
6

)

αCA − 2125440
√
3s3
(

π
6

)

CA

+829440
√
3s3
(

π
6

)

NfTF + 25920
√
3s3
(

π
2

)

α3CA

−165888
√
3s3
(

π
2

)

α2CA + 181440
√
3s3
(

π
2

)

αCA

+1700352
√
3s3
(

π
2

)

CA − 663552
√
3s3
(

π
2

)

NfTF

+144
√
3α4CAπ

2 − 24
√
3α3CAπ

4 − 1728
√
3α3CAπ

2

−324
√
3α3CAζ3 + 456

√
3α2CAπ

4 + 6160
√
3α2CAπ

2

−648
√
3α2CAζ3 − 16848

√
3α2CA

−1280
√
3α2Nfπ

2TF − 744
√
3αCAπ

4

−12912
√
3αCAπ

2 + 40500
√
3αCAζ3

−215784
√
3αCA − 1536

√
3αNfπ

2TF

+10368
√
3αNfTF − 2664

√
3CAπ

4

−116944
√
3CAπ

2 − 202824
√
3CAζ3

−194616
√
3CA + 52352

√
3Nfπ

2TF

+82944
√
3NfTF ζ3 + 53568

√
3NfTF

+135 ln(3)2α3CAπ − 864 ln(3)2α2CAπ

+945 ln(3)2αCAπ + 8856 ln(3)2CAπ
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−3456 ln(3)2NfπTF − 1620 ln(3)α3CAπ

+10368 ln(3)α2CAπ − 11340 ln(3)αCAπ

−106272 ln(3)CAπ + 41472 ln(3)NfπTF

−145α3CAπ
3 + 928α2CAπ

3 − 1015αCAπ
3

−9512CAπ
3 + 3712Nfπ

3TF
]

a2
) 1

62208
√
3

+ O(a3)

Σccg
(2) (p, q)

∣

∣

∣

MS
=

(

288
√
3CA

[

−3ψ′
(

1
3

)

α2 + 12ψ′
(

1
3

)

α + 15ψ′
(

1
3

)

+ 2α2π2

−8απ2 − 54α− 10π2 + 54
]

a

+CA

[

216
√
3ψ′
(

1
3

)

α4CA − 2592
√
3ψ′
(

1
3

)

α3CA

+19608
√
3ψ′
(

1
3

)

α2CA − 1920
√
3ψ′
(

1
3

)

α2NfTF

+25992
√
3ψ′
(

1
3

)

αCA − 2304
√
3ψ′
(

1
3

)

αNfTF

−91176
√
3ψ′
(

1
3

)

CA + 78528
√
3ψ′
(

1
3

)

NfTF

−9
√
3ψ′′′

(

1
3

)

α3CA − 45
√
3ψ′′′

(

1
3

)

α2CA

−171
√
3ψ′′′

(

1
3

)

αCA − 999
√
3ψ′′′

(

1
3

)

CA

−19440
√
3s2
(

π
6

)

α3CA + 54432
√
3s2
(

π
6

)

α2CA

+3888
√
3s2
(

π
6

)

αCA − 878688
√
3s2
(

π
6

)

CA

+497664
√
3s2
(

π
6

)

NfTF + 38880
√
3s2
(

π
2

)

α3CA

−108864
√
3s2
(

π
2

)

α2CA − 7776
√
3s2
(

π
2

)

αCA

+1757376
√
3s2
(

π
2

)

CA − 995328
√
3s2
(

π
2

)

NfTF

+32400
√
3s3
(

π
6

)

α3CA − 90720
√
3s3
(

π
6

)

α2CA

−6480
√
3s3
(

π
6

)

αCA + 1464480
√
3s3
(

π
6

)

CA

−829440
√
3s3
(

π
6

)

NfTF − 25920
√
3s3
(

π
2

)

α3CA

+72576
√
3s3
(

π
2

)

α2CA + 5184
√
3s3
(

π
2

)

αCA

−1171584
√
3s3
(

π
2

)

CA + 663552
√
3s3
(

π
2

)

NfTF

−144
√
3α4CAπ

2 + 24
√
3α3CAπ

4 + 1728
√
3α3CAπ

2

+324
√
3α3CAζ3 + 120

√
3α2CAπ

4 − 13072
√
3α2CAπ

2

+648
√
3α2CAζ3 − 29808

√
3α2CA + 1280

√
3α2Nfπ

2TF

+456
√
3αCAπ

4 − 17328
√
3αCAπ

2 − 17172
√
3αCAζ3

−13608
√
3αCA + 1536

√
3αNfπ

2TF − 10368
√
3αNfTF

+2664
√
3CAπ

4 + 60784
√
3CAπ

2 + 148392
√
3CAζ3

+98280
√
3CA − 52352

√
3Nfπ

2TF − 82944
√
3NfTF ζ3

−19008
√
3NfTF − 135 ln(3)2α3CAπ + 378 ln(3)2α2CAπ
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+27 ln(3)2αCAπ − 6102 ln(3)2CAπ + 3456 ln(3)2NfπTF

+1620 ln(3)α3CAπ − 4536 ln(3)α2CAπ − 324 ln(3)αCAπ

+73224 ln(3)CAπ − 41472 ln(3)NfπTF + 145α3CAπ
3

−406α2CAπ
3 − 29αCAπ

3 + 6554CAπ
3

−3712Nfπ
3TF
]

a2
) 1

62208
√
3

+ O(a3) . (3.2.10)

The same amplitudes considered in the MOMh scheme are

Σccg
(1) (p, q)

∣

∣

∣

MOMh
= − 1 + O(a3)

Σccg
(2) (p, q)

∣

∣

∣

MOMh
=

(

288
√
3CA

[

−3ψ′
(

1
3

)

α2 + 12ψ′
(

1
3

)

α + 15ψ′
(

1
3

)

+ 2α2π2

−8απ2 − 54α− 10π2 + 54
]

a

+CA

[

−36
√
3ψ′
(

1
3

)2
α4CA − 144

√
3ψ′
(

1
3

)2
α3CA

+1512
√
3ψ′
(

1
3

)2
α2CA + 720

√
3ψ′
(

1
3

)2
αCA

−900
√
3ψ′
(

1
3

)2
CA + 48

√
3ψ′
(

1
3

)

α4CAπ
2

+192
√
3ψ′
(

1
3

)

α3CAπ
2 − 2376

√
3ψ′
(

1
3

)

α3CA

−2016
√
3ψ′
(

1
3

)

α2CAπ
2 + 9504

√
3ψ′
(

1
3

)

α2CA

−960
√
3ψ′
(

1
3

)

αCAπ
2 + 13680

√
3ψ′
(

1
3

)

αCA

−2304
√
3ψ′
(

1
3

)

αNfTF + 1200
√
3ψ′
(

1
3

)

CAπ
2

−121176
√
3ψ′
(

1
3

)

CA + 88128
√
3ψ′
(

1
3

)

NfTF

−9
√
3ψ′′′

(

1
3

)

α3CA − 45
√
3ψ′′′

(

1
3

)

α2CA

−171
√
3ψ′′′

(

1
3

)

αCA − 999
√
3ψ′′′

(

1
3

)

CA

−19440
√
3s2
(

π
6

)

α3CA + 54432
√
3s2
(

π
6

)

α2CA

+3888
√
3s2
(

π
6

)

αCA − 878688
√
3s2
(

π
6

)

CA

+497664
√
3s2
(

π
6

)

NfTF + 38880
√
3s2
(

π
2

)

α3CA

−108864
√
3s2
(

π
2

)

α2CA − 7776
√
3s2
(

π
2

)

αCA

+1757376
√
3s2
(

π
2

)

CA − 995328
√
3s2
(

π
2

)

NfTF

+32400
√
3s3
(

π
6

)

α3CA − 90720
√
3s3
(

π
6

)

α2CA

−6480
√
3s3
(

π
6

)

αCA + 1464480
√
3s3
(

π
6

)

CA

−829440
√
3s3
(

π
6

)

NfTF − 25920
√
3s3
(

π
2

)

α3CA

+72576
√
3s3
(

π
2

)

α2CA + 5184
√
3s3
(

π
2

)

αCA

−1171584
√
3s3
(

π
2

)

CA + 663552
√
3s3
(

π
2

)

NfTF

−16
√
3α4CAπ

4 − 40
√
3α3CAπ

4 + 1584
√
3α3CAπ

2
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+324
√
3α3CAζ3 + 792

√
3α2CAπ

4 − 6336
√
3α2CAπ

2

+648
√
3α2CAζ3 − 10368

√
3α2CA + 776

√
3αCAπ

4

−9120
√
3αCAπ

2 − 17172
√
3αCAζ3 + 9720

√
3αCA

+1536
√
3αNfπ

2TF − 10368
√
3αNfTF + 2264

√
3CAπ

4

+80784
√
3CAπ

2 + 148392
√
3CAζ3 + 1944

√
3CA

−58752
√
3Nfπ

2TF − 82944
√
3NfTF ζ3

+15552
√
3NfTF − 135 ln(3)2α3CAπ

+378 ln(3)2α2CAπ + 27 ln(3)2αCAπ − 6102 ln(3)2CAπ

+3456 ln(3)2NfπTF + 1620 ln(3)α3CAπ

−4536 ln(3)α2CAπ − 324 ln(3)αCAπ

+73224 ln(3)CAπ − 41472 ln(3)NfπTF + 145α3CAπ
3

−406α2CAπ
3 − 29αCAπ

3 + 6554CAπ
3

−3712Nfπ
3TF
]

a2
) 1

62208
√
3

+ O(a3) (3.2.11)

where we recognise that in this scheme there is only one independent amplitude.

Since channel 1 contained the poles in ϵ before MOMh renormalization, there

exist no corrections at the symmetric subtraction point for this scheme. Recall

that channel 1 corresponds to the tree level vertex structure and thus defines

the renormalization condition. An important point to note, which we revisit in

section 3.3, is that Σ
∣

∣

MOMh corresponds to the amplitudes in the MOMh scheme

with MOMh scheme-dependent variables. i.e. α → αMOMh and a → aMOMh .

The same goes for all schemes where results in the MOMg scheme are dependent

on the MOMg scheme variables, etc.

3.2.2 The triple-gluon vertex

Presenting the amplitudes for the triple-gluon vertex numerically we begin with

those computed in the MS scheme

Σggg
(1) (p, q)

∣

∣

∣

MS
= Σggg

(2) (p, q)
∣

∣

∣

MS
= − 1

2
Σggg

(3) (p, q)
∣

∣

∣

MS
= − Σggg

(4) (p, q)
∣

∣

∣

MS

=
1

2
Σggg

(5) (p, q)
∣

∣

∣

MS
= − Σggg

(6) (p, q)
∣

∣

∣

MS

= − 1−
[

1.121244− 3.761896α− 1.289023α2 + 0.1250000α3

−0.041737Nf ] a

+
[

29.753068 + 16.460077α− 9.779430α2 − 3.206081α3
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−1.652285α4 + 0.281250α5 − [11.567720− 0.968698α

−0.911240α2 + 0.416667α3]Nf

]

a2 + O(a3)

Σggg
(7) (p, q)

∣

∣

∣

MS
= 2 Σggg

(9) (p, q)
∣

∣

∣

MS
= − 2 Σggg

(11)(p, q)
∣

∣

∣

MS
= − Σggg

(14)(p, q)
∣

∣

∣

MS

=
[

7.056716− 3.328046α− 0.507930α2 + 0.057318α3

−1.092686Nf ] a

+
[

116.078964− 13.683082α + 0.348413α2 + 4.776312α3

+0.890861α4 − 0.128965α5 − [20.271011 + 1.015302α

−0.574522α2 − 0.191060α3]Nf

]

a2 + O(a3)

Σggg
(8) (p, q)

∣

∣

∣

MS
= − Σggg

(13)(p, q)
∣

∣

∣

MS

=
[

7.368300− 3.351838α− 0.570116α2 + 0.192682α3

−1.213010Nf ] a

+
[

126.004871− 11.804885α + 3.779569α2 + 4.377919α3

+1.288709α4 − 0.433535α5 − [23.589819− 0.015581α

−0.936332α2 − 0.642274α3]Nf

]

a2 + O(a3)

Σggg
(10)(p, q)

∣

∣

∣

MS
= − Σggg

(12)(p, q)
∣

∣

∣

MS

= −
[

0.311584− 0.023791α− 0.062186α2 + 0.135364α3

−0.120324Nf ]a

−
[

9.925907 + 1.878196α + 3.431156α2 − 0.398393α3

+0.397848α4 − 0.304570α5 − [3.318808− 1.030883α

−0.361810α2 − 0.451214α3]Nf

]

a2 + O(a3) . (3.2.12)

The relations between amplitudes of the various projection tensor channels have

been detailed above. These are consistent with the expectations for the structure

of the vertex from symmetry, given that we have evaluated the vertex function at

the symmetric point, [14]. A relationship also holds between Σggg
(7) (p, q), Σ

ggg
(8) (p, q)

and Σggg
(10)(p, q) in the MOMg scheme, which was commented on in [14]. However,

following a misprint in [14] we present the correct relation as

Σggg
(7) (p, q)

∣

∣

∣

MS
= Σggg

(8) (p, q)
∣

∣

∣

MS
+ Σggg

(10)(p, q)
∣

∣

∣

MS
(3.2.13)

which holds in the linear covariant gauge for arbitrary α to two loops. The MOMg

scheme amplitudes satisfy the same relations. In particular we have

Σggg
(1) (p, q)

∣

∣

∣

MOMg
= Σggg

(2) (p, q)
∣

∣

∣

MOMg
= − 1

2
Σggg

(3) (p, q)
∣

∣

∣

MOMg
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= − Σggg
(4) (p, q)

∣

∣

∣

MOMg
=

1

2
Σggg

(5) (p, q)
∣

∣

∣

MOMg

= − Σggg
(6) (p, q)

∣

∣

∣

MOMg
= − 1 + O(a3)

Σggg
(7) (p, q)

∣

∣

∣

MOMg
= 2 Σggg

(9) (p, q)
∣

∣

∣

MOMg
= − 2 Σggg

(11)(p, q)
∣

∣

∣

MOMg

= − Σggg
(14)(p, q)

∣

∣

∣

MOMg

=
[

7.056716− 3.328046α− 0.507930α2 + 0.057318α3

−1.092686Nf ] a

−
[

78.783317− 99.199663α + 10.001223α2 + 10.910924α3

−1.202495α4 − 0.283161α5 + 0.021494α6

−[34.308079− 16.242288α− 1.820392α2

+0.607994α3]Nf + 3.779101N2
f

]

a2 + O(a3)

Σggg
(8) (p, q)

∣

∣

∣

MOMg
= − Σggg

(13)(p, q)
∣

∣

∣

MOMg

=
[

7.368300− 3.351838α− 0.570116α2 + 0.192682α3

−1.213010Nf ] a

−
[

77.461404− 103.656823α + 5.551499α2 + 12.546334α3

−2.943107α4 − 0.525374α5 + 0.0722558α6

−[35.389486− 16.083732α− 1.730035α2

+1.121278α3]Nf + 4.195246N2
f

]

a2 + O(a3)

Σggg
(10)(p, q)

∣

∣

∣

MOMg
= − Σggg

(12)(p, q)
∣

∣

∣

MOMg

= −
[

0.311584− 0.023791α− 0.062186α2 + 0.135364α3

−0.120324Nf ] a

−
[

1.321912 + 4.457161α + 4.4497230α2 − 1.635410α3

+1.740612α4 + 0.242213α5 − 0.050762α6

+[1.081407 + 0.158552α + 0.090357α2 + 0.513285α3]Nf

−0.416150N2
f

]

a2 + O(a3) (3.2.14)

with the corresponding relation

Σggg
(7) (p, q)

∣

∣

∣

MOMg
= Σggg

(8) (p, q)
∣

∣

∣

MOMg
+ Σggg

(10)(p, q)
∣

∣

∣

MOMg
(3.2.15)

for the MOMg scheme also holding true to two loops. Given the nature of the

MOMg scheme the relations for the amplitudes of channels 1 to 6 demonstrate
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that our renormalization is consistent and that our projection has been imple-

mented consistently within our Form programmes. The recovery of this relation

also serves as a check on our Reduze database.

3.2.3 The quark-gluon vertex

Finally, we complete our presentation of results for the amplitudes with the quark-

gluon vertex and the MOMq scheme expressions. Firstly the MS amplitudes are

Σqqg
(1) (p, q)

∣

∣

∣

MS
= 1 +

[

4.316221− 0.588760α− 0.457012α2
]

a

+
[

89.287678− 2.548866α + 0.795946α2 + 0.234428α3

+0.342759α4 − (12.136677 + 0.976628α

+0.507791α2)Nf

]

a2 + O(a3)

Σqqg
(2) (p, q)

∣

∣

∣

MS
= Σqqg

(5) (p, q)
∣

∣

∣

MS

=
[

2.598034− 2.305695α− 0.414023α2
]

a

+
[

26.481247− 21.748851α− 5.398494α2 + 0.454787α3

+0.310517α4 − (6.271894 + 1.033946α

+0.460026α2)Nf

]

a2 + O(a3)

Σqqg
(3) (p, q)

∣

∣

∣

MS
= Σqqg

(4) (p, q)
∣

∣

∣

MS

=
[

2.050269− 2.522631α− 0.5α2
]

a

+
[

12.735294− 25.229976α− 6.681979α2 + 0.032068α3

+0.375α4 − (4.871593 + 0.919310α + 0.555556α2)Nf

]

a2

+ O(a3)

Σqqg
(6) (p, q)

∣

∣

∣

MS
= −

[

4.362272 + 2.343907α + 0.585977α2
]

a

−
[

131.991115 + 45.467503α + 4.857352α2 + 1.220785α3

−0.439483α4 − (10.922850 + 1.953256α

−0.651085α2)Nf

]

a2 + O(a3) (3.2.16)

where all the above expressions are dependent on MS variables aMS and αMS and

the symmetry of the exchange of the two external quark legs is manifest. This

was not imposed but emerges naturally from the computation. The corresponding

MOMq scheme expressions are

Σqqg
(1) (p, q)

∣

∣

∣

MOMq
= 1 + O(a3)
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Σqqg
(2) (p, q)

∣

∣

∣

MOMq
= Σqqg

(5) (p, q)
∣

∣

∣

MOMq

=
[

2.598034− 2.305695α− 0.414023α2
]

a

−
[

28.160581− 15.726713α + 11.991691α2 + 5.162779α3

+0.567640α4 + (3.385190 + 1.033946α)Nf

]

a2 + O(a3)

Σqqg
(3) (p, q)

∣

∣

∣

MOMq
= Σqqg

(4) (p, q)
∣

∣

∣

MOMq

=
[

2.050269− 2.522631α− 0.5α2
]

a

−
[

30.385945− 13.448043α + 14.158714α2 + 6.393020α3

+0.685517α4 + (2.593517 + 0.919310α)Nf

]

a2 + O(a3)

Σqqg
(6) (p, q)

∣

∣

∣

MOMq
= −

[

4.362272 + 2.343907α + 0.585977α2
]

a

−
[

40.243836 + 27.911352α + 15.105921α2 + 7.910933α3

+0.803395α4 − (6.075881 + 1.953256α)Nf

]

a2

+ O(a3) (3.2.17)

where clearly channel 1 correctly corresponds to the MOMq scheme definition as

it is the only channel to contain the divergences in ϵ. The quark external leg

interchange which is manifest in the MS scheme results for the amplitudes also

correctly emerges here.

In order to demonstrate the impact that increasing the loop order has on the am-

plitudes we graphically present the ghost-gluon vertex at the symmetric point.

We plot the one and two loop amplitudes for various values of α and Nf with

respect to the partial coupling constants al(µ,Λ). Here l is the loop order and

Λ is the QCD scale defined in (3.2.20), not to be confused with that defined in

(2.1.20), where we define and compute the ratio of Λ parameters in all gauges in

different renormalization schemes for comparison later. To plot this vertex func-

tion we have determined the channel 1 amplitude, the amplitude corresponding

to the Feynman rule for this vertex, numerically for SU(3). The partial coupling

constants are given by solving the β-function as a differential equation for the

coupling constant. The β-function is given by

β(a) =
∂a

∂ lnµ
. (3.2.18)

The β-function is a formal power series in a. If we denote the solution to the

truncated β-function at l loops by al(µ,Λ) then we can write the one loop β-
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function as

β(a1) = −β0a21 (3.2.19)

for instance. Combining (3.2.18) and (3.2.19) and rearranging for a1 we obtain

− 1

a21

∂a1
∂ lnµ

= β0

1

a1
= β0 ln

(

µ2

Λ2

)

a1 =
1

β0 ln
(

µ2

Λ2

) . (3.2.20)

Here (3.2.20) implicitly defines Λ Thus

a1(µ,Λ) =
1

β0L
(3.2.21)

where L = ln
(

µ2

Λ2

)

. Based on the two loop result, a2(µ,Λ) is determined a similar

way with

β(a2) = −β0a22 − β1a
3
2 (3.2.22)

such that

a2(µ,Λ) =
1

β0L

[

1− β1 ln(L)

β2
0L

]

. (3.2.23)

These are all we need since we only plot the one and two loop ghost-gluon vertex

function amplitudes. If the three loop MS results were computed we would need

to introduce a third partial coupling constant, namely

a3(µ,Λ) =
1

β0L

[

1− β1 ln(L)

β2
0L

+
[

β2
1

(

ln2 L− lnL− 1
)

+ β0β2
] 1

β4
0L

2

]

(3.2.24)

with

β0 =
1

3
[−11CA + 4NfTF ] , β1 =

2

3

[

−17C2
A + 10CANfTF + 6CFNfTF

]

β2 =
1

54

[

−2857C3
A + 2830C2

ANfTF + 1230CACFNfTF − 316CAN
2
f T

2
F

−108C2
FNfTF − 264CFN

2
f T

2
F

]

. (3.2.25)
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Note that we are using the three loop solution from [1, 2, 81, 82, 83]. We also

choose this point to define the anomalous dimension of the arbitrary gauge pa-

rameter, γα. We define this here for convenience as it appears in our definition

of the β-function (3.3.29) later,

γA(a,α) = β(a,α)
∂

∂a
lnZA + αγα(a,α)

∂

∂α
lnZA

γα(a,α) =

[

β(a,α)
∂

∂a
lnZα − γA(a,α)

] [

1 − α
∂

∂α
lnZα

]−1

.(3.2.26)

Note that we have shown a general definition of γα which will be applicable in all

gauges. However, in the linear coavariant gauge the anomalous dimensions for the

arbitrary gauge parameter and gluon field are equivalent, as we will see in (3.4.60).

In order to plot the one and two loop amplitudes on the same graph we need

to truncate the vertex function so that the one loop amplitude is a function of

a1(µ,Λ) and the two loop amplitude consists of both the one and two loop con-

tributions multiplying a2(µ,Λ) and a2(µ,Λ)2 respectively. This truncated vertex

function is defined by, [67],

Tccg
k,l =

l
∑

n=0

Σccg
(k)n (al(µ,Λ))

n (3.2.27)

where k defines the channel and n defines the loop order. Here al is the solution

to the nth order β-function differential equation. The amplitudes then become

Σccg
(k)(p, q)

∣

∣

∣

p2=q2=−µ2
=

∞
∑

n=0

Σccg
(k)na

n . (3.2.28)

These are valid for all three vertex functions, although we only consider the ghost-

gluon vertex as this behaves differently in linear and non-linear gauge fixings.

We present similar plots for a Curci-Ferrari and MAG analysis in chapters 4 and

5 for comparison. The plots are given for l = 1, 2 in the MS scheme at the

symmetric point in Figure 3.1. The reason we do not present the MOMi scheme

amplitudes graphically for the same channels is because they are constant at

the renormalization point. Due to the renormalization prescription imposed the

amplitudes corresponding to channel 1 are finite (i.e. fixed to ±1), which provides

no useful comparison between loop orders. Note that in Figure 3.1 and in all later

figures the label x on the x-axis is defined by x = s/Λ, where s is the centre of

mass energy and Λ is in the MS scheme, [52, 91, 97]. By studying the plots it
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can be seen that there is only a difference of around 1% between the one and two

loop amplitudes.
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Figure 3.1: Comparison of the one and two loop MS linear covariant gauge ghost-
gluon vertex functions for different values of Nf .

3.3 Conversion Functions and Mappings

The aim of our complete calculation is to determine the β-functions and anoma-

lous dimensions for each MOMi scheme at three loops. A similar preliminary

evaluation in the MS scheme has already been carried out in [14] of whose work

we base our own upon. The renormalization group (RG) equations are used to de-
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termine the three loop RG functions without having to complete an explicit three

loop calculation. The idea of the renormalization group was originally developed

by Gell-Mann and others [84, 85, 86] whilst investigating Quantum Electrody-

namics (QED) in the 1950’s. Wilson, who was supervised by Gell-Mann at the

time, later developed the idea of the renormalization group analysis of strongly

coupled field theory, [87]. The RG equation needed in constructing the β-function

is

βMOMi(a,α) =

[

βMS(aMS)
∂aMOMi

∂aMS

+ αMSγ
MS
α (aMS,αMS)

∂aMOMi

∂αMS

]

MS→MOMi
(3.3.29)

where a and α are the MOMi coupling constant and gauge parameter after a

mapping is made of the evaluation of the quantity in square brackets from MS to

MOMi. The anomalous dimension of the gauge parameter α has been previously

defined (3.2.26) and

βMS(aMS) =

(

−11

3
CA +

2

3
Nf

)

a2
MS

+O(a4
MS

) . (3.3.30)

The β-function determines the behaviour of the coupling constant, and was what

led [1, 2] to determine that gauge theory is asymptotically free. It is immediately

apparent that a mapping is needed between the MS and MOM scheme param-

eters in order to present the MOMi scheme β-functions in terms of the MOMi

scheme gauge parameters and coupling constants only.

In this section we show how this mapping was achieved. We diverge from the

construction of the β-function for now, concentrating on the coupling constant

and gauge parameter mappings and the construction of the conversion functions.

Knowing the conversion functions allows one to transform between schemes, re-

lating physical quantities in one scheme to the same quantities in another. Since

we defined our coupling constant renormalization as go = µϵZgg we define our

conversion functions by

CMOMi
g (aMS,αMS) =

ZMOMi
g

ZMS
g

∣

∣

∣

∣

∣

MOMi→MS

CMOMi
φ (aMS,αMS) =

ZMOMi
φ

ZMS
φ

∣

∣

∣

∣

∣

MOMi→MS
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CMOMi
α (aMS,αMS) =

ZMOMi
α ZMS

A

ZMS
α ZMOMi

A

∣

∣

∣

∣

∣

MOMi→MS

(3.3.31)

where the conversion functions are always in terms of MS variables, as is our

convention, and φ ∈ {A,ψ, c}. For each renormalization group function there is

an associated conversion function that allows us to transform between schemes.

A problem arises however when one tries to compute the conversion functions in

this way, since the renormalization constants, say for example ZMOMi
φ depend on

parameters specific to that of the MOMi scheme, whereas ZMS
φ depends on aMS

and αMS. This is partly because we have chosen to use a mass dependent renor-

malization scheme which results in aMOMi and αMOMi being gauge dependent.

Therefore, before attempting to compute the conversion functions it is necessary

to first construct mappings for the gauge parameter and coupling constant in the

MS scheme to that of the MOMi schemes. Let us first consider the mapping of

the gauge parameter, α, by recalling its definition

αo =
ZA

Zα
α (3.3.32)

where ZA is the gluon wave function renormalization constant and Zα is the renor-

malization constant corresponding to the gauge parameter itself. If we assume

the same relation is true in another scheme, say

αo =
Z̄A

Z̄α
ᾱ (3.3.33)

and assume both of these equations are valid such that they can be set equal to

each other, then we get a relation between the gauge parameter in one scheme

and the gauge parameter in another, such that

ZA

Zα
α ≡ Z̄A

Z̄α
ᾱ

⇒ ᾱ =

(

Z̄α
Zα

ZA

Z̄A

)

α . (3.3.34)

By taking the barred variables to represent the MOMi scheme variables and

the unbarred variables to represent the MS scheme we find our mapping can be
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constructed using the following formula, [89, 14],

αMOMi(µ) =
ZMS

A ZMOMi
α

ZMOMi
A ZMS

α

αMS(µ) . (3.3.35)

While in our conventions for an arbitrary linear covariant gauge Zα = 1, we

include the full definition of the mapping here so as to be formally correct. We

will apply this full definition of the gauge parameter mapping when considering

non-linear gauges later. Similarly for the coupling constant mapping we have

ao = (µϵ)2Z2
ga and ao = (µϵ)2Z̄2

g ā (3.3.36)

which by rearrangement, as we have shown with the gauge parameter, gives

aMOMi(µ) =

(

ZMS
g

ZMOMi
g

)2

aMS(µ) (3.3.37)

where any results in terms of aMOMi can be written as an expansion of aMS.

To get aMS,αMS in terms of aMOMi,αMOMi, which is of a more practical use in

our calculations since we require an MS → MOM mapping for the MOMi scheme

renormalization group functions, we simply invert the power series of (3.3.35) and

(3.3.37) which give

ā = a+ f1(α)a
2 + f2(α)a

3 +O(a4) (3.3.38)

ᾱ = α + g1(α)a+ g2(α)a
2 +O(a3) (3.3.39)

to get

a = ā− f1(ᾱ)ā
2 +

(

2f1(ᾱ)
2 − f2(ᾱ) + f ′

1(ᾱ)g1(ᾱ)
)

ā3 +O(ā4) (3.3.40)

α = ᾱ− g1(ᾱ)ā+ (−g2(ᾱ) + g1(ᾱ)f1(ᾱ) + g′1(ᾱ)g1(ᾱ)) ā
2 +O(ā3) . (3.3.41)

To first order a simple change in sign is enough to invert both the coupling con-

stant and gauge parameter mappings. However as seen above, at higher loop

orders the inverted mappings become more involved.

We now record our results for the mappings of both parameters for each MOMi

scheme. It was found that the gauge parameter mapping was the same in all
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three MOMi schemes,

αMOMi =
[

1 + CA

[

80TFNf − 9α2 − 18α− 97
] a

36
+
[[

18α4 − 18α3 + 190α2 − 576ζ(3)α + 463α + 864ζ(3)− 7143
]

C2
A

−
[

320α2 + 320α− 2304ζ(3)− 4248
]

CATFNf

− [4608ζ(3)− 5280]CFTFNf ]
a2

288

]

α +O(a3) . (3.3.42)

As expected, the coupling constant mappings are dependent on the vertex func-

tions above one loop order. The coupling constant mapping for the ghost-gluon

vertex is given analytically as

aMOMh = a+
[

3ψ′
(

1
3

)

α2CA + 24ψ′
(

1
3

)

αCA − 15ψ′
(

1
3

)

CA − 2α2CAπ
2

−27α2CA − 16αCAπ
2 − 162αCA + 10CAπ

2 − 615CA

+240NfTF ]
a2

108

+
[

126
√
3ψ′
(

1
3

)2
α4C2

A + 2016
√
3ψ′
(

1
3

)2
α3C2

A + 6804
√
3ψ′
(

1
3

)2
α2C2

A

−10080
√
3ψ′
(

1
3

)2
αC2

A + 3150
√
3ψ′
(

1
3

)2
C2
A

−168
√
3ψ′
(

1
3

)

α4C2
Aπ

2 − 1296
√
3ψ′
(

1
3

)

α4C2
A

−2688
√
3ψ′
(

1
3

)

α3C2
Aπ

2 − 12960
√
3ψ′
(

1
3

)

α3C2
A

−9072
√
3ψ′
(

1
3

)

α2C2
Aπ

2 − 142920
√
3ψ′
(

1
3

)

α2C2
A

+11520
√
3ψ′
(

1
3

)

α2CANfTF + 13440
√
3ψ′
(

1
3

)

αC2
Aπ

2

−185832
√
3ψ′
(

1
3

)

αC2
A + 99072

√
3ψ′
(

1
3

)

αCANfTF

−4200
√
3ψ′
(

1
3

)

C2
Aπ

2 + 754128
√
3ψ′
(

1
3

)

C2
A

−321984
√
3ψ′
(

1
3

)

CANfTF + 27
√
3ψ′′′

(

1
3

)

α3C2
A

−513
√
3ψ′′′

(

1
3

)

α2C2
A + 837

√
3ψ′′′

(

1
3

)

αC2
A + 2997

√
3ψ′′′

(

1
3

)

C2
A

+58320
√
3s2
(

π
6

)

α3C2
A − 373248

√
3s2
(

π
6

)

α2C2
A

+408240
√
3s2
(

π
6

)

αC2
A + 3825792

√
3s2
(

π
6

)

C2
A

−1492992
√
3s2
(

π
6

)

CANfTF − 116640
√
3s2
(

π
2

)

α3C2
A

+746496
√
3s2
(

π
2

)

α2C2
A − 816480

√
3s2
(

π
2

)

αC2
A

−7651584
√
3s2
(

π
2

)

C2
A + 2985984

√
3s2
(

π
2

)

CANfTF

−97200
√
3s3
(

π
6

)

α3C2
A + 622080

√
3s3
(

π
6

)

α2C2
A

−680400
√
3s3
(

π
6

)

αC2
A − 6376320

√
3s3
(

π
6

)

C2
A

+2488320
√
3s3
(

π
6

)

CANfTF + 77760
√
3s3
(

π
2

)

α3C2
A
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−497664
√
3s3
(

π
2

)

α2C2
A + 544320

√
3s3
(

π
2

)

αC2
A

+5101056
√
3s3
(

π
2

)

C2
A − 1990656

√
3s3
(

π
2

)

CANfTF

+56
√
3α4C2

Aπ
4 + 864

√
3α4C2

Aπ
2 + 824

√
3α3C2

Aπ
4

+8640
√
3α3C2

Aπ
2 − 972

√
3α3C2

Aζ3 + 29160
√
3α3C2

A

+4392
√
3α2C2

Aπ
4 + 95280

√
3α2C2

Aπ
2 + 33048

√
3α2C2

Aζ3

+407592
√
3α2C2

A − 7680
√
3α2CANfπ

2TF

−103680
√
3α2CANfTF − 6712

√
3αC2

Aπ
4 + 123888

√
3αC2

Aπ
2

−135108
√
3αC2

Aζ3 + 1458000
√
3αC2

A − 66048
√
3αCANfπ

2TF

−590976
√
3αCANfTF − 6592

√
3C2

Aπ
4 − 502752

√
3C2

Aπ
2

−153576
√
3C2

Aζ3 − 470160
√
3C2

A + 214656
√
3CANfπ

2TF

+995328
√
3CANfTF ζ3 − 707904

√
3CANfTF

−1492992
√
3CFNfTF ζ3 + 1710720

√
3CFNfTF

+460800
√
3N2

f T
2
F + 405 ln(3)2α3C2

Aπ − 2592 ln(3)2α2C2
Aπ

+2835 ln(3)2αC2
Aπ + 26568 ln(3)2C2

Aπ − 10368 ln(3)2CANfπTF

−4860 ln(3)α3C2
Aπ + 31104 ln(3)α2C2

Aπ − 34020 ln(3)αC2
Aπ

−318816 ln(3)C2
Aπ + 124416 ln(3)CANfπTF − 435α3C2

Aπ
3

+2784α2C2
Aπ

3 − 3045αC2
Aπ

3 − 28536C2
Aπ

3

+11136CANfπ
3TF
] a3

93312
√
3

+ O(a4) . (3.3.43)

The numerical mapping for the triple-gluon vertex is

aMOMg = a+
[

26.492489− 3.023791α− 0.328046α2 + 0.25α3

−3.416806Nf ] a
2

+
[

960.462717− 46.712079α + 7.928513α2 + 9.111075α3

+1.037572α4 − 0.322256α5 + 0.015625α6 − [202.085012

−8.080297α− 1.690792α2 + 0.010434α3
]

Nf

+7.687393N2
f

]

a3 + O(a4) . (3.3.44)

Similarly for the quark-gluon vertex the coupling constant mapping is

aMOMq = a +
[

16.715775− 2.344187α− 0.164023α2 − 1.111111Nf

]

a2

+
[

472.159095− 43.057553α− 0.776012α2 + 2.020716α3

+0.208860α4 − [83.111217− 0.651396α]Nf + 1.234568N2
f

]

a3
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+ O(a4) . (3.3.45)

Notice that we are required to compute the aMOMi mapping to an order greater

than that of the αMOMi mapping since it is needed to this order to construct the

anomalous dimensions and β-functions for each MOMi scheme, as can be under-

stood from (3.3.29). Celmaster and Gonsalves also construct similar mappings in

[52] which we have checked our results against, along with [14]. One of the first to

consider a mapping between scheme-dependent coupling constants, in particular

between the MS scheme and original MOM scheme, Celmaster and Gonsalves

define a relation between the MS and MOM scheme coupling constants for the

triple-gluon vertex by

aMOM = aMS
[

1 + aMSA(α, Nf ) +O(a2MS)
]

(3.3.46)

where A(α, Nf ) is the finite contribution to the MOM renormalized triple-gluon

vertex at one loop. Our results for the MOM renormalization of the triple-gluon

vertex at one loop agree with [52] up to a factor of 1
2π . This comes from the way

in which we have chosen to define the coupling constant, notably by a = g2

16π2 .

With the relation

Ā(α, Nf ) = 2πA(α, Nf ) (3.3.47)

we can write (3.3.46) in terms of our finite contribution as

aMOMg = aMS

[

1 +
aMS
2

Ā(α, Nf ) +O(a2
MS

)
]

. (3.3.48)

As in [52] we choose various values of α and Nf , using Reduce as our main data

processor to compare with the findings of [52]. Table 3.2 shows the comparison

between values.

Another analysis we can make using results for the coupling constant mappings

is the Λ-ratio. We define the Λ-ratio as in [52] through

ΛMOMi

ΛMS
= exp

[

ΘMOMi(α, Nf )

β̃0

]

(3.3.49)

with β̃0 originating from the one-loop β-function such that, [51],

β̃0 =
22

3
CA − 8

3
TFNf . (3.3.50)
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α Nf A(α, Nf )C+G[52] Ā(α, Nf )Bell

0 0 3.818 2.108
0 1 3.443 1.836
0 2 3.067 1.545
0 3 2.692 1.293
0 4 2.316 1.021
0 5 1.941 0.749
1 0 3.572 1.861
1 3 2.445 1.046
1 4 2.070 0.774
1 5 1.694 0.502

Table 3.2: Comparison between Celmaster and Gonsalves’ results for the contri-
bution of the finite piece for the one loop MOM renormalization of the triple-gluon
vertex of [52] with my results for the same Green’s function also renormalized in
the MOM scheme.

The Λ-parameter sets the fundamental scale in QCD. However its actual value

depends on the renormalization scheme one is considering. A remarkable feature

of this quantity is that the ratio between Λ parameters in different schemes can

be determined from a one loop computation. For each MOMi scheme we have

ΘMOMh (α, Nf ) =
1

108

[

3ψ′
(

1
3

)

α2CA + 24ψ′
(

1
3

)

αCA − 15ψ′
(

1
3

)

CA − 2α2CAπ
2

−27α2CA − 16αCAπ
2 − 162αCA + 10CAπ

2 − 615CA

+240NfTF ]

ΘMOMg (α, Nf ) =
1

324

[

36ψ′
(

1
3

)

α2CA − 162ψ′
(

1
3

)

αCA + 138ψ′
(

1
3

)

CA

−384ψ′
(

1
3

)

NfTF + 27α3CA − 24α2CAπ
2 − 162α2CA

+108αCAπ
2 + 243αCA − 92CAπ

2 + 2376CA

+256Nfπ
2TF − 864NfTF

]

ΘMOMq (α, Nf ) =
1

108

[

6ψ′
(

1
3

)

α2CA − 24ψ′
(

1
3

)

αCA − 96ψ′
(

1
3

)

αCF

−78ψ′
(

1
3

)

CA + 48ψ′
(

1
3

)

CF − 4α2CAπ
2 − 27α2CA

+16αCAπ
2 + 54αCA + 64αCFπ

2 + 216αCF + 52CAπ
2

+993CA − 32CFπ
2 − 432CF − 240NfTF

]

(3.3.51)

where ΘMOMg(α, Nf ) is a variation of Ā(α, Nf ). The same goes for ΘMOMh(α, Nf )

and ΘMOMq(α, Nf ) which come directly from the coupling constant mappings for

the ghost-gluon and quark-gluon vertex functions, (3.3.43) - (3.3.45). For example

ΘMOMh(α, Nf ) is defined by the one loop contribution of aMOMh in (3.3.43),
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where a direct comparison of terms can be made. We note that within this thesis

ΘMOMi(α, Nf ) is always defined to be the one loop contribution of aMOMi. Table

3.3 displays the Λ parameters in each MOMi scheme. The difference between

α Nf MOMg [52] MOMg MOMh MOMq
0 0 8.86 3.3341 2.3236 2.1379
0 1 8.113 3.0543 2.3250 2.1277
0 2 7.343 2.7644 2.3267 2.1163
0 3 6.55 2.4654 2.3286 2.1032
0 4 5.73 2.1587 2.3308 2.0881
0 5 4.91 1.8471 2.3335 2.0706
1 0 7.69 2.8957 2.6166 1.9075
1 3 5.51 2.0751 2.6924 1.8296
1 4 4.76 1.7921 2.7265 1.7964
1 5 4.01 1.5088 2.7670 1.7581
3 3 4.89 1.8392 4.1918 1.3110
3 4 4.18 1.5732 4.3978 1.2533
-2 4 6.76 2.5437 2.0081 2.6597

Table 3.3: Values of
ΛMOMi
Λ
MS

for the arbitrary linear covariant gauge in SU(3).

the MS and MS results should be 2.65622061617, [52]. This comes from the extra

factor of e
1
2 (log(4π)−γE) appearing in the MS scheme. By dividing Celmaster and

Gonsalves’ ratio by ours in Table 3.3, we indeed get 2.65622061617, confirming

their results and agreeing with [90]. To understand what we have done is correct

we make contact with the old, but still very much relevant work carried out

in this area in the 70’s. By comparing with MS results the factor of 2.65 . . .

obtained is confirmation that our work is consistent. With our gauge parameter

and coupling constant mappings found, and returning to (3.3.31) we can now

compute the two loop conversion functions. The results are presented below for

each MOMi scheme. Starting with the conversion functions for the wave functions

we find that, along with the gauge parameter, these conversion functions are the

same for all MOMi schemes in the arbitrary linear covariant gauge at two loops.

These are

CMOMi
A (a,α) = 1 +

[

9α2CA + 18αCA + 97CA − 80NfTF
] a

36
+
[

810α3C2
A + 2430α2C2

A + 5184αC2
Aζ3 + 2817αC2

A

−2880αCANfTF − 7776C2
Aζ3 + 83105C2

A − 20736CANfTF ζ3

−69272CANfTF + 41472CFNfTF ζ3 − 47520CFNfTF
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+12800N2
f T

2
F

] a2

2592
+ O(a3)

CMOMi
α (a,α) = 1 +

[

−9α2CA − 18αCA − 97CA + 80NfTF
] a

36
+
[

18α4C2
A − 18α3C2

A + 190α2C2
A − 320α2CANfTF − 576αC2

Aζ3

+463αC2
A − 320αCANfTF + 864C2

Aζ3 − 7143C2
A

+2304CANfTF ζ3 + 4248CANfTF − 4608CFNfTF ζ3

+5280CFNfTF ]
a2

288
+ O(a3)

CMOMi
c (a,α) = 1 + CAa+ CA

[

−36α2CAζ3 + 72α2CA + 72αCAζ3 − 21αCA

−180CAζ3 + 1943CA − 760NfTF ]
a2

192
+ O(a3)

CMOMi
ψ (a,α) = 1− αCFa

+CF

[

−9α2CA + 8α2CF + 24αCAζ3 − 52αCA + 24CAζ3 − 82CA

+5CF + 28NfTF ]
a2

8
+ O(a3) (3.3.52)

where a and α are MS variables. The only conversion functions that are scheme

dependent are those that directly contribute to the coupling constant mappings.

The vertex-dependent conversion functions are given below for each scheme, with

an analytical analysis given for the ghost-gluon vertex first

CMOMh
g (a,α) = 1 +

[

3ψ′
(

1
3

)

α2CA + 24ψ′
(

1
3

)

αCA − 15ψ′
(

1
3

)

CA − 2α2CAπ
2

−27α2CA − 16αCAπ
2 − 162αCA + 10CAπ

2 − 615CA

+240NfTF ]
a

216

+
[

36
√
3ψ′
(

1
3

)2
α4C2

A + 576
√
3ψ′
(

1
3

)2
α3C2

A

+1944
√
3ψ′
(

1
3

)2
α2C2

A − 2880
√
3ψ′
(

1
3

)2
αC2

A

+900
√
3ψ′
(

1
3

)2
C2
A − 48

√
3ψ′
(

1
3

)

α4C2
Aπ

2

−972
√
3ψ′
(

1
3

)

α4C2
A − 768

√
3ψ′
(

1
3

)

α3C2
Aπ

2

+1944
√
3ψ′
(

1
3

)

α3C2
A − 2592

√
3ψ′
(

1
3

)

α2C2
Aπ

2

−60696
√
3ψ′
(

1
3

)

α2C2
A + 8640

√
3ψ′
(

1
3

)

α2CANfTF

+3840
√
3ψ′
(

1
3

)

αC2
Aπ

2 + 4896
√
3ψ′
(

1
3

)

αC2
A

+29952
√
3ψ′
(

1
3

)

αCANfTF − 1200
√
3ψ′
(

1
3

)

C2
Aπ

2

+569628
√
3ψ′
(

1
3

)

C2
A − 249984

√
3ψ′
(

1
3

)

CANfTF

+27
√
3ψ′′′

(

1
3

)

α3C2
A − 513

√
3ψ′′′

(

1
3

)

α2C2
A

+837
√
3ψ′′′

(

1
3

)

αC2
A + 2997

√
3ψ′′′

(

1
3

)

C2
A
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+58320
√
3s2
(

π
6

)

α3C2
A − 373248

√
3s2
(

π
6

)

α2C2
A

+408240
√
3s2
(

π
6

)

αC2
A + 3825792

√
3s2
(

π
6

)

C2
A

−1492992
√
3s2
(

π
6

)

CANfTF − 116640
√
3s2
(

π
2

)

α3C2
A

+746496
√
3s2
(

π
2

)

α2C2
A − 816480

√
3s2
(

π
2

)

αC2
A

−7651584
√
3s2
(

π
2

)

C2
A + 2985984

√
3s2
(

π
2

)

CANfTF

−97200
√
3s3
(

π
6

)

α3C2
A + 622080

√
3s3
(

π
6

)

α2C2
A

−680400
√
3s3
(

π
6

)

αC2
A − 6376320

√
3s3
(

π
6

)

C2
A

+2488320
√
3s3
(

π
6

)

CANfTF + 77760
√
3s3
(

π
2

)

α3C2
A

−497664
√
3s3
(

π
2

)

α2C2
A + 544320

√
3s3
(

π
2

)

αC2
A

+5101056
√
3s3
(

π
2

)

C2
A − 1990656

√
3s3
(

π
2

)

CANfTF

+16
√
3α4C2

Aπ
4 + 648

√
3α4C2

Aπ
2 + 4374

√
3α4C2

A

+184
√
3α3C2

Aπ
4 − 1296

√
3α3C2

Aπ
2 − 972

√
3α3C2

Aζ3

+2232
√
3α2C2

Aπ
4 + 40464

√
3α2C2

Aπ
2 + 33048

√
3α2C2

Aζ3

+8748
√
3α2C2

A − 5760
√
3α2CANfπ

2TF

−77760
√
3α2CANfTF − 3512

√
3αC2

Aπ
4 − 3264

√
3αC2

Aπ
2

−135108
√
3αC2

Aζ3 − 157464
√
3αC2

A − 19968
√
3αCANfπ

2TF

−124416
√
3αCANfTF − 7592

√
3C2

Aπ
4 − 379752

√
3C2

Aπ
2

−153576
√
3C2

Aζ3 − 4252410
√
3C2

A + 166656
√
3CANfπ

2TF

+995328
√
3CANfTF ζ3 + 2244096

√
3CANfTF

−1492992
√
3CFNfTF ζ3 + 1710720

√
3CFNfTF

−115200
√
3N2

f T
2
F + 405 ln(3)2α3C2

Aπ − 2592 ln(3)2α2C2
Aπ

+2835 ln(3)2αC2
Aπ + 26568 ln(3)2C2

Aπ

−10368 ln(3)2CANfπTF − 4860 ln(3)α3C2
Aπ

+31104 ln(3)α2C2
Aπ − 34020 ln(3)αC2

Aπ

−318816 ln(3)C2
Aπ + 124416 ln(3)CANfπTF − 435α3C2

Aπ
3

+2784α2C2
Aπ

3 − 3045αC2
Aπ

3 − 28536C2
Aπ

3

+11136CANfπ
3TF
] a2

186624
√
3

+ O(a3) . (3.3.53)

For the triple-gluon and quark-gluon vertices the conversion functions are pre-

sented numerically as

CMOMg
g (a,α) = 1 −

[

13.2462444− 1.5118956α− 0.1640232α2
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+0.1250000α3 − 1.7084032Nf

]

a

−
[

217.0368707 + 36.7247782α + 7.0535877α2 − 1.1557619α3

+1.0453915α4 − 0.0996192α5 − 0.0156250α6

−[33.1527255 + 3.7086335α− 0.0047429α2

−0.6354341α3]Nf − 0.5342658N2
f

]

a2 + O(a3)

CMOMq
g (a,α) = 1 −

[

8.3578873− 1.1720934α− 0.0820116α2

−0.5555556Nf ] a

−
[

131.2981279 + 7.8598968α− 0.3923795α2 + 0.7219823α3

+0.0943409α4 − [27.6257962 + 1.6277910α

+0.1366860α2]Nf + 0.1543230N2
f

]

a2 + O(a3) . (3.3.54)

These conversion functions and parameter mappings are vital in constructing the

β-functions for each MOMi scheme, which we visit in the next section.

3.4 β-functions and anomalous dimensions

Now that we have deduced the coupling constant mappings, gauge parameter

mapping and conversion functions we can begin constructing the β-functions and

anomalous dimensions to three loops for each MOMi scheme. This is carried out

using the formula (3.3.29), [14, 58]. It has been shown, and confirmed in [1, 2] that

the one loop β-function (3.3.30) is both gauge and scheme independent. This can

be seen through the absence of α terms at this loop order. We note however that

in momentum subtraction schemes gauge dependence appears in the β-function

at higher loop orders and that it no longer remains gauge parameter independent,

instead depending very much on the scheme used to calculate it. This is not the

case for the MS β-function where it remains gauge invariant to all known orders.

This is a special property of MS. Since there are three MOMi schemes, this means

there will be three separate β-functions compared to just one in MS, since there

are three distinct couplings. The anomalous dimensions can be computed in a

similar way using the formula

γMOMi
φ (a,α) =

[

γMS
φ

(

aMS

)

+ βMS(aMS

) ∂

∂aMS
lnCMOMi

φ

(

aMS,αMS

)

+αMS γ
MS
α

(

aMS,αMS

) ∂

∂αMS
lnCMOMi

φ

(

aMS,αMS

)

]

MS→MOMi
(3.4.55)
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with φ ∈ {A,ψ, c,α}. In order to use these formulae we require the MS β-function

and anomalous dimensions at three loops. Since we did not directly carry out a

three loop calculation we pull these results from [1, 2, 92, 93, 94, 14], and display

them below for the benefit of the reader

βMS(a,α) = [−11CA + 4NfTF ]
a2

3
+ 2

[

−17C2
A + 10CANfTF + 6CFNfTF

] a3

3
+
[

−2857C3
A + 2830C2

ANfTF + 1230CACFNfTF − 316CAN
2
f T

2
F

−108C2
FNfTF − 264CFN

2
f T

2
F

] a4

54
+ O(a5) (3.4.56)

γMS
A (a,α) = [3αCA − 13CA + 8NfTF ]

a

6

+
[

2α2C2
A + 11αC2

A − 59C2
A + 40CANfTF + 32CFNfTF

] a2

8
+
[

63α3C3
A + 54α2C3

Aζ3 + 297α2C3
A + 216αC3

Aζ3 + 1503αC3
A

−576αC2
ANfTF + 162C3

Aζ3 − 9965C3
A − 5184C2

ANfTF ζ3

+14576C2
ANfTF + 6912CACFNfTF ζ3 + 80CACFNfTF

−2432CAN
2
f T

2
F − 576C2

FNfTF − 1408CFN
2
f T

2
F

] a3

288
+ O(a4)

γMS
α (a,α) = [−3αCA + 13CA − 8NfTF ]

a

6

+
[

−2α2C2
A − 11αC2

A + 59C2
A − 40CANfTF − 32CFNfTF

] a2

8
+
[

−63α3C3
A − 54α2C3

Aζ3 − 297α2C3
A − 216αC3

Aζ3 − 1503αC3
A

+576αC2
ANfTF − 162C3

Aζ3 + 9965C3
A + 5184C2

ANfTF ζ3

−14576C2
ANfTF − 6912CACFNfTF ζ3 − 80CACFNfTF

+2432CAN
2
f T

2
F + 576C2

FNfTF + 1408CFN
2
f T

2
F

] a3

288
+ O(a4)

γMS
c (a,α) = CA(α− 3)

a

4
+ CA [−3αCA − 95CA + 40NfTF ]

a2

48
+CA

[

81α3C2
A − 162α2C2

Aζ3 + 162α2C2
A − 648αC2

Aζ3 + 918αC2
A

−1512αCANfTF − 486C2
Aζ3 − 15817C2

A + 15552CANfTF ζ3

+1552CANfTF − 20736CFNfTF ζ3 + 19440CFNfTF

+2240N2
f T

2
F

] a2

1728
+ O(a4)

γMS
ψ (a,α) = αCFa+ CF

[

α2CA + 8αCA + 25CA − 6CF − 8NfTF
] a2

4
+CF

[

90α3C2
A + 108α2C2

Aζ3 + 351α2C2
A + 216αC2

Aζ3 + 2367αC2
A

−1224αCANfTF − 2484C2
Aζ3 + 18310C2

A + 3456CACF ζ3

−10296CACF − 9184CANfTF + 432C2
F + 864CFNfTF
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+640N2
f T

2
F

] a3

288
+ O(a4) (3.4.57)

where the gauge invariance of the MS β-function can be explicitly seen here.

We now have everything we need to compute the MOMi scheme renormalization

group functions. Starting with the MOMh scheme the scheme dependent β-

function is

βMOMh(a,α) = [−11CA + 4NfTF ]
a2

3
+
[

9ψ′
(

1
3

)

α3C2
A − 3ψ′

(

1
3

)

α2C2
A + 24ψ′

(

1
3

)

α2CANfTF

−156ψ′
(

1
3

)

αC2
A + 96ψ′

(

1
3

)

αCANfTF − 6α3C2
Aπ

2 − 81α3C2
A

+2α2C2
Aπ

2 + 108α2C2
A − 16α2CANfπ

2TF − 216α2CANfTF

+104αC2
Aπ

2 + 1053αC2
A − 64αCANfπ

2TF − 648αCANfTF

−3672C2
A + 2160CANfTF + 1296CFNfTF

] a3

324

+
[
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√
3ψ′
(

1
3

)2
α5C3

A + 9468
√
3ψ′
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1
3

)2
α4C3

A

+2448
√
3ψ′
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1
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ANfTF − 7992
√
3ψ′
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3
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A
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√
3ψ′
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1
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)2
α3C2

ANfTF − 83808
√
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A
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√
3ψ′
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√
3ψ′
(

1
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)2
αC3

A
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√
3ψ′
(

1
3

)2
αC2

ANfTF + 29700
√
3ψ′
(

1
3

)2
C3
A
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√
3ψ′
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1
3
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C2
ANfTF − 1440

√
3ψ′
(

1
3

)

α5C3
Aπ

2
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√
3ψ′
(

1
3

)

α5C3
A − 12624

√
3ψ′
(

1
3

)

α4C3
Aπ

2

−3888
√
3ψ′
(

1
3
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α4C3
A − 3264

√
3ψ′
(

1
3

)

α4C2
ANfπ

2TF

−31104
√
3ψ′
(

1
3

)

α4C2
ANfTF + 10656

√
3ψ′
(

1
3

)

α3C3
Aπ

2

−222912
√
3ψ′
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1
3
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α3C3
A − 36864

√
3ψ′
(

1
3

)

α3C2
ANfπ

2TF

−176256
√
3ψ′
(

1
3

)

α3C2
ANfTF + 111744

√
3ψ′
(

1
3
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α2C3
Aπ

2

+609768
√
3ψ′
(

1
3

)

α2C3
A − 72576

√
3ψ′
(

1
3

)

α2C2
ANfπ

2TF
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√
3ψ′
(

1
3

)

α2C2
ANfTF + 186624

√
3ψ′
(

1
3

)

α2CACFNfTF
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√
3ψ′
(

1
3

)

αC3
Aπ

2 − 2171448
√
3ψ′
(

1
3

)

αC3
A

+30720
√
3ψ′
(
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3

)

αC2
ANfπ

2TF + 1586304
√
3ψ′
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1
3
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αC2
ANfTF

+995328
√
3ψ′
(

1
3

)

αCACFNfTF − 39600
√
3ψ′
(

1
3

)

C3
Aπ

2

+14224896
√
3ψ′
(

1
3

)

C3
A + 14400

√
3ψ′
(

1
3

)

C2
ANfπ

2TF

−11187072
√
3ψ′
(

1
3

)

C2
ANfTF − 311040

√
3ψ′
(

1
3

)

CACFNfTF

+2115072
√
3ψ′
(

1
3

)

CAN
2
f T

2
F + 243

√
3ψ′′′

(

1
3

)

α4C3
A
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−3537
√
3ψ′′′
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1
3
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α3C3
A + 432

√
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ANfTF
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√
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√
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ANfTF

+7533
√
3ψ′′′
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αC3
A + 65934

√
3ψ′′′
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C3
A

−23976
√
3ψ′′′
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ANfTF + 524880

√
3s2
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π
6

)

α4C3
A
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√
3s2
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π
6
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α3C3
A + 933120

√
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ANfTF
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√
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α2C3
A − 2985984

√
3s2
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ANfTF

+3674160
√
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π
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)

αC3
A + 84167424

√
3s2
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π
6

)

C3
A

−63452160
√
3s2
(

π
6

)

C2
ANfTF + 11943936

√
3s2
(

π
6

)

CAN
2
f T

2
F

−1049760
√
3s2
(

π
2

)

α4C3
A + 6461856

√
3s2
(

π
2

)

α3C3
A

−1866240
√
3s2
(

π
2

)

α3C2
ANfTF − 5435424

√
3s2
(

π
2

)

α2C3
A

+5971968
√
3s2
(

π
2

)

α2C2
ANfTF − 7348320

√
3s2
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π
2

)

αC3
A

−168334848
√
3s2
(

π
2

)

C3
A + 126904320

√
3s2
(

π
2

)

C2
ANfTF

−23887872
√
3s2
(

π
2

)

CAN
2
f T

2
F − 874800

√
3s3
(

π
6

)

α4C3
A

+5384880
√
3s3
(

π
6

)

α3C3
A − 1555200

√
3s3
(

π
6

)

α3C2
ANfTF

−4529520
√
3s3
(

π
6

)

α2C3
A + 4976640

√
3s3
(

π
6

)

α2C2
ANfTF

−6123600
√
3s3
(

π
6

)

αC3
A − 140279040

√
3s3
(

π
6

)

C3
A

+105753600
√
3s3
(

π
6

)

C2
ANfTF − 19906560

√
3s3
(

π
6

)

CAN
2
f T

2
F

+699840
√
3s3
(

π
2

)

α4C3
A − 4307904

√
3s3
(

π
2

)

α3C3
A

+1244160
√
3s3
(

π
2

)

α3C2
ANfTF + 3623616

√
3s3
(

π
2

)

α2C3
A

−3981312
√
3s3
(

π
2

)

α2C2
ANfTF + 4898880

√
3s3
(

π
2

)

αC3
A

+112223232
√
3s3
(

π
2

)

C3
A − 84602880

√
3s3
(

π
2

)

C2
ANfTF

+15925248
√
3s3
(

π
2

)

CAN
2
f T

2
F + 480

√
3α5C3

Aπ
4

+7776
√
3α5C3

Aπ
2 + 3560

√
3α4C3

Aπ
4 + 2592

√
3α4C3

Aπ
2

−8748
√
3α4C3

Aζ3 − 40824
√
3α4C3

A + 1088
√
3α4C2

ANfπ
4TF

+20736
√
3α4C2

ANfπ
2TF + 46656

√
3α4C2

ANfTF

+5880
√
3α3C3

Aπ
4 + 148608

√
3α3C3

Aπ
2 + 214812

√
3α3C3

Aζ3

−554040
√
3α3C3

A + 11136
√
3α3C2

ANfπ
4TF

+117504
√
3α3C2

ANfπ
2TF − 15552

√
3α3C2

ANfTF ζ3

+466560
√
3α3C2

ANfTF − 49416
√
3α2C3

Aπ
4

−406512
√
3α2C3

Aπ
2 − 537516

√
3α2C3

Aζ3

+832032
√
3α2C3

A + 35136
√
3α2C2

ANfπ
4TF

+432000
√
3α2C2

ANfπ
2TF + 264384

√
3α2C2

ANfTF ζ3
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−917568
√
3α2C2

ANfTF − 124416
√
3α2CACFNfπ

2TF

−1679616
√
3α2CACFNfTF − 20728

√
3αC3

Aπ
4

+1447632
√
3αC3

Aπ
2 − 1215972

√
3αC3

Aζ3 + 12422160
√
3αC3

A

−10240
√
3αC2

ANfπ
4TF − 1057536

√
3αC2

ANfπ
2TF

−8957952
√
3αC2

ANfTF − 663552
√
3αCACFNfπ

2TF

−6718464
√
3αCACFNfTF − 162624

√
3C3

Aπ
4

−9483264
√
3C3

Aπ
2 − 3378672

√
3C3

Aζ3

−70400016
√
3C3

A + 59136
√
3C2

ANfπ
4TF

+7458048
√
3C2

ANfπ
2TF + 23125824

√
3C2

ANfTF ζ3

+58335552
√
3C2

ANfTF + 207360
√
3CACFNfπ

2TF

−32845824
√
3CACFNfTF ζ3 + 37635840

√
3CACFNfTF

−1410048
√
3CAN

2
f π

2T 2
F − 7962624

√
3CAN

2
f T

2
F ζ3

−8211456
√
3CAN

2
f T

2
F − 1119744

√
3C2

FNfTF

+11943936
√
3CFN

2
f T

2
F ζ3 − 11446272

√
3CFN

2
f T

2
F

+3645 ln(3)2α4C3
Aπ − 22437 ln(3)2α3C3

Aπ

+6480 ln(3)2α3C2
ANfπTF + 18873 ln(3)2α2C3

Aπ

−20736 ln(3)2α2C2
ANfπTF + 25515 ln(3)2αC3

Aπ

+584496 ln(3)2C3
Aπ − 440640 ln(3)2C2

ANfπTF

+82944 ln(3)2CAN
2
f πT

2
F − 43740 ln(3)α4C3

Aπ

+269244 ln(3)α3C3
Aπ − 77760 ln(3)α3C2

ANfπTF

−226476 ln(3)α2C3
Aπ + 248832 ln(3)α2C2

ANfπTF

−306180 ln(3)αC3
Aπ − 7013952 ln(3)C3

Aπ

+5287680 ln(3)C2
ANfπTF − 995328 ln(3)CAN

2
f πT

2
F

−3915α4C3
Aπ

3 + 24099α3C3
Aπ

3 − 6960α3C2
ANfπ

3TF

−20271α2C3
Aπ

3 + 22272α2C2
ANfπ

3TF − 27405αC3
Aπ

3

−627792C3
Aπ

3 + 473280C2
ANfπ

3TF

−89088CAN
2
f π

3T 2
F

] a4

559872
√
3

+ O(a5) (3.4.58)

where gauge dependence is apparent after one loop. This is expected with mass

dependent renormalization schemes. One check on (3.4.58) is that the MOMi and

MS β-functions agree in the limit α = 0 at two loops. At three loops they will

not agree as this is where the scheme dependence first appears. This has been
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checked in all schemes. The anomalous dimensions for the wave functions and

arbitrary gauge parameter, constructed using (3.4.55), in the MOMh scheme are

γMOMh
A (a,α) = [3αCA − 13CA + 8NfTF ]

a

6
+
[

9ψ′
(

1
3

)

α3C2
A + 33ψ′

(

1
3

)

α2C2
A + 24ψ′

(

1
3

)

α2CANfTF

−357ψ′
(

1
3

)

αC2
A + 192ψ′

(

1
3

)

αCANfTF + 195ψ′
(

1
3

)

C2
A

−120ψ′
(

1
3

)

CANfTF − 6α3C2
Aπ

2 − 162α3C2
A − 22α2C2

Aπ
2

+135α2C2
A − 16α2CANfπ

2TF − 432α2CANfTF + 238αC2
Aπ

2

+1539αC2
A − 128αCANfπ

2TF − 1296αCANfTF − 130C2
Aπ

2

−3186C2
A + 80CANfπ

2TF + 2808CANfTF

+2592CFNfTF ]
a2
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+
[
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√
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√
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√
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√
3ψ′
(

1
3

)2
α3C3

A

+16128
√
3ψ′
(

1
3

)2
α3C2

ANfTF − 118692
√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
3ψ′
(

1
3

)

α3C3
A − 21504

√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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4 − 2592

√
3α4C2

Aπ
2 − 972

√
3α4C2

Aζ3

+1920
√
3α3C2

Aπ
4 + 51408

√
3α3C2

Aπ
2

+105948
√
3α3C2

Aζ3 − 91368
√
3α3C2

A

−19888
√
3α2C2

Aπ
4 − 142848

√
3α2C2

Aπ
2

+57348
√
3α2C2

Aζ3 − 75816
√
3α2C2

A

−11520
√
3α2CANfπ

2TF − 62208
√
3α2CANfTF

+13544
√
3αC2

Aπ
4 − 207792

√
3αC2

Aπ
2

−891324
√
3αC2

Aζ3 + 2218104
√
3αC2

A

+134784
√
3αCANfπ

2TF + 435456
√
3αCANfTF ζ3

−808704
√
3αCANfTF + 19776

√
3C2

Aπ
4

+1118016
√
3C2

Aπ
2 + 2921832

√
3C2

Aζ3

−8567208
√
3C2

A − 494208
√
3CANfπ

2TF

−559872
√
3CANfTF ζ3 + 6780672

√
3CANfTF

+559872
√
3CFNfTF − 1244160

√
3N2

f T
2
F

+405 ln(3)2α4C2
Aπ − 3807 ln(3)2α3C2

Aπ

+10611 ln(3)2α2C2
Aπ + 18063 ln(3)2αC2

Aπ

−10368 ln(3)2αCANfπTF − 79704 ln(3)2C2
Aπ

+31104 ln(3)2CANfπTF − 4860 ln(3)α4C2
Aπ

+45684 ln(3)α3C2
Aπ − 127332 ln(3)α2C2

Aπ

−216756 ln(3)αC2
Aπ + 124416 ln(3)αCANfπTF

+956448 ln(3)C2
Aπ − 373248 ln(3)CANfπTF − 435α4C2

Aπ
3

+4089α3C2
Aπ

3 − 11397α2C2
Aπ

3 − 19401αC2
Aπ

3

+11136αCANfπ
3TF + 85608C2

Aπ
3

−33408CANfπ
3TF
] a3

373248
√
3

+ O(a4)

γMOMh
ψ (a,α) = αCFa

+CF

[

3ψ′
(

1
3

)

α3CA + 24ψ′
(

1
3

)

α2CA − 15ψ′
(

1
3

)

αCA

−2α3CAπ
2 − 16α2CAπ

2 − 27α2CA + 10αCAπ
2 + 54αCA

+675CA − 162CF − 216NfTF ]
a2

108

+CF

[

126
√
3ψ′
(

1
3

)2
α5C2

A + 2016
√
3ψ′
(

1
3

)2
α4C2

A

+6804
√
3ψ′
(

1
3

)2
α3C2

A − 10080
√
3ψ′
(

1
3

)2
α2C2

A

+3150
√
3ψ′
(

1
3

)2
αC2

A − 168
√
3ψ′
(

1
3

)

α5C2
Aπ

2
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−2688
√
3ψ′
(

1
3

)

α4C2
Aπ

2 + 3888
√
3ψ′
(

1
3

)

α4C2
A

−9072
√
3ψ′
(

1
3

)

α3C2
Aπ

2 − 65448
√
3ψ′
(

1
3

)

α3C2
A

+13440
√
3ψ′
(

1
3

)

α2C2
Aπ

2 + 71064
√
3ψ′
(

1
3

)

α2C2
A

−7776
√
3ψ′
(

1
3

)

α2CACF − 3456
√
3ψ′
(

1
3

)

α2CANfTF

−4200
√
3ψ′
(

1
3

)

αC2
Aπ

2 + 852768
√
3ψ′
(

1
3

)

αC2
A

−62208
√
3ψ′
(

1
3

)

αCACF − 347328
√
3ψ′
(

1
3

)

αCANfTF

−162000
√
3ψ′
(

1
3

)

C2
A + 38880

√
3ψ′
(

1
3

)

CACF

+51840
√
3ψ′
(

1
3

)

CANfTF + 27
√
3ψ′′′

(

1
3

)

α4C2
A

−513
√
3ψ′′′

(

1
3

)

α3C2
A + 837

√
3ψ′′′

(

1
3

)

α2C2
A

+2997
√
3ψ′′′

(

1
3

)

αC2
A + 58320

√
3s2
(

π
6

)

α4C2
A

−373248
√
3s2
(

π
6

)

α3C2
A + 408240

√
3s2
(

π
6

)

α2C2
A

+3825792
√
3s2
(

π
6

)

αC2
A − 1492992

√
3s2
(

π
6

)

αCANfTF

−116640
√
3s2
(

π
2

)

α4C2
A + 746496

√
3s2
(

π
2

)

α3C2
A

−816480
√
3s2
(

π
2

)

α2C2
A − 7651584

√
3s2
(

π
2

)

αC2
A

+2985984
√
3s2
(

π
2

)

αCANfTF − 97200
√
3s3
(

π
6

)

α4C2
A

+622080
√
3s3
(

π
6

)

α3C2
A − 680400

√
3s3
(

π
6

)

α2C2
A

−6376320
√
3s3
(

π
6

)

αC2
A + 2488320

√
3s3
(

π
6

)

αCANfTF

+77760
√
3s3
(

π
2

)

α4C2
A − 497664

√
3s3
(

π
2

)

α3C2
A

+544320
√
3s3
(

π
2

)

α2C2
A + 5101056

√
3s3
(

π
2

)

αC2
A

−1990656
√
3s3
(

π
2

)

αCANfTF + 56
√
3α5C2

Aπ
4

+824
√
3α4C2

Aπ
4 − 2592

√
3α4C2

Aπ
2 − 972

√
3α4C2

Aζ3

+4392
√
3α3C2

Aπ
4 + 43632

√
3α3C2

Aπ
2 + 33048

√
3α3C2

Aζ3

+48600
√
3α3C2

A − 46656
√
3α3CACF − 6712

√
3α2C2

Aπ
4

−47376
√
3α2C2

Aπ
2 − 53460

√
3α2C2

Aζ3 − 268272
√
3α2C2

A

+5184
√
3α2CACFπ

2 − 69984
√
3α2CACF

+2304
√
3α2CANfπ

2TF + 124416
√
3α2CANfTF

−6592
√
3αC2

Aπ
4 − 568512

√
3αC2

Aπ
2

−1809864
√
3αC2

Aζ3 − 660960
√
3αC2

A

+41472
√
3αCACFπ

2 + 419904
√
3αCACF

+231552
√
3αCANfπ

2TF + 622080
√
3αCANfTF ζ3

+202176
√
3αCANfTF + 108000

√
3C2

Aπ
2

−2857680
√
3C2

Aζ3 + 6304392
√
3C2

A − 25920
√
3CACFπ

2
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+1119744
√
3CACF ζ3 − 2169504

√
3CACF

−34560
√
3CANfπ

2TF + 746496
√
3CANfTF ζ3

−3203712
√
3CANfTF + 139968

√
3C2

F

−186624
√
3CFNfTF + 248832

√
3N2

f T
2
F

+405 ln(3)2α4C2
Aπ − 2592 ln(3)2α3C2

Aπ

+2835 ln(3)2α2C2
Aπ + 26568 ln(3)2αC2

Aπ

−10368 ln(3)2αCANfπTF − 4860 ln(3)α4C2
Aπ

+31104 ln(3)α3C2
Aπ − 34020 ln(3)α2C2

Aπ

−318816 ln(3)αC2
Aπ + 124416 ln(3)αCANfπTF

−435α4C2
Aπ

3 + 2784α3C2
Aπ

3 − 3045α2C2
Aπ

3

−28536αC2
Aπ

3 + 11136αCANfπ
3TF
] a3

93312
√
3

+ O(a4) . (3.4.59)

Looking closely at the results for the gluon and gauge parameter anomalous

dimensions in both the MS and MOMi schemes it becomes apparent that the

following identity holds

γα(a,α) = −γA(a,α) (3.4.60)

in all schemes for an arbitrary (linear) covariant gauge fixing. This relation comes

from our convention when defining the renormalization constants in (2.1.55), most

notably αo = Z−1
α ZAα with Zα = 1 in this gauge. Therefore (3.4.60) is only valid

in gauges where Zα = 1. We now present the results for the remaining MOMi

schemes numerically. For the MOMg scheme the renormalization group functions

are

βMOMg(a,α) = − [11.000000− 0.666667Nf ]a
2

−
[

102.000000 + 19.654643α− 0.271084α2 − 5.859139α3

+1.125000α4 −
[

12.666667 + 2.015861α + 0.437395α2

−0.500000α3
]

Nf

]

a3

−
[

1570.984380 + 658.070929α + 269.223834α2

+43.002961α3 − 99.279719α4 + 14.855025α5 + 5.334592α6

−0.703125α7 +
[

0.565929− 43.239367α− 22.747196α2

−19.870956α3 + 14.834757α4 + 0.976418α5
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−0.281250α6
]

Nf −
[

67.089536 + 4.647961α + 0.889805α2

−2.305695α3
]

N2
f + 2.658116N3

f

]

a4 + O(a5)

γMOMg
A (a,α) = [0.666667Nf − 6.500000 + 1.500000α]a

+
[

16.909511− 41.643377α + 6.153386α2 + 0.992070α3

−0.375000α4 −
[

12.093123− 5.474404α + 0.281302α2

+0.166667α3
]

Nf + 1.537130N2
f

]

a2

−
[

1308.938674− 647.926068α + 376.230130α2 + 6.397113α3

−33.016247α4 + 7.325313α5 + 1.000873α6 − 0.164063α7

−
[

491.430950− 302.353050α + 52.302915α2 + 6.360434α3

−6.715315α4 − 0.128860α5 + 0.072917α6
]

Nf

+
[

74.919017− 29.399931α + 1.415890α2

+1.344989α3
]

N2
f − 6.202269N3

f

]

a3 + O(a4)

γMOMg
α (a,α) = [−0.666667Nf + 6.500000− 1.500000α]a

+
[

−16.909511 + 41.643377α− 6.153386α2 − 0.992070α3

+0.375000α4 +
[

12.093123− 5.474404α + 0.281302α2

+0.166667α3
]

Nf − 1.537130N2
f

]

a2

+
[

1308.938674− 647.926068α + 376.230130α2 + 6.397113α3

−33.016247α4 + 7.325313α5 + 1.000873α6 − 0.164063α7

−
[

491.430950− 302.353050α + 52.302915α2 + 6.360434α3

−6.715315α4 − 0.128860α5 + 0.072917α6
]

Nf

+
[

74.919017− 29.399931α + 1.415890α2

+1.344989α3
]

N2
f − 6.202269N3

f

]

a3 + O(a4)

γMOMg
c (a,α) = [0.750000α− 2.250000]a

+
[

8.795510− 21.172897α + 2.654739α2 + 1.371035α3

−0.187500α4 − [4.437815− 1.729272α]Nf

]

a2

−
[

548.849239− 436.672056α + 199.293803α2

+32.708614α3 − 30.012394α4 + 1.430343α5 + 0.953562α6

−0.082031α7 − [157.466918− 127.545756α

+20.052219α2 + 7.759276α3 − 1.513113α4
]

Nf

+ [19.974116− 6.977553α]N2
f

]

a3 + O(a4)

γMOMg
ψ (a,α) = 1.333333αa

+
[

22.333333− 10.545541α + 9.031722α2 + 1.437395α3
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−0.333333α4 − [1.333333− 3.074260α]Nf

]

a2

−
[

94.794329− 204.199880α + 218.840411α2 − 30.421666α3

−34.407386α4 + 6.315994α5 + 1.257721α6 − 0.145833α7

−
[

76.867272− 80.560197α + 53.071812α2 + 7.057668α3

−2.689978α4
]

Nf + [5.259632− 12.404539α]N2
f

]

a3

+ O(a4) . (3.4.61)

With the above presented numerically it is easier for one to see that at two loops

the MOM and MS results are equivalent in the Landau gauge, particularly in the

case of the β-function. Finally for the MOMq scheme

βMOMq(a,α) = − [11.000000− 0.666667Nf ]a
2

−
[

102.000000 + 15.237214α− 1.383979α2 − 0.492070α3

−
[

12.666667 + 1.562791α + 0.218698α2
]

Nf

]

a3

−
[

1843.652729 + 422.073185α + 123.373496α2

−19.513026α3 − 3.505519α4 − 0.096131α5

−
[

588.654846 + 60.545481α + 16.395570α2 + 0.928236α3

−0.000006α4
]

Nf + 22.587812N2
f

]

a4 + O(a5)

γMOMq
A (a,α) = [0.666667Nf − 6.500000 + 1.500000α]a

−
[

46.639132 + 22.560876α− 6.200129α2 + 0.878965α3

−
[

9.411706 + 1.562791α− 0.390651α2
]

Nf

]

a2

−
[

2027.743714 + 333.308222α + 184.238292α2

−24.351972α3 + 12.671886α4 + 1.920079α5

−
[

415.699015 + 49.405308α + 9.700384α2 − 3.790855α3

−0.478368α4
]

Nf + [11.178808− 1.302171α]N2
f

]

a3

+ O(a4)

γMOMq
α (a,α) = [−0.666667Nf + 6.500000− 1.500000α]a

−
[

−46.639132− 22.560876α + 6.200129α2 − 0.878965α3

+
[

9.411706 + 1.562791α− 0.390651α2
]

Nf

]

a2

+
[

2027.743714 + 333.308222α + 184.238292α2

−24.351972α3 + 12.671886α4 + 1.920079α5

−
[

415.699015 + 49.405308α + 9.700384α2 − 3.790855α3

−0.478368α4
]

Nf + [11.178808− 1.302171α]N2
f

]

a3
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+ O(a4)

γMOMq
c (a,α) = [0.750000α− 2.250000]a

−
[

13.202007 + 12.311251α− 2.514088α2 − 0.685517α3

−0.750000Nf ] a
2

−
[

740.134165 + 1.866578α + 100.645035α2 − 3.435592α3

−8.767800α4 − 1.096513α5 − [75.503272 + 4.118647α

+1.710977α2
]

Nf + 2.500000N2
f

]

a3 + O(a4)

γMOMq
ψ (a,α) = 1.333333αa

+
[

22.333333 + 2.490078α + 8.125582α2 + 1.218698α3

−1.333333Nf ] a
2

+
[

341.898910 + 182.913289α + 43.980106α2 + 74.928346α3

+21.435269α4 + 1.949356α5 − [52.191691− 3.107628α

−2.166946α2
]

Nf + 0.888889N2
f

]

a3 + O(a4) . (3.4.62)

The β-functions and anomalous dimensions calculated perturbatively in all schemes

are also useful for non-perturbative approaches. In particular in lattice matching

where high energy results can be mapped on to the low energy regime, improving

measurements for the coupling constant.

3.5 Discussion

We close this chapter with some remarks on our computation. To recap we have

considered the two loop renormalization of QCD fixed in an arbitrary (linear) co-

variant gauge. In particular we have focused on the structure of the ghost-gluon,

triple-gluon and quark-gluon vertices of QCD at the symmetric subtraction point

in the MS and MOMi schemes. Independently reconstructing the results of [14]

and [52] we have explicitly shown how the three loop renormalization group func-

tions, including the β-functions for each MOMi scheme, can be constructed via

the two loop results in the same scheme without the need to do an explicit three

loop calculation. We also constructed the coupling constant mappings in each

scheme and graphically presented the one and two loop truncated ghost-gluon

vertex for various values of Nf for SU(3). Graphically it could be said that the

two loop results seem to converge quicker, whereas by looking at the numbers

alone it is not so obvious to see what it happening. This is why results for higher

loop orders are of importance, and the more multiloop results one can obtain the
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more precise QCD becomes. However, to properly analyse these results in more

depth and to gain a real understanding of the behaviour of the running coupling

one needs to consider other techniques, such as the R-ratio which has been con-

sidered in [97].

Although largely the results presented in this chapter have been previously pub-

lished in [14] we note that some results have been presented here for the first

time. Notably the results of the renormalization constants themselves. Given the

explicit forms of the renormalization group functions the underlying renormaliza-

tion constants can be constructed. However, for the renormalization constants

presented within this chapter we have explicitly calculated them from first prin-

ciples and they are in exact agreement with [14]. We have made strong reference

to earlier works that have been used when making checks on our results, ensuring

our computational method is correct before extending to new gauges and/or loop

orders where initial checks are harder to achieve. Although MS is currently the

default scheme choice for QCD it is interesting to see how a physical scheme such

as momentum subtraction can impact on results. The real differences (between

the schemes) are only observed at three loops where the Landau gauge check is no

longer valid. It would be interesting to see if this gauge dependence continues at

higher loop orders or if at some point the results agree again with the MS results

of the same loop order for α = 0. It could be that of the three MOMi schemes one

of the β-functions appears to be more convergent than the others. However this

is not so straightforward to determine since the coupling constant runs at differ-

ent rates in different schemes, so it is hard to see just from the numbers which

β-function has better convergence. To appreciate this subtlety one would need to

calculate something physical and compare the value at a particular momentum

scale. For instance in [97] the R-ratio was computed in the Landau gauge in all

MOMi schemes and also the mini-MOM scheme introduced in [98]. The mini-

MOM scheme is defined such that the wave function renormalization is carried

out in a MOM way, whilst the ghost-gluon vertex is treated differently from other

schemes. Instead of computing it at the symmetric point, an asymmetric setup is

used, where one external leg is nullified. The condition on the ghost-gluon vertex

is that it is not renormalized in the Landau gauge. The motivation for the scheme

is to preserve the non-renormalization of the ghost-gluon vertex. In our notation

this corresponds to ensuring that the ghost-gluon vertex in the MS scheme is the
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same as in the mini-MOM (mMOM) scheme, such that

Z(ccg)MS
g

√

ZMS
A ZMS

c = Z(ccg)mMOM
g

√

ZmMOM
A ZmMOM

c . (3.5.63)

In [97] it was noted that the coefficients of the R-ratio appeared to be less conver-

gent in one scheme compared to another. However when one plots the R-ratio’s as

a function of the centre of mass scale as in [97] the discrepancy between schemes

is less than 0.5%.

Although for presentation purposes we chose to display most results numerically

for SU(3), leaving results in terms of SU(Nc) variables and arbitrary α and Nf

gives scope for others to easily compare results with our own, where analysis of

these results can assist with things like Monte-Carlo simulations and further lat-

tice matching. On completing this initial work in the arbitrary (linear) covariant

gauge we are now in a position to extend and apply our algorithm to a more

involved non-linear gauge fixing, which we visit in the next chapter.
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Chapter 4

The Curci-Ferrari gauge

In this chapter we extend the work of the previous chapter, evaluating the two

loop 3-point vertex functions of QCD in the Curci-Ferrari (CF) gauge at the

symmetric subtraction point. Renormalizing each of the three vertices in their

respective momentum subtraction (MOM) schemes, as well as in the MS scheme,

we construct the two loop conversion functions for the wave function, coupling

constant and gauge parameter renormalization constants for each MOMi scheme

relative to the MS scheme. Using these conversion functions we are able to derive

the three loop anomalous dimensions and β-functions for each MOMi scheme.

These RG functions are new results which contribute to improving lattice match-

ing. Although our method is the same, in contrast to the previous chapter we

now consider a non-linear gauge fixing with a more complicated internal struc-

ture. This in turn introduces new field interactions, requiring additional Feynman

rules, group algebra and master integrals.

4.1 Background

As a preliminary to studying the maximal abelian gauge it is useful to consider

the Curci-Ferrari gauge, a non-linear covariant gauge fixing with similarities to,

but extending that of the Landau gauge. The Curci-Ferrari gauge and its related

model were introduced in [42]. The Curci-Ferrari model is an extension of QCD

fixed in the Curci-Ferrari gauge, with a mass term for the gluon present in its

formalism. Similar to QCD in its ultraviolet properties this model differs in the

infrared. This renormalizable model of massive gluons was originally constructed

as an alternative to the Higgs mechanism in understanding massive vector bosons.

However the model has proved useful from a theoretical perspective in its non-

linear gauge fixing term which introduces quartic ghost self interactions, [42, 99].
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Since we are only interested in calculating in a massless regime the Curci-Ferrari

gauge, which includes no direct mass term, will suffice. In addition to being an ex-

tension of our previous chapter, studying the Curci-Ferrari gauge is of importance

as it may provide an insight into the closely related but much more complicated

maximal abelian gauge, [100].

For background another motivation for considering the Curci-Ferrari gauge is

that is has received renewed interest due to its relation to the ghost condensation

problem through the presence of a four-ghost interaction term appearing in the

Lagrangian, [100, 99]. The dimension two composite operator 1
2A

A 2
µ − αc̄AcA,

which also appears in the maximal abelian gauge fixing, corresponds to the mass

operator in a massive regime. It is these operators which may help in our under-

standing of confinement, [101]. A non-linear gauge fixing like Curci-Ferrari allows

one to add a BRST invariant gluon mass to the Lagrangian, [102]. Although we

do not concern ourselves with mass terms as this lies beyond the scope of our

work, results for this gauge in a massless regime are still of interest.

We study the Curci-Ferrari gauge at two loops for two reasons. Firstly the gauge

fixing is directly related to that of the MAG, where we treat this chapter as a

preliminary calculation. Any results computed will be of interest when comparing

with the MAG. Secondly, the Curci-Ferrari results at two loops for the MOMi

schemes had not been determined prior to [67]. Analysis of this non-linear gauge

fixing is presented here.

In this chapter, since it is self-contained we take the colour group A → a, where

for the Curci-Ferrari gauge the index a represents the full colour group, as is

conventional and consistent with the textbook approach. With this in mind, we

now move on to discuss the key properties of the Curci-Ferrari gauge. We begin

by first stating the Lagrangian, which for the Curci-Ferrari gauge is, [42],

LCF = − 1

4
Ga

µνG
aµν − 1

2α
(∂µAa

µ)
2 − c̄a∂µDµc

a + iψ̄iID/ψiI

+
g

2
fabc∂µAa

µ c̄
bcc +

αg2

8
f eabf ecdc̄acbc̄ccd , (4.1.1)

where Dµ = ∂µ + igAa
µ is the covariant derivative and the the field strength tensor

G a
µν = ∂µAa

ν − ∂νAa
µ − gfabcAb

µA
c
ν is defined in the same way as for the arbitrary

(linear) covariant gauge. The coupling constant is denoted as g and α is the

associated gauge parameter. Where the coupling constant and gauge parameter
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are different to those considered in the previous chapter for the arbitrary (linear)

covariant gauge. The massless quark is represented by ψiI and fabc are the colour

group structure constants whose generators are T a. As before ca, c̄a represent the

Faddeev-Popov ghosts. Our adjoint colour indices are denoted by a, b and c and

run from 1 ≤ a ≤ NA, where NA is the dimension of the adjoint representation

of the colour group. Likewise our fundamental representation indices are i, j and

k, running from 1 ≤ i ≤ NF where NF is the fundamental representation. The

flavour indices are denoted by I with 1≤ I ≤Nf , where we choose to represent our

results in terms of Nf for an arbitrary number of quarks. The Curci-Ferrari gauge

fixed Lagrangian is not fully gauge invariant but it is invariant under the set of

BRST transformations (2.1.36). Note the difference here to the arbitrary (linear)

covariant gauge fixed Lagrangian is the addition of a quartic ghost interaction,

which we commented on earlier, which is a special property of non-linear gauge

fixings. Although the ghosts couple non-trivially, the addition of this interaction

term does not spoil the renormalizability of the theory. These quartic ghost

interactions show up in the ghost-gluon vertex in the Curci-Ferrari gauge and so

we expect results in this vertex to differ from those computed in the same vertex in

Chapter 3, [42]. It is indeed the case that the ghost-gluon vertex is structurally

different. This becomes most apparent when we display the Λ parameters in

section 4.6. The gauge parameter gets renormalized differently to that of the

arbitrary (linear) covariant gauge, most notably because we now have Zα ̸= 1

(which we see in the following section). When studying this gauge fixing we

consider the same three vertex functions as before, namely

⟨Aa
µ(p)A

b
ν(q)A

c
σ(r)⟩ , ⟨ψi(p)ψ̄j(q)Ac

σ(r)⟩ and ⟨ca(p)c̄b(q)Ac
σ(r)⟩ , (4.1.2)

with momentum conservation along p + q + r = 0. We compute all three ver-

tices at the symmetric subtraction point, [91, 52]. Following the same technique

in [14], discussed in Appendix B, we rewrite the Lorentz amplitudes as tensors

multiplying scalar amplitudes. Although there are only six independent combi-

nations of basis tensors for the triple-gluon vertex which we determined in our

previous calculation for an arbitrary (linear) covariant gauge fixing (see equation

(3.2.14)), we choose to include all possible tensors. Since the Green’s functions

remain unchanged, we apply the same tensor basis as before, where details are

again given in Appendix B. Using the same method of projection we determine

each scalar amplitude individually. By introducing a projection matrix, Mi
kl, we

project out each amplitude as before.
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In terms of computational method, no further programs have been used other

than those already discussed in section 2.3 for the 3-point vertex functions. In

contrast to the arbitrary (linear) covariant gauge, if one were to determine the

full renormalization of the Curci-Ferrari gauge several 4-point interactions would

need to be considered. These are introduced via the quartic ghost and gluon

terms in the Lagrangian. The Mincer algorithm would not be appropriate here

as the only way one could apply Mincer to these 4-point functions would be to

nullify two external legs, which would introduce spurious infrared divergences. In

this thesis we only consider 2- and 3-point functions, with our focus on the 3-

point vertices of QCD. All 3-point functions have been reduced using the Laporta

algorithm in Reduze, as would be the method for the 4-point functions if they

were to be considered. It is only recently in [80, 103] that the 4-point vertices of

QCD have been computed at one loop for the MOMgggg scheme. At two loops

this is not yet possible since the master integrals are not known. The programs

we have used in evaluating the QCD vertices in the Curci-Ferrari gauge are ef-

fectively the same as those considered for the arbitrary (linear) covariant gauge

in chapter 3. This is with the exception of new Feynman rules, see Appendix

C, to describe the ghost-gluon and quartic ghost interactions, and of course the

number of diagrams constructed reflects this. The colour algebra however is the

same, despite the tensor structure being different.

Equation (3.4.55) incorporates γα(a,α), unlike in the linear covariant gauge, since

γA and γα are not equivalent up to a minus sign as was the case before. Now

γA(a,α) = β(a,α)
∂

∂a
lnZA + αγα(a,α)

∂

∂α
lnZA

γα(a,α) =

[

β(a,α)
∂

∂a
lnZα − γA(a,α)

] [

1 − α
∂

∂α
lnZα

]−1

(4.1.3)

where the β-function is α-dependent. Therefore the relation (3.4.60) no longer

holds in this non-linear gauge fixing, instead being replaced by the definitions

above.

Following the same structure as chapter 3 we present the majority of results nu-

merically, with the exception of those for the ghost-gluon vertex, which we use

for comparison with results for the same vertex in chapter 3. Note that all results

within this chapter are the original and published in [67].
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Our method of renormalization follows techniques of the previous section and

has been discussed at length. We renormalize our Lagrangian using the stan-

dard QCD definitions of the renormalization constants, defined in (2.1.55). Since

we are not restricting to the Landau gauge it is essential to renormalize our

gauge parameter α and coupling constant g. We use dimensional regularization

throughout in d = 4 − 2ϵ dimensions, where ϵ is the regularizing parameter.

4.2 MS scheme.

Since the technical details of the calculation have been discussed at length in

chapters 2 and 3 we simply record our results for the Curci-Ferrari gauge, com-

menting on any interesting features. In this section we record our results in the

basic reference scheme MS. Similar to the arbitrary (linear) covariant gauge we

have computed all diagrams to two loops, therefore all MS results will be of two

loop order. We begin by presenting the results for the renormalization constants

for the wave functions, gauge parameter and MS coupling constant. These are

presented analytically as

ZA(a,α)
∣

∣

∣

MS
= 1 +

[

−4

3
NfTF + CA

(

13

6
− α

2

)]

a

ϵ

+

[(

C2
A

(

−13

8
− 17

24
α +

3

16
α2

)

+NfTFCA

(

1 +
2

3
α

))

1

ϵ

+C2
A

(

59

16
− 11

16
α− 1

16
α2

)

− 5

2
NfTFCA − 2NfTFCF

]

a2

ϵ

+ O(a3)

Zα(a,α)
∣

∣

∣

MS
= 1− αCAa

4ϵ
+

[

C2
A

(

3α

16
+
α2

16

)

1

ϵ
+ C2

A

(

−5α

32
− α2

32

)]

a2

ϵ

+ O(a3)

Zc(a,α)
∣

∣

∣

MS
= 1 + CA

(

3

4
− α

4

)

a

ϵ

+

[(

C2
A

(

−35

32
+
α2

16

)

+
1

2
NfTFCA

)

1

ϵ

+C2
A

(

95

96
+
α

32
− α2

32

)

− 5

12
NfTFCA

]

a2

ϵ
+ O(a3)

Zψ(a,α)
∣

∣

∣

MS
= 1− αCFa

ϵ

+

[(

CFCA

(

3α

4
+
α2

8

)

+
1

2
C2
Fα

2

)

1

ϵ

105



+CFCA

(

−25

8
− α

)

+
3

4
C2
F +NfTFCF

]

a2

ϵ
+ O(a3)

Zg(a,α)
∣

∣

∣

MS
= 1 +

[

−11

6
CA +

2

3
TFNf

]

a

ϵ

+

[

2

(

1

3
T 2
FN

2
f − 11

6
CATFNf +

121

48
C2
A

)

1

ϵ

−2

(

−5

6
CATFNf +

17

12
C2
A − 1

2
CFTFNf

)]

a2

ϵ
+ O(a3)

(4.2.4)

which we have determined using Mincer. As a check on our results we were able

to compare with results in the Landau gauge, a gauge widely used by Landau

and first referred to as the Landau gauge in [88]. In the above renormalization

constants this corresponds to setting α = 0. Taking this limit the renormalization

constants determined in the MS scheme for the Curci-Ferrari gauge should match

on to those at the same Landau limit in the same scheme for the linear covariant

gauge, (3.1.2) - (3.1.3). It is the case that we indeed see an exact match. Again it

is understood that when variables are not labelled they correspond to the scheme

defined on the object, in this case on the Z’s, on the left hand side of the equation.

Once the renormalization constants are fixed we can generate the amplitudes. We

begin with the ghost-gluon vertex where the amplitudes at two loops are given

explicitly as

Σccg
(1) (p, q)

∣

∣

∣

MS
= − Σccg

(2) (p, q)
∣

∣

∣

MS

= −1

2
+
[

6ψ′
(

1
3

)

α− 15ψ′
(

1
3

)

− 4απ2 − 27α + 10π2 − 81
] CAa

216

+
[

432
√
3ψ′
(

1
3

)

α3CA − 13716
√
3ψ′
(

1
3

)

α2CA

−3312
√
3ψ′
(

1
3

)

αCA + 2304
√
3ψ′
(

1
3

)

αNfTF

+133296
√
3ψ′
(

1
3

)

CA − 78528
√
3ψ′
(

1
3

)

NfTF

−18
√
3ψ′′′

(

1
3

)

α2CA + 225
√
3ψ′′′

(

1
3

)

αCA

+999
√
3ψ′′′

(

1
3

)

CA − 73872
√
3s2
(

π
6

)

α2CA

+66096
√
3s2
(

π
6

)

αCA + 1076976
√
3s2
(

π
6

)

CA

−497664
√
3s2
(

π
6

)

NfTF + 147744
√
3s2
(

π
2

)

α2CA

−132192
√
3s2
(

π
2

)

αCA − 2153952
√
3s2
(

π
2

)

CA

+995328
√
3s2
(

π
2

)

NfTF + 123120
√
3s3
(

π
6

)

α2CA

−110160
√
3s3
(

π
6

)

αCA − 1794960
√
3s3
(

π
6

)

CA
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+829440
√
3s3
(

π
6

)

NfTF − 98496
√
3s3
(

π
2

)

α2CA

+88128
√
3s3
(

π
2

)

αCA + 1435968
√
3s3
(

π
2

)

CA

−663552
√
3s3
(

π
2

)

NfTF − 288
√
3α3CAπ

2 − 1944
√
3α3CA

+48
√
3α2CAπ

4 + 9144
√
3α2CAπ

2 + 6480
√
3α2CAζ3

+3240
√
3α2CA − 600

√
3αCAπ

4 + 2208
√
3αCAπ

2

+28836
√
3αCAζ3 − 101088

√
3αCA − 1536

√
3αNfπ

2TF

+10368
√
3αNfTF − 2664

√
3CAπ

4 − 88864
√
3CAπ

2

−175608
√
3CAζ3 − 146448

√
3CA + 52352

√
3Nfπ

2TF

+82944
√
3NfTF ζ3 + 36288

√
3NfTF − 513 ln(3)2α2CAπ

+459 ln(3)2αCAπ + 7479 ln(3)2CAπ − 3456 ln(3)2NfπTF

+6156 ln(3)α2CAπ − 5508 ln(3)αCAπ − 89748 ln(3)CAπ

+41472 ln(3)NfπTF + 551α2CAπ
3 − 493αCAπ

3 − 8033CAπ
3

+3712Nfπ
3TF

] CAa2

62208
√
3

+ O(a3) . (4.2.5)

In comparison with the arbitrary (linear) covariant gauge the ghost-gluon vertex

in the Curci-Ferrari gauge has only one independent amplitude. This is because

the Feynman rule for this vertex is anti-symmetric. The emergence of this feature

in our explicit computation is a non-trivial check on our analysis as we do not

assume a priori that Σccg
(1) (p, q)

∣

∣

∣

MS
= − Σccg

(2) (p, q)
∣

∣

∣

MS
.

For the triple-gluon vertex the channel 1 amplitude in the MS scheme is given

analytically as

Σggg
(1) (p, q)

∣

∣

∣

MS
= Σggg

(2) (p, q)
∣

∣

∣

MS
= −1

2
Σggg

(3) (p, q)
∣

∣

∣

MS
= − Σggg

(4) (p, q)
∣

∣

∣

MS

=
1

2
Σggg

(5) (p, q)
∣

∣

∣

MS
= − Σggg

(6) (p, q)
∣

∣

∣

MS

= −1 −
[

−36ψ′
(

1
3

)

α2CA + 162ψ′
(

1
3

)

αCA − 138ψ′
(

1
3

)

CA

+384ψ′
(

1
3

)

NfTF − 27α3CA + 24α2CAπ
2 + 405α2CA

−108αCAπ
2 + 243αCA + 92CAπ

2 + 243CA

−256Nfπ
2TF − 1296NfTF

] a

648

−
[

1296
√
3ψ′
(

1
3

)

α4C2
A − 10368

√
3ψ′
(

1
3

)

α3C2
A

−17112
√
3ψ′
(

1
3

)

α2C2
A − 19200

√
3ψ′
(

1
3

)

α2CANfTF

−14328
√
3ψ′
(

1
3

)

αC2
A − 4608

√
3ψ′
(

1
3

)

αCANfTF
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+308052
√
3ψ′
(

1
3

)

C2
A − 63360

√
3ψ′
(

1
3

)

CANfTF

+55296
√
3ψ′
(

1
3

)

CFNfTF + 18
√
3ψ′′′

(

1
3

)

α3C2
A

+162
√
3ψ′′′

(

1
3

)

α2C2
A − 1296

√
3ψ′′′

(

1
3

)

αC2
A

+3843
√
3ψ′′′

(

1
3

)

C2
A − 2304

√
3ψ′′′

(

1
3

)

CANfTF

−31104
√
3s2
(

π
6

)

α3C2
A − 489888

√
3s2
(

π
6

)

αC2
A

+2690496
√
3s2
(

π
6

)

C2
A − 1244160

√
3s2
(

π
6

)

CANfTF

+62208
√
3s2
(

π
2

)

α3C2
A + 979776

√
3s2
(

π
2

)

αC2
A

−5380992
√
3s2
(

π
2

)

C2
A + 2488320

√
3s2
(

π
2

)

CANfTF

+51840
√
3s3
(

π
6

)

α3C2
A + 816480

√
3s3
(

π
6

)

αC2
A

−4484160
√
3s3
(

π
6

)

C2
A + 2073600

√
3s3
(

π
6

)

CANfTF

−41472
√
3s3
(

π
2

)

α3C2
A − 653184

√
3s3
(

π
2

)

αC2
A

+3587328
√
3s3
(

π
2

)

C2
A − 1658880

√
3s3
(

π
2

)

CANfTF

+972
√
3α5C2

A − 864
√
3α4C2

Aπ
2 − 7776

√
3α4C2

A

−48
√
3α3C2

Aπ
4 + 6912

√
3α3C2

Aπ
2 − 2592

√
3α3C2

Aζ3

−4104
√
3α3C2

A − 8640
√
3α3CANfTF − 432

√
3α2C2

Aπ
4

+11408
√
3α2C2

Aπ
2 + 3888

√
3α2C2

Aζ3 − 17280
√
3α2C2

A

+12800
√
3α2CANfπ

2TF + 86400
√
3α2CANfTF

+3456
√
3αC2

Aπ
4 + 9552

√
3αC2

Aπ
2 + 167184

√
3αC2

Aζ3

−84726
√
3αC2

A + 3072
√
3αCANfπ

2TF

+36288
√
3αCANfTF − 10248

√
3C2

Aπ
4 − 205368

√
3C2

Aπ
2

−447444
√
3C2

Aζ3 + 256338
√
3C2

A + 6144
√
3CANfπ

4TF

+42240
√
3CANfπ

2TF − 41472
√
3CANfTF ζ3

−259632
√
3CANfTF − 36864

√
3CFNfπ

2TF

+497664
√
3CFNfTF ζ3 − 590976

√
3CFNfTF

−216 ln (3)2 α3C2
Aπ − 3402 ln (3)2 αC2

Aπ

+18684 ln (3)2 C2
Aπ − 8640 ln (3)2 CANfπTF

+2592 ln (3)α3C2
Aπ + 40824 ln (3)αC2

Aπ

−224208 ln (3)C2
Aπ + 103680 ln (3)CANfπTF

+232α3C2
Aπ

3 + 3654αC2
Aπ

3 − 20068C2
Aπ

3

+9280CANfπ
3TF
] a2

31104
√
3

+ O(a3). (4.2.6)

The combination which emerges for the first six amplitudes is consistent with
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other gauges, most noticeably this can be seen by comparing with the amplitudes

in (3.2.14). This should be consistent since we are considering the same tensor

basis and so this serves as a check on our computation. The remaining channels

are presented numerically for SU(3) as

Σggg
(7) (p, q)

∣

∣

∣

MS
= 2 Σggg

(9) (p, q)
∣

∣

∣

MS
= − 2 Σggg

(11)(p, q)
∣

∣

∣

MS
= − Σggg

(14)(p, q)
∣

∣

∣

MS

=
[

0.057318α3 − 0.507930α2 − 3.328046α− 1.092686Nf

+7.642693] a+
[

−0.128965α5 + 0.603663α4 + 0.191059α3Nf

+5.383015α3 + 0.574522α2Nf + 3.920818α2 − 1.015302αNf

−6.825370α− 20.271008Nf + 124.046565] a2 + O(a3)

Σggg
(8) (p, q)

∣

∣

∣

MS
= − Σggg

(13)(p, q)
∣

∣

∣

MS

=
[

0.192682α3 − 0.570116α2 − 3.351838α− 1.213010Nf

+7.954277] a+
[

−0.433535α5 + 0.134441α4 + 0.642274α3Nf

+5.205282α3 + 0.936332α2Nf + 7.365924α2 + 0.015581αNf

−4.947164α− 23.589820Nf + 133.972477] a2 + O(a3)

Σggg
(10)(p, q)

∣

∣

∣

MS
= − Σggg

(12)(p, q)
∣

∣

∣

MS

=
[

−0.135364α3 + 0.062186α2 + 0.023791α + 0.120324Nf

−0.311584] a+
[

0.304570α5 + 0.469222α4 − 0.451214α3Nf

+0.177733α3 − 0.361810α2Nf − 3.445106α2 − 1.030883αNf

−1.878205α + 3.318812Nf − 9.925913] a2 + O(a3) . (4.2.7)

Finally, for the quark-gluon vertex the amplitudes in the MS scheme are

Σqqg
(1) (p, q)

∣

∣

∣

MS
= 1 +

[

−0.457012α2 − 0.588760α + 4.316221
]

a

+
[

0.342759α4 + 1.394721α3 − 0.507791α2Nf − 1.842083α2

−0.976628αNf − 2.548865α− 12.136677Nf + 89.287677] a2

+ O(a3)

Σqqg
(2) (p, q)

∣

∣

∣

MS
= Σqqg

(5) (p, q)
∣

∣

∣

MS

=
[

−0.414023α2 − 2.305695α + 2.598033
]

a+
[

0.310517α4

+1.541598α3 − 0.460026α2Nf − 2.574810α2 − 1.033946αNf

−19.509999α− 6.271894Nf + 26.481250] a2 + O(a3)

Σqqg
(3) (p, q)

∣

∣

∣

MS
= Σqqg

(4) (p, q)
∣

∣

∣

MS

=
[

−0.500000α2 − 2.522631α + 2.050269
]

a+
[

0.375000α4
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+1.247844α3 − 0.555556α2Nf − 3.686459α2 − 0.919310αNf

−22.991124α− 4.871592Nf + 12.735293] a2 + O(a3)

Σqqg
(6) (p, q)

∣

∣

∣

MS
=

[

−0.585977α2 − 2.343907α− 4.362272
]

a+
[

0.439483α4

+0.976628α3 − 0.651085α2Nf − 0.499235α2 + 1.953256αNf

−45.467503α + 10.922850Nf − 131.991115] a2 + O(a3)

(4.2.8)

where the one loop contribution to the amplitudes are identical to those computed

in the arbitrary (linear) covariant gauge. As a check on the results for the other

vertices we note that the relations between the amplitudes still hold even to

higher loop orders, with these relations satisfied in all schemes. In Figure 4.1

we present plots of the one and two loop amplitudes for various values of Nf in

terms of the partial coupling constants, a1(µ,Λ) and a2(µ,Λ). This was carried

out in the previous chapter for the linear covariant gauge. Comparing to those

graphs for the same values of Nf it is clear that the one and two loop Curci-Ferrari

gauge results are much closer to eachother, particularly for the case when Nf = 6,

than the one and two loop amplitudes in the linear covariant gauge. This could

be as a result of the 4-point interactions introduced, specifically contributing to

the ghost-gluon vertex, or due to the ghost-gluon vertex now being asymmetric,

which would give better convergence. However, the reason why this gauge seems

to converge quicker is not yet known for sure. Having presented all required

results in the MS scheme we now extend to the MOMi schemes.
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Figure 4.1: Comparison of one and two loop MS Curci-Ferrari gauge ghost-gluon
vertex functions for different values of Nf .

4.3 MOMh scheme

So far all of our results have been determined in the MS scheme, where only the

divergences are absorbed into the renormalization constants, along with a factor

of ln(4πe−γ). For the MOMi schemes we recall from section 2.1.2 that as well

as the divergences being absorbed into the renormalization constants, we now
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require that there are no O(a) corrections after the renormalization constants are

defined. Both the 2-point functions and 3-point vertex functions are defined in

this way, where we renormalize the one loop 2-point functions first in each MOMi

scheme followed by the one loop 3-point vertex functions. We then iterate this

procedure to two loops. Presenting first the renormalization constants for the

scheme corresponding to the ghost-gluon vertex we have
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analytically, followed by the renormalization constants for the wave functions and

gauge parameter numerically for SU(3)
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where all results for the above renormalization constants are functions of MOMi

variables (aMOMi,αMOMi). The amplitudes in the MOMh scheme were found to

follow the relation given in [51] where

Σacc
(1) (p, q)

∣

∣

MOMh
= − Σacc

(2) (p, q)
∣

∣

MOMh
= −1

2
+O(a3) . (4.3.11)

This is not the same as in the case of the arbitrary (linear) covariant gauge fixing

where after renormalization in the MOMh scheme the two amplitudes are still

independent of one another due to the nature of the ghost-gluon vertex in that

gauge fixing. The fact that the amplitudes become linearly dependent is also

partly due to the presence of the quartic ghost vertex that is introduced in both

the Curci-Ferrari gauge and MAG, [14, 104].

Next we require the coupling constant and gauge parameter mappings between

the MS and MOMi schemes in the Curci-Ferrari gauge. Using (3.3.37) we can

relate both the coupling constant and gauge parameter in one scheme to another.

We have determined αMOMi for each of the three vertices and found that for each

vertex the result remains the same at two loops
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where αMOMi is a function of MS variables, aMS and αMS. This is consistent

with the arbitrary (linear) covariant gauge where one gauge parameter mapping

satisfies all three MOMi schemes. This is not the case however for the coupling

constants, aMOMi, where that mapping is different for each of the three MOMi

schemes. Therefore we present the results for this separately for each scheme.

The analytic evaluation of the coupling constant mapping for the MOMh scheme

is
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Next we present the conversion functions at two loops, since these are used in

(3.3.29) and (3.4.55) to determine the β-functions and anomalous dimensions in

each MOMi scheme to the next loop order. The conversion function specific to

the MOMh coupling constant is
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Here a and α are the coupling constant and gauge parameter specific to the

MS scheme
(

aMS,αMS

)

. We use this convention for the conversion functions

throughout, denoted in equations (3.3.31). The following expressions for the

conversion functions are found to be the same in all three MOMi schemes in

the Curci-Ferrari gauge. This is a property which also appeared in the arbitrary

(linear) covariant gauge. These are
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+24CACF ζ3 − 82CACF + 5C2
F + 28CFNfTF

] a2

8
+ O(a3) . (4.3.15)

Note that the one loop contributions agree with those in the linear covariant gauge

fixing (3.3.52). Now that we have recorded the conversion functions, coupling

constant and gauge parameter mappings we can apply (3.3.29) and (3.4.55) in

order to construct the β-functions and anomalous dimensions respectively to three

loops for each of the three MOMi schemes. Following the procedure in Section

3 we first require the MS renormalization group functions for the Curci-Ferrari

gauge to the desired loop order, in our case the results need to be up to and

including three loops. Since we have only computed the two loop MS results

directly the three loop results are extracted from [104]. Note that although the MS

results have already been determined for the anomalous dimensions, we extend

[104] by providing a further analysis of the QCD vertices in the MOMi schemes.

As well as providing new results for the MS and MOMi amplitudes we use the

results in [104] to construct the RG functions for each MOMi scheme. These of

which are new to three loops. Additionally we have constructed the conversion

functions, coupling constant mapping and gauge parameter mapping between

the two schemes. These results are new and have been recorded in [67]. The

MS results for the anomalous dimensions in the Curci-Ferrari gauge are not the

same as for the arbitrary (linear) covariant gauge setup past one loop order and

so we present the results for the anomalous dimensions in this gauge below for

completeness, [104]. Therefore, beginning with our anomalous dimensions in the

MS scheme we have, [104],
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Aζ3 + 3672αC2

A

−6048αCANfTF − 1944C2
Aζ3 − 63268C2

A + 62208CANfTF ζ3
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+6208CANfTF − 82944CFNfTF ζ3 + 77760CFNfTF

+8960N2
f T

2
F ]

a3

6912
+ O(a4)

γMS
ψ (a,α) = αCFa+ CF [8αCA + 25CA − 6CF − 8NfTF ]

a2

4
+ CF

[

27α3C2
A + 270α2C2

A + 216αC2
Aζ3 + 2367αC2

A

−1224αCANfTF − 2484C2
Aζ3 + 18310C2

A + 3456CACF ζ3

−10296CACF − 9184CANfTF + 432C2
F + 864CFNfTF

+640N2
f T

2
F

] a3
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+O(a4)

γMS
α (a,α) = [−3αCA + 26CA − 16NfTF ]

a
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+
[

−α2C2
A − 17αC2

A + 118C2
A − 80CANfTF − 64CFNfTF

] a2

16
+
[

−27α3C3
A − 558α2C3

A − 864αC3
Aζ3 − 4203αC3

A + 1224αC2
ANfTF

−648C3
Aζ3 + 39860C3
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ANfTF ζ3 − 58304C2
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−27648CACFNfTF ζ3 − 320CACFNfTF + 9728CAN
2
f T

2
F

+2304C2
FNfTF + 5632CFN

2
f T

2
F

] a3

1152
+O(a4) (4.3.16)

and the three loop β-function is, [1, 2, 92, 93, 94],

βMS(a,α) = −
[

11

3
CA − 4

3
TFNf

]

a2 −
[

34

3
C2
A − 4CFTFNf −

20

3
CATFNf

]

a3

+
[

2830C2
ATFNf − 2857C3

A + 1230CACFTFNf − 316CAT
2
FN

2
f

− 108C2
FTFNf − 264CFT

2
FN

2
f

] a4

54
+ O(a5) (4.3.17)

which agrees with (3.4.56) since the MS β-function is gauge independent to all

known loop orders. Using (3.3.29) and (3.4.55) we construct the renormalization

group equations for the MOMi schemes at three loops. For the MOMh scheme,

the renormalization group functions are

βMOMh(a,α) = [−11CA + 4NfTF ]
a2

3
+
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1
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] a3

648

+
[
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√
3 ln(3)2α3C3

Aπ + 5481
√
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√
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√
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√
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√
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√
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√
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√
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(
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(
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(
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(
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(
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(
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(
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A + 27648α3C2
ANfπ

2TF

−93312α3C2
ANfTF − 19544α2C3
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+ O(a5)
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(
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(

1
3

)

CANfTF − 81α3C2
A − 24α2C2

Aπ
2

+459α2C2
A − 432α2CANfTF + 164αC2
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Aπ

2

−916272ψ′
(

1
3

)

α2C3
A + 21504ψ′

(

1
3

)

α2C2
ANfπ

2TF

+565056ψ′
(

1
3

)

α2C2
ANfTF + 199920ψ′

(

1
3

)

αC3
Aπ

2

−1137024ψ′
(

1
3

)

αC3
A − 107520ψ′

(

1
3

)

αC2
ANfπ

2TF

+354240ψ′
(

1
3

)

αC2
ANfTF − 497664ψ′

(

1
3

)

αCACFNfTF

−110592ψ′
(

1
3

)

αCAN
2
f T

2
F − 218400ψ′

(

1
3

)

C3
Aπ

2

+11544768ψ′
(

1
3

)

C3
A + 134400ψ′

(

1
3

)

C2
ANfπ

2TF

−13571712ψ′
(

1
3

)

C2
ANfTF + 1244160ψ′

(

1
3

)

CACFNfTF

+4230144ψ′
(

1
3

)

CAN
2
f T

2
F + 162ψ′′′

(

1
3

)

α3C3
A
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−3429ψ′′′
(

1
3

)

α2C3
A + 864ψ′′′

(

1
3

)

α2C2
ANfTF

+8559ψ′′′
(

1
3

)

αC3
A − 10800ψ′′′

(

1
3

)

αC2
ANfTF

+77922ψ′′′
(

1
3

)

C3
A − 47952ψ′′′

(

1
3

)

C2
ANfTF

+664848s2
(

π
6

)

α3C3
A − 6356880s2

(

π
6

)

α2C3
A

+3545856s2
(

π
6

)

α2C2
ANfTF − 4537296s2

(

π
6

)

αC3
A

+1306368s2
(

π
6

)

αC2
ANfTF + 84004128s2

(

π
6

)

C3
A

−90512640s2
(

π
6

)

C2
ANfTF + 23887872s2

(

π
6

)

CAN
2
f T

2
F

−1329696s2
(

π
2

)

α3C3
A + 12713760s2

(

π
2

)

α2C3
A

−7091712s2
(

π
2

)

α2C2
ANfTF + 9074592s2

(

π
2

)

αC3
A

−2612736s2
(

π
2

)

αC2
ANfTF − 168008256s2

(

π
2

)

C3
A

+181025280s2
(

π
2

)

C2
ANfTF − 47775744s2

(

π
2

)

CAN
2
f T

2
F

−1108080s3
(

π
6

)

α3C3
A + 10594800s3

(

π
6

)

α2C3
A

−5909760s3
(

π
6

)

α2C2
ANfTF + 7562160s3

(

π
6

)

αC3
A

−2177280s3
(

π
6

)

αC2
ANfTF − 140006880s3

(

π
6

)

C3
A

+150854400s3
(

π
6

)

C2
ANfTF − 39813120s3

(

π
6

)

CAN
2
f T

2
F

+886464s3
(

π
2

)

α3C3
A − 8475840s3

(

π
2

)

α2C3
A

+4727808s3
(

π
2

)

α2C2
ANfTF − 6049728s3

(

π
2

)

αC3
A

+1741824s3
(

π
2

)

αC2
ANfTF + 112005504s3

(

π
2

)

C3
A

−120683520s3
(

π
2

)

C2
ANfTF + 31850496s3

(

π
2

)

CAN
2
f T

2
F

−7776α4C3
Aπ

2 + 102060α4C3
A − 46656α4C2

ANfTF

−1776α3C3
Aπ

4 − 31752α3C3
Aπ

2 − 23328α3C3
Aζ3

−294516α3C3
A − 41472α3C2

ANfπ
2TF + 27512α2C3

Aπ
4

+610848α2C3
Aπ

2 + 689148α2C3
Aζ3 + 174960α2C3

A

−9472α2C2
ANfπ

4TF − 376704α2C2
ANfπ

2TF

−217728α2C2
ANfTF ζ3 + 279936α2C2

ANfTF

+1679616α2CACFNfTF − 89464αC3
Aπ

4 + 758016αC3
Aπ

2

+4512024αC3
Aζ3 − 4114476αC3

A + 64640αC2
ANfπ

4TF

−236160αC2
ANfπ

2TF − 1290816αC2
ANfTF ζ3

+5101056αC2
ANfTF + 331776αCACFNfπ

2TF

+4478976αCACFNfTF + 73728αCAN
2
f π

2T 2
F

−497664αCAN
2
f T

2
F − 134992C3

Aπ
4 − 7696512C3

Aπ
2

−20415888C3
Aζ3 + 34772328C3

A + 83072C2
ANfπ

4TF

125



+9047808C2
ANfπ

2TF + 2674944C2
ANfTF ζ3

−34307712C2
ANfTF − 829440CACFNfπ

2TF

+32845824CACFNfTF ζ3 − 31477248CACFNfTF

−2820096CAN
2
f π

2T 2
F + 1990656CAN

2
f T

2
F ζ3

+5598720CAN
2
f T

2
F + 1119744C2

FNfTF − 11943936CFN
2
f T

2
F ζ3

+11446272CFN
2
f T

2
F

] a3

559872
+ O(a4)

γMOMh
c (a,α) = CA [α− 3]

a

4
+CA

[

12ψ′
(

1
3

)

α2CA − 66ψ′
(

1
3

)

αCA + 90ψ′
(

1
3

)

CA − 8α2CAπ
2

+108α2CA + 44αCAπ
2 − 81αCA − 60CAπ

2 − 432CA

+216NfTF ]
a2

432

+CA

[

−513
√
3 ln(3)2α3C2

Aπ + 1998
√
3 ln(3)2α2C2

Aπ

+6102
√
3 ln(3)2αC2

Aπ − 3456
√
3 ln(3)2αCANfπTF

−22437
√
3 ln(3)2C2

Aπ + 10368
√
3 ln(3)2CANfπTF

+6156
√
3 ln(3)α3C2

Aπ − 23976
√
3 ln(3)α2C2

Aπ

−73224
√
3 ln(3)αC2

Aπ + 41472
√
3 ln(3)αCANfπTF

+269244
√
3 ln(3)C2

Aπ − 124416
√
3 ln(3)CANfπTF

+551
√
3α3C2

Aπ
3 − 2146

√
3α2C2

Aπ
3 − 6554

√
3αC2

Aπ
3

+3712
√
3αCANfπ

3TF + 24099
√
3C2

Aπ
3

−11136
√
3CANfπ

3TF + 1008ψ′
(

1
3

)2
α3C2

A

−8064ψ′
(

1
3

)2
α2C2

A + 21420ψ′
(

1
3

)2
αC2

A

−18900ψ′
(

1
3

)2
C2
A + 1296ψ′

(

1
3

)

α4C2
A

−1344ψ′
(

1
3

)

α3C2
Aπ

2 − 32724ψ′
(

1
3

)

α3C2
A

+10752ψ′
(

1
3

)

α2C2
Aπ

2 + 68148ψ′
(

1
3

)

α2C2
A

+6912ψ′
(

1
3

)

α2CANfTF − 28560ψ′
(

1
3

)

αC2
Aπ

2

+515160ψ′
(

1
3

)

αC2
A − 264384ψ′

(

1
3

)

αCANfTF

+25200ψ′
(

1
3

)

C2
Aπ

2 − 1365984ψ′
(

1
3

)

C2
A

+741312ψ′
(

1
3

)

CANfTF − 54ψ′′′
(

1
3

)

α3C2
A

+837ψ′′′
(

1
3

)

α2C2
A + 972ψ′′′

(

1
3

)

αC2
A − 8991ψ′′′

(

1
3

)

C2
A

−221616s2
(

π
6

)

α3C2
A + 863136s2

(

π
6

)

α2C2
A

+2636064s2
(

π
6

)

αC2
A − 1492992s2

(

π
6

)

αCANfTF

−9692784s2
(

π
6

)

C2
A + 4478976s2

(

π
6

)

CANfTF
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+443232s2
(

π
2

)

α3C2
A − 1726272s2

(

π
2

)

α2C2
A

−5272128s2
(

π
2

)

αC2
A + 2985984s2

(

π
2

)

αCANfTF

+19385568s2
(

π
2

)

C2
A − 8957952s2

(

π
2

)

CANfTF

+369360s3
(

π
6

)

α3C2
A − 1438560s3

(

π
6

)

α2C2
A

−4393440s3
(

π
6

)

αC2
A + 2488320s3

(

π
6

)

αCANfTF

+16154640s3
(

π
6

)

C2
A − 7464960s3

(

π
6

)

CANfTF

−295488s3
(

π
2

)

α3C2
A + 1150848s3

(

π
2

)

α2C2
A

+3514752s3
(

π
2

)

αC2
A − 1990656s3

(

π
2

)

αCANfTF

−12923712s3
(

π
2

)

C2
A + 5971968s3

(

π
2

)

CANfTF

−864α4C2
Aπ

2 − 5832α4C2
A + 592α3C2

Aπ
4 + 21816α3C2

Aπ
2

+19440α3C2
Aζ3 + 73872α3C2

A − 5816α2C2
Aπ

4

−45432α2C2
Aπ

2 − 24300α2C2
Aζ3 − 109350α2C2

A

−4608α2CANfπ
2TF − 15552α2CANfTF + 6928αC2

Aπ
4

−343440αC2
Aπ

2 − 745524αC2
Aζ3 + 977832αC2

A

+176256αCANfπ
2TF + 342144αCANfTF ζ3

−381024αCANfTF + 15576C2
Aπ

4 + 910656C2
Aπ

2

+2128680C2
Aζ3 − 4079484C2

A − 494208CANfπ
2TF

−653184CANfTF ζ3 + 3367008CANfTF + 279936CFNfTF

−622080N2
f T

2
F

] a3

186624
+ O(a4)

γMOMh
ψ (a,α) = αCFa+ CF

[

12ψ′
(

1
3

)

α2CA − 30ψ′
(

1
3

)

αCA − 8α2CAπ
2

+27α2CA + 20αCAπ
2 + 675CA − 162CF

−216NfTF ]
a2

108

+CF

[

−513
√
3 ln(3)2α3C2

Aπ + 459
√
3 ln(3)2α2C2

Aπ

+7479
√
3 ln(3)2αC2

Aπ − 3456
√
3 ln(3)2αCANfπTF

+6156
√
3 ln(3)α3C2

Aπ − 5508
√
3 ln(3)α2C2

Aπ

−89748
√
3 ln(3)αC2

Aπ + 41472
√
3 ln(3)αCANfπTF

+551
√
3α3C2

Aπ
3 − 493

√
3α2C2

Aπ
3 − 8033

√
3αC2

Aπ
3

+3712
√
3αCANfπ

3TF + 1008ψ′
(

1
3

)2
α3C2

A

−5040ψ′
(

1
3

)2
α2C2

A + 6300ψ′
(

1
3

)2
αC2

A + 1296ψ′
(

1
3

)

α4C2
A

−1344ψ′
(

1
3

)

α3C2
Aπ

2 − 36612ψ′
(

1
3

)

α3C2
A

+6720ψ′
(

1
3

)

α2C2
Aπ

2 − 22248ψ′
(

1
3

)

α2C2
A
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+6912ψ′
(

1
3

)

α2CANfTF − 8400ψ′
(

1
3

)

αC2
Aπ

2

+554688ψ′
(

1
3

)

αC2
A − 15552ψ′

(

1
3

)

αCACF

−285120ψ′
(

1
3

)

αCANfTF − 162000ψ′
(

1
3

)

C2
A

+38880ψ′
(

1
3

)

CACF + 51840ψ′
(

1
3

)

CANfTF

−54ψ′′′
(

1
3

)

α3C2
A + 675ψ′′′

(

1
3

)

α2C2
A + 2997ψ′′′

(

1
3

)

αC2
A

−221616s2
(

π
6

)

α3C2
A + 198288s2

(

π
6

)

α2C2
A

+3230928s2
(

π
6

)

αC2
A − 1492992s2

(

π
6

)

αCANfTF

+443232s2
(

π
2

)

α3C2
A − 396576s2

(

π
2

)

α2C2
A

−6461856s2
(

π
2

)

αC2
A + 2985984s2

(

π
2

)

αCANfTF

+369360s3
(

π
6

)

α3C2
A − 330480s3

(

π
6

)

α2C2
A

−5384880s3
(

π
6

)

αC2
A + 2488320s3

(

π
6

)

αCANfTF

−295488s3
(

π
2

)

α3C2
A + 264384s3

(

π
2

)

α2C2
A

+4307904s3
(

π
2

)

αC2
A − 1990656s3

(

π
2

)

αCANfTF

−864α4C2
Aπ

2 − 5832α4C2
A + 592α3C2

Aπ
4

+24408α3C2
Aπ

2 + 19440α3C2
Aζ3 + 33048α3C2

A

−11664α3CACF − 4040α2C2
Aπ

4 + 14832α2C2
Aπ

2

−972α2C2
Aζ3 − 207036α2C2

A − 34992α2CACF

−4608α2CANfπ
2TF + 77760α2CANfTF − 5192αC2

Aπ
4

−369792αC2
Aπ

2 − 1127520αC2
Aζ3 − 44712αC2

A

+10368αCACFπ
2 + 139968αCACF + 190080αCANfπ

2TF

+435456αCANfTF ζ3 − 15552αCANfTF + 108000C2
Aπ

2

−1428840C2
Aζ3 + 2860596C2

A − 25920CACFπ
2

+559872CACF ζ3 − 1014768CACF − 34560CANfπ
2TF

+373248CANfTF ζ3 − 1508544CANfTF + 69984C2
F

−93312CFNfTF + 124416N2
f T

2
F

] a3

46656
+O(a4) . (4.3.18)

Note the α dependence in the β-function after one loop is consistent with what

we observed in our earlier calculation for the arbitrary (linear) covariant gauge

in chapter 3. This is consistent with all mass dependent renormalization schemes.

The method used in constructing the β-functions and anomalous dimensions for

each MOMi scheme at three loops is preferred to the direct calculation. Con-

structing the renormalization group functions using (3.3.29) and (3.4.55) relies
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on performing only a direct two loop calculation, using the two loop MOM results

and existing three loop MS results from [104]. This is much faster, and therefore a

preferred method over a direct three loop calculation, since the three loop master

integrals are not known.

4.4 MOMg scheme.

Having recorded the results for the ghost-gluon vertex at length we briefly present

the results for the triple-gluon vertex in numerical form for SU(3). We present

the results in the same order as in section 4.3. The renormalization constants

in the MOMg scheme are given below, where we present the coupling constant

renormalization constant analytically as

Z(ggg)
g

∣

∣

∣

MOMg
= 1 +

[

−36ψ′
(

1
3

)

α2CA + 162ψ′
(

1
3

)

αCA − 138ψ′
(

1
3

)

CA

+384ψ′
(

1
3

)

NfTF − 27α3CA + 24α2CAπ
2 + 162α2CA

−108αCAπ
2 − 243αCA + 92CAπ

2 − 2376CA − 256Nfπ
2TF

+864NfTF + 108 (−11CA + 4NfTF )
1

ϵ

]

a

648

+

[

(

121C2
A − 88CANfTF + 16N2

f T
2
F

) 1

24ϵ2

+
(

2592
√
3ψ′
(

1
3

)2
α4C2

A − 23328
√
3ψ′
(

1
3

)2
α3C2

A

+72360
√
3ψ′
(

1
3

)2
α2C2

A − 55296
√
3ψ′
(

1
3

)2
α2CANfTF

−89424
√
3ψ′
(

1
3

)2
αC2

A + 248832
√
3ψ′
(

1
3

)2
αCANfTF

+38088
√
3ψ′
(

1
3

)2
C2
A − 211968

√
3ψ′
(

1
3

)2
CANfTF

+294912
√
3ψ′
(

1
3

)2
N2
f T

2
F + 3888

√
3ψ′
(

1
3

)

α5C2
A

−3456
√
3ψ′
(

1
3

)

α4C2
Aπ

2 − 42768
√
3ψ′
(

1
3

)

α4C2
A

+31104
√
3ψ′
(

1
3

)

α3C2
Aπ

2 + 62532
√
3ψ′
(

1
3

)

α3C2
A

−41472
√
3ψ′
(

1
3

)

α3CANfTF − 96480
√
3ψ′
(

1
3

)

α2C2
Aπ

2

−105300
√
3ψ′
(

1
3

)

α2C2
A + 73728

√
3ψ′
(

1
3

)

α2CANfπ
2TF

+134784
√
3ψ′
(

1
3

)

α2CANfTF + 119232
√
3ψ′
(

1
3

)

αC2
Aπ

2

−1107756
√
3ψ′
(

1
3

)

αC2
A − 331776

√
3ψ′
(

1
3

)

αCANfπ
2TF

−119232
√
3ψ′
(

1
3

)

αCANfTF − 50784
√
3ψ′
(

1
3

)

C2
Aπ

2

+3843072
√
3ψ′
(

1
3

)

C2
A + 282624

√
3ψ′
(

1
3

)

CANfπ
2TF

−3827520
√
3ψ′
(

1
3

)

CANfTF + 497664
√
3ψ′
(

1
3

)

CFNfTF

129



−393216
√
3ψ′
(

1
3

)

N2
f π

2T 2
F + 774144

√
3ψ′
(

1
3

)

N2
f T

2
F

+162
√
3ψ′′′

(

1
3

)

α3C2
A + 1458

√
3ψ′′′

(

1
3

)

α2C2
A

−11664
√
3ψ′′′

(

1
3

)

αC2
A + 34587

√
3ψ′′′

(

1
3

)

C2
A

−20736
√
3ψ′′′

(

1
3

)

CANfTF − 279936
√
3s2
(

π
6

)

α3C2
A

−4408992
√
3s2
(

π
6

)

αC2
A + 24214464

√
3s2
(

π
6

)

C2
A

−11197440
√
3s2
(

π
6

)

CANfTF + 559872
√
3s2
(

π
2

)

α3C2
A

+8817984
√
3s2
(

π
2

)

αC2
A − 48428928

√
3s2
(

π
2

)

C2
A

+22394880
√
3s2
(

π
2

)

CANfTF + 466560
√
3s3
(

π
6

)

α3C2
A

+7348320
√
3s3
(

π
6

)

αC2
A − 40357440

√
3s3
(

π
6

)

C2
A

+18662400
√
3s3
(

π
6

)

CANfTF − 373248
√
3s3
(

π
2

)

α3C2
A

−5878656
√
3s3
(

π
2

)

αC2
A + 32285952

√
3s3
(

π
2

)

C2
A

−14929920
√
3s3
(

π
2

)

CANfTF + 1458
√
3α6C2

A

−2592
√
3α5C2

Aπ
2 − 21870

√
3α5C2

A + 1152
√
3α4C2

Aπ
4

+28512
√
3α4C2

Aπ
2 + 59049

√
3α4C2

A − 10800
√
3α3C2

Aπ
4

−41688
√
3α3C2

Aπ
2 − 23328

√
3α3C2

Aζ3 + 152604
√
3α3C2

A

+27648
√
3α3CANfπ

2TF − 54432
√
3α3CANfTF

+28272
√
3α2C2

Aπ
4 + 70200

√
3α2C2

Aπ
2 − 17496

√
3α2C2

Aζ3

−944784
√
3α2C2

A − 24576
√
3α2CANfπ

4TF

−89856
√
3α2CANfπ

2TF + 349920
√
3α2CANfTF

−8640
√
3αC2

Aπ
4 + 738504

√
3αC2

Aπ
2 + 664848

√
3αC2

Aζ3

+1027890
√
3αC2

A + 110592
√
3αCANfπ

4TF

+79488
√
3αCANfπ

2TF − 349920
√
3αCANfTF

−75304
√
3C2

Aπ
4 − 2562048

√
3C2

Aπ
2 − 2767284

√
3C2

Aζ3

−203067
√
3C2

A − 38912
√
3CANfπ

4TF

+2551680
√
3CANfπ

2TF + 2985984
√
3CANfTF ζ3

−681696
√
3CANfTF − 331776

√
3CFNfπ

2TF

−2239488
√
3CFNfTF ζ3 + 2379456

√
3CFNfTF

+131072
√
3N2

f π
4T 2

F − 516096
√
3N2

f π
2T 2

F

+767232
√
3N2

f T
2
F − 1944 ln(3)2α3C2

Aπ

−30618 ln(3)2αC2
Aπ + 168156 ln(3)2C2

Aπ

−77760 ln(3)2CANfπTF + 23328 ln(3)α3C2
Aπ

+367416 ln(3)αC2
Aπ − 2017872 ln(3)C2

Aπ
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+933120 ln(3)CANfπTF + 2088α3C2
Aπ

3 + 32886αC2
Aπ

3

−180612C2
Aπ

3 + 83520CANfπ
3TF + 216

√
3
(

396ψ′
(

1
3

)

α2C2
A

−144ψ′
(

1
3

)

α2CANfTF − 1782ψ′
(

1
3

)

αC2
A

+648ψ′
(

1
3

)

αCANfTF + 1518ψ′
(

1
3

)

C2
A − 4776ψ′

(

1
3

)

CANfTF

+1536ψ′
(

1
3

)

N2
f T

2
F + 297α3C2

A − 108α3CANfTF

−264α2C2
Aπ

2 − 1782α2C2
A + 96α2CANfπ

2TF

+648α2CANfTF + 1188αC2
Aπ

2 + 2673αC2
A

−432αCANfπ
2TF − 972αCANfTF − 1012C2

Aπ
2 + 22464C2

A

+3184CANfπ
2TF − 16848CANfTF + 1296CFNfTF

−1024N2
f π

2T 2
F + 3456N2

f T
2
F

) 1

ϵ

)

1

279936
√
3

]

a2

+ O(a3) . (4.4.19)

The renormalization constants for the wave functions are given numerically for

SU(3) as

Z(ggg)
A

∣

∣

∣

MOMg
= 1 +

[

0.75α2 + 1.5α− 1.111111Nf + 8.083333

+ (−1.5α− 0.666667Nf + 6.5)
1

ϵ

]

a

+

[

(

1.687500α2 + αNf − 6.375000α + 1.5Nf − 14.625000
) 1

ϵ2

−0.187500α5 + 0.996035α4 + 0.277778α3Nf + 6.926580α3

+0.531442α2Nf + 11.670343α2 − 1.567892αNf

+28.246854α− 2.561884N2
f + 3.142356Nf + 41.955873

+
(

0.375000α4 + 0.166667α3Nf − 4.367070α3

−0.718698α2Nf − 4.840885α2 − 4.807737αNf

+38.705877α− 1.537130N2
f + 22.176457Nf

−86.472011)
1

ϵ

]

a2 + O(a3)

Z(ggg)
α

∣

∣

∣

MOMg
= 1 +

[

−1.5α− 0.75
α

ϵ

]

a

+

[

α (0.562500α + 1.687500)
1

ϵ2
+ α

(

0.375000α3 − 1.617070α2

−9.879437α− 3.458543Nf + 13.951925) + α
(

0.187500α3

−0.808535α2 − 3.674093α− 1.729271Nf
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+12.400617)
1

ϵ

]

a2 + O(a3)

Z(ggg)
c

∣

∣

∣

MOMg
= 1 +

[

3.0 + (−0.75α + 2.25)
1

ϵ

]

a

+

[

(

0.562500α2 + 0.75Nf − 9.843750
) 1

ϵ2
− 0.75α3

+1.265389α2 + 12.143941α + 4.312919Nf + 1.458303

+
(

0.187500α4 − 1.371035α3 − 4.060989α2 − 1.729271αNf

+18.641647α + 7.062814Nf − 43.951850)
1

ϵ

]

a2 + O(a3)

Z(ggg)
ψ

∣

∣

∣

MOMg
= 1 +

[

−1.333333α− 1.333333α
1

ϵ

]

a

+

[

α (1.388889α + 3.0)
1

ϵ2
+ 0.333333α4 − 1.437395α3

−7.253944α2 − 3.074260αNf + 12.970224α + 2.333333Nf

−25.464206 +
(

0.333333α4 − 1.437395α3 − 6.253944α2

−3.074260αNf + 20.545541α + 0.666667Nf

−11.166667)
1

ϵ

]

a2 + O(a3) . (4.4.20)

We reiterate that when variables are not labelled it is understood that they cor-

respond to the scheme defined on the function on the left hand side of the equa-

tion. Although the conversion functions for the wave functions are the same in

all MOMi schemes, the conversion function for each vertex is different in each of

the three cases. For the MOMg scheme this was found to be

CMOMg
g (a,α) = 1 +

[

−0.125α3 + 0.164023α2 + 1.511896α + 1.708403Nf

−13.246244] a+
[

0.015625α6 + 0.099619α5 − 0.324659α4

−0.635434α3Nf + 1.563729α3 − 0.004743α2Nf

−6.557479α2 + 3.708634αNf − 36.724780α

+0.534266N2
f + 33.152725Nf − 217.036863

]

a2

+ O(a3) (4.4.21)

where the conversion function is always defined in our convention to be a function

of MS variables. Using the above result for the coupling constant conversion

function along with (4.3.15) and equation (3.3.37) we deduce that the coupling
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constant mapping between the MS and MOMg scheme is given by

aMOMg = a+
[

0.25α3 − 0.328046α2 − 3.023791α− 3.416806Nf

+26.492489] a2

+
[

0.015625α6 − 0.322256α5 − 0.403893α4 − 0.010434α3Nf

+8.295142α3 + 1.690792α2Nf + 6.936296α2 + 8.080297αNf

−46.712076α + 7.687393N2
f − 202.085010Nf

+960.462701] a3 + O(a4) . (4.4.22)

For completeness we display the expressions for the amplitudes in the MOMg

scheme which are

Σggg
(1) (p, q)

∣

∣

∣

MOMg
= Σggg

(2) (p, q)
∣

∣

∣

MOMg
= −1

2
Σggg

(3) (p, q)
∣

∣

∣

MOMg

= − Σggg
(4) (p, q)

∣

∣

∣

MOMg
=

1

2
Σggg

(5) (p, q)
∣

∣

∣

MOMg

= − Σggg
(6) (p, q)

∣

∣

∣

MOMg
= −1 +O(a3)

Σggg
(7) (p, q)

∣

∣

∣

MOMg
= 2 Σggg

(9) (p, q)
∣

∣

∣

MOMg
= −2 Σggg

(11)(p, q)
∣

∣

∣

MOMg

= − Σggg
(14)(p, q)

∣

∣

∣

MOMg

=
[

0.057318α3 − 0.507930α2 − 3.328046α− 1.092686Nf

+7.642693] a+
[

−0.021494α6 + 0.283161α5 + 1.173228α4

+0.607993α3Nf − 12.047753α3 − 1.820392α2Nf

−10.473322α2 − 16.242288αNf + 110.033630α

−3.779101N2
f + 36.334708Nf − 86.996723

]

a2 + O(a3)

Σggg
(8) (p, q)

∣

∣

∣

MOMg
= − Σggg

(13)(p, q)
∣

∣

∣

MOMg

=
[

0.192682α3 − 0.570116α2 − 3.351838α− 1.213010Nf

+7.954277] a+
[

−0.072256α6 + 0.525374α5 + 2.655909α4

+1.121278α3Nf − 13.649060α3 − 1.730035α2Nf

−6.045336α2 − 16.083732αNf + 114.490800α

−4.195246N2
f + 37.416111Nf − 85.674805

]

a2 + O(a3)

Σggg
(10)(p, q)

∣

∣

∣

MOMg
= − Σggg

(12)(p, q)
∣

∣

∣

MOMg

=
[

−0.135364α3 + 0.062186α2 + 0.023791α + 0.120324Nf

−0.311584] a+
[

0.050762α6 − 0.242213α5 − 1.482681α4

133



−0.513285α3Nf + 1.601306α3 − 0.090357α2Nf

−4.427987α2 − 0.158555αNf − 4.457170α

+0.416145N2
f − 1.081403Nf − 1.321918

]

a2 + O(a3) .

(4.4.23)

Notice here that the same relations are satisfied between the amplitudes as in the

MS scheme. The relation (3.2.13) also holds in the Curci-Ferrari gauge as well as

the arbitrary (linear) covariant gauge. For the MOMg scheme we have

βMOMg(a,α) = [0.666667Nf − 11.0] a2

+
[

−0.5625α4 − 0.5α3Nf + 5.367070α3 + 0.437395α2Nf

−1.996759α2 + 2.015861αNf − 19.654643α + 12.666667Nf

−102.0] a3 +
[

0.351563α7 + 0.281250α6Nf − 3.932921α6

−0.976418α5Nf − 0.940179α5 − 10.959442α4Nf

+86.317268α4 − 2.305695α3N2
f + 21.403554α3Nf

−49.695719α3 + 0.889805α2N2
f + 14.285994α2Nf

−200.649724α2 + 4.647961αN2
f + 43.239367αNf

−658.070943α− 2.658115N3
f + 67.089537N2

f

−0.565953Nf − 1570.984207] a4 + O(a5)

γMOMg
A (a,α) = [1.5α + 0.666667Nf − 6.5] a

+
[

−0.375α4 − 0.166667α3Nf + 2.117070α3 − 0.281302α2Nf

+8.403385α2 + 5.474404αNf − 41.643377α + 1.537130N2
f

−12.093123Nf + 16.909511] a2 +
[

0.164063α7

+0.072917α6Nf − 1.563373α6 − 0.128860α5Nf

−5.550011α5 − 6.504338α4Nf + 56.704696α4

−1.344989α3N2
f + 12.748297α3Nf + 3.724481α3

−1.415890α2N2
f + 66.363813α2Nf − 453.616596α2

+29.399931αN2
f − 302.353053αNf + 647.926112α

+6.202269N3
f − 74.919018N2

f + 491.430969Nf

−1308.938779] a3 + O(a4)

γMOMg
α (a,α) = [−0.75α− 0.666667Nf + 6.5] a

+
[

0.187500α4 + 0.166667α3Nf − 1.308535α3 + 0.281302α2Nf

−2.198042α2 − 3.745132αNf + 37.399010α− 1.537130N2
f
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+12.093123Nf − 16.909511] a2 +
[

−0.082031α7

−0.072917α6Nf + 0.855905α6 + 0.128860α5Nf

+1.672113α5 + 4.991225α4Nf − 34.418633α4

+1.344989α3N2
f − 9.153359α3Nf + 41.130432α3

+1.415890α2N2
f − 30.831035α2Nf + 320.119724α2

−22.422378αN2
f + 265.150723αNf − 566.417010α

−6.202269N3
f + 74.919018N2

f − 491.430969Nf

+1308.938779] a3 + O(a4)

γMOMg
c (a,α) = [0.75α− 2.25] a

+
[

−0.1875α4 + 1.371035α3 + 4.342239α2 + 1.729271αNf

−21.172897α− 4.437814Nf + 8.795600] a2 +
[

0.082031α7

−0.953562α6 − 2.036744α5 − 1.513113α4Nf

+34.288809α4 + 7.759276α3Nf − 7.509981α3

+27.833941α2Nf − 246.255710α2 + 6.977553αN2
f

−127.545757αNf + 436.672074α− 19.974116N2
f

+157.466921Nf − 548.849275] a3 + O(a4)

γMOMg
ψ (a,α) = 1.333333aα

+
[

−0.333333α4 + 1.437395α3 + 9.031722α2 + 3.074260αNf

−10.545541α− 1.333333Nf + 22.333333] a2

+
[

0.145833α7 − 1.257721α6 − 5.894040α5 − 2.689978α4Nf

+36.807483α4 + 7.057668α3Nf + 34.428624α3

+53.071812α2Nf − 232.340415α2 + 12.404539αN2
f

−80.560198αNf + 204.199902α− 5.259632N2
f

+76.867272Nf − 94.794328] a3 + O(a4) . (4.4.24)

4.5 MOMq scheme.

As with the MOMh renormalization we now similarly present results for the

MOMq scheme. Starting with the renormalization constants we have

Z(qqg)
g

∣

∣

∣

MOMq
= 1 +

[

−6ψ′
(

1
3

)

α2CA + 24ψ′
(

1
3

)

αCA + 96ψ′
(

1
3

)

αCF

+78ψ′
(

1
3

)

CA − 48ψ′
(

1
3

)

CF + 4α2CAπ
2 + 27α2CA

−16αCAπ
2 − 54αCA − 64αCFπ

2 − 216αCF − 52CAπ
2
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−993CA + 32CFπ
2 + 432CF + 240NfTF

+36 (−11CA + 4NfTF )
1

ϵ

]

a

216

+

[

(

121C2
A − 88CANfTF + 16N2

f T
2
F

) 1

24ϵ2

+
(

72
√
3ψ′
(

1
3

)2
α4C2

A − 576
√
3ψ′
(

1
3

)2
α3C2

A

−2304
√
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(

1
3

)2
α3CACF − 720

√
3ψ′
(

1
3

)2
α2C2

A

+10368
√
3ψ′
(

1
3

)2
α2CACF + 18432

√
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(

1
3

)2
α2C2

F

+7488
√
3ψ′
(

1
3

)2
αC2

A + 25344
√
3ψ′
(

1
3

)2
αCACF

−18432
√
3ψ′
(

1
3

)2
αC2

F + 19080
√
3ψ′
(

1
3

)2
C2
A
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√
3ψ′
(

1
3

)2
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√
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(

1
3
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C2
F

−96
√
3ψ′
(

1
3

)

α4C2
Aπ
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√
3ψ′
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1
3

)

α4C2
A
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√
3ψ′
(

1
3

)

α3C2
Aπ
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√
3ψ′
(

1
3

)

α3C2
A

+3072
√
3ψ′
(

1
3

)

α3CACFπ
2 + 17280

√
3ψ′
(

1
3

)

α3CACF
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√
3ψ′
(

1
3

)
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Aπ

2 + 28872
√
3ψ′
(
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3

)

α2C2
A
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√
3ψ′
(

1
3

)

α2CACFπ
2 − 55296

√
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(

1
3

)
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√
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3

)
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√
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3
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2
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√
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√
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3
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2
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√
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3
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2
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√
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√
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√
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√
3ψ′
(

1
3

)
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F
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√
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(

1
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)

αCFNfTF − 25440
√
3ψ′
(

1
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)

C2
Aπ

2
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√
3ψ′
(
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3

)
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√
3ψ′
(
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3

)

CACFπ
2
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√
3ψ′
(

1
3

)
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√
3ψ′
(
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3

)

CANfTF

−24576
√
3ψ′
(

1
3

)

C2
Fπ

2 − 293760
√
3ψ′
(

1
3

)

C2
F

−9216
√
3ψ′
(
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3

)
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√
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(
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3
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α2C2
A
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√
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3
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√
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(
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√
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√
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3

)
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√
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√
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(
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3

)
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√
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(
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6

)
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√
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(

π
6
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√
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√
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6
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√
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√
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A
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+1306368
√
3s2
(

π
6
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√
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π
6
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√
3s2
(

π
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√
3s2
(

π
2

)

α2C2
A

+248832
√
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√
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√
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√
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√
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√
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√
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√
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√
3s3
(

π
6

)

α2CACF

−181440
√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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−73710
√
3α2C2

A + 4992
√
3α2CACFπ

4

+36864
√
3α2CACFπ

2 + 20736
√
3α2CACF ζ3

+38880
√
3α2CACF + 1920

√
3α2CANfπ

2TF

+12960
√
3α2CANfTF + 8192

√
3α2C2

Fπ
4

+55296
√
3α2C2

Fπ
2 + 93312

√
3α2C2

F + 3856
√
3αC2

Aπ
4

+43488
√
3αC2

Aπ
2 + 20736

√
3αC2

Aζ3 + 136728
√
3αC2

A

+13184
√
3αCACFπ

4 + 253248
√
3αCACFπ

2

+10368
√
3αCACF ζ3 + 444528

√
3αCACF

−11520
√
3αCANfπ

2TF − 25920
√
3αCANfTF

−5120
√
3αC2

Fπ
4 − 216576

√
3αC2

Fπ
2 + 41472

√
3αC2

F ζ3

−311040
√
3αC2

F − 30720
√
3αCFNfπ

2TF

−103680
√
3αCFNfTF + 9584

√
3C2

Aπ
4 + 85008

√
3C2

Aπ
2

+109836
√
3C2

Aζ3 + 115029
√
3C2

A − 13568
√
3CACFπ

4
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−330816
√
3CACFπ

2 − 31104
√
3CACF ζ3

−694656
√
3CACF − 1536

√
3CANfπ

4TF

+29568
√
3CANfπ

2TF + 145152
√
3CANfTF ζ3

−79200
√
3CANfTF − 4096

√
3C2

Fπ
4 + 195840

√
3C2

Fπ
2

−290304
√
3C2

F ζ3 + 264384
√
3C2

F + 6144
√
3CFNfπ

2TF

−248832
√
3CFNfTF ζ3 + 430272

√
3CFNfTF

+57600
√
3N2

f T
2
F + 540 ln(3)2α2C2

Aπ

−864 ln(3)2α2CACFπ + 756 ln(3)2αC2
Aπ

−6912 ln(3)2αCACFπ + 3456 ln(3)2αC2
Fπ

−3078 ln(3)2C2
Aπ + 9072 ln(3)2CACFπ

−864 ln(3)2CANfπTF + 1728 ln(3)2C2
Fπ

−6480 ln(3)α2C2
Aπ + 10368 ln(3)α2CACFπ

−9072 ln(3)αC2
Aπ + 82944 ln(3)αCACFπ

−41472 ln(3)αC2
Fπ + 36936 ln(3)C2

Aπ

−108864 ln(3)CACFπ + 10368 ln(3)CANfπTF

−20736 ln(3)C2
Fπ − 580α2C2

Aπ
3 + 928α2CACFπ

3

−812αC2
Aπ

3 + 7424αCACFπ
3 − 3712αC2

Fπ
3 + 3306C2

Aπ
3

−9744CACFπ
3 + 928CANfπ

3TF − 1856C2
Fπ

3

+72
√
3
(

66ψ′
(

1
3

)

α2C2
A − 24ψ′

(

1
3

)

α2CANfTF

−264ψ′
(

1
3

)

αC2
A − 1056ψ′

(

1
3

)

αCACF

+96ψ′
(

1
3

)

αCANfTF + 384ψ′
(

1
3

)

αCFNfTF

−858ψ′
(

1
3

)

C2
A + 528ψ′

(

1
3

)

CACF + 312ψ′
(

1
3

)

CANfTF

−192ψ′
(

1
3

)

CFNfTF − 44α2C2
Aπ

2 − 297α2C2
A

+16α2CANfπ
2TF + 108α2CANfTF + 176αC2

Aπ
2

+594αC2
A + 704αCACFπ

2 + 2376αCACF

−64αCANfπ
2TF − 216αCANfTF − 256αCFNfπ

2TF

−864αCFNfTF + 572C2
Aπ

2 + 9699C2
A − 352CACFπ

2

−4752CACF − 208CANfπ
2TF − 5892CANfTF

+128CFNfπ
2TF + 2160CFNfTF

+960N2
f T

2
F

) 1

ϵ

)

1

31104
√
3

]

a2 + O(a3) (4.5.25)
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analytically for the coupling constant renormalization constant and numerically

for the wave function and gauge parameter renormalization constants in SU(3)

we have

Z(qqg)
A

∣

∣

∣

MOMq
= 1 +

[

0.75α2 + 1.5α− 1.111111Nf + 8.083333

+ (−1.5α− 0.666667Nf + 6.5)
1

ϵ

]

a

+

[

(

1.687500α2 + αNf − 6.375000α + 1.5Nf − 14.625000
) 1

ϵ2

+1.248017α4 + 8.191675α3 − 1.015581α2Nf + 16.657617α2

−4.271319αNf + 37.418456α− 26.358363Nf + 120.984314

+
(

−2.496035α3 − 0.609349α2Nf − 4.887629α2

−0.896125αNf + 19.623376α + 0.671627Nf

−22.923368)
1

ϵ

]

a2 + O(a3)

Z(qqg)
α

∣

∣

∣

MOMq
= 1 +

[

−1.5α− 0.75
α

ϵ

]

a+

[

α(0.562500α + 1.687500)
1

ϵ2

+α
(

−1.371035α2 − 8.860030α− 0.713146
)

+α(−0.685517α2 − 3.164390α + 5.068081)
1

ϵ

]

a2 + O(a3)

Z(qqg)
c

∣

∣

∣

MOMq
= 1 +

[

3.0 + (−0.75α + 2.25)
1

ϵ

]

a

+

[

(

0.562500α2 + 0.75Nf − 9.843750
) 1

ϵ2
+ 0.773320α2

+10.105127α− 2.604167Nf + 30.788446 +
(

−0.685517α3

−3.920338α2 + 9.780001α + 1.875000Nf

−21.954243)
1

ϵ

]

a2 + O(a3)

Z(qqg)
ψ

∣

∣

∣

MOMq
= 1 +

[

−1.333333α− 1.333333
α

ϵ

]

a+

[

α(1.388889α + 3.0)
1

ϵ2

−1.218698α3 − 6.347805α2 − 0.065396α

+2.333333Nf − 25.464206 +
(

−1.218698α3 − 5.347805α2

+7.509922α + 0.666667Nf − 11.166667)
1

ϵ

]

a2 + O(a3) .

(4.5.26)
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The amplitudes for the MOMq scheme at the symmetric point are

Σqqg
(1) (p, q)

∣

∣

∣

MOMq
= 1 +O(a3)

Σqqg
(2) (p, q)

∣

∣

∣

MOMq
= Σqqg

(5) (p, q)
∣

∣

∣

MOMq

=
[

−0.414023α2 − 2.305695α + 2.598033
]

a+
[

−0.567640α4

−5.318037α3 − 12.626549α2 − 1.033946αNf

+17.965565α− 3.385190Nf − 28.160578] a2 + O(a3)

Σqqg
(3) (p, q)

∣

∣

∣

MOMq
= Σqqg

(4) (p, q)
∣

∣

∣

MOMq

=
[

−0.5α2 − 2.522631α + 2.050269
]

a+
[

−0.685517α4

−6.677244α3 − 14.947140α2 − 0.919310αNf

+15.686895α− 2.593516Nf − 30.385947] a2 + O(a3)

Σqqg
(6) (p, q)

∣

∣

∣

MOMq
=

[

−0.585977α2 − 2.343907α− 4.362272
]

a+
[

−0.803395α4

−7.471450α3 − 14.263665α2 + 1.953256αNf

−27.911352α + 6.075881Nf − 40.243836] a2 + O(a3) .

(4.5.27)

The emergence of the relations between various amplitudes is again a check on

our computation. Like the previous two cases there are no O(a) corrections for

the channel 1 amplitudes corresponding to the vertex Feynman rule. This is due

to the definition of the MOMi schemes at the symmetric point. The MOMq

coupling constant mapping is given numerically as

aMOMq = a+
[

−0.164023α2 − 2.344187α− 1.111111Nf + 16.715775
]

a2

+
[

0.208860α4 + 2.073303α3 + 0.237744α2 + 0.651396αNf

−43.057552α + 1.234568N2
f − 83.111217Nf + 472.159094

]

a3

+ O(a4) (4.5.28)

with the conversion function corresponding to the quark-gluon vertex

CMOMq
g (a,α) = 1 +

[

0.082012α2 + 1.172093α + 0.555556Nf − 8.357887
]

a

+ [−0.094341α4 − 0.748276α3 + 0.136686α2Nf − 0.114499α2

+1.627791αNf − 7.859897α− 0.154321N2
f + 27.625796Nf

−131.298127]a2 + O(a3) . (4.5.29)
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Finally we record the renormalization group functions for the MOMq scheme in

numerical form for SU(3) starting with the β-function as

βMOMq(a,α) = [0.666667Nf − 11]a2

+ [0.246035α3 + 0.218698α2Nf − 0.374161α2 + 1.562791αNf

−15.237214α + 12.666667Nf − 102]a3 + [0.048066α5

+0.000006α4Nf + 2.147640α4 + 1.514213α3Nf

+0.007428α3 + 16.598977α2Nf − 123.345240α2

+60.545481αNf − 422.073192α− 22.587812N2
f

+588.654843Nf − 1843.652719]a4 + O(a5)

γMOMq
A (a,α) = [1.500000α + 0.666667Nf − 6.500000]a

+ [0.246035α3 − 0.390651α2Nf + 8.450130α2 + 1.562791αNf

−22.560876α + 9.411706Nf − 46.639132]a2

+ [0.136474α5 − 0.478368α4Nf + 8.765488α4 − 3.497867α3Nf

+57.718718α3 + 11.368733α2Nf − 197.964567α2

+1.302171αN2
f + 49.405307αNf − 333.308210α

−11.178808N2
f + 415.699017Nf − 2027.743722]a3 + O(a4)

γMOMq
α (a,α) = [−0.750000α− 0.666667Nf + 6.500000] a

+ [0.439483α3 + 0.390651α2Nf − 2.754489α2 − 1.562791αNf

+25.649045α− 9.411706Nf + 46.639132]a2 + [0.960039α5

+0.478368α4Nf + 5.678015α4 + 3.497867α3Nf

+1.538229α3 − 9.903791α2Nf + 236.129260α2

−1.302171αN2
f − 48.345615αNf + 452.915078α

+11.178808N2
f − 415.699015Nf + 2027.743714]a3 + O(a4)

γMOMq
c (a,α) = [0.750000α− 2.250000] a

+ [0.685517α3 + 4.201588α2 − 12.311251α + 0.750000Nf

−13.202007]a2 + [1.096513α5 + 12.182240α4 + 27.132851α3

+1.7109768α2Nf − 107.803424α2 + 4.118647αNf

−1.866574α− 2.500000N2
f + 75.503272Nf − 740.134167]a3

+ O(a4)

γMOMq
ψ (a,α) = 1.333333αa+ [1.218698α3 + 8.125582α2 + 2.490078α

−1.333333Nf + 22.333333]a2 + [1.949356α5 + 22.021246α4
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+74.901463α3 + 2.166946α2Nf + 30.480104α2

+3.107628αNf + 182.913291α + 0.888889N2
f

−52.191691Nf + 341.898911]a3 + O(a4) (4.5.30)

where all of the above results for the renormalization group functions are functions

of MOMq variables. This completes the summary of the results for all schemes

and vertices.

4.6 Λ-parameters

In this section we repeat the analysis of the Λ-ratios, carried out in chapter 3 for

the arbitrary (linear) covariant gauge (see (3.3.49)), for the Curci-Ferrari gauge.

For each MOMi scheme we have

ΘMOMh(α, Nf ) =
1

108

[

−12ψ′(13)αCA + 30ψ′(13)CA + 27α2CA + 8π2αCA

+108αCA − 20π2CA + 669CA − 240NfTF
]

ΘMOMg(α, Nf ) =
1

324

[

36ψ′(13)α
2CA − 162ψ′(13)αCA + 138ψ′(13)CA

−384ψ′(13)NfTF + 27α3CA − 24π2α2CA − 162α2CA

+108π2αCA + 243αCA − 92π2CA + 2376CA

+256π2NfTF − 864NfTF
]

ΘMOMq(α, Nf ) =
1

108

[

6ψ′(13)α
2CA − 24ψ′(13)αCA − 96ψ′(13)αTF

−78ψ′(13)CA + 48ψ′(13)CF − 4π2α2CA − 27α2CA

+16π2αCA + 54αCA + 64π2αCF + 216αCF + 52π2CA

+993CA − 32π2CF − 432CF − 240NfTF
]

. (4.6.31)

The Λ-ratios are numerically evaluated for the same values of α and Nf considered

in the previous chapter. These Λ-ratios are presented in Table 4.1. The values

for the MOMg and MOMq schemes are equivalent to those of the linear covariant

gauge fixing of [52], displayed in Table 3.3. This is because the coupling constant

mapping is the same for both cases despite the fact that the ghost-gluon vertex

is different. This does not affect the one loop vertices since the differences cancel

out. However, this is not the case for the MOMh scheme since the quartic ghost

vertex contributes to the mapping for all α and in the Landau gauge case the

differences in the ghost-gluon vertex are significant. However, the same increase

and decrease of the ratio with α and Nf is parallel to that for the standard linear
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covariant gauge fixing results of [52], despite the difference in the Λ-paramters

for the MOMh scheme. This variation between the Λ-ratio corresponding to the

MOMh scheme can be seen via direct comparison of Tables 3.3 and 4.1.

α Nf MOMg MOMh MOMq
0 0 3.3341 2.6588 2.1379
0 1 3.0543 2.6837 2.1277
0 2 2.7644 2.7123 2.1163
0 3 2.4654 2.7456 2.1032
0 4 2.1587 2.7846 2.0881
0 5 1.8471 2.8312 2.0706
1 0 2.8957 2.9893 1.9075
1 3 2.0751 3.1684 1.8296
1 4 1.7921 3.2505 1.7964
1 5 1.5088 3.3496 1.7581
3 3 1.8392 5.4177 1.3110
3 4 1.5732 5.8018 1.2533
-2 4 2.5437 2.6772 2.6597

Table 4.1: Values of
ΛMOMi
Λ
MS

for the Curci-Ferrari gauge in SU(3).

4.7 Discussion.

We make several remarks about our computation. Firstly, to summarize the three

loop renormalization group functions of QCD gauge fixed in the Curci-Ferrari

gauge have been derived for the three momentum subtraction schemes introduced

originally in [91, 52]. All results at two and three loops for the MOMi schemes

within this chapter are new. Obtaining these results required renormalizing the

3-point vertices at the non-exceptional symmetric momentum configuration at

two loops and then, using properties of the renormalization group equation we

were able to deduce the three loop anomalous dimensions and β-functions. The

explicit form of the vertex functions to two loops, not only in the MOMi schemes

but also in the MS scheme, are useful for both lattice and Schwinger-Dyson

analyses of the vertices. The coupling constant and gauge parameter mappings

were constructed along with the conversion functions for each MOMi scheme. We

also explicitly computed the Λ-parameters which, when compared with those in

the linear covariant gauge gave us numerical insight in to the differences in the

ghost-gluon vertex structure between gauges. The MOMq and MOMg scheme

Λ-parameters remain unchanged. With renewed interest in gluon confinement,

143



analysis carried out in this Curci-Ferrari gauge fixing is of interest. Originally

introduced as a possible alternative to models of vector boson mass, the model

of [42] fell out of fashion with the development of the Standard Model and its

loss of unitarity when a mass term for the gluon is present. It regained interest

primarily as lattice and Schwinger-Dyson studies appear to give evidence for a

gluon propagator which freezes in the infrared limit to a non-zero value. See, for

example, [105, 106, 107, 108, 109, 110, 111, 112, 95, 96, 113, 114] for some early

evidence of this property. This non-zero freezing has been notionally termed

a gluon mass but this is misleading as that would imply that the gluon has a

fundamental propagator for all momenta with a non-zero pole in p2. If that were

the case the gluon would not be a confined quantum. Instead one viewpoint is

that the freezing is believed to be related to the Gribov copy problem, [115], and

recent models use the Curci-Ferrari model in this respect to study the gluon’s

infrared dynamics, [116, 117, 118, 119, 120]. For studies where the gluon mass

running is necessary we have provided the corresponding anomalous dimensions

for the MOMi schemes in the Curci-Ferrari gauge. The results determined in this

chapter are new and can be used as the foundations for future calculations in this

gauge. The analysis of QCD gauge fixed in the Curci-Ferrari gauge provides a

basis for studying the more involved maximal abelian gauge. The Curci-Ferrari

gauge is strongly related to the MAG, which becomes apparent in the following

chapter where the MAG is studied in the same schemes at one loop.
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Chapter 5

The Maximal Abelian gauge

5.1 Introduction

The maximal abelian gauge (MAG) is interesting as it is thought that the low

energy beheviour of QCD may be best described using an effective abelian the-

ory, an idea first proposed by ’t Hooft, [18, 19, 21, 20, 22]. It is thought that

confinement may be best explained by the condensation of abelian monopoles

originating from the diagonal elements of the colour group, [79], which is a Lie

group, and that at low energies the behaviour of the diagonal and off-diagonal

gluons may differ. Abelian monopoles are believed to dominate the infrared

dynamics and for this analysis one has to have a way of making contact with

the diagonal sector directly, [51]. It is for this reason that the maximal abelian

gauge, [19, 21, 20, 121, 122], is appealing, as one of its underlying properties is

to split the colour group into its diagonal and off-diagonal parts. The gluons

corresponding to the diagonal parts are named diagonal, while those which are

not part of this abelian subgroup are termed off-diagonal, [79, 51]. So in choosing

the MAG, anyone focusing on this supposition will find results calculated in this

gauge useful. Various lattice studies of the infrared support the hypothesis that

the confinement mechanism is driven by abelian monopoles [18, 20, 19, 21, 22].

The off-diagonal gluons become massive leaving the abelian gluons as the relevant

degrees of freedom in this regime. Therefore, simulations are carried out in this

gauge where the gluon and ghost propagators are measured as well as the vertex

functions. The results we obtain will assist with further study in these areas.

In a recent lattice study, [123], the effect of the diagonal gluons on the inter-quark

static potential was investigated. Within the theoretical setup it was possible to

identify the contributions made by the diagonal gluons to the potential. Within
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the study it was claimed that excluding these contributions forced the linearly

rising potential to collapse, indicating that the abelian sector was effectively re-

sponsible for quark confinement. The data was determined on the fine lattice,

where the authors concluded that in studying this maximally abelian projection

they had found that confinement is entirely kept in the abelian sector of QCD in

the MAG. Although this and other similar research is interesting in studying the

confinement mechanism, this lies beyond the scope of perturbation theory. The

property of the MAG we are interested in here is its structure and relationship

with other gauges. In particular the Landau gauge and the (non-linear) covariant

Curci-Ferrari gauge. To assist with accurate lattice measurements, results need

to match the ultraviolet behaviour, which we can compute in perturbation theory.

This is where our motivation lies. In this chapter we provide the one loop analysis

of QCD in the maximal abelian gauge at the symmetric subtraction point. This

allows for the MAG to be studied both in the MS and MOMi schemes. The latter

being the preferred scheme since it is a mass dependent renormalization scheme,

meaning it is physical. With the one loop results computed the β-function and

anomalous dimensions can be constructed, as in the previous chapters, to two

loops for all MOMi schemes. In addition, we comment on the relationship be-

tween the MAG and the Curci-Ferrari gauge which we explored in the previous

chapter.

5.2 Preliminaries

Having discussed the general background and formulation of the Lagrangian in

Chapter 2 we use this section to point out the essential features of the MAG,

which fundamentally differ from the previous gauges studied. To begin with let

us discuss the structure of the colour group. The basic idea behind the maximal

abelian gauge is to remove as many non-abelian degrees of freedom as possible

by partially fixing the gauge, leaving the theory with a residual abelian gauge

symmetry which is then gauge fixed separately. In the MAG it is usual to do this

by decomposing the gauge field into its diagonal (or photonic) and off-diagonal

parts

Aµ = AA
µT

A

⇒ Aµ = Aa
µT

a + Ai
µT

i (5.2.1)
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where we have split the group generators into two sets, where i denotes the

diagonal (centre or photonic) group elements and a denotes the off-diagonal group

elements. The Faddeev-Popov ghost fields are also split in this manner. The

index i labels the (Nc − 1) generators T i of the Cartan subalgebra of SU(Nc).

For example, consider the gauge group SU(2) where, using the formula N2 − 1

there are three generators. In this case a = 1, 2 would denote the off-diagonal

generators with i = 3 being the only diagonal generator of SU(2). The dimensions

of these elements are 1 ≤ i ≤ Nd
A and 1 ≤ a ≤ N o

a respectively. For an SU(Nc)

gauge group the diagonal components are Nd
A = (Nc − 1) dimensional and the

off-diagonal components are N o
A = (N2

c − 1)− (Nc− 1) = Nc(Nc− 1) dimensional

such that the total number of generators is given by N o
A + Nd

A = NA , [79, 51].

Before constructing the Lagrangian we must first discuss the new group theory

needed as a result of splitting the colour group. To determine the new identities

we can rewrite the Jacobi identity, (2.1.7), using the symmetries of the structure

constants (2.1.4). Firstly the structure constants are derived as

faij = 0 = f ijk . (5.2.2)

There are two new identities we must derive for the MAG, these are

fabif bjc + fabjf bci = 0 , (5.2.3)

fabcf bdi + fabdf bic + fabif bcd = 0 . (5.2.4)

For the first identity we can write (2.1.7) as

fPaifPcj + fPacfPij + fPajfPic = 0 (5.2.5)

where the middle term drops out as a result of applying (2.1.6) to the diagonal

counterparts

[T i, T j ] = 0 ⇒ if ijATA = if ijaT a + if ijkT k

⇒ if ijaT a = 0 (5.2.6)

which in turn implies

f paif pcj + f pajf pic = 0 . (5.2.7)
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Another important property of (2.1.6) is

[T a, T j ] = ifajcT c . (5.2.8)

Now for the second identity, going back to our Jacobi identity, let D = i and

A,B,C = a, b, c respectively, then (2.1.7) becomes

fPabfPci + fPacfPib + fPaifPbc = 0 . (5.2.9)

The only choice we have for P is to set it to be off-diagonal, otherwise we will

have fAij in each term resulting in a trivial solution coming from (5.2.2). The

second identity becomes

f pabf pci + f pacf pib + f paif pbc = 0 . (5.2.10)

We also have the condition f icdf bcd = 0 which is a result of the Lie algebra (2.1.6),

fACDfBCD = CAδ
AB

f icdf bcd = CAδ
ib (5.2.11)

where

CAδ
ab = facdf bcd + 2facjf bcj (5.2.12)

and δib = 0 where

δAB =

(

δij 0

0 δab

)

.

Several other useful relations have been established using the Jacobi identity and

the properties of the Lie algebra provided in chapter 2 which are detailed below.

Written in terms of the dimension of the diagonal and off-diagonal elements by

taking a contraction of (5.2.12) we have

f iabf iab = Nd
ACA , fabcfabc =

[

N o
A − 2Nd

A

]

CA (5.2.13)
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where we recall Nd
A is the dimension of the diagonal and N o

A is the dimension of

the off-diagonal. Hence we have the following

facjf bcj =
Nd
A

N o
A

CAδ
ab , facdf bcd =

[

N o
A − 2Nd

A

]

CAδab

N o
A

(5.2.14)

which we extend using the Jacobi identity to establish the following useful rela-

tions

fapqf bprf cqr =
[N o

A − 3Nd
A ]

2N o
A

CAf
abc , fapqf bpif cqi =

Nd
A

2N o
A

CAf
abc

f ipqf bprf cqr =
[N o

A − 2Nd
A ]

2N o
A

CAf
ibc , f ipqf bpjf cqj =

Nd
A

N o
A

CAf
ibc (5.2.15)

where p, q are off-diagonal indices here and are not the same p, q defined for the

momentum. For the group generators, in addition to the relations discussed in

chapter 3 we have

Tr
(

T aT b
)

= TF δ
ab , Tr

(

T aT i
)

= 0 , Tr
(

T iT j
)

= TF δ
ij (5.2.16)

as well as

T iT i =
TF

NF

Nd
AI , T aT a =

[

CF − TF

NF

Nd
A

]

I (5.2.17)

where NF is the dimension of the fundamental representation. NF is defined by

NF =

[

N o
A +Nd

A

]

TF
CF

(5.2.18)

which will be used to simplify the algebra from the quark sector. These basic

results and others have been coded within a Form module and applied prior to

the integrals being mapped to the basic topologies.

As SU(3) is a non-abelian theory we can form a subgroup within SU(3) made up

of only abelian parts i.e. diagonal (centre) pieces. This can be demonstrated via

the field strength tensor (2.1.30) which, due to this separation of diagonal and

off-diagonal components decomposes to become

Gµν = GA
µνT

A = Ga
µνT

a +Gi
µνT

i (5.2.19)

with diagonal and off-diagonal parts given respectively as

Gi
µν = ∂µA

i
ν − ∂νA

i
µ + gfabiAa

µA
b
ν (5.2.20)
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Ga
µν = Dab

µ Ab
ν −Dab

ν Ab
µ + gfabcAb

µA
c
ν . (5.2.21)

The covariant derivative is redefined as

Dab
µ ≡ ∂µδ

ab − gfabiAi
µ . (5.2.22)

Notice how the structure constants can contain a mix of both diagonal and off-

diagonal components. We use the definition of the maximal abelian gauge to

split the indices A into two sectors, diagonal, a, and off-diagonal, i, [79, 51], so in

essence it is split into an abelian part and the rest of the algebra. Thus, taking

the above into consideration, the Lagrangian contains two field strength tensors,

one for each sector

LMAG = −1

4
G a

µνG
aµν − 1

4
G i

µνG
i µν + iψ̄γµD

µψ + LMAG

GF (5.2.23)

where LMAG

GF is the gauge fixing term specific to the MAG, already presented in

(2.1.52). It is useful, where possible, to write down the gauge fixing terms of the

Lagrangian in terms of interpolating parameters. This serves many purposes. An

interpolating gauge allows one to simultaneously calculate results for multiple

gauge fixings whilst at the same time be able to compare results between the

gauges by taking specific limits of these interpolating parameters. In [41] the

authors present an interpolating gauge which connects the MAG to the Landau

gauge. In this context we can rewrite LMAG

GF in the form

LMAG

GF = δδ̄

[

1

2
Aa

µA
aµ +

1

2
αc̄aca +

1

2
ζAi

µA
i µ

]

+ (1− ζ)δ
[

c̄i∂µAi
µ

]

(5.2.24)

where ζ is our interpolating parameter and α is the arbitrary gauge parameter.

There is also a gauge parameter, αp associated with the diagonal gluons which

appears only in the quadratic term of the Lagrangian, see (5.2.27). It is necessary

in order to construct the diagonal gluon propagator and is set to zero thereafter.

Note here that we have chosen to neglect αp in (5.2.24) since this gauge parameter

neither appears in the Landau gauge nor (modified) MAG. The Landau gauge

corresponds to α = 0 and ζ = 1, whereas the MAG corresponds to setting ζ = 0

and α ̸= 0. Setting α = 0 corresponds to the true (unmodified) MAG, however

setting α = 0 from the beginning results in the gauge being unrenormalizable, [40].

This is due to a factor of 1
α

appearing in the Feynman rule that directly affects

one of our gluon diagrams, resulting in a zero-divisor when α = 0. Therefore we

keep α arbitrary until the very end, upon which a graphical analysis of our results
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for the amplitudes can be made in the MS scheme. The other reason we keep α

and ζ arbitrary is so that checks can be made against results in the Landau gauge

via interpolation. The objects δ, δ̄ are BRST and anti-BRST transforms and the

Lagrangian is fixed in a BRST-invariant way, as discussed in section 2.1.1. The

BRST and anti-BRST transformations for the MAG are, [79],

δAa
µ = −

(

∂µc
a + gfajcAj

µc
c + gfabcAb

µc
c + gfabkAb

µc
k
)

δca = gfabkcbck +
1

2
fabccbcc , δc̄a = ba , δAi

µ = −
(

∂µc
i + gf ibcAb

µc
c
)

δba = 0 , δci =
1

2
gf ibccbcc , δc̄i = bi , δbi = 0 (5.2.25)

and

δ̄Aa
µ = −

(

∂µc
a + gfajcAj

µc
c + gfabcAb

µc
c + gfabkAb

µc
k
)

δ̄ca = − ba + gfabccbc̄c + gfabkcbc̄k + gfabkc̄bck

δ̄c̄a = gfabkc̄bc̄k +
1

2
gfabcc̄bc̄c , δ̄ba = − gfabcbbc̄c − gfabkbbc̄k + gfabkc̄bbk ,

δ̄Ai
µ = −

(

∂µc̄
i + gf ibcAb

µc̄
c
)

, δ̄ci = − bi + gf ibccbc̄c

δ̄c̄i =
1

2
gf ibcc̄bc̄c , δ̄bi = − gf ibcbbc̄c . (5.2.26)

Note that the bi field re-introduces αp which we set to zero throughout, apart

from where it contributes to the quadratic term in the final Lagrangian since

this allows us to derive the Feynman rule for the photonic gluon propagator.

Therefore the MAG gauge fixed Lagrangian, generated by a Form procedure so

as to avoid errors, is

LMAG
GF = − 1

2α

(

∂µAa
µ

)2 − 1

2αp

(

∂µAi
µ

)2
+ c̄a∂µ∂µc

a + c̄i∂µ∂µc
i

+ g
[

(1− ζ)fabkAa
µc̄

k∂µcb − ζfabkAa
µ∂

µcbc̄k − fabcAa
µc̄

b∂µcc − ζfabkAa
µc̄

b∂µck

− (1− ζ)

α
fabk∂µAa

µA
b
νA

k ν − fabk∂µAa
µc

bc̄k − 1

2
fabc∂µAa

µc̄
bcc

− (2− ζ)fabkAk
µc̄

a∂µc̄b − fabk∂µAk
µc̄

bcc
]

+ g2
[

(1− ζ)facbd
d Aa

µA
b µc̄ccd − (1− ζ)2

2α
fakbl
o Aa

µA
b µAk

νA
l ν

+ (1− ζ)fadcj
o Aa

µA
j µc̄ccd − (1− ζ)

2
fajcd
o Aa

µA
j µc̄ccd

+ (1− ζ)fajcl
o Aa

µA
j µc̄ccl + (1− ζ)falcj

o Aa
µA

j µc̄ccl

− (1− ζ)f cjdi
o Ai

µA
j µc̄ccd − α

4
fabcd
d c̄ac̄bcccd − α

8
fabcd
o c̄ac̄bcccd
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+
α

8
facbd
o c̄ac̄bcccd − α

4
fabcl
o c̄ac̄bcccl +

α

4
facbl
o c̄ac̄bcccl

− α

4
falbc
o c̄ac̄bcccl +

α

2
fakbl
o c̄ac̄bckcl

]

(5.2.27)

where it is understood that αp, which is distinct from α, is set to zero after our

renormalization, [79, 51]. This means that the diagonal gluons are fixed in the

Landau gauge. Note here that we have introduced the shorthand notation

fABCD
d = f iABf iCD , fABCD

o = f eABf eCD (5.2.28)

for the diagonal and off-diagonal quartic interaction terms respectively, where

fABCD + fACDB + fADBC = 0 . (5.2.29)

This Lagrangian is fully renormalizable and the Feynman rules generated from it

are given in Appendix C where in addition to the quartic ghost interaction which

we encountered in the Curci-Ferrari gauge, the MAG includes quartic ghost-gluon

interactions. In addition to the standard QCD definitions of the renormalization

constants (2.1.55) we have the definitions for the photonic fields, interpolating

parameter and gauge parameter, αp, specific to the MAG. The renormalization

procedure is repeated with the full set of renormalization constants defined by

Aaµ
o =

√

ZA Aaµ , Ai µ
o =

√

ZAi Ai µ , cao =
√

Zc c
a , c̄ao =

√

Zc c̄
a ,

cio =
√

Zci c
i , c̄io =

√

Zc̄i c̄
i , ψo =

√

Zψψ , go = µϵZg g ,

αo = Z−1
α ZA α , αpo = Z−1

αi ZAi αp , ζo = Zζζ (5.2.30)

where the index i on objects in the subscript is to indicate the diagonal sector

and is not summed over. By splitting the Lie algebra into its diagonal and off-

diagonal components the Slavnov-Taylor identities, that we would usually apply

to our calculations to ensure that the renormalization constants are correct, differ

slightly from those of the linear and Curci-Ferrari gauges. A derivation of the

Slavnov-Taylor identities for the MAG using algebraic renormalization is given in

[40, 41]. The idea underlying this procedure for constructing the relations between

the renormalization constants is as follows. Briefly the authors of [40, 41] begin by

writing down the complete action (Σ) in terms of external sources introduced to

couple to the BRST-invariant fields. Under the condition that the action remains

BRST invariant a Ward identity emerges. Generalizing this Ward identity to all

orders of perturbation theory is achieved by assuming that the same Ward identity
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satisfied by the action (Σ) will also apply to a perturbed action (Σ+Σcounterterms),

where Σcounterterms is a complete set of the most general invariant counterterms

that can be added to the classical action (Σ). This, in essence forces certain

conditions on both sides of the equation

Σ(g,α,φ, . . . ) + Σcounterterms = Σ(g0,α0,φ0, . . . ) (5.2.31)

with the fields φ ∈ (Aa, Ai, ca, c̄a, ci, c̄i, ba, bi). This in turn gives us the corre-

sponding relationships between the bare and renormalized fields, gauge parameter

and coupling constant. Observing what we had (5.2.30) with what we now have

for the photonic (diagonal) gluon and photonic ghost we see that the following

Slavnov-Taylor identities emerge, [40, 41],

Zc̄iZci = 1 (5.2.32)

Z
1
2

AiZg = 1 (5.2.33)

where ZAi is the renormalization constant for the photonic gluon and Zci and

Zc̄i are the renormalization constants for the photonic ghost and anti-ghost. The

second of our Slavnov-Taylor identities, (5.2.33), is similar to that arising in the

background field gauge, [124, 125], which one would expect since the background

field method is to split the gauge field into the background field and the quantum

field. Similar to how the MAG is split into its diagonal and off-diagonal parts, the

diagonal gluons play a similar role to the background gluons of the background

field gauge. The Slavnov-Taylor identity (5.2.33) in the MAG gives rise to the

relationship between γAi and the β-function. Again, this strongly correlates with

the background field method where the relationship βBFG(µ) = g(µ)γBFG
B (α)

holds, where γB(α) is the anomalous dimension for the background gluon field B,

[124, 125]. In the MAG a similar identity is true

βMOMi(a, µ) = aMOMi(µ)γ
MOMi
Ai (a,α) (5.2.34)

in our convention for the coupling constant. Notice that if we look at the O(g)

pieces in the Lagrangian alone we can pick out the 9 vertices, which, when choos-

ing ζ = 0 cancel down to just 6 vertices

LMAG
GF = − 1

2α

(

∂µAa
µ

)2 − 1

2αp

(

∂µAi
µ

)2
+ c̄a∂µ∂µc

a + c̄i∂µ∂µc
i

+ g
[

fabkAa
µc̄

k∂µcb − fabcAa
µc̄

b∂µcc

153



− 1

α
fabk∂µAa

µA
b
νA

k ν − fabk∂µAa
µc

bc̄k − 1

2
fabc∂µAa

µc̄
bcc

− 2fabkAk
µc̄

a∂µc̄b − fabk∂µAk
µc̄

bcc
]

(5.2.35)

where the sixth comes from the iψ̄γµDµψ piece in the full Lagrangian. This means

that there are potentially 6 MOMi schemes, each based on one of the vertices.

The off-diagonal sector of the MAG corresponds to QCD fixed in the Curci-Ferrari

gauge, [126], except that in the Curci-Ferrari gauge the off-diagonal sector cor-

responds to the full colour group. This can be seen by removing the diagonal

parts from LMAG, where the resulting Lagrangian is simply that fixed in the

Curci-Ferrari gauge, (4.1.1). Clearly both Lagrangians (4.1.1) and (5.2.35) in-

clude quartic ghost interactions. Again, we reiterate from the previous chapter

that whilst ordinarily an abelian gauge theory does not have coupled ghosts this

statement only applies to the case where the gauge fixing is linear. For instance in

the ’t Hooft-Veltman gauge in QED, [127], there are interacting Faddeev-Popov

ghosts. The situation is the same with the Curci-Ferrari gauge and here with

the MAG that the non-linear gauge fixings produce interacting ghost terms. The

ghost terms coupling in this non-trivial way does not spoil renormalization.

Taking the naive view that there could possibly be more MOMi schemes for the

MAG due to its construction, we initially computed all the one loop diagrams

for all possible combinations of the vertex, as shown in Table 5.1, where only

eight of the vertices produced tree diagrams. It was not until we began our

renormalization procedure that we realised there was a contradiction in defining

the renormalization constants; they did not satisfy the Slavnov-Taylor identities

(5.2.32) and (5.2.33). The Slavnov-Taylor identities render the vertices involving

diagonal gluons effectively trivial. Applying the Slavnov-Taylor identities to the

MOMi scheme vertices we see that the condition ZAiZ2
g = 1 implies that there

are no photonic vertices. We can see this specifically in the Aiψ̄ψ vertex as it

contains the factor
√
ZAiZgZψ and as

√
ZAiZg = 1, this implies that we must fix

both ZAi and Zg. However, we already have ZAi set from our 2-point calculations

and so we cannot change this for each different vertex structure as we would end

up with several different values for ZAi , which is not correct. So our possible

6 MOMi schemes collapse down to the three we are familiar with; the MOMh,

MOMg, and MOMq schemes. No new MOMi schemes other than those for the

ghost-gluon, triple-gluon and quark-gluon vertex functions are introduced via a

MAG gauge fixing.
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Green’s Function Number of one loop diagrams

Aa
µc̄

icb 5
Aa

µA
b
νA

c
σ 23

Aa
µA

b
νA

i
σ 18

Aa
µψψ̄ 5

Ai
µψψ̄ 3

Aa
µc̄

bcd 16
Aa

µc̄
bci 9

Ai
µc̄

acb 11
Ai

µA
j
νA

k
σ 11

Aa
µA

i
νA

j
σ 11

Aa
µc̄

icj 2
Ai

µc̄
jca 3

Ai
µc̄

acj 5
Ai

µc̄
jck 3

Total: 125

Table 5.1: Number of 3-point vertex diagrams calculated in the MAG for all
possible vertices

5.3 MS scheme

Since we only consider the MAG at one loop due to the complexity of the gauge

fixing we present all results within this chapter analytically, since at one-loop

order the results are more compact than those calculated in the arbitrary (linear)

covariant gauge and the Curci-Ferrari gauge at two and three loops. We begin

by reporting our renormalization constants in the MS scheme. These are

Zg(α, ζ,αp)
∣

∣

∣

MS
= 1 +

[

CA

(

−11

6

)

+
2

3
TFNf

]

a

ϵ
+ O(a2)

ZA(α, ζ,αp)
∣

∣

∣

MS
= 1 +

[

CA

(

−α
2
+

13

6
+
αNd

A

2N o
A

+
αpζNd

A

2N o
A

− αpNd
A

N o
A

+
3ζNd

A

2N o
A

−3Nd
A

2N o
A

)

− 4

3
NfTF

]

a

ϵ
+ O(a2)

ZAi(α, ζ,αp)
∣

∣

∣

MS
= 1 +

[

−4

3
NfTF + CA

(

11

3
− αpζ

2
− 3ζ

2

)]

a

ϵ
+ O(a2)

Zα(α, ζ,αp)
∣

∣

∣

MS
= 1 +

[

CA

(

3Nd
A

αN o
A

(ζ − 1)− 3αζNd
A

2N o
A

+
αNd

A

N o
A

− α

4
+
αpζNd

A

2N o
A

+
αpζ2Nd

A

2N o
A

− αpNd
A

N o
A

− 3ζNd
A

N o
A

+
3ζ2Nd

A

2N o
A

+
3Nd

A

2N o
A

)]

a

ϵ

+ O(a2)

155



Zαp(α, ζ,αp)
∣

∣

∣

MS
= 1 + O(a2)

Zc(α, ζ,αp)
∣

∣

∣

MS
= 1 +

[

CA

4

(

3− α− 3αζNd
A

N o
A

+
2αNd

A

N o
A

+
4αpζNd

A

N o
A

− αpζ2Nd
A

N o
A

−4αpNd
A

N o
A

− 9ζNd
A

N o
A

+
3ζ2Nd

A

N o
A

+
6Nd

A

N o
A

)]

a

ϵ
+ O(a2)

ZMS
ci (α, ζ,αp) = 1 +

[

CAζ

(

α

4
+

3

4

)]

a

ϵ
+ O(a2)

Zψ(α, ζ,αp)
∣

∣

∣

MS
= 1 +

[

−αCF + TF

(

−αN
o
A

Nc

+
αpN o

A

Nc

)]

a

ϵ
+ O(a2) . (5.3.36)

where we have displayed results in terms of the gauge parameters α and αp for

demonstration purposes. Here ci is the label for the photonic ghost, Ai the

photonic gluon, Aa the off-diagonal gluon, ca the off-diagonal ghost and ψ the

quark. With the conditions, α ̸= 0, αp = 0 and ζ = 0, as we discussed earlier the

renormalization constants for the (modified) MAG are given by

Zg(α, 0, 0)
∣

∣

∣

MS
= 1 +

[

−11

6
CA +

2

3
TFNf

]

a

ϵ
+ O(a2)

ZA(α, 0, 0)
∣

∣

∣

MS
= 1 +

[

CA

(

−α
2
+

13

6
+
αNd

A

2N o
A

− 3Nd
A

2N o
A

)

− 4

3
NfTF

]

a

ϵ
+ O(a2)

ZAi(α, 0, 0)
∣

∣

∣

MS
= 1 +

[

−4

3
NfTF +

11

3
CA

]

a

ϵ
+ O(a2)

Zα(α, 0, 0)
∣

∣

∣

MS
= 1 +

[

CA

(

3Nd
A

αN o
A

+
αNd

A

N o
A

− α

4
+

3Nd
A

2N o
A

)]

a

ϵ
+ O(a2)

Zαp(α, 0, 0)
∣

∣

∣

MS
= 1 + O(a2)

Zc(α, 0, 0)
∣

∣

∣

MS
= 1 +

[

CA

4

(

3− α +
2αNd

A

N o
A

+
6Nd

A

N o
A

)]

a

ϵ
+ O(a2)

Zci(α, 0, 0)
∣

∣

∣

MS
= 1 + O(a2)

Zψ(α, 0, 0)
∣

∣

∣

MS
= 1 +

[

−αCF − αN o
A

Nc

TF

]

a

ϵ
+ O(a2) . (5.3.37)

From these we can see that the Slavnov-Taylor identity (5.2.33) holds. For ex-

ample, in the MS scheme we have the following

ZAiZ2
g = 1 . (5.3.38)
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This is the same as saying zAi
1
= −2zg1. For MS we have above

zAi
1
(αp, ζ)

∣

∣

∣

MS
= −4

3
NfTF + CA

(

11

3
− αpζ

2
− 3ζ

2

)

zg1(αp, ζ)
∣

∣

∣

MS
= −11

6
CA +

2

3
TFNf (5.3.39)

which, when setting the MAG conditions ζ = 0,αp = 0, gives

zAi
1
(α, 0, 0)

∣

∣

∣

MS
= −4

3
NfTF +

11

3
CA

zg1(α, 0, 0)
∣

∣

∣

MS
= −11

6
CA +

2

3
TFNf (5.3.40)

which implies zAi
1
= −2zg1. This means that the Slavnov-Taylor identity holds

in MS, which we need in order to preserve gauge invariance. The reason for

introducing the interpolating parameter ζ into our Lagrangian (5.2.27) was so

that a comparison of results can be made in the Landau gauge. Specifically,

when taking the Landau limit the renormalization constant for the off-diagonal

gluon should equal that of the diagonal gluon and likewise for the diagonal and

off-diagonal ghosts. Setting αp = 0, ζ = 1 and α = 0 we can make a Landau

gauge check between these renormalization constants

Zg(0, 1, 0)
∣

∣

∣

MS
= 1 +

[

−11

6
CA +

2

3
TFNf

]

a

ϵ
+ O(a2)

ZA(0, 1, 0)
∣

∣

∣

MS
= 1 +

[

13

6
CA − 4

3
NfTF

]

a

ϵ
+ O(a2)

ZAi(0, 1, 0)
∣

∣

∣

MS
= 1 +

[

−4

3
NfTF +

13

6
CA

]

a

ϵ
+ O(a2)

Zα(0, 1, 0)
∣

∣

∣

MS
= 1 + O(a2)

Zαp(0, 1, 0)
∣

∣

∣

MS
= 1 + O(a2)

Zc(0, 1, 0)
∣

∣

∣

MS
= 1 +

[

3CA

4

]

a

ϵ
+ O(a2)

Zci(0, 1, 0)
∣

∣

∣

MS
= 1 +

[

3

4
CA

]

a

ϵ
+ O(a2)

Zψ(0, 1, 0)
∣

∣

∣

MS
= 1 + O(a2) . (5.3.41)

Because of the (ζ − 1) term complementing the factor of 1
α

in Zα we are able to

take the Landau limit, where α → 0. Using this check we can see that the MAG

renormalization constants in the Landau gauge agree with those in the arbitrary
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(linear) covariant gauge in the same limit for the MS scheme. Also that the off-

diagonal and diagonal counterparts match on to each other. The interpolating

parameters have allowed us to check the correctness of both the renormalization

constants and our programming. Now that we have made this check on our results

the interpolating parameters have served their purpose and are no longer needed,

therefore we record all future results in the traditional (modified) MAG with

ζ = αp = 0 , α ̸= 0 . (5.3.42)

Essentially the diagonal gluons, corresponding to the subgroup of generators

which totally commute, are fixed in the Landau gauge, [67]. Our results for the

renormalization constants will be used to determine the renormalization group

functions as well as the conversion functions later on. As a preliminary to the

MOMi scheme computations we first record the results for the amplitudes in the

MS scheme, since this is the basic reference scheme. Indeed to deduce the two

loop MOMi scheme renormalization group functions using the conversion func-

tions, the two loop MS results are necessary. Therefore, for completeness we note

that these are, [14, 21],

γMS
A (a,α) =
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6N o
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[

N o
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]
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[
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)
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(
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+
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+ O(a3)
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1

4N o
A

[

N o
A(α− 3)CA +Nd

A(−2α− 6)CA

]

a

+
1

96N o
A
2

[

N o
A
2
(

(6α2 − 6α− 190)C2
A + 80CATFNf

)

+ N o
AN

d
A

(

(− 42α2 − 126α− 347)C2
A + 160CATFNf

)

+ Nd
A

2
(12α2 − 588α + 510)C2

A

]

a2 + O(a3)

γMS
ci (a,α) =

1

4N o
A

[

N o
A(−α− 3)CA +Nd

A(−2α− 6)CA

]

a

+
1

96N o
A
2

[

N o
A
2
(

(− 6α2 − 66α− 190)C2
A + 80CATFNf

)

+ N o
AN

d
A

(

(− 54α2 − 354α− 323)C2
A + 160CATFNf

)

+ Nd
A

2
(− 60α2 − 372α + 510)C2

A

]

a2 + O(a3)

γMS
ψ (a,α) =

αN o
ATF
NF

a

+
1

4NF

[

(− α2 + 22α + 23)CACFNF + (α2 − 14α + 2)N o
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]

a2 + O(a3) . (5.3.43)

Though the three loop results are also available, [21]. Next, the full one loop

amplitudes for each of the three vertex functions computed in MS are

Σccg
(1) (p, q)

∣

∣

∣

MS
= − Σccg

(2) (p, q)
∣

∣

∣
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A

+ O(a2) (5.3.44)

for the ghost-gluon vertex. For the triple gluon vertex the amplitudes are
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∣
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and those for the quark-gluon vertex are
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Again, one minor check on the expressions is that the correct symmetry struc-

ture for each vertex emerged. In other words the relations between the various

amplitudes for the triple off-diagonal gluon vertex, for instance, are consistent

with expectations based on [117]. At this point, instead of making checks against

the Landau gauge we can cross check directly with the Curci-Ferrari gauge MS

results for the amplitudes by taking the limit Nd
A → 0. Essentially by removing

the diagonal pieces the off-diagonal results in the MAG map on to the results for

the full colour group in the Curci-Ferrari gauge. We have verified the results in

the Curci-Ferrari scheme via this check which holds in all MOMi schemes unlike

the Landau check which is no longer applicable here.

Defining the renormalization constants as before we display the results for the

MOMi schemes. We note that at one loop the renormalization constants are the

same in all three MOM schemes. This is not true for higher orders, as we have

seen in the two previous gauges considered. This property is unique to one loop.

The renormalization constants given analytically for arbitrary α are
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∣
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where the MAG condition (5.3.42) is assumed. Now, recall that the MOMi

schemes are based upon the 3-point vertices of the Lagrangian. In this scheme the

renormalization constants contain both the divergent and finite parts (as we have

seen above for the 2-point functions). Because the MOM scheme is physical the

coupling constant renormalization constants for each MOMi scheme are depen-

dent on that particular vertex. We define the coupling constant renormalization

constants as before, labelled by MOMh for the scheme corresponding to the ghost-

gluon vertex, MOMg for the triple-gluon vertex and MOMq for the quark-gluon

vertex coupling constant. These are presented below as
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5.4 MOMh scheme

Having discussed the structure of the 3-point vertices in the MS scheme at one

loop in detail we can now renormalize in each of the MOMi schemes defined by the

same vertices. We define the MOMi schemes in the MAG in the same way as we

have done in chapters 3 and 4, by ensuring that after renormalization there are no

O(a) corrections to the Lorentz channels containing the divergences in ϵ. In other

words, taking the MOMg scheme for example, for the first six amplitudes there

are no O(a) parts at the symmetric point but the remaining eight amplitudes can

have O(a) contributions. In this section we present the results for the MOMh

scheme only. Given this and the nature of the MOMh scheme the amplitudes are

effectively trivial since

Σccg
(1) (p, q)

∣

∣

∣
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= − Σccg

(2) (p, q)
∣

∣

∣
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= − 1

2
+ O(a2) . (5.4.49)

This is because of the anti-symmetric property of the original ghost-gluon vertex

and the definition of the MOMh scheme. Next we require the mappings of the

parameters between schemes. For this we apply the same fomulae as for the

arbitrary linear and Curci-Ferrari gauge analyses, see (3.3.35) and (3.3.37). The

coupling constant mapping is unique for each vertex, given for the ghost-gluon

vertex by
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(

1
3

)

CAN
o
A − 54α2CAN

d
A + 27α2CAN

o
A − 24αCAN

d
Aπ

2

−108αCAN
d
A + 8αCAN

o
Aπ

2 + 108αCAN
o
A + 44CAN

d
Aπ

2

+162CAN
d
A − 20CAN

o
Aπ

2 + 669CAN
o
A − 240NfN

o
ATF

] a2

108N o
A

+ O(a3) (5.4.50)
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and the gauge parameter maps between schemes as

αMOMi = α +
[
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d
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o
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d
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A
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+ O(a2) . (5.4.51)

Given the nature of the one loop 2-point functions it transpires that the gauge

parameter mapping is the same for all schemes. At one loop this is assumed since

the effect the scheme choice makes on the renormalization of the gauge parameter

does not occur until two loops. This agrees with our previous work, however in

the Curci-Ferrari gauge this exact similarity between MOMi schemes also holds

at two loops. It would be interesting to see at what loop order, if any, the gauge

parameter mapping varies between MOMi schemes. The same comment applies

to the conversion functions for the field renormalizations which are given by
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at one loop. The coupling constant conversion function is different for each scheme

by the nature of its construction. For the MOMh scheme this is

CMOMh
g (a,α) = 1 +

[

−36ψ′
(

1
3

)

αCAN
d
A + 12ψ′

(

1
3

)

αCAN
o
A + 66ψ′

(

1
3

)

CAN
d
A

−30ψ′
(

1
3

)

CAN
o
A + 54α2CAN

d
A − 27α2CAN

o
A

+24αCAN
d
Aπ

2 + 108αCAN
d
A − 8αCAN

o
Aπ

2 − 108αCAN
o
A

−44CAN
d
Aπ

2 − 162CAN
d
A + 20CAN

o
Aπ

2 − 669CAN
o
A

+240NfN
o
ATF ]

a

216N o
A

+ O(a2) . (5.4.53)

Having determined the conversion functions it is straightforward to apply the

renormalization group formalism (3.3.29) and (3.4.55) to construct the two loop

MOMh renormalization group functions. In the MOMh scheme these are

βMOMh(a,α) = [−11CA + 4NfTF ]
a2

3
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+
[

−108ψ′
(

1
3

)

α2C2
AN

d
A

2 − 18ψ′
(

1
3

)

α2C2
AN

d
AN

o
A

+18ψ′
(

1
3

)

α2C2
AN

o
A
2 − 648ψ′

(

1
3

)

αC2
AN

d
A

2

+684ψ′
(

1
3

)

αC2
AN

d
AN

o
A − 156ψ′

(

1
3

)

αC2
AN

o
A
2

−288ψ′
(

1
3

)

αCAN
d
ANfN

o
ATF + 96ψ′

(

1
3

)

αCANfN
o
A
2TF

−648ψ′
(

1
3

)

C2
AN

d
A

2
+ 216ψ′

(

1
3

)

C2
AN

d
AN

o
A + 324α3C2

AN
d
A

2

−81α3C2
AN

o
A
2 + 72α2C2

AN
d
A

2
π2 + 2268α2C2

AN
d
A

2

+12α2C2
AN

d
AN

o
Aπ

2 − 2538α2C2
AN

d
AN

o
A − 12α2C2

AN
o
A
2π2

+540α2C2
AN

o
A
2 + 864α2CAN

d
ANfN

o
ATF − 432α2CANfN

o
A
2TF

+432αC2
AN

d
A

2
π2 + 3888αC2

AN
d
A

2 − 456αC2
AN

d
AN

o
Aπ

2

−4320αC2
AN

d
AN

o
A + 104αC2

AN
o
A
2π2 + 1404αC2

AN
o
A
2

+192αCAN
d
ANfN

o
Aπ

2TF + 864αCAN
d
ANfN

o
ATF

−64αCANfN
o
A
2π2TF − 864αCANfN

o
A
2TF + 432C2

AN
d
A

2
π2

+1944C2
AN

d
A

2 − 144C2
AN

d
AN

o
Aπ

2 − 1944C2
AN

d
AN

o
A

−7344C2
AN

o
A
2 + 4320CANfN

o
A
2TF

+2592CFNfN
o
A
2TF
] a3

648N o
A
2 + O(a4)

γMOMh
A (a,α) =

[

−3αCAN
d
A + 3αCAN

o
A + 9CAN

d
A − 13CAN

o
A + 8NfN

o
ATF

] a

6N o
A

+
[

216ψ′
(

1
3

)

α2C2
AN

d
A

2 − 288ψ′
(

1
3

)

α2C2
AN

d
AN

o
A

+72ψ′
(

1
3

)

α2C2
AN

o
A
2 − 1044ψ′

(

1
3

)

αC2
AN

d
A

2

+1728ψ′
(

1
3

)

αC2
AN

d
AN

o
A − 492ψ′

(

1
3

)

αC2
AN

o
A
2

−576ψ′
(

1
3

)

αCAN
d
ANfN

o
ATF + 192ψ′

(

1
3

)

αCANfN
o
A
2TF

+1188ψ′
(

1
3

)

C2
AN

d
A

2 − 2256ψ′
(

1
3

)

C2
AN

d
AN

o
A

+780ψ′
(

1
3

)

C2
AN

o
A
2 + 1056ψ′

(

1
3

)

CAN
d
ANfN

o
ATF

−480ψ′
(

1
3

)

CANfN
o
A
2TF + 648α3C2

AN
d
A

2 − 162α3C2
AN

o
A
2

−144α2C2
AN

d
A

2
π2 + 5913α2C2

AN
d
A

2
+ 192α2C2

AN
d
AN

o
Aπ

2

−4671α2C2
AN

d
AN

o
A − 48α2C2

AN
o
A
2π2 + 918α2C2

AN
o
A
2

+1728α2CAN
d
ANfN

o
ATF − 864α2CANfN

o
A
2TF

+696αC2
AN

d
A

2
π2 + 12798αC2

AN
d
A

2 − 1152αC2
AN

d
AN

o
Aπ

2

−4914αC2
AN

d
AN

o
A + 328αC2

AN
o
A
2π2 + 1350αC2

AN
o
A
2

+384αCAN
d
ANfN

o
Aπ

2TF + 1728αCAN
d
ANfN

o
ATF

−128αCANfN
o
A
2π2TF − 1728αCANfN

o
A
2TF − 792C2

AN
d
A

2
π2
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−243C2
AN

d
A

2
+ 1504C2

AN
d
AN

o
Aπ

2 + 11799C2
AN

d
AN

o
A

−520C2
AN

o
A
2π2 − 4968C2

AN
o
A
2 − 704CAN

d
ANfN

o
Aπ

2TF

−5616CAN
d
ANfN

o
ATF + 320CANfN

o
A
2π2TF

+4752CANfN
o
A
2TF + 5184CFNfN

o
A
2TF

] a2

1296N o
A
2

+ O(a3)

γMOMh
α (a,α) =

[

−6α2CAN
d
A − 3α2CAN

o
A − 36αCAN

d
A + 26αCAN

o
A

−16αNfN
o
ATF − 36CAN

d
A

] a

12αN o
A

+
[

216ψ′
(

1
3

)

α3C2
AN

d
A

2
+ 36ψ′

(

1
3

)

α3C2
AN

d
AN

o
A

−36ψ′
(

1
3

)

α3C2
AN

o
A
2 + 900ψ′

(

1
3

)

α2C2
AN

d
A

2

−1386ψ′
(

1
3

)

α2C2
AN

d
AN

o
A + 402ψ′

(

1
3

)

α2C2
AN

o
A
2

+576ψ′
(

1
3

)

α2CAN
d
ANfN

o
ATF − 192ψ′

(

1
3

)

α2CANfN
o
A
2TF

−1080ψ′
(

1
3

)

αC2
AN

d
A

2
+ 2364ψ′

(

1
3

)

αC2
AN

d
AN

o
A

−780ψ′
(

1
3

)

αC2
AN

o
A
2 − 1056ψ′

(

1
3

)

αCAN
d
ANfN

o
ATF

+480ψ′
(

1
3

)

αCANfN
o
A
2TF − 2376ψ′

(

1
3

)

C2
AN

d
A

2

+1080ψ′
(

1
3

)

C2
AN

d
AN

o
A − 648α4C2

AN
d
A

2
+ 162α4C2

AN
o
A
2

−144α3C2
AN

d
A

2
π2 − 7290α3C2

AN
d
A

2 − 24α3C2
AN

d
AN

o
Aπ

2

+4347α3C2
AN

d
AN

o
A + 24α3C2

AN
o
A
2π2 − 675α3C2

AN
o
A
2

−1728α3CAN
d
ANfN

o
ATF + 864α3CANfN

o
A
2TF

−600α2C2
AN

d
A

2
π2 − 22194α2C2

AN
d
A

2
+ 924α2C2

AN
d
AN

o
Aπ

2

+7263α2C2
AN

d
AN

o
A − 268α2C2

AN
o
A
2π2 − 1107α2C2

AN
o
A
2

−384α2CAN
d
ANfN

o
Aπ

2TF − 1728α2CAN
d
ANfN

o
ATF

+128α2CANfN
o
A
2π2TF + 1728α2CANfN

o
A
2TF

+720αC2
AN

d
A

2
π2 + 1458αC2

AN
d
A

2 − 1576αC2
AN

d
AN

o
Aπ

2

−15201αC2
AN

d
AN

o
A + 520αC2

AN
o
A
2π2 + 4968αC2

AN
o
A
2

+704αCAN
d
ANfN

o
Aπ

2TF + 9504αCAN
d
ANfN

o
ATF

−320αCANfN
o
A
2π2TF − 4752αCANfN

o
A
2TF

−5184αCFNfN
o
A
2TF + 1584C2

AN
d
A

2
π2 + 44712C2

AN
d
A

2

−720C2
AN

d
AN

o
Aπ

2 − 9396C2
AN

d
AN

o
A

+5184CAN
d
ANfN

o
ATF

] a2

1296αN o
A
2 + O(a3)

γMOMh
c (a,α) = CA

[

−2αNd
A + αN o

A − 6Nd
A − 3N o

A

] a

4N o
A
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+CA

[

144ψ′
(

1
3

)

α2CAN
d
A

2 − 120ψ′
(

1
3

)

α2CAN
d
AN

o
A

+24ψ′
(

1
3

)

α2CAN
o
A
2 + 168ψ′

(

1
3

)

αCAN
d
A

2

+324ψ′
(

1
3

)

αCAN
d
AN

o
A − 132ψ′

(

1
3

)

αCAN
o
A
2

−792ψ′
(

1
3

)

CAN
d
A

2 − 36ψ′
(

1
3

)

CAN
d
AN

o
A

+180ψ′
(

1
3

)

CAN
o
A
2 − 96α2CAN

d
A

2
π2 − 324α2CAN

d
A

2

+80α2CAN
d
AN

o
Aπ

2 − 486α2CAN
d
AN

o
A − 16α2CAN

o
A
2π2

+216α2CAN
o
A
2 − 112αCAN

d
A

2
π2 − 3132αCAN

d
A

2

−216αCAN
d
AN

o
Aπ

2 − 702αCAN
d
AN

o
A + 88αCAN

o
A
2π2

−162αCAN
o
A
2 + 528CAN

d
A

2
π2 + 7614CAN

d
A

2

+24CAN
d
AN

o
Aπ

2 − 999CAN
d
AN

o
A − 120CAN

o
A
2π2

−864CAN
o
A
2 + 864Nd

ANfN
o
ATF + 432NfN

o
A
2TF
] a2

864N o
A
2

+ O(a3)

γMOMh
ψ (a,α) =

αN o
ATFa

NF

+
[

−36ψ′
(

1
3

)

α2CACFNF + 48ψ′
(

1
3

)

α2CAN
o
ATF

+66ψ′
(

1
3

)

αCACFNF − 96ψ′
(

1
3

)

αCAN
o
ATF

+24α2CACFNFπ
2 − 27α2CACFNF − 32α2CAN

o
Aπ

2TF

+54α2CAN
o
ATF − 44αCACFNFπ

2 + 54αCACFNF

+64αCAN
o
Aπ

2TF − 54αCAN
o
ATF + 675CACFNF − 162C2

FNF

−216CFNFNfTF ]
a2

108NF

+ O(a3) (5.4.54)

which agree with the explicit direct two loop computation carried out recently in

[67]. We have chosen to present the quark anomalous dimension in terms of NF ,

where NF was defined in (5.2.18). This is simply for presentation purposes where

the results in this format are more compact.

5.5 MOMg scheme.

Having recorded the results for the ghost-gluon vertex at length we briefly present

the results for the triple-gluon vertex in the same order as the previous section.

Starting with the amplitudes in the MOMg scheme. The explicit forms of the

associated amplitudes are

Σggg
(1) (p, q)

∣

∣

∣

MOMg
= Σggg

(2) (p, q)
∣

∣

∣

MOMg
= − 1

2
Σggg

(3) (p, q)
∣

∣

∣

MOMg
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= − Σggg
(4) (p, q)

∣

∣

∣

MOMg
=

1

2
Σggg

(5) (p, q)
∣

∣

∣

MOMg

= − Σggg
(6) (p, q)

∣

∣

∣

MOMg
= − 1 +O(a2)

Σggg
(7) (p, q)

∣

∣

∣

MOMg
= 2 Σggg

(9) (p, q)
∣

∣

∣

MOMg
= − 2 Σggg

(11)(p, q)
∣

∣

∣

MOMg

= − Σggg
(14)(p, q)

∣

∣

∣

MOMg

=
[

−108ψ′(13)α
5CAN

d
A + 36ψ′(13)α

5CAN
o
A + 324ψ′(13)α

4CAN
d
A

−162ψ′(13)α
4CAN

o
A − 324ψ′(13)α

3CAN
d
A

+108ψ′(13)α
3CAN

o
A − 1296ψ′(13)α

2CAN
d
A

+456ψ′(13)α
2CAN

o
A − 768ψ′(13)α

2NfN
o
ATF

−216ψ′(13)αCAN
d
A − 270ψ′(13)CAN

d
A + 72π2α5CAN

d
A

+324α5CAN
d
A − 24π2α5CAN

o
A − 108α5CAN

o
A

−216π2α4CAN
d
A − 810α4CAN

d
A + 108π2α4CAN

o
A

+405α4CAN
o
A + 216π2α3CAN

d
A + 1377α3CAN

d
A

−72π2α3CAN
o
A − 1458α3CAN

o
A + 864π2α2CAN

d
A

−891α2CAN
d
A − 304π2α2CAN

o
A + 873α2CAN

o
A

+512π2α2NfN
o
ATF + 576α2NfN

o
ATF + 144π2αCAN

d
A

+243αCAN
d
A + 180π2CAN

d
A − 243CAN

d
A

] a

972α2N o
A

+ O(a2)

Σggg
(8) (p, q)

∣

∣

∣

MOMg
= − Σggg

(13)(p, q)
∣

∣

∣

MOMg

=
[

108ψ′(13)α
5CAN

d
A − 36ψ′(13)α

5CAN
o
A − 540ψ′(13)α

4CAN
d
A

+270ψ′(13)α
4CAN

o
A + 270ψ′(13)α

3CAN
d
A

−378ψ′(13)α
3CAN

o
A − 1242ψ′(13)α

2CAN
d
A

+390ψ′(13)α
2CAN

o
A − 384ψ′(13)α

2NfN
o
ATF

−216ψ′(13)αCAN
d
A − 270ψ′(13)CAN

d
A − 72π2α5CAN

d
A

−567α5CAN
d
A + 24π2α5CAN

o
A + 189α5CAN

o
A

+360π2α4CAN
d
A + 2268α4CAN

d
A − 180π2α4CAN

o
A

−1134α4CAN
o
A − 180π2α3CAN

d
A − 648α3CAN

d
A

+252π2α3CAN
o
A + 243α3CAN

o
A + 828π2α2CAN

d
A

−1053α2CAN
d
A − 260π2α2CAN

o
A + 1206α2CAN

o
A

+256π2α2NfN
o
ATF − 1008α2NfN

o
ATF + 144π2αCAN

d
A

+243αCAN
d
A + 180π2CAN

d
A − 243CAN

d
A

] a

972α2N o
A

169



+ O(a2)

Σggg
(10)(p, q)

∣

∣

∣

MOMg
= − Σggg

(12)(p, q)
∣

∣

∣

MOMg

=
[

−216ψ′(13)α
3CAN

d
A + 72ψ′(13)α

3CAN
o
A + 864ψ′(13)α

2CAN
d
A

−432ψ′(13)α
2CAN

o
A − 594ψ′(13)αCAN

d
A + 486ψ′(13)αCAN

o
A

−54ψ′(13)CAN
d
A + 66ψ′(13)CAN

o
A − 384ψ′(13)NfN

o
ATF

+144π2α3CAN
d
A + 891α3CAN

d
A − 48π2α3CAN

o
A

−297α3CAN
o
A − 576π2α2CAN

d
A − 3078α2CAN

d
A

+288π2α2CAN
o
A + 1539α2CAN

o
A + 396π2αCAN

d
A

+2025αCAN
d
A − 324π2αCAN

o
A − 1701αCAN

o
A + 36π2CAN

d
A

+162CAN
d
A − 44π2CAN

o
A − 333CAN

o
A + 256π2NfN

o
ATF

+1584NfN
o
ATF ]

a

972N o
A

+ O(a2) . (5.5.55)

Again we observe that the same symmetries emerge as in the MS case which is

a minor check on the computation. These symmetries are consistent with those

in the Curci-Ferrari gauge, where the limit Nd
A → 0 gives us the Curci-Ferrari

amplitudes.

The coupling constant mapping between the MOMg and MS schemes is

aMOMg = a+
[

−72ψ′(13)α
2CAN

d
A + 36ψ′(13)α

2CAN
o
A + 90ψ′(13)αCAN

d
A

−162ψ′(13)αCAN
o
A − 702ψ′(13)CAN

d
A + 138ψ′(13)CAN

o
A

−384ψ′(13)NfN
o
ATF − 81α3CAN

d
A + 27α3CAN

o
A + 48π2α2CAN

d
A

+324α2CAN
d
A − 24π2α2CAN

o
A − 162α2CAN

o
A − 60π2αCAN

d
A

−243αCAN
d
A + 108π2αCAN

o
A + 243αCAN

o
A + 468π2CAN

d
A

−92π2CAN
o
A + 2376CAN

o
A + 256π2NfN

o
ATF

−864NfN
o
ATF ]

a2

324N o
A

+ O(a3) (5.5.56)

where we reiterate that the gauge parameter mapping (5.4.51) is the same in

all schemes. In order to construct the two loop renormalization group functions

we need only record the conversion function for the coupling constants. In the

MOMg scheme this is

CMOMg
g (a,α) = 1 +

[

72ψ′(13)α
2CAN

d
A − 36ψ′(13)α

2CAN
o
A − 90ψ′(13)αCAN

d
A
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+162ψ′(13)αCAN
o
A + 702ψ′(13)CAN

d
A − 138ψ′(13)CAN

o
A

+384ψ′(13)NfN
o
ATF + 81α3CAN

d
A − 27α3CAN

o
A

−48α2CAN
d
Aπ

2 − 324α2CAN
d
A + 24α2CAN

o
Aπ

2

+162α2CAN
o
A + 60αCAN

d
Aπ

2 + 243αCAN
d
A

−108αCAN
o
Aπ

2 − 243αCAN
o
A − 468CAN

d
Aπ

2 + 92CAN
o
Aπ

2

−2376CAN
o
A − 256NfN

o
Aπ

2TF + 864NfN
o
ATF

] a

648N o
A

+ O(a2) . (5.5.57)

For the other conversion functions we do not label them with a scheme but note

that like CMOMh
g (a,α) and CMOMg

g (a,α) the variables on the left hand side are

the MS ones, where a mapping is made from MOMi → MS as is our convention.

For the β-function we find

βMOMg(a,α) = [−11CA + 4NfTF ]
a2

3

+
[

288ψ′(13)α
3C2

AN
d
A

2 − 72ψ′(13)α
3C2

AN
o
A
2 + 1548ψ′(13)α

2C2
AN

d
A

2

−1878ψ′(13)α
2C2

AN
d
AN

o
A + 786ψ′(13)α

2C2
AN

o
A
2

+768ψ′(13)α
2CAN

d
ANfN

o
ATF − 384ψ′(13)α

2CANfN
o
A
2TF

+648ψ′(13)αC
2
AN

d
A

2
+ 1860ψ′(13)αC

2
AN

d
AN

o
A

−1404ψ′(13)αC
2
AN

o
A
2 − 480ψ′(13)αCAN

d
ANfN

o
ATF

+864ψ′(13)αCANfN
o
A
2TF − 1080ψ′(13)C

2
AN

d
A

2

+1944ψ′(13)C
2
AN

d
AN

o
A + 486α4C2

AN
d
A

2
+ 81α4C2

AN
d
AN

o
A

−81α4C2
AN

o
A
2 − 192π2α3C2

AN
d
A

2
+ 1620α3C2

AN
d
A

2

−3078α3C2
AN

d
AN

o
A + 48π2α3C2

AN
o
A
2 + 1026α3C2

AN
o
A
2

+1296α3CAN
d
ANfN

o
ATF − 432α3CANfN

o
A
2TF

−1032π2α2C2
AN

d
A

2 − 4374α2C2
AN

d
A

2
+ 1252π2α2C2

AN
d
AN

o
A

+8289α2C2
AN

d
AN

o
A − 524π2α2C2

AN
o
A
2 − 3051α2C2

AN
o
A
2

−512π2α2CAN
d
ANfN

o
ATF − 3456α2CAN

d
ANfN

o
ATF

+256π2α2CANfN
o
A
2TF + 1728α2CANfN

o
A
2TF

−432π2αC2
AN

d
A

2 − 4860αC2
AN

d
A

2 − 1240π2αC2
AN

d
AN

o
A

−1134αC2
AN

d
AN

o
A + 936π2αC2

AN
o
A
2 + 2106αC2

AN
o
A
2

+320π2αCAN
d
ANfN

o
ATF + 1296αCAN

d
ANfN

o
ATF

−576π2αCANfN
o
A
2TF − 1296αCANfN

o
A
2TF + 720π2C2

AN
d
A

2
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+2916C2
AN

d
A

2 − 1296π2C2
AN

d
AN

o
A − 2916C2

AN
d
AN

o
A

−14688C2
AN

o
A
2 + 8640CANfN

o
A
2TF

+5184CFNfN
o
A
2TF
] a3

1296N o
A
2 + O(a4) (5.5.58)

and the anomalous dimensions for the fields at two loops in the MOMg scheme

are

γMOMg
A (a,α) = [− 3αCAN

d
A + 3αCAN

o
A + 9CAN

d
A − 13CAN

o
A + 8NfN

o
ATF ]

a

6N o
A

+
[

− 432ψ′(13)α
3C2

AN
d
A

2
+ 648ψ′(13)α

3C2
AN

d
AN

o
A

−216ψ′(13)α
3C2

AN
o
A
2 + 1836ψ′(13)α

2C2
AN

d
A

2

−4032ψ′(13)α
2C2

AN
d
AN

o
A + 1908ψ′(13)α

2C2
AN

o
A
2

+1152ψ′(13)α
2CAN

d
ANfN

o
ATF − 576ψ′(13)α

2CANfN
o
A
2TF

−5832ψ′(13)αC
2
AN

d
A

2
+ 10296ψ′(13)αC

2
AN

d
AN

o
A

−5040ψ′(13)αC
2
AN

o
A
2 − 3744ψ′(13)αCAN

d
ANfN

o
ATF

+4896ψ′(13)αCANfN
o
A
2TF + 12636ψ′(13)C

2
AN

d
A

2

−20736ψ′(13)C
2
AN

d
AN

o
A + 3588ψ′(13)C

2
AN

o
A
2

+18144ψ′(13)CAN
d
ANfN

o
ATF − 12192ψ′(13)CANfN

o
A
2TF

+6144ψ′(13)N
2
f N

o
A
2T 2

F − 486α4C2
AN

d
A

2
+ 648α4C2

AN
d
AN

o
A

−162α4C2
AN

o
A
2 + 288π2α3C2

AN
d
A

2
+ 6318α3C2

AN
d
A

2

−432π2α3C2
AN

d
AN

o
A − 6966α3C2

AN
d
AN

o
A + 144π2α3C2

AN
o
A
2

+1674α3C2
AN

o
A
2 + 1296α3CAN

d
ANfN

o
ATF

−432α3CANfN
o
A
2TF − 1224π2α2C2

AN
d
A

2
+ 9477α2C2

AN
d
A

2

+2688π2α2C2
AN

d
AN

o
A + 2025α2C2

AN
d
AN

o
A − 1272π2α2C2

AN
o
A
2

−3078α2C2
AN

o
A
2 − 768π2α2CAN

d
ANfN

o
ATF

−2592α2CAN
d
ANfN

o
ATF + 384π2α2CANfN

o
A
2TF

+1296α2CANfN
o
A
2TF + 3888π2αC2

AN
d
A

2

+34020αC2
AN

d
A

2 − 6864π2αC2
AN

d
AN

o
A − 6048αC2

AN
d
AN

o
A

+3360π2αC2
AN

o
A
2 − 270αC2

AN
o
A
2 + 2496π2αCAN

d
ANfN

o
ATF

+3024αCAN
d
ANfN

o
ATF − 3264π2αCANfN

o
A
2TF

−3024αCANfN
o
A
2TF − 8424π2C2

AN
d
A

2
+ 8019C2

AN
d
A

2

+13824π2C2
AN

d
AN

o
A + 16119C2

AN
d
AN

o
A − 2392π2C2

AN
o
A
2

−5310C2
AN

o
A
2 − 12096π2CAN

d
ANfN

o
ATF − 6480CAN

d
ANfN

o
ATF
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+8128π2CANfN
o
A
2TF + 4608CANfN

o
A
2TF

+15552CFNfN
o
A
2TF − 4096π2N2

f N
o
A
2T 2

F

+2304N2
f N

o
A
2T 2

F

] a2

3888N o
A
2 + O(a3)

γMOMg
α (a,α) =

[

− 6α2CAN
d
A − 3α2CAN

o
A − 36αCAN

d
A + 26αCAN

o
A

−16αNfN
o
ATF − 36CAN

d
A

] a

12αN o
A

+
[

− 432ψ′(13)α
4C2

AN
d
A

2
+ 108ψ′(13)α

4C2
AN

o
A
2

−2052ψ′(13)α
3C2

AN
d
A

2
+ 2466ψ′(13)α

3C2
AN

d
AN

o
A

−1422ψ′(13)α
3C2

AN
o
A
2 − 1152ψ′(13)α

3CAN
d
ANfN

o
ATF

+576ψ′(13)α
3CANfN

o
A
2TF − 3564ψ′(13)α

2C2
AN

d
A

2

−8154ψ′(13)α
2C2

AN
d
AN

o
A + 4626ψ′(13)α

2C2
AN

o
A
2

−864ψ′(13)α
2CAN

d
ANfN

o
ATF − 3744ψ′(13)α

2CANfN
o
A
2TF

−22032ψ′(13)αC
2
AN

d
A

2
+ 17388ψ′(13)αC

2
AN

d
AN

o
A

−3588ψ′(13)αC
2
AN

o
A
2 − 25056ψ′(13)αCAN

d
ANfN

o
ATF

+12192ψ′(13)αCANfN
o
A
2TF − 6144ψ′(13)αN

2
f N

o
A
2T 2

F

−25272ψ′(13)C
2
AN

d
A

2
+ 4968ψ′(13)C

2
AN

d
AN

o
A

−13824ψ′(13)CAN
d
ANfN

o
ATF − 486α5C2

AN
d
A

2

−81α5C2
AN

d
AN

o
A + 81α5C2

AN
o
A
2 + 288π2α4C2

AN
d
A

2

−1944α4C2
AN

d
A

2
+ 3078α4C2

AN
d
AN

o
A − 72π2α4C2

AN
o
A
2

−945α4C2
AN

o
A
2 − 1296α4CAN

d
ANfN

o
ATF

+432α4CANfN
o
A
2TF + 1368π2α3C2

AN
d
A

2

−6804α3C2
AN

d
A

2 − 1644π2α3C2
AN

d
AN

o
A − 7614α3C2

AN
d
AN

o
A

+948π2α3C2
AN

o
A
2 + 4050α3C2

AN
o
A
2 + 768π2α3CAN

d
ANfN

o
ATF

+2592α3CAN
d
ANfN

o
ATF − 384π2α3CANfN

o
A
2TF

−1296α3CANfN
o
A
2TF + 2376π2α2C2

AN
d
A

2 − 49086α2C2
AN

d
A

2

+5436π2α2C2
AN

d
AN

o
A + 8775α2C2

AN
d
AN

o
A − 3084π2α2C2

AN
o
A
2

−108α2C2
AN

o
A
2 + 576π2α2CAN

d
ANfN

o
ATF

−4752α2CAN
d
ANfN

o
ATF + 2496π2α2CANfN

o
A
2TF

+3456α2CANfN
o
A
2TF + 14688π2αC2

AN
d
A

2

−10206αC2
AN

d
A

2 − 11592π2αC2
AN

d
AN

o
A − 22599αC2

AN
d
AN

o
A

+2392π2αC2
AN

o
A
2 + 5310αC2

AN
o
A
2 + 16704π2αCAN

d
ANfN

o
ATF

+15552αCAN
d
ANfN

o
ATF − 8128π2αCANfN

o
A
2TF
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−4608αCANfN
o
A
2TF − 15552αCFNfN

o
A
2TF

+4096π2αN2
f N

o
A
2T 2

F − 2304αN2
f N

o
A
2T 2

F + 16848π2C2
AN

d
A

2

+116640C2
AN

d
A

2 − 3312π2C2
AN

d
AN

o
A − 14904C2

AN
d
AN

o
A

+9216π2CAN
d
ANfN

o
ATF + 10368CAN

d
ANfN

o
ATF

] a2

3888αN o
A
2

+ O(a3)

γMOMg
c (a,α) =

[

− 2αNd
A + αN o

A − 6Nd
A − 3N o

A

] CAa

4N o
A

+
[

−288ψ′(13)α
3CAN

d
A

2
+ 288ψ′(13)α

3CAN
d
AN

o
A

−72ψ′(13)α
3CAN

o
A
2 − 504ψ′(13)α

2CAN
d
A

2

−828ψ′(13)α
2CAN

d
AN

o
A + 540ψ′(13)α

2CAN
o
A
2

−1728ψ′(13)αCAN
d
A

2
+ 552ψ′(13)αCAN

d
AN

o
A

−1248ψ′(13)αCAN
o
A
2 − 1536ψ′(13)αN

d
ANfN

o
ATF

+768ψ′(13)αNfN
o
A
2TF − 8424ψ′(13)CAN

d
A

2

−2556ψ′(13)CAN
d
AN

o
A + 828ψ′(13)CAN

o
A
2 − 324α4CAN

d
A

2

−4608ψ′(13)N
d
ANfN

o
ATF − 2304ψ′(13)NfN

o
A
2TF

+270α4CAN
d
AN

o
A − 54α4CAN

o
A
2 + 192π2α3CAN

d
A

2

+972α3CAN
d
A

2 − 192π2α3CAN
d
AN

o
A − 2106α3CAN

d
AN

o
A

+48π2α3CAN
o
A
2 + 648α3CAN

o
A
2 + 336π2α2CAN

d
A

2

+5184α2CAN
d
A

2
+ 552π2α2CAN

d
AN

o
A − 1944α2CAN

d
AN

o
A

−360π2α2CAN
o
A
2 − 648α2CAN

o
A
2 + 1152π2αCAN

d
A

2

−10368αCAN
d
A

2 − 368π2αCAN
d
AN

o
A − 144αCAN

d
AN

o
A

+832π2αCAN
o
A
2 − 1710αCAN

o
A
2 + 1024π2αNd

ANfN
o
ATF

−576αNd
ANfN

o
ATF − 512π2αNfN

o
A
2TF + 288αNfN

o
A
2TF

+5616π2CAN
d
A

2
+ 17010CAN

d
A

2
+ 1704π2CAN

d
AN

o
A

−1485CAN
d
AN

o
A − 552π2CAN

o
A
2 − 378CAN

o
A
2

+3072π2Nd
ANfN

o
ATF + 864Nd

ANfN
o
ATF + 1536π2NfN

o
A
2TF

+432NfN
o
A
2TF
] CAa2

2592N o
A
2 + O(a3)

γMOMg
ψ (a,α) =

αN o
ATFa

NF

+
[

72ψ′(13)α
3CACFNF − 108ψ′(13)α

3CAN
o
ATF

−90ψ′(13)α
2CACFNF + 252ψ′(13)α

2CAN
o
ATF

+702ψ′(13)αCACFNF − 840ψ′(13)αCAN
o
ATF
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+384ψ′(13)αNfN
o
AT

2
F + 81α4CACFNF − 108α4CAN

o
ATF

−48π2α3CACFNF − 486α3CACFNF + 72π2α3CAN
o
ATF

+729α3CAN
o
ATF + 60π2α2CACFNF − 162α2CACFNF

−168π2α2CAN
o
ATF + 324α2CAN

o
ATF − 468π2αCACFNF

+648αCACFNF + 560π2αCAN
o
ATF − 1017αCAN

o
ATF

−256π2αNfN
o
AT

2
F + 144αNfN

o
AT

2
F + 2025CACFNF

−486C2
FNF − 648CFNFNfTF

] a2

324NF

+ O(a3) . (5.5.59)

5.6 MOMq scheme.

In this section we simply present our results, where our method of determining

the results in this scheme is the same as in the previous two sections. For the

MOMq scheme we also give the results analytically. Starting with the amplitudes

we have

Σqqg
(1) (p, q)

∣

∣

∣

MOMq
= 1 + O(a2)

Σqqg
(2) (p, q)

∣

∣

∣

MOMq
= Σqqg

(5) (p, q)
∣

∣

∣

MOMq

=
[

−6ψ′
(

1
3

)

α2CANFN
d
A + 3ψ′

(

1
3

)

α2CANFN
o
A

−24ψ′
(

1
3

)

αN o
A
2TF − 6ψ′

(

1
3

)

CANFN
d
A

−15ψ′
(

1
3

)

CANFN
o
A + 24ψ′

(

1
3

)

CFNFN
o
A

+4α2CANFN
d
Aπ

2 + 36α2CANFN
d
A − 2α2CANFN

o
Aπ

2

−18α2CANFN
o
A + 36αCANFN

d
A − 36αCANFN

o
A

+16αN o
A
2π2TF + 72αN o

A
2TF + 4CANFN

d
Aπ

2

−36CANFN
d
A + 10CANFN

o
Aπ

2 + 126CANFN
o
A

−16CFNFN
o
Aπ

2 − 144CFNFN
o
A

] a

54NFN o
A

+ O(a2)

Σqqg
(3) (p, q)

∣

∣

∣

MOMq
= Σqqg

(4) (p, q)
∣

∣

∣

MOMq

=
[

−6ψ′
(

1
3

)

αCANFN
d
A + 6ψ′

(

1
3

)

αCANFN
o
A

−24ψ′
(

1
3

)

αN o
A
2TF − 6ψ′

(

1
3

)

CANFN
d
A − 6ψ′

(

1
3

)

CANFN
o
A

+18α2CANFN
d
A − 9α2CANFN

o
A + 4αCANFN

d
Aπ

2

+45αCANFN
d
A − 4αCANFN

o
Aπ

2 − 45αCANFN
o
A

+16αN o
A
2π2TF + 36αN o

A
2TF + 4CANFN

d
Aπ

2 − 45CANFN
d
A

+4CANFN
o
Aπ

2 + 90CANFN
o
A − 72CFNFN

o
A

] a

54NFN o
A
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+ O(a2)

Σqqg
(6) (p, q)

∣

∣

∣

MOMq
=

[

6ψ′
(

1
3

)

α2CAN
d
A − 3ψ′

(

1
3

)

α2CAN
o
A + 12ψ′

(

1
3

)

αCAN
d
A

−12ψ′
(

1
3

)

αCAN
o
A + 6ψ′

(

1
3

)

CAN
d
A − 33ψ′

(

1
3

)

CAN
o
A

+24ψ′
(

1
3

)

CFN
o
A − 4α2CAN

d
Aπ

2 + 2α2CAN
o
Aπ

2

−8αCAN
d
Aπ

2 + 8αCAN
o
Aπ

2 − 4CAN
d
Aπ

2 + 22CAN
o
Aπ

2

−16CFN
o
Aπ

2
] a

54N o
A

+ O(a2) . (5.6.60)

The coupling constant mapping is

aMOMq = a+
[

−12ψ′
(

1
3

)

α2CANFN
d
A + 6ψ′

(

1
3

)

α2CANFN
o
A

+24ψ′
(

1
3

)

αCANFN
d
A − 24ψ′

(

1
3

)

αCANFN
o
A − 96ψ′

(

1
3

)

αN o
A
2TF

−60ψ′
(

1
3

)

CANFN
d
A − 78ψ′

(

1
3

)

CANFN
o
A + 48ψ′

(

1
3

)

CFNFN
o
A

+8α2CANFN
d
Aπ

2 + 54α2CANFN
d
A − 4α2CANFN

o
Aπ

2

−27α2CANFN
o
A − 16αCANFN

d
Aπ

2 − 54αCANFN
d
A

+16αCANFN
o
Aπ

2 + 54αCANFN
o
A + 64αN o

A
2π2TF + 216αN o

A
2TF

+40CANFN
d
Aπ

2 + 52CANFN
o
Aπ

2 + 993CANFN
o
A

−32CFNFN
o
Aπ

2 − 432CFNFN
o
A − 240NFNfN

o
ATF

] a2

108NFN o
A

+ O(a3) . (5.6.61)

The associated coupling constant conversion function is

CMOMq
g (a,α) = 1 +

[

12ψ′
(

1
3

)

α2CANFN
d
A − 6ψ′

(

1
3

)

α2CANFN
o
A

−24ψ′
(

1
3

)

αCANFN
d
A + 24ψ′

(

1
3

)

αCANFN
o
A

+96ψ′
(

1
3

)

αN o
A
2TF + 60ψ′

(

1
3

)

CANFN
d
A

+78ψ′
(

1
3

)

CANFN
o
A − 48ψ′

(

1
3

)

CFNFN
o
A

−8α2CANFN
d
Aπ

2 − 54α2CANFN
d
A + 4α2CANFN

o
Aπ

2

+27α2CANFN
o
A + 16αCANFN

d
Aπ

2 + 54αCANFN
d
A

−16αCANFN
o
Aπ

2 − 54αCANFN
o
A − 64αN o

A
2π2TF

−216αN o
A
2TF − 40CANFN

d
Aπ

2 − 52CANFN
o
Aπ

2

−993CANFN
o
A + 32CFNFN

o
Aπ

2 + 432CFNFN
o
A

+240NFNfN
o
ATF ]

a

216NFN o
A

+ O(a2) (5.6.62)

176



from which we deduce that the two loop renormalization group functions are

βMOMq(a,α) = [−11CA + 4NfTF ]
a2

3

+
[

72ψ′
(

1
3

)

α3C2
ANFN

d
A

2 − 18ψ′
(

1
3

)

α3C2
ANFN

o
A
2

+360ψ′
(

1
3

)

α2C2
ANFN

d
A

2 − 492ψ′
(

1
3

)

α2C2
ANFN

d
AN

o
A

+192ψ′
(

1
3

)

α2C2
ANFN

o
A
2 + 288ψ′

(

1
3

)

α2CACFN
2
FNfN

o
A

−96ψ′
(

1
3

)

α2CANFN
d
ANfN

o
ATF − 384ψ′

(

1
3

)

α2CANFNfN
o
A
2TF

+288ψ′
(

1
3

)

α2CAN
d
AN

o
A
2TF + 144ψ′

(

1
3

)

α2CAN
o
A
3TF

+528ψ′
(

1
3

)

αC2
ANFN

d
AN

o
A − 312ψ′

(

1
3

)

αC2
ANFN

o
A
2

−576ψ′
(

1
3

)

αCACFN
2
FNfN

o
A + 384ψ′

(

1
3

)

αCANFN
d
ANfN

o
ATF

+768ψ′
(

1
3

)

αCANFNfN
o
A
2TF + 1728ψ′

(

1
3

)

αCAN
d
AN

o
A
2TF

−1248ψ′
(

1
3

)

αCAN
o
A
3TF + 768ψ′

(

1
3

)

αNfN
o
A
3T 2

F

−432ψ′
(

1
3

)

C2
ANFN

d
A

2
+ 432ψ′

(

1
3

)

C2
ANFN

d
AN

o
A

+1440ψ′
(

1
3

)

CACFN
2
FNfN

o
A − 1440ψ′

(

1
3

)

CANFN
d
ANfN

o
ATF

−1440ψ′
(

1
3

)

CANFNfN
o
A
2TF + 1728ψ′

(

1
3

)

CAN
d
AN

o
A
2TF

−48α3C2
ANFN

d
A

2
π2 − 324α3C2

ANFN
d
A

2
+ 12α3C2

ANFN
o
A
2π2

+81α3C2
ANFN

o
A
2 − 240α2C2

ANFN
d
A

2
π2 − 1782α2C2

ANFN
d
A

2

+328α2C2
ANFN

d
AN

o
Aπ

2 + 2295α2C2
ANFN

d
AN

o
A

−128α2C2
ANFN

o
A
2π2 − 783α2C2

ANFN
o
A
2

−192α2CACFN
2
FNfN

o
Aπ

2 − 1296α2CACFN
2
FNfN

o
A

+64α2CANFN
d
ANfN

o
Aπ

2TF + 432α2CANFN
d
ANfN

o
ATF

+256α2CANFNfN
o
A
2π2TF + 1728α2CANFNfN

o
A
2TF

−192α2CAN
d
AN

o
A
2π2TF − 648α2CAN

d
AN

o
A
2TF

−96α2CAN
o
A
3π2TF − 324α2CAN

o
A
3TF − 972αC2

ANFN
d
A

2

−352αC2
ANFN

d
AN

o
Aπ

2 − 702αC2
ANFN

d
AN

o
A

+208αC2
ANFN

o
A
2π2 + 702αC2

ANFN
o
A
2

+384αCACFN
2
FNfN

o
Aπ

2 + 1296αCACFN
2
FNfN

o
A

−256αCANFN
d
ANfN

o
Aπ

2TF − 864αCANFN
d
ANfN

o
ATF

−512αCANFNfN
o
A
2π2TF − 1728αCANFNfN

o
A
2TF

−1152αCAN
d
AN

o
A
2π2TF − 3888αCAN

d
AN

o
A
2TF

+832αCAN
o
A
3π2TF + 2808αCAN
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Unlike in the MOMh scheme the quark anomalous dimension in the MOMq

scheme is cubic in the gauge parameter. This is also the case for the Curci-

Ferrari gauge for the same anomalous dimension. However in the arbitrary linear

covariant gauge fixing no differences in the power of the gauge parameter are

observed. The results for the renormalization group functions have been verified

in all MOMi schemes by taking the Curci-Ferrari limit, Nd
A → 0. In this limit all

known results in the MAG in all schemes considered here agree with those of the

Curci-Ferrari gauge in the same schemes at the same loop order for a full colour

group.

5.7 Λ-ratios

For completeness we use this section to present the numerical analysis of the Λ-

ratios for comparison with those of the linear covariant and Curci-Ferrari gauges

as well as for applications to computations in different schemes. Using the cou-

pling constant mappings we can construct the Λ-ratios as defined in chapter 3.

For each of the three MOMi schemes we have
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In Table 5.2 we record our results for the Λ-ratios numerically for the same choice

of Nf and α given in both previous analyses for the arbitrary (linear) covariant

and Curci-Ferrari gauges for SU(3) in chapters 3 and 4 respectively. Interestingly

for certain choices of α and Nf the ratio for the MOMg scheme in the MAG is

less than unity. This does not happen for the other two gauges considered, nor

does it happen in the MAG for the other two MOM schemes.

Although unrelated to the Λ-parameters we now plot the truncated channel 1

amplitude for the MAG ghost-gluon vertex in the MS scheme. This is plotted

as a function of the partial coupling constant a1(µ,Λ) where only the one loop
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α Nf MOMg MOMh MOMq
0 0 2.3583 2.5816 1.9562
0 1 2.1127 2.6008 1.9359
0 2 1.8642 2.6228 1.9129
0 3 1.6167 2.6484 1.8869
0 4 1.3668 2.6784 1.8572
0 5 1.1239 2.7140 1.8229
1 0 2.0664 2.8596 1.8073
1 3 1.3739 3.0010 1.7128
1 4 1.1480 3.0655 1.6729
1 5 0.9298 3.1429 1.6271
3 3 0.9591 4.1883 1.3858
3 4 0.7787 4.3939 1.3308
-2 4 1.8624 2.2372 2.2445

Table 5.2: Values of
ΛMOMi
Λ
MS

for the MAG in SU(3).

coupling is required since we have only computed the amplitudes for the MAG at

one loop. This means however that no comparison can be made with a two loop

result, as was the case with the other gauges considered in the previous chapters.

Therefore we have plotted both the one loop Curci-Ferrari and one loop MAG

amplitudes on the same plots for visual comparison of the gauges. These should

be equivalent when taking the limit Nd
A → 0. This can be seen in Figure 5.1. For

large Nc it should be the case that we start to see the two results overlapping.

This is indeed true and is displayed in Figure 5.2 for SU(100).
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Figure 5.1: Comparison of one loop MS Curci-Ferrari and MAG ghost-gluon
vertex functions in SU(3) for different values of Nf .
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Figure 5.2: Comparison of one loop MS Curci-Ferrari and MAG ghost-gluon
vertex functions for large SU(Nc) for different values of Nf .

5.8 Discussion

We make some comments on our analysis. First, we have provided all the infor-

mation on the 3-point vertex functions relevant for the definition of the MOMi

schemes for the maximal abelian gauge. This is an analysis parallel to that of

[52] for QCD fixed in the canonical linear covariant gauge, which we considered
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in chapter 3. It is also a parallel analysis of QCD fixed in the Curci-Ferrari gauge

considered in chapter 4. Our motivation for studying the MAG was to provide

data in relation to future lattice analyses of the vertex functions in the infrared

in order to have precision matching at high energy. Moreover, the explicit values

of the amplitudes in both the MS and MOMi schemes will be useful for assisting

overlap with Schwinger-Dyson studies. Several features which were observed in

[79] are present here. One is the relation to the Curci-Ferrari gauge. In order to

have confidence in our results it is important to indicate the checks we have car-

ried out on our work. We have checked all our expressions with the independent

evaluation of the same quantities in the Curci-Ferrari gauge, where this gauge

fixing is synonymous with the off-diagonal sector of the MAG, in the limit where

the diagonal gluons are omitted. Specifically, by substituting

Nd
A

N o
A

→ 0 & N o
A = NA (5.8.65)

in all the RG functions, amplitudes, renormalization constants, conversion func-

tions and mappings for the MAG we get the direct result for the same RG func-

tions, amplitudes, renormalization constants, conversion functions and mappings

in the Curci-Ferrari gauge. This provides a highly non-trivial check on our anal-

ysis. We note here that it is possible to present results in the MAG in terms of

Nc for SU(Nc) by fixing the Casimirs, i.e. CA = Nc, CF = (N2
c−1)
2Nc

. However, it

is not evident how the Curci-Ferrari limit is taken if the parameters Nd
A and N o

A

are not present, [51]. Given properties of the renormalization group equation the

one loop conversion functions for relating parameters in the MOMi schemes to

those of the MS scheme have allowed us to compute the two loop renormalization

group functions in each of the three MOMi schemes. These have direct parallels

with those of [79] since they are based on the triple-gluon, ghost-gluon and quark-

gluon vertices. Though an essential difference here is that with the split nature

of the colour group in the MAG, it is the vertices with the off-diagonal gluons

which are relevant. This is due in part to the fact that there are Slavnov-Taylor

identities which ensure that the structure of the vertices with diagonal gluons are

predetermined. Indeed this is not unrelated to the fact these gluons are similar to

the background fields of the background field gauge of [37, 128, 129, 130, 131, 132]

with the off-diagonal gluons corresponding to the quantum fluctuations. Whether

this scenario is significant in the picture of abelian monopoles underlying a picture

of colour confinement would be interesting to investigate.
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Chapter 6

Summary and conclusions

In Part 1 of this thesis we have studied the renormalization of QCD at the sym-

metric subtraction point for various linear and non-linear gauges. We applied

the renormalization group method to determine the next loop order anomalous

dimensions and β-functions at one higher loop for the momentum subtraction

schemes of [52]. Specifically we obtained the three loop MOMi scheme results

for both the arbitrary linear covariant and Curci-Ferrari gauges and the two loop

MAG MOMi results. All results computed in the non-linear gauges are new with

results for the one loop MAG published in [51], and the Curci-Ferrari analysis at

three loops published in [67]. We have discussed how our motivation for study-

ing the QCD vertices in various gauge fixings and schemes lies in providing data

to assist in future developments within the field. These developments could lie

in the structure of the nucleons, where the main computing tools for studying

this area are lattice gauge theory and Schwinger-Dyson methods. Both of which

complement each other. In particular, providing the full off-shell massless vertex

functions for each of the three distinct QCD vertices is important in order to have

precision matching at high energy.

The amplitudes and RG functions were determined in all three gauges; the ar-

bitrary (linear) covariant, Curci-Ferrari and maximal abelian gauges. Where the

former two gauges were computed explicitly at two loops in order to determine

the three loop MOMi scheme RG functions. Due to the technical difficulty of

the MAG gauge fixing we studied this at the one loop level, where the two loop

MOMi scheme RG functions were constructed. Although we have only presented

the MOMh, MOMg and MOMq results for each of the ghost-gluon, triple-gluon

and quark-gluon vertices respectively we comment that it is possible to carry out,

for example, the MOMg renormalization on the ghost-gluon and quark-gluon ver-
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tices also. The results presented in this thesis allow one carry out this extension

if needed. As a remark on our computational setup, the symmetry of the sub-

traction point heavily simplified the structure of the basic Feynman graphs. This

symmetry about all three external legs resulted in a smaller set of master integrals.

Throughout Part 1 of this thesis we have focused heavily on the MAG. The MAG

provides us with direct access to examining the separately treated diagonal and

off-diagonal gluons. Results in this gauge will assist in abelian monopole studies

where one requires a way of separating out the Abelian part of the group. No di-

rect access to an abelian projection was available through any of the other gauges

we studied. However a strong link between the MAG and Curci-Ferrari gauge was

observed. If one simply omits an interaction with the diagonal field the results

for the MAG directly correspond with results in the Curci-Ferrari gauge, [102].

As an extension to our work the next step would be to consider the 4-point ver-

tices of QCD. Having completed the 3-point analysis at two loops the natural

progression would be to consider the 4-point functions, in particular those of the

Curci-Ferrari gauge and the MAG. The 4-point analysis has been considered re-

cently for the arbitrary (linear) covariant gauge in [103] at one loop where a two

loop explicit calculation is not yet possible. This is due the the master integrals

which to date are not yet known. A calculation at this level would be extremely

difficult, however it would be interesting to see the influence these quartic ver-

tices have on our results, since in our work we only considered the 2- and 3-point

functions. Studying the renormalization of these 4-point vertices in a momentum

subtraction scheme would introduce new MOMi schemes, as is the case for the

quartic-gluon vertex of [103] with the MOMgggg scheme. It would be interesting

to study these other MOMi schemes and their corresponding β-functions.

Alternatively the same computation could be repeated in all gauges to the next

loop order. This would require doing a three loop calculation explicitly, which

would require the three loop master integrals.

In principle we could consider another setup, for example the asymmetric point

with an interpolating parameter to map between this setup and the symmetric

subtraction point. In the second part of this thesis we do exactly this, where we

consider an operator insertion through the top leg of our Green’s function ⟨ψψ̄⟩.
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Part II

Renormalization of the Quark

Vertex in an Interpolating

Momentum Subtraction (IMOM)

Setup
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Chapter 7

Operator Renormalization

7.1 Background

A strong motivation of this thesis has been to provide results via perturbation

theory which can be used to map on to the non-perturbative or low energy regime,

where perturbation theory is not applicable. Whilst lattice computations concen-

trate on the low energy regime the resulting matrix elements must still match the

high energy behaviour computed perturbatively. These matrix elements can in-

volve various operators, with the aim being to achieve a good approximation to

the physics of hadrons. The matrix elements give us the moments of the operators

related to the structure functions, where the moments are the number of free in-

dices on each operator. Incorporating operators in the form of the scalar, vector,

tensor and deep inelastic scattering (DIS) operators may give us a more physical

description of the low energy regime. Contributing to the structure functions, the

matrix elements for each operator help one to measure the distribution of quarks

within the nucleon. As mentioned in chapter 2 the lattice uses the MS scheme as

well as other schemes which are physical in their definition. Although the lattice

does not use the MS scheme directly, a conversion to MS is needed in order to

make calculations on the lattice useful to the outside world. To perform any cal-

culations in perturbation theory which are useful in lattice matching, knowledge

of these matrix elements in the same schemes, whether MS or a scheme preferred

by the lattice such as MOM or a regularization invariant (RI) scheme [134, 135], is

required. The RI scheme is a physical scheme similar to the MOM scheme which

was analysed in the previous chapters. Physical schemes such as MOMi serve as

useful intermediate schemes which can be implemented both on the lattice and

in continuum perturbation theory. The scheme we consider in this chapter is a

modification on the RI scheme called RI′. The RI′ scheme is a preferred scheme
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of the lattice, however with more results available in MS, in order to improve

lattice matching the conversion functions between these two schemes are neces-

sary. We discuss the definitions of the regularization invariant schemes and the

renormalization procedure in the following section.

In this chapter we determine the two loop amplitudes for various flavour non-

singlet operator insertions in to a massless quark two-point function at both the

symmetric subtraction point and at a more general point which is asymmetric

with interpolating parameter ω. We consider only flavour non-singlet operators

since the current lattice interest concentrates on these. For the scalar (or mass)

operator we renormalize in two schemes; MS and RI′. The results for the renor-

malization constants and amplitudes are presented at two loops, as well as the

scalar conversion function for comparison with [133]. We reproduce the conver-

sion function for the scalar in the RI′ scheme since this was the scheme used

in [133]. Once these checks have been carried out and the results for the scalar

conversion function have been confirmed we continue this chapter by producing

new and original results for the vector current, tensor operator and DIS operators

for MS only. The motivation and reasoning behind this is developed in the next

section. We make the important note that throughout our work we consider only

massless quarks.

7.2 Setup differences

We now turn to the setup for the particular Green’s function we are interested

in. Rather than study the ghost-gluon, triple-gluon and quark-gluon vertices of

QCD as before we now solely focus on the Green’s function

⟨ψ(p)Ou
µ1...µnu

(−p− q)ψ̄(q)⟩ (7.2.1)

as illustrated in Figure 7.1, where Ou is the operator of interest and ψ̄,ψ are

massless quarks. Here p and q are independent external momenta flowing in

through each quark leg, similar to earlier. Our convention is that the operators

are inserted through the top leg, indicated by a circle containing a cross in our

diagram, with momenta incoming there too. We consider a non-exceptional mo-

mentum configuration throughout. The operators we will be considering, which
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p q

Ou(−p− q)

Figure 7.1: Momentum flow for the Green’s function ⟨ψ(p)Ou
µ1...µnu

(−p− q)ψ̄(q)⟩.

are gauge invariant, are

S = ψ̄ψ

V = ψ̄γµψ

T = ψ̄σµνψ

W2 = Sψ̄γµDνψ

∂W2 = S∂µ(ψ̄γνψ) (7.2.2)

where S, V and T are the scalar (or mass), vector and tensor operators respec-

tively and W2 and its total derivative ∂W2 are twist-2 Wilson operators for mo-

ment n = 2. Twist is defined such that

twist = dimension− spin . (7.2.3)

In the tensor operator σµν is given by σµν = 1
2 [γ

µ, γν ]. We note that all derivatives

(ordinary and covariant) act to the right and S means that the free Lorentz indices

are totally symmetrized and traceless. We consider all operators in both a sym-

metric momentum subtraction setup, which we label as SMOM to differentiate

the momentum setup from the MOM scheme. The asymmetric setup or inter-

polating momentum subtraction setup is labelled IMOM. All computations are
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done for an arbitrary (linear) covariant gauge. Computing results in the former

configuration enables us to make checks against original work, [59, 134, 135, 137],

whilst ensuring our programming is consistent.

In the SMOM configuration the momentum is defined at the symmetric subtrac-

tion point with

p2 = q2 = r2 = (p+ q)2 = −µ2 (7.2.4)

which as before implies

pq = 1
2µ

2 (7.2.5)

with µ previously defined in section 2.1.2.

Ultimately, upon reproducing the results of [134, 137] for the renormalization

constants and amplitudes of the scalar, vector, tensor and DIS operators, we

aim to produce new results for the Green’s function of the same operators in an

IMOM configuration. In this setup we choose our interpolating parameter, ω, to

be situated at the operator insertion, see Figure 7.1. This way the operator can

be tuned. Considered at an asymmetric point the momenta now satisfy

p2 = q2 = −µ2 , r2 = (p+ q)2 = −ωµ2 (7.2.6)

where the squared momenta of two external quark legs are the same whilst the

third is proportional to the other two. This implies

pq =
[

1− ω

2

]

µ2 , pr = qr =
ω

2
µ2 . (7.2.7)

This is a much more desired setup than a SMOM configuration as there is more

flexibility with results in this setup, meaning improved precision measurements

on the lattice. In particular a zero-momentum quark is difficult to incorporate on

the lattice. By taking ω = 1 in our results we will be able to check with earlier

work at the symmetric point, and we make reference to these checks throughout.

Introducing an interpolating parameter has implications. For instance, in chapers

2 - 5 of this thesis our master integral reduction was greatly simplified due to the

symmetries which came with considering the Green’s functions at the symmetric

subtraction point. These symmetries are no longer applicable for obvious reasons.
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With this in mind we present in Figure 7.2 the basic one and two loop topologies

encountered in our calculation for an IMOM configuration, where we note that

away from the symmetric point we have two additional ladder topologies. This

(a) (b) (c)

(d) (e)

Figure 7.2: Basic topologies for the IMOM setup, where it is understood that (b)
and (c) are no longer contained within (d), and (b) and (c) are symmetric about
p and q, where p and q are defined as the incoming momenta on the two lower
legs.

loss of symmetry along with the new structures appearing in the Green’s function

gives rise to more involved master integrals.

Since the background to the SMOM setup (or momentum subtraction setup at

a symmetric subtraction point, where the two descriptions are synonomous) has

been considered at length in chapter 2, in the remainder of this section we focus

solely on the IMOM setup. Prior to this however let us first make some important

remarks on earlier work that has been carried out for the set of RI schemes in

a SMOM configuration. As we have said previously, the lattice have their own

set of preferred schemes, with RI and RI′ being two of them. These schemes

were originally defined in lattice computations [134, 135] and developed up to

four loops for the Landau gauge [59] and arbitrary (linear) covariant gauge [137].

All computations prior to the development of the RI′/SMOM renormalization

scheme in [138] were considered at an exceptional point, where essentially the

operator insertion was at zero momentum, [139]. This scheme has been applied
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to the scalar, vector and tensor operators at one and two loops [138, 133] and

also to low moment operators used in deep inelastic scattering to three loops,

[75, 140]. An introduction to the notation of the RI′/SMOM and RI′/IMOM

schemes are given in section 7.3. We note that all calculations performed in this

chapter are considered at a non-exceptional momentum configuration and the

above references along with [133, 137] will be used when comparing results in a

SMOM setup for MS and RI′ schemes.

The Green’s function (7.2.1) requires a new tensor basis since the tensor basis

used in the previous chapters is only applicable to the Green’s functions for the

ghost-gluon, triple-gluon and quark-gluon vertices respectively. Following the

same technique as discussed in Appendix B we decompose the Green’s function

in to a set of scalar amplitudes multiplying a basis of Lorentz tensors

⟨ψ(p)Ou
µ1...µnu

(−p− q)ψ̄(q)⟩
∣

∣

ω
=

nu
∑

k=1

Pu
(k) µ1...µnu

(p, q)ΣOu

(k)(p, q) (7.2.8)

where u is the operator label (7.2.2) and we have introduced the shorthand no-

tation

∣

∣

∣

ω
≡

∣

∣

∣

p2=q2=−µ2, r2=−ωµ2
(7.2.9)

to denote the IMOM configuration. The explicit tensors for each operator in-

sertion are given in Appendix B along with their respective projection matrices,

which differ for each operator level. The number of tensors in each tensor basis

for all operators are presented in Table 7.1.

Operator S V T W2 ∂W2

Number of basis tensors 2 6 8 10 10

Table 7.1: Number of projectors for each operator insertion.

7.3 Renormalization

In the analyses of the operators in a SMOM and IMOM setup we use the same

renormalization techniques as described in chapter 2 with dimensional regular-

ization in d = 4 − 2ϵ dimensions. Another calculation using a similar setup to

ours has been carried out first by Gorbahn and Jäger in [133]. We make ref-
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erence to this calculation where checks are made against their results for the

scalar (or mass) conversion function in a regularization invariant (RI) renormal-

ization scheme. The authors of [133] also introduced the more general kniematic

setup with interpolating parameter ω. Therefore in order to make contact with

this work we first reproduce the results of [133, 137] in this new renormalization

scheme. In part this is used as a check for the extension discussed here.

In this section we discuss the details surrounding renormalization of the La-

grangian in the RI and RI′ schemes. There are several ways in which the schemes

are defined [134, 135, 137, 139]. In our work, which compliments that of [137, 139],

we choose to renormalize using a modified regularization invariant (RI′) scheme.

There are so many different ways to define an RI′ scheme for an operator inser-

tion with tensor indices. It is appropriate at this point to clarify the different

nomenclatures in the literature with that which we use in [141]. RI and RI′ are

both defined with respect to the quark two-point wave function renormalization.

As with the modification on the MS scheme resulting in a new definition of the

scheme, namely MS, RI′ is a modification of the RI scheme. Their differences

lie in which part of the Green’s function is renormalized. Determining both the

RI and RI′ schemes requires the renormalization of the Lagrangian to get the

wave function renormalization of the external legs first. These are the two-point

functions for the ghost, gluon and quark wave functions. The difference between

the two schemes is as follows. The RI′ scheme definition of [142, 134, 135] is to

renormalize the quark wave function such that

lim
ϵ→0

[

ZRI′
ψ Σψ(p)

]∣

∣

∣

p2=µ2
= p/ (7.3.10)

where Σψ(p) is the bare (massless) quark two-point function and Zψ is the related

renormalization constant for the quark. The RI scheme acts on a different part

of the Green’s function, [139], which is

lim
ϵ→0

[

1

4d
tr

(

ZRI
ψ γµ

∂

∂pµ
Σψ(p)

)]∣

∣

∣

∣

p2=µ2

= 1 . (7.3.11)

From the above it can be seen that the RI scheme is more involved. Due to the

presence of the derivatives it is much more difficult and costly to implement this

scheme on the lattice compared with (7.3.10). This cost refers to the computer

time needed, which greatly increases with the addition of derivatives within op-

erators, since a derivative in a vertex increases the degree of divergence. It is for
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this reason the RI′ scheme is the preferred mass dependent scheme for the lattice

when considering an operator insertion.

The renormalization constants for the wave functions in both the RI and RI′

schemes are defined such that the poles in ϵ are absorbed in to the wave func-

tion renormalization constants along with the finite pieces. This is similar to

the MOM scheme definition. Throughout the literature the usual definition of

the RI′ scheme is to not renormalize the gauge parameter, where the relation

ZMS
α = ZRI′

α holds between the two schemes. However we define our gauge pa-

rameter, α, to be renormalized. The renormalization of this parameter is the

same as that for the wave functions, where both the poles and finite parts are

absorbed in to the renormalization constants. It is because of our convention for

the renormalization of α that we cannot compare directly with available results,

[141]. Therefore when comparing with [133] we do so in the Landau gauge, since

in this limit the way in which α is defined can be neglected. In other words we

only find agreement when α = 0.

It is also the case that the coupling constants are the same in both the RI′ and

MS schemes, and this is known up to five loops, [59, 137],

aRI′ = aMS +O(a5
MS

) . (7.3.12)

This relation also holds between the MS and RI′ schemes and so when we con-

struct the conversion function for the scalar operator there will be no need to

produce a coupling constant mapping between the two schemes first, at least not

to the loop order we require. Contrary to the wave function renormalization,

the coupling constant renormalization constant is renormalized in an MS way

where only the poles in ϵ are absorbed in to the renormalization constant. This

is the setup for the Lagrangian which defines the basic wave function coupling

constant and gauge parameter renormalization constants for the external legs of

any Green’s function, for example with an operator renormalization.

On the lattice the above RI′ scheme is commonly referred to as RI′/MOM. This

should not be confused with applying a MOMi scheme renormalization to the

vertex. For this reason we choose not to adopt this choice of labelling since

the notation could be ambiguous and we do not want the reader to confuse

the MOM scheme with a "MOM" configuration. Another definition of the RI′
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scheme applied to the operator renormalization which we can use is RI′/SMOM.

This identifies that the operator renormalization is considered at the completely

symmetric point. This is the notation we will use in this chapter to distinguish

the modified regularization invariant scheme applied to the quark wave function

with operator renormalization considered at the symmetric subtraction point in

the MS scheme (RI′/SMOM). When moving to the asymmetric setup we will

use RI′/IMOM to indicate that we have introduced an interpolating parameter.

However, the method of renormalizing the 2-point wave functions in an RI′ way

and the operators in an MS way remains the same as defined for the SMOM

configuration. The details may be different but the method remains unchanged.

In [133] we note that where the authors define an RI/SMOM scheme with in-

terpolating parameter ω this is synonomous to our definition of RI′/IMOM. Al-

though [133] use the RI/SMOM labelling they have specified that the vertex is

not symmetric, with an external leg tuned differently to the other two. Their

choice of labelling could be misleading, which is why we have introduced the la-

bel RI′/IMOM when specifically considering an asymmetric setup for the vertex

with an interpolating parameter. It is hoped that further development in this

area will encorouge others to adopt the same standard notation so that there is

no confusion surrounding schemes and momentum configurations used.

With the ambiguity in defining regularization invariant schemes we reiterate that

all checks with other authors carried out in this chapter are performed in the

Landau limit. This is because we have used a different definition of the arbitrary

gauge parameter α as mentioned before, and so it is only for the limit α → 0

that our results can be compared with [133] for example. Once checks against

[133] have been made, confirming our results and computational method and

programs are correct, all further renormalization will be carried out for the mass

independent MS scheme. Although RI′ has been described in the literature as

being a preferred scheme of the lattice, it is more convenient for lattice theorists

at this time, who are interested in using our data, to have results presented for

arbitrary α in the standard reference scheme; MS. The MS results can then

be transformed to any scheme of their choice via conversion functions and map-

pings. As we have already mentioned, the RI′/SMOM and RI′/IMOM schemes

can be defined in a number of ways. This definition depends on the choice of

the tensor basis. If a different tensor basis is used and the renormalization car-

ried out on a projection which does not directly correspond to the Feynman rule
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then renormalization constants computed in this scheme will not match those

defined in what is thought to be the same scheme. In this thesis, when working

with mass-dependent renormalization schemes, we have chosen to always use the

channel 1 projection to define the renormalization constants for the operator in

the RI′/SMOM and RI′/IMOM schemes. This means that we absorb the finite

pieces in the channel 1 projection, leaving this part of the amplitude with no O(a)

corrections after renormalization. It can be seen straight away that if one were

to choose a different tensor basis to that of ours and define the renormalization

such that the channel with the divergence, for example, was left with no O(a)

corrections, the results for the renormalization constants would not match on to

our own results for the same objects. This is why we only present the amplitudes

for the vector, tensor and DIS operators in the MS scheme. If we were to define

the amplitudes in the RI′/SMOM or RI′/IMOM schemes using a particular tensor

basis and projection this may not be the most efficient choice for numerical lattice

calculations. It is for this reason that most RI′ computations on the lattice are

usually considered in the Landau gauge, [135, 136]. Another reason for choosing

to represent results in terms of MS variables is that this scheme still remains the

cheapest to run on the lattice. The results for MS in an interpolating momen-

tum subtraction configuration have not been determined before it was carried out

in [141] for operator insertions above the most basic level; the scalar (or mass).

The five operators we consider are the scalar, vector and tensor operators and

the Wilson DIS operators W2 and ∂W2. The details surrounding each of these

individual operator insertions are discussed in the subsequent sections.

In our vertex setup there are 3 one loop diagrams and 37 two loop diagrams. This

is consistent for all operator insertions considered. These have been computed

using Qgraf. We note that no additional computer packages have been used in

this chapter other than those detailed in chapter 2 which we use throughout. We

do note however that there are new master integrals which are ω-dependent that

we need to compute. These are detailed in Appendix C. Also the new projection

matrices depend on this interpolating parameter ω.

7.4 Scalar (Mass) operator

On discussing our renormalization procedure we now move on to presenting results

for each operator insertion. We begin with the scalar operator, ψ̄ψ. The first step

in our process is to renormalize in an MS way. Since we have already established
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the MS renormalization constants for an arbitrary (linear) covariant gauge in

Part 1 of this thesis it is simply a matter of plugging these in to the amplitudes.

In addition to the renormalization constants defined in (3.1.2) and (3.1.3) we

introduce a renormalization constant specific to the operator, Zu
O, where u ∈

{S, V, T,W2, ∂W2}. This operator renormalization constant is defined as

Zu
O(a) = 1 +

zuO1

ϵ
a+

(

zuO22

ϵ2
+

zuO21

ϵ

)

a2 +O(a3) (7.4.13)

where a is the coupling constant defined for any scheme. This operator renor-

malization multiplies the entire Green’s function.

Our initial aim is to reproduce the scalar conversion function. In order to do this

one has to renormalize in two schemes, where we have chosen MS and RI′. Let

us first renormalize the Green’s function using an MS prescription. By inserting

the MS renormalization constants of (3.1.2) and (3.1.3) in to the amplitudes at

two loops we are able to set the corresponding operator renormalization constant

Zu
O which we do in an MS way. Our results for the renormalization constants in

the MS scheme for the wave functions are the same as (3.1.2) in chapter 3. For

the operator renormalization constant we find

ZS
O(a,α)

∣

∣

∣

MS
= 1− 3CFa

ϵ
+

[

5

3
CFTFNf −

97

12
CFCA − 3

4
C2
F

+

(

2CFTFNf +
11

2
CFCA +

9

2
C2
F

)

1

ϵ

]

a2

ϵ
+ O(a3) (7.4.14)

which is independent of the gauge parameter α.

Once the renormalization constants have been verified, we remove the MS wave

function and coupling constant renormalization constants but keep ZO set for the

scalar. Following an iterative procedure we are able to determine the RI′ wave

function and coupling constant renormalization constants which we find are given

by

ZS
A(a,α)

∣

∣

∣

RI′
= 1 +

[

CA

(

13

6
− α

2

)

− 4

3
TFNf

+ϵ

(

−20

9
NfTF + CA

(

97

36
+
α

2
+
α2

4

))]

a

ϵ
+ O(a2)

ZS
α (a,α)

∣

∣

∣

RI′
= 1 + O(a2)
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ZS
g (a,α)

∣

∣

∣

RI′
= 1 +

[

−11

6
CA +

2

3
TFNf

]

a

ϵ
+ O(a2)

ZS
ψ (a,α)

∣

∣

∣

RI′
= 1− [1 + ϵ]

CFαa

ϵ
+

[[

CFCA

(

3α

4
+
α2

4

)

+
1

2
C2
Fα

2

]

1

ϵ2

+

[

CFCA

(

−25

8
− 133α

36
− 5α2

8
− α3

4

)

+TFNfCF

(

1 +
20

9
α

)

+ C2
F

(

3

4
+ α2

)

+ϵ

(

NfTFCF

(

7

2
+

20

9
α

)

+ CFCA

(

−41

4
+ 3ζ3α + 3ζ3

−331

36
α− 13

8
α2 − 1

4
α3

)

+ C2
F

(

5

8
+ α2

))]

1

ϵ

]

a2

+ O(a3) (7.4.15)

where it can be seen that the wave function renormalization constants have been

renormalized such that the poles in ϵ and the finite pieces are absorbed in to the

renormalization constants, resulting in no O(a) pieces remaining in the channel 1

amplitude. These results agree with those of [137]. The coupling constant renor-

malization however is carried out in an MS way, where only the divergences are

absorbed in to the definition of the renormalization constant. Note that the label

on the renormalization constant defines the labelling of the parameters a and α,

in other words ZS
ψ (a,α)

∣

∣

RI′ ≡ ZS
ψ (aRI′ ,αRI′). Also here RI′ is shorthand for the

RI′/IMOM scheme where it cannot be written out fully when presented within

results due to lack of space.

The next step in our iterative procedure is to remove the MS values for the

operator renormalization constant. This can now be set for the scalar in the

RI′/IMOM scheme where the operator is renormalized in the same way as the

wave functions; absorbing both the 1
ϵ

pieces and finite parts in to the operator

renormalization constant. The renormalization constant for the scalar (or mass)

operator is

ZS
O(a,α)

∣

∣

∣

RI′
= 1 +

[

−3CF + ϵCF

(

−4− α +
3

2
Φ1(1,ω)ω +

1

2
Φ1(1,ω)αω

)]

a

ϵ

+

[(

−2CFTFNf +
11

2
CFCA +

9

2
C2
F

)

1

ϵ2
+

(

5

3
CFTFNf

−97

12
CFCA + C2

F

(

45

4
+ 3α− 9

2
Φ1(1,ω)ω − 3

2
Φ1(1,ω)αω

)

+ϵCFTFNf

(

83

6
+

20

9
α− 10

3
Φ1(1,ω)ω − 10

9
Φ1(1,ω)αω

)
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+ϵCFCA

(

−1285

24
+ 12ζ3 −

223

36
α− 5

4
α2 − 1

4
α3

+
1

2
Ω2

(

1

ω
,
1

ω

)

− Ω2(ω, 1)−
1

2
ln(ω)Φ1(1,ω)ω − Φ2

(

1

ω
,
1

ω

)

+Φ2(1,ω)ω +
385

24
Φ1(1,ω)ω +

223

72
Φ1(1,ω)αω

+
5

8
Φ1(1,ω)α

2ω +
1

8
Φ1(1,ω)α

3ω − Φ1(1,ω)
2 ω

+
1

2
Φ1(1,ω)

2 ω2

)

+ ϵC2
F

(

+
19

8
+ 4α + α2 − Ω2

(

1

ω
,
1

ω

)

+2Ω2(ω, 1)−
5

2
ln(ω)Φ1(1,ω)ω − 3

2
ln(ω)Φ1(1,ω)αω

−Φ2

(

1

ω
,
1

ω

)

− Φ2

(

1

ω
,
1

ω

)

α− 7Φ1(1,ω)ω − 2Φ1(1,ω)αω

−Φ1(1,ω)α
2ω + 2Φ1(1,ω)

2 ω +
5

4
Φ1(1,ω)

2 ω2

+
3

2
Φ1(1,ω)

2 αω2 +
1

4
Φ1(1,ω)

2 α2ω2

))

1

ϵ

]

a2 + O(a3) .

(7.4.16)

where again ZS
O(a,α)

∣

∣

RI′ ≡ ZS
O(aRI′ ,αRI′) and RI′ defined on the operator renor-

malization constant is shorthand for RI′/IMOM. This is assumed throughout,

unless otherwise specified. Note that all results presented so far have been for

the IMOM setup with interpolating parameter ω. However it is only at this point

where the ω dependence becomes apparent. There are several functions of ω

which appear here. These come directly from the master integrals given explic-

itly in Appendix C.

With the renormalization constants determined we present the amplitudes in

each scheme. For the scalar operator there are only two channels coming from

the tensor basis

ΣS
(k)σ(p, q)

∣

∣

∣

ω
=

2
∑

k=1

PS
(k)σ(p, q)Σ

S
(k)σ(p, q) . (7.4.17)

Throughout this chapter we present the results for only one or two amplitudes

per operator and scheme considered. Despite applying the full tensor basis to

construct all amplitudes for each scheme, we choose to display a small set of

results in this chapter due to restrictions on the space available. The channel 1
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amplitude for the scalar (or mass) in the MS scheme is

ΣS
(1)(p, q)

∣

∣

∣

MS
= −1 + CF

[

Φ1

(

1

ω
,
1

ω

)

α + 3Φ1

(

1

ω
,
1

ω

)

− 4α− 8

]

a

2

+CF

[

−36 ln(ω)Φ1

(

1

ω
,
1

ω

)

αCFω − 12 ln(ω)Φ1

(

1

ω
,
1

ω

)

CAω

−60 ln(ω)Φ1

(

1

ω
,
1

ω

)

CFω + 12Ω2

(

1

ω
,
1

ω

)

CAω

−24Ω2

(

1

ω
,
1

ω

)

CFω − 24Ω2(1,ω)CAω + 48Ω2(1,ω)CFω

+12Φ1

(

1

ω
,
1

ω

)2

CAω − 24Φ1

(

1

ω
,
1

ω

)2

CA

−24Φ1

(

1

ω
,
1

ω

)2

CFω + 48Φ1

(

1

ω
,
1

ω

)2

CF

+9Φ1

(

1

ω
,
1

ω

)

α2CAω + 12Φ1

(

1

ω
,
1

ω

)

α2CFω

+42Φ1

(

1

ω
,
1

ω

)

αCAω + 156Φ1

(

1

ω
,
1

ω

)

αCFω

+385Φ1

(

1

ω
,
1

ω

)

CAω + 120Φ1

(

1

ω
,
1

ω

)

CFω

−80Φ1

(

1

ω
,
1

ω

)

NfωTF − 24Φ2

(

1

ω
,
1

ω

)

αCFω

−24Φ2

(

1

ω
,
1

ω

)

CAω − 24Φ2

(

1

ω
,
1

ω

)

CFω

+24Φ2(1,ω)CAω
2 − 45α2CAω − 24α2CFω + 72αCAωζ3

−240αCAω − 192αCFω + 360CAωζ3 − 1531CAω

−312CFω + 416NfωTF ]
a2

24ω
+ O(a3) . (7.4.18)

In order to make contact with the known results of [139] we take the SMOM limit

by setting ω = 1. This gives us the channel 1 amplitude for the scalar operator

at the symmetric subtraction point as

ΣS
(1)(p, q)

∣

∣

∣

ω=1
= −1 + CF

[

3ψ′
(

1
3

)

α + 9ψ′
(

1
3

)

− 2απ2 − 18α− 6π2 − 36
] a

9

+CF

[

−144
√
3ψ′
(

1
3

)2
CA + 288

√
3ψ′
(

1
3

)2
CF

+162
√
3ψ′
(

1
3

)

α2CA + 216
√
3ψ′
(

1
3

)

α2CF

+756
√
3ψ′
(

1
3

)

αCA + 2808
√
3ψ′
(

1
3

)

αCF

+192
√
3ψ′
(

1
3

)

CAπ
2 + 8226

√
3ψ′
(

1
3

)

CA

−384
√
3ψ′
(

1
3

)

CFπ
2 − 432

√
3ψ′
(

1
3

)

CF
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−1440
√
3ψ′
(

1
3

)

NfTF − 18
√
3ψ′′′

(

1
3

)

αCF

−18
√
3ψ′′′

(

1
3

)

CF + 7776
√
3s2
(

π
6

)

CA

−15552
√
3s2
(

π
6

)

CF − 15552
√
3s2
(

π
2

)

CA

+31104
√
3s2
(

π
2

)

CF − 12960
√
3s3
(

π
6

)

CA

+25920
√
3s3
(

π
6

)

CF + 10368
√
3s3
(

π
2

)

CA

−20736
√
3s3
(

π
2

)

CF − 108
√
3α2CAπ

2 − 1215
√
3α2CA

−144
√
3α2CFπ

2 − 648
√
3α2CF − 504

√
3αCAπ

2

+1944
√
3αCAζ3 − 6480

√
3αCA + 48

√
3αCFπ

4

−1872
√
3αCFπ

2 − 5184
√
3αCF − 64

√
3CAπ

4

−5484
√
3CAπ

2 + 8424
√
3CAζ3 − 41337

√
3CA

+176
√
3CFπ

4 + 288
√
3CFπ

2 + 2592
√
3CF ζ3

−8424
√
3CF + 960

√
3Nfπ

2TF + 11232
√
3NfTF

+54 ln(3)2CAπ − 108 ln(3)2CFπ − 648 ln(3)CAπ

+1296 ln(3)CFπ − 58CAπ
3 + 116CFπ

3
] a2

648
√
3

+ O(a3) (7.4.19)

which agrees exactly with the results of [139]. In order to obtain this result the

following identities have been applied, [62, 63, 64, 149],

Ψ1(ω, 1) = Ψ1(1,ω) =
1

ω

[

Ψ1

(

1

ω
,
1

ω

)

− ln(ω)Φ1

(

1

ω
,
1

ω

)]

Φ1(ω, 1) = Φ1(1,ω) =
1

ω
Φ1

(

1

ω
,
1

ω

)

Φ1

(

1

ω
,
1

ω

)

= ω[Φ1(1,ω) ln(ω) + Φ1(1,ω)]

Ψ2(ω, 1) = Ψ2(1,ω)

Φ2(ω, 1) = Φ2(1,ω)

Ω2(1,ω) = Ω2(ω, 1) (7.4.20)

which arise from the various underlying master integrals and have been evaluated

explicitly in terms of polylogarithm functions in [62, 63, 64, 149]. The above

identities are based on the asymmetric properties of the Green’s function in an

IMOM configuration. Note that although Ψ1 does not appear explicitly it is

needed in the ϵ expansion. Generalising to the SMOM limit we need only consider,
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[62, 136, 151, 103]

Φ1(1, 1) = −2

3
π2 − 2

3
ψ′
(

1
3

)

Ψ1(1, 1) = 12s3
(

π
6

)

− 35

108
√
3
π3 − ln2(3)

4
√
3

Φ2(1, 1) = − 2

27
π4 +

1

36
ψ′′′
(

1
3

)

Ω2(1, 1) = 4

[

2

3
π2 + ζ3 − 6s2

(

π
6

)

+ 12s2
(

π
2

)

+ 10s3
(

π
6

)

− 8s3
(

π
2

)

− ψ′
(

1
3

)

+
29

648
√
3
π3 +

1

2
√
3
ln(3)π − 1

24
√
3
ln(3)2π

]

. (7.4.21)

Next we present the amplitudes for the RI′/IMOM scheme, these are

ΣS
(1)(p, q)

∣

∣

∣

RI′
= − 1 +O(a3)

ΣS
(2)(p, q)

∣

∣

∣

RI′
= CF

[

−2 ln(ω)αω + 2 ln(ω)ω + Φ1

(

1

ω
,
1

ω

)

αω

−2Φ1

(

1

ω
,
1

ω

)

α− Φ1

(

1

ω
,
1

ω

)

ω + 2Φ1

(

1

ω
,
1

ω

)]

a

ω(ω − 4)

+CF

[

36 ln(ω)2αCAω
2 + 72 ln(ω)2αCFω

2

−36 ln(ω)2CAω
2 − 72 ln(ω)2CFω

2

−36 ln(ω)Φ1

(

1

ω
,
1

ω

)

α2CFω
2 − 18 ln(ω)Φ1

(

1

ω
,
1

ω

)

αCAω
2

+36 ln(ω)Φ1

(

1

ω
,
1

ω

)

αCAω − 108 ln(ω)Φ1

(

1

ω
,
1

ω

)

αCFω
2

+72 ln(ω)Φ1

(

1

ω
,
1

ω

)

αCFω + 18 ln(ω)Φ1

(

1

ω
,
1

ω

)

CAω
2

−36 ln(ω)Φ1

(

1

ω
,
1

ω

)

CAω + 144 ln(ω)Φ1

(

1

ω
,
1

ω

)

CFω
2

−72 ln(ω)Φ1

(

1

ω
,
1

ω

)

CFω − 18 ln(ω)α3CAω
2

−54 ln(ω)α2CAω
2 − 338 ln(ω)αCAω

2 + 160 ln(ω)αNfω
2TF

−142 ln(ω)CAω
2 − 64 ln(ω)Nfω

2TF − 36Ω2

(

1

ω
,
1

ω

)

αCAω
2

+36Ω2

(

1

ω
,
1

ω

)

αCAω + 252Ω2

(

1

ω
,
1

ω

)

CAω
2

−324Ω2

(

1

ω
,
1

ω

)

CAω − 144Ω2

(

1

ω
,
1

ω

)

CFω
2

−36Ω2(1,ω)αCAω
2 + 144Ω2(1,ω)αCFω

2

+252Ω2(1,ω)CAω
2 − 720Ω2(1,ω)CFω

2
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+18Φ1

(

1

ω
,
1

ω

)2

α2CFω
2 − 36Φ1

(

1

ω
,
1

ω

)2

α2CFω

+36Φ1

(

1

ω
,
1

ω

)2

αCFω
2 − 72Φ1

(

1

ω
,
1

ω

)2

αCFω

−36Φ1

(

1

ω
,
1

ω

)2

CAω
2 + 144Φ1

(

1

ω
,
1

ω

)2

CAω

+18Φ1

(

1

ω
,
1

ω

)2

CFω
2 − 180Φ1

(

1

ω
,
1

ω

)2

CFω

+9Φ1

(

1

ω
,
1

ω

)

α3CAω
2 − 18Φ1

(

1

ω
,
1

ω

)

α3CAω

+27Φ1

(

1

ω
,
1

ω

)

α2CAω
2 − 54Φ1

(

1

ω
,
1

ω

)

α2CAω

+133Φ1

(

1

ω
,
1

ω

)

αCAω
2 − 194Φ1

(

1

ω
,
1

ω

)

αCAω

−36Φ1

(

1

ω
,
1

ω

)

αCFω
2 + 144Φ1

(

1

ω
,
1

ω

)

αCFω

−80Φ1

(

1

ω
,
1

ω

)

αNfω
2TF + 160Φ1

(

1

ω
,
1

ω

)

αNfωTF

+251Φ1

(

1

ω
,
1

ω

)

CAω
2 − 862Φ1

(

1

ω
,
1

ω

)

CAω

+36Φ1

(

1

ω
,
1

ω

)

CFω
2 − 144Φ1

(

1

ω
,
1

ω

)

CFω

+32Φ1

(

1

ω
,
1

ω

)

Nfω
2TF − 64Φ1

(

1

ω
,
1

ω

)

NfωTF

−72Φ2

(

1

ω
,
1

ω

)

αCA − 72Φ2

(

1

ω
,
1

ω

)

αCFω
2

+144Φ2

(

1

ω
,
1

ω

)

αCFω + 216Φ2

(

1

ω
,
1

ω

)

CAω
2

−576Φ2

(

1

ω
,
1

ω

)

CAω + 648Φ2

(

1

ω
,
1

ω

)

CA

−72Φ2

(

1

ω
,
1

ω

)

CFω
2 + 144Φ2

(

1

ω
,
1

ω

)

CFω

−360Φ2(1,ω)CAω
3 + 576Φ2(1,ω)CFω

3 + 216αCAω
2ζ3

−864αCFω
2ζ3 + 648CAω

2ζ3 + 864CFω
2ζ3
] a2

36ω2(ω − 4)

+ O(a3) . (7.4.22)

We have checked that our results agree exactly with the results of [137, 139] for

both the MS and RI′/SMOM schemes. Note that between the two amplitudes for

the scalar it was found that no relations exist; the two channels are independent
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of each other.

From the above results for the renormalization constants and amplitudes we are

able to construct the conversion function for the scalar. Since the mapping of the

coupling constant is not required we simply define the gauge parameter mapping,

where we have used the same techniques to determine it as was defined in chapter

3. This is

αRI′ = α +
[

−9α2CA − 18αCA − 97CA + 80NfTF
] αa

36
+
[

18α4C2
A − 18α3C2

A + 190α2C2
A − 320α2CANfTF − 576αC2

Aζ3

+463αC2
A − 320αCANfTF + 864C2

Aζ3 − 7143C2
A + 2304CANfTF ζ3

+4248CANfTF − 4608CFNfTF ζ3 + 5280CFNfTF ]
αa2

288
+ O(a3)

(7.4.23)

which is in direct agreement with [137, 139], where the result for the gauge param-

eter mapping is the same for both the SMOM and IMOM setups for RI′. This

is as expected since this mapping only uses the wave function renormalization

constants in its construction. It is only in the operator renormalization constant

where we see the ω dependence emerging. The three loop result for the gauge

parameter mapping is also available in [137]. We are now able to construct the

conversion function using the definition

C
RI′/IMOM
S (aMS,αMS) =

ZRI′
S

ZMS
S

∣

∣

∣

∣

∣

RI′/IMOM→MS

(7.4.24)

where it is our convention to always have the conversion functions in terms of

MS scheme parameters. In other words the conversion function is a funcion of

(aMS,αMS) where a = g2/(16π2). The conversion function for the scalar operator

is

C
RI′/IMOM
S = 1 + CF

[

Φ1

(

1

ω
,
1

ω

)

α + 3Φ1

(

1

ω
,
1

ω

)

− 2α− 8

]

a

2

+CF

[

−36 ln (ω)Φ1

(

1

ω
,
1

ω

)

αCFω − 12 ln (ω)Φ1

(

1

ω
,
1

ω

)

CAω

−60 ln (ω)Φ1

(

1

ω
,
1

ω

)

CFω + 12Ω2

(

1

ω
,
1

ω

)

CAω

−24Ω2

(

1

ω
,
1

ω

)

CFω − 24Ω2(1,ω)CAω
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+48Ω2(1,ω)CFω + 6Φ1
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α2CFω
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CFω
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α2CAω

−24Φ1

(

1
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1
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)

α2CFω + 42Φ1

(

1

ω
,
1

ω

)

αCAω

−48Φ1

(

1

ω
,
1

ω

)

αCFω + 385Φ1

(

1

ω
,
1

ω

)

CAω

−168Φ1

(

1
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,
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)

CFω − 80Φ1

(

1

ω
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ω

)

NfωTF

−24Φ2

(

1
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,
1

ω

)

αCFω − 24Φ2

(

1

ω
,
1

ω

)

CAω

−24Φ2

(

1

ω
,
1

ω

)

CFω + 24Φ2(1,ω)CAω
2 − 18α2CAω

+24α2CFω − 84αCAω + 96αCFω + 288CAωζ3 − 1285CAω

+57CFω + 332NfωTF ]
a2

24ω
+ O(a3) (7.4.25)

where in the Landau limit α = 0 we are able to make checks against other work.

This is fine since lattice simulations are usually carried out in the Landau gauge,

[75]. The result

C
RI′/IMOM
S (a, 0) = 1 + CF

[

3Φ1

(

1

ω
,
1

ω

)

− 8

]

a

2

+CF

[

−12 ln (ω)Φ1

(

1

ω
,
1

ω

)

CAω

−60 ln (ω)Φ1

(

1

ω
,
1

ω

)

CFω + 12Ω2

(

1

ω
,
1

ω

)

CAω

−24Ω2

(

1

ω
,
1

ω

)

CFω − 24Ω2(1,ω)CAω

+48Ω2(1,ω)CFω + 12Φ1

(

1

ω
,
1

ω

)2

CAω

−24Φ1

(

1

ω
,
1

ω

)2

CA + 30Φ1

(

1

ω
,
1

ω

)2

CFω

+48Φ1

(

1

ω
,
1

ω

)2

CF + 385Φ1

(

1

ω
,
1

ω

)

CAω
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−168Φ1

(

1

ω
,
1

ω

)

CFω − 80Φ1

(

1

ω
,
1

ω

)

NfωTF

−24Φ2

(

1

ω
,
1

ω

)

CAω − 24Φ2

(

1

ω
,
1

ω

)

CFω

+24Φ2(1,ω)CAω
2 + 288CAωζ3 − 1285CAω

+57CFω + 332NfωTF ]
a2

24ω
+ O(a3) (7.4.26)

is in exact agreement with [133] in this limit, where we have chosen the Casimirs

to be

CA = Nc , CF =
(N2

c − 1)

2Nc

, TF =
1

2
(7.4.27)

in order to match the convention of the published result in [133]. Note that in

all of our above results for the conversion function the parameter α is mapped to

the MS scheme. As would also be the case with the coupling constant a if aRI′

and aMS were not equivalent up to the loop order required.

The anomalous dimension for the scalar operator in the MS scheme at two loops

is

γMS
S (a,α) = 3CFa+ [CF (97CA + 9CF − 20NfTF )]

a2

6
+ O(a3) (7.4.28)

where there is no dependence on the gauge parameter. The anomalous dimension

for the scalar operator in this scheme is gauge independent. This result has been

confirmed with [139] and is in exact agreement with [75]. We note that this

anomalous dimension for the MS scheme has been constructed using the formula

γS = β(a,α)
∂

∂a
lnZS + αγα(a,α)

∂

∂a
lnZS (7.4.29)

which is a variation on the formula we have used to determine the anomalous

dimensions throughout, where γα and γA have been determined using (4.1.3).

Although we have constructed the conversion function and confirmed our results

with [133], which was the main reason for computing in the RI′/IMOM scheme,

we present the anomalous dimension for the scalar in the RI′/IMOM scheme for

completeness. For this we needed to adjust (3.4.55) to the following

γ
RI′/IMOM
S = −

[

γMS
S (a) + βMS(a)

∂

∂aMS
lnC

RI′/IMOM
S

(

a,αMS

)
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+αMS γ
MS
α

(

a,αMS

) ∂

∂αMS
lnC

RI′/IMOM
S

(

a,αMS

)

]

MS→RI′/IMOM

(7.4.30)

where we have not labelled the coupling constant a with a scheme dependence

since the MS coupling is equivalent to the RI′/IMOM coupling constant up to

five loops, [137]. We also partly do this due to lack of space when presenting the

equation fully. In comparison to (3.4.55) a minus sign is introduced. This is as

a result of the renormalization of the mass not being computed directly. With

all operators, if one were to deduce the RI′/IMOM anomalous dimensions the

same way in which we have done for the mass, the above formula would always

carry a minus sign. We have chosen this convention to match with other work,

[133, 137, 139]. If we were to carry out the full massive calculation then we would

not need to manually include this sign in the formula since the correct convention

for the sign of the anomalous dimensions would naturally be projected out. For

completeness the mass anomalous dimension for the RI′/IMOM scheme is given

as

γ
RI′/IMOM
S = 3CFa+ CF

[

−3Φ1

(

1

ω
,
1

ω

)

α2CA − 9Φ1

(

1

ω
,
1

ω

)

αCA

−66Φ1

(

1

ω
,
1

ω

)

CA + 24Φ1

(

1

ω
,
1

ω

)

NfTF + 6α2CA

+18αCA + 370CA + 18CF − 104NfTF ]
a2

12
+ O(a3) .

(7.4.31)

where we have used the identities (7.4.20) to rearrange (7.4.31) in to the same

form as [133] in order to make comparing results easier. Our result agrees with

the same results in [75, 138, 133, 139] for the scalar anomalous dimension when

ω = 1.

7.5 Vector operator

We now move on to the vector current. As in the case of the scalar operator,

we have a quark 2-point function where the operator is inserted through the top

leg with momenta incoming. We now replace the scalar with the vector current

ψ̄γµψ. This operator is strongly related to the DIS operator ∂W2. Analysing the

vector operator helps us to build a bigger picture of what is happening inside the

nucleus and is a preliminary computation to that of ∂W2.
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Using the MS renormalization constants defined in chapter 3 we determine the

operator renormalization constant. For the vector operator this is found to be

ZV
O (a,α)

∣

∣

∣

MS
= 1 + O(a3) (7.5.32)

With this, we construct the amplitudes for the MS scheme in an IMOM configu-

ration setup where the amplitudes are defined by

ΣV
(k)σ(p, q)

∣

∣

∣

ω
=

6
∑

k=1

PV
(k)σ(p, q)Σ

V
(k)σ(p, q) . (7.5.33)

where PV
(k)σ(p, q) are the tensors for the vector operator defined in Appendix C.

We have computed all six amplitudes but choose to display only one here. The

channel 1 amplitude, corresponding to the tree-level vertex, in the MS scheme is

ΣV
(1)(p, q)

∣

∣

∣

MS
= −1 + CF

[

ln(ω)αω2 − 2 ln(ω)αω − 2 ln(ω)ω2 + 4 ln(ω)ω

−2Φ1

(

1

ω
,
1

ω

)

α + Φ1

(

1

ω
,
1

ω

)

ω2 − 4Φ1

(

1

ω
,
1

ω

)

ω

+4Φ1

(

1

ω
,
1

ω

)

− 2αω2 + 8αω + 2ω2 − 8ω

]

a

ω(ω − 4)

+CF

[

−180 ln(ω)2CAω
2 + 432 ln(ω)2CFω

2

+18 ln(ω)Φ1

(

1

ω
,
1

ω

)

CAω
2 + 108 ln(ω)Φ1

(

1

ω
,
1

ω

)

CAω

−432 ln(ω)Φ1

(

1

ω
,
1

ω

)

CFω + 54 ln(ω)α2CAω
2

−108 ln(ω)α2CAω + 72 ln(ω)α2CFω
2 − 144 ln(ω)α2CFω

+252 ln(ω)αCAω
2 − 504 ln(ω)αCAω − 288 ln(ω)αCFω

2

+576 ln(ω)αCFω − 1414 ln(ω)CAω
2 + 2828 ln(ω)CAω

+252 ln(ω)CFω
2 − 504 ln(ω)CFω + 464 ln(ω)Nfω

2TF

−928 ln(ω)NfωTF + 18Ω2

(

1

ω
,
1

ω

)

αCAω
2

−36Ω2

(

1

ω
,
1

ω

)

αCAω − 126Ω2

(

1

ω
,
1

ω

)

CAω
2

+288Ω2

(

1

ω
,
1

ω

)

CAω + 72Ω2

(

1

ω
,
1

ω

)

CFω
2

−144Ω2

(

1

ω
,
1

ω

)

CFω + 36Ω2(1,ω)αCAω
2

−72Ω2(1,ω)αCAω − 144Ω2(1,ω)αCFω
2
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+288Ω2(1,ω)αCFω − 288Ω2(1,ω)CAω
2

+216Ω2(1,ω)CAω + 720Ω2(1,ω)CFω
2

−576Ω2(1,ω)CFω + 36Φ1

(

1

ω
,
1

ω

)2

CAω
2

−216Φ1

(

1

ω
,
1

ω

)2

CAω + 288Φ1

(

1

ω
,
1

ω

)2

CA

−72Φ1

(

1

ω
,
1

ω

)2

CFω
2 + 432Φ1

(

1

ω
,
1

ω

)2

CFω

−576Φ1

(

1

ω
,
1

ω

)2

CF − 108Φ1

(

1

ω
,
1

ω

)

α2CA

−144Φ1

(

1

ω
,
1

ω

)

α2CF − 504Φ1

(

1

ω
,
1

ω

)

αCA

+288Φ1

(

1

ω
,
1

ω

)

αCFω
2 − 1152Φ1

(

1

ω
,
1

ω

)

αCFω

+576Φ1

(

1

ω
,
1

ω

)

αCF + 920Φ1

(

1

ω
,
1

ω

)

CAω
2

−3680Φ1

(

1

ω
,
1

ω

)

CAω + 2828Φ1

(

1

ω
,
1

ω

)

CA

−1044Φ1

(

1

ω
,
1

ω

)

CFω
2 + 4176Φ1

(

1

ω
,
1

ω

)

CFω

−504Φ1

(

1

ω
,
1

ω

)

CF − 208Φ1

(

1

ω
,
1

ω

)

Nfω
2TF

+832Φ1

(

1

ω
,
1

ω

)

NfωTF − 928Φ1

(

1

ω
,
1

ω

)

NfTF

+288Φ2

(

1

ω
,
1

ω

)

αCF − 144Φ2

(

1

ω
,
1

ω

)

CAω
2

+648Φ2

(

1

ω
,
1

ω

)

CAω − 648Φ2

(

1

ω
,
1

ω

)

CA

−288Φ2

(

1

ω
,
1

ω

)

CF + 216Φ2(1,ω)CAω
3

−288Φ2(1,ω)CFω
3 − 576Φ2(1,ω)CFω

2 − 135α2CAω
2

+540α2CAω − 72α2CFω
2 + 288α2CFω − 720αCAω

2

−432αCAωζ3 + 2880αCAω + 864αCFω
2ζ3 + 288αCFω

2

−1728αCFωζ3 − 1152αCFω + 216CAω
2ζ3 + 676CAω

2

−432CAωζ3 − 2704CAω − 1728CFω
2ζ3 − 207CFω

2

+3456CFωζ3 + 828CFω − 212Nfω
2TF

+848NfωTF ]
a2

72ω(ω − 4)
+ O(a3) (7.5.34)
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whereby taking the limit ω → 1 this becomes

ΣV
(1)(p, q)

∣

∣

∣

ω=1
= −1 + 2CF

[

6ψ′
(

1
3

)

α− 3ψ′
(

1
3

)

− 4απ2 − 27α + 2π2 + 27
] a

27

+CF

[

−432
√
3ψ′
(

1
3

)2
CA + 864

√
3ψ′
(

1
3

)2
CF

+648
√
3ψ′
(

1
3

)

α2CA + 864
√
3ψ′
(

1
3

)

α2CF

+1080
√
3ψ′
(

1
3

)

αCA + 6912
√
3ψ′
(

1
3

)

αCF

+576
√
3ψ′
(

1
3

)

CAπ
2 + 2832

√
3ψ′
(

1
3

)

CA

−1152
√
3ψ′
(

1
3

)

CFπ
2 − 13176

√
3ψ′
(

1
3

)

CF

+1824
√
3ψ′
(

1
3

)

NfTF − 72
√
3ψ′′′

(

1
3

)

αCF

−18
√
3ψ′′′

(

1
3

)

CA + 288
√
3ψ′′′

(

1
3

)

CF

−11664
√
3s2
(

π
6

)

αCA + 31104
√
3s2
(

π
6

)

αCF

+19440
√
3s2
(

π
6

)

CA + 15552
√
3s2
(

π
6

)

CF

+23328
√
3s2
(

π
2

)

αCA − 62208
√
3s2
(

π
2

)

αCF

−38880
√
3s2
(

π
2

)

CA − 31104
√
3s2
(

π
2

)

CF

+19440
√
3s3
(

π
6

)

αCA − 51840
√
3s3
(

π
6

)

αCF

−32400
√
3s3
(

π
6

)

CA − 25920
√
3s3
(

π
6

)

CF

−15552
√
3s3
(

π
2

)

αCA + 41472
√
3s3
(

π
2

)

αCF

+25920
√
3s3
(

π
2

)

CA + 20736
√
3s3
(

π
2

)

CF

−432
√
3α2CAπ

2 − 3645
√
3α2CA − 576

√
3α2CFπ

2

−1944
√
3α2CF − 720

√
3αCAπ

2 + 5832
√
3αCAζ3

−19440
√
3αCA + 192

√
3αCFπ

4 − 4608
√
3αCFπ

2

+2592
√
3αCF ζ3 + 7776

√
3αCF − 144

√
3CAπ

4

−1888
√
3CAπ

2 − 1296
√
3CAζ3 + 18252

√
3CA

−384
√
3CFπ

4 + 8784
√
3CFπ

2 − 18144
√
3CF ζ3

−5589
√
3CF − 1216

√
3Nfπ

2TF − 5724
√
3NfTF

−81 ln(3)2αCAπ + 216 ln(3)2αCFπ + 135 ln(3)2CAπ

+108 ln(3)2CFπ + 972 ln(3)αCAπ − 2592 ln(3)αCFπ

−1620 ln(3)CAπ − 1296 ln(3)CFπ + 87αCAπ
3

−232αCFπ
3 − 145CAπ

3 − 116CFπ
3
] a2

1944
√
3

+ O(a3) (7.5.35)

which exactly matches the SMOM result of [137, 139].
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Of the six MS amplitudes computed it was found that, when taking the limit

ω = 1, the following relations hold. These are

ΣV
(2)(p, q)

∣

∣

∣

ω=1
= ΣV

(5)(p, q)
∣

∣

∣

ω=1
, ΣV

(3)(p, q)
∣

∣

∣

ω=1
= ΣV

(4)(p, q)
∣

∣

∣

ω=1
(7.5.36)

where the above relations are consistent with those of the quark-gluon vertex in

Part 1 of this thesis and must be satisfied in the MS scheme. These relations

are symmetric under the interchange of p and q in the external legs, where this

property emerges naturally and acts as a useful check on our calculation.

Since the vector current is a physical operator its renormalization is trivial in all

schemes, this implies that its anomalous dimension is zero, i.e. γν(a) = 0. If the

anomalous dimension of a physical operator vanishes in one scheme it vanishes

in all other schemes. This is consistent with our result, where the vector current

anomalous dimension is zero in [137].

This concludes our analysis of the vector operator, where we have produced results

for a new configuration in the MS scheme. It is not necessary to compute these

results in any other scheme since at this moment in time the Landau gauge is

preferred by lattice theorists over any other scheme, [135, 136].

7.6 Tensor operator

Next we record the results for the tensor operator ψ̄σµνψ. Using the MS renormal-

ization constants defined in chapter 3 we determine the operator renormalization

constant. For the tensor operator this is found to be

ZT
O(a,α)

∣

∣

∣

MS
= 1 + O(a3) . (7.6.37)

With this, we construct the amplitudes for the MS scheme for an IMOM config-

uration setup where the amplitudes are defined by

ΣT
(k)σ(p, q)

∣

∣

∣

ω
=

8
∑

k=1

PT
(k)σ(p, q)Σ

T
(k)σ(p, q) . (7.6.38)

We have computed all eight amplitudes but, similarly to the vector current, choose

to display only one here. As with the vector operator we present the channel 1
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amplitude in the MS scheme. There is no need to compute the same set of results

for the RI′ scheme since the MS results are adequate. The channel 1 amplitude

is given by

ΣT
(1)(p, q)

∣

∣

∣

MS
= −1 + CF

[

4 ln(ω)αω2 − 8 ln(ω)αω − 4 ln(ω)ω2 + 8 ln(ω)ω

−Φ1

(

1

ω
,
1

ω

)

αω2 + 4Φ1

(
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,
1

ω

)

αω − 8Φ1

(
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ω
,
1

ω

)

α

+Φ1
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1
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,
1

ω

)

ω2 − 4Φ1

(

1

ω
,
1

ω

)

ω + 8Φ1

(

1

ω
,
1

ω

)

−4αω2 + 16αω + 4ω2 − 16ω
] a

2ω(ω − 4)

+CF

[

432 ln(ω)2αCFω
3 − 864 ln(ω)2αCFω

2 − 216 ln(ω)2CAω
3

+432 ln(ω)2CFω
3 + 864 ln(ω)2CFω

2

−108 ln(ω)Φ1

(
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ω
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3
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(

1
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,
1

ω
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2
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)
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2
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2

+1512 ln(ω)αCAω
3 − 3024 ln(ω)αCAω

2

−1728 ln(ω)αCFω
3 + 3456 ln(ω)αCFω
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3

+4920 ln(ω)CAω
2 + 1296 ln(ω)CFω
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2
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−864Ω2(1,ω)αCFω
3 + 1728Ω2(1,ω)αCFω

2
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+1728Φ2
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3
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3 + 1620α2CAω
2

−216α2CFω
3 + 864α2CFω

2 − 648αCAω
3ζ3 − 2160αCAω

3

+8640αCAω
2 + 5184αCFω

3ζ3 + 864αCFω
3

−10368αCFω
2ζ3 − 3456αCFω

2 − 1944CAω
3ζ3

+7097CAω
3 + 5184CAω

2ζ3 − 28388CAω
2

−5184CFω
3ζ3 − 5688CFω

3 + 10368CFω
2ζ3

+22752CFω
2 − 1456Nfω

3TF

+5824Nfω
2TF
] a2

216ω2(ω − 4)
+ O(a3) (7.6.39)

for the asymmetric configuration, where ω is the interpolating parameter. Taking

the SMOM limit and applying the identities (7.4.21) we see that the same result

at the symmetric point is

ΣT
(1)(p, q)

∣

∣

∣

ω=1
= −1 + CF

[

15ψ′
(

1
3

)

α− 15ψ′
(

1
3

)

− 10απ2 − 54α + 10π2 + 54
] a

27

+CF

[

−432
√
3ψ′
(

1
3

)2
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√
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(

1
3

)2
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√
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1
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)
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√
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1
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)
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√
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1
3

)
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√
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1
3
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√
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1
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√
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1
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√
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1
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√
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1
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√
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1
3

)

NfTF − 90
√
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1
3
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√
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(

1
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)
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√
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1
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)
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√
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(

π
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)
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√
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(

π
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√
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(

π
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√
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π
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√
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(

π
2

)
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√
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(

π
2

)
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−93312
√
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(

π
2

)
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√
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(

π
2

)

CF
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√
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(

π
6

)
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√
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(

π
6

)
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√
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π
6

)

CA + 285120
√
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π
6
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CF
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√
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(

π
2

)
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√
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(

π
2

)
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+62208
√
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π
2
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√
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(

π
2

)

CF
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√
3α2CAπ
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√
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√
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−1944
√
3α2CF + 72

√
3αCAπ

2 + 5832
√
3αCAζ3

−19440
√
3αCA + 240

√
3αCFπ

4 − 7920
√
3αCFπ

2

+5184
√
3αCF ζ3 + 7776

√
3αCF + 96

√
3CAπ

4

−3676
√
3CAπ

2 − 17496
√
3CAζ3 + 63873

√
3CA
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√
3CFπ

4 + 27648
√
3CFπ

2 + 12960
√
3CF ζ3

−51192
√
3CF − 1600

√
3Nfπ

2TF − 13104
√
3NfTF

−162 ln(3)2αCAπ + 432 ln(3)2αCFπ + 324 ln(3)2CAπ

−1188 ln(3)2CFπ + 1944 ln(3)αCAπ − 5184 ln(3)αCFπ

−3888 ln(3)CAπ + 14256 ln(3)CFπ + 174αCAπ
3

−464αCFπ
3 − 348CAπ

3 + 1276CFπ
3
] a2

1944
√
3

+ O(a3) . (7.6.40)

On inspection it was found that the following relationships must be satisfied

between the amplitudes at two loops

ΣT
(3)(p, q)

∣

∣

∣

ω=1
= ΣT

(6)(p, q)
∣

∣

∣

ω=1
, ΣT

(4)(p, q)
∣

∣

∣

ω=1
= ΣT

(5)(p, q)
∣

∣

∣

ω=1
(7.6.41)

when ω = 1. We have checked that these amplitudes satisfy the relationships at

two loops in the MS scheme, [141].

7.7 W2 and ∂W2 operators

Finally we record our results for the DIS operators (or Wilson operators) Sψ̄γµDνψ

and S∂µ(ψ̄γνψ). Due to the way in which the tensor basis has been defined we

note that the channel 2 amplitude for the DIS operator W2 is the channel cor-

responding to the Feynman rule, i.e. the tree level vertex. Therefore we present

the channel 2 amplitude as

ΣW2

(2) (p, q)
∣

∣

∣

MS
= −1 + CF

[

18 ln(ω)αω3 − 90 ln(ω)αω2 + 180 ln(ω)αω

−51 ln(ω)ω3 + 240 ln(ω)ω2 − 324 ln(ω)ω − 72Φ1
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1
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ω

)
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ω

)
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(

1
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ω
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ω

)
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(

1

ω
,
1

ω

)

ω − 324Φ1

(

1

ω
,
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ω

)

− 36αω3 + 270αω2
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−504αω + 79ω3 − 602ω2 + 1144ω
] a

18ω(ω − 4)2

+CF
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2
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2
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2
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2
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2
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2
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4
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2 + 7776αCFω
4ζ3

+5526αCFω
4 − 38880αCFω
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648ω2(ω − 4)2

+ O(a3) (7.7.42)

in the MS scheme evaluated at the IMOM configuration. For the DIS operators

the amplitudes are the only results we provide, which are sufficient for lattice

manipulations.

For the operator ∂W2 the channel 1 and 2 amplitudes are related such that

Σ∂W2

(1) (p, q)
∣

∣

∣

MS
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∣

∣

∣
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ω
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2 + 3456CFωζ3 + 828CFω − 212Nfω

2TF

+848NfωTF ]
a2

72ω(ω − 4)
+ O(a3) . (7.7.43)

Other relations between the amplitudes were found as

Σ∂W2

(3) (p, q)
∣

∣

∣

ω=1
= Σ∂W2

(8) (p, q)
∣

∣
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ω=1
, Σ∂W2

(4) (p, q)
∣

∣
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ω=1
= Σ∂W2
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∣

∣

∣

ω=1

Σ∂W2

(5) (p, q)
∣

∣

∣

ω=1
= Σ∂W2

(6) (p, q)
∣

∣

∣

ω=1
, Σ∂W2

(9) (p, q)
∣

∣

∣

ω=1
= Σ∂W2

(10) (p, q)
∣

∣

∣

ω=1

(7.7.44)

This completes our analysis of the operator insertion in to a quark 2-point function

at the asymmetric point.

7.8 Discussion

We have evaluated the flavour non-singlet Green’s function ⟨ψ(p)Ou
µ1...µnu

(−p −
q)ψ̄(q)⟩ in the chiral limit, [59]. Developing the work of [137] we have considered,

in addition to the scalar, vector and tensor operators, the twist-2 Wilson oper-

ators W2 and ∂W2. By reproducing the results of [133] for the mass conversion

function and verifying this result in the Landau gauge we have been able to check

that our programming works before building up to more complicated operators,

such as the DIS operators. In this chapter we do not concern ourselves with the
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analysis of schemes for the operators, where we only considered the RI′ scheme in

order to compare with [133]. This is completely separate to Part 1 of this thesis

where scheme analysis was our main focus.

On confirming our result for the mass conversion function, where we note that

this was only verified in the Landau gauge since our convention for the definition

of α differs to that of [133], we then returned to the MS scheme where all further

operator analysis was carried out. For the vector, tensor and DIS operators we

are only interested in the amplitudes, where the conversion functions and RG

functions are not necessary. We define the amplitudes in the MS scheme since

there is no flexibility in how one defines this scheme. We discussed at the start

of the chapter that there are several ways to define a regularization invariant

renormalization scheme. By sticking with MS this saves the lattice a lot of work.

This is also the cheapest scheme to run in simulations. With no scheme or gauge

analysis we reiterate that in this chapter we have simply produced wanted results

which others will develop.

In this calculation we have considered an asymmetric point. This brought with it

new master integrals which we have defined in Appendix C in terms of the various

functions arising as a result of the asymmetry in the graph. This configuration

setup is easier to simulate on the lattice since the symmetric point has relatively

noisier signals, [51].

We close with a few remarks. Firstly the amplitudes for the mass, vector, tensor

and DIS operators have been computed at two loops in the MS scheme. This

data will contribute to improving the measurement of Green’s functions relevant

for deep inelastic scattering. In order to develop our understanding of the QCD

vertex functions our next step could be to apply this asymmetric point renor-

malization to those gauges we heavily analysed in chapters 3 - 5. Studying these

non-linear gauges in this new configuration setup would provide more results for

Schwinger-Dyson analyses. There are also more complicated operators such as

Sψ̄γµDνDσψ which one could potentially study in this setup. Again, assisting in

lattice research.
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Appendix A

Gauge Fixing and BRST Symmetry

As discussed in Chapter 2 it is necessary to first fix a gauge, where the gauge

fixing terms satisfy a symmetry, before any calculations can be carried out using

the Lagrangian for that theory. Since the addition of these gauge fixing terms

breaks gauge invariance we require another symmetry which restores as much of

this gauge symmetry as possible. It was Becci, Rouet, Stora, [33, 34] and Tyutin,

[35] who independently noticed that by choosing a Landau gauge fixing which

transforms as

δAA
µ = (DµΛ)

A (A.0.1)

δcA =
g

2
fABCcBΛC (A.0.2)

δc̄A = bA (A.0.3)

δbA = 0 (A.0.4)

where δ is the BRST transform that anticommutes with the ghost and anti-ghost

fields cA, c̄A, one can determine the gauge fixing terms. The authors of [33, 34, 35]

proposed that by setting

Λa = −caλ (A.0.5)

where λ is some Grassmann constant required in order to make Λa non-Grassmann,

the following identities must hold in order to render the QCD Lagrangian gauge

invariant

δAa
µ = −1

g
(Dµc)

a λ

δca = −1

2
fabccbccλ
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δc̄a = − 1

αg

(

∂µAa
µ

)

λ (A.0.6)

where the quarks and anti-quarks also transform in a BRST way as

δψiI = igcA
(

TA
)

IJ
ψiJ (A.0.7)

δψ̄iI = −igcA
(

TA
)

IJ
ψ̄iJ . (A.0.8)

Generalizing this to all gauges we define our BRST transformations as

δAa
µ = − (Dµc)

a (A.0.9)

δca = −g

2
fabccbcc (A.0.10)

δc̄a = ba (A.0.11)

δba = 0 (A.0.12)

where we will take this as our consistent set of transformations for subsequent

manipulations.

We will now explicitly show that the QCD Lagrangian is indeed invariant under

the BRST transformations. Neglecting the quark contribution, since its gauge

invariant term means that this is trivially BRST-invariant, and splitting (2.1.44)

into its gluon and ghost counterparts, we can show that both gauge-fixed terms

are invariant under the above transformations. Applying the BRST transforms

to each of the gauge fixing terms we have

δLgf = δ

[

− 1

2α
(∂µAµ) (∂

νAν)

]

= − 1

2α
(∂µδAµ) (∂

νAν)−
1

2α
(∂µAµ) (∂

νδAν)

= − 1

2α
∂µ (−Dµc)

a (∂νAν)−
1

2α
(∂µAµ) ∂

ν (−Dνc)
a

=
1

2α
∂ν (Dνc)

a (∂µAµ) +
1

2α
(∂µAµ) ∂

ν (Dνc)
a

=
1

α
(∂µAµ) ∂

ν (Dνc)
a (A.0.13)

and

δLghost = δ [−c̄a∂µDµc
a]

= − (δc̄a) ∂µDµc
a − c̄a∂µ (δ (Dµc)

a) . (A.0.14)
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The second piece of (A.0.14) is tedious to evaluate, and so we tackle this piece

separately

δ (Dµc)
a = δ

(

∂µca − gfabcAb
µc

c
)

= δ (∂µca)− gfabc
(

δAb
µ

)

cc − gfabcAb
µ (δc

c)

= −g

2
fabc∂µ

(

cbcc
)

+ gfabc (Dµc)
b cc +

g2

2
fabcf cdeAb

µc
dce

= −g

2
fabc

(

∂µcbcc
)

+ gfabc
(

∂µc
b
)

cc − g2fabcf bdeAd
µc

ecc

+
g2

2
fabcf cdeAb

µc
dce . (A.0.15)

By rearranging and interchanging indices the first two terms drop out, leaving

δ (Dµc)
a = −g2fabcf bdeAd

µc
ecc +

g2

2
fabcf cdeAb

µc
dce . (A.0.16)

Applying the following generalization of the Jacobi identity (2.1.7)

fabcd
4 = −fadbc

4 − facdb
4 (A.0.17)

where fabcd
4 is shorthand notation for fabcd

4 = fabef ecd, (A.0.16) becomes

δ (Dµc)
a = g2faebd

4 Ab
µc

dce +
g2

2
fabde
4 Ab

µc
dce

= g2faebd
4 Ab

µc
dce +

g2

2

(

−faebd
4 Ab

µc
dce − fadeb

4 Ab
µc

dce
)

=
g2

2
faebd
4 Ab

µc
dce − g

2
faedb
4 Ab

µc
ecd

= 0 (A.0.18)

leaving us with

δLghost = δ [−c̄a∂µDµc
a]

= − (δc̄a) ∂µDµc
a − c̄a∂µ (δ (Dµc)

a)

= −ba∂µDµc
a (A.0.19)

and

δLGF =
1

α
(∂µAµ) ∂

ν (Dνc)
a − ba∂µDµc

a (A.0.20)

228



which implies that

ba = − 1

α

(

∂µAa
µ

)

. (A.0.21)

This agrees with the definition (A.0.6) for an arbitrary (linear) covariant gauge in

QCD given by the authors of [33] and [35], up to a factor of the coupling constant

which we defined differently in the general definitions (A.0.9) - (A.0.12).

Above we have shown an example of how the fields transform under BRST sym-

metry and how one would determine the Nakanishi-Lautrup (b) field, which is

dependent on the type of gauge fixing. We now move on to the Curci-Ferrari

gauge. Briefly the complete set of BRST transformations for the Curci-Ferrari

gauge fixing are

δAa
µ = −Dµc

a (A.0.22)

δca = −g

2
fabccbcc (A.0.23)

δc̄a =
1

α
∂µAa

µ −
g

2
(1− ζ) fabcc̄bcc (A.0.24)

where ζ is again our interpolating parameter where this time ζ = 1 takes us to

the covariant BRST transformation (A.0.6). In addition to the above we also

have the transform of ψ and ψ̄. These transform as before in (A.0.7).

Using a BRST approach to fixing the gauge is the easiest way in determining all

of the gauge fixing terms in the theory. The original terms of the Lagrangian

are naturally BRST-invariant by definition. An important property of the BRST

and anti-BRST transformations is that they remain nilpotent, that is to say that

δ2 = 0 (A.0.25)

must hold for all fields. This also ensures that the gauge fixed theory is uni-

tary. If a BRST invariant gluon mass, m, is included in the theory, such as for

computations in the Curci-Ferrari model, then δ2 ∝ m2. Performing a second

BRST transform on each of (A.0.22) we will prove this for the Curci-Ferrari case,

starting with the gluon field

δ
[

δAa
µ

]

= δ
[

−∂µca + gfabcAb
µc

c
]

= −∂µ (δca) + gfabc(δAb
µ)c

c + gfabcAb
µ (δc

c)
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=
g

2
fabc∂µc

bcc − gfabc
(

∂µc
b + gf bdeAd

µc
e
)

cc − g2

2
fabcf cdeAb

µc
dce

=
g

2
fabc(∂µc

b)cc +
g

2
fabccb(∂µc

c)− gfabc(∂µc
b)cc − g2fabcf bdeAd

µc
ecc

−g2

2
fabcf cdeAb

µc
dce

= −g2fabcf bdeAd
µc

ecc − g2

2
fabcf cdeAb

µc
dce

= −g2facde
4 Ad

µc
ecc − g2

2
fadec
4 Ad

µc
ecc

= −g2

2
facde
4 Ad

µc
ecc +

g2

2
faecd
4 Ad

µc
ecc

= 0 (A.0.26)

and by performing another BRST transform on the ghost field we have

δ [δca] = δ
[

−g

2
fabccbcc

]

= −g

2
fabc

(

δcbcc − cbδcc
)

= −gfabcδcbcc

=
g2

2
fabcf bdecdcecc

= −g2

2

(

fabdf bec + fabef bcd
)

cdcecc

= −g2

2
fabdf bec

(

cdcecc + cccdce
)

= −g2fabdf beccdcecc

= −g2fabcf bdecdcecc

=
g2

2
fabcf bdecdcecc

= −g2fabcf bdecccecc

= 0 (A.0.27)

where we apply the Jacobi identity in step 7. Finally the BRST transform on the

anti-ghost is

δ [δc̄a] = δ [ba]

= 0 (A.0.28)

where the transform on the Nakanishi-Lautrup field is zero by definition. There-

fore we have proven that δ2 = 0. This can also be proven for the MAG BRST

230



and anti-BRST tranformations given by

δAa
µ = −

(

∂µc
a + gfajcAj

µc
c + gfabcAb

µc
c + gfabkAb

µc
k
)

δca = gfabkcbck +
1

2
fabccbcc , δc̄a = ba , δAi

µ = −
(

∂µc
i + gf ibcAb

µc
c
)

δba = 0 , δci =
1

2
gf ibccbcc , δc̄i = bi , δbi = 0 (A.0.29)

and

δ̄Aa
µ = −

(

∂µc
a + gfajcAj

µc
c + gfabcAb

µc
c + gfabkAb

µc
k
)

δ̄ca = − ba + gfabccbc̄c + gfabkcbc̄k + gfabkc̄bck

δ̄c̄a = gfabkc̄bc̄k +
1

2
gfabcc̄bc̄c , δ̄ba = − gfabcbbc̄c − gfabkbbc̄k + gfabkc̄bbk ,

δ̄Ai
µ = −

(

∂µc̄
i + gf ibcAb

µc̄
c
)

, δ̄ci = − bi + gf ibccbc̄c , δ̄c̄i =
1

2
gf ibcc̄bc̄c ,

δ̄bi = − gf ibcbbc̄c . (A.0.30)

Note that this property of nilpotency can be seen when we apply the BRST trans-

form to Dµca, which is ultimately zero, as we have proven in (A.0.18).

Since their discovery the BRST identities have helped in the study of Yang-

Mills theories, rendering the problem of renormalization considerably simpler,

[143, 144].
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Appendix B

Tensor Basis

In this Appendix we record the explicit form of the tensors that are used in the

decomposition of each 3-point vertex into scalar amplitudes. In chapter 2 we

showed that we can decompose the Lorentz amplitudes into scalar amplitudes as

Σggg
µνσ (p, q)|p2=q2=−µ2 =

14
∑

k=1

Pggg
(k)µνσ(p, q)Σ

ggg
(k) (p, q)

(

Σqqg
σ (p, q)

) β

α
|p2=q2=−µ2 =

6
∑

k=1

(

Pqqg
(k)σ (p, q)

) β

α
Σqqg

(k) (p, q)

Σccg
σ (p, q)|p2=q2=−µ2 =

2
∑

k=1

Pccg
(k)σ(p, q)Σ

ccg
(k) (p, q) . (B.0.1)

where PV
(k) µ1...νn

(p, q) are the basic tensors for each vertex, V , and ΣV
(k)(p, q) are

the scalar amplitudes. The tensors are chosen as follows. Since the colour group

structure has already been factored out we are left with three free Lorentz indices

to play with for the triple gluon vertex. The only combinations of tensors which

can be made out of these three Lorentz indices are of the form

η∗∗X∗ and
1

µ2
[X∗X∗X∗] (B.0.2)

where X ∈ {p, q} and ∗ ∈ {µ, ν, σ}. The factor µ2 is included for dimensionality

purposes. In the case of the quark-gluon vertex the basis of Lorentz tensors can

also be built from the γ-matrices in addition to p, q and the metric. With these

constraints applied the full set of basic tensors at the symmetric point for the

triple-gluon vertex is

Pggg
(1)µνσ(p, q) = ηµνpσ , Pggg

(2)µνσ(p, q) = ηνσpµ , Pggg
(3)µνσ(p, q) = ησµpν
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Pggg
(4)µνσ(p, q) = ηµνqσ , Pggg

(5)µνσ(p, q) = ηνσqµ , Pggg
(6)µνσ(p, q) = ησµqν

Pggg
(7)µνσ(p, q) =

1

µ2
pµpνpσ , Pggg

(8)µνσ(p, q) =
1

µ2
pµpνqσ

Pggg
(9)µνσ(p, q) =

1

µ2
pµqνpσ , Pggg

(10)µνσ(p, q) =
1

µ2
qµpνpσ

Pggg
(11)µνσ(p, q) =

1

µ2
pµqνqσ , Pggg

(12)µνσ(p, q) =
1

µ2
qµpνqσ

Pggg
(13)µνσ(p, q) =

1

µ2
qµqνpσ , Pggg

(14)µνσ(p, q) =
1

µ2
qµqνqσ . (B.0.3)

The first six tensors all appear in the Feynman rule for the triple-gluon vertex

⟨Aa
µ(p)A

b
ν(q)A

c
σ(r)⟩, where r = −p − q. Although other authors choose to com-

pute only with one or two channels, we consider all possible channels (for the

triple-gluon vertex this is 14) since a combination of these channels assists in

lattice studies where they have the freedom to select only the channels they are

interested in. Measurements can be made on the lattice in various directions to

extract specific data. Another reason for considering all channels is to get the full

picture and gain a deeper understanding of each vertex whilst checking that the

symmetries between channels still hold at higher loop order. Once we have our

tensor basis we would now like to project out the scalar amplitudes for each in-

dividual channel, k. Since an integration by parts routine can only be applied to

scalar integrals it is important we rewrite (2.1.65) making Σi
(k)(p, q) the subject.

We begin by defining the matrix

N V
kl = PV

(k)µ1...µnV
(p, q)PV µ1...µnV

(l) (p, q)
∣

∣

∣

p2=q2=−µ2
(B.0.4)

where k and l distinguish the projection tensors. The matrix N V
kl is symmetric

in k and l. We can write

Σggg
µνσ(p, q) = Σggg

(j) (p, q)P
ggg
(j) µνσ(p, q)

Pggg µνσ
(l) (p, q)Σggg

µνσ(p, q) = Σggg
(j) (p, q)P

ggg µνσ
(l) (p, q)Pggg

(j) µνσ(p, q)

Pggg µνσ
(l) (p, q)Σggg

µνσ(p, q) = Σggg
(j) (p, q)N

ggg
lj (B.0.5)

Multiplying by Mggg
kl which is defined to be the inverse of N ggg

kl we have

Pggg µνσ
(l) (p, q)Σggg

µνσ(p, q)M
ggg
kl = Σggg

(j) (p, q)N
ggg
lj Mggg

kl

Pggg µνσ
(l) (p, q)Σggg

µνσ(p, q)M
ggg
kl = Σggg

(j) (p, q)δjk

Mggg
kl Pggg µνσ

(l) (p, q)Σggg
µνσ(p, q) = Σggg

(k) (p, q) . (B.0.6)
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Since there are 14 basis tensors for the triple-gluon vertex the projection matrix

Mggg
kl is a 14×14 matrix which allows one to project out the amplitudes Σggg

(k) (p, q).

For the associated projection matrix we partition it into submatrices for ease of

presentation. With the general form

Mggg = − 1

27(d− 2)

⎛

⎜

⎝

Mggg
11 Mggg

12 Mggg
13

Mggg
21 Mggg

22 Mggg
23

Mggg
31 Mggg

32 Mggg
33

⎞

⎟

⎠

then each of the submatrices are

Mggg
11 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

36 0 0 18 0 0

0 36 0 0 18 0

0 0 36 0 0 18

18 0 0 36 0 0

0 18 0 0 36 0

0 0 18 0 0 36

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, Mggg
12 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

48 24 24 24

48 24 24 24

48 24 24 24

24 48 12 12

24 12 12 48

24 12 48 12

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Mggg
13 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

12 12 48 24

48 12 12 24

12 48 12 24

24 24 24 48

24 24 24 48

24 24 24 48

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, Mggg
21 =

⎛

⎜

⎜

⎜

⎜

⎝

48 48 48 24 24 24

24 24 24 48 12 12

24 24 24 12 12 48

24 24 24 12 48 12

⎞

⎟

⎟

⎟

⎟

⎠

Mggg
22 =

⎛

⎜

⎜

⎜

⎜

⎝

64(d+ 1) 32(d+ 1) 32(d+ 1) 32(d+ 1)

32(d+ 1) 32(2d− 1) 16(d+ 1) 16(d+ 1)

32(d+ 1) 16(d+ 1) 32(2d− 1) 16(d+ 1)

32(d+ 1) 16(d+ 1) 16(d+ 1) 32(2d− 1)

⎞

⎟

⎟

⎟

⎟

⎠

Mggg
23 =

⎛

⎜

⎜

⎜

⎜

⎝

16(d+ 4) 16(d+ 4) 16(d+ 4) 8(d+ 10)

8(4d+ 1) 8(4d+ 1) 8(d+ 4) 16(d+ 4)

8(4d+ 1) 8(d+ 4) 8(4d+ 1) 16(d+ 4)

8(d+ 4) 8(4d+ 1) 8(4d+ 1) 16(d+ 4)

⎞

⎟

⎟

⎟

⎟

⎠

Mggg
31 =

⎛

⎜

⎜

⎜

⎜

⎝

12 48 12 24 24 24

12 12 48 24 24 24

48 12 12 24 24 24

24 24 24 48 48 48

⎞

⎟

⎟

⎟

⎟

⎠
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Mggg
32 =

⎛

⎜

⎜

⎜

⎜

⎝

16(d+ 4) 8(4d+ 1) 8(4d+ 1) 8(d+ 4)

16(d+ 4) 8(4d+ 1) 8(d+ 4) 8(4d+ 1)

16(d+ 4) 8(d+ 4) 8(4d+ 1) 8(4d+ 1)

8(d+ 10) 16(d+ 4) 16(d+ 4) 16(d+ 4)

⎞

⎟

⎟

⎟

⎟

⎠

Mggg
33 =

⎛

⎜

⎜

⎜

⎜

⎝

32(2d− 1) 16(d+ 1) 16(d+ 1) 32(d+ 1)

16(d+ 1) 32(2d− 1) 16(d+ 1) 32(d+ 1)

16(d+ 1) 16(d+ 1) 32(2d− 1) 32(d+ 1)

32(d+ 1) 32(d+ 1) 32(d+ 1) 64(d+ 1)

⎞

⎟

⎟

⎟

⎟

⎠

. (B.0.7)

Similarly for the ghost-gluon vertex the tensor basis have the form Xσ where

X ∈ {p, q} and σ is the only free Lorentz index,

Pccg
(1)σ(p, q) = pσ , Pccg

(2)σ(p, q) = qσ . (B.0.8)

The projection matrix for the two tensors is

Mccg = − 1

3

(

4 2

2 4

)

. (B.0.9)

Likewise for the quark-gluon vertex where the number of independent tensors one

can build from two independent external momenta and the generalized γ-matrices

are

Pqqg
(1)σ(p, q) = γσ , Pqqg

(2)σ(p, q) =
pσp/

µ2
, Pqqg

(3)σ(p, q) =
pσq/

µ2
,

Pqqg
(4)σ(p, q) =

qσp/

µ2
, Pqqg

(5)σ(p, q) =
qσq/

µ2
, Pqqg

(6)σ(p, q) =
1

µ2
Γ(3)σpq .

(B.0.10)

where Γ(3)σpq is shorthand for Γ(3)µνσpµqν . This choice of tensors leads to the

projection matrix

Mqqg =
1

36(d− 2)

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

9 12 6 6 12 0

12 16(d− 1) 8(d− 1) 8(d− 1) 4(d+ 2) 0

6 8(d− 1) 4(4d− 7) 4(d− 1) 8(d− 1) 0

6 8(d− 1) 4(d− 1) 4(4d− 7) 8(d− 1) 0

12 4(d+ 2) 8(d− 1) 8(d− 1) 16(d− 1) 0

0 0 0 0 0 −12

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(B.0.11)
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We have used the convention that when a momenta is contracted with a Lorentz

index then that momentum appears instead of the index in the tensor. We note

that these forms are specific to the symmetric point only. At another external

momentum configuration the elements in each MV would be different. For the

quark-gluon vertex we use the generalized γ-matrices Γµ1...µn

(n) which are defined

by

Γµ1...µn

(n) = γ[µ1 . . . γµn] (B.0.12)

where the factor of 1/n! is understood and n is an integer with n ≥ 0. These

generalized matrices were introduced in [61, 145, 148] and are totally antisym-

metric in the Lorentz indices. These generalized matrices span spinor space in

d-dimensions and the underlying algebra necessary for loop calculations has been

developed in [61]. The trace operation is isotropic with respect the basis since,

[146, 147],

tr
(

Γµ1...µm

(m) Γν1...νn(n)

)

∝ δmnI
µ1...µmν1...νn . (B.0.13)

It is also possible to write products of the original γ-matrices as a finite sum over

Γµ1...µn

(n) . This can be achieved recursively by applying the relations, [146, 147, 148]

Γµ1...µn

(n) γν = Γµ1...µnν
(n+1) +

n
∑

r=1

(−1)n−r ηµrν Γµ1...µr−1µr+1...µn

(n−1) (B.0.14)

γνΓµ1...µn

(n) = Γνµ1...µn

(n+1) +
n
∑

r=1

(−1)r−1 ηµrν Γµ1...µr−1µr+1...µn

(n−1) (B.0.15)

where ηµν is the metric. Restricting to four dimensions, for example, one would

have

Γµν
(2)

∣

∣

∣

d=4
= σµν , Γµνσρ

(4)

∣

∣

∣

d=4
= ϵµνσργ5

Γµ1...µn

(n)

∣

∣

∣

d=4
= 0 for n ≥ 5 (B.0.16)

where ϵµνσρ is the totally antisymmetric pseudotensor in four dimensions. We

reiterate that γ5 exists in strictly four dimensions and defines chirality. Notation-

ally we will use γµ and Γµ
(1) synonymously in d-dimensions.

In particular in d-dimensions we require

Γµν
(2) =

1

2
(γµγν − γνγµ)

Γµνσ
(3) = γµγνγσ − ηµνγσ + ηµσγν − ηνσγµ
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Γµνσρ
(4) = γµγνγσγρ − ηµνγσγρ + ηµσγνγρ − ηνσγµγρ

−ηµρ (γνγσ − ηνσ) + ηνρ (γµγσ − ηµσ)

−ησρ (γµγν − ηµν) (B.0.17)

in order to compute the vector and tensor operators. This is also the case for the

DIS operators.

The tensor basis and projection matrices are the same for all three schemes con-

sidered in Part 1 of this thesis. Again, this is because the same three vertices

are considered in all gauge fixings. For the operator insertions the tensor basis is

different.

B.1 Operator Tensor Basis

In this section of the appendix we record in succession the basis of projection

tensors used for each operator level. The projection matrix Mu
kl is defined as

before but now in terms of operators, Ou, such that

ΣOu

(k)(p, q) = Mu
klP

u µ1...µnu

(l) (p, q)
(

⟨ψ(p)Ou
µ1...µnu

(−p− q)ψ̄(q)⟩
)

∣

∣

∣

ω
(B.1.18)

with u ∈ {S, V, T,W2, ∂W2}.

When presenting our tensor basis for each operator in the following sections we

will do so for an IMOM configuration with arbitrary ω. It is understood that to

obtain the SMOM tensor basis the limit ω → 1 is taken.

B.1.1 Scalar (Mass)

For the scalar we define a tensor basis of two projections

PS
(1)(p, q) = Γ(0) , PS

(2)(p, q) =
1

µ2
Γpq
(2) (B.1.19)

with projection matrix

MS =
1

4ω[ω − 4]

(

ω[ω − 4] 0

0 4

)

. (B.1.20)
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By setting ω = 1 the above reduces to the projection matrix for a SMOM con-

figuration

MS =
1

12

(

3 0

0 −4

)

. (B.1.21)

with the tensor basis remaining unchanged.

B.1.2 Vector

The tensor basis for the vector current involves six independent tensors, these are

PV
(1)µ(p, q) = γµ , PV

(2)µ(p, q) =
pµp/

µ2
, PV

(3)µ(p, q) =
pµq/

µ2
,

PV
(4)µ(p, q) =

qµp/

µ2
, PV

(5)µ(p, q) =
qµq/

µ2
, PV

(6)µ(p, q) =
1

µ2
Γ(3)µpq

(B.1.22)

with the projection matrix

MV =
1

4(d− 2)ω2[ω − 4]2
M̃V . (B.1.23)

Each component of M̃V is given as

M̃V
11 = [ω − 4]2ω2 , M̃V

12 = −4[ω − 4]ω , M̃V
13 = 2[ω − 2][ω − 4]ω

M̃V
14 = 2[ω − 2][ω − 4]ω , M̃V

15 = −4[ω − 4]ω , M̃V
16 = 0

M̃V
22 = 16[d− 1] , M̃V

23 = −8[d− 1][ω − 2] , M̃V
24 = −8[d− 1][ω − 2]

M̃V
25 = −4[2[ω2 − 4ω + 2]− [ω − 2]2d] , M̃V

26 = 0

M̃V
33 = 4[ω2 − 4ω − 4 + 4d] , M̃V

34 = 4[d− 1][ω − 2]2

M̃V
35 = −8[d− 1][ω − 2] , M̃V

36 = 0 , M̃V
44 = 4[ω2 − 4ω − 4 + 4d]

M̃V
45 = −8[d− 1][ω − 2] , M̃V

46 = 0 , M̃V
55 = 16[d− 1]

M̃V
56 = 0 , M̃V

66 = 4[ω − 4]ω (B.1.24)

where we take the convention Mrow column.
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B.1.3 Tensor

For the tensor operator there are eight independent tensors making up the tensor

basis

PT
(1)µν(p, q) = Γ(2)µν , PT

(2)µν(p, q) =
1

µ2
[pµqν − pνqµ]Γ(0) ,

PT
(3)µν(p, q) =

1

µ2

[

Γ(2)µppν − Γ(2) νppµ
]

,

PT
(4)µν(p, q) =

1

µ2

[

Γ(2)µpqν − Γ(2) νpqµ
]

,

PT
(5)µν(p, q) =

1

µ2

[

Γ(2)µqpν − Γ(2) νqpµ
]

,

PT
(6)µν(p, q) =

1

µ2

[

Γ(2)µqqν − Γ(2) νqqµ
]

,

PT
(7)µν(p, q) =

1

µ4

[

Γ(2) pqpµqν − Γ(2) pqpνqµ
]

, PT
(8)µν(p, q) =

1

µ2
Γ(4)µνpq .

(B.1.25)

The corresponding projection matrix is

MT =
1

4(d− 2)(d− 3)ω2[ω − 4]2
M̃T (B.1.26)

where the components of M̃T are displayed below

M̃T
11 = −[ω − 4]2ω2 , M̃T

12 = 0 , M̃T
13 = 4[ω − 4]ω

M̃T
14 = −2[ω − 2][ω − 4]ω , M̃T

15 = −2[ω − 2][ω − 4]ω

M̃T
16 = 4[ω − 4]ω , M̃T

17 = 4[ω − 4]ω , M̃T
18 = 0

M̃T
22 = −2[d− 2][d− 3][ω − 4]ω , M̃T

23 = 0 , M̃T
24 = 0 , M̃T

25 = 0

M̃T
26 = 0 , M̃T

27 = 0 , M̃T
28 = 0 , M̃T

33 = −8[d− 1]

M̃T
34 = 4[d− 1][ω − 2] , M̃T

35 = 4[d− 1][ω − 2]

M̃T
36 = −2[dω2 − 4dω + 4d− 3ω2 + 12ω − 4] , M̃T

37 = −8[d− 1]

M̃T
38 = 0 , M̃T

44 = −4[2d+ ω2 − 4ω − 2] , M̃T
45 = −2[d− 1][ω − 2]2

M̃T
46 = 4[d− 1][ω − 2] , M̃T

47 = 4[d− 1][ω − 2] , M̃T
48 = 0

M̃T
55 = −4[2d+ ω2 − 4ω − 2] , M̃T

56 = 4[d− 1][ω − 2]

M̃T
57 = 4[d− 1][ω − 2] , M̃T

58 = 0 , M̃T
66 = −8[d− 1]

M̃T
67 = −8[d− 1] , M̃T

68 = 0 , M̃T
77 = −8[d− 1][d− 2]

M̃T
78 = 0 , M̃T

88 = −4[ω − 4]ω . (B.1.27)
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B.1.4 W2 and ∂W2

We choose our tensor basis for the DIS operators to be symmetric and trace-

less. We want our results to be in terms of symmetric traceless projections since

the operator is also defined to be symmetric and traceless. This is achieved by

enforcing the following conditions on to our projections

Pu
(l) µν(p, q)η

µν = 0 , Pu
(l) µν(p, q) ≡ Pu

(l) νµ(p, q) . (B.1.28)

It turns out that by comparing with the tensor basis for the same operators in the

SMOM setup, [150], there are only two projections which do not already satisfy

the traceless condition in (B.1.28), these are

PW2

(4)µν(p, q) = p/

[

1

µ2
pµqν +

1

µ2
qµpν −

1

d
ηµν

]

PW2

(7)µν(p, q) = q/

[

1

µ2
pµqν +

1

µ2
qµpν −

1

d
ηµν

]

(B.1.29)

for the SMOM setup. Therefore these are the only two in the IMOM tensor basis

below that carry a factor of ω. This is as a result of pq appearing in requiring the

tracelessness condition. Since the Lorentz indices on the Green’s functions are

the same for both operators W2 and ∂W2 they both share the same tensor basis.

The tensor basis is

PW2

(1)µν(p, q) = γµpν + γνpµ −
2

d
p/ηµν , PW2

(2)µν(p, q) = γµqν + γνqµ −
2

d
q/ηµν

PW2

(3)µν(p, q) = p/

[

1

µ2
pµpν +

1

d
ηµν

]

PW2

(4)µν(p, q) = p/

[

1

µ2
pµqν +

1

µ2
qµpν −

(2− ω)

d
ηµν

]

PW2

(5)µν(p, q) = p/

[

1

µ2
qµqν +

1

d
ηµν

]

, PW2

(6)µν(p, q) = q/

[

1

µ2
pµpν +

1

d
ηµν

]

PW2

(7)µν(p, q) = q/

[

1

µ2
pµqν +

1

µ2
qµpν −

(2− ω)

d
ηµν

]

,

PW2

(8)µν(p, q) = q/

[

1

µ2
qµqν +

1

d
ηµν

]

PW2

(9)µν(p, q) =
1

µ2

[

Γ(3)µpqpν + Γ(3) νpqpµ
]

PW2

(10)µν(p, q) =
1

µ2

[

Γ(3)µpqqν + Γ(3) νpqqµ
]

. (B.1.30)
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The projection matrix for W2 and ∂W2 is

MW2 =
1

4(d− 2)2ω3[ω − 4]3
M̃W2 (B.1.31)

where the entries for the matrix M̃W2 are

M̃W2

11 = 2[d− 2][ω − 4]2ω2 , M̃W2

12 = −[d− 2][ω − 2][ω − 4]2ω2

M̃W2

13 = −16[d− 2][ω − 4]ω , M̃W2

14 = 8[d− 2][ω − 2][ω − 4]ω

M̃W2

15 = −4[d− 2][ω − 2]2[ω − 4]ω , M̃W2

16 = 8[d− 2][ω − 2][ω − 4]ω

M̃W2

17 = −2[d− 2][ω2 − 4ω + 8][ω − 4]ω , M̃W2

18 = 8[d− 2][ω − 2][ω − 4]ω

M̃W2

19 = 0 , M̃W2

110 = 0 , M̃W2

22 = 2[d− 2][ω − 4]2ω2

M̃W2

23 = 8[d− 2][ω − 2][ω − 4]ω , M̃W2

24 = −2[d− 2][ω2 − 4ω + 8][ω − 4]ω

M̃W2

25 = 8[d− 2][ω − 2][ω − 4]ω , M̃W2

26 = −4[d− 2][ω − 2]2[ω − 4]ω

M̃W2

27 = 8[d− 2][ω − 2][ω − 4]ωM̃W2

28 = −16[d− 2][ω − 4]ω

M̃W2

29 = 0 , M̃W2

210 = 0 , M̃W2

33 = 64[d+ 1][d− 2]

M̃W2

34 = −32[d+ 1][d− 2][ω − 2] , M̃W2

35 = 16[dω2 − 4dω + 4d+ 4][d− 2]

M̃W2

36 = −32[d+ 1][d− 2][ω − 2] , M̃W2

37 = 16[dω2 − 4dω + 4d+ 4][d− 2]

M̃W2

38 = −8[dω2 − 4dω + 4d− 2ω2 + 8ω + 4][d− 2][ω − 2] , M̃W2

39 = 0

M̃W2

310 = 0 , M̃W2

44 = 8[dω2 − 4dω + 8d+ 3ω2 − 12ω + 8][d− 2]

M̃W2

45 = −8[4d+ ω2 − 4ω + 4][d− 2][ω − 2]

M̃W2

46 = 16[d+ 1][d− 2][ω − 2]2

M̃W2

47 = −4[d+ 1][d− 2][ω2 − 4ω + 8][ω − 2]

M̃W2

48 = 16[dω2 − 4dω + 4d+ 4][d− 2] , M̃W2

49 = 0 , M̃W2

410 = 0

M̃W2

55 = 32[2d+ ω2 − 4ω + 2][d− 2]

M̃W2

56 = −8[dω2 − 4dω + 4d+ 4][d− 2][ω − 2]

M̃W2

57 = 16[d+ 1][d− 2][ω − 2]2

M̃W2

58 = −32[d+ 1][d− 2][ω − 2] , M̃W2

59 = 0 , M̃W2

510 = 0

M̃W2

66 = 32[2d+ ω2 − 4ω + 2][d− 2]

M̃W2

67 = −8[4d+ ω2 − 4ω + 4][d− 2][ω − 2]

M̃W2

68 = 16[dω2 − 4dω + 4d+ 4][d− 2] , M̃W2

69 = 0 , M̃W2

610 = 0

M̃W2

77 = 8[dω2 − 4dω + 8d+ 3ω2 − 12ω + 8][d− 2]

M̃W2

78 = −32[d+ 1][d− 2][ω − 2] , M̃W2

79 = 0 , M̃W2

710 = 0

M̃W2

88 = 64[d+ 1][d− 2] , M̃W2

89 = 0 , M̃W2

810 = 0
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M̃W2

99 = 8[d− 2][ω − 4]ω , M̃W2

910 = −4[d− 2][ω − 2][ω − 4]ω

M̃W2

1010 = 8[d− 2][ω − 4]ω . (B.1.32)
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Appendix C

Feynman rules

In this appendix we record the Feynman rules used within this thesis.

C.1 Linear gauge Feynman rules

For the linear covariant gauge at the symmetric subtraction point we have

⟨Aa
µ(p)A

b
ν(−p)⟩ = −δ

ab

p2

[

ηµν − (1− α)
pµpν
p2

]

⟨ca(p)c̄b(−p)⟩ = −δ
ab

p2

⟨ψ(p)ψ̄(−p)⟩ =
p/

p2

⟨Aa
µ(p1)c̄

b(p2)c
c(p3)⟩ = − igfabcp2µ

⟨Aa
µ(p1)ψ̄(p2)ψ(p3)⟩ = gT aγµ

⟨Aa
µ(p1)A

b
ν(p2)A

c
σ(p3)⟩ = igfabc (ηνσ(p2 − p3)µ + ησµ(p3 − p1)ν

+ηµν(p1 − p2)σ) . (C.1.1)

C.2 MAG and Curci-Ferrari Feynman rules

For the maximal abelian gauge fixing the propagators are

⟨AA
µ (p)A

B
ν (−p)⟩ = −δ

AB

p2

[

ηµν − (1− α)
pµpν
p2

]

⟨cA(p)c̄B(−p)⟩ = −δ
AB

p2

⟨ψ(p)ψ̄(−p)⟩ =
p/

p2
. (C.2.2)
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where p is the momentum and the indices A,B can be either diagonal or offdiag-

onal but not a combination of the two. In the case of the diagonal (or photonic)

gluon propagator the arbitrary gauge parameter α is replaced by the photonic

gauge parameter αp. The non-zero 3- and 4-point vertices are, [41, 79],

⟨AA
µ (p1)ψ̄(p2)ψ(p3)⟩ = gTAγµ

⟨Aa
µ(p1)c̄

b(p2)c
c(p3)⟩ = − igfabc

(

−1

2
p1 − p3

)

µ

⟨Aa
µ(p1)c̄

b(p2)c
k(p3)⟩ = − igfabk (−ζp3)µ

⟨Aa
µ(p1)c̄

j(p2)c
c(p3)⟩ = − igfacj (p1 + p3)µ

⟨Ai
µ(p1)c̄

b(p2)c
c(p3)⟩ = − igf bci (−p1 − 2p3 + p3ζ)µ

⟨Aa
µ(p1)A

b
ν(p2)A

c
σ(p3)⟩ = igfabc (ηνσ(p2 − p3)µ + ησµ(p3 − p1)ν

+ηµν(p1 − p2)σ)

⟨Aa
µ(p1)A

b
ν(p2)A

c
σ(p3)A

d
ρ(p4)⟩ = − g2

[

fabcd
d (−ηµσηνρ + ηµρηνσ)

+facbd
d (−ηµνησρ + ηµρηνσ)

+fadbc
d (−ηµνησρ + ηµσηνρ)

+fabcd
o (−ηµσηνρ + ηµρηνσ)

+facbd
o (−ηµνησρ + ηµρηνσ)

+fadbc
o (−ηµνησρ + ηµσηνρ)

]

⟨Aa
µ(p1)A

b
ν(p2)A

c
σ(p3)A

l
ρ(p4)⟩ = − g2

(

fabcl
o (−ηµσηνρ + ηµρηνσ)

+facbl
o (−ηµνησρ + ηµρηνσ)

+falbc
o (−ηµνησρ + ηµσηνρ)

)

⟨Aa
µ(p1)A

b
ν(p2)A

k
σ(p3)A

l
ρ(p4)⟩ = − g2

(

fakbl
o

(

−ηµνησρ +
ζ(2− ζ)

2α
ηµσηνρ

− 1

2α
ηµσηνρ + ηµρηνσ

)

+falbk
o (−ηµνησρ + ηµσηνρ

+
ζ(2− ζ)

2α
ηµρηνσ −

1

2α
ηµρηνσ

)

+f bkal
o

(

ζ(2− ζ)

2α
ηµρηνσ −

1

2α
ηµρηνσ

)

+f blak
o

(

ζ(2− ζ)

2α
ηµσηνρ −

1

2α
ηµσηνρ

))

⟨Aa
µ(p1)A

b
ν(p2)c̄

c(p3)c
d(p4)⟩ = − g2

(

facbd
d (−ηµν + ζηµν) + f bcad

d (−ηµν + ζηµν)
)

⟨Aa
µ(p1)A

j
ν(p2)c̄

c(p3)c
d(p4)⟩ = − g2

(

fadcj
o (−ηµν + ζηµν)
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+fajcd
o

(

1

2
ηµν −

ζ

2
ηµνζ

))

⟨Aa
µ(p1)A

j
ν(p2)c̄

c(p3)c
l(p4)⟩ = − g2

(

fajcl
o (ηµν − ζηµν) + falcj

o (−ζηµν + ηµν)
)

⟨Ai
µ(p1)A

j
ν(p2)c̄

c(p3)c
d(p4)⟩ = − g2

(

f cidj
o (ηµν − ζηµν) + f cjdi

o (ζηµν − ηµν)
)

⟨c̄a(p1)cb(p2)c̄c(p3)cd(p4)⟩ = − g2
(

αfacbd
d − α

4
fabcd
o +

α

2
facbd
o − α

4
fadbc
o

)

⟨c̄a(p1)cb(p2)c̄c(p3)cl(p4)⟩ = − g2
(

−α
2
fabcl
o +

α

2
facbl
o − α

2
falbc
o

)

⟨c̄a(p1)cj(p2)c̄c(p3)cl(p4)⟩ = − g2
(

−αfajcl
o + αfalcj

o

)

(C.2.3)

where we choose the momentum flow for each vertex to be incoming∗. This set of

Feynman rules has been generated from the full MAG Lagrangian, using a Form

routine. We have not used any simplification coming from the Jacobi identity

when displaying the above rules, however it can be seen that applying the Jacobi

identity results in several of the above rules to be trivially zero. Note that we

have chosen not to present any of the Feynman rules which are trivially zero. By

neglecting all diagonal elements and taking the limit fd → 0 the above Feynman

rules for the MAG reduce to the full set of Feynman rules for the Curci-Ferrari

gauge. Therefore the only contributing Feynman rules to the Curci-Ferrari gauge

are

⟨Aa
µ(p1)ψ̄(p2)ψ(p3)⟩ = gT aγµ

⟨Aa
µ(p1)c̄

b(p2)c
c(p3)⟩ = − igfabc

(

−1

2
p1 − p3

)

µ

⟨Aa
µ(p1)A

b
ν(p2)A

c
σ(p3)⟩ = igfabc (ηνσ(p2 − p3)µ + ησµ(p3 − p1)ν

+ηµν(p1 − p2)σ)

⟨Aa
µ(p1)A

b
ν(p2)A

c
σ(p3)A

d
ρ(p4)⟩ = − g2

[

fabcd (−ηµσηνρ + ηµρηνσ)

+facbd (−ηµνησρ + ηµρηνσ)

+fadbc (−ηµνησρ + ηµσηνρ)
]

⟨c̄a(p1)cb(p2)c̄c(p3)cd(p4)⟩ = − g2
(

−α
4
fabcd +

α

2
facbd − α

4
fadbc

)

(C.2.4)

in addition to those defined for the propagators in (C.2.2) where for the Curci-

Ferrari gauge the indices a, b, c, d represent the full colour group. In the limit

where we go to the off-diagonal sector we note that fabcd
o → fabcd, where now

fabcd in the case of the Curci-Ferrari gauge represents the colour group structure

constant for a full colour group.

∗Note this corrects several typographical errors in [79].
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C.3 One loop Feynman integral solutions

In this section we display several integrals encountered when considering the one

loop renormalization of QCD. We first recall the essential integrals needed in

deducing the 2-point functions. Defining

I1(α, β, γ) =

∫

k

ddk

(2π)d
1

(k2)α((k − p)2)β((k + q)2)γ
(C.3.5)

the corresponding 2-point integrals are

I1(1, 1, 0) =
Γ(2− d

2)Γ(
d
2 − 1)Γ(d2 − 1)(p2)

d
2
−2

(4π)
d
2Γ(d− 2)

(C.3.6)

I1(2, 1, 0) =
Γ(3− d

2)Γ(
d
2 − 2)Γ(d2 − 1)(p2)

d
2
−3

(4π)
d
2Γ(d− 3)

(C.3.7)

I1(2, 2, 0) =
Γ(4− d

2)Γ(
d
2 − 2)Γ(d2 − 2)(p2)

d
2
−4

(4π)
d
2Γ(d− 4)

. (C.3.8)

Followed by the 3-point integrals

I1(2, 1, 1) =
Γ(3− d

2)Γ(
d
2 − 2)Γ(d2 − 1)(p2)

d
2
−4

(4π)
d
2Γ(d− 3)

− (d− 4)

2p2
I1(1, 1, 1) (C.3.9)

I1(2, 2, 1) =
1

4(p2)2
(8− d) I1(2, 1, 1)

I1(1, 1,−1) =
Γ(2− d

2)Γ(
d
2 − 1)

(4π)
d
2 (p2)2−

d
2

[

2pq
Γ(d2)

Γ(d− 1)
+ q2

Γ(d2 − 1)

Γ(d− 2)

]

(C.3.10)

I1(2, 1,−1) =
Γ(3− d

2)Γ(
d
2 − 1)

(4π)
d
2 (p2)3−

d
2

[

2pq
Γ(d2 − 1)

Γ(d− 2)
+ q2

Γ(d2 − 2)

Γ(d− 3)

]

+
Γ(2− d

2)Γ(
d
2 − 1)Γ(d2 − 1)(p2)

d
2
−2

(4π)
d
2Γ(d− 2)

(C.3.11)

I1(2, 1,−2) =

[

2q2 +
2q2

(d− 1)
−

4(pq)2
(

1− d
2

)

(d− 1)p2

]

I1(1, 1, 0)

+

[

(q2)2 − p2q2

(d− 1)
+

d(pq)2

(d− 1)

]

I1(2, 1, 0)

+ 4pq
Γ(2− d

2)Γ(
d
2 − 1)Γ(d2)(p

2)
d
2
−2

(4π)
d
2Γ(d− 1)

+ 4pq(q2)
Γ(3− d

2)Γ(
d
2 − 1)Γ(d2 − 1)(p2)

d
2
−3

(4π)
d
2Γ(d− 2)

(C.3.12)
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I1(2, 2,−2) =

[

2q2

(d− 1)p2
− 2d(pq)2

(d− 1)(p2)2

]

I1(1, 1, 0)

+

[

2q2 +
4q2

(d− 1)
− 4(pq)2

(d− 1)p2

]

I1(2, 1, 0)

+

[

(q2)2 − p2q2 − d(pq)2

(d− 1)

]

I1(2, 2, 0)

+ 4pq
Γ(3− d

2)Γ(
d
2 − 2)Γ(d2)(p

2)
d
2
−3

(4π)
d
2Γ(d− 2)

+ 4pq(q2)
Γ(4− d

2)Γ(
d
2 − 2)Γ(d2 − 1)(p2)

d
2
−4

(4π)
d
2Γ(d− 3)

(C.3.13)

where I1(1, 1, 1) is the only master integral for the 3-point function at one loop.

This is evaluated in [63, 64] as

I1(1, 1, 1) = − 1

µ

[

Φ1(x, y) +Ψ1(x, y)ε+

[

ζ2
2
Φ1(x, y) + χ1(x, y)

]

ε2 +O(ε3)

]

(C.3.14)

where Φ1(x, y) involves Li2(z) and Ψ1(x, y) involves Li3(z), [151], where both

polylogarithms were defined in (2.1.73) and (2.1.74). The function χ1(x, y) is not

known, where this is not important since it always appears with a similar term

χ3(x, y) coming from the two loop master such that

χ3(x, y)− χ1(x, y) = Φ2(x, y)−
1

2
ln(xy)Ψ1(x, y) +

1

4

[

ln2(x) + ln2(y)
]

Φ1(x, y)

(C.3.15)

where this combination of harmonic polylogarithms has already been defined in

(2.1.76) as

χ3(1, 1)− χ1(1, 1) =
1

36
ψ′′′
(

1
3

)

− 2π4

27
(C.3.16)

for x = y = 1 defined at the completely symmetric point.

C.4 Master integral derivation

Returning to section 2.2 where we defined a general definition of a one loop

integral containing three propagators by

I1(α, β, γ) =

∫

k

ddk

(2π)d
1

(k2)α((k − p)2)β((k + q)2)γ
(C.4.17)
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where α, β, γ take any integer value, represented diagramatically in Figure 2.2

with internal loop momenta k. Using Feynman parametrization we can rewrite

the above as, [53],

I1(α, β, γ) =

∫

k

Γ(α + β + γ)

Γ(α)Γ(β)Γ(γ)

×
∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz
xα−1yβ−1zγ−1δ(1− x− y − z)

[k2x+ (k − p)2y + (k + q)2z]α+β+γ
.

(C.4.18)

Rearranging the denominator by completing the square the integral becomes

I1(α, β, γ) =

∫

k

Γ(α + β + γ)

Γ(α)Γ(β)Γ(γ)

×
∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz
xα−1yβ−1zγ−1δ(1− x− y − z)

[(k′)2 + xyp2 + xq2z + yzr2]α+β+γ
.

(C.4.19)

where k′ = k − yp + zq and x + y + z = 1. Then integrating with respect to k′

using

∫

1

(k2 +m2)α
=

Γ(α− d
2)

Γ(α)
(m2)α−

d
2 (C.4.20)

where we let xyp2 + xq2z + yzr2 = m2 then I1(α, β, γ) becomes

I1(α, β, γ) =
Γ
(

α + β + γ − d
2

)

Γ(α)Γ(β)Γ(γ)

×
∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz
xα−1yβ−1zγ−1δ(1− x− y − z)

[xyp2 + xq2z + yzr2]α+β+γ−
d
2

.

(C.4.21)

Now let D = xyp2 + xq2z+ yzr2 and without loss of generality we can set r2 = 1

since this is a common factor which appears in our integrals as (p23)
1+ϵ and so we

can factor this out, giving

I1(α, β, γ) =
Γ
(

α + β + γ − d
2

)

Γ(α)Γ(β)Γ(γ)

×
∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz
xα−1yβ−1zγ−1δ(1− x− y − z)

Dα+β+γ− d
2

. (C.4.22)
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Taking the simplest case for α, β and γ we have

I1(1, 1, 1) =
Γ
(

3− d
2

)

Γ(1)Γ(1)Γ(1)

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz
1

D3− d
2

= Γ (1 + ϵ)

∫

x,y,z

1

D

[

1− ϵ lnD +
ϵ2

2
ln2 D

]

. (C.4.23)

applying Γ(1 + ϵ) = ϵ2

2 ζ2 we can rewrite the above as

I1(1, 1, 1) =

∫

x,y,z

1

D

[

1− ϵ lnD +
ϵ2

2
ln2 D + ζ2

]

. (C.4.24)

Now by uniqueness, [62],

I1(1, 1, 1) = (p21)
−ϵ(P 2

2 )
−ϵI1(d− 3, 1, 1) (C.4.25)

Then I1(d− 3, 1, 1) becomes

I1(d− 3, 1, 1) =

∫

x,y,z

1

D

[

1 + ϵ (lnD − 2 lnX) +
ϵ2

2
(lnD − 3 lnX)2

]

Γ(1− ϵ)

Γ(1− 2ϵ)

(C.4.26)

with Γ(1−ϵ)
Γ(1−2ϵ) = −3

2ϵ
2ζ2 . By comparing both (C.4.24) and (C.4.26) we get the

following relationships between the integrals

∫

(lnX − lnD)

D
= −1

2

∫

ln(p2q2)

D
(C.4.27)

and

∫

1

D
lnX(lnD − lnX) =

∫

1

D

[

−ζ2 −
1

2
ln(p2q2)(lnD − 2 lnX) +

1

4
ln2(p2q2)

]

(C.4.28)

From [62] it follows that the integrals can be written in the form

I1(1, 1, 1) = Γ(1 + ϵ)
[

Φ1 + ϵΨ1 + ϵ2χ1

]

I1

(

3− d

2
, 1, 1

)

= Γ(1 + ϵ)

[

Φ1 + ϵ

(

Ψ1 −
1

2
ln(p2q2)Φ1

)

+ ϵ2χ3

]

(C.4.29)
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where numerically these can be evaluated to, [62],

Φ1(1, 1) =
2

3
π2 − 2

3
ψ′
(

1
3

)

Ψ1(1, 1) = 12s3
(

π
6

)

− 35π3

108
√
3
− ln2(3)π

4
√
3

χ1 = −H(2)
31 − π2

12
Φ1(1, 1) (C.4.30)

at the symmetric subtraction point. This is enough to enable us to take the

SMOM limit for all results computed at the asymmetric point.

The general expression for Φ1(x, y) includes the usual dilogarithm function Li2(z)

via, [64, 149, 103],

Φ1(x, y) =
1

λ

[

2Li2(−ρx) + 2Li2(−ρy) + ln
(y

x

)

ln

(

(1 + ρy)

(1 + ρx)

)

+ ln(ρx) ln(ρy) +
π2

3

]

(C.4.31)

where

λ(x, y) =
√

∆G , ρ(x, y) =
2

[1− x− y + λ(x, y)]
(C.4.32)

and

∆G(x, y) = x2 − 2xy + y2 − 2x − 2y + 1 (C.4.33)

is the Gram determinant. When one evaluates these functions from (C.4.31)

the dilogarithms involve the Clausen function, Cl2(θ), since the argument of the

dilogarithm is complex.
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