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Abstract

This thesis contains a study on the structure of the vertex functions of Quantum
Chromodynamics (QCD) in both linear and non-linear gauges. In particular we
show results for the arbitrary linear covariant gauge at two loops as well as renor-
malizing the one loop non-linear Curci-Ferrari gauge and maximal abelian gauge
(MAG). The full minimal subtraction MS and momentum subtraction (MOM)
scheme renormalization of QCD is performed in all three gauges. This is carried
out for an arbitrary colour group at one loop for the maximal abelian gauge and
at two loops for the arbitrary linear covariant and Curci-Ferrari gauges. From the
n loop MS results the (n+1) loop S-functions and anomalous dimensions can be
constructed in the respective gauges for each MOM scheme. This is demonstrated
in all of the gauges considered. In addition to analysing the vertex functions at
the symmetric subtraction point for both the MS and MOM schemes, we also
consider an operator insertion into the quark 2-point function at the asymmetric
point with an interpolating parameter. This requires a new configuration setup
and introduces new master integrals which we determine. The scalar, vector
and tensor operators are considered along with W5 and 0W5, the twist-2 Wil-
son operators for moment n = 2. The operator renormalization is performed at
two loops in the MS and modified regularization invariant (RI') scheme, both
of which are preferred schemes of the lattice. Following the construction of the
conversion function for the scalar operator for checking purposes, the amplitudes

are presented for all other operators in the MS scheme.
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Chapter 1
Introduction

Upon the successes of quantum electrodynamics (QED) in the 1940’s as a field
theory, it was Yang whose interest in the strong interaction led him, in part-
nership with Mills, to construct a prototype quantum field theory of the strong
interaction modelled closely on QED and its symmetries. Unable to define a
suitable set of Feynman rules for their theory, which only satisfied SU(2) gauge
invariance if self interactions were allowed, the gauge theory was put on hold with
findings published in 1954. It was not until the discovery of asymptotic freedom
of Yang-Mills theories, [1, 2|, via the counter-intuitive result for the one loop
[S-function that non-abelian gauge theory became a strong candidate theory of
the strong interaction. At high momenta the gauge theory behaved like a "free"

theory, therefore gauge theory was asymptotically free.

The discovery that gauge theory was asymptotically free was a key advancement
in physics, with its importance first remarked upon in June 1972, [3|. In the
years following, gauge theory was shown to be renormalizable. The theory be-
came known as quantum chromodynamics (QCD), first referred to as QCD in [4]
with credit for the name given to Gell-Mann. QCD is a renormalizable quantum
field theory describing the quanta of the strong interaction; quarks and gluons.
These elementary constituents of hadrons were first independently proposed by
Gell-Mann and Zweig with the name quark accredited to Gell-Mann, [5]. Gell-
Manns Eightfold Way in 1961, [6], was the first time baryons and mesons had
been classified, and paved the way in some sense for the standard model. In 1964
a triangular "Eightfold Way" pattern was proposed, known as the quark model
and was put forward by both Gell-Mann and Zweig. This model consisted of
three quarks which were all that was needed at the time to describe all known

particles that were not leptons. These quarks were called up, down and strange.



Although mathematically sound, the problem with the model was that no indi-
vidual quark had ever been seen in nature, a problem which still exists today. At
that moment in time QCD did not have a solid set of Feynman rules, nor had the
predicted quarks or gluons been observed as free particles. It was not until the
late 1960’s that experiments led by Friedman, Kendall and Taylor at the Stan-
ford Linear Accelerator Centre (SLAC) produced evidence that quarks did exist.
The experiments were similar to those by Geiger and Marsden in 1908 which
had detected that the nucleus contained protons and neutrons, [7]. At around
the same time a similar experiment was being carried out at the European Or-
ganization for Nuclear Research (CERN), also investigating the the structure of
the proton. Instead of firing electrons at the proton, which was the technique
at SLAC, neutrinos were used. This experiment confirmed the results at SLAC;
protons contained smaller constituents. The experimental evidence that quarks
existed was coming together. Friedman, Kendall and Taylor were awarded the
Nobel prize in 1990 for their contributions to the discovery of these quanta of the

strong force.

With the discovery of more particles came the need to introduce more quarks.
The three new quarks predicted were much heavier than the others and were not
discovered until several years after the up, down and strange quarks had been
confirmed. The fourth in the family, the charm quark, was found in 1974 with the
discovery of the J/v particle. Finally the top quark was spotted in 1995 at Fermi-
lab [8, 9] with a mass of 175GeV. There were now six flavours of quark; up, down,
strange, charm, bottom and top, which completed the quark model, [7]. In 1979,
gluons, which were predicted in QCD to be the carrier of the strong force, the
force that binds quarks so tightly together was discovered via electron-positron
annihilation at the Deutsches Elektronen-Synchrotron (DESY), [10]. These glu-
ons played the same role as the photon in QED, where the photon is the carrier

of the electromagnetic force.

In QCD, where calculations have been possible overall there has been good agree-
ment between theory and observation. For this reason it is generally accepted
that QCD is the best and most realistic quantum field theory describing the
strong nuclear force at both the microscopic (quarks and gluons) and macroscopic
(hadronic) level. Despite the problem that quarks are thought to be absolutely
confined. QCD and the electroweak theory form what is called the Standard
Model, which is the basis of all physics except for gravity. With the existence



of the Higgs boson confirmed, this only strengthens the model which has so far

never been disproved.

The name given to the phenomenom that quarks and gluons are particles that
are never seen in nature was confinement, [4]. Confinement prevents coloured
quarks and gluons from being experimentally detected since in our world we can
only observe particles in colourless states; colour is permanently confined. The
confinement problem and its underlying mechanism is still very much unsolved.
As QCD has prospered in phenomenological applications the proof of confine-
ment has become one of the biggest and most important problems in theoretical
physics, [12]. The infrared region is the area of interest for studying confinement
and since standard perturbative calculational techniques do not suffice in the in-
frared region this makes the problem of confinement very difficult to probe. To
properly study the infrared region requires the development of non-perturbative
approaches. Focusing on the confinement problem lies outside the scope of our
research and computational ability, however we have chosen to study and com-
pute results for gauges we believe to be important in understanding some of the

hypothesised mechanisms of confinement.

Lattice studies of vertex functions have improved in recent years with strong focus
on ideas for testing gluon confinement, [13]. The lattice measures vertex func-
tions non-perturbatively and requires matching to the high energy limit. To aid
investigation, the perturbative structure of the 3-point vertices of QCD have been
computed [14], mainly at two loops in linear covariant gauges following intense
activity in understanding the propagators. Higher loop order results for the QCD
Green’s functions computed perturbatively can be used to assist in Schwinger-
Dyson analysis, [4, 15, 16, 17|, as well as reducing error estimates on infrared
measurements computed non-perturbatively. As well as linear gauges, multiloop
information for non-linear gauges is also of importance. The interest in under-
standing the low energy properties of Yang Mills theories may in fact be best
described using gauges non-linear in nature. There is research [18, 19, 20, 21, 22|
looking in to gluon effective mass effects in QCD and it has been argued that
if mass was dynamically generated for the gluon then this may lead to a better
understanding of confinement. 't Hooft suggested that some components of the
gluon field may acquire dynamically generated masses due to the condensation
of abelian monopoles originating from the diagonal elements of the group alge-

bra. This implies that low energies may be best described by an abelian theory.



This is where our motivation in studying the maximal abelian gauge lies. Lattice
activity to persue this hypothesis will be interested in results computed in the
maximal abelian gauge as in this gauge the gluon and ghost fields are split into
their diagonal and off-diagonal counterparts. Studying this gauge may give us an
insight in to any strange behaviour exhibited in either sector. Exact details of

how the gauge group is decomposed are presented in chapter 5.

The aim of this thesis is to coherently demonstrate how we performed the full
MS and MOM renormalization of massless QCD in the Maximal Abelian Gauge
(MAG) for an arbitrary colour group at one loop. As a preliminary to this in-
depth and technically difficult calculation we first consider the arbitrary linear
covariant gauge. By considering a linear covariant gauge one can develop the nec-
essary skills and computational techniques needed to renormalize and compute
in a much simpler gauge fixing before moving to a more complicated non-linear
gauge choice, such as the MAG. Although we do not compute the two loop ex-
plicit calculation of the MAG within this thesis due to the technical difficulty in
developing the correct and consistent colour algebra at higher loop orders, we do
however consider calculations in preliminary gauges at two loops. This includes
our second calculation prior to tackling the MAG, namely the (non-linear) Curci-

Ferrari gauge, which we encounter in chapter 4.

The structure of Part 1 of the thesis is as follows. We review the QCD Lagrangian
and how it is formulated including the Lie algebra, properties of QCD and gauge
fixing for multiple gauge choices. We discuss renormalization, in particular the
techniques used and the schemes chosen after regularization. After discussing
the MS and MOM schemes in depth we then follow this with a summary of re-
sults where we explicitly show the renormalization constants and amplitudes in
both schemes. The mappings which define the coupling constant in one scheme
in terms of a coupling constant in another scheme are constructed and the for-
mulation of the three loop [-functions and anomalous dimensions in all MOMi
schemes are given. Unlike the MS scheme the MOMi schemes are defined at the
vertex functions where i € {A%A}AC, @U@Z_JAZ, c"cAS} as discussed in chapter 2,
see (2.1.62). This results in three different MOM schemes for the three vertices
we consider at the symmetric subtraction point. For convenience we call these
schemes MOMg, MOMq and MOMh respectively. Studying these vertex func-
tions at the symmetric subtraction point means that all of the external momenta

individually squared are set equal to each other. This greatly simplifies our inte-



gral reduction.

Since the MAG is non-linear in nature it is useful to consider another prepara-
tory non-linear gauge, which is of interest in its own right. Closely related to the
MAG is the Curci-Ferrari gauge which we consider in chapter 4. We repeat the
process in chapter 4 for this non-linear gauge and present our results. Although
it is not necessary to study both the arbitrary linear covariant gauge and the
Curci-Ferrari gauge in as much detail as we have done prior to the MAG it is
extremely useful for background and insight, as well as a safe method in ensur-
ing computational technique and programming is correct before tackling a more
complicated problem. Errors could occur may these tedious preliminary steps not
be taken to prevent such an oversight, and so we proceed with the Curci-Ferrari
gauge in the section following the analysis of the arbitrary linear covariant gauge,
discussing its properties and a summary of results. The Curci-Ferrari gauge is
of particular interest because of its strong relation to the MAG, where in the
abelian sector the MAG and Curci-Ferrari results agree. The maximal abelian
gauge will be described in depth in the section following, where we construct the
MAG Lagrangian and any new group theory results required for the one loop
renormalization. We then present the mappings for the MAG between the MS
and MOMIi schemes and also our calculation of the 2-loop S-function and anoma-
lous dimensions for all MOMi schemes. We summarize with a discussion on all

three gauges, their similarities and importance within the study of QCD.

Due to the page limit imposed on this document it is only possible to present
analytic results for one of the three vertex functions. We choose to display results
analytically for the ghost-gluon vertex since this has the simplest structure. This
vertex also differs between schemes, with results in the Curci-Ferrari gauge dif-
ferent in this vertex to that of the linear covariant gauge, even for the case when
the Landau limit is taken. This is not the case for the other two vertices where

they agree in this limit. Their results are presented numerically.

In Part 2 we consider an operator insertion in a massless quark 2-point function
for an interpolating momentum configuration, away from the symmetric subtrac-
tion point, and its direct application in lattice gauge theory. This extends work
carried out in Part 1 where only the symmetric point was considered. The asym-
metric point is a much more desired computational setup by lattice theorists since

there is more flexibility in results which will therefore enable lattice specialists



to achieve better precision results on the lattice. Computing the amplitudes for
the scalar, vector and tensor operators in the MS scheme, we construct the con-
version function for the scalar operator for the RI’ scheme. Both MS and RI’
are schemes commonly associated with lattice calculations when renormalizing
operators. Reproducing the results of [133| for the scalar conversion function at
the asymmetric point we then display the amplitudes for the remaining operators
renormalized in the MS scheme only. This is also carried out for the deep inelastic
scattering (DIS) operators. Moving away from the symmetric point means more
complicated master integrals appear within the calculation. The introduction of
new masters along with a new configuration setup is the reason we dedicate a

separate section of our thesis to this work.
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Chapter 2

Background

2.1 Notation and conventions

The standard model is a renormalizable quantum field theory comprising of the
electromagnetic, weak and the strong nuclear forces. It consists of three gauge
groups, each representing one of the three forces, with an overall gauge symmetry
of SU(3) x SU(2) x U(1). These unitary groups provide the basis for all gauge
theories of the standard model. The combination of the electromagnetic and weak
forces, aptly named the electroweak force covers the SU(2) x U(1) symmetries
with the remaining SU(3) sector of the Standard Model corresponds to the theory
best describing all particle physics. This quantum field theory is called Quantum
Chromodynamics (QCD) and is based on a Yang Mills theory [12] with an SU(3)
gauge group. This special unitary group is represented as a set of unitary 3 x 3
traceless hermitian matrices, each with determinant 1. The word special meaning
that all V. x N, matrices U in the group SU(N,) must have detU = +1 compared
to a unitary group satisfying |detU| = 1. Since the dimension of SU(N,) is
determined by N? — 1 the result, in the case of SU(3) is a basis of eight matrices
satisfying

Tr (AVAF) = 2678 . (2.1.1)

Although unconventional, we define our colour indices a, b, ¢ as upper case A, B, C..
This is to ease notation later on when we consider the maximal abelian gauge
where the colour group is split. Above we have introduced the Gell-Mann A-
matrices specific to SU(3), [23]. This set of matrices play a role that is equiva-

lent to that of the Pauli matrices of SU(2). For completeness the conventional
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representation of the Gell-Mann A\-matrices are

010 0 — 1 0 0
M =100, XN=]i . XM =10 -1 0],
000 0 0 0 0
00 1 00 —i 00 0
M = 1000, X=10o0 XN =100 1],
1 00 i 0 010
00 0 1100
MN= 100 =i, X¥=—"—]01 0 2.1.2
| Ne (2.1.2)
0 i 0 00 —2

Although the most popular to use, the Gell-Mann A-matrices are only one of
several possible representations of the infinitesimal generators of SU(3). With the
property of unitarity this set of matrices is called the fundamental representation,

[24]. The commutators of these A\-matrices define the SU(3) structure constants
MNP = 20 fAPONC (2.1.3)

where it is understood that the repeated index implies the sum over all eight gluon
colour states, as is consistent with Einstein’s summation convention. The objects
fABC are the colour group structure constants and are anti-symmetric under the
exchange of any two indices for all SU(N,). For SU(3) where the colour indices

run from 1,...,8 this implies, [24],

1
123 147 246 257 345
pu 1 pum pu— pum pu— —_
f , f f f 9 7

1 \/g
156 367 458 678
— P —_—— pu— p— 2.1.4
[ = == Y (2.14)
with all other f48¢ = 0. In the fundamental representation, which is the most

basic irreducible representation, it is traditional to define the generators of the

gauge group by
1
™ = 5)\A : (A=1,...,8) (2.1.5)

where T4 are Hermitian operators. By irreducible we mean that a matrix or set
of matrices cannot be decomposed into block diagonal form. These infinitesimal

operators of the group form a Lie Algebra defined by the commutation relation

12



similar to (2.1.3)
(T4, TP = if*P°T¢ (2.1.6)

in which the Jacobi identity can be determined using the general result for the

commutators

(T4 (T8, T + [T7,[19, T + [1°,[14,T7%)) =
ifBCE[TA,TE] 4 ’ifCAE[TB,TE] 4 ifABE[TC,TE] —
Z-2fBCEfAEDTD + i2fCAEfBEDTD 4 iQfABEfCEDTD
_ (fBCEfAED + fCAEfBED + fABEfCED) TD —

= fADEfBCE + fACEfDBE + fABEfCDE

Il
o o o o o

(2.1.7)

which all structure constants satisfy. It is important to emphasise that throughout
our work we use both the adjoint and fundamental representations when dealing
with gluons and fermions respectively. The elementary Casimirs that commute

with all generators of the group are defined as

Tr (TTP) = Tpo'”
TATA = Cpl
fACDfBCD — CA(sAB (218)

where A and F' in the subscript represent the adjoint and fundamental repre-
sentations respectively. Using these definitions of the Casimirs we are able to
simplify expressions and are free to calculate in a general SU(N.) gauge group.
Again we have used Einstein’s summation convention which can be seen explic-
itly where we have dropped the indices when writing T4T4 = Cpl instead of
EATf]TfK = Cpdrx where I, J run over 1 < I < Np where Np is the dimension

of the fundamental representation. This is to be understood throughout.

Although it is preferable to compute in an arbitrary gauge for an arbitrary colour
group where the same set of analytic results can be analysed for several gauge
groups and colour structures simultaneously, there are occasions where we present
our results numerically in terms of the true QCD special unitary group SU(3).

This is mainly due to the sheer size of expressions and our choice in presentation.
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In SU(3) the Casimirs take the following values

4
G =3, Tr= Cy = N, = 3. (2.1.9)

1

2 Y
Now that we have discussed the basic properties of the group algebra of QCD it
is necessary to determine the QCD Lagrangian. When constructing a Lagrangian
for a new gauge theory it is useful to first consider the basic Dirac Lagrangian

describing the free fermion field

L = (@) (x) —mip(z)v(z) (2.1.10)

with the convention ¢ = h = % = 1 and m represents the mass of the quark. Al-
though we have included a mass term here for illustrative purposes, we note that
throughout our work we do not consider a mass term for the quark lagrangian,
choosing to explore only massless QCD. By choosing a massless regime chiral
symmetry is naturally preserved. Here the notation @ is shorthand for the con-
traction of the partial derivative with the Dirac v-matrices. The same shorthand

can be used when contracting momenta with v, i.e.

b= "pu (2.1.11)

where 7* is a Dirac matrix, with p as its Lorentz vector index, considered in

d-dimensions and satisfying the Clifford algebra

{’meyu} =YY+t NV = 2]147];w (2.1.12)

where 7),,,, 1s the metric tensor in d-dimensional Euclidean space satistying 1,/ = d

and I is the 4 x 4 identity matrix defined as

100 0
0100
I = 2.1.13
! 0010 ( )
000 1

Throughout this thesis p, v are our Lorentz indices. Since we are working in d-
dimensions we must develop the y-algebra for 1 < p < d. We want the y-algebra
in d-dimensions as we will be using dimensional regularization later when we

renormalize the theory. In dimensional regularization this requires calculating in

14



d = 4 — 2¢ dimensions. Assuming v,7" = d it follows that

Y = (0 + 20w) 7
= =Y+ 20
= 2-d)y, . (2.1.14)

We assume the basic trace rules in d-dimensions hold:

Tr[v,7 %] = 0 for any odd number of v’s
Tr h/uﬁ)/l/] = 477;w
Tr [ Yo%) = 4 [0uwop — NuoTp + Nuplve] - (2.1.15)

We encounter v-matrices and their traces when evaluating Feynman diagrams
containing fermion loops. The matrix 7° is not considered in any of our calcula-
tions since it does not generalise to d-dimensions and we are always in the chiral
limit where the quarks are massless and so we never encounter them in practice.
However for completeness we briefly show the basic properties of v° where it

exists strictly in 4-dimensions
") =, PP = P+ =0 (2.1.16)

where 1 = 0,1,2,3 in four dimensional spacetime and 7°,~%,~v% 3 are all 3 x 3

matrices such that

=y = L TNV 2.1.17
v Vs = JEwee 1YY (112 0 (2.1.17)

where ¢ is the Levi-Civita symbol specific to d = 4 and I, is the 2 x 2 identity

matrix. Since we are only interested in massless QCD the Lagrangian reduces to

L = ih(x)d(x) (2.1.18)

where 1 is a three-vector representing the quarks. Here each three-component
represents a colour charge, the same charge carried by the gluons (the mediators

of the strong force). There are three different quark colours

Vred (@) B
() = | Yplelz) | » U() = (ered(l') » Ublue(®) @green(@) (2.1.19)
¢green(ll?)
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for each flavour, where we recall that there are six known flavours to date; up,
down, strange, charm, bottom and top. This colour charge was introduced by
Greenberg as a way of solving the problem that the quark model violated the
Pauli exclusion principle, [25], which says that no two electrons can occupy the
same state, [26]. Since the quarks have half integer spin this rule also applies to
them. Although in nature there exist six flavours we have chosen to work with an
arbitrary number of flavours. The flavour of a quark is distinguished by the index
1 on W(x) where 1 <7 < N;. In QCD the flavour index has no dynamical role.
We do note however that in nature we are only allowed colourless states; another
reason to support why we do not see quarks and gluons as isolated particles in

nature.

An important property of the Lagrangian for any theory is that it must be in-
variant under local gauge transformations. It is straightforward to see that the

Dirac Lagrangian (2.1.18) is invariant under global transformations of the form
Y(x) = Uy(z) and ¢ — P(2)UT with U =™ (2.1.20)

where A is a 3 x 3 unitary (ATA = 1) Hermitian (A = AT) matrix, independent
of spacetime variable x. However imposing this transformation locally, i.e. by

setting A to be a function of z,

Y(@) = U@)(z) , ¥ = (@)U (2) (2.1.21)

we see that local gauge invariance is not satisfied,

(@) i) = (@) Db () + i (@)U (@) (0,0 (@) () . (2.1.22)

Instead we are left with an extra term that appears as a result of the partial
derivative acting on U which now depends on = and therefore does not commute
past the partial derivative as easily as before (2.1.20). In order to rectify this
problem we require a derivative that transforms covariantly. By introducing a
covariant derivative, D, to replace the partial derivative, 0,, appearing in the
Lagrangian (2.1.18) local gauge invariance is restored. The covariant derivative

is defined to be

D, = 0, +igA,(x) . (2.1.23)

16



Note that some authors choose to define the covariant derivative with a minus
sign in front of g, where g is the coupling constant. Above A, is the group-valued
(Au(z) = Af(2)T*) gauge potential or gluon field transforming as an adjoint
representation of SU(3) with colour index A running from 1,...,8. This gauge

field transforms locally as
Au(x) = U2)Au(2)U (2) + é (8,U(2)) Ut(z) . (2.1.24)
Acting on the quark fields the covariant derivative transforms like

D,(x) — U(x)D,y(z)
D,uqu)(l') = (8u +19Au($))¢($)
D(x) = 0(x)+ z‘gA;‘(:r;)TAw(x) (2.1.25)

where T are the generators of the group, (2.1.5), and A/}(x) is the vector po-

tential. The covariant derivative of a group valued object, X, satisfies, [27]
D, X = 0,X+1ig[A, X] (2.1.26)
such that the covariant derivative acting on the gauge field A, is given by

D,A, = 0,A, +ig[A, A
(DpAu (@) T = (8,4 (x) — gf POAR (2) AT ()T
(DpA(@)* = 8,47 (x) — gf*POAT (@) AT () (2.1.27)

where we have applied (2.1.6) since the A, fields commute. To be consistent
when comparing results between gauges we have chosen to define the covariant
derivative acting on the fields using equation (2.1.26) throughout our work. The
Curci-Ferrari gauge which is considered in Chapter 4 shares the same definitions
as the linear covariant gauge. However, additional definitions need to be intro-
duced when considering the MAG due to the unique nature of the gauge fixing.
We derive these definitions in Chapter 5.

A commutation relation exists between the covariant derivatives giving

D, D] = ig(8,A, — 0,A, +ig A A)) (2.1.28)
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from which we define the field strength tensor by
Guw =0,A, —0,A, +ig[A,, A (2.1.29)
and its group valued definition
G = 0,40 —0,A — gf"PCATAS (2.1.30)

The field strength tensor is what distinguishes QCD from QED, essentially giving
rise to asymptotic freedom due to the gluon self-interactions. Incorporating this
gauge invariant term in to the Lagrangian we now have the complete QCD La-
grangian expressed in terms of bare parameters, where the subscript, ,, indicates

the bare parameter, given by
1 2 -
L==7(Gow)" + ioloto + Let (2.1.31)

where the (GOAW)2 term contains the cubic and quartic gluon self-interactions.

By definition (GO“‘W)2 is gauge invariant under the transformation

G — UGLUT. (2.1.32)

Recall that we are only interested in massless QCD and so our Lagrangian does

not contain an explicit mass term for any field.

The importance of the Lagrangian is that it tells us what interactions we can
have in our theory. We have seen that it must be constructed using local gauge
symmetries. Our Lagrangian as it stands is invariant under local SU(3) gauge
transformations, but it is more appropriate to consider a general Lie group, to
which we can specify a gauge group later on. The extra parameters introduced

by unspecifying a gauge group will allow us to cross check results.

2.1.1 Gauge fixing

Before we can define and calculate the Feynman diagrams that encode the inter-
actions between fields originating from the interacting terms in the Lagrangian
we must first fix the gauge. It is not possible to do any perturbative calculations
until the gauge is fixed for two important reasons. Firstly the degrees of freedom
in the original theory are incorrect. This must be dealt with before any meaning-

ful calculations can take place otherwise results obtained will be unphysical and
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therefore have no relation to nature. The second of our problems comes when we
try to determine the gluon propagator. To successfully construct the propagator
we need to be able to invert the gluon Lagrangian (the quadratic in A, piece).
This is not possible without first including additional terms which allow us to

invert the matrix.

An appropriate gauge choice can greatly simplify calculations. We do this by
introducing gauge fixing terms to the original Lagrangian. The role played by
the gauge fixing terms is to reduce the number of degrees of freedom in the theory,
eliminating the unphysical degrees of freedom in the gauge field A;‘. Faddeev and

Popov, [28], proposed a condition in the form
F4[A)] = 0 (2.1.33)

which must be satisfied, where F# is some function on the gauge field A4, [29].
The standard gauge fixing condition for an arbitrary (linear) covariant gauge is

the Landau gauge fixing condition
FA[A,] = 0"A% = 0 (2.1.34)

commonly referred to in the literature as the Lorentz condition or Lorentz gauge.
This condition reduces the number of independent components of A, from four
to three, [30], as

A+ 0'Ay +PAy + %Az = 0. (2.1.35)

In other words one component is dependent on the other three. However, the
Faddeev-Popov construction (2.1.34) was originally presented for Landau type
gauges and was found only to be valid for covariant gauges. Once gauge invariance
had been broken by introducing these non gauge invariant ghost terms via the
Faddeev-Popov gauge fixing procedure a new symmetry needed to be introduced
to guarantee unitarity and ensure gauge independent results emerged for physical
quantities. Although 't Hooft was working on this at the same time, Slavnov and
Taylor were first to generalise a set of offshell identities extending the Ward-
Takahashi identities of QED, [31, 32|, that must be fullfilled. We discuss these
identities and their practical purpose in depth in section 2.1.2. For a non-linear
gauge fixing such as the MAG the definition of (2.1.33) is more involved. A more

general, and in many ways easier way of gauge fixing was discovered by Becchi,
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Rouet, Stora and Tyutin, [33, 34, 35|, who proposed a way of using symmetry
arguments, in particular global symmetries to define a set of gauge fixing terms

which satisfied the global gauge symmetries

§A} = —D,c* (2.1.36)
5t = —ngBochC (2.1.37)
oct = b? (2.1.38)
ot = 0 (2.1.39)

where § is the BRST transform that anticommutes with the ghost fields ¢ and &4,
where ¢” is the anti-ghost. These ghost particles are unphysical fields which can
mathematically be included in a theory but which never directly contribute to the
physics. They restore unitarity, which without ghosts was found to be violated
at the one loop level. The role of the ghost degrees of freedom is to cancel the
longitudinal component of the gluon propagator, leaving it fully transverse and
physical in the quantum theory, |28, 36, 37, 38]. The quarks and anti-quarks also

transform in a BRST way as

st = iget (T4, 0 (2.1.40)
ot = —ige (T4, 0V (2.1.41)

where lower case i here corresponds to the flavour index and upper case I is
the group spinor index on a quark. Valid in the gauge fixed theory this BRST
invariance, which can be applied to both linear and non-linear gauges effectively
replaces gauge invariance. Since we consider multiple gauge fixings within this

thesis we define the gauge fixing conditions, [39, 41|, in the form of (2.1.33) below

Flandaulds] = 94}
FeplAu, ¢ cb] = {auAZ +2be, — Sgfoede for A € {a,b,c}
MAL + Fhyag for A € {i, 7, k}
Ff/[AG[Am ¢, bl = (DA + LTI &g febighci — 2 pabeghce
for A € {a,b,c}
(2.1.42)

where, in the case of the MAG gauge fixing A € {1, j, k} denotes the diagonal and
A € {a,b,c} the off-diagonal generators of the Lie algebra. This splitting of the
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gauge group is discussed in more depth in chapter 5. Here b are the commuting
auxiliary Nakanishi-Lautrup fields, [40, 42| coming directly from imposing BRST
symmetry. For a full derivation of the BRST transforms in the arbitrary linear
covariant and non-linear Curci-Ferrari and maximal abelian gauges refer to Ap-

pendix A.

Returning to (2.1.31) and imposing the method of Faddeev and Popov (2.1.34)

we get the full QCD gauge fixed Lagrangian for an arbitrary (linear) covariant

gauge

Etotal = Egauge invariant + £gf + ﬁghost (2-1-43)
1 a \2 — 1 a2 —a @
£o= —(GL) +ipy— — (0"4))" — "9, D" . (21.44)

It is natural to combine both Lgf and Lgpest such that
LoF = ﬁgf—l— Eghost (2.1.45)

since when gauge fixing the Curci-Ferrari and maximal abelian gauges the ghosts
couple to physical fields. The textbook approach of (2.1.43) is inapplicable in
non-linear gauges since the gauge fixing term, Lqf, and ghost term, Lgyost, are
not treated separately. Throughout this thesis when we refer to the gauge fixing
term it will be of the combined form (2.1.45), i.e. LagF.

Introduced via gauge fixing is the arbitrary gauge parameter «, and c%, ¢ repre-
sent the interacting scalar particles called ghosts. To reiterate, these Grassmann
variables are unphysical particles which are inserted on a purely mathematical
level and do not contibute to the overall physics. Since they are Grassmann

variables they anti-commute with
e =~ (2.1.46)

This above method of fixing the gauge is not unique and our overall result should
always be independent of our gauge choice. This corresponds to choosing a co-
ordinate system in order to perform a calculation, [44]. No matter what set of
coordinates one uses the result should always be consistent. On introducing the

ghost fields it is appropriate to give the definition of the covariant derivative
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acting on this particular field, based on (2.1.26) as
D,c" = 0,c" — gf“bCAch . (2.1.47)

It may seem non-trivial that these ghost fields should then couple to A, for certain
gauge fixings, however the ghosts only occur in the internal part of the diagram,
i.e. in closed loops and never as incoming or outgoing physical particles, leaving
the physics intact. Without the addition of ghost fields unitarity would be vio-
lated.

In the step prior to obtaining (2.1.44) it is possible to write (2.1.45) of the form

ATg 2 A
Lop = —%—aﬂ(%) ch (2.1.48)

where A was defined in (2.1.20). In the case of the arbitrary (linear) covariant
gauge a clear choice can be made for F4[A,] to obtain (2.1.44). For F¢p and
Ff/l AG, the gauge fixed part of the Lagrangian for the Curci-Ferrari gauge and
MAG respectively, we can introduce the more appropriate BRST symmetry to
define the gauge fixing terms. Transforming our definition of Ly in (2.1.48) to
be

Lap = 6[¢" (F[AL,c,e0])] (2.1.49)

which accommodates all three gauge fixings defined in (2.1.42) and performing a
BRST transformation on each of the fields the following can be obtained, [67],

cynear — %@MZ)Q — "Dy (2.1.50)
Ly = - %(8%42)2 — 9Dt
+ g foreor Al et 4 %92 feab peedgacheecd (2.1.51)
LY = — % (9#A2)* — % (0" AL) + 01D, + EDHD,c
p

= aoc a C 1 al a 14
+ g [f“bkAchaucb —f b Aué’a"c ——f bk@“AHAgAk
1
—f“bka“AZchk — §f“b68“AfLEbcc — 2fabkAﬁE“8“Eb

—fabka’uAﬁEbCC ]
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9 1

g [fi A A — — f AL AT ALAT 1 f3 A AT

1 . . . . . .
—S [ [ AL A e - [ AL AV
L o o «Q B
_fOCszALAj uéccd o _fccltbcdcacbcccd o —fgdeéaCbCCCd
4 8
(0} ] «Q _ «Q
_'_gfgcbdcacbcccd o ngbCIEaCbCCCl + ngcbléaébcccl

_%fglbcéaébcccl n %foakbléaébckcl] . (2.1.52)

The gauge fixing terms for the linear covariant and Curci-Ferrari gauges have
been checked and verified explicitly with [79, 104, 126]

The properties and construction of the MAG gives rise to two independent arbi-
trary gauge fixing parameters, a and «,. Adding an above gauge fixing term to
the Lagrangian forces gauge invariance to break, since the gauge fixing terms are
gauge dependent. BRST symmetry preserves some remnant of this lost gauge
symmetry. It is taken for granted that the original terms in each Lagrangian are
BRST invariant since gauge invariance implies BRST invariance and the gauge
fixing term in each Lagrangian ensures that any extra terms added will not affect
the original terms in (2.1.31). We construct and display the BRST transforma-
tions and their relations, in particular the b-fields, for both the CF gauge and
MAG, whilst discussing this technique in more detail in Appendix A. Once the
gauge is fixed, ensuring all additional terms satisfy F* [A,] = 0 we can proceed

to calculating with this now complete Lagrangian.

2.1.2 Renormalization

An important property of QCD is that it is a renormalizable theory. Let us
explain what this means by considering the complete QCD Lagrangian for an
arbitrary (linear) covariant gauge fixing, (2.1.44). If one were to naively start
computing quantum corrections to the Green’s functions with this Lagrangian
as their starting point they would encounter Feynman diagrams that are infinite
in four dimensions. This is problematic since it would be impossible to obtain
meaningful physical results due to the infinities appearing within the calculation.
These infinities are a result of divergent Feynman integrals contained within cer-
tain Feynman diagrams. Generally there are two types of divergence; these are
known as infrared (IR) and ultraviolet (UV). Ultraviolet behaviour occurs at high
energies whereas infrared occurs at low energies. A procedure called renormal-

ization was introduced to tackle such infinities. Renormalization theory is based
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on the UV divergences, as these can be handled systematically. Renormalization
is a systematic and mathematically consistent method of redefining the variables
of a theory in a way that removes these infinities. It simply means re-expressing
results of the theory via physical (measurable) quantities. There are a num-
ber of ways in which one can renormalize massless QCD and there are several
regulators which can be used. The three most popular regulators are cut-off,
lattice regularization and dimensional regularization, each with their own advan-
tages and disadvantages. As QCD is a real world gauge theory we must ensure
gauge symmetry is preserved, as mentioned in the previous section. This auto-
matically excludes the use of cut-off renormalization since this technique breaks
gauge symmetry. Lattice regularization preserves this gauge symmetry but does
not preserve Lorentz symmetry which is necessary for obtaining measurable re-
sults independent of coordinate system and/or direction i.e. the results have the
same value in all frames. Lattice also requires super computers and is costly to
implement. In order to ensure gauge symmetry and Lorentz symmetry are con-
served we use dimensional regularization developed by ’t Hooft and Veltman in
[45] and also [46, 47]|. This type of regularization is the most popular approach
used in practical calculations with the basic idea behind it being to reduce the
number of dimensions over which one integrates, resulting in the divergences dis-

appearing, [48]. But how do we know what dimension to work in?

Consider an integral commonly encountered in one loop calculations. When mass

m is small and negligible, then

d*k A dtk

which tends to infinity when ¢ — 0 or A — o0, where the integral is considered in
4-dimensional Minkowski space. We see that the integral will diverge at large mo-
menta k2. To avoid our integral diverging we can choose a regulator to transform
the ill-defined integral into a well-defined one. This means considering the same
integral integrated over dk where d is some arbitrary number of dimensions. For
d = 4 we have a divergence. For d > 4 our integral will continue to diverge,
and so this leaves us with the choice d < 4. For this value of d we see that the
integral is now convergent and can be calculated explicitly, [49]. Hence for d < 4

logarithmic divergences which are encountered in quantum field theories vanish.
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In other words when using dimensional regularization we have the following

0
dk—f(k*) = 0. 2.1.54
[ ) (2150
In dimensional regularization the space-time dimension d becomes a complex
variable and can be written as d = 4 — 2e where € is the regularizing parameter.
Singularities manifest themselves as poles in € where the physical limit ¢ — 0

brings us to our real-world 4-dimensional space-time after renormalization, [50].

When renormalizing a theory we introduce renormalization constants, or scaling
factors, Z;, that cancel the divergences in the theory. How one removes the diver-
gences is known as the renormalization scheme. These schemes can vary in their
definitions, from absorbing only the divergences, which when using dimensional
regularization manifest themselves as poles in €, to the renormalization constants
also absorbing a finite piece in addition to the divergences. Let us demonstrate
how these renormalization constants look in practice. Recall for example the QCD
Lagrangian for an arbitrary (linear) covariant gauge (2.1.44). We can redefine the

theory with

Z
Al = \JZL A" | g, = U2y, Yo = \/Zyp, 5 =\ Zcc", ao:Z—Aa. (2.1.55)

In renormalization Z; is the quantity we want to fix in order for it to cancel out
the divergences in the theory. The way in which we define this set of renormal-
ization constants is simply a matter of convention, since our overall results will
ultimately be independent of the scheme. If it was possible to calculate all orders
of perturbation theory physical results would be independent of the renormaliza-
tion scheme chosen. The specifics of scheme definitions will be discussed later. In
gauge theories, such as QCD, there are relations between the renormalization con-
stants in consequence of the Slavnov-Taylor identities. In our work [51] and the
work of [14] the renormalization constants have been constructed such that the
Slavnov-Taylor identities [31, 32| are automatically satisfied. Let us demonstrate
this. In [52]| the Slavnov-Taylor identities are defined to be

. 2
7F (qqg) 7 (ccg) Z(ggg) Z(gggg) Z(ggg)
L = = L 1 = |2 (2.1.56)

Zo B Z3 7 Z3 Z3

where there is a renormalization constant corresponding to each interaction term

in the Lagrangian. Particularly ZF', Z, and Z, are the renormalization constants
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for the quark-gluon, ghost-gluon and triple-gluon vertices respectively and Zs, Zs
and Zy are the gluon, ghost and quark wave function renormalization constants.
On defining a renormalization constant per field, as we have done in (2.1.55), one

can directly relate Celmaster and Gonsalves’ definitions to ours such that

Iy = Lp , L3 = L. , Ly = Zy (2.1.57)
and those corresponding to the vertices

Zf(qqg) _ Zg(qqg)Zw'/ZA : Zl(ccg) = Zéccg)Zc\/ZA )
nggg) _ Zéggg)ZAﬂ/ZA (2.1.58)

where our definition of the renormalization constants are on the right hand side
of the equals sign while the Slavnov-Taylor definitions are on the left. Defining
our renormalization constants this way ensures that the Slavnov-Taylor identities

(2.1.56) are naturally satisfied, since they imply that
7(eg8) /7 — glaag) /7 — glecg) /7 ‘ 2.1.59
g s 7 Ahs 7 4 s ( )

for all three vertices in the MS scheme. Celmaster and Gonsalves, [52], also define
a relation between the 3- and 4-point gluon functions in (2.1.56) with, in terms of
our definition of the renormalization constants, Zigggg) = Zgz(ggg) Z% which must
be satisfied for the theory to be consistent. This ratio between the (n + 1) and
n-point functions must hold for all n. Therefore with our redefinition of the renor-
malization constants the Slavnov-Taylor identities are naturally satisfied via this
construction and so proving that Z,\/Z, is equivalent for all 3-point functions
is enough to prove that the Slavnov-Taylor identities hold. Although the way
in which the renormalization constants are defined should be independent of the
physics, our way of defining the Z’s builds the above identities into the definitions
which in turn saves us the trouble of separately checking the identities again later
on. When renormalizing the fields it is vital to take into account the renormal-
ization of the arbitrary gauge parameter o, as just like the coupling constant g,
the renormalization of the gauge parameter can be different in different schemes.
This becomes apparent in the next chapter where we relate the coupling con-
stants in two schemes to one another. The renormalized Lagrangian is now given

in terms of renormalized parameters

1 a \2 Za a2 . n ~a a
L= 170 (GL) - 2 (0) 2y - DR (2100
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where the renormalized coupling constant is embedded in the covariant deriva-
tives and field strength tensor. Notice how in (2.1.55) the renormalized coupling
constant comes with a pre-factor of p°. When using a regularization scheme
we must include an associated mass scale. For dimensional regularization this
mass scale is p which is introduced in order to ensure the coupling constant is
dimensionless in d-dimensions, [14]. After re-expressing the results for physical
quantities via renormalized parameters we can remove the regularization, [53|. In
d-dimensional regularization, removing the regularization simply means taking
the limit € — 0 since dimensional regularization is something of a mathematical

procedure. We note that physical expressions only make sense in this limit, [54].

Now that we have chosen the gauge in which we are calculating in, and dimen-
sional regularization as our regulator, we next have the task of choosing which
scheme to work in. The most popular scheme choice in QCD is the modified
minimal subtraction (MS) scheme. This is a modification of the MS scheme,
[55, 56], first formulated by t Hooft. Both the MS and MS schemes fall into the
class of mass independent renormalization schemes. Rather than using the MS
prescription of % being absorbed into the renormalization constants, MS requires
that % — e + In(47) is absorbed, [57], where vg is the Euler-Mascheroni con-
stant. This keeps the expressions for the renormalized Green’s functions much
simpler, and hence the reason this scheme has been adopted as the most popu-
lar to use in practical calculations. With high order multiloop results previously
calculated and readily available in this scheme, MS has become the standard ref-
erence scheme. However, at one loop it is possible to map between the MS and
MS schemes by taking the limit 2 — 1 — 4 + In(47) and vice-versa, [57]. At
higher loop orders however this mapping is less trivial. In the MS scheme at two

loops the renormalization constants have the form

Zi(agg) = 1+ faM—S + (— + E) i+ O(a3g) (2.1.61)

where we have chosen to define our coupling constant a, in relation to the gauge

g2
1672

coupling constant as a = and use this definition throughout.

An additional scheme to consider is the momentum subtraction (MOM) scheme.
Although fewer results exist to the same multiloop precision in this scheme, the
MOM scheme is an improvement on the MS scheme in that it is a physical scheme

choice. The MOM scheme is based upon the 3-point vertices of the Lagrangian,

27



where the determination of the renormalized coupling constant requires calculat-
ing the vertex corrections at the symmetric subtraction point. Original MOM
schemes were developed by Celmaster and Gonsalves in 1979, [52]. Only recently
in [14, 58] have results been obtained for the renormalization of the triple gluon,
quark-gluon and ghost-gluon vertices for the MOMi schemes at two loops. The ¢
here refers to the vertex at which the renormalization has been applied. Within
this thesis i € {AJALAS, YipA%, "c® A%} where no other 3-point vertices are
considered. We define the MOMi schemes explicitly in further detail in section
2.1.5. This large gap between developing the MOMi schemes and computations
being able to take place in these schemes illustrates the technical difficulty of
moving to this scheme at higher orders. In the thirty years between [52] and
[14, 58] came the development of the Laporta algorithm, [60], which greatly sped
up algebraic operations, and many master integrals which were unknown in 1979
were now solved, enabling computations in the momentum subtraction schemes

to continue.

2.1.3 Feynman rules

Next we require the Feynman rules. The Feynman rules allow us to translate a
Feynman diagram into a set of mathematical instructions which we then solve
using integration. Each Lagrangian determines a particular set of Feynman rules
specific to that gauge, [29, 26]. It is not to be assumed that the Feynman rules
in one gauge are identical to those in another. A perfect example of this is the
addition of a Feynman rule to describe the quartic ghost interaction which exists
in a non-linear gauge fixing such as Curci-Ferrari but not in the Landau gauge.
The Feynman rules are directly derived from the Lagrangian. In essence the
free Lagrangian determines the propagator whilst the interaction terms define
the vertex rules. We define our set of Feynman rules for each setup in Appendix
C. Note that we never consider individual diagrams, only the overall sum of all
contributing diagrams. In massless theories dimensional regularization regularizes
both types of infinities so it is never clear where the poles in € originate from. In
calculating the sum of all diagrams we are able to compute the amplitudes and

by the nature of these diagrams some divergences will naturally cancel.

2.1.4 Momentum configuration and technical aspects

Having discussed the method of renormalization in depth we now move on to de-

tailing the techniques used within our calculations. Unlike past computations in
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this area that have been studied for the exceptional case, where the linear combi-
nation of the external momentum is zero, in our setup for the three point vertices
we choose not to nullify any external momenta, instead using a non-exceptional
momentum configuration. We choose this setup since despite nullification of an
external leg simplifying a calculation, this nullification can create spurious IR
divergences of which there is no consistent way of dealing with these mathemat-
ically. It is also a more desired setup for those wishing to analyse the results.
The three Green’s functions we consider throughout Part 1 of this thesis in each

gauge are

(AL AT (AT (1) (" (0))a(¥? (@))7 AT (1)) and (c*(p)e” () AT (1)) (2.1.62)

representing the triple-gluon, quark-gluon and ghost-gluon vertices respectively
with momentum conservation along p+¢q+7r = 0. Although many authors choose
not to explicitly show spinor indices on the quark fields we include them here to
help ease our explaination of choosing a tensor basis later on. The vertices are
considered at the symmetric subtraction point in which the sum of the squares

of the three external momenta are set equal to each other i.e.
PP=q == (ptqe’ = -, (2.1.63)

where p is the same associated mass scale defined earlier to ensure the coupling
constant is dimensionless in d-dimensions. In (2.1.63) one could regard this as a
kinematical variable different from the scale which makes the coupling constant
dimensionless in d-dimensions. In this case when the variables are different one
would have additional terms involving logarithms of ratios of these scales through-
out all of our amplitudes. We choose to keep the scales the same throughout as
they can readily be restored by a coupling constant rescaling. We will assume
this throughout the thesis. Note here that we have only two independent exter-
nal momenta, p and ¢, with » = — p — ¢, again reiterating the fact that we do
not nullify any external momenta. The diagrams are set up with the momentum
defined in Figure 2.1 where we always choose the top leg to be the gluon. We can

write each of our three vertices as follows, [14],

(AYD)AP(Q)AS(=p — Q))pogioye = FA5C SBEE(p, )| ooy
<(¢h (p))a(zﬁjj(q))ﬂAoc(_p —q)) |p2=q2=—u2 = 5ijTI(?I (qug@a Q))aﬁ |p2=q2=—u2
<CA p)EB(q)Ag(—p — N pr=gr=pz = fABC chg(p7 Q)|p2:q2:—u2 )
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Figure 2.1: Incoming external momenta for the one loop triangle graph.

(2.1.64)

where ggg, qqg and ccg represent the triple-gluon, quark-gluon and ghost-gluon
vertex functions respectively. We note that (2.1.64) is used for calculations in all
three gauges, considered in the subsequent chapters. The colour group tensors
associated with each vertex naturally factor out at leading order and next-to-
leading order (NLO), i.e. the diagrams considered at the symmetric point which
contribute to the triple-gluon vertex are directly proportional to f?¢ and so this
can be factored out. Whether this is true for all orders is not yet known. Sim-
ilarly with the quark- and ghost-gluon vertices. This factorization of the colour
tensors is a property of symmetric point calculations for 3-point vertices which
allows us to purely focus on the Lorentz component. ¥V 1. (D> @) are the Lorentz
amplitudes for the vertex V', where V' € {ggg, ccg, qqg}. This decomposes further

into scalar amplitudes
_ E geg ggg
Z%z%cg( )‘PQ_‘ZQ_—,LF - P (k)pvo p’ E (k) ( q>

6
B B
(C3E0,0)), e = §I(P“,£?§<p,q>)a SE(p, )
k=1

S8 (D, @)y = ZP‘;‘E P Q) S (pq) - (2.1.65)

where P k) i1 (p,q) are the basic tensors for each vertex, V, and E&)(p, q)
are the scalar amplitudes. For the triple-gluon vertex we have ngg ,(p,q) with
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1 < k < 14, where k can be called the channel of the amplitude. For example
channel 1 would be when k£ = 1, where it is our convention to choose channel
1 to correspond to the tree level vertex. A prescription for choosing the tensor
basis is explicitly shown in Appendix B where we note that the tensor basis is
dependent on the Green’s functions and not on the gauge choice. Once we have
the tensor basis we project out the amplitudes for each individual channel k using
the projection technique of [61]. For the triple-gluon vertex there are 14 channels,
since 1 < k < 14. This is achieved using the projection matrices presented in
Appendix B. The amplitudes play an important role in the construction of the
renormalization constants and we present the results for the amplitudes in all

chapters for each scheme.

As previously mentioned it is appropriate within this thesis to present the ma-
jority of our results numerically, particularly those of chapters 3 and 4 where
results are calculated up to NNNLO and these results displayed analytically are
of considerable length. For this reason we present the numerical values for the

various functions that arise in the master integrals of [62, 63, 64, 65]. These are

(s = 1.20205690 , ( = % = 1.64493407 , ¢'(1) = 10.09559713 ,
" (%) = 488.1838167 , so(%) = 0.32225882 , so(%) = 0.22459602 ,
s3(%) = 0.32948320 , s3(%) = 0.19259341 , (2.1.66)

where 9(z) is the derivative of the logarithm of the Euler I'-function and ¢, is the
Riemann zeta function. The Euler I'-function I'(z) is a special function defined
for R(z) > 0 by

[(z) = / e *tdt (2.1.67)
0
satisfying the functional equation
2I'(z) = I'(z+1) (2.1.68)

such that for any integer z we have I'(z) = (2 — 1)I'(z — 1) and it follows that
['(z+1) = 2! for all positive integer z. In dimensional regularization we have the

following definition

() = 2(14 e + O()) (2.1.69)

€
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where

=
7 = lim [Zlg—ln(n)] = 0.5772156649 . .. (2.1.70)

is the FEuler-Masceroni constant.

At the symmetric point the following functions arise for various arguments,

snlz) = %% [Lin (e—\/g)} (2.1.71)

where Li,(z) is the polylogarithm function and n defines the loop order. As a
result of computing 3-point and, in the case of non-linear gauge fixings, 4-point
functions at one loop in a non-exceptional momentum configuration dilogarithms

appear. The dilogarithm [66] is defined by the integral

Liy(2) — —/Ozdtw (2.1.72)

t

or the sum

Li = - 2.1.73
IQ(Z) gt n2 ( )
for |z| < 1. Similarly Lis(z) would be
. Zoo 2"
ng(Z) = — E . (2174)

A combination of harmonic polylogarithms appear in our results, which have been

presented in published work, [14, 67|, as
o= HE + HEY (2.1.75)

This combination is specific to a symmetric point computation. As explained in
[67] we now record this combination of harmonic polylogarithms within our thesis

as
1

36

27t

2 2
L= HY + HE = o7

V" (3) (2.1.76)

rather than leaving results in terms of .
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2.1.5 Definition of renormalization schemes

Following the thorough definition of the MS scheme in section 2.1.2 we now fo-
cus on the explicit definition of the MOM renormalization schemes. Let us first
discuss the similarities between both non-physical and physical schemes. When
renormalizing, the Lagrangian has the same form as in (2.1.60). However in the
MOM schemes the renormalization constants contain both the divergent and fi-
nite parts, compared to just the divergences being removed in the MS scheme.
However, there is a second aspect of renormalization which is to define the point
where the Green’s function is renormalized. In the MOM schemes of Celmaster
and Gonsalves, [52], for both the 2-point and 3-point functions this is the point
where the external momenta squared is —p2. In particular for the 3-point func-
tions this corresponds to the completely symmetric point (2.1.63). When one
evaluates the 3-point function at this particular symmetric point then the renor-
malization constant is defined so that after renormalization there are no O(a)
corrections at the symmetric point. In other words the renormalization constant
has a finite part removed, unlike MS. The 2-point functions are treated in the

same way for the MOM schemes of Celmaster and Gonsalves.

Our renormalization constants therefore take the form of (2.1.61) where now at

one loop z;, (apom;) = A + Be such that

. A
ZMOMi(ayjon) =1+ (? + B> apoOM;i - - - (2.1.77)

where B represents the finite contribution, in comparison to

A
ZMS (agg) = 1+ —ayomi + - (2.1.78)

in the MS scheme. Unfortunately there are infinitely many ways to define a
momentum subtraction renormalization, [58|, i.e. we have the freedom to se-
lect which finite parts we absorb into the counterterms subject to respecting the
Slavnov-Taylor identities. In the MOMi schemes we absorb both O(2) and O(1)
pieces in to the renormalization constants as shown above such that no O(a)
pieces remain in the amplitudes at the subtraction point. The benefit of calcu-
lating in this scheme rather than MS is that the scheme is based on the physical

properties of the particles.

Another mass dependent renormalization scheme popular with lattice studies is
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the modified regularization invariant (RI’) scheme which we consider in Chapter 7.
The coupling constant depends directly on the characteristic external momenta,
[49]. We consider all three renormalization schemes (MS, MOM and RI’) within
our work, constructing results in several gauges for analysis and comparison which

we comment on in the subsequent chapters.

2.2 Reduction of scalar 3-point integrals

The reduction of scalar 3-point integrals are handled by using the computer pack-
age REDUZE. As we will mention in the following section, when outlining our
computational approach, REDUZE implements the Laporta algorithm to system-
atically reduce scalar integrals to a set of basic master integrals using a technique
known as integration by parts. REDUZE works by starting with a topology and
using integration by parts and Lorentz invariance relations to generate relations
involving this topology and lower ones which it can get by pinching certain propa-
gators, [66]. In graph theory this simply means removing an internal propagator.
Any integrals that cannot be ultimately simplified in this way are called master
integrals. Let us consider an [ loop diagram with e independent external mo-
menta. An auxilliary topology (or integral family) for any diagram must contain
exactly [ [%(l +1)+ e} propagators, otherwise a reduction cannot happen. An
auxilliary topology is an ordered set of all propagators where all scalar products
containing at least one loop momenta k; can be expressed as a linear combination
of propagators from this set, [68]. This means that, for example, in the case of
the two loop ladder topology one must "add" an extra propagator in the form of
a scalar product of the momenta. It is important to understand what REDUZE is
doing internally when performing the integral reduction. For this reason we can
illustrate the procedure by hand, in particular applying the Laporta algorithm
to the two loop triangle at the symmetric point. Let us first, as a preliminary
to the two loop 3-point function, consider a simple one loop diagram. A general

definition of a one loop integral containing three propagators is

dk 1

Web) = | oy 22

where a, 3,7 take any integer value. Our integral is of the form ﬁ where a, b, ¢
are the product of propagators. This integral is represented diagramatically in
Figure 2.2 with internal loop momenta k. Recall that the symmetric point is

defined by the condition (2.1.63) where pg = %/ﬂ. With each external leg now
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p—/f \q+k:

Figure 2.2: Momentum routing around the one loop triangle graph.

having the same incoming/outgoing momenta this implies that

Il(a7ﬁ77) = Il<a?77ﬂ) - Il(ﬁaf)/?&) = .- (228())

i.e the 3-point function is completely symmetric. Using this symmetry rule we

can represent other integrals in the form I(a, §,7), for example let us take

d 1
Wl = [ e 2281

Using the symmetry rule we see that I;(2,1,1) =1;(1,2,1) = I;(1, 1, 2) such that

d?k 1
L2 1.1) = /k(27r)d(k2)2(’f—19)2(’f+q>2

_ / d% 1
w ) E2((k = p)?)?(k + q)?

dk 1
-/ 2n) = (e ) (2.282)

Applying the rule (2.1.54), performing the explicit differentiation and taking all

terms over to the right-hand side we obtain

d?k d
V- / (2m)¢ (B2)*((k —p)*)P((k +¢)?)

d%k 1
‘2‘)‘/ (2m)d (k2)e((k — p)2)P((k + ¢)2)
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- ddk k(k — p)
2ﬂ/ (2m)¢ (k2)((k — p)?)P T ((k + q)?)7

- A9k k(k + q)
2 | @m) () (k= )P ((k + )27 (2.2.83)

m . .
where we have used g% = d. The above expression can be rewritten as

d?k d
V- /(27T)d(kQ)a((k—pV)ﬁ((kJrQ)Q)”

d?k 1
_Qa/ (2m)d (k2)>((k —p)»)P((k + q)?)
—ﬂ/ d4k k* + (k — p)? — p?
(2m)4 (K2)>((k —p)?)P+1((k + q)?)

ddk‘ k2 k 2 _ 2
—7/ T ( ;FQ) . (2.2.84)
(2m)¢ (k2)((k — p)*)°((k + q)?)*!
Writing the integrals in terms of Iy(«, 3,7) and rearranging we have
0 = (d_ 20 — B _P)/>Il<055677)
—f[La—1,8+1,7) = p’Lia, B+ 1,7)]
- [Il(a - 17 677 + 1) - q211(06, ﬁ/Y + 1)} : (2285)
Taking the most general case by setting o = f =y =1 gives
1|1
1,(1,2,1) = 2 5(d = HL(1,1,1) =1,(0,2, 1) (2.2.86)

where 1;(0,2,1) and I;(1,1,1) are the 2- and 3-point master integrals respec-
tively. This explicitly shows that one can write any integral in terms of the set
of master integrals for that theory as I1(0,2, 1) is proportional to I1(1,1,0). For

completeness

)T (4-1) ()

L(1,2,1) = ig FP G- —(d—4)[1(1,1,1)] .

(2.2.87)

Now that we have a basic understanding of the Laporta algorithm at one loop

let us consider a two loop 3-point diagram, also at the symmetric point. Most
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generally this can be written as

d’k 1
e 8.7:60) = | o T PR PR

(2.2.88)
T p+q

Figure 2.3: Momentum routing around a two loop triangle graph.

AA A

Figure 2.4: Integral families at one and two loops for the symmetric point.

which we present diagramatically in Figure 2.3. Here we have two internal loop
momenta, k and [. Unlike the one loop case which was symmetric about «, 8 and
v, we now do not have as much freedom since there are three basic topologies at
two loops, see Figure 2.4 compared to just one topology for the 3-point function

at one loop level. Shifting the momenta in Figure 2.3 such that

-1 = q
k=1l — k+q (2.2.89)
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we obtain a triangle subgraph whose internal loop momenta is k. By rerouting
the momenta the external legs of this one loop subgraph are of the form of Figure
2.2. Considering only this subgraph we can apply the Laporta algorithm to the

integral

d?k 1
Lo fdp) = [ (2:2.90)

w 2m)a (R2)2 (k= p)?)P((F +@)*) () ((L+ ¢)*)”

to obtain

0 = (d_QOé_6_7_6_p>12<05’677557p>
_5 [12(a - 175 + 177767 p) _pZIQ(av/B + 17’7757 p):|
- [12(a - 17B77 + 1757 10) - QZIQ(OC,ﬁ,’Y + 1757 p)] : (2291)

Setting « = =~ =09 = p = 1 the above becomes

0 = (d—06)Ix(1,1,1,1,1) — [15(0,2,1,1,1) — p’I5(1,2,1,1,1)]
—[15(0,1,2,1,1) — Iy(1,1,2,0,1)] . (2.2.92)
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Figure 2.5: Integral Reduction.

Expressed diagramatically in Figure 2.5 we see that there appears only one in-
tegral that is not a master integral, i.e. the diagram can be expressed in terms
of other topologies. Rearranging (2.2.92) in terms of the unknown integral we

obtain

1
I,(1,2,1,1,1) = _E [(d—6)I5(1,1,1,1,1) — 15(0,2,1,1,1)] . (2.2.93)
Re-expressing all integrals in terms of masters dramatically simplifies expressions
and reduces the number of integrals one needs to explicitly solve. At higher loop
orders one can apply the same algorithm as for the one loop case by considering

a subgraph as we have done at two loops. This is how REDUZE works internally.

2.3 Computational setup

Here we discuss the computational setup we have used throughout our work. In
order to compute the renormalization of QCD up to and including two loops in

a variety of gauges and schemes we use a combination of programs, [68, 69, 70,
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71]. A computation of this size would be near impossible without using these
tools. We begin by using the QGRAF package [69] to electronically generate all
Feynman diagrams corresponding to each of our Green’s functions. This is done
by specifying the number of loops we wish to calculate to, the loop momenta,
incoming particles and the interactions our theory allows. In our setup we choose
to have all particles incoming, as is consistent with our momentum routing, and
specify no tadpoles, no snails and only graphs that are 1-particle irreducible
(1PI). We call a diagram irreducible if it cannot be split in to two disconnected
graphs by cutting only one internal line. A tadpole diagram is a diagram with
one external leg (or line). We choose not to include tadpoles since graphs of this
type are redundant when considering 1PI graphs only. Since we are in a massless
regime we also have no need to consider snail diagrams due to them vanishing
when applying dimensional regularization. We display both graphs in Figure 2.6
for the benefit of the reader. Tables 2.1 through 2.3 show the total number of

diagrams calculated at one, two and three loops for each gauge.

(a) (b)

Figure 2.6: (a) Snail Feynman diagram, (b) Tadpole Feynman diagram.

The need for such computing tools can be gauged by the sheer number of Feynman
diagrams considered, increasing tenfold when one increases the loop order. Once
the diagrams have been generated for each setup, we identify and order the graphs
into their basic topologies, applying Lorentz and colour indices to the diagrams
automatically. Finally we integrate each diagram using a MINCER, [72], routine
implemented in FORM, [70]. Applying the MINCER algorithm to 3-point vertex
functions requires one external momenta of the Green’s function to be nullified.
This is provided that when we nullify an external leg we do not inadvertently in-
troduce infrared singularities. Note that the potential infrared singularities that

arise are only a problem if one considers diagrams on an individual level. By us-
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Green’s Function | One loop | Two loop | Three loop
AJAD 3 18 254

CAE_B 1 6 78

() 1 6 78
AﬁAfAUC 8 106 2382
cAE_BAE 2 33 688
PpAYB AL 2 33 688
Total: 17 202 4168

Table 2.1: Number of Feynman diagrams computed for each 2- and 3-point func-
tion in the arbitrary linear covariant gauge

Green’s Function | One loop | Two loop | Three loop
AﬁAf 3 19 282

CAE_B 1 9 124

() 1 6 79
ANABAY 8 112 2616
CAQBAE 3 49 1097
PpAYB AL 2 33 697
Total: 18 228 4895

Table 2.2: Number of Feynman diagrams computed for each 2- and 3-point func-
tion in the Curci-Ferrari gauge

ing our method of summing all the diagrams these infrared singularities naturally
cancel, and so do not pose as a problem for the QCD Lagrangian. For QCD this
nullification is possible and has allowed for the computation of renormalization
group functions to three loops, for example, [73]. MINCER does not currently
have the capacity to compute 3-point vertices with a non-exceptional momentum
configuration and so cannot be applied directly to a 3-point vertex symmetric
point analysis. The MINCER package can only be applied to at most massless
three loop 2-point functions when considering a non-exceptional setup and works
by implementing a star-triangle relation to recursively reduce topologies of a cer-
tain type into a combination of other more simple topologies. In MINCER this is
done by implementing a separate routine for each topology, therefore optimizing
the programs run time. By reducing the powers of the propagators recursively
the routine stops when it hits the simplest topology, this leaves us with a set
of basic master integrals. REDUZE, [68|, which was written in GINAC, [74], in
most ways supersedes MINCER and works by using a C*" implementation of the
Laporta algorithm, [60]. The Laporta algorithm, in contrast to the MINCER pack-

age creates all possible relations between the scalar integrals, thus resulting in a
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Green’s Function | One loop | Two loop | Three loop
A;‘Af 6 131 6590

CAE_B 3 81 4006

() 2 27 979
ANADBAY 23 1291 103548
cAE_BAE 16 867 66256
PpAYB AL 5 217 13108
Total: 55 2614 194487

Table 2.3: Number of Feynman diagrams computed for each 2- and 3-point func-
tion in the maximal abelian gauge

large degree of redundancy in reducing the graphs. As with MINCER, REDUZE
will always give a reduction to a set of basic master integrals. However REDUZE
requires more computing time since the algorithm systematically constructs all
integration by parts relations before rewriting the scalar integrals in terms of only
master integrals, as we have seen when implementing the procedure by hand in
the previous section. There is no separate routine for each topology internally
programmed like there is in MINCER. One benefit of using REDUZE over MINCER
is that it is not limited. With the Laporta algorithm it is possible to compute
any [-loop and n-point function provided one has a big enough computer and
disk capacity. REDUZE constructs a database of all the relations between inte-
grals which is then used to lift out the integrals we require for our computation.
An advantage to computing at the symmetric point becomes apparent (2.2.80)
since the vertex diagrams are symmetric under rotation, resulting in a minimal

set of integrals for a minimal set of topologies.

To clarify, the 2-point functions are evaluated using MINCER whilst all 3-point
vertices are evaluated using REDUZE. For the benefit of the reader we present our
systematic approach which is repeated for all calculations set out in this thesis.
Firstly, as discussed above we use QQGRAF to generate all diagrams electronically.
We then identify topologies and map the diagrams to the corresponding MINCER
topology as well as including the Lorentz, colour and spinor indices. We do this
so that they are picked up by our next program which rewrites the momentum
flow in a language compatible with MINCER and REDUZE. Following this the
Feynman rules for the propagators and vertices are substituted and after this we
multiply by the projection tensors. We rewrite the numerators of the integrals by
stringing the y-algebra together and evaluate the group algebra. The scalar prod-

ucts are rewritten in terms of propagators including the irreducible propagators
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required for the integral families of REDUZE. Once in this form we can apply the
REDUZE algorithm to determine the integral reductions. For the 2-point functions
the method runs parallel to this, where one would apply the MINCER algorithm
instead of REDUZE. The irreducible numerators are automatically handled within
MINCER. To finish, all master inegrals are substituted, and the remainder of alge-

bra manipulation is done using FORM, its threaded version TFORM and REDUCE.

After applying the Laporta algorithm all that remains is to evaluate the mas-
ter integrals and apply our chosen method of renormalization, which is carried
out last. In the case of our research these master integrals have been previously
determined directly in |62, 63, 64, 65] and summarized in [75]. We map back
to FORM notation where FORM and its threaded version TFORM [71] carry out
any remainding algebraic manipulation. All vertex functions are computed in
terms of bare parameters, following from the technique of [73]. Once all the
graphs/Green’s functions have been computed as functions of bare parameters
and summed, FORM is used as a tool to determine the associated counterterms
by rescaling the Green’s functions at the end via the definition of the renormal-
ization constants, i.e. g, = Z,;9. Once the counterterms have been implemented
the divergence remaining at that particular loop order is absorbed in to the
renormalization constant of the associated Green’s function, [73|. Finally we use
REDUCE, [76], alongside FORM to manipulate our results into an output we de-
sire. Of course, without such programs computations at high loop order would
be virtually impossible to do, and to such accuracy, by hand. It is appropriate
here to also note that any Feynman diagrams visually presented within this thesis
have been drawn using JAXODRAW, |77, 78§|.
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Chapter 3

The QCD arbitrary (linear)

covariant gauge

As part of the development process it is important to first check the known re-
sults of a preliminary calculation or simpler model before proceeding on to our
desired calculation. Reproducing these known results serves three purposes: 1) to
ensure our computational method is correct before extending to a more difficult,
yet similar model; 2) to learn and develop the techniques needed to be able to
tackle such problems and 3) to check that current results by other authors, for

example [52, 14| are consistent.

In this chapter we show how the triple-gluon, quark-gluon and ghost-gluon ver-
tices of QCD are computed at the symmetric subtraction point explicitly at two
loops in both the modified minimal subtraction (M_S) scheme and the momen-
tum subtraction (MOM) schemes. Applying the techniques and computational
method disussed in Chapter 2 we determine the conversion functions for the cou-
pling constant, gauge parameter and each wave function, as well as the mappings
between the coupling constants and arbitrary gauge parameters in each scheme.
Using these two loop results along with known three loop MS results, [79], for
the S-function and wave function anomalous dimensions, we are able to construct
the three loop anomalous dimensions for the gluon, quark, ghost and gauge pa-
rameter, in addition to the three loop S-functions in an arbitrary linear covariant
gauge for each MOMi scheme. We note that although results within this chap-
ter have already been published in [14] the renormalization constants are given
here explicitly for the first time. We do note however that these results can be

reconstructed via the details published in [14].
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3.1 Renormalization constants

Although we have described our renormalization procedure in the previous chap-
ter we take this opportunity to describe the technical details of the calculation
in fine detail. So far we have formulated the QCD Lagrangian for an arbitrary
(linear) covariant gauge. We have added our gauge fixing terms and checked that
the full Lagrangian is BRST invariant. We have generated our Feynman dia-
grams using QGRAF and computed the integral reduction using a combination of
MINCER and REDUZE to determine the needed master integrals. See Appendix
C for a full list of integrals needed at two loops as well as a discussion on more
general configurations. From this we have then inserted the master integrals and
used FORM to renormalize the theory and generate the amplitudes for each chan-
nel. From the amplitudes we have constructed the renormalization constants in
both the MS and MOMi schemes. In all of our calculations we determine the
renormalization constants by following the technique of [73], by first computing
the Green’s functions in terms of bare parameters and then rescaling them at the
end via the definition of the renormalization constants (2.1.55). To determine
each of the renormalization constants to two loops the gluon, ghost and quark
2-point functions are computed first. These determine the one loop contributions
to the renormalization constants Z4, Z., Zy, and Z, where Z, is the renormaliza-
tion constant for the arbitrary gauge-fixing parameter a. We determine Z,, the
renormalization constant for the MS coupling constant directly from the triple-
gluon vertex. However, as a special feature of the MS scheme the renormalization
constant for the coupling constant can be determined using any one of the ver-
tex functions. This is due to each vertex, once all diagrams have been added
together, being multiplied by a pre-factor. For instance the ghost-gluon vertex
has the pre-factor Zg(ccg) V/ZAZ,. and the quark-gluon vertex Zéqqg) V' ZaZy. Since
Za, Z. and Zy have been fixed at one loop by our wave function renormalization

we can determine Z,; using either vertex since

Zéggg) T = Zéqqg)‘m — Z;ccg (3.1.1)

s
i.e. a finite solution which implies that the theory is renormalizable. The Slavnov-
Taylor identity is automatically satisfied, [80], as we have already visited in sec-
tion 2.1.2. After determining Z, at one loop from one of the 3-point vertices and
checking that it holds for the other two vertex functions, we can obtain the two
loop renormalization constants by substituting our one loop result for Z, into the

2-point wave function amplitudes. Only once the one loop renormalization con-
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stants are known can they allow for the computation of the subsequent two loop
expressions. Doing so we obtain the two loop contributions to the Z’s, i.e. the
Z%g1 and zkgg terms in (2.1.61). In particular we obtain the two loop piece for Z4
from the gluon 2-point function, Z, from the quark 2-point function and Z. from
the ghost 2-point function, with the two loop contribution to Z, finally coming
from the vertices. Again, the value of Z, should be consistent across all three
vertices in the MS scheme. This is a property specific to non-physical gauges and
is consistent with our scheme definitions (see section 2.1.5). A table summarizing
from which Green’s functions the respective renormalization constants have been

obtained is included below where (Z,) have already been, or can be obtained

Green’s Function | Ren. constants obtained
ghost 2pt function Ze ) Zo

gluon 2pt function Za (Zy)

quark 2pt function Zy
ghost-gluon vertex z{ec8)
triple-gluon vertex ( Zgggg))
quark-gluon vertex ( Zg(qqg))

Table 3.1: Construction of the renormalization constants

via either function. This is useful in MS as a check on the consistency of our

renormalization constants.

Since we have discussed how the renormalization constants were determined we
now present the results below to the order of two loops for arbitrary SU(N,) for

generality starting with the wave function renormalization constants

13 « 4 a
ZA((I,O{) NS = 1+ |:CA (E — 5) — gTFNf:| E

1[ ,( 17 o 13 2
- o — - = TeN; [ Za+1
—I—Lz [CA< 24a+4 8)+CAF f(3a+ )1
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and finally for the coupling constant renormalization constant

Zéggg)(a,a) o Z(ch)(a,a = Zéqqg)(a,&)‘

_ { X ( -TFNf]
R
e 7y (]

+ 0 (a”) . (3.1.3)

Note that we have chosen not to label the variables a and « here to save on
space when presenting results. When variables are not labelled it is understood
that they correspond to the scheme defined on the function on the left hand side
of the equals sign. For example Z4(a, ) ‘WS implies @ = agrg and @ = agysg,
where aypg is the coupling constant specific to the MS scheme. Since the coupling
constant gets renormalized it becomes scheme dependent, as with the gauge pa-
rameter. Again in the MS scheme, Zg is independent of the vertex and so can be
determined using either the ghost-gluon, quark-gluon or triple-gluon vertex. For
the momentum subtraction schemes this is not the case. For the MOMi schemes,
where MOMi indicates one of the three MOM schemes as defined in section 2.1.5,
the renormalization is done in a similar way. However, recall that our renormal-
ization constants must now include both the O(%) and finite O(1) pieces. Based
on this condition alone we can see that this will cause problems when constructing
the renormalization constants for the vertices, namely the two loop contributions
to the Z’s and the renormalization of the coupling constant, g. Unlike in the MS
scheme where Z, was the same for each vertex, the renormalization constants

now depend upon the vertex at which they are constructed. This means there
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will be three different renormalization constants for the coupling constant which

Z;\/IOMg 7 Z;\/[OMq Z;\/IOMh

the scheme defined via the triple-gluon, quark-gluon and ghost-gluon vertices re-

we label

S and S the labels corresponding to
spectively. We begin with the scheme corresponding to the ghost-gluon vertex.

For the MOMh scheme the renormalization constants are

Zg(ccg)|MOMh = 1+ [3¢(3) oCa+ 249/ (3) aCy — 15¢/(3) Ca — 20 Cyr?

—270%Cy — 16aCy7? — 162aCy + 100472 — 6150,

1
240N/ T + 36(~11Ca + 4N/ T}) - 2%3

{(121@1 — 88Cy Ny Ty + 16Nf2T2)24 -

+ (36v3¥ (3)" ' + 576v3/ (1) 0*C3
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+25344v/3¢/ (1) aCANfTF — 1200v/3¢/ (%) C3n?
+239076v/3¢ (3 )CA — 102528V/3¢/ (3) CAN; T

+9\/_w///( ) 171\/_w///< ) QCA

+279v/3¢" (1) CA+999\/_ W"(3) Ch
+19440v/355 () a®CF — 124416V/355 (%) o2C3
+136080v/355 () aC3 + 1275264v/3s5 (%) O3
—497664v/355(T) CaN; T — 38880V/352 (%) o*C3
+248832v/355 (%) a?C% — 272160352 (%) aC}
—2550528V/352 (%) C3 + 995328v/355 (1) C4 Ny Ty
—32400V/3s3(%) o®CF + 207360v/3s;3 (%) o*C}
—226800v/3s3 (%) aC} — 2125440v/3s3(%) C3
+829440V/353(%) CaN; T + 25920V/353(%) o*C3
—165888V/3s3(%) a*CF + 181440V/3s3 (%) aC}

+1700352v/353 (%) CF — 663552v/353 () CaN; T
+16V3a C3rt + 216V3a C3n? — 486V/3a*C3
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+232V/3a°C3nt 4 1872303 C3n? — 324303 C3¢,
+3888/302C2 + 132030 C3 7t + 27024302 C3n?
+11016v/30°C3¢5 + 96228V/30°C3
—1920V302Cy Ny T — 25920V/302Cy Ny T
—2024V/3aC371* + 30336V/3aC371% — 45036v/3aC3(s
+353160v/3aC7 — 16896v/3aCy Ny T
—145152v3aCa Ny T — 2264+/3C3 1" — 159384+/3C2 72
—51192v/3C3 (s — 408870v/3C3 + 68352v/3Ca Ny Ty
+331776V/3C4 Ny TieCs — 39168v/3C4 Ny T
—497664V/3Cr Ny T (s + 570240vV/3Ck Ny Ti:
+115200V3NFTE + 1351n(3)%a’Cir — 8641n(3)%a’Cin
+945In(3)2aCit + 8856 In(3)*Cim

—3456 In(3)*Cy N;7Ti — 1620In(3)a*Cim

410368 1n(3)a*Cim — 11340 In(3)aCim
—1062721n(3)Cim + 41472 In(3) Ca Ny Ty — 1450°Cim®
+92802Cim® — 1015aCim* — 951205 7°
+3712C4 Ny T + 1443 (—33¢' (1) o*C3

+12¢'(3) o’ CaNyTp — 2644 (%) aCh

+96¢" (%) aCANy T + 165¢/ (1) C7 — 609 (3) CaNf T
+2202Cim% + 2970*C5 — 8a*Cy Ny T
—1080*Cy Ny Ty + 176aCim* + 1782203

—64aCy Ny* T — 648aCy Ny T — 110C5 72

+5541C5 + 40Cy Nym* T — 4380Cy Ny T

1 1
+432Cp Ny Ty + 960NF T3 E) W] a* + O(d®) .

(3.1.4)

Recall that we are using the same scale p for the coupling constant as the kine-
matic scale, see (2.1.63). Numerically for the wave function and gauge parameter

renormalization we have

1
Z(® — 14 |(=1.5a — 0.666667N; 4 6.5)—
MOMh €

+0.750% + 1.5 — 1.111111N; + 8.083333] a
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+ [(2.250° + aN; — 6.375a + 1.5N; — 14.625)612
+(—1.564483a* — 0.1953260° N; — 0.4864360°
+2.104062a:N; — 6.879690a + 1.893295N;

—34.834623)% +0.782241303913a* + 3.8849130°
—0.3255430° Ny + 1.972977a* + 0.728992aN; — 1.707555cx
—24.322251N; + 106.171599 } a2 + O(d®)

Z&® o = 1+0(a”)

ZC N vomn = 1+ {(—0.7504 + 2.25)% + 3.0] a
+ [(0.8437503 +0.75N; — 9.84375)612 +(—0.2197410°
—0.536207a” + 1028748 + 1.875N; — 26.077370)%
—0.0245060° — 3.395711cv — 2.604167N; + 25.290944 | a®
+ O(a®)

CC, ]_
Z{® = 1-1.333333a (1 + —> a
MOMh €

1
+ la(1.888889a + 3.0)6—2 + (—0.390651a? + 2.1525680

1
+9.9532560 + 0.666667N; — 11.166667)— — 0.390651a
€

—1.8474320” + 2.377939c + 2.333333N; — 25.464206 |
+ 0(ad®) . (3.1.5)

Notice how the two loop contribution to the wave function renormalization con-
stants are now dependent on a particular MOMi scheme compared to the MS
scheme where the Z’s were independent of the 3-point Green’s functions used to
determine them. At one loop, Z,, Z., Z., Z, remain scheme independent. It is
only by increasing the loop order that this scheme dependence becomes apparent.
Above, a and « depend on the MOMh scheme, and we have suppressed the argu-
ment (apOMp, ®MOML) On the renormalization constants. The renormalization
constants for each of the MOMg and MOM(q schemes were constructed using the

same techniques and are presented below for completeness. Starting with the
MOMg scheme

Z;gg@}MOMg = 1+ [-36¢/(}) a®Cu + 1629/ (1) aCs — 1389/ (L) Cu
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+384¢' (%) Ny T — 270°Cy + 240°Cum® + 1620°Cy

—108aCym* — 243aCy + 92047* — 2376C) — 256Nf7T2TF
a

1
864N T + 108 (~11Ca + AN/Tp) — |

2
24¢?
+ [2592\/§w’(l)2 a'C2 — 23328v/3y/ (1) 03 C3

+(121C3 — 88Cy Ny Ty + 16NF T ) ——

+72360v/3¢ (1)% 0202 — 55296v/3¢/ (1)* a?Ca N/ T
—89424v/3¢/ (1)* aC3 4 248832v/3¢ (1)* aCu N, T
+38088v/3¢ ()7 CF — 211968v/3¢/ (1) Ca N/ Ty
+294912+/3¢/ (1) Nf2T2+3888\/_w (1) a”C3
—3456v/3y (1) a*Cin? — 466563y’ (1) o*C3
+31104v/3¢/ (1) o 7r2+74196\/_ 3¢/ (%) o*Ch
—41472v/3¢' (1) a3Ca Ny Tir — 96480v/3¢' (1) o*C3r?
— 1198803/ (1) o®C} + 73728v/3¢/ (1) a’Ca Ny T
+134784V/3¢ (1) a?CaN; T + 119232v/3¢ (1) aCir?
—1107756v/3¢' (3) aC3 — 331776v/3¢ (1) aCa Ny T
—119232v/3¢ (1) aCu Ny T — 50784+/34¢ (%) O3
+3843072v/3¢/ (1) CF + 2826243y (1) CaN; T
—3827520v/3¢ (1) CAN; T + 497664+/3¢ (1) Cp Ny T
—393216V/3¢/ (1) NPr* Ty + 7741443y (1) NPT

+81V/3y" (3) o®C3 + 11343y (3) o*C3
—11664v/3¢" (1) aCf + 345873y (1) C3
—20736V/39" (1) CaN; T — 139968V/355 () o*C3
—69984v/355 () a*CF — 4408992355 (%) a3
+24214464V/355 (%) CF — 11197440V/3s5 (%) Ca Ny Tio
+279936V/355 (%) a*CF + 139968v/3s5(T) o*C3
+8817984V/355 (%) aCf — 48428928v/3s5 (%) C3
+22394880V/352(T) CaN; Tp + 233280v/3s3(%) o*CF
+116640v/3s3(%) a®CF + 7348320353 (%) aC3
—40357440V/353(%) C3 + 18662400v/353 () Ca Ny Tio
—186624v/3s3(Z) a*C% — 93312v/3s3 (%) o*C}
—5878656v/3s3(%) aC3 + 32285952V/3s3 (%) CF
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—14929920v/355 () CaN; T + 1458+/3a°C3
—2592v/3a°C27? — 21870v/3a°C? + 1152v/3a*C3r?
+31104v/3a*C37?% + 6779730 C2 — 1058430 C3n?
—49464V/30C3r% — 11664V/30°C3¢3 + 170100v/303C32
+27648V/30°Cy Ny T — 54432+/30°Cy Ny T
+29136v/302C2n* + 79920302 C3 72 + 2916v/302C3 (s
—971028v/30°C2 — 245767302 Cy Ny T
—89856v/302Cy Ny T + 34992030’ Cy N; T
—8640V3aC3m* + 738504v/3aCim? 4 664848V/30C3 (s
+1027890v/30C2 4 110592v/30Cy Ny T
179488V 30Cy Ny T — 349920/ 3aCy Ny Tj-
—75304v/3C3m* — 2562048V/3C3 1% — 2767284v/3C3 (s
—203067v/3C2 — 38912v/3C, Ny T
+2551680V/3C4 Ny 72T + 2985984v/3C4 N; TG
—681696V/3C4 Ny Ty — 3317767/ 30k Ny7*Tio
—2239488V/3Cr Ny T (s + 2379456/ 30k N; T
+131072V3N 7 T — 516096V 3N n T}
+767232V3NFTE — 9721n(3)%’Cir — 4861n(3)%a’Cin
—306181n(3)2aCir + 168156 In(3)*Cim
—777601n(3)?Ca Ny T} + 11664 In(3)a*Cim
+58321In(3)a®Cim + 367416 In(3)aCim
—20178721n(3)Cim + 933120 In(3) Ca Ny T
+10440*Cim* + 52202 Ci 7 + 32886003
—180612C57* + 83520C4 Ny T

+216V3 (396¢ (1) a’C3 — 1449 (1) a*Cu Ny T
—1782¢' (%) aCF + 648y (1) aCANy T + 1518y (1) CF
—4776¢" (%) CalNy Ty + 15360 (%) N7 T3 + 2970°C}
—108c’CaN; Ty — 2640 Cim* — 1782a°C}
+960*Cy Ny* T + 6480°Cy Ny T + 1188aCim?
+2673aC; — 43200y Ny* Ty — 972aCy Ny T — 1012057
+22464CF + 3184Cy Nym* T — 16848Cy N; T
+1296Cp Ny Ty — 1024N7 7132
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1 a?
+3456 N2T? —} — 4+ 0. 3.1.6
f F>e 92799361/3 (a”) (3.1.6)

Numerically the renormalization constants for the wave functions and gauge pa-

rameter are given as

Z(ggg)

= 1+ [0.750% 4+ 1.5ac — 1.111111N; + 8.083333
MOMg

1
+(—1.5a — 0.666667N; +6.5)— | a
€

1
+ [(2.25&2 +alN; — 6.375000a + 1.5N; — 14.625000)
€

—0.1875000° + 0.996035a" + 0.277778¢° Ny + 6.926580°
+0.5314420° Ny + 10.1305290% — 1.567892a Ny
+28.246854cr — 2.561884 N} + 3.142356 Ny + 41.955873

+ (0.375000a* + 0.1666670° N; — 4.367070a°
—0.7186980* Ny — 3.1533850* — 4.807737a Ny
+38.705877cc — 1.537130N} + 22.176457N;

1 ‘

—86.472011) —} a® + O(a®)
€

ZE |\omg = 1+ 0(@”)

1
2 |\ong = 1+ {3.0 + (—0.750 4 2.25) —} a
€
1
+ [(0.843750&2 +0.75N; — 9.843750) — — 0.750
€
+2.330668c” + 12.143941cr + 4.312919N; + 1.458303
+ (0.187500a" — 1.3710350° — 2.6547390

—1.729271aN; + 18.641647 + 7.062814N;
—43.951850) ﬂ a® + O(a?)
7eee) wore = 17 [—1.333333a . 1.333333%] a
+ [oz (1.888889c + 3.0) ;2 +0.333333a* — 1.4373950°
—8.7539440” — 3.074260aN; + 12.970224 + 2.333333N;
—25.464206 + (0.333333a* — 1.4373950° — 4.7539440”

—3.074260aN; + 20.545541 + 0.666667 Ny
1
—11.166667) g} a® + O(a®) . (3.1.7)
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Finally for the momentum subtraction scheme corresponding to the quark-gluon

vertex we have

29 |\ong = L [F6¢(3) ?Ca + 249/ (3) aCa + 969/ (3) aCr
+78¢'(3) Ca — 48¢/(3) Cr + 40’ Cum® + 270°Cy
—16aCy7* — 54aCy — 64aCrr® — 216aCr — 52Cm°

—993Cy + 32Cpm? + 432Ck + 240N, T
1 a

1
+ {(12103 — 88Cy Ny Ty + 16Nf2Tg)QTE

+ (72v36 (3)" ' — 5T6v3/ (1) 0°C3
—2304v/3¢/ (1) a*CuCe
1\2

3

1

3
—720v/3¢ (1) ?C2 + 103683y (1)* a2CaCre
+18432v/3¢7 (1)” 02C2 + 7488/3¢ (1) a2
+25344v/3¢' (1)® @y Cr — 18432V/3¢ (1) a2
+19080v/3¢ (1) C —35712\/_w( )? CuCir
+18432v/3¢ (1) C2 — 96V/3¢' (1) o' C3n?
—972v/3¢/ (%) 4CA+768f¢( ) o 272
+2160v/3¢' (1) o’ CF + 307230/ (§) 0 CuCprr?®
+17280v/3¢/ (%) @*CuCr + 960v/3¢/ (1) a*Cin?
+26820v/3¢ (1) a2C3 — 13824v/3¢ (1) a2CyCrr?
—55296v/3¢ (1) @2CaCr — 2880V/3¢ (1) o*Cu Ny T
—24576v/3y (1) a2CEn? — 829443y (1) o*C?
—9984V/3¢ (1) aCir® — 65232v/3¢/ (1) aC}
—33792V/3¢/ (1) CACFW — 379872v/3¢/ (1) aCuCr
+17280v/3¢ (1) aCuN; Ti + 24576V/3¢ (1) aCn?
+324864V/3¢ (1) aC2 + 46080v/3y (4 )aCFNfTF
—25440V/3y/ (1) C3r? — 127512v/3¢' (4) CF
HAT616V/3 (1) CaCrm® + 496224V/3¢ (1) CaCro
—44352V/3¢ (L) CAN{ T — 24576v/3¢ (1) O
—293760v/3¢' (1) CF — 9216V/3¢/ (3) Cr N, Tr

+108V3¢" (1) a?CF — 144V/3¢" (1) a*Cu G
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—198V/3y" (1) aC3 — 720v/3¢" (1) aCaCr
—1152V/3y" (1) aCZ — 414v/39" (1) CF

—864V/3¢" (1) CaCr + 576v/3¢" (L) CAN; T
+4608v/3y" (1) CZ + 6998435, (1) *C3
—124416V/352(T) a*CaCr + 108864V/3s2 (%) aC}
—995328V/355 (1) aCsCr + 497664V/3s2 () aC2
—443232V/355 (%) C3 + 1306368v/355 (%) C4Crr
—124416V/355 () CaN; T + 248832352 (%) C2
—139968V/355 (%) a*CF + 248832355 (%) a*CaCpr
—217728V/355(%) aC3 + 1990656V/3s5 (%) aCaCr
—995328V/355 (%) aCE + 886464v/3s, (%) CF
—2612736V/355(T) C4Cr + 248832v/3s5 (%) CaN; T
—497664v/355 (%) C% — 116640V/3s3 (%) a*C3
+207360v/3s3(%) a?CaCr — 181440v/353(%) a3
+1658880v/353 (%) aCaCr — 829440V/3s3(%) aCE
+738720v/353 (%) CF — 2177280V/353(%) CaCr
+207360V/3s3 (1) CaN; T — 414720V/355(%) C2
+93312V/353(2) a®C3 — 165888v/353(T) a’CuCp
+145152v/353(%) aC3 — 1327104V/353(3) aCuC
+663552v/353(%) aCE — 590976V/3s3 (%) C3
+1741824/353 (%) C4Cr — 165888V 3s5(2 )CANfTF

+331776v/3s3(T) C2 + 3230 Cin* + 648V/3a*C3
+2673v301C? — 2567302 C3r* — 1440v/30°C3
—1024V3a*Cy Cpm* — 11520v/30Cy O
—27216V303C4Cr — 608v/302C21* — 17880302 C2 7
—4860v/302C2¢5 — T3710V/302C2 + 4992v/302Cy Cpr?
+36864v/302Cy Cpm? + 207367302 CuCrCs
+38880v/302C Cr + 1920v/30Cy Ny T
+12960v/302Ca N; i + 8192V/30*Clr
+55296v/302C2r? + 93312130 C2 + 3856v/3aC3 7
+43488V/3aC3 1% 4 20736V 3aC2(s + 136728V3aC?
+13184v/30C4 Cpm? + 253248v/30Cy Crorr?
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+10368v/30C4Cr(s + 444528V 3aCy Cpr
1152030 Cy Ny7* T — 25920V 30Cy Ny T
—5120V/3aC2n" — 216576v/3aCEn? + 41472v/3aC2¢s
—311040V3aC? — 30720V 30Cr Ny T
—103680V3aCr N; T + 9584+/3C3 7% 4 85008v/3C 27
+1098361/3C3¢5 + 115029v/3C3 — 13568v/3C4 Cprrr
—330816v/3C4 Crr? — 31104v3C4Cr(s
—694656v/3C4Cp — 1536304 Ny T
+29568V/3Cy Ny Ti + 145152v/3Cy Ny Ti-C
—79200v/3Ca Ny T — 4096v/3C27* + 195840/3C27>
—290304v/3C2(s + 264384v/3C2 + 6144/3CH Nyw Ty
—248832V/3Cr Ny Ti-(3 + 430272v/3Ck Ny T
+57600V3NP TR + 486 In(3)*a*Chn
—8641n(3)2a*CyCrm + 756 In(3)2aCim
—69121n(3)?aCyCr + 3456 In(3)*aCin
—3078In(3)*Cim + 90721n(3)*Cy Crme

—8641n(3)?Cy NyrTy + 1728 1In(3)*CEnr
—58321n(3)a?C3m + 10368 In(3)a*Cy Cpm
—90721n(3)aCim + 82944 In(3)aCy Cpr
—414721In(3)aCEm + 36936 In(3)Cim

—108864 In(3)CyCrr + 10368 In(3)Cy Ny Tx
—20736In(3)C2m — 522a°C3 7% + 92802 Cy Cpr®
—812aC57° + 7424aCy Cpr® — 3712aC37°
+3306C37° — 9744C4 Cpr® + 928Cy Nym* T — 1856 Cfmr®
+72V/3 (66 (1) a?CF — 249 (1) a*CuN; Tk
—264¢ (1) aC} — 1056¢' (%) aCaCr

+961)" (3) aCaN; Ty + 3849 (%) aCr Ny Ty

—858¢ () C3 + 528y (1) CaCr + 312¢' (1) CaN; T
—192¢'(3) Cp N T — 440> Cin* — 2970°C
+16a*CyNym* T 4+ 1080*Cy Ny T + 176aC37?
+594aC3 + 704aCy Crr® 4 23760C4 Cr

—64aCy N;m* T — 216aCy Ny Tr — 2560Ce Ny T
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—864aCr Ny T + 572057 4 9699C5 — 352C4 Crm?
—4752C4Cp — 208C4 Ny * T — 589204 Ny Ty

1 1
+960N?T? —> —] a’> + O(d® 3.1.8
f F) c 31104\/§ ( ) ( )

for the coupling constant renormalization constant, with

1
7{aae) = 1+ [(—1.5a — 0.666667N; + 6.5)~
MOMq €

+0.750% + 1.5 — 1.111111 N} + 8.083333] a
1
+ {(2.25042 + aN; — 6.375a + 1.5N; — 14.625)—
€
+(—2.4960350° — 0.609349a° Ny — 3.200129°
—0.896125a: Ny + 19.6233760 + 0.671627N;
1
—22.923368) -
€
+1.248017a* + 8.191675a” — 1.015581a> N,
+15.1178030% — 4.271319aN; + 37.4184560
—26.358363N; + 120.984314] a2 + 0%

Z5% \jonq = 1+0(@)

1
289 hiomg = 1 {(—0.7504 +2.25)= + 3.0} a
€
1
+ {(0.84375042 +0.75N; — 9.84375) = + (—0.6855180”

1
—2.5140880% 4+ 9.780001cx + 1.875Nf — 21.954243)—
€
+1.83859902 + 10.105127c¢ — 2.604167Nf + 30.788446 | a?
+ O(a3)

1
foqg) — 1-1.333333a (1 + —) a
MOMq €

1
+ [a(1.888889a + 3.0)6—2 + (—1.218698a* — 3.8478050°

1
+7.509922c¢ + 0.666667N; — 11.166667)— — 1.218698a°
€

—7.8478050° — 0.0653960 + 2.333333N; — 25.464206] a?
+ O(a®) (3.1.9)

numerically. Again we make the important remark that the above three vertex
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functions were all calculated at the symmetric subtraction point. The renor-
malization constants, by definition, already satisfy the Slavnov-Taylor identities.
Therefore it is not necessary to check these again since by construction they are

automatically satisfied.

3.2 Results for the vertex functions

Once the renormalization constants are fixed up to our desired loop order (in
the case of the linear covariant gauge fixing this is up to and including two
loops), we can construct the amplitudes. We recall that the amplitudes are
the complete set of terms resulting from the sum of all contributing Feynman
diagrams for each wave function or vertex function. In this section we record
our results for the amplitudes, separately for each channel in both the MS and
MOMi schemes. To reiterate all results computed in this gauge have been done
so independently as a comparison and a check on our computer code prior to
considering other more technical gauges. The results have been published in
[14] and are presented numerically for all three vertices in both schemes. For
this reason, and for comparison later on in Chapters 4 and 5, we present the
amplitudes analytically for only one vertex in both schemes with all other results

presented numerically.

3.2.1 The ghost-gluon vertex

We begin by recording the MS amplitudes and relations analytically at two loops
for the ghost-gluon vertex. Despite the ghost-gluon vertex having the same num-
ber of diagrams as the quark-gluon vertex, the ghost-gluon vertex is chosen to be
the vertex we represent results analytically in for two reasons. Firstly this vertex
is the simplest of the two, with only two channels to consider, i.e. E?lc)g (p,q) and
E((jg;g(p, q). Secondly the ghost-gluon vertex provides the smallest set of analytic
results for all three vertices since the ghosts are scalars, whereas the quarks are
fermions which involve extra spinor indices and y-matrices by construction. It is
also the case that in the Curci-Ferrari gauge it is this vertex which is different
from the arbitrary (linear) covariant gauge, as briefly mentioned in our introduc-

tion. For the MS scheme the two independent amplitudes for the ghost-gluon
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vertex are

zfc)g(p,q)’MS = 1+ (288V3C; [30/(3) 0 + 24 () a — 15/ (}) —
—16am® — 108 + 107* — 108] a
+Ci [~216V/3 (1) a*Cy + 2502V (§) o
—9240V/3¢/ (1) @*Ca + 1920v3y/ (1) QNfTF
+19368v/3¢ (1) aCy + 2304v/3¢' () aN; T
+175416V/3y' (1) Ca — 7852834/ () Ny T
+OV3Y" (1) aCy — 1T1V3Y" (1) a2Cy

+279V39" (1) aCy + 999v/3¢" (1) Ca
+19440V/355 (1) 0*Cy — 124416355 (T) o*Cy
+136080v/352 (%) aCy + 1275264v/3s, (1) Cy
—497664v/355 (T) Ny T — 38880355 (%) a*Cy
+248832V/355(5) a*Cy — 272160V/355 (%) aCy
—2550528V/355 (%) Ca + 995328355 (%) Ny T
—32400v/355(%) a®Cy + 207360353 (%) a*Cy
—226800V/3s3(T) aCy — 2125440v/3s3(T) Ca
+829440V/353(T) NiTr + 25920V/3s3(3) aCy
—165888V/3s3(%) a*Cy + 181440v/353 (%) aCy
+1700352v/353(%) Ca — 663552v/3s5 () N;Ti
+144V3a'Cym? — 2432 Cyrt — 1728v/30° Oy

—324V30%C G5 + 4567302 Cam* + 616030 Cyr?
—648V/30%C 5 — 16848v/302C,
—1280V3a* Ny Ty — 744v/3aCar?
—12912v/3aCy7? + 40500v/30C4 (s
—215784V/30Cy — 1536v/3aN;m° T
+10368v/3aN; T — 2664y/3C,
—116944V/3Cm* — 202824v/3C (s
—194616v/3Cy + 52352v3N;w*Tx
+82944V/3N; Tr (3 + 53568V3N; T
+1351n(3)%a*Cym — 8641n(3)*a*Cyrr
+9451In(3)2aCym + 8856 In(3)?Cymr
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—3456 In(3)* N;7T — 1620 In(3)a®Camr
+103681In(3)a*Cym — 11340 In(3)aCyn
—1062721n(3)Ca + 41472 In(3) Ny Tx
—1450°Car® + 9280 Cy7® — 1015aCy 7
—9512Cy7° 4 3712N;w*Tx | o)

— + 0
622081/3 (@)
necg

()(p,q)‘ e = (288\/§CA (=3¢ (1) o® + 12¢/ (1) o + 15¢/ (1) + 2027
—8am’® — 54a — 107° + 54] a

G [216V30 () a'Cy — 2592V30/(3) a*Cy
+19608v/3¢/ (1) a*Cy — 1920V/3¢/ (3) o Ny T
+25992v/3¢ (1) aCy — 23043y (1) aN; Tr
—91176V/34 () Cu + 7852834/ (1) Ny T
—9V3y" (1) a3Cy — 45V39" (1) a2Cy
—171V39" () aCy — 999V3¢" (1) C4

3

—10440V/355(%) 0°Ca + 54432355 (5) o’
+3888V/3s5 () aCy — 878688352 (%) Cy
+497664v/355 () Ny Tr + 38380v/355 (%) o
—108864v/355 (%) *Cy — T776v/3s5 (%) aC,
+17573761/35,(Z) Csy — 995328352 () fTF
+32400v/353 () a®Cy — 90720v/353(%) o
—6480v/355(% (z) Ca

6

) aCy + 1464480v/355 (=
—829440v/353 (%) Ny Ty — 25920/3s3(%) o
+72576v/353(T) o*Cy + 5184v/355(Z) aC,
—1171584v/353(%) Ca + 663552v/355 (%) NfTF
—144/3a*Cym? 4 24303 Cy* + 1728V30°Cy?
+324V/30°Ca G5 + 120302 Cur® — 13072302 Cyr?
+648V/302CaCs — 29808v/302Cy + 1280V30 N T
+456V3aCym* — 17328V3aCym? — 17172v/3aCa(s
—13608V/3aCy + 1536v3aN;m* Ty — 10368v/3aN; T
+2664v/3C 7t 4 60784v/3C,m% + 148392v/3C4 (5
+98280V/3Cy — 52352V/3N; T — 82944v/3N; TiCs
—19008V/3N; T — 1351n(3)?a*Cym + 378 In(3)*a’Cyr
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+271n(3)*aCam — 61021n(3)*Cym + 3456 In(3)> N; 715
+16201n(3)a*Cym — 4536 In(3)a*Cym — 324 1n(3)aCyn
+732241n(3)Camr — 414721In(3) Ny T + 1450°Cy 7
—4060°Cym® — 29aCy 7 + 6554C,

—3712N;m*Tr| a®) NG + O(a®) . (3.2.10)

The same amplitudes considered in the MOMh scheme are

ER )| o = — 1+ Old)
S (p, q>‘MOMh - (288\/§CA (=3¢ (1) a2 + 12/ (1) @ + 15¢/ (1) + 20272
—8am? — 5da — 1072 —1—54} a

+Cx | =360 (3)" a'Cy - 14430/ (1) 0’y

+1512v/3¢ (1) a?Cy + 720v/3¢/ (1) aCy
—900v/3¢ (3)” Ca + 48V3¢/ (§) o' Gy
+192v/3y (1) a®Cam? — 2376V/3¢ (1) a3Cy
—2016v/3¢' (1) a?Car? + 9504v/3¢ (1) o*Cy
—960v/3¢ (1) aCym? + 13680v/3¢' (1) aCy
—2304V/3¢/ (% aNf Ty + 1200v/3¢/ (3) Car®

)
—121176V/3y' (1) Cy + 881283/ (1) Ny Ty
_9\/_1/1///( )0430,4 _45\/_¢///( ) 20 O

—171V39" (L) aCy — 999v/3¢" (1) Ca
—19440V/352(T) @3Cy + 54432V/355 () aCy
+3888V/352 (%) aCly — 878688V/3s5 (%) Cy
+497664V/355 (1) NiTr + 388801352 (1) o
—108864v/355(%) a*Cy — T776v/352(%) aC.
+1757376V/355 (%) Ca — 995328V/35(3) NfTF
+32400v/353 (%) a*Cy — 90720v/353 (%) o2Cy
—6480v/3s3(%) aCly + 1464480v/3s3 () C4
—820440V/3s3(%) NyT» — 25920v/353(%) o

§ (
+72576v/353(%) a*Cy + 5184V/3s3 (%) aC.
—1171584v/355(%) C4 + 663552v/3s5 (% )NfTF
—16V3a'Car* — 40V3a°Cur* + 1584v/30°Cym®
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432430 Culs + 79230 Car? — 63361302 Cyr”
+648v/30%Ca s — 10368v/30*Cy + T76v/3aCyr?
—9120V3aCym? — 17172v/3aCu (s + 9720V 3aCy
+1536V3aN; 7T — 10368V3aN; T + 2264v/3C, 7"
1807843072 + 148392304 (5 + 1944V/3C,
—58752V3N; 1Ty — 82944v/3N; T (s
+15552v/3N; T — 1351n(3)%a*Cyrr
+3781In(3)*a*Cyr + 27In(3)*aCym — 61021n(3)*Cym
+3456 In(3)* Ny Ty + 1620 In(3)a’Cam

—4536 In(3)a?Cam — 324 In(3)aCym
+732241n(3)Camr — 414721In(3) Ny T + 1450°Cam®
—40602Cy® — 2900y + 6554Cym°

—3712N; Ty | a®) 390873 + O(a®) (3.2.11)
where we recognise that in this scheme there is only one independent amplitude.
Since channel 1 contained the poles in € before MOMh renormalization, there
exist no corrections at the symmetric subtraction point for this scheme. Recall
that channel 1 corresponds to the tree level vertex structure and thus defines
the renormalization condition. An important point to note, which we revisit in
section 3.3, is that X ‘MOMh corresponds to the amplitudes in the MOMh scheme
with MOMh scheme-dependent variables. i.e. a = ayjomn and @ — anoMn -
The same goes for all schemes where results in the MOMg scheme are dependent

on the MOMg scheme variables, etc.

3.2.2 The triple-gluon vertex

Presenting the amplitudes for the triple-gluon vertex numerically we begin with

those computed in the MS scheme

1
ggg — ggg — _ — ye&gg — _ y8&gg
2(1) (p,q) s 2(2) (p, Q>‘M—S = B E(3) (p, Q)’M—S = Z(4) (p,q) VS
1
— geg — _ y8gg

= —1— [1.121244 — 3.761896cx — 1.289023* + 0.12500000*
—0.041737Ny] a
+ [29.753068 + 16.460077c — 9.779430a” — 3.206081c/”
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—1.652285a* 4 0.2812500° — [11.567720 — 0.968698a

—0.9112400” 4 0.416667°| Ny a® + O(a?)

Bl = 2Bl = - 25l = Wil

MS MS
= [7.056716 — 3.328046c — 0.507930a” + 0.057318¢/"
—1.092686 ]
+ [116.078964 — 13.683082cx + 0.3484130” 4 4.7763120°
+0.890861a" — 0.128965a° — [20.271011 + 1.015302a

—0.574522a” — 0.1910600°| Ny | a® + O(a®)

geg _ ggg

= [7.368300 — 3.351838a — 0.5701160 + 0.1926820”
—1.213010Ny] a
+ [126.004871 — 11.804885c + 3.779569a” + 4.3779190/”
+1.2887090* — 0.4335350° — [23.589819 — 0.015581cx

—0.936332a° — 0.6422740°| N;] @ + O(d®)

ggg _ ggg

= —[0.311584 — 0.023791a — 0.062186c° + 0.135364a°
—0.120324Nf]a
— [9.925907 + 1.878196cx + 3.4311560° — 0.3983930
+0.397848a — 0.3045700° — [3.318808 — 1.030883x
—0.361810a” — 0.4512140°| Ny | a® + O(a?) . (3.2.12)

The relations between amplitudes of the various projection tensor channels have
been detailed above. These are consistent with the expectations for the structure
of the vertex from symmetry, given that we have evaluated the vertex function at
the symmetric point, [14]. A relationship also holds between Z%%g (p,q), Z%g (p,q)
and Z%%% (p,q) in the MOMg scheme, which was commented on in [14]. However,

following a misprint in [14] we present the correct relation as

E%%g(p,q)‘m = Y0P 9| t E(gﬁ)g)(p,q)‘M—S (3.2.13)

which holds in the linear covariant gauge for arbitrary « to two loops. The MOMg
scheme amplitudes satisfy the same relations. In particular we have
ggg ggg ! ege
)y

) = 35 Q)‘ = — 5 X Q)‘

MOMg MOMg 2 MOMg
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1 ggg

_ _ y8eg _ Iy ‘
(4) (p;q) MOMg 5 ~(5) (p;q) MOMg
= - 509 vorg = "1 T O(a’)
7888 ‘ _ 9 y8es ‘ _ _ 9 y8es ‘
@ (P, q) MOMg © (.9 MOMg an (0 q) MOMg
= - X509 MOMe
= [7.056716 — 3.328046 — 0.507930c* 4 0.0573180/"
—1.092686 ;] a
— [78.783317 — 99.199663c + 10.001223a* + 10.9109240/”
—1.2024950* — 0.283161a” + 0.0214940°
—[34.308079 — 16.242288a — 1.820392a
+0.6079940°| Ny + 3.779101N7| a* + O(a®)
7888 ‘ _ _ yseg ‘
® (.q) MOMs (5 (0 0) MOMg
= [7.368300 — 3.351838c — 0.570116c* 4 0.1926820/"
—1.213010Nf] a
— [77.461404 — 103.656823a + 5.551499a” + 12.5463340"
—2.943107a* — 0.5253740° + 0.07225580°
—[35.389486 — 16.083732a — 1.7300350
+1.1212780°| Ny + 4.195246 N7 | o> + O(a)
ggg _ geg
X0y (p: @) MOMg — Xz (P, Q)’MOMg

= —[0.311584 — 0.023791a — 0.062186c” + 0.135364°
—0.120324N¢] a
— [1.321912 + 4.457161a + 4.44972300* — 1.635410a°
+1.740612a* + 0.2422130° — 0.050762a°
+[1.081407 + 0.158552cr + 0.090357a* + 0.5132850°| Ny
—0.416150N7] a® 4+ O(a’) (3.2.14)

with the corresponding relation

NG ONY) = 25, Q)‘

ggg
MOMg + E(10) (p,q) (3.2.15)

MOMg MOMg

for the MOMg scheme also holding true to two loops. Given the nature of the
MOMg scheme the relations for the amplitudes of channels 1 to 6 demonstrate
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that our renormalization is consistent and that our projection has been imple-
mented consistently within our FORM programmes. The recovery of this relation

also serves as a check on our REDUZE database.

3.2.3 The quark-gluon vertex

Finally, we complete our presentation of results for the amplitudes with the quark-

gluon vertex and the MOM(q scheme expressions. Firstly the MS amplitudes are

() q)‘m = 1 + [4.316221 — 0.588760c — 0.4570120%] a
+ [89.287678 — 2.5488660 + 0.7959460” + 0.2344280°
+0.3427590* — (12.136677 + 0.9766280

+0.5077910*) N | a® + O(a®)

S50 = 0|
= [2.598034 — 2.305695c — 0.41402307] a
+ [26.481247 — 21.748851a — 5.398494a” + 0.4547870”
+0.310517a" — (6.271894 + 1.033946a
+0.4600260°) N | a® + O(a®)
S, q)‘l\TS = T4, q)’m
= [2.050269 — 2.522631a — 0.50°] a
+ [12.735294 — 25.229976a — 6.681979a” + 0.0320680*
+0.3750" — (4.871593 + 0.919310c + 0.5555560°) V] a®
+ O(a®)
Z?(gg(p, q) ‘1\TS = —[4.362272 + 2.343907a + 0.5859770*] a

— [131.991115 + 45.467503a 4 4.857352a° + 1.2207850°
—0.439483a" — (10.922850 + 1.953256
—0.6510850%)N;] a® 4+ O(a®) (3.2.16)

where all the above expressions are dependent on MS variables aypg and agpg and
the symmetry of the exchange of the two external quark legs is manifest. This
was not imposed but emerges naturally from the computation. The corresponding

MODM(q scheme expressions are

S0y = 1+ O
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52498 ‘ _ ya98 ’
@ P D\ ong & P D]\ omq
= [2.598034 — 2.305695a — 0.4140230%] a
— [28.160581 — 15.726713cr + 11.991691¢” 4 5.1627790°
+0.5676400* 4 (3.385190 + 1.033946a) Ny | a® + O(a’)
52498 ‘ _ ya98 ’
@) (P,q) MOMqg () (P,q) MOMqg
= [2.050269 — 2.522631a — 0.50°] a
— [30.385945 — 13.448043cr + 14.1587140° + 6.3930200/”
+0.685517a* 4 (2.593517 + 0.919310a) Ny | a® + O(a®)
qqg - _ 2
S (0 a) ‘MOMq = — [4.362272 4 2.343907cx + 0.585977a] a

— [40.243836 + 27.911352a 4 15.1059210” 4 79109330
+0.8033950" — (6.075881 + 1.953256a) Ny] a”
+ O(a®) (3.2.17)

where clearly channel 1 correctly corresponds to the MOM(q scheme definition as
it is the only channel to contain the divergences in ¢. The quark external leg
interchange which is manifest in the MS scheme results for the amplitudes also

correctly emerges here.

In order to demonstrate the impact that increasing the loop order has on the am-
plitudes we graphically present the ghost-gluon vertex at the symmetric point.
We plot the one and two loop amplitudes for various values of o and Ny with
respect to the partial coupling constants a;(u, A). Here [ is the loop order and
A is the QCD scale defined in (3.2.20), not to be confused with that defined in
(2.1.20), where we define and compute the ratio of A parameters in all gauges in
different renormalization schemes for comparison later. To plot this vertex func-
tion we have determined the channel 1 amplitude, the amplitude corresponding
to the Feynman rule for this vertex, numerically for SU(3). The partial coupling
constants are given by solving the [-function as a differential equation for the

coupling constant. The S-function is given by

da

30) = G (3.2.18)

The [-function is a formal power series in a. If we denote the solution to the

truncated S-function at [ loops by a;(i, A) then we can write the one loop f-

66



function as

Blay) = —poas (3.2.19)

for instance. Combining (3.2.18) and (3.2.19) and rearranging for a; we obtain

1 8&1
_a_%alnu = fo

1 2

Sl In (2

a1 o In (AQ)

1

@ = ———. (3.2.20)

fon (£)
Here (3.2.20) implicitly defines A Thus
(WA = - (3.2.21)
ap\u, = BOL /N

where L = In (X—i) Based on the two loop result, as(u, A) is determined a similar

way with
B(ag) = —foas — fra; (3.2.22)
such that
- 1 51 IH(L)
as(p, ) = L [1 - 7L } : (3.2.23)

These are all we need since we only plot the one and two loop ghost-gluon vertex
function amplitudes. If the three loop MS results were computed we would need
to introduce a third partial coupling constant, namely

1 51 h’l(L)

wliM =5 R

+ [ (0L —InL — 1) + BofBa) %LQ} (3.2.24)
0

with

1 2
b = F[FNC+ANTE] B = 2 [-17C] + 10CaN; Ty + 6Cip Ny Ty
1

B = [—2857C% + 2830C Ny Ty + 1230C4 Cp Ny Ty — 316CAN; T

—108CENf Ty — 264Cp NP T7] (3.2.25)
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Note that we are using the three loop solution from |1, 2, 81, 82, 83]. We also
choose this point to define the anomalous dimension of the arbitrary gauge pa-
rameter, 7,. We define this here for convenience as it appears in our definition
of the S-function (3.3.29) later,

9, 0
yala, ) = ﬁ(a,a)aanA + oz'yoé(a,a)%anA

0 0 !
Yola, o) = ﬂ(a,@)%ana — vala,a)| |1 — ans— InZ,| .(3.2.26)

Note that we have shown a general definition of v, which will be applicable in all
gauges. However, in the linear coavariant gauge the anomalous dimensions for the

arbitrary gauge parameter and gluon field are equivalent, as we will see in (3.4.60).

In order to plot the one and two loop amplitudes on the same graph we need
to truncate the vertex function so that the one loop amplitude is a function of
ai (g, A) and the two loop amplitude consists of both the one and two loop con-

2

tributions multiplying as(p, A) and as(p, A)* respectively. This truncated vertex

function is defined by, [67],

T = ZE (ar(p, A))" (3:227)

where k defines the channel and n defines the loop order. Here a; is the solution

to the nth order S-function differential equation. The amplitudes then become

o0

L= Y Sk an (3.2.28)

n=0

yceg ’
(k) (p Q) e

These are valid for all three vertex functions, although we only consider the ghost-
gluon vertex as this behaves differently in linear and non-linear gauge fixings.
We present similar plots for a Curci-Ferrari and MAG analysis in chapters 4 and
5 for comparison. The plots are given for [ = 1,2 in the MS scheme at the
symmetric point in Figure 3.1. The reason we do not present the MOMi scheme
amplitudes graphically for the same channels is because they are constant at
the renormalization point. Due to the renormalization prescription imposed the
amplitudes corresponding to channel 1 are finite (i.e. fixed to 1), which provides
no useful comparison between loop orders. Note that in Figure 3.1 and in all later
figures the label z on the x-axis is defined by = = s/A, where s is the centre of

mass energy and A is in the MS scheme, [52, 91, 97]. By studying the plots it
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can be seen that there is only a difference of around 1% between the one and two

loop amplitudes.
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Comparison of one and two loop linear coavariant gauge ghost-gluon
vertex functions for N_f=3
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Comparison of one and two loop linear covariant gauge ghost-gluon
vertex functions for N_f=5

1.0454

1.040

1.0354

1.030

1.0257

20 40 60 80 100 120 140 160 180 200
X

Treeg 11 — — Theeg 12

Comparison of one and two loop linear covariant gauge ghost-gluon
vertex functions for N_f=4
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Comparison of one and two loop linear covariant gauge ghost-gluon
vertex functions for N_f=6
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Figure 3.1: Comparison of the one and two loop MS linear covariant gauge ghost-
gluon vertex functions for different values of Ny.

3.3 Conversion Functions and Mappings

The aim of our complete calculation is to determine the S-functions and anoma-

lous dimensions for each MOMi scheme at three loops. A similar preliminary

evaluation in the MS scheme has already been carried out in [14] of whose work

we base our own upon. The renormalization group (RG) equations are used to de-



termine the three loop RG functions without having to complete an explicit three
loop calculation. The idea of the renormalization group was originally developed
by Gell-Mann and others [84, 85, 86| whilst investigating Quantum Electrody-
namics (QED) in the 1950’s. Wilson, who was supervised by Gell-Mann at the
time, later developed the idea of the renormalization group analysis of strongly
coupled field theory, [87]. The RG equation needed in constructing the S-function

1S

MOM; NS dantoMi MS dantoMi
T e, 0) = [5 (038) 3 + WsVe (O NS ga— |
MS MS  JMS—MOM;i

(3.3.29)
where a and a are the MOMi coupling constant and gauge parameter after a
mapping is made of the evaluation of the quantity in square brackets from MS to
MOMi. The anomalous dimension of the gauge parameter o has been previously

defined (3.2.26) and

Vi 11 2
6Ms(am) = (—30,4 + - f) ai/[—s + O(ai/[—s) . (3.3.30)

3
The S-function determines the behaviour of the coupling constant, and was what
led [1, 2| to determine that gauge theory is asymptotically free. It is immediately
apparent that a mapping is needed between the MS and MOM scheme param-
eters in order to present the MOMi scheme [-functions in terms of the MOMi

scheme gauge parameters and coupling constants only.

In this section we show how this mapping was achieved. We diverge from the
construction of the f-function for now, concentrating on the coupling constant
and gauge parameter mappings and the construction of the conversion functions.
Knowing the conversion functions allows one to transform between schemes, re-
lating physical quantities in one scheme to the same quantities in another. Since
we defined our coupling constant renormalization as g, = u°Z,g we define our

conversion functions by

CMOMi( L 7) _ Z;VIOMi
g s Ms) T T NS o
g MOMi—MS

CMOMi( o 7) Z};/IOMI

¢ NS> MMS NS
@ MOMi—MS
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ZiVIOMiZ}{IS

WS OWS) T NS MO -
o Za T IMOMISMS

CcMOMi( (3.3.31)

where the conversion functions are always in terms of MS variables, as is our
convention, and ¢ € {A, 1, c}. For each renormalization group function there is

an associated conversion function that allows us to transform between schemes.

A problem arises however when one tries to compute the conversion functions in
this way, since the renormalization constants, say for example Z(%/[OMi depend on
parameters specific to that of the MOMi scheme, whereas Z};&S depends on agpg
and agpg. This is partly because we have chosen to use a mass dependent renor-
malization scheme which results in ayjon; and apnjon being gauge dependent.
Therefore, before attempting to compute the conversion functions it is necessary
to first construct mappings for the gauge parameter and coupling constant in the
MS scheme to that of the MOMi schemes. Let us first consider the mapping of
the gauge parameter, «, by recalling its definition

a, = g—:a (3.3.32)
where Z 4 is the gluon wave function renormalization constant and Z,, is the renor-
malization constant corresponding to the gauge parameter itself. If we assume

the same relation is true in another scheme, say
Qy = =0 (3.3.33)

and assume both of these equations are valid such that they can be set equal to
each other, then we get a relation between the gauge parameter in one scheme

and the gauge parameter in another, such that

N

ZA

Zy 7,
T Za
no= —_—— . 3.3.34
= (Za ZA) o ( )

By taking the barred variables to represent the MOMi scheme variables and

the unbarred variables to represent the MS scheme we find our mapping can be
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constructed using the following formula, [89, 14],

ZWz(lY[OMi
anomi(n) = ZMOMi /35 o) - (3.3.35)
A ey

While in our conventions for an arbitrary linear covariant gauge Z, = 1, we
include the full definition of the mapping here so as to be formally correct. We
will apply this full definition of the gauge parameter mapping when considering

non-linear gauges later. Similarly for the coupling constant mapping we have
ao = (1)’ Z2a and a, = (u)? _gzd (3.3.36)
which by rearrangement, as we have shown with the gauge parameter, gives

25 Y’
amomi(w) = | —xow | “ns() (3.3.37)
g

where any results in terms of apjonm; can be written as an expansion of aggg.
To get aypg, aypg In terms of ayjomi, @Mowmi, which is of a more practical use in
our calculations since we require an MS — MOM mapping for the MOMi scheme
renormalization group functions, we simply invert the power series of (3.3.35) and
(3.3.37) which give

a = a+ fila)a® + fola)a® + O(a*) (3.3.38)
a = a+gla)a+ g(a)d®+ O(a®) (3.3.39)

to get
a = a—fi(@a®+ (2f1(@)? - fola) + fil@g(a)) a® + Oa) (3.3.40)

0 = a—g(@a+ (—9@) + 9@ A@) + g (@)g(@) @ + O@) . (33.41)

To first order a simple change in sign is enough to invert both the coupling con-
stant and gauge parameter mappings. However as seen above, at higher loop

orders the inverted mappings become more involved.

We now record our results for the mappings of both parameters for each MOMi

scheme. It was found that the gauge parameter mapping was the same in all
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three MOMi schemes,

oo = |1+ Ca [S0TRNy = 9a% — 180 —97] =
+ [[18a” — 18a® + 190a” — 576((3)cr + 463 + 864¢(3) — 7143] C3

— [3200% + 3200 — 2304¢(3) — 4248] C4Ty N,
2

~ [4608¢(3) — 5280] CrTr Ny e

a+ O0(a?) . (3.3.42)
As expected, the coupling constant mappings are dependent on the vertex func-
tions above one loop order. The coupling constant mapping for the ghost-gluon

vertex is given analytically as

apMoOMh = @+ [3¢'( ) a?Cy + 24q)/ ( )aCA — 15¢/ ( ) —2a2Cym?

—270%Cy — 16aCy7? — 162aCy + 100472 — 6150,
2

240N Ty 1%8

+ [126V30 (3)" G + 2016v/34/ (1) 3CA+6804\/_w (1) a%C2
—10080v/3¢ (1)* aC3 + 3150v/3¢ (4)* C
(

(
—168v/3¢/ (1) a*Cin® — 1296f¢ 1 a4CA
—2688v/3¢/ (3) @*Cin® — 12960v/3¢/ (1) oC}
—9072v/3¢' (1) a®Cin* — 142920v/3¢ (1) *C3
+11520V/3¢ (1) 2c*AJ\ffTF+13440f¢( ) aCin’
—185832v/3¢ (1) a3 + 99072V/3¢/ (1) aCy N; T
—4200v/3¢/ (%) C2r2 + 754128V/3y/ (1) C2
—321984V/3¢' (1) CaN; T + 2734 (1) @ CF
—513V3¢" (1) a*CF + 837v/3¢" (1) aC + 29973y (1) CF
+58320V/3s2 (%) a®CF — 373248V/3s2(%) o*C}
+408240V/352 (%) aC3 + 3825792v/3s, (%) CF
—1492992v/355 (%) CaN; T — 116640v/355(%) a*C3
+746496v/355(T) a*CF — 816480v/355 (%) aCF
—7651584v/352 (%) C3 + 2985984+/35, (%) CaN;Tir
—97200/3s3(%) a*CF + 622080v/3s3 (%) a2C3
—680400v/3s3(%) aC3 — 6376320v/3s3 (%) O3
+2488320V/353 (%) CaN; T + T7760/353(%) o*CF
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—497664v/355 (%) a*C§ + 544320v/3s3(%) a3
+5101056v/3s3(%) C3 — 1990656v/355 () Ca Ny T
+56v/3a*C3rt + 86430 C37r? + 824+/30°C3 7
+8640v/30C272 — 972v/303C3 (5 4 29160v/30°C?
+4392v/302C2 7 + 95280v/30%C3 7% 4 33048v/3a%C3 (s
+407592v/302C2 — 7680v/302Cy Ny Tis
—103680v/302Cy Ny T — 6712v/3aC3n* + 12388830037
—135108v/3aC%(s + 1458000v/3aC2 — 66048v/3aCy Ny Tk
—590976V/3aCy Ny T — 6592v/3C3 7 — 502752v/3C3 72
—153576\/3C3(s — 470160v/3C3 + 2146567/ 3C,y Ny T
+995328V3C, Ny T3 — 707904v/3Cy Ny T
—1492992V/3Cr Ny TpCs + 1710720V 3Ck Ny T
+460800v/3NFT? + 405 In(3)%a*Cim — 25921n(3)*a*Cir
+28351n(3)2aCim + 26568 In(3)*Cam — 10368 In(3)*Cy Ny Tx-
—48601n(3)a*Cim + 31104 In(3)a*Cim — 34020In(3)aCim
—318816In(3)Cim + 124416 In(3)Cy Ny T — 4350°Cim?

1278402 Cin® — 3045aC 57 — 28536Ciw°
3

+11136C, Ny T ] %3;‘—2@

+ O(a") . (3.3.43)
The numerical mapping for the triple-gluon vertex is

apnioMg = @+ [26.492489 — 3.023791a — 0.3280460° + 0.250°
—3.416806 Ny] a®
+ [960.462717 — 46.712079 + 7.928513a” + 9.111075¢°
+1.037572a* — 0.3222560° 4 0.0156250° — [202.085012
—8.080297c — 1.690792¢ + 0.0104340°] Ny
+7.687393N7] @’ + O(a’) . (3.3.44)

Similarly for the quark-gluon vertex the coupling constant mapping is

anoMq = @ + [16.715775 — 2.344187c — 0.1640230” — 1.111111Nf| o
+ [472.159095 — 43.057553a — 0.776012a” + 2.0207160/°
+0.2088600" — [83.111217 — 0.6513960] Ny + 1.234568N7] a®
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+ O(a") . (3.3.45)

Notice that we are required to compute the apjopn mapping to an order greater
than that of the apjon; mapping since it is needed to this order to construct the
anomalous dimensions and S-functions for each MOMi scheme, as can be under-
stood from (3.3.29). Celmaster and Gonsalves also construct similar mappings in
[52] which we have checked our results against, along with [14]. One of the first to
consider a mapping between scheme-dependent coupling constants, in particular
between the MS scheme and original MOM scheme, Celmaster and Gonsalves
define a relation between the MS and MOM scheme coupling constants for the

triple-gluon vertex by

apiom = ans [1+ aysAla, Np) + O(afg)] (3.3.46)

where A(c, Ny) is the finite contribution to the MOM renormalized triple-gluon
vertex at one loop. Our results for the MOM renormalization of the triple-gluon

vertex at one loop agree with [52] up to a factor of 5-. This comes from the way

in which we have chosen to define the coupling constant, notably by a = %.
With the relation
A(a, Ny) =21 A(a, Ny) (3.3.47)
we can write (3.3.46) in terms of our finite contribution as
anoMg = axgs |1+ “%A(a, N)) + Olag)] - (3.3.48)

As in [52] we choose various values of o and Ny, using REDUCE as our main data
processor to compare with the findings of [52]. Table 3.2 shows the comparison

between values.

Another analysis we can make using results for the coupling constant mappings
is the A-ratio. We define the A-ratio as in [52] through

A . @MOMi N,
Mg Bo
with 3, originating from the one-loop 3-function such that, [51],
~ 22 8
Po = 30,4 —3 PNy (3.3.50)
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a | Ny | Ala, Np)oygp2) | Ales Ny)pen
0 0 3.818 2.108
01 3.443 1.836
0| 2 3.067 1.545
0] 3 2.692 1.293
0] 4 2.316 1.021
0| 5 1.941 0.749
110 3.572 1.861
1] 3 2.445 1.046
1] 4 2.070 0.774
115 1.694 0.502

Table 3.2: Comparison between Celmaster and Gonsalves’ results for the contri-
bution of the finite piece for the one loop MOM renormalization of the triple-gluon

vertex of [52] with my results for the same Green’s function also renormalized in
the MOM scheme.

The A-parameter sets the fundamental scale in QCD. However its actual value
depends on the renormalization scheme one is considering. A remarkable feature
of this quantity is that the ratio between A parameters in different schemes can

be determined from a one loop computation. For each MOMi scheme we have

1
OMOME (0, Np) = 12 [30/(3) 0°Ca+ 240/ (3) aCa — 150/ (5) Ca — 20°Cyrr®
—270*Cy — 16aCm* — 162004 + 10047% — 615C,

+240N; Ty

OVOM: (0, Ny) = 2 [360/(1) aCa - 1620/(}) aCi + 1380/ (1) C

324
—384¢ (1) Ny T + 270°Cy — 240°Cum® — 1620°Cy
+108a 0,7 + 24300y — 92C,7* 4 2376C,
+256Npm Ty — 864N; T ]
MOMq 1 (1) A2 r(1 r(1

S (., Ny) = o5 [69'(5) a*Ca — 240/ (5) aCi — 960/ () aCir
—78¢' (1) Ca + 48¢/ (%) Cp — 4a°Cym® — 270°Cy
+16aCa7? + 54aCy + 64aCpm® + 216aCk + 52C47°
+993Cy — 32Cpm* — 432C — 240N Ty ] (3.3.51)

where @MOMg(a, Ny) is a variation of A(«, Ny). The same goes for @MOMh(a, Ny)
and @MOMq(a, Ny) which come directly from the coupling constant mappings for
the ghost-gluon and quark-gluon vertex functions, (3.3.43) - (3.3.45). For example
OMOMh(, N.) is defined by the one loop contribution of ayronm, in (3.3.43),
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where a direct comparison of terms can be made. We note that within this thesis
@MOMi(a, Ny) is always defined to be the one loop contribution of apjon. Table
3.3 displays the A parameters in each MOMi scheme. The difference between

a || Ny || MOMg [52] || MOMg | MOMh | MOMq
0O O 8.86 3.3341 | 2.3236 | 2.1379
0] 1 8.113 3.0543 | 2.3250 | 2.1277
0| 2 7.343 2.7644 | 2.3267 | 2.1163
0 3 6.55 2.4654 | 2.3286 | 2.1032
0] 4 5.73 2.1587 | 2.3308 | 2.0881
0| 5 4.91 1.8471 | 2.3335 | 2.0706
11 0 7.69 2.8957 | 2.6166 | 1.9075
1 3 5.51 2.0751 | 2.6924 | 1.8296
11 4 4.76 1.7921 | 2.7265 | 1.7964
1] 5 4.01 1.5088 | 2.7670 | 1.7581
3| 3 4.89 1.8392 | 4.1918 | 1.3110
3| 4 4.18 1.5732 | 4.3978 | 1.2533
2| 4 6.76 2.5437 | 2.0081 | 2.6597

Table 3.3: Values of A%’—%S\dl for the arbitrary linear covariant gauge in SU(3).
M

the MS and MS results should be 2.65622061617, [52]. This comes from the extra
factor of e%(log(‘lﬂ)_”) appearing in the MS scheme. By dividing Celmaster and
Gonsalves’ ratio by ours in Table 3.3, we indeed get 2.65622061617, confirming
their results and agreeing with [90]. To understand what we have done is correct
we make contact with the old, but still very much relevant work carried out
in this area in the 70’s. By comparing with MS results the factor of 2.65...
obtained is confirmation that our work is consistent. With our gauge parameter
and coupling constant mappings found, and returning to (3.3.31) we can now
compute the two loop conversion functions. The results are presented below for
each MOMi scheme. Starting with the conversion functions for the wave functions
we find that, along with the gauge parameter, these conversion functions are the
same for all MOMi schemes in the arbitrary linear covariant gauge at two loops.
These are

a

CMOMi(g a) = 14 [902Cy + 18aCy + 97Cy — S8ON; T ] 2
+ [810a°CF + 24300°C3 + 5184aCi (s + 2817aC]
—2880aCy Ny Ty — TT76C3 (3 + 83105C% — 20736Ca Ny T (s
—69272C4 Ny T + 41472Ck Ny T Cs — 47520Ck Ny Ty
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2

2592
C'i\/IOMi(CL, a) = 1+ [ 902Cy — 18aCy — 97C4 + 8ONfTF] 36

+ [180C} — 18*C} + 1900*C; — 3200°Ca Ny Ty — 5760C3 (s
+4630C3 — 3200Cy Ny Tp 4 864C3¢5 — 714303

+2304CA]\/}TFC3 + 42480A]\7]0TF — 4608CFNfTF€3
2
a
2 Nlp| —
| +5280Ck 't F} 9883 -+ O( )
CMOMi(g,a) = 1+ Cua+ Cu [-360°Cals + T207Ch + T20Ca(; — 21aCl
2

—180C4Cs + 1943Cy — T60N; T ] % + 0@

+12800N7 17| + O(a®)

C}XIOMi(a,a) = 1—aCra

—f-CF [—QQQCA + 80120]: + 24OZCAC3 — 52040,4 + 24CAC3 — 820,4
2
+5Ck + 28N, Ty % + O(a®) (3.3.52)

where a and « are MS variables. The only conversion functions that are scheme
dependent are those that directly contribute to the coupling constant mappings.
The vertex-dependent conversion functions are given below for each scheme, with

an analytical analysis given for the ghost-gluon vertex first

CMOMb( o) = 1 + [3¢/(4) a®Ca + 249/ (3) aCy — 15¢/ (1) Cu — 20°Cy?
—270%Cy — 16aCA7r —162aCy + 10C4 72 — 615C,

240N Tp] — 216

+ [36v3u ()" a'CE + 5T6v/30/ (1) 0 C3

+1944v/3¢' (1) 2(14—288()\/_1;]( ) aC}
+900v/3¢ (1) O3 — 48v3¢/ (1) o O
—972v/3¢' (1) o*CF — 7683/ (4 ) m
+1944+/3¢ (1) o*CF — 25923/ (4 ) jwz
—60696v/3¢ (1) 2CA+864O\/_ 39 (3) @’ CaNy Ty
+3840V/3¢ (1) aCim® 4 48963y (3) aC}
+29952v/3¢ (1) OzC’ANfTF—HOO\/_ Y (%) Cin?
+569628v/3¢ (1) C3 — 249984V/3y/ (1) CaN; T

+27\/_w///(7) SCA _513¢_w///(7) QCA
+837V3y" (1) aC3 + 29973y (1) CF
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+58320v/35, (%
+408240v/3 55 (
—1492992v/3s,
H746496V/354

) a®C3 — 373248V/355 (%) a*C3

6 6

(

3)
—T7651584v/3s5

)

-

(

3)

6

) aC3 4 3825792V/3s, () OF
) CaNf T — 116640v/3s5(5) o*C3
) a*C% — 816480V/352(%) aC3
) C} + 2985984v/35, (2) CaN; T

a®C% + 622080V/3s3 (%) a*C3
) aC% — 6376320V/3s3 (%) C3
+2488320v/355 (%) CaN; T + T7760v/355(%) o*C3
—497664v/355(%) a*CF + 544320V/3s3(5) aC3
+5101056v/3s3 (%) C3 — 1990656355 () CaN; T
+16v301C3nt + 648v30 C3n? + 43747301 C3
+184v30a3C3 1t — 1296130 Can? — 972v/3a°C3(s
+2232v/302C3 1t + 40464v/302C% 1% + 33048302 C3(s
+8748V/302C% — 5760/ 302 Cy Ny T
—TT760V/30Cy Ny Ty — 3512v/3aC37* — 3264v/3aC37?
—135108v/3aC3(s — 157464v/3aC? — 19968v/3aCy Ny T
—124416v/3aCy Ny T — 7592v/3C3xt — 3797521/3C% 7
—153576v/3C3¢s — 4252410v/3C2 + 1666567/ 3Cy Ny 7> Tk
+995328V/3C N Ti (s 4 22440967/ 3C, Ny T
—1492992v/3Cr Ny T Cs + 17107207/ 3Cr Ny T
—115200V/3NPTE + 405 In(3)*a’Cim — 25921n(3)%a’Cim
+2835In(3)*aCim + 26568 In(3)*Cim
—10368 In(3)?Cy NymTr — 4860 In(3)a’Cimr
+31104In(3)a*Cim — 34020 In(3)aCim
—318816 In(3)Cim + 124416 In(3)Cy Ny T — 4350°Cin?

1278402 C37® — 3045aC3m> — 28536C5T°

a2

— +
1866244/3

—97200V/3s3 (%
—680400v/3 53 (

+11136Cy Np7° Ty | O(a®) . (3.3.53)

For the triple-gluon and quark-gluon vertices the conversion functions are pre-

sented numerically as

CMOME (4 0) = 1 — [13.2462444 — 1.5118956a — 0.16402320°
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+0.12500000” — 1.70840321V;] a
— [217.0368707 + 36.7247782 + 7.0535877a” — 1.15576190°
+1.0453915a* — 0.0996192a° — 0.0156250a°
—[33.1527255 + 3.7086335c — 0.00474290
—0.63543410°| N; — 0.5342658 N7 ] a® + O(a?)
CMOMa(q o) = 1 — [8.3578873 — 1.1720934c — 0.08201160°
—0.5555556N f]a
— [131.2981279 + 7.8598968cx — 0.39237950 + 0.7219823¢
+0.09434090* — [27.6257962 + 1.6277910a
+0.13668600°| Ny + 0.1543230N7] a® + O(a®) . (3.3.54)

These conversion functions and parameter mappings are vital in constructing the

[S-functions for each MOMi scheme, which we visit in the next section.

3.4 [-functions and anomalous dimensions

Now that we have deduced the coupling constant mappings, gauge parameter
mapping and conversion functions we can begin constructing the S-functions and
anomalous dimensions to three loops for each MOMi scheme. This is carried out
using the formula (3.3.29), [14, 58]. It has been shown, and confirmed in [1, 2| that
the one loop S-function (3.3.30) is both gauge and scheme independent. This can
be seen through the absence of o terms at this loop order. We note however that
in momentum subtraction schemes gauge dependence appears in the -function
at higher loop orders and that it no longer remains gauge parameter independent,
instead depending very much on the scheme used to calculate it. This is not the
case for the MS j-function where it remains gauge invariant to all known orders.
This is a special property of MS. Since there are three MOMi schemes, this means
there will be three separate S-functions compared to just one in MS, since there
are three distinct couplings. The anomalous dimensions can be computed in a

similar way using the formula

MO (0,0) = [ (o) + 5% ayg) 5 OO oy )
+ aM—ng/IS (am, am) —8am In C};/[OMI (GWS’ O‘WS) S Ao
N i

(3.4.55)
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with ¢ € {A4,v, ¢, a}. In order to use these formulae we require the MS 3-function

and anomalous dimensions at three loops. Since we did not directly carry out a

three loop calculation we pull these results from [1, 2, 92, 93, 94, 14|, and display
them below for the benefit of the reader

8M5(a, a)

B (a, )

M5 (a, )

M5 (a,q)

W (a, )

2 3
[—11Cy + 4N} Tp] % +2 [~17C2 + 10CAN; T + 6C Ny Ty %

+ [—2857C% + 2830Ci Ny Ty 4 1230C4Cp Ny Ty — 316Co NPT

a4

i O(a®) (3.4.56)

—108CENf Ty — 264Cp NP 17|
a
6
+ [207C} + 11aC} — 59CF + 40Ca Ny Ty + 32Cp Ny Ty ] %2
+[630°C5 + 54a2C5¢G + 2970%C3 + 216a05¢; + 1503aC
—576aC3 Ny Ty + 162C5¢; — 9965C7; — 5184CT Ny Tr(s

+14576C5 Ny T + 6912C4 Cp Ny T3 + 80C4Cr Ny T
a3
288

[30&0,4 —13CY + 8NfTF]

—2432C4 N7 T2 — 576CE Ny Ty — 1408Cr N7 T3 | + O(a*)

[—3aCy + 13C4 — 8N, TF] %

2
+ [-20°CF — 11aCf + 59CF — 40Ca Ny Ty — 32Cp Ny Ty ] %
+ [-630°CF — 540*C3¢s — 2970 C5 — 216aC5¢ — 150300
+576aC; Ny Tr — 162C5C3 + 9965C7 + 5184CT N Tr(s

—14576C3 Ny Ty — 6912C4 Cp Ny T (3 — 80C4Cp Ny Ti

a3

a 4
583 + O(a)

+2432C4 NP T2 4 576Cp Ny T + 1408Cr N T

CL2

Cular — 3)% + Ca[-8aC — 95Cs + 40N/ 1o
+Cy [81a°CY — 1620°C3(5 + 1620°CY — 648aC5 (5 + 918aC)
—1512aCy Ny T — 486C5 (5 — 15817C; + 15552C Ny Tr(s

+1552C4 Ny Ty — 20736C Ny TioCs + 19440Ck Ny T

a2

1728

aCra+ Cr [aCy +8aCl +25C — 6Cr — SN/TF] 7

+Cr [9003CF + 1080*C3 ¢ + 351a*CF + 216aC5¢; + 2367aCh
—1224aCy Ny Ty — 2484C3 (5 + 18310C% + 3456C4 Cr(s
—10296C4Crr — 9184C4 N;Ti> + 432C% + 864Ck N Tre

+2240N7 T ] + O(a")

2
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3
+6A0NPTE] 2% + O(a®) (3.4.57)

where the gauge invariance of the MS S-function can be explicitly seen here.
We now have everything we need to compute the MOMi scheme renormalization
group functions. Starting with the MOMh scheme the scheme dependent (-

function is

2

pMOMb (o) = [—11C4 4 AN, Tf] %

+ [9¢'(3) ®CF — 3¢/ (3) &°CF + 249 () &*CA N/ T

—156¢/ (1) aCj + 96y (3) aCaNy Ty — 6a°Cin® — 81a°Ch
+20°Cim? 4+ 108a°C} — 160*Cy Ny Ty — 2160*Co Ny T
+104aC37* + 1053aC; — 64aCa Np*Tp — 648 Ca Ny T

3

—3672C3 + 216004 Ny Tj + 129GC'FNfTF} @

+ [1080v3y/ (3)" a°C§ + 946834/ (3) o*C
+2448v/3y/ (1) o' CIN/ Ty — 799230 (1) 02 C3
+27648v/3¢/ (1)* *CIN, Tir — 83808v/3¢ (1) 20A
+54432v/30 (1)® 0*CIN; The — 1440V/3¢ (%)2
—23040v/3¢' (4)* @C3N; T + 29700v/3¢)/ (é)
—10800v/3¢ (1)* CIN; Ty — 1440V3¢ (1) o°C
—11664V/3¢ (1) a°C3 — 12624v/3y/ (1) o*C 37r2
—3888v/3¢ () a'C3 — 32643y (%) o CINs2T;
—31104V/3¢' (1) *CIN; Ti + 10656v/3¢ (1) o* O
—222912V/3y' (1) a>C} — 36864V/3¢/ (1) o CIN; 7T
— 1762563y (1) *CIN; T + 11174434 (1) o2 Ciin
+609768v/3¢ (1) a?C3 — 72576v/3y/ (3) o*CNm T
—648000V/3¢ (1) a?CIN; Tir + 186624v/3¢ (L) a*CuCr N; T
+1920V/3¢/ (1) aCin? — 21714483y (1) aC}
+30720V/3¢ (1) aCIN; T + 1586304v/3¢ (1) aCN; T
+995328v/3y (%) CaCrN; T — 39600v/3¢ (1) Cir?
+14224896v/3¢ (1) CF + 14400v/3¢' (1) CIN; 7w T
—11187072v/3¢/ (1) CIN; T — 311040V/3¢/ () C4Cr N; Tr
+2115072V/3¢ (1) CANFTE + 243V/3y" (1) o' C3
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—3537v/3y"
+4563v/34"
+7533v/3u" (
—23976/3¢""
—3230928+/3s,
+2717712v/3s5
+3674160v/35,
—63452160v/35,
— 1049760/ 354
— 1866240/ 354

(

1) a3C} + 432V3y" (1) o*CIN; Ti
1) a2C3 — 4104V3¢" (1) a*CIN; T
1) aC3 + 65934v/3¢" (1) CF

( (§)a

) a*C3 + 933120355 (%) a*CAN; Tr
) a®C3 — 2985984V/355 () o> CIN; T

) aC3 + 84167424V/3s, (1) C3

) CINf T + 11943936V/3s5 (%) C4 NP T2
) a'C5 4 6461856V/3s5 (3 ) *C3

) a®CEN{ T — 5435424V/355(Z) a*C3
+5971968V/355 (%) o’ CLN; T — 7348320V/355 (%) aC
— 16833484835, (

—23887872v/35, (3

+5384880v/3s5 (%)

—4529520v/355 ()

—6123600v/355 (%)

(3

) C3 + 126904320v/35, (%) CIN; T
) CANPT — 874800353 (Z) o*C}
a®Cf — 1555200353 (%) o’ CiN; T
a’C3 + 4976640V/3s3 (%) «*CN; T
aC§ — 140279040v/3s3 (%) O3
+105753600v/355 (%) C3N; T — 19906560+/3s5 (%) CANF T
+699840V/353(%) a*CF — 4307904v/353(%) o*C5
+1244160v/353(%) a®CIN{ T + 3623616v/353 (%) o2C3
—3081312V/3s3 (%) a*CEN;Tir + 4898880v/353 (%) aC
+112223232v/355(%) C5 — 84602880V/3 53( )CANfTF
+15925248v/355(%) CaNFTZ + 480V3a°C
+77767/3a°Cin? + 356030 C A7r4—|—2592\/_ 301C3n?
—8748V/3a1C3¢s — 40824v/3a*C5 + 10883 CI Ny T
+20736V/3a*CEN; T T + 4665630 CN; T
+5880V30Cin? + 148608v/30Cin? + 214812v/30° Ci(s
—554040v/30%C3 4 11136V/30*CIN; 7 T
+117504v/30° CIN; 2 T — 15552V 302 CENf TG
+466560v30>C3 N/ T — 49416v/30*Cin
—406512v/3a%Ci7n% — 537516v/302C5¢5
+832032/30%C4 + 35136V3a2CLN; T
+432000V/302C3 Ny T + 264384v/302CI N/ T Cs

52
(
s
6
T
6
T
6

84



—917568v/302C2 N; Ty — 124416302 CyCp Ny T
—1679616v/302CaCr Ny T — 20728V/3aCim?
+1447632v/3aC3 7% — 1215972/30C3 (5 4 12422160v/3aC3
~10240V3aC3N; ' T — 1057536v/3aC5 Ny Tio
—8957952v/30CAN; Ty — 663552v/30Cy Cp Ny T
—6718464V/30CyCp Ny Ty — 162624v/3C3
—9483264/3C3 1% — 3378672V/3C3¢;
—70400016v/3C3 + 59136V 3CN; T

7458048V 3CEN; T + 23125824V 3CEN; TG
+58335552V/3C3 N; Ti- + 207360V 3C4 Cre Ny ° T
—32845824+/3C4 Cr N; Ti-C3 + 37635840v/3C4 Cr Ni T
—1410048v/3Cy N7 T — 7962624/ 3CA NF T3 (s
—8211456V/3Cy N7 T — 1119744V/3CEN; T
+11943936/3Cr NP TR(s — 11446272V/3C NPT
+3645 In(3)2a*Cim — 224371n(3)%a*Cim
+6480In(3)*a*C; Ny + 18873 In(3)**Ciinr
—20736 In(3)**C3 Ny + 25515 1n(3)*aCim
+584496 In(3)*Cim — 440640 In(3)*C3 Ny Tx
+829441n(3)*Cy NfwT7 — 43740 In(3) o Cim
+269244 In(3)a*Cim — 77760 In(3)* O3 Ny Tx-
—226476 In(3)”Cim + 248832 In(3)a*Ci Ny w1x
—306180 In(3)aCim — 70139521In(3)Cinr

+5287680 In(3) CiNpr Ty — 995328 In(3)Ca Nf w1}
39150 Cim?® 4 24099a*Cim® — 69600 C; Ny Tie
—20271a°Cim® + 222720 Ci Ny Ty — 27405005 7°

—627792C57* + 473280C; Ny T
4

a
Y oW 3.4.58
550872+/3 (a”) (3.4.58)

—89088Cy Nfw T77]

where gauge dependence is apparent after one loop. This is expected with mass
dependent renormalization schemes. One check on (3.4.58) is that the MOMi and
MS p-functions agree in the limit o = 0 at two loops. At three loops they will

not agree as this is where the scheme dependence first appears. This has been
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checked in all schemes. The anomalous dimensions for the wave functions and
arbitrary gauge parameter, constructed using (3.4.55), in the MOMh scheme are

MOMh(a Ck)

A — [3aC4 — 13C4 + SN} Tp] =

+ (9 (3) &’CF + 33¢’(16) o?Cj + 249/ (§) &>CaN; T
—357¢' (1) aCq + 192¢/ (1) aCa N T + 1959 (%) Ci
—120¢' (1) CaN; Ty — 60°Cim* — 1620°C} — 220°Cin?
+1350°C3 — 160*Cy Ny T — 4320*Cy Ny Ti + 238203
+1539aC; — 128aCy Ny Ty — 1296aCy Ni T — 1300572

—3186C3 + 80C Ny 2T + 2808C4 N; T
2
a

648
+ 378V (1) 0°CF + 441073y (3) ' C

+2592C N Ty ——

+1008v/3¢/ (1) a* CIN Ty — 579630 (1)” @*C4
+16128v/3¢ ()2 a*CEN, Ty — 11869239 (1)? a2C3
+54432v/3¢/ (1)? a2 CEN, Tr + 140490v/3¢ ()% a4
—80640v/3¢ (1) aC2N; Ty — 40950v/3¢ (1) €3
+25200v/3¢ (1) CIN; T — 50439 (1) 0> Cir?
—TT76V/3¢' (1) o°CF — 5880v/3¢/ (1) o Cin?
—40176V/3¢/ (1) o'C3 — 1344V/3¢/ (1) o' CIN; 7 T
—20736v3¢ (1) ' CEN; T + 77283/ (1) o*Cir?
—75816V/3¢ (1) a*C5 — 21504v/3¢ (1) o> CIN; 7 T
—186624v/3¢ (1) P CEN; T + 158256v/3¢ (1) o*Cir?
+1189728V/3¢ (1) a2C3 — 72576v/3y/ (1) @2 CN w2 T
—699840v/3y’ (1) a*CN; T

+124416V/3¢ (3) o’ CaCp N, T

—187320V/3¢' (1) aCir? + 77976v/3¢ (1) aCf
+107520V/3¢ (1) aCN; T + 59788830 (1) aCiN; T
+995328V/3¢ () aCyCp Ny T + 55296v/3 w( ) aCANFT
+54600v/3y (1) Cir? — 7120224v/3¢' (1) C3

—33600v/31)' (%) CAN; 7Ty + 7615296+/34 (3) CAN; T
—622080v/3¢ (1) CACrN; T — 2115072V/3¢ (1) Ca NPT

+81V3y" () a*C3 — 18903y (1) a3C3
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+216v/3¢" (1) «*CIN/ T + 9180v/3¢" (1) o*C
—4104V/3¢" (1) a*CEN; T — 1890v/3¢)" (1) aC
+6696v/30" (1) aCIN; T — 3896130 (1) C3
+23976v/3¢" (1) CIN; T + 174960352 (%) o*C
—1877904v/355 (%) a*C} + 466560v/355 (%) o CI Ny T
+6076944v/355 (%) a*C — 2985984V/3s5 (%) a*C3N; Tr
+6170256v/352 (%) aC§ — 1213056V/3s5 (%) aCIN; Ti
—49735296v/35, () C} + 50015232V/3s, (5 ) CIN; T
—11943936V/3s5(T) CANFTE — 349920355 (T) o' C3
+3755808v/3s2 (%) a*Cf — 933120355 (%) o’ CIN; Ty
—12153888v/352(%) a’C§ + 5971968V/3s2(5) o*Ci Ny T
—12340512V/355 (%) aCf + 2426112v/35, (%) aCiN T
+99470592v/355 (%) C3 — 100030464355 (Z) CIN;Tx
+23887872v/3s5 (1) CaNFTE — 291600v/3s5 (%) o C3
+3129840v/3s3(%) o*C — 777600353 (%) o CiN; Ty
—10128240v/355(%) a*C§ + 4976640353 (%) a2CIN; T
—10283760v/3s3(%) aC3 + 2021760353 (Z) aCT N T
+82892160v/3s3 (%) CF — 83358720V/3s5 (T ) CN; T
+19906560v/3s5(T) C4 NPT + 233280V/3s3(5) o*Cf
—2503872v/3s3 (%) a*C3 + 622080v/3s3 (%) a*CIN; T
+8102592v/3s3 (%) a*C3 — 3981312V/3s3(%) a*CiN; Tp
+8227008v/355(%) aC} — 1617408V/3s3 (%) aCiN; T
—66313728v/355(%) C4 + 66686976v/353 (% )CANfTF
—15925248+/355(T) CANFTZ + 168v/3a°C

+5184/30°Cin? + 174430 i + 26784\/_ 3a*Cin?
—2916V/30*C3¢s — 40824+/30*C5 + 448V/30 O3 N T
+13824V/30* CIN; w2 T + 4665630 C3 Ny T
+2464v/30°Cin + 50544v/30°Cin?
+111780v/30*C5{¢s — 349920v/30°C
+6592v/303CEN; T + 1244167302 C3 Ny T
—TT767/30°CEN; T (s + 466560V 30> CAN; T
—77232V/302C3n* — 793152V/3a°Cin?
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—729972v/302C3 (5 — 194400v/30%C3
+35136v/302C3 Ny T + 466560v/30°C3 Ny Ti
+264384v/30°C2 Ny Ti (s — 264384302 C2 N, T
—82944V/302C4 Cp Ny T — 1679616v/302C4 Cp Ny T
+67480V3aCm — 51984v/3aCin?
—4909572v/3aC4¢s + 8526384v/3aC}
—53696v/3aCIN; T T — 398592730 CAN; 72T
+1158624+/3aC3 Ny TiCs — 8009280V 3aC3 Ny T
—663552v/30Cy Cp Ny T — 6718464v/30Cy Cp Ny T
—36864v/3aCy N7 72T + 248832v/3aCuNF T
+85696/3C5m* + 4746816v/3C3
+14628600v/3C5¢s — 37070136v/3C5 — 52736v/3C3 Npr* T
—5076864v/3C5N; Ty + 4121280V 3CF Ny Tr (s
+35847360V3CEN; Ti: + 414720V 3C4 Cr Ny T
—32845824+/3C4 Cr Ny TirCs + 337167367/3C4Cr Ny Tio
+1410048v/3C4 NP n T2 — 3981312V/3C4 NP TG
—5225472v/3C4 NPT — 1119744v/3CEN; T
+11943936V/3Cr NP T3(5 — 11446272V/3C NPT}
+1215In(3)%a*Cim — 13041 In(3)%a*Cir
+32401In(3)2a*CE Ny Ty + 42201 In(3)2*Ciin
—20736 In(3)2a*Ci Ny Ty + 42849 In(3)*aCim
—84241n(3)*aCiN;mTr — 345384 1In(3)*Cin
+347328 In(3)?Ci Ny Ty — 82944 In(3)*CaNi w1
—145801In(3)a*Cim + 156492 In(3)a*Cim
—38880In(3)a*Ci N T — 506412 1n(3)*Cimr
+2488321n(3)a*C3 Ny T — 514188 In(3)aCim
+101088 In(3)aCi N7 Ty + 4144608 In(3)Ciir
—4167936 In(3)Ci NymT + 995328 In(3) Cy NF 7T
—1305a'Cim* + 140070 Cim® — 3480a° C3 Ny T
—45327a°Cim® + 222720°C4 Ny T — 46023aCim°
+90480C; Ny Ty + 370968C37° — 373056C; Ny Tre
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MOMh
Vo

(CL, O[) = [—SO{CA -+ 13CA — 8NfTF] -

a3

+89088CA N/ T ] ———~= 559872 ssosavs

+ O(a*)

+ [-9¢'(3) &°CF — 33¢’(16) a’C; — 249 (%) &>CaN; T
+357¢' (1) aCy — 192¢/ (1) aCAN; T — 195¢ (1) C

+120¢' (%) CaN; T + 6°Cim® 4+ 1620°C} + 220°Cim?
—1350*C% + 16a*CoNym* T + 4320°Cy Ny T — 238aCim?
—1539aC; + 128aC N;ym*Tr + 1296aCy Ny Ty + 130C5 7

+3186C5 — 80C Nym* T — 2808Cy Ny Trr
2

—2592Cy Ny Ty 628

+ [-878v3Y/ (3) a°CE - 4410v3y/ (3) o'

—1008V3¢' (1) ' CIN;Ti + 5796v/3¢' (3)* 0?4
—16128v/3¢ (1)? > CIN, T + 118692v/3¢ (1) 2OA
—54432/3¢ (1)? A2CIN; T — 14049039/ (1)
+80640v/3¢ (1)? aC2N; Tr + 409503 (1) C3
—25200V/3¢/ (1) C2N T + 504v/3¢/ (1) o°Ciir?
+HTTT6V/3¢ (1) a°CF + 5880v/3¢/ (1) o Cir?
+40176v/3¢ (1) o'C3 + 13443y (1) o' CIN; 7T
+20736v/3¢ (1) o' CEN/ T — T728V/3¢ (1) o*Cir?
7581634 (1) a*C5 + 21504v/3¢ (1) o> CIN; 7T
+186624v/3¢ (1) > CN; T — 158256v/3¢ (1) o*Ciin®
—1189728v/3¢/ (1) o*C3 + 72576V/3¢/ (1) o> CiN;7* T
+699840v/3¢ (1) «*CIN; Tr

—124416V/3¢/(3) 2CAOFJ\ffTF

+187320v/3¢/ (1) aCin® — 77976v/3¢ (1) aC
—107520V/3¢/(3) CﬁNfﬂzTF — 597888v/3¢ (1) aCiN; T
—995328V/3¢ (1) aCyCp Ny T — 55296V/3¢ (1) aC4 NP T2
—54600V/3¢ (1) Cin? + 7120224V/3¢ (1) CF

+33600v/3¢ (1) CIN; 72T — 7615296V/3¢' () CIN; T
+622080V/3¢ (1) C4CrN; T + 2115072V/3¢ (1) C4 NPT

—81V3¢" (L) o*C§ + 1890v3y" (1) o*C}
—216V3y" (1) &*CIN; T — 9180V/3¢" (1) o*C
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+4104v/3¢" (1) o CIN; T + 1890v/3¢" (1) aC
—6696v/3¢" (1) aC2N; Ti- + 38961v/3¢" (1) C3
—23976v/39" (1) CIN; T — 174960v/355 (%) a*C5
F1877904v/352 (%) a*CF — 466560V/3s2 (%) * CEN; T
—6076944v/355(T) a*C} + 2985984355 (%) o*CL Ny T
—6170256v/352 (%) aC3 + 1213056v/3s5 (T ) G N T
+49735296V/352 () C3 — 50015232V/3s5 (T ) CTN; T
+11943936V/3s (T) CaNFT2 + 34992035 (3) o*Cf
—3755808v/355 (%) a®C§ + 933120V/3s2(5) o CIN; T
+12153888V/352 (%) a*C3 — 5971968V/3s5 (%) «*CN; T
+12340512V/355 (%) aCff — 2426112v/355 (%) aCiN; T
—99470592v/355(T) C§ + 100030464v/35, (T ) C3 N T
—23887872v/3s5 (%) CaNF T + 291600v/3s5(%) o*C}
—3129840v/3s5(%) o®Cf + T77600v/3s3(%) o CIN; Ty
+10128240V/3s3(%) a*C5 — 4976640V/3s3 (%) «*CN; T
+10283760v/3s3 (%) aC} — 2021760v/3s3 (%) aCiN; T
—82802160v/355(%) C} + 83358720V/3s3 (%) CN; Ti
—19906560v/3s3 (%) CaNF T — 233280v/3s3(%) o' Cf
+2503872v/353(%) a®Cf — 622080v/353(%) *CN; Ti
—8102592v/353(T) a*C + 3981312v/3s3 (%) a*C3N; T
—8227008v/3s3 () aC4 + 1617408v/3s3 (%) aCiN; T
+66313728v/3s5(%) C3 — 66686976v/355 (% )CANfTF
+15925248v/355 (1) CANP T — 168v/30°C

—51841/30°Cn? — 1744V/3a*Cin* — 26784\/_ 31O
+2916V3a*C3¢s + 4082430 C5 — 448V3a CI N T
—13824V/3a*CAN;w* T — 46656V 30 CIN; T
—2464+/303C3m* — 50544302 O — 111780v303C3¢s
+349920v/30°C3 — 6592v/303C3 Ny T
—124416V303CIN 7Ty + 7776\/§a3CijTFg3
—466560v303CIN; Tp + 77232V/30%C5
+793152v/302C371% 4 729972V/3 onCACg,
+194400v/30%C% — 35136V/302C3 Ny T
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—466560v/302C2 Ny T — 264384v/302C3 Ny T Cs
+264384V/30°C3N; T + 82944V/302Cy Cp Ny T
+1679616v/30%Cy Cp Ny Ty — 67480V 3aCm?
+51984V3aC3n? 4 4909572v/3aC3 (s
—8526384v/3aC5 + 53696V3aCEN; ' T
+398592v/3aCIN; Ty — 1158624v/30C3 Ny Tis
+8009280v/3aC3 N; Ti: + 663552v/30Cy Cp Ny T
+6718464v/3aCs Cp Ny Ty + 36864v/3a.Cy N7 T2
—248832/3aCy NPT — 85696v/3C3m" — 47468161/3Cn
—14628600/3C3¢s + 370701361/3C3 4 527367/3C3 N Ty
+5076864+/3C Ny Ty — 4121280V/3CH Ny Tr s
—35847360V3CEN; T — 414720V 3CCr Ny1* T
+32845824/3C4 Cp Ny TioCs — 33716736v/3C4 C Ny T
—1410048V/3Cy N/ n°T}? + 3981312v/3C4 N7 T (s
+5225472/3Cy NPT + 1119744V 3CEN; T
—11943936v/3Cp NP T (s + 11446272v/3Cp NF T
—1215In(3)*a*Cim 4+ 13041 In(3)?a*Cin
—32401n(3)*a*C; Ny Ty — 42201 In(3)*a*Cim
+20736 In(3)?a*Ci Ny T — 42849 1In(3)*aCin

+8424 In(3)2aCi N; 7Ty + 345384 In(3)2Cin
—3473281n(3)*CiNymTp + 82944 1In(3)*Ca Nf T3
+14580 In(3)a* Cim — 156492 1In(3)a*Cim

+38880 In(3)a*CIN;mTr + 506412 In(3)a*Cim
—2488321n(3)a*CiN; w1 + 514188 In(3)aCim
—101088In(3)aCi Ny T — 4144608 In(3)Cim
+4167936 In(3) CiNpr Ty — 995328 In(3)Cy N w1
+1305a* O3 — 140072 Cin® + 34800 CEN; 3T
+453270°Cim® — 222720° C{ Ny T + 46023aCim°
—90480C; Ny T — 370968C3 7> + 373056C5 Ny Tie

¢ O(a?)

—89088CA N T3] ————— +
ANy 550872v/3

a
WM a,0) = Cala—3)7
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+Cy [30/(3) &°Cy + 150 (%) &*Ca — 8TY' (3) aCy
+45¢ (1) Cy — 20°Cum® — 100*Cy7® — 270*Cy
+58aCam* + 135aCy — 30C 7 — 594Cy

2

+216N; Ty 4‘;2

+Cy [126V30 (3)° 0°CF + 1638v/30/ (1) 0 C3
w(%)Q 2CA

+756v/3¢ (%)2 a*C3 — 30492V/3

+33390v/3¢/ (1)* aCF — 9450v/3¢/ (1) C

—168v/3¢/ (1) a®Cfn? — 2184V/3y/ (%)

+3888V/3y/ (1) a*CF — 1008v/3¢/ (1) aCir?
—77112V/3¢ (1) &*CF + 406563y (%)
+214272V/3¢ (1) 2CA+17280\/_ V(%) 2CANfTF
—44520V/3¢ (1) aC3r? + 3116883/ (1) aC}
—202176+/3¢/ () aCANfTFHzﬁoofw( ) Cir®
—1677024v/3¢' (1) CF + 741312v/3¢' (1) CaN; T

+27V3y" (1) o' CF — 594V3y" (1) o3C3
+2376v/39" (1) a®CF + 486v/3¢" (1) aCh
—8991/3y" (1) CF + 58320v/35, (%) o*C3
—548208V/355 () a®CF + 1527984+/355 (%) a*C3
+2601072v/3 55 (

—11477376V/3s,
—116640v/3s5
—3055968V/3 55
+2985984+/35,

(
(
—8957952v/3 55 (
(

) )

1) aC3 — 1492992V/35, (1)

(T) CF + 4478976v/35,(T) CANfTF
) a*C3 +1096416V/3s2 (%) o

) a®CF — 5202144V/35, (%) aC’A
3

3

)a

G

(

) CaN; T — 97200353
302 — 25466401353
) aC3 + 2488320v/3s;
g) CA — 7464960353 () CAN; Ti
HTTT60v/353(T) o' CF — 730944v/353 (%) o*CF
+2037312v/353(%) a C’A+3468096\/_ 3s3(%) aC}
—1990656v/3s3 (%) aCa Ny T — 15303168\/_ 33( ) C3
+5971968V/353(%) CaN; Tr + 56v/30°C3

403

ol
Q SN—

+913680v/3 5 (
—4335120V/3s5
1+19128960v/355

/N7 N
e RCNE IS A
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aCANfTF

aCy Ny T + 22954752+/355 (%) C2
f

OéCANfTF



+656v/3a*Cint — 259230 C3n% — 972V30*C3¢
+1920v303C2 7 + 5140830 C2 7
+105948+v/30°C3¢5 — 9136830 °C}
—19888v/302C3n* — 142848V/30*C3 7
+57348V/30°C3(5 — T5816v/30°C}
—11520v30*Cy Ny T — 62208v/302Cy Ny Tio
+13544y/3aC3nt — 207792v/3aC3 7
—891324V/30C3(5 + 2218104+/3a.C2
+134784V/3aCy Ny Ty + 4354567/30Cy Ny TiCs
—808704v/3aCy Ny Ty 4 19776v/3C 3
+1118016v/3C3 72 4 2921832v/3C3(3
—8567208V/3C5 — 494208v/3Cy Nyr*Tro
—559872v/3C Ny Ti (s 4 6780672v/3Cy Ny T
+559872v/3Ck Ny T — 1244160V 3N T2
+4051n(3)2a*C3m — 3807 In(3)%a’Cin

+10611 In(3)*a*Cim + 18063 In(3)*aCim
—10368 In(3)*aCy NyrT — 79704 In(3)*Cim
+311041In(3)?Cy Ny T — 4860 In(3)a* O
+45684 In(3)a*Cim — 1273321n(3)a*Cim
—216756 In(3)aCim + 124416 In(3)aCy Ny Tj:
+956448 In(3)Cim — 373248 In(3)Cy Ny Ty — 435a*Cim®
+40890°Cim® — 1139702Cin° — 19401003 7°

+11136aCy N; 7T + 85608C5 7
3

—33408C, Ny T ] #48\@ +

O(a*)

fy}l\,/IOMh(a, a) = aCra

+Cp [3¢'(3) a®Ca + 249" (3) o*Cy — 159/ (}) aCy

—203Cu7? — 1602Cym? — 2702Cy + 10aCym2 + 54aCy

CL2

+675Cs — 1620k — 216N, T o

+Crr [126V30/ (1) 23 + 2016v3y/ (3)" a*C
+6804v/3¢ (1) aC% — 10080v/3¢/ (1) *C3
+3150V/3¢ (1) aC? — 168V3¢ (1) o C3n?
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—2688v/3¢ (1) o* 7r2+3888\/_w (1) a*Ch
—9072V/3¢/ (1) a*Cfn? — 654483y (1) @3C3
+13440V3¢/ (1) o*C 7r2—|—71064\/_1/1 (1) o*C}
—7776v3¢ (1) @2CaCr — 3456V/3¢/ (1) o2 Cu Ny Ty
—4200V/3¢ (3) aCin?® 4 852768v/3¢' (1) aC}

—62208v/3¢ (1) aCyCp — 347328V/3y/ (%)aC’ANfTF
—162000v/3y (1) C3 + 38880V/3¢/(

)

1
3
CaNy T + 27V/39"

) Ca

+51840v/34 (1 ) 4CA
—513V3¢" (1) o®CF + 837V/3¢" (1) o*C
+2997V30" (1) aC} + 58320355 (%) o C3
—373248v/355 (%) o*Cf + 408240v/355 (X)) o*Cf
+3825792v/352 (%) aC} — 1492992V/3s5 (T ) aCy Ny Ty
—116640v/3s5 (%) a*CF + 746496v/35(T) o*CF
—816480v/355(T) a*C3 — 7651584v/355 (%) aC}
+2985984v/355 () aCa N; Ty — 97200v/353 (%) o*C3
+622080v/353 (%) a®CF — 680400v/3s3(%) a*C3
—6376320V/3s3 (1) aC3 + 2488320v/355 (T ) aCa N; T
FTTT60V3s3(%) a*CF — 497664v/353(%) a*C3
+5443201/355 (%

(

) a*C% + 5101056 V/3s3 (% ) aC’A
—1990656v/3s3(%) aCaN;Ti + 56v/3a°C3
+824+/3aC3nt — 2592v/30 1 C2 7% — 972\/_ 301 C3 ¢
+4392v/303C2 1 + 43632303 C2 1% 4 33048v/3a°C2 (s
+48600v/30°C? — 46656/30°C4Cy — 6712v/302C3 7
—47376V/302C3n% — 53460302 C2(5 — 268272v/302C2
+5184v/302Cy Crpr® — 69984V/302Cy Cr
+2304V/302Cy Ny T + 124416V/302Cy Ny Ti
—6592v/3aC% 71" — 568512v/3aC3n”
—1809864+/3C5(s — 660960v/30.C}
+41472v/3aC Cpm? + 419904v/30C4 Cr
+231552v/3aCy Ny T + 622080v/3Cy Ny TiCs
+202176v/30Cy Ny T + 108000v/3C 37
—2857680v/3C2(5 + 6304392/3C2 — 259201/3C4 Cprr
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+1119744V/3C4 Cr(s — 2169504v/3C4Cr
—34560V/3C4 Ny T + 7464967/ 3Cy Ny TiCs
—3203712v/3Cy Ny Tp + 139968+/3C?
—186624V/3Cr Ny Tf + 248832V/3NF T}
+4051n(3)2a*Cim — 2592 1In(3)%a*Cin
128351n(3)?aCim + 26568 In(3)?aC3m
—10368 In(3)?aCy Ny T — 4860 In(3)a*Cim
+311041n(3)a’*Cim — 340201In(3)a*Cim
—318816In(3)aCim + 124416 In(3)aCy Ny T

—43501Cim® + 27840 Cim® — 3045a2Chm?

a3

93312v/3
+ O(a) . (3.4.59)

—28536aC5m + 111360Cy Ny T |

Looking closely at the results for the gluon and gauge parameter anomalous
dimensions in both the MS and MOMi schemes it becomes apparent that the
following identity holds

Yala, @) = —yala,a) (3.4.60)

in all schemes for an arbitrary (linear) covariant gauge fixing. This relation comes
from our convention when defining the renormalization constants in (2.1.55), most
notably o, = Z'Zsa with Z, = 1 in this gauge. Therefore (3.4.60) is only valid
in gauges where Z, = 1. We now present the results for the remaining MOMi
schemes numerically. For the MOMg scheme the renormalization group functions

are

pMOMe () = — [11.000000 — 0.666667Ny]a’

— [102.000000 + 19.654643c — 0.271084c” — 5.8591390
+1.125000a" — [12.666667 + 2.015861cr + 0.437395¢/°
—0.5000000*] ;] @

— [1570.984380 + 658.070929a + 269.223834c/”
+43.0029610” — 99.279719a* 4 14.8550250° + 5.334592a°
—0.703125a" + [0.565929 — 43.239367c — 22.7471960”
—19.8709560° + 14.834757a* + 09764180/
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MOM
Ya &

MOMg

MOMg

MOMg

(a,0) =

(CL, Oé) =

(a,a) =

—0.281250a°] N; — [67.089536 + 4.647961c + 0.8898050
—2.3056950° | N7 + 2.658116N}| a* + O(a®)

[0.666667N; — 6.500000 + 1.500000a]a

+ [16.909511 — 41.643377c + 6.1533860° + 0.992070a”
—0.375000c* — [12.093123 — 5.474404 + 0.2813020/°
+0.1666670"] Ny 4 1.537130N7 | a?

— [1308.938674 — 647.926068« + 376.2301300” + 6.397113a°
—33.016247a* + 7.3253130° 4 1.000873° — 0.164063a
— [491.430950 — 302.353050c 4 52.3029150 4 6.360434c/”
—6.7153150" — 0.128860a” + 0.0729170°] N;
+ [74.919017 — 29.399931cr + 1.415890c/”
+1.3449890°] N7 — 6.202269N/'] a® + O(a*)

[—0.666667N; + 6.500000 — 1.500000]a

+ [~16.909511 + 41.643377cr — 6.1533860* — 0.992070a°
+0.375000a" + [12.093123 — 5.474404 + 0.2813020°
+0.1666670| Ny — 1.537130N7] a®

+ [1308.938674 — 647.926068« + 376.2301300” + 6.397113a°
—33.0162470" + 7.3253130” + 1.0008730° — 0.164063a
— [491.430950 — 302.353050cx + 52.3029150 + 6.3604340°
—6.715315a" — 0.128860a° + 0.0729170°] N;
+ [74.919017 — 29.399931cr + 1.4158900/”
+1.3449890°| N} — 6.202269N7] a® + O(a*)

[0.750000cr — 2.250000]a

+ [8.795510 — 21.172897cx + 2.6547390” 4 1.371035a°
—0.1875000" — [4.437815 — 1.729272c] Ny| a®

— [548.849239 — 436.672056 + 199.293803c/*
+32.7086140” — 30.0123940* + 1.430343a° + 0.9535620°
—0.082031a" — [157.466918 — 127.545756
+20.05221907 + 7.7592760° — 1.513113a'| N,
+[19.974116 — 6.977553a] N7 a®> + O(a®)

1.333333aa

+ [22.333333 — 10.545541r + 9.0317220” + 1.4373950°
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—0.333333a" — [1.333333 — 3.074260c] Ny | a®

— [94.794329 — 204.199880cx + 218.840411c” — 30.4216660°
—34.4073860* + 6.315994a° + 1.257721a° — 0.145833a"
— [76.867272 — 80.560197 + 53.071812a” + 7.0576680
—2.689978a*| Ny + [5.259632 — 12.4045390] Nf] o

+ O(a*) . (3.4.61)

With the above presented numerically it is easier for one to see that at two loops
the MOM and MS results are equivalent in the Landau gauge, particularly in the
case of the g-function. Finally for the MOMq scheme

pMOMa(, o) = — [11.000000 — 0.666667N;]a’
— [102.000000 + 15.237214c — 1.383979a° — 0.4920700
— [12.666667 + 1.562791c + 0.218698c*] Ny| o
— [1843.652729 + 422.073185a + 123.3734960
—19.5130260” — 3.505519a* — 0.096131a°
— [588.654846 + 60.545481cx + 16.395570a” + 0.9282360>
—0.0000060"] Ny + 22.587812N7] a* + O(d)
ANOMA( 0y = [0.666667N; — 6.500000 + 1.5000000]a
— [46.639132 + 22.560876cx — 6.2001290* 4 0.878965a°
— [9.411706 + 1.562791c — 0.390651a%] Ny a”
— [2027.743714 + 333.308222c + 184.2382920/°
—24.3519720" 4 12.671886a" + 1.920079a°
— [415.699015 + 49.405308cx + 9.7003840> — 3.7908550*
—0.478368cr*] Ny + [11.178808 — 1.302171a] N7] a®
+ O(a)
AMOMa (g ) = [—0.666667N; + 6.500000 — 1.500000a]a
— [-46.639132 — 22.560876cr + 6.2001290” — 0.878965a°
+ [9.411706 + 1.562791c — 0.390651”] Ny a®
+ [2027.743714 + 333.308222« + 184.2382920
—24.3519720” 4 12.671886a" + 1.920079a°
— [415.699015 + 49.405308cx + 9.7003840> — 3.7908550/>
—0.4783680"] Ny 4 [11.178808 — 1.302171c] Nf| o
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+ O(a*)
AMOMa( o) = [0.750000a — 2.250000]a
— [13.202007 + 12.311251cr — 2.5140880* — 0.685517a°
—0.750000 ;] a®
— [740.134165 + 1.866578a + 100.6450350 — 3.4355920¢*
—8.767800a* — 1.096513° — [75.503272 4 4.118647cx
+1.7109770%] Ny + 2.500000N7] a® + O(a®)
AMOMY(G ) = 1.3333330a
+ [22.333333 + 2.490078a 4 8.1255820” + 1.218698a°
—1.3333331N]
+ [341.898910 + 182.913289 + 43.980106a” + 74.9283460°
+21.435269a" + 1.9493560° — [52.191691 — 3.107628
—2.1669460%] Ny + 0.888889N7] a® + O(a') . (3.4.62)

The S-functions and anomalous dimensions calculated perturbatively in all schemes
are also useful for non-perturbative approaches. In particular in lattice matching
where high energy results can be mapped on to the low energy regime, improving

measurements for the coupling constant.

3.5 Discussion

We close this chapter with some remarks on our computation. To recap we have
considered the two loop renormalization of QCD fixed in an arbitrary (linear) co-
variant gauge. In particular we have focused on the structure of the ghost-gluon,
triple-gluon and quark-gluon vertices of QCD at the symmetric subtraction point
in the MS and MOMi schemes. Independently reconstructing the results of [14]
and [52] we have explicitly shown how the three loop renormalization group func-
tions, including the S-functions for each MOMi scheme, can be constructed via
the two loop results in the same scheme without the need to do an explicit three
loop calculation. We also constructed the coupling constant mappings in each
scheme and graphically presented the one and two loop truncated ghost-gluon
vertex for various values of Ny for SU(3). Graphically it could be said that the
two loop results seem to converge quicker, whereas by looking at the numbers
alone it is not so obvious to see what it happening. This is why results for higher

loop orders are of importance, and the more multiloop results one can obtain the
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more precise QCD becomes. However, to properly analyse these results in more
depth and to gain a real understanding of the behaviour of the running coupling
one needs to consider other techniques, such as the R-ratio which has been con-
sidered in [97].

Although largely the results presented in this chapter have been previously pub-
lished in [14] we note that some results have been presented here for the first
time. Notably the results of the renormalization constants themselves. Given the
explicit forms of the renormalization group functions the underlying renormaliza-
tion constants can be constructed. However, for the renormalization constants
presented within this chapter we have explicitly calculated them from first prin-
ciples and they are in exact agreement with [14]. We have made strong reference
to earlier works that have been used when making checks on our results, ensuring
our computational method is correct before extending to new gauges and/or loop
orders where initial checks are harder to achieve. Although MS is currently the
default scheme choice for QCD it is interesting to see how a physical scheme such
as momentum subtraction can impact on results. The real differences (between
the schemes) are only observed at three loops where the Landau gauge check is no
longer valid. It would be interesting to see if this gauge dependence continues at
higher loop orders or if at some point the results agree again with the MS results
of the same loop order for a = 0. It could be that of the three MOMi schemes one
of the pg-functions appears to be more convergent than the others. However this
is not so straightforward to determine since the coupling constant runs at differ-
ent rates in different schemes, so it is hard to see just from the numbers which
[S-function has better convergence. To appreciate this subtlety one would need to
calculate something physical and compare the value at a particular momentum
scale. For instance in [97] the R-ratio was computed in the Landau gauge in all
MOMIi schemes and also the mini-MOM scheme introduced in [98]. The mini-
MOM scheme is defined such that the wave function renormalization is carried
out in a MOM way, whilst the ghost-gluon vertex is treated differently from other
schemes. Instead of computing it at the symmetric point, an asymmetric setup is
used, where one external leg is nullified. The condition on the ghost-gluon vertex
is that it is not renormalized in the Landau gauge. The motivation for the scheme
is to preserve the non-renormalization of the ghost-gluon vertex. In our notation

this corresponds to ensuring that the ghost-gluon vertex in the MS scheme is the
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same as in the mini-MOM (mMOM) scheme, such that

Z{gccg)l\/[s1 /Z}é}/liszgvls — Zéccg) mMOM4 /ZEMOMZ(IZHMOM . (3563)

In [97] it was noted that the coefficients of the R-ratio appeared to be less conver-
gent in one scheme compared to another. However when one plots the R-ratio’s as

a function of the centre of mass scale as in [97] the discrepancy between schemes
is less than 0.5%.

Although for presentation purposes we chose to display most results numerically
for SU(3), leaving results in terms of SU(N,) variables and arbitrary a and Ny
gives scope for others to easily compare results with our own, where analysis of
these results can assist with things like Monte-Carlo simulations and further lat-
tice matching. On completing this initial work in the arbitrary (linear) covariant
gauge we are now in a position to extend and apply our algorithm to a more

involved non-linear gauge fixing, which we visit in the next chapter.
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Chapter 4
The Curci-Ferrari gauge

In this chapter we extend the work of the previous chapter, evaluating the two
loop 3-point vertex functions of QCD in the Curci-Ferrari (CF) gauge at the
symmetric subtraction point. Renormalizing each of the three vertices in their
respective momentum subtraction (MOM) schemes, as well as in the MS scheme,
we construct the two loop conversion functions for the wave function, coupling
constant and gauge parameter renormalization constants for each MOMi scheme
relative to the MS scheme. Using these conversion functions we are able to derive
the three loop anomalous dimensions and [-functions for each MOMi scheme.
These RG functions are new results which contribute to improving lattice match-
ing. Although our method is the same, in contrast to the previous chapter we
now consider a non-linear gauge fixing with a more complicated internal struc-
ture. This in turn introduces new field interactions, requiring additional Feynman

rules, group algebra and master integrals.

4.1 Background

As a preliminary to studying the maximal abelian gauge it is useful to consider
the Curci-Ferrari gauge, a non-linear covariant gauge fixing with similarities to,
but extending that of the Landau gauge. The Curci-Ferrari gauge and its related
model were introduced in [42]. The Curci-Ferrari model is an extension of QCD
fixed in the Curci-Ferrari gauge, with a mass term for the gluon present in its
formalism. Similar to QCD in its ultraviolet properties this model differs in the
infrared. This renormalizable model of massive gluons was originally constructed
as an alternative to the Higgs mechanism in understanding massive vector bosons.
However the model has proved useful from a theoretical perspective in its non-

linear gauge fixing term which introduces quartic ghost self interactions, [42, 99].
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Since we are only interested in calculating in a massless regime the Curci-Ferrari
gauge, which includes no direct mass term, will suffice. In addition to being an ex-
tension of our previous chapter, studying the Curci-Ferrari gauge is of importance
as it may provide an insight into the closely related but much more complicated

maximal abelian gauge, [100].

For background another motivation for considering the Curci-Ferrari gauge is
that is has received renewed interest due to its relation to the ghost condensation
problem through the presence of a four-ghost interaction term appearing in the
Lagrangian, [100, 99]. The dimension two composite operator %Af} 2 _ aelcd,
which also appears in the maximal abelian gauge fixing, corresponds to the mass
operator in a massive regime. It is these operators which may help in our under-
standing of confinement, [101]. A non-linear gauge fixing like Curci-Ferrari allows
one to add a BRST invariant gluon mass to the Lagrangian, [102]. Although we
do not concern ourselves with mass terms as this lies beyond the scope of our

work, results for this gauge in a massless regime are still of interest.

We study the Curci-Ferrari gauge at two loops for two reasons. Firstly the gauge
fixing is directly related to that of the MAG, where we treat this chapter as a
preliminary calculation. Any results computed will be of interest when comparing
with the MAG. Secondly, the Curci-Ferrari results at two loops for the MOMi
schemes had not been determined prior to [67]. Analysis of this non-linear gauge

fixing is presented here.

In this chapter, since it is self-contained we take the colour group A — a, where
for the Curci-Ferrari gauge the index a represents the full colour group, as is
conventional and consistent with the textbook approach. With this in mind, we
now move on to discuss the key properties of the Curci-Ferrari gauge. We begin

by first stating the Lagrangian, which for the Curci-Ferrari gauge is, [42],

CF 1 a a pv 1 a —a a - 91 %
L = — ZGMVG ® — %(8MAM)2 — C G“Duc + Z’QZ) IWI
2
+ Do 4 S e el (4.1.1)

where D, = 0, + igAj, is the covariant derivative and the the field strength tensor
G, = 0,A; —0,A] — g f“bCAZAﬁ is defined in the same way as for the arbitrary
(linear) covariant gauge. The coupling constant is denoted as g and « is the

associated gauge parameter. Where the coupling constant and gauge parameter
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are different to those considered in the previous chapter for the arbitrary (linear)
covariant gauge. The massless quark is represented by 1* and f®° are the colour
group structure constants whose generators are T%. As before ¢, ¢* represent the
Faddeev-Popov ghosts. Our adjoint colour indices are denoted by a, b and ¢ and
run from 1 < a < Ny, where Ny is the dimension of the adjoint representation
of the colour group. Likewise our fundamental representation indices are 7, j and
k, running from 1 < i < Np where N is the fundamental representation. The
flavour indices are denoted by I with 1 < I < NNy, where we choose to represent our
results in terms of Ny for an arbitrary number of quarks. The Curci-Ferrari gauge
fixed Lagrangian is not fully gauge invariant but it is invariant under the set of
BRST transformations (2.1.36). Note the difference here to the arbitrary (linear)
covariant gauge fixed Lagrangian is the addition of a quartic ghost interaction,
which we commented on earlier, which is a special property of non-linear gauge
fixings. Although the ghosts couple non-trivially, the addition of this interaction
term does not spoil the renormalizability of the theory. These quartic ghost
interactions show up in the ghost-gluon vertex in the Curci-Ferrari gauge and so
we expect results in this vertex to differ from those computed in the same vertex in
Chapter 3, [42]. It is indeed the case that the ghost-gluon vertex is structurally
different. This becomes most apparent when we display the A parameters in
section 4.6. The gauge parameter gets renormalized differently to that of the
arbitrary (linear) covariant gauge, most notably because we now have 7, # 1
(which we see in the following section). When studying this gauge fixing we

consider the same three vertex functions as before, namely

(AL AL (@A (1), (W' W (@)AS(r)) and (c"(p)e(@)A5(r)) . (4.1.2)

with momentum conservation along p + ¢ +r = 0. We compute all three ver-
tices at the symmetric subtraction point, [91, 52]. Following the same technique
in [14], discussed in Appendix B, we rewrite the Lorentz amplitudes as tensors
multiplying scalar amplitudes. Although there are only six independent combi-
nations of basis tensors for the triple-gluon vertex which we determined in our
previous calculation for an arbitrary (linear) covariant gauge fixing (see equation
(3.2.14)), we choose to include all possible tensors. Since the Green’s functions
remain unchanged, we apply the same tensor basis as before, where details are
again given in Appendix B. Using the same method of projection we determine
each scalar amplitude individually. By introducing a projection matrix, M:, we

project out each amplitude as before.
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In terms of computational method, no further programs have been used other
than those already discussed in section 2.3 for the 3-point vertex functions. In
contrast to the arbitrary (linear) covariant gauge, if one were to determine the
full renormalization of the Curci-Ferrari gauge several 4-point interactions would
need to be considered. These are introduced via the quartic ghost and gluon
terms in the Lagrangian. The MINCER algorithm would not be appropriate here
as the only way one could apply MINCER to these 4-point functions would be to
nullify two external legs, which would introduce spurious infrared divergences. In
this thesis we only consider 2- and 3-point functions, with our focus on the 3-
point vertices of QCD. All 3-point functions have been reduced using the Laporta
algorithm in REDUZE, as would be the method for the 4-point functions if they
were to be considered. It is only recently in [80, 103] that the 4-point vertices of
QCD have been computed at one loop for the MOMgggg scheme. At two loops
this is not yet possible since the master integrals are not known. The programs
we have used in evaluating the QCD vertices in the Curci-Ferrari gauge are ef-
fectively the same as those considered for the arbitrary (linear) covariant gauge
in chapter 3. This is with the exception of new Feynman rules, see Appendix
C, to describe the ghost-gluon and quartic ghost interactions, and of course the
number of diagrams constructed reflects this. The colour algebra however is the

same, despite the tensor structure being different.

Equation (3.4.55) incorporates 7, (a, @), unlike in the linear covariant gauge, since

~v4 and 7, are not equivalent up to a minus sign as was the case before. Now

0 0
vala,a) = B(a,a)%anA + orya(a,a)%anA

0 0 !
Yala,a) = ﬁ(a,a)%ana — ’yA(a,a)} [1 - ag—aana} (4.1.3)
where the f-function is a-dependent. Therefore the relation (3.4.60) no longer
holds in this non-linear gauge fixing, instead being replaced by the definitions

above.

Following the same structure as chapter 3 we present the majority of results nu-
merically, with the exception of those for the ghost-gluon vertex, which we use
for comparison with results for the same vertex in chapter 3. Note that all results

within this chapter are the original and published in [67].
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Our method of renormalization follows techniques of the previous section and
has been discussed at length. We renormalize our Lagrangian using the stan-
dard QCD definitions of the renormalization constants, defined in (2.1.55). Since
we are not restricting to the Landau gauge it is essential to renormalize our
gauge parameter o and coupling constant g. We use dimensional regularization

throughout in d = 4 — 2¢ dimensions, where € is the regularizing parameter.

4.2 MS scheme.

Since the technical details of the calculation have been discussed at length in
chapters 2 and 3 we simply record our results for the Curci-Ferrari gauge, com-
menting on any interesting features. In this section we record our results in the
basic reference scheme MS. Similar to the arbitrary (linear) covariant gauge we
have computed all diagrams to two loops, therefore all MS results will be of two
loop order. We begin by presenting the results for the renormalization constants
for the wave functions, gauge parameter and MS coupling constant. These are

presented analytically as

13 a)\|a
z R e =
ala, ) +[ 3 fF+CA(6 2)}6
13 17 3 2 1
2 (2 L 2R N (14 2a) ) -
el (F g ) svman(450) )
59 11 1 ) a?
| = - —=a— —a? ) — =N/TpCy — 2N, T; —
+CA(16 16" 160‘) g NrTrCa = 2Ni T Cr | =
+ O(a®)
aCaa , (3a  a?\ 1 , [ Ba a?\] a?
Zalwa) | = 1- (2 ) (20 ) E
(9.9 |3 4 +{A(16+16)6+A 32 32)|
+ O(a®)
3
Zc<a7a)‘ = 1+OA(Z_%)%

35 o 1 1
2 —_— R — J—
(B (2 ) e
9% a o 5 a?
2 (7Y - = — =N T - 3
i (96 T3 32) 12V FCA} . o)
aCra

Zw(a,a)‘ = 1-
€
3o o? 1 5 5\ 1

105



2 2
+CFCA <—§5 - Oé) + %Cﬁ + NfTFCF} a? + O(a3)

2
2. Nf} a
€

11
Zy(a, o) ‘NTS = 1+ l_ECA + 3

1 11 121 .\ 1
+ [2 <§T5Nf2 — 5 CaTrN; + CA)

2

5 17 a
—2 (_ECATFNf + ECX — §CFTFNf)} ” + O(ag)
(4.2.4)

which we have determined using MINCER. As a check on our results we were able
to compare with results in the Landau gauge, a gauge widely used by Landau
and first referred to as the Landau gauge in [88]. In the above renormalization
constants this corresponds to setting a = 0. Taking this limit the renormalization
constants determined in the MS scheme for the Curci-Ferrari gauge should match
on to those at the same Landau limit in the same scheme for the linear covariant
gauge, (3.1.2) - (3.1.3). It is the case that we indeed see an exact match. Again it
is understood that when variables are not labelled they correspond to the scheme
defined on the object, in this case on the Z’s; on the left hand side of the equation.
Once the renormalization constants are fixed we can generate the amplitudes. We
begin with the ghost-gluon vertex where the amplitudes at two loops are given

explicitly as

S0 | = )|
_ _% n [6@0/(%) o — 1577//(;) — 4ar? — 27a + 107% — 81] g?g
N [432\/@/(%) *Cy — 13716v/39' (1) a*Cy
/

—3312V/3¢ (1) aCy + 2304V/3¢' (1) aN/ Tir
+133296v/3¢ (1) Cay — 78528v/3¢ (1) Ny T
—18V/3¢" (1) a®Cy + 225v/3¢" (1) aCy
+999v/3¢" (L) Ca — 73872v/35, () a*Cy
+66096v/352 (%) aCy + 1076976v/3 SQ(g)c
—497664V/352 (%) Ny T + 147744V/355 (%
—132192v/355(%) aCly — 2153952v/3s, (%
+995328V/355 () NiTr + 123120V/3s5 (%
—110160v/3s3(%) aCy — 1794960\/353(g) A

) o’
) Ca
) o’

)
s
6
s
2
s
2
s
6
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+829440V/353 (1) Ny Tr — 98496v/353(%) a*Ci
+88128V/3s3(Z) aCy + 1435968v/3s3(5) Ca
—663552v/353 (%) NiTp — 288v/30°Car?® — 1944+/30°C,
+48v/3a%Cur® + 9144V/302Cu? + 6480v30%Culs
+3240v/302Cy — 600V/3aCym* + 2208v/30Cym?
+28836/3aCs (s — 101088v/3aC)y — 1536V 3aN;n?Tx
+10368V3aN; Tpp — 2664v/3Cym* — 88864v/3Cy 2
—175608v/3C4(s — 146448v/3C)y + 52352v/3N;w2T;
+82944V/3 N Ti-Cs + 36288V3Nf T — 5131n(3)%a*Car
+4591n(3)?aCym + 7479 1n(3)*Cam — 3456 In(3)> Ny T
+6156 In(3)a*Cym — 5508 In(3)aCam — 89748 In(3)Cy7
+41472In(3) NprTi + 55102 Cyr® — 493aCam® — 8033C, 7

CACL 3
220575 + 0 . (4.2.5)

In comparison with the arbitrary (linear) covariant gauge the ghost-gluon vertex

+3712N; T

in the Curci-Ferrari gauge has only one independent amplitude. This is because

the Feynman rule for this vertex is anti-symmetric. The emergence of this feature

in our explicit computation is a non-trivial check on our analysis as we do not
ccg

assume a priori that 2(1) (p,q)|—. = — 2(2) (P, q)

MS MS

For the triple-gluon vertex the channel 1 amplitude in the MS scheme is given

analytically as

1
£gg _ £gg _ T ygeg _ _ y&8g
2oy Py = T <p’q>’Ms = T3 (p’Q)’WS = g q>’m
1
= =% _ _ yess ‘
5 26 (1) g © P |gg

= —1 — [-36¢'(3) a®Ca 4+ 162¢' (3) aCs — 138¢/ (1) Cu
+384¢ (1) Ny T — 270°Cy + 240°Cym® + 4050°Cy
—1080&0A7T + 243a0Cy + 920A7T + 243C4

—256 Ny Ty — 1296 Ny Tp| — 648

— [1206v3u7 (3) a'C3 — 10368V30/ (1) a*C
—17112v/3¢/ (1) a2C% — 19200v/3¢ (1) a*CaN; Tio
—14328v/3y/ (1) aC3 — 4608V/3¢' (L) aCy Ny T

Wl Wl
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+308052v/3¢(
+55296V/3¢ (1
+162v/3y" (4
+3843v/3y" (

(

1) Cf — 633603/ (%) CaN/ T

) CrN;Tr + 18v/30" (1) o°C3

) a®CF — 1296v/3¢" (1) aC}

1) C — 2304v/3¢" () CaNy Ty

1) a3C% — 489888V/3s, () aC?
)CANfTF

—31104+/3s,
+26904961/355(T) CF — 1244160v/3s,
+62208V/352(%) a*CF + 979776V 355 (
—5380992v/355 (%) C3 + 2488320V/3 5,
+51840V/3s3 () a®CF + 816480/ 355 (
—4484160V/3s3 (%) C3 + 2073600353
—41472v/353(%) a*CF — 653184v/353(%
+3587328V/353(%) C3 — 1658880353 (%) C’ANfTF
+972v/30°C?2 — 86430 C3n% — 77767301 C2
—48v/303C3 1t + 691230’ C2r? — 2592v/303C2¢s
—4104v/30°C3 — 8640V/30°Cy Ny T — 432V/30C37
+11408v/3a%C37? + 3888v/302C2(5 — 17280302 C2
+12800V/302Cy Ny Ti + 86400302 Cy Ny T
+34561/3aC31* + 9552v/3aC3m% + 167184+/3aC3¢s
—84726V/30C3 + 3072v/3aCy Ny Ti:
+36288v/3aCy Ni Ty — 10248V/3C3* — 205368/3C37°
—44T444V/3C3 G + 256338V/3C3 + 6144/ 3Cy Ny T
+42240V/3C Ny T — 41472V/3Cy Ny TGy
—259632V/3C Ny Ty — 36864V 3Cr Npm* T
+497664v/3Cp Ny TpCs — 590976v/3Ck Ny T

—2161n (3)* &3C3r — 34021n (3)* aC3r

+186841n (3)* C31 — 8640 1n (3)* C4 Ny T

+25921n (3) *C3m + 40824 1n (3) aCin

—2242081n (3) Cim + 103680 In (3) Cy Ny T

123203 C373 + 3654aC3 1% — 20068C3°
2

a
— +
31104+/3

The combination which emerges for the first six amplitudes is consistent with

(%
5)aC
() CANfTF
§)aC
(3
) aC.

) C’ANfTF

+9280Cy Ny Ty ] O(a®). (4.2.6)
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other gauges, most noticeably this can be seen by comparing with the amplitudes
in (3.2.14). This should be consistent since we are considering the same tensor
basis and so this serves as a check on our computation. The remaining channels

are presented numerically for SU(3) as

S| = 20| = - 28ea| g = -S|
= [0.057318a" — 0.5079300 — 3.328046c — 1.092686 N;
+7.642693] a + [—0.1289650° 4 0.603663c* + 0.191059° Ny
+5.3830150° + 0.5745220° Ny + 3.9208180* — 1.015302a Ny
—6.825370 — 20.271008 N; + 124.046565]) a® + O(a®)
S (0 a) ‘WS = = X050 9)|y g
= [0.1926820" — 0.5701160° — 3.351838a — 1.2130101;
+7.954277] a + [—0.4335350” + 0.134441a" + 0.6422740° N,
+5.2052820° + 0.9363320° Ny + 7.365924a* + 0.015581a Ny
—4.947164c — 23.589820N; + 133.972477] a®> + O(a®)
Sty () ‘WS = = X0y 9)| g

= [-0.1353640” + 0.0621860° + 0.023791c + 0.120324Ny
—0.311584] a + [0.3045700° + 0.4692220* — 0.4512140° Ny
+0.1777330” — 0.361810a” Ny — 3.4451060° — 1.030883/N;
—1.878205cr + 3.318812N; — 9.925913] a®> + O(a®) . (4.2.7)

Finally, for the quark-gluon vertex the amplitudes in the MS scheme are

A Q)‘WS = 1 + [-0.457012a” — 0.588760a + 4.316221] a
+ [0.3427590" + 1.394721c” — 0.5077910” N; — 1.842083¢°
—0.976628N; — 2.548865a — 12.136677N; + 89.287677] a
+ O(a®)
Sy (@, Q)‘WS = 5P, q)‘l\TS
= [-0.4140230* — 2.305695a + 2.598033] a + [0.310517a*
+1.5415980° — 0.4600260* N; — 2.574810a* — 1.033946a. N}
—19.509999a — 6.271894N; + 26.481250] a*> + O(a®)
S50, q)‘l\TS = 0 )|

= [-0.5000000” — 2.522631cx + 2.050269] a + [0.375000c*
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+1.2478440° — 0.5555560%N; — 3.6864590% — 0.919310a.N;
—22.991124a — 4.871592N; + 12.735293] a* + O(a®)
S8 (p,q) ‘m = [-0.585977a* — 2.343907a — 4.362272] a + [0.439483c/"
+0.976628a° — 0.6510850° Ny — 0.4992350° + 1.953256N;
—45.467503a + 10.922850N; — 131.991115]a® + O(a®)
(4.2.8)

where the one loop contribution to the amplitudes are identical to those computed
in the arbitrary (linear) covariant gauge. As a check on the results for the other
vertices we note that the relations between the amplitudes still hold even to
higher loop orders, with these relations satisfied in all schemes. In Figure 4.1
we present plots of the one and two loop amplitudes for various values of Ny in
terms of the partial coupling constants, ai(u, A) and as(p, A). This was carried
out in the previous chapter for the linear covariant gauge. Comparing to those
graphs for the same values of Ny it is clear that the one and two loop Curci-Ferrari
gauge results are much closer to eachother, particularly for the case when Ny = 6,
than the one and two loop amplitudes in the linear covariant gauge. This could
be as a result of the 4-point interactions introduced, specifically contributing to
the ghost-gluon vertex, or due to the ghost-gluon vertex now being asymmetric,
which would give better convergence. However, the reason why this gauge seems
to converge quicker is not yet known for sure. Having presented all required

results in the MS scheme we now extend to the MOMi schemes.
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Comparison of one and two loop Curci-Ferrari ghost-gluon vertex
functions for N_f=3
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Figure 4.1: Comparison of one and two loop MS Curci-Ferrari gauge ghost-gluon

vertex functions for different values of Nj.

4.3 MOMh scheme

So far all of our results have been determined in the MS scheme, where only the

divergences are absorbed into the renormalization constants, along with a factor

of In(4mwe™7).

For the MOMi schemes we recall from section 2.1.2 that as well

as the divergences being absorbed into the renormalization constants, we now



require that there are no O(a) corrections after the renormalization constants are
defined. Both the 2-point functions and 3-point vertex functions are defined in
this way, where we renormalize the one loop 2-point functions first in each MOMi
scheme followed by the one loop 3-point vertex functions. We then iterate this
procedure to two loops. Presenting first the renormalization constants for the

scheme corresponding to the ghost-gluon vertex we have

(ch ’MOMh = 1+ [12w ( ) aCy — 30 ( ) Cy — 270*Cy — 8aCym? — 108aCy

+20C,72 — 669C) + 240N} Ty
a

1
+36 (~11C + 4N/ Tr) —| 51

1
24¢€?

+ (288\/§w’(§)2 02C2 — 1440v/3¢/ (1)* aC?

+ [(121CA 88CANy Ty + 16NFT}) —

+1800v/3¢/ (1)* €2 — 2163y (L) o*C3
—384V/3¢/ (1) a2C3n* — 140403y (1) *C3
+1920v/3¢/ (1) aC3n? — 14832v/3¢/ (1) aC}
+8064v/3¢ (1) aCa N; T — 2400v/3¢ () C3r?

+203436v/3¢ (1) C2 — 102528V/3¢/ (1) CaN; T

—18V3¢" (1) o*CF + 225v/3¢" (1) aC3
+999v/3¢" (1) CF — 73872V/355 () a2C3
+660961/3s2(T) aCF + 1076976V/3s5 (%) C3
—497664v/355(Z) CaN; T + 147744V/355 (%) o*C3
—132192v/355(%) aC} — 215395235, () CF
+995328V/352 (%) CaN; T + 123120V3s3(%) o*C3
—110160v/3s3 (%) aC3 — 1794960355 (1) C3
+829440V/353(%) CaN; T — 984961/353(%) o*C3
+88128V/353(%) aCF + 1435968V/3s3 () C3
—663552v/3s3(%) CaN; T — 2433003

+144V/303C3 7% — 2916V/30°C3 + 176V/302C3 7
+9360v/30%C37? + 4536v/302C3¢s + 47790v/30°C3
—12960v/302C4 Ny Tpp — 1240v/3aC37* + 9888v/3a (2
—13932Vv/3aC3¢ + 1111323003 — 5376V/3aCy Ny T
—41472/3aCy Ny T — 1864303 7% — 1356243037
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—99792v/3C3¢s — 133155v/3C3 + 68352v/3Cy Ny T
+207360v3C4 Ny TpCs — 53280v/3Cu Ny T
—248832v/3Cr Ny Ti-(3 + 285120v/3Cr Ny T
+57600V/3NPTE — 5131n(3)%a’Cim + 4591n(3)*aCim
+74791In(3)2Cim — 3456 In(3)*Cy Ny Ti-

46156 In(3)a?C3m — 5508 In(3)aCim — 89748 In(3)Cin
+414721n(3)Cy Ny 7Ty + 5510*Cim® — 493aCin?
—8033C3m* + 3T12CA Ny T + 72v/3 (—132¢/ (1) aC}
+48¢' (%) aCANy Ty + 3300 (1) CF — 1209 (%) CaN; Tip
+2970*C; — 108 CaN; Ti + 88aCim? + 1188aC}
—320C4 Ny Ty — 432004 Ny T — 220C57° + 613503
+80Cy Ny Ty — 4596Cy Ny T + 432CF Ni T

1 1
+960N/ T —) —
i1F) € ) 31104v/3

analytically, followed by the renormalization constants for the wave functions and

} a® + O(a®) (4.3.9)

gauge parameter numerically for SU(3)

Z{e® = 1+ [0.750% + 1.5a — LILIIIIN; +8.083333
MOMh

1
+ (—1.5a — 0.666667N; + 6.5) -l

1
+ [(1.687500@2 + aNy — 6.375000r + 1.5N; — 14.625000) —
€

+0.562500a + 3.6914650° — 0.587169a* + 0.364496 N
—3.503260c — 21.027871N; + 82.204984 + (—1.1250000"
—4.57043002 + 1.885364aN; — 0.2999750 + 3.869923 Ny
—54.106746) ﬂ a®> + O(a®)
28 on = 1+ |15 0755 a
+ [a (0.562500c + 1.687500) 612 + a (—2.601680c + 6.483018)

1
+a (—0.0352150 + 8.666163) }aQ + 0(@d®)

€

1
Zéccg) MOMh = 1+ {3.0 + (—0.75a 4 2.25) ] a

€
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1
+ [(0.562500@2 + 0.75N; — 9.843750) 5~ 19687500

—2.411572c — 2.604167N; + 16.396118 + (—2.84771502

€

1 f
+3.990559 + 1.875000N; — 32.748489) } a® + O(a®)

Zec®) — 14 [—1.333333a _ 1.3333339] a
MOMhA €

1
+ [oz (1.388889cr 4 3.0) — — 0.7848270* + 6.331195a
€
+2.333333N; — 25.464206 + (0.215173a” + 13.906512cx

1

+0.666667N; — 11.166667) —1 a® + O(a3) (4.3.10)
€

where all results for the above renormalization constants are functions of MOMi

variables (anjoni, @moMi)- The amplitudes in the MOMh scheme were found to

follow the relation given in [51] where

2, ) o = — S0 Dy gons = —% Lo (4311)
This is not the same as in the case of the arbitrary (linear) covariant gauge fixing
where after renormalization in the MOMh scheme the two amplitudes are still
independent of one another due to the nature of the ghost-gluon vertex in that
gauge fixing. The fact that the amplitudes become linearly dependent is also
partly due to the presence of the quartic ghost vertex that is introduced in both
the Curci-Ferrari gauge and MAG, [14, 104].

Next we require the coupling constant and gauge parameter mappings between
the MS and MOMi schemes in the Curci-Ferrari gauge. Using (3.3.37) we can
relate both the coupling constant and gauge parameter in one scheme to another.
We have determined apopgj for each of the three vertices and found that for each

vertex the result remains the same at two loops

avoMi = @+ [—9a2Cy — 36aCy — 97C4 + SONTx] %

+ [18a*C} + 900°C} — 360°C3(s + 301aC; — 3200°Cy Ny T
—468aC3 (s + 284aC; — 640aCy Ny T + 864C5 (3 — 7143C5

+2304CA Ny Tp (s + 4248Cy Ni'Ty — 4608Cr Ny Tr(s

OéCL2

+5280Ck N; Tr] ogs + O(a®) (4.3.12)
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where appon is a function of MS variables, aypg and ogpg. This is consistent
with the arbitrary (linear) covariant gauge where one gauge parameter mapping
satisfies all three MOMi schemes. This is not the case however for the coupling
constants, ayroni, where that mapping is different for each of the three MOMi
schemes. Therefore we present the results for this separately for each scheme.
The analytic evaluation of the coupling constant mapping for the MOMh scheme

18

aMOMh = [ 12770 ( ) aCy + 301/) ( ) Cy+ 2702 Cy + 8050,47‘(
2

+108aCy — 20C, % + 669C, — 240NfTF} 108

+ [513V3In(3)2a*Cir - 459v/3In(3)*aCin
—7479V/31n(3)2C3r + 3456V/3In(3)2Cy Ny T
—6156v/31n(3)a’C37 + 5508v/3In(3)aClin
+89748v/3 1n( )O3 — 41472+/31n(3)Ca Ny Tio
—551v/3a2C3n® 4 493v/3aC37 + 8033v/3C3 73
—3712\/§C’ANf7T3TF + 14497 (1)% @203 — 7200/ (1)
+900¢ (1)% €2 — 25929/ (1) o?C3 — 1924/ (1) 2C3n?
+40500¢ (1) &*C7 + 960y (3) aCim? — 8568¢/ (1) aC}
+4608¢ () aCaN; T — 12009 (1) Cin?

—329328¢/ (%) CF + 206784¢ (1) CaN; T
+54¢" (1) o*CF — 675¢" (L) aC — 29979 (%) C3

+22161655 (%) a”C5 — 19828855 (%) aCf
—32309285, (%) C3 + 149299255 (%) CaN; Ti-
—44323255(%) o’C§ + 39657652 (%) aCj
+646185652 (%) C3 — 298598455 (%) CaN; T
—369360s3(Z) o’C} + 330480s5(%) aCj
+5384880s3 (%) C§ — 248832053 (%) Ca Ny I
+29548853(%) a’C5 — 264384s3(%) aCf
—4307904s5(5) C3 + 199065653 (%) CaN; T

+17280°Cin* 4 145800°C3 — 80a*Cin? — 270000 Cin?
—13608a*C3(s + 81648a*C; + 1480aCin* 4 5712aC3 7
+41796aC3 (s + 552420aC3 — 3072aCy Ny Tr
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—1347840aCy Nf T + 8392C37* + 219552C 3 2
+299376C3 (3 + 3532392073 — 137856y Nym*Tr

—622080CA Ny Tr(3 — 2088000Cy N¢Tr + 746496 Cp Ny Tk (s
a3

—855360Ck Ny T + 230400N7 172 | M

+ O(a*) . (4.3.13)

Next we present the conversion functions at two loops, since these are used in
(3.3.29) and (3.4.55) to determine the S-functions and anomalous dimensions in
each MOMi scheme to the next loop order. The conversion function specific to

the MOMh coupling constant is

OMOMb (g o) = 14 [12¢/(3) aCy — 309/ (3) Ca — 270%C — 8aCA7r
~108aC) + 20C47 — 669C, + 240N, Ty] ——
+ [288V3u (3)" ¢ — 1440v/36/ (1) o
+1800v/3y/ (1) CA+648\/_w( ) o*C3
—384V/3¢ (1) a?Cin® — 434163y (1) o2C3
+1920v/3¢/ acjﬂ — 20160v/3¢' (1) aC}
+12672v/3¢ (1) aCaN; Ty — 2400v/34 (1) C3n?
+449748V/3y' () CF — 2499843y (1 )(JANfTF
—54V/39" (1) a*CF + 675v/3¢" (1) aC}
+2997/34" (1) C3 — 221616v/355 (%) o*C3
+198288V/3s2 (%) aC3 + 3230928v/3s, (%) CF
—1492992v/35, (%) CANfTF—|—443232\/_ s2(% ) a*C3
—396576V/3s2 (%) aC} — 6461856v/3s,(%) CF
+2985984v/355 (%) (JANfTF+369360\f 53(7) a*C}
§)a
(5
7)

216

A W= /—\
A~~~ W ~— Wl

/\C&J\H\/

2
—330480v/353(T) aC3 — 5384880353 (%) CF
+2488320v/353 (%) CaN; T — 295488V/3 53(7) a*C3
+264384v/353(%) aC3 + 4307904v/3s5 (%) CF
—1990656v/3s3(%) CaN; T + 2187v/3a1C3
—432V/303C27% 4 291630 C2 + 272v/302C3 71
1+28944/302C3 7% + 13608v/30°C3(Cs + 61722v/30%C3
—38880V/3a’Cy Ny Ty — 2440V/3aC37
+13440v3aC27? — 41796v/30C3(5 — 118908v/30.C?
—8448V/30Cy Ny T — 2073630 Cy Ny T
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—7192V/3C3m* — 299832V/3C3 7% — 299376V/3C3¢s
—2189709v/3C% + 166656/3Cy Ny Tp
+622080v/3Cy Ny TiCs + 1124640v/3C, Ny T

— 746496V 3Cr Ny T3 + 855360v/3Ck Ni Tiy
—57600V3NP T — 1539 1n(3)*a’Cim + 1377 In(3)%aCin
+22437In(3)?Cim — 10368 In(3)?Ca Ny T1

+18468 In(3)a*Cim — 16524 In(3)aCim

—269244 In(3)Cim + 124416 In(3)Cy Ny T

+165302Cim® — 1479aCin® — 24099C57°
2

+11136C4 Ny T ] O(a®) . (4.3.14)

a
93312/3 -
Here a and « are the coupling constant and gauge parameter specific to the
MS scheme (am, O‘NTS)' We use this convention for the conversion functions
throughout, denoted in equations (3.3.31). The following expressions for the
conversion functions are found to be the same in all three MOMi schemes in
the Curci-Ferrari gauge. This is a property which also appeared in the arbitrary

(linear) covariant gauge. These are

CMOMi(q ) = 14 [90°Cy + 18aC) + 97Cx — SON,Tj] = 2
+ [1626°CF + 3240°C3(s + 18360°CF + 5184aCi(s
+2817aC3 — 2880aCy Nf T — 7776035 + 83105C3
—20736C Nf Ti-(s — 69272C'ANfTF + 41472Cr Ny T 3

—47520Cr Ny Ty + 12800N7 17| —— + O( %)

2592
CMOMi(4 o) = 1+ [~902Cy — 36aCy — 97C4 + 8ON;Th] == 2

+ [18a*C} + 90a°C} — 36°C3(; + 301a°CH
—3200°CaN; T — 4680C3 (3 + 284aC; — 640aCa Ni T

+864C3 (s — T143C3 + 2304C Ny T (s + 4248C, Ny T
2

—4608Cy Ny Ty s + 5280Ck Ny Tr] ﬁ +0(d%)

Ci\/IOMi(a, @) = 1+ Caa+ [C3(607 + T20(; — 21ov — 180¢; + 1943)
@2

—7600ANfTF]@ + O(a®)

C}XIOMi(a, @) = 1—aCpa+ [-20°CaCr + 80°CE + 24aC4 Cr(s — 52aCsCr
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2

+24CCirs — 82C4Cre + 5GF + 28Cr NiTv]
+ O(a?) . (4.3.15)

Note that the one loop contributions agree with those in the linear covariant gauge
fixing (3.3.52). Now that we have recorded the conversion functions, coupling
constant and gauge parameter mappings we can apply (3.3.29) and (3.4.55) in
order to construct the S-functions and anomalous dimensions respectively to three
loops for each of the three MOMi schemes. Following the procedure in Section
3 we first require the MS renormalization group functions for the Curci-Ferrari
gauge to the desired loop order, in our case the results need to be up to and
including three loops. Since we have only computed the two loop MS results
directly the three loop results are extracted from [104]. Note that although the MS
results have already been determined for the anomalous dimensions, we extend
[104] by providing a further analysis of the QCD vertices in the MOMi schemes.
As well as providing new results for the MS and MOMi amplitudes we use the
results in [104] to construct the RG functions for each MOMi scheme. These of
which are new to three loops. Additionally we have constructed the conversion
functions, coupling constant mapping and gauge parameter mapping between
the two schemes. These results are new and have been recorded in [67]. The
MS results for the anomalous dimensions in the Curci-Ferrari gauge are not the
same as for the arbitrary (linear) covariant gauge setup past one loop order and
so we present the results for the anomalous dimensions in this gauge below for
completeness, [104|. Therefore, beginning with our anomalous dimensions in the
MS scheme we have, [104],
a
6 2
+ [02C2 + 11aC2 — 59C2 + 40CA Ny T + 320FNfTF]%
+ [54a*C3 + 9090 C3 + 864aC3¢s + 6012aC; — 2304aC; Ni T
+648C5¢3 — 39860C5 — 20736C3 Ny T1-Cs + 5830405 Ny Ti-

+27648CACp Ny TR (3 + 320C4 Cp Ny Ty — 97280ANf2TI?

a3

1152
MS _ N 24 - a
7. (a,0) = Cala 3)1 + C4[3a°Cy — 3aCy — 95C, + 4ONfTF]@
+ C4[1620°C3 + 148502C3 — 2592aC5 (3 + 3672aC;
—6048aCA N; Ty — 194403 (3 — 63268C75 + 6220804 Nf T3

ABa,0) = [3aCy - 13C4 + 8N/ T3]

—2304CEN; T — 5632Cp NPT + O(a?)

2
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+6208Cy N, T — 82944C Ny Ty (s + TT760CH Ny T
3

@
quis(a, a) = aCra+ Cp[8aCy + 25C4 — 6Cp — 8N;TF| %2
+ Cp [2703C3 + 2700°C3 + 216aC3¢; + 2367aC3
—1224aCy N; Ty — 2484C3 (5 + 18310C% + 3456C4 Cr(s
—10296CC — 9184Cy Ny Ty + 432C2 + 864Ck Ny T

+ O(a )

+8960N7T}] + O(a*)

640N>T?
+ f ]288

MS(a,0) = [~3aCu+26Cs — 16N, T] — =
2

+ [—a?CF — 17aC] + 118CF — 80C4 N; T — 64CFNfTF] T
+ [-27a’C} — 558°C} — 864aC3(s — 4203aCy + 1224aC5 Ny T
—648C3 (3 + 39860C% + 20736C; Ni T3 — 58304C5 Ny Tre

—27648C4Cp Ny Tp (s — 320CACp Ny Ty + 9728Cu NF T}
3

+2304CE Ny Ty + 5632Cr NPT | —— e O(a*) (4.3.16)
and the three loop S-function is, [1, 2, 92, 93, 94|,
WS 11 4 34 20
Ma,a) = — {ECA— 3 szf] a® — [ECX—KLCFTFZ\G—?CATF]\Q a

+ [2830Ci TNy — 2857C% + 1230CACpTy Ny — 316CA T N}
4
— 108C2TN; — 264CpTEN?] ;‘—4 + 0(d®) (4.3.17)

which agrees with (3.4.56) since the MS S-function is gauge independent to all
known loop orders. Using (3.3.29) and (3.4.55) we construct the renormalization
group equations for the MOMi schemes at three loops. For the MOMh scheme,

the renormalization group functions are

2
pMOMb (o) = [—11C4 4 4N, Tf] %

+ [18¢/ (%) o?CF — 156y (L) aCF + 969 (%) aCAN; T
—810°C} — 12°C37* + 5400 C; — 4320 Cy Ny Ty

+104aCim? + 1404aC; — 64aCy Ny* Ty — 864aC Ny i
3

648
+ [—3078\/§1n(3)2agcjw + 54813 1n(3)%*Cin

—7344CF + 4320C4 N; Ty + 2592Cr Ny Ty | ——

119



—8208V/31n(3)2?C3 Ny + 8262v/3 In(3)*aClin
+329076v/31In(3)2Cm — 2717283 1n(3)*C2 Ny T
+55296V/3 In(3)2Cy NP 7TE + 36936v/3 In(3)a* O
—65772v/31n(3)a*Cim + 98496V/3 In(3)a*C3 Ny Tx
—99144v/31In(3)aCiim — 3948912v/31n(3)Cin
+3260736/3 In(3)C{ Ny T — 663552v/3 In(3) Ca N/ T2
+3306v3a3C5m® — 58873’ Cin® 4 8816V/3a2C5 Ny T
—8874V/3aCin® — 353452v/3C5m° 4 291856V 3CIN; T
—59392V3C, N7 T2 + 43200 (1) *C3

—29232¢/ (1) a2CA+16128¢ (1)* ?C3N, Ty

—1440¢/ (1) aoj — 230409 (1) aCI N, Ty

1188009 (1) €3 — 432000 (1) CIN/ T

—3888¢(3) 4C’A — 57609 (3) o*Ciir?

—_—

—28432166452 (%) Cf + 23477299255 (%) CiN; T
—ATTT574455(3) CANFT + 2216160s3(%) o°C

—175608¢" (%) a*C3 — 41472¢/ (3) o« CINy T
+38976¢)' (3) o’ Cim® + 324648¢' (%) o C
—21504¢ (3) «*CiNym* Ty — 6687361 (3) o> CEN; Tp
+1920¢ (%) aCim® — 1564272¢' (%) aC}
+30720¢ (3) aCAN;m°Tp + 9745920 (1) aCEN; T
+497664¢' (1) aCaCrN; T — 1584009 (1) Cin®
+23317632¢ (1) C3 + 576000 (1) CiNpm* T
—205079044)" () CANyTr — 6220800 (%) CACp Ny T
+4230144¢/ (1) CANf2T2 3249 (%) & C
+2457" (1) o*C3 — 8644 (3) &*CA Ny I
+12150¢" (1) aCA + 131868y (%) C}
—47952¢" (1) CIN; T — 13296965, (%) o°C}
+2367792s5 (%) o*C} — 354585652 (%) o*Ci Ny I
+3569184s5 (Z) aCf 4 14216083252 (%) C
—11738649652 (7 ) CiN;Tp + 2388787255 (%) CAaNFT7
+265939255 (L) o’ Cy — 473558455 (%) o*C5
+7091712s5 (%) &*CiNyTp — 7138368s2(%) aCf

(

3
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—3946320s3(Z) o*C}{ + 590976053 (%) o’ CE N, Ty
—5948640s3(Z) aCy — 23693472053 (%) Cf
+195644160s5 (%) C3N;Tp — 3981312053 (%) CaNfTi
—1772928s5(%) o’ C5 + 315705653 (%) o*C
5)a”
(3

ol o

—4727808s5 (%) &*Cx Ny Tp + 475891255 (%) aCf
+189547776s5(%) Cif — 156515328s5(%) C4 N I
+31850496s3 (%) CaN/ T + 25920 Cim® — 1370520 C}
+466560 ' CIN; T + 2784 Cir* 4+ 1170720 O
+81648a°C3 (3 + 361584a°C} + 276480 Ci Ny T
—93312a°C3 N; T — 1954402 Ciint — 2164320%Cim?
—2342520*C3 (3 + 18808200 C3 + 9472a° O3 Ny T
+4458240°C3 Ny Ty + 2177280°C; Ny Tr(s

— 11197440 C3 N; Ty — 16796160 CaCr Ny T
—33040aC3 7t 4 10428480 Cm? — 75232800 (3
+6689304aC5 — 10240aC N;ym* T
—649728C3 Nym* T — 52254720C3 Ny Tre
—331776CACr Ny Ty — 44789760 Cy O Ny Tj-
—298848C 3w — 15545088C57? — 13172544C5 (3
—66970800C7% + 10867205 Ny T + 13671936C5 Ny T;
+32161536C3 N;T-C3 + 55349568C5 Ny Tj-
+414720C, Cp Ny Ty — 3284582404 Cr Ny T Cs
+36516096C4 Cr Ny Ty — 2820096Cy Nfw? T
—9953280C NF T ¢s — 7838208CaANF T

—1119744CE Ny Ty + 11943936 Cr N7 T (3

CL4

11446272C-N2T2] —& °
6272C NP T2 reogs T O(a”)
YAOME(a, ) = [3aCy — 13Ca + 8N TF] %

+ [361(3) 0?CF — 246v/ (1) aCF + 964" (%) aCa Ny T
+390¢ (1) Cx — 2409/ (1) CaNy T — 810°C; — 240*Cim?
+4590%C5 — 4320°CyN; Ty + 164aCi7° + 675aC;

—64aCy N;m* T — 864aCy Ny Ty — 260057 — 2484C5
2

+160Cy Nym* Ty + 2376Ca Ny Ty + 2592Cr Ny T | —— R
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+ [—1539\/§1n(3)2a3oj7r + 8046v/3In(3)22C3
—4104v/31n(3)?0®CINpr Ty + 16470v/3 In(3)%aCln
—6696v/31In(3)2aCiN; Ty — 972273 1n(3)*Cin
+104760v/3 In(3)*Ci Ny T — 27648v/3 In(3)*Cy N/ w2
+18468v/31n(3)a*Cm — 96552v/3 In(3)a*Cinr
+49248v/31n(3)a*C2 Ny Ty — 197640v/3 In(3)aClim
+80352v/31n(3)aCi N T + 1166724+/3In(3)Cin
—1257120V/31n(3)Ci Ny Ty + 3317763 In(3) Ca NP T2
+1653V302Cm° — 8642v/302Cin® + 4408V30*CIN; o T
—17690v/3aC3m® 4 T192v/3aCEN; T + 104429v/3C3 78
—112520V/3Ci N; 7T + 29696V 3Cy NPT}
+3024¢ (1)? aCF — 282244 (1) 02CH

+8064¢ (1)* 2C2N; Ty + 844200 (1)* aC}
—403209' (1) aCIN/ T — 819000 (1) €3
+50400¢ (1) CijTF—3888w( )a'C}

—4032¢' (1) &*Cix® — 709569 (1) o*C}
—31104¢/(3) 3CijTF+37632¢( ) &*Ciim?
+416988¢ (1) o*C§ — 10752¢/ (1) o« CIN;w* Ty
—272160¢ (1) o« CIN; T — 1125609 (1) aCin?
+1274184¢/ (1) aC3 + 537600 (1) aCEN;m* T
—5736961" (%) aCi Ny Tr + 248832¢ (1) aCyCp Ny T
+552961)" (3) aCANF T + 1092004 (3) Cim°
—57723841)' (%) C5 — 672000 (%) CEN;w° T
+6785856¢ (3) CA Ny Ty — 6220801 () CaCp Ny Ty
—2115072¢ (3) CaNF T3 — 1629 () &°C
+2727¢" (%) o*C3 — 4320" (L) *CA N, T
+216¢" () aC3 + 54009 (L) aC3 Ny T — 38961y (1) C}
+23976¢" (1) CRN; T — 6648485, (%) o*C
+3475872s5 (%) o*C3 — 177292855 (%) o> CEN; Tp
+711504055 (%) aCf — 289267255 (%) aC{N; Tr
—4200206455 (%) C3 + 4525632055 (%) C3 N Tr
—1194393652(Z) CANF T + 132969655 (5 ) o*C
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—695174455 (%) o*C}{ + 354585655 (%) o’ C N, T

3)
—14230080s5 (5 ) aCy + 578534455 (5 ) aC{ N, Tp
+8400412855 (%) CF — 9051264055 (%) CiN; T
+23887872s2(%) CaN/ T + 1108080s3(%) o*C
—5793120s5 (%) o*C} + 295488053 (%) a”CiN; T
—11858400s3 (%) aC} + 482112055 (%) aCi Ny I
+70003440s5 (%) CF — 7542720053 (%) CiN; T
+19906560s3 (%) CaN/ T2 — 88646453(5) o’ C3
+463449653 (%) o*C} — 236390453 (%) o’ CX N, Ty
+9486720s5 (3 ) aCi — 385689653 (%) aCN; Tir

(3

—56002752s3(%) C3 + 6034176053 (3 ) C3 N/ T
—15925248s3(%) CANF T + 25920 Cin® — 597780
+23328a*CiN; T + 17760 Cim* 4 473040°Cm?
+408240*C3 (3 + 209952a° O + 207360 C; Ny Tie
—1981602C3n* — 2779920°Cim? — 31978802 C3¢s
—2274480°C3 + 47360>C3 Nym* Tie + 1814400 C Ny Tie
+1088640*CE Ny Ti-(3 — 93312a°C3 Ny T
—83980802Cy Cp Ny Ty + 36944aCin* — 8494560 C3m°
—3457404aC3 (3 + 2994732a.C5

—32320aC3 Ny T + 382464aC Ny Tr:
+1158624aCF Ny Ti- (3 — 2947104 C3 Ny T
~165888aCy Cr Ny 2T — 22394880C Cr Ny Tie
—368640Cy Nf T} 4 2488320C4 NPT} 4 67496Cim*
+3848256C3 7% + 10207944C5 (5 — 17386164C%
—41536C; Ny T — 4523904C3 Nym* T
—1337472C3 Ny T1-(3 + 17153856C5 N Tre
+414720C4 Cp Ny Ty — 1642291204 Cr Ny T (3
+15738624C4 Cp Ny Tir + 1410048Cy Nf T}

—995328Ca N/ T3 ¢s — 2799360C NP T3 — 559872C3 Ny T
3

279936

+5971968Cr N T3 (s — 5723136 Cr N/ T} + O(a*)

'yg/[OMh(a, a) = [-3aCy+ 26C4 — 16NfTx] %
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+ [-36¢/ (1) o®CF + 402y (1) aCF — 192¢/ (1) aCa Ny T
—780¢ (1) CF + 4809 (%) CaN; Ty + 1620°CJ + 240> Cm?
—6750°C; + 8640 Cy Ny Ty — 268aCim? — 1107aC}

+128aCy Ny * T + 1728aCy Ny T + 520C5m* + 4968C;
2

—320Cy Ny Ty — 4752CA Ny Ty — 5184Cp NyTp| —— 159G
+ [1539V31n(3)%0*Cir — 14715V31n(3)%a°Cir
+8208v/31n(3)2a*C2Npr Ty — 10503v/31n(3)%aCln
+3024+/31n(3)2aC3 Ny Ty + 194454+/3In(3)2Conr
—209520V/31In(3)2C{ Ny T + 55296v/3 In(3)*Cy NF T2
—18468v/31n(3)a’Clm + 17658073 In(3)2Ciin
—98496+/3 In(3)02C2 Ny Ty + 1260363 In(3)aCin
—36288v/31n(3)aCiN;m Ty — 2333448V/31n(3)Cin
+2514240/3 In(3) Ci Ny T — 663552+/3 In(3)Ca N T
—1653v3a3C3n3 4 15805v/302C5 7
—8816v/302CAN; T + 1128130 Cin
—3248V/3aC3 N T — 208858V/3C57°
+225040v/3CI Ny T} — 59392v/3C NP T2

—3024¢ (1) aC3 + 41328y (1)* *C3
—16128¢ (1) a?CIN/ T — 1499409 (4
+80640¢ (1)* aC3N/ T + 1638009 (1) C
—100800¢ (3)* CIN{ T + 116644 (})
+4032¢ (3

+62208¢' (%) «’CiN;Tp — 551049 (1) o*Cim?
—916272¢' (%) o*C3 + 215049 (1) «*CiNpm* T
+5650561" (%) o’ CIN; T + 1999200 (1) aCin®
—11370247)

)

4CA
) & Cim? + 47628y (1) o*C}

3
1
3
1
3

3)

3)

(3) aCF — 1075209 (%) aCiNpm* T

+354240¢ (%) aCi Ny Ty — 497664¢ (1) aCyCp N; T

—110592¢' (%) aCaNF T — 2184004 (3) Cim®

+11544768¢’ (1) C3 + 1344009/ (1) CINym* T

—13571712¢' (3) CAN; T + 12441600 () CaCp Ny T
3) C

+4230144¢)' (1) CaNF T + 1620 () o°C
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—34299" (1) &*C3 + 864" (3) o> CIN;Tr
+8559¢" (1) aC} — 108004 (1) aCE N, Ty
3

+77922¢" (%) CF — 47952¢" (%) CANy I
+66484852 (%) o’C} — 635688052 (%) a*C
+354585652 (%) o Cy Ny T — 453729652 (%) aCf
+1306368s2 (%) aCi Ny T 4 8400412855 (%) CF
—90512640s (Z) CN; Ty + 2388787252 (L) CaNF T
—132969652 (%) o’ C} + 1271376052 (%) o*C5
—7091712s5(Z) o*CA Ny T + 907459255 (%) aCy
—26127365 (%

+181025280s2 (5 ) CiN; TR — 4777574455 (5 ) CaNF T3

—1108080s5(Z%) *C} + 10594800s3(% ) o*C4
—5909760s5 (%) o*Cx Ny Tp + 756216055 (%) aC3
—2177280s3(Z) aCiN; T — 14000688053 (%) C

) o
)a
)
)
) aCx Ny T — 16800825652 (%) C4
(
)
)
)
(5

(0%
+150854400s3 (%) CEN; T — 3981312053 (% ) CaNF T}
+88646453(%) o’C; — 847584055 (%) o*C3
+4727808s3(%) o*CiNyTp — 604972853(%) aC}
+174182455 (%) aCiN; Ty + 11200550455 (%) C3
—120683520s3 (%) CiNf T + 3185049655 (5 ) Ca N/ T}
—T77760*Cim* 4 1020600 C5 — 466560 C3 Ny Tj:
—17760°Cin* — 317520 Cim® — 233280 O (3
—2945160°C} — 414720 CN; w1 + 27512°Ciim?
+6108480*Cim? + 68914802 C5 (s + 17496002 C5
—94720°C Ny T — 3767040 C; Ny T
—2177280*Ci Ny Ti-(3 + 2799360°C3 Ny Ti
+16796160°CoCr Ni Ty — 89464aCim* + 7580160 C57?
+45120240C53¢5 — 41144760C3 + 646400C3 Ny T
—236160aC; Nym* T — 12908160Cy Ny TrCs
+5101056aC3 Ny T + 3317760Cy Cp Ny T
+44789760CaCp Ny Ty + 737280 Cy Nf T}
—4976640Cy N T — 134992C3 7" — 7696512C3 7
—20415888C5 (3 + 34772328C7 + 83072C; Ny T
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+9047808C; Ny Tj- 4 2674944C3 Ny T (3
—34307712C3 Ny T — 829440C4 Cp Ny Ty
+32845824C4 Cp Ny Ty (3 — 31477248C4 G Ny Tie
—2820096Ca N/ T3 + 1990656 Ca N7 T3

+5598720Cy NPT + 1119744CE Ny Ty — 11943936 C N7 T2 C

CL3

11446272C- N?T2| ——— 4
a
WM a,0) = Cala -3

+Cy [12¢/(3) a®Cy — 661/ (1) aCy + 909’ (§) Cy — 8a*Car?
+10802Cy + 44aCym? — 81aCy — 60072 — 4320,

2

216N, Ty 4‘;2

+Cy | -513V3In(3)%a* Cim + 19983 In(3)2a*Cim
+6102v/31n(3)*aC3t — 3456v/3 In(3)2aCy Nyr T
—22437v/31n(3)Cr + 10368v/3 In(3)2Cy Ny T
+6156v/31n(3)0’*C21 — 23976v/31In(3)aCén
—73224V/31n(3)aCim 4 41472v/31In(3)aCy Ny Tp
+269244/3 In(3)Cam — 124416V/3 In(3)Cy Ny Tp
+551v3a°C3n® — 2146v/302C2 7% — 6554v/3aC2 7
+3712V/3aCy Nym® Ty + 24099v/3C37°
—11136V3C4 N7 T + 1008y (3)* 0?3
—8064¢ (1) a2C2 + 214200/ (3)* aC?
—18900¢' (1)* €% + 1296/ (1) o*C3
—1344¢/ (3) o Cim? — 327249/ (1) o°CF
+10752¢ (3) o*Cin® + 68148y (%) o*C}
+6912¢ (%) a*Ca Ny T — 285609 (%) aCin?
+515160¢' (3) aC} — 264384y (1) aCa N, Ty
+25200¢ (1) Cim® — 1365984y’ (1) CF
+741312¢ (1) CaN; Tr — 540" (§) o*C3
+837¢" (1) o*C3 + 972¢" (1) aC} — 89919 (1) C}
—22161655 (%) o’CJ + 8631365 (%) o*C}
4263606452 (%) aCf — 149299255 (%) aCa Ny T
—9692784s, (%) C3 + 447897655 (7 ) CaNf T

)
)
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+44323255 (%) o’ C — 17262725, (%) o*C}
—527212855(5) aCF + 29859845, (5) aCa Ny T
+1938556855 (%) C§ — 895795255 (%) Ca Ny I
+369360s3 (%) ’C; — 143856055 (%) o*C}
—4393440s5 (%) aCF + 248832055 (%) aCy Ny T
+16154640s5 (%) C§ — 746496053 (%) CaNy I
—20548853 (%) a’C} + 1150848s5(%) o*C

6

()
+3514752s3(%) aCf — 19906565 (%) Ca Ny T
—12923712s3(%) C3 + 597196855 (5) CaNf T
—864a’Cim? — 58320 CF + 592a°Cin* + 218160°Cim?
+194400°C5 (3 + 73872a°C5 — 5816a*Cim
—454320*Cim? — 243000°C3 (5 — 1093500%C
—46080*Cy N; T — 155520 Cy Ny Ty + 6928aCir
—343440aCim? — 7455240C3 (3 + 977832aC%
+1762560Ca Ny° T + 3421440Cy Ny Tr(s
—381024aCy Ny T + 15576C4m* + 910656C;m°
+2128680C5 (3 — 4079484C% — 494208C4 Ny T;

—653184CA N Tp (3 + 3367008Cy N¢Tp + 279936Cp N1
3
_ 22 a 4
62208071} ] Taceol T O(a)
fy}XIOMh(a,a) = aCpa+ Cp [12¢'(3) o*Cy — 30¢'(3) aCy — 8a’Cym”

+2702Cy + 20aCy7? + 675C — 162Ck

a2
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+Cr [—513\/§ln(3)2a3C’A7r + 459\/5111(3)2(1203%
+7479V/31n(3)%aC31 — 3456v/3 In(3)2aCy Ny Tp
+6156v/31n(3)0’C21 — 5508v/3In(3)a’C3r
—89748V/31n(3)aC3r 4 41472/31n(3 )aC’ANfﬂTF
+551V303C2 1% — 493302 C3 7 — 8033v/3aC
+3712V3aC Ny T + 10080 (1) a3C2
—5040¢' (1) @2C3 + 63004 (1) aC? + 12969 (1) a*C2
—1344¢/ (3) o’ C3m* — 36612¢/ (1) o°CF
+67200 (1) o*Cim? — 22248¢'(3) o*C}

—216N;Ty] —

W= Wl
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+6912¢ (%) &*Ca Ny T — 84009 (%) aCin?
+554688¢ (1) aC} — 15552¢ (3 )aCACF
—285120¢ (1) aCaN; T — 1620004 (%) Ci
+38880¢ (3) CaCr + 51840¢ (%) CaNy T

_54¢///( ) CA + 6751//”(§) OzQCA + 2997¢II,(%) CYCX

—22161655 (%) a®C} + 19828855 (%) o*Ch
+323092855 (%) aCf — 149299255 (%) aCy Ny T
+44323255(Z) o’ C} — 39657652 (%) o°C}
—646185652 (5 ) aCF + 298598455 (5) aCa Ny T
+369360s3 (%) o’C; — 330480s5 (%) o*C}
—5384880s5 (%) aCf + 248832055 (%) aCy Ny T
—20548853 (%) a’C} + 26438453(%) o*C;
+4307904s3(3) aC; — 199065655 (%) aCa Ny T

—864a*Cim? — 58322 C3% + 592a°Chr?

1244080 C3n? + 1944003 C3¢3 + 330480 C3
—116640°CyCr — 4040a°Cim* + 1483202 C3 7
—97202C3(3 — 2070360°C% — 3499202 Cy Cp
—46080*Cy N;*Tp + 777600 Cy N; Tie — 5192aCi7
—369792aC31% — 11275200C 3¢5 — 44712aC3
+103680C4 Crr?® + 1399680C4Cr 4 190080aCy Ny T
+4354560Cy Ny T (3 — 15552aCy Ny T + 108000C; 2
—1428840C5 (3 + 2860596C5 — 25920C,4 Cpr?
+559872C4 O (3 — 1014768C4 Cr — 34560C4 Ny Tie
+373248Cy Ny T3 — 1508544OANfTF + 69984C3

—93312Cp Ny T + 124416 N/ T3 | —— 46656

Note the o dependence in the g-function after one loop is consistent with what
we observed in our earlier calculation for the arbitrary (linear) covariant gauge

in chapter 3. This is consistent with all mass dependent renormalization schemes.

The method used in constructing the S-functions and anomalous dimensions for
each MOMi scheme at three loops is preferred to the direct calculation. Con-

structing the renormalization group functions using (3.3.29) and (3.4.55) relies
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on performing only a direct two loop calculation, using the two loop MOM results
and existing three loop MS results from [104]. This is much faster, and therefore a
preferred method over a direct three loop calculation, since the three loop master

integrals are not known.

4.4 MOMg scheme.

Having recorded the results for the ghost-gluon vertex at length we briefly present
the results for the triple-gluon vertex in numerical form for SU(3). We present
the results in the same order as in section 4.3. The renormalization constants
in the MOMg scheme are given below, where we present the coupling constant

renormalization constant analytically as

Zéggg) \OMe — 14 [—36¢,( ) a2Cy + 162¢( )aC’A — 1381/1( )

+384¢' (2) NiTp — 270°Cy + 240°Cum® + 1620°Cy
—108aCy7? — 243aCy + 92Cym* — 2376Cy — 256 Npm* Tr:

1
+864N; Ty + 108 (—11C4 + 4NfTF) GZS
1
121C? — 88C4N; Ty + 16 N?T?
{( 7 AN/ T + 16N, T7) 57

+ (2502v30 (3)° ' — 23328v/30/ (1) 0°C3

2

+72360v/3¢ (1)% 0203 — 55296v/3¢/ (1)° a?Ca N/ T
—89424+/3¢ (1)? aC3 + 248832v/3¢/ (1) aCu N, T
+38088v/3¢ (1)” €3 — 211968v/3¢/ (1) CaN, T
+294912v/3¢/ (1) Nf2TF +3888v/3¢ (1) o°C}
—3456v/3¢/ (3) a*Cin® — 42768v/3¢/ (3) o*C}
+31104v/3¢/ (3 7r2+62532\/_ 3/ (1) o*Ch
—41472v/3¢ (1) @3 Ca Ny T — 96480v/3¢' (1) o*C3r?
—105300v/3y’ (1) a®C3 + 73728v/3¢' (1) o> CaN; T
F134784V/3¢ (1) ?Ca Ny T + 119232V/3¢ (1) aCix?

) o’
)
5)
5)
—1107756v/3¢' (1) aC3 — 3317763y (4 )aCAwa Ty
—119232v/3¢/ (1) aCaN; T — 50784V/3¢ () C3n?

+3843072v/3¢ (1) CF + 282624V/3y/ (1) CaN; 7 T

—3827520V/3¢ (%) CAN;T}» + 497664v/3 (1) Co Ny T
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—393216V/3¢ (1) NPm* T3 + 77414473y (1) NPT

+162v/3¢" (1) o*C3 + 1458V/3¢" (1) o*C4
—11664v/3¢" (1) aC} + 34587v/3¢" (1) C3
—20736V/3¢" (1) CaN; T — 279936352 (%) o*C}

—4408992v/355(T) aCF + 24214464V/3s, () C3

—11197440V/3s, )CANfTF+559872\/_ s2(%) a*C}

— 48428928V/3s, () C3

)CANfTF +466560v/355 ()

)

(

)

)
5
+8817984V/35,(Z) aC
%
) aC3 — 40357440V/3s3 () O3
%
)a
g

122394880355
+73483201/3s5(

=)o
( X
)

+18662400v/3 55 (
3
(

) CalN;Ti — 373248V/3s3(%) o*C3
—5878656v/3s3(%) aCf + 32285952V/3s; (%) C3
—14929920v/355 () CAN; T + 1458v/3a°C3
—2592V/30°C3n? — 21870V/30°C2 + 1152v/3a*Cir?
+28512V/30*C37% + 59049v/30*C3 — 10800v/303C3 7
—41688V30°C31? — 23328V/30°C2(5 + 152604v/30°C2
+27648V/303Cy Ny T — 54432303 Cy Ny T
+28272/30%C37* + 70200v/30°Can? — 17496V 302 C3(s
—944784V/302C3% — 24576730 Cy Ny T
—89856V/302Cy Ny Ti + 349920v/30*Cy Ny T
—8640v/3aC3m* + 738504v/3aC3 72 + 664848v/30C3 (s
+1027890v/3aC? 4 110592v/3aCy Ny T
+79488V3aCy Ny *Tjr — 3499207/ 30Cy Ny T
—75304V/3C37* — 2562048/3C3 12 — 2767284v/3C3(;
—203067v/3C2 — 38912v/3Cy Nyr* T
+2551680v/3Cy Ny Tj + 2985984+/3C Ny T
—681696v/3CA Ny T — 3317767/ 3Cr Ny T
—2239488V/3Ck N; TG + 2379456/ 3Cr Ny T
+131072V3NF 7' T — 516096V 3N 72 T2
+T767232V3N T — 19441n(3)**Cin
—306181n(3)*aCim + 168156 In(3)*Cim
—777601In(3)*Ca Ny Ty + 23328 In(3)a*Cim

4367416 In(3)aCim — 20178721In(3)Cim
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4933120 In(3)Cy Ny Tx + 2088a°Cim + 32886
—180612C57° + 83520C4 N; T + 216V/3 (3969 (1) o*C3
—144¢/ (%) &?CaN; Ty — 17820/ (%) O}

+648¢' (§) aCaNy Ty + 1518¢/ (1) CF — 47764 () CaNy I
+1536¢ (3) NPTE 4 2970°C3 — 108a°Ca Ny T
—264a°Cin® — 178202CF + 960°Ca Ny Tie
+64802Cy Ny Ty + 118820372 + 2673003
—4320Cy Ny T — 9720C4 Ny Ty — 1012057 + 22464C5
+3184Cy Nym° Ty — 16848C Ny T + 1296 Cr Ny T

1 1
—1024N27%T2 + 3456 N T2 —) —] a’
A r1F) € ] 279936v/3
+ O(a®) . (4.4.19)

The renormalization constants for the wave functions are given numerically for

SU(3) as

7' = 1+ [0.750 + 1.5a — 1111111 N; + 8.083333
MOMg

1
+ (—1.5a — 0.666667N; +6.5) —| a
€

1
+ [(1.687500042 + Ny — 6.375000cr + 1.5N; — 14.625000) —
€

—0.1875000” 4 0.9960350* + 0.2777780° Ny 4 6.9265800°
+0.5314420° Ny + 11.670343a% — 1.567892a.N;
+28.246854c — 2.561884 N} + 3.142356 Ny + 41.955873

+ (0.375000a* + 0.166667a° Ny — 4.367070a
—0.718698° Ny — 4.8408850° — 4.807737aN;

+38.705877cc — 1.53T130N7 + 22.176457;
1
—86.472011) —} a*> + O(a®)
€
7(29) — 14 [—1.5a - 0.759] a
MOMg €
1
+ [04 (0.562500a + 1.687500) = + « (0.3750000* — 1.6170700
€

—9.879437a — 3.458543 Ny + 13.951925) + « (0.1875000z3
—0.8085350% — 3.674093c — 1.729271N;
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1
+12.400617) E} a*> + O(a®)

1
Zee8) = 1+ [3.0 + (—=0.75a + 2.25) —} a
MOMg €
1
+ {(0.562500(12 + 0.75N; — 9.843750) — — 0.750°
€
+1.26538902 + 12.143941r + 4.312919N; + 1.458303
+ (0.187500a* — 1.3710350° — 4.060989a* — 1.729271aNy
1
+18.641647cr + 7.062814N; — 43.951850) —] a® + O(a®)
€
1
Z(#s = 1+ [—1.333333a - 1.333333&—] a
MOMg €

1
+ [oz (1.388889a + 3.0) S+ 0.333333a* — 1.4373950°

—7.2539440” — 3.074260aN; + 12.970224 + 2.333333N;
—25.464206 + (0.333333a"* — 1.437395a° — 6.253944a”
—3.074260aN; + 20.545541cr + 0.666667 NV

—11.166667) ﬂ a’> + O(a®) . (4.4.20)

We reiterate that when variables are not labelled it is understood that they cor-
respond to the scheme defined on the function on the left hand side of the equa-
tion. Although the conversion functions for the wave functions are the same in
all MOMi schemes, the conversion function for each vertex is different in each of
the three cases. For the MOMg scheme this was found to be

OMOMe (4 ) = 1+ [~0.1250° + 0.1640230% + 15118960 + 1.708403N;
—13.246244] a + [0.0156250° + 0.099619c° — 0.3246590*
—0.6354340° Ny + 1.5637290° — 0.0047430° Ny
—6.5574790% + 3.708634aN; — 36.724780cx
+0.534266 N7 + 33.152725N; — 217.036863] o
+ O(a®) (4.4.21)

where the conversion function is always defined in our convention to be a function
of MS variables. Using the above result for the coupling constant conversion
function along with (4.3.15) and equation (3.3.37) we deduce that the coupling
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constant mapping between the MS and MOMg scheme is given by

apioMg = @+ [0.250° — 0.3280460° — 3.023791a — 3.416806 Ny

+26.492489] a*

+ [0.0156250° — 0.3222560” — 0.403893a* — 0.0104340° Ny

+8.295142a° + 1.6907920° Ny + 6.9362960° + 8.080297 N,
—46.712076c + 7.687393N} — 202.085010N;
4+960.462701] a®> + O(a*) . (4.4.22)

For completeness we display the expressions for the amplitudes in the MOMg

scheme which are

28g
X0

ggg
%)

ggg
(10)

(p, Q)‘

(v.9)|

(v.9)|

MOMg

MOMg

MOMg

MOMg

SHE (0, q)‘MOMg = —% X0y . Q)‘MOMg
— 588 (p, Q)‘MOMg = %E%g(p’ Q)‘MOMg
= S0y, = 1O

2 0.0 g, = 2 TP 0o
= S0 0 o,

[0.057318a° — 0.507930a” — 3.3280460 — 1.092686.\;
+7.642693] a + [—0.021494a° + 0.283161a” + 1.1732280*
+0.607993° Ny — 12.0477530° — 1.8203920° N;
—10.473322a° — 16.242288a.N; + 110.033630c

—3.7T79101N} + 36.334708N; — 86.996723] a® + O(a”)

ggg
- E(13) (p, q)‘MOMg

[0.192682a° — 0.570116a” — 3.351838c — 1.213010/\;
+7.954277) a + [—0.0722560° + 0.525374a” 4 2.6559090/*
+1.121278a° Ny — 13.649060a° — 1.7300350° Ny
—6.0453360° — 16.083732N} + 114.490800cx

—4.195246 N} + 37.416111N; — 85.674805] a* + O(a”)

ggg
- 2(12)(]77 q)‘MOMg
[—0.135364043 + 0.0621860° + 0.023791a + 0.120324 Ny

—0.311584] a + [0.050762a° — 0.2422130° — 1.482681a*
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—0.5132850 Ny + 1.601306a* — 0.090357a° N;

—4.427987a” — 0.158555aN; — 4.457170cx

+0.416145N7 — 1.081403N; — 1.321918] a® + O(a”) .
(4.4.23)

Notice here that the same relations are satisfied between the amplitudes as in the

MS scheme. The relation (3.2.13) also holds in the Curci-Ferrari gauge as well as

the arbitrary (linear) covariant gauge. For the MOMg scheme we have

5MOMg

MOM
Ya 5

MOMg

(a,a)

(a,a)

(a,a)

[0.666667N; — 11.0] a*
+ [—0.56250* — 0.50° Ny + 5.3670700" + 0.4373950° Ny

—1.9967590* + 2.015861aN; — 19.654643cx + 12.666667N;
—102.0] a® + [0.351563" + 0.281250a° Ny — 3.932921a°
—0.976418a° Ny — 0.940179a° — 10.959442a* N;
+86.317268c" — 2.3056950° N} + 21.4035540° Ny
—49.6957190 + 0.8898050* N7 + 14.2859940” Ny
—200.6497240 + 4.647961aN} + 43.239367a Ny
—658.070943cc — 2.658115N} + 67.089537 N}
—0.565953N; — 1570.984207] a* + O(a”)

[1.50 + 0.666667N; — 6.5] a
+ [-0.375a" — 0.166667a° Ny + 2.117070a” — 0.281302a° Ny

+8.4033850” + 5.474404aN; — 41.643377a + 1.537130N7
—12.093123N; + 16.909511] a® + [0.164063”
+0.072917a° Ny — 1.563373a° — 0.128860a° N;
—5.550011a° — 6.504338a* N} + 56.7046960*
—1.3449890° N} + 12.7482970° Ny 4 3.724481¢°
—1.4158900* N} + 66.3638130” Ny — 453.6165960°
+29.399931aeNf — 302.3530530 Ny + 647.926112cx
+6.202269N; — 74.919018N} + 491.430969N;
—1308.938779] a* + O(a®)

[—0.750 — 0.666667N; + 6.5] a
+ [0.1875000* + 0.166667° Ny — 1.308535a° + 0.281302a° Ny

—2.1980420% — 3.7451320:Ny + 37.399010c — 1.537130N}
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+12.093123N; — 16.909511] a* + [—0.082031a"
—0.072917a° Ny + 0.855905a° + 0.128860a” N;
+1.672113a° + 4.9912250 Ny — 34.418633a*
+1.3449890° Nf — 9.153359a° Ny + 41.1304320°
+1.4158900” N} — 30.8310350° Ny 4 320.1197240
—22.422378N} + 265.150723aN; — 566.4170100x
—6.202269N} + 74.919018 N7 — 491.430969 N,
+1308.938779] a® + O(a*)
AMOMe (4 o) = [0.750 — 2.25]a

+ [0.1875a" + 1.3710350" + 4.3422390° + 1.729271a;
—21.172897a — 4.437814N; + 8.795600] a” + [0.082031a”
—0.9535620° — 2.0367440° — 1.513113a" N;
+34.288809a" + 7.7592760° N; — 7.509981a”
+27.8339410° Ny — 246.2557100 + 6.977553N}
—127.545757acNy + 436.672074cc — 19.974116 N}
+157.466921 N; — 548.849275] a® + O(a')

7OME(4 0) = 1.333333aa

+ [—0.3333330" 4 1.437395a° + 9.031722a” + 3.074260cNy
—10.545541c — 1.333333 N} + 22.333333] o

+ [0.145833a" — 1.257721a° — 5.894040a° — 2.689978c* ;
+36.807483a" + 7.057668c° N; + 34.4286240°
+53.0718120” Ny — 232.3404150° + 12.404539aN}
—80.560198 Ny + 204.199902c — 5.259632 N7
+76.867272N; — 94.794328] a* + O(a') . (4.4.24)

4.5 MOMq scheme.

As with the MOMh renormalization we now similarly present results for the

MODMq scheme. Starting with the renormalization constants we have

Z{se) oMg 1+ [—6¢/(1) a®Cu + 249/ (1) aCy + 96¢ (%) aC
+78¢'(3) Ca — 48¢'(3) Cp + 40’ Cum® + 270°Cy

—16aCy7% — 54aCy — 64aCrm? — 2160Cr — 52C4 7>
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—993Cy + 32Cpm* + 432C + 240N, T
11 a

+36 (—11Ca +4N;Tr) — | 5

1
24€?

+ (72v30 (3)" ' — 576v/30/ (1) 0 C
—2304v/3¢' (1) @ CuCp — 720V/3¢' (1) 02C2
+10368v/3¢ (1)% a2CaCr + 1843230 (1) o*C

+7488V/3¢ (1) aC? + 253443y (1) aCACF
(3
(5

{(121@, — 88CuNf Ty 4+ 16NFT;) —

—18432v/3¢/ (1)* aCZ + 190803y (1) C
—35712v/3¢/ (1)® CaCr + 18432/3¢ (4 )
—96v/3¢' (1) a*C3n* — 972V/3¢/ (1) 4OA
+768v/30 (1) o*Cn? + 237630 (1) 0*C3

+3072v/3¢/ (1) o’ C4Cpr® + 17280v/3¢ (1) a®CaCr
+960V/3¢ (1) a?Cin® + 28872V/3y/ (1) o*C3
—13824V/3¢/ (1) a®C4Cpm® — 55296v/3¢ (1) a*CaCr
—2880v/3¢/ (4 2CANfTF — 24576V/3¢/ (f) 2C¢n*
—82944v/3¢/ ( — 9984V/3¢ (3) aCin
—65232V/3y (1) aC} —33792\/_ 3y (% )aCACFﬂ'

—379872v/3¢
+24576+/34 (
+46080v/34 (

)
(3) aCaCr + 17280v/3¢ (%) aCaN; Ti
—127512V/3¢/ (
(
)
)a
)
)
)

) o*

)a

1

3

) aCEn? + 324864V/3y/ (%)aC’Q
) aCp Ny T — 25440v/3 (%)

%

1

3

)

) C3 +47616V/3¢/ (1) CaCprr
+496224V/3y (1) CaCr — 44352v/3¢ (5) Cu Ny T
—24576v/3¢/ (%) Cam?® — 29376034/ (1) C;
—9216v/3¢' (1) CeN; T + 117v/3¢" (1) o
—144V39" (1) a*C4Cr — 198V3¢" (1) aC
~720V3¢" (1) aCaCr — 1152V/3 w”’(%)
—414v/3¢" () CF — 864V/3¢" (1) C4
+576v/3¢" (1) CaN; Ti + 4608v/3¢" (3)
FTTT60V352 (%) a?CF — 124416V/3s5 (%) a*CaCr
+108864v/355(T) aC% — 995328355 (1) aCyCir
+497664v/352 (%) aC — 443232V/3s, () C3
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+1306368v/355 () CaCp — 124416v/355 () CaN; T

—1327104v/353(%) aCiCr + 663552353 (%) aC?
—590976v/3s3(%) C3 + 1741824v/353 (%) C4Cr
—165888v/355(%) CaN;Tr + 331776v/355(%) C2
+32v/3a*C3r* + 648v/30* O3 1% + 2673V/301C2
—256v/3a°C3rt — 158430 C2 1 — 1024V/30° Cy O
—11520V/30Cy Cpr? — 27216V/30°C4 Cr
—632v/302C3r* — 19248/302C31r% — 5184V/30%C3¢;
—73710v/30*C3 + 4992V/302Cy Cpr?
+36864v/302Cy Crm? + 207367302 CuCr (s
+38880v/302CaC + 1920v/302Ca Ny T
+12960v/302Cy N; T + 819230 C
+55296V/302C2n% + 93312v/302C2 + 3856v/3aC3n?
+43488V3aC3 7% 4 20736V 3aC2(s + 136728v/3aC3
+13184V/3aCy Cpr* + 2532483004y Cprr
+10368v/30C4Cr(s + 444528V/3aCy Cpr
1152030 Cy Nym* T — 25920V 30Cy Ny T
—5120V/3aC2r* — 216576v/3aC2r* + 41472v/3aC2¢s
—311040v/3aC? — 30720V/3aCr Ny T
—103680V3aCr N; T + 9584+/3C3 7 4 85008v/3C 27
+1098361/3C3C5 + 115029v/3C3 — 13568v/3C, Cprr

2(§
+248832V/35, () C% — 1555201355 (%) o2C3
+248832v/355 (%) a?C4Cr — 217728V/355(%) aC
+1990656v/355 (T ) aCaCr — 995328V/3s2 (%) aC?
+886464v/352 (%) C3 — 2612736v/355 (%) C4Cr
+248832v/355 (%) CaN; T — 497664355 (%) CF
—129600v/3s3 (%) a®C3 + 207360v/3s3 (%) o*C4C
—181440v/3s3(T) aC} + 1658880355 () aCyCpe
—820440v/355(T) aCZ + 738720353 () CF
—2177280v/355(%) CACp + 207360353 (%) CaNy T
—414720V/3s3(%) CF + 103680v/3s5 (%) o*C3
—165888V/353(%) a*C4Cr + 145152v/353(%) aC3

(3

)
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—330816V/3C) Cr?® — 31104v3C4Cr(s
—694656v/3C4Cr — 1536V 3Cy Ny T
+29568V/3Cy Ny T + 145152v/3C4 Ny TpCs
—79200V3C4 N; T — 4096v/3CEm" + 195840v/3CE 7>
—290304v/3C2(s + 264384+/3C2 + 6144V/3Cr Ny T
—248832V/3Ck Ny T s + 430272v/3Ck Ny T
+57600V3NPTE + 540 In(3)*a*Cin
—8641n(3)**CyCpr + 756 In(3)*aCim
—69121n(3)*aCaCrm + 3456 In(3)*aCinm
—3078In(3)*C4m + 90721n(3)*Cy Crm

—8641n(3)?Ca NymTy + 17281n(3)*CEnr
—64801n(3)a?C3m + 10368 In(3)a*Cy Cpm
—90721n(3)aCir + 82944 In(3)aCy Cpm
—414721n(3)aCEm + 36936 In(3)Cim

—108864 In(3)C4 G + 10368 In(3) Cy Ny T
—20736In(3)CAm — 58002 Cim® + 928a*Cy Cpr®
—812aC57° + 7424aCy Cpm® — 3712aCE7° + 3306C; 7
—9744CCpm® + 928C Ny Ty — 1856 C®

+72V3 (66 (1) a®CF — 249 (L) a*Cu Ny T
—264¢' (1) aC} — 1056¢ (%) aCaCr

+96¢ (1) aCaN; Ty + 3844 (%) aCpN; T
—858¢ (1) Cx + 528¢/ (1) CaCr + 312¢/ (3) CaNy T
—192¢/(3) Cp Ny T — 440> CE7* — 29707 Cf
+16a*Cy Ny T 4+ 1080*Cy Ny T + 176aC37?
+594aC3 + 704aCy Cpr® 4 23760C4 Cr

—64aCy N;m* T — 216aCy Ny Tr — 2560Cr Ny T
—864aCr Ny Ty + 572C57* + 9699C3 — 35204 Cpr?
—4752C4Cp — 208C4 N;* Ty — 5892C4 Ny T
+128Ck Ny Ty + 2160Ck Ny T

1 1
+960N2T?2 —> —] a’> + Oa® 4.5.25
P7) ¢ ) 3tioids (@*) (4.5.25)
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analytically for the coupling constant renormalization constant and numerically
for the wave function and gauge parameter renormalization constants in SU(3)

we have

7o) = 1+ [0.750 + 1.5a — 1111111} + 8.083333
MOMq

1
+ (—1.5a — 0.666667N; +6.5) — | a
€

1
- {(1.687500042 +a; — 6.3750000 + 15N — 14.625000) —

+1.248017a* + 81916750 — 1.015581a*N; + 16.657617a

—4.271319aN; + 37.418456c0 — 26.358363N; + 120.984314

+ (—2.4960350° — 0.609349a° Ny — 4.8876290
—0.896125N; + 19.623376a + 0.671627N;

—22.923368) ﬂ a*> + O(a®)

(qag)

1
~ o1 [—1.5& _ 0.753] a+ la(0.56250004 +1.687500)
€

MOMq
+a (—1.3710350” — 8.860030cc — 0.713146)

1
+a(—0.685517a — 3.164390c + 5.068081)~ | a®> + O(a?)

€

(qag)

1
= 1+ [3.0 + (—0.75c + 2.25) —] a
€

MOMq
1
+ [(0.562500042 +0.75N; — 9.843750) S+ 0.7733200”

+10.105127c — 2.604167N; + 30.788446 + (—0.685517a°
—3.9203380% + 9.780001a + 1.875000N;

1
—21.954243) ]aQ + O(a®)

€

1
7aae) = 1+ |—1.333333c — 1.3333339} a+ [a(1.388889a +3.0)5
MOMq € €

—1.2186980* — 6.3478050 — 0.065396x
+2.333333N; — 25.464206 + (—1.2186980 — 5.3478050”

1

+7.5099220 4 0.666667N; — 11.166667) —} a + O(a®) .
€

(4.5.26)
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The amplitudes for the MOMq scheme at the symmetric point are
qqg — 3
E(1) (p, q)‘MOMq = 1+0(a’)

Sy, q)‘ = TSEE0, Q)’

MOMq MOMq

= [-0.4140230” — 2.305695cx + 2.598033] a + [—0.567640c*
—5.318037a* — 12.6265490* — 1.033946a Ny
+17.965565a — 3.385190N; — 28.160578] a> + O(a)

5998 ‘ _ yaae ’
(3) (pv Q) MOMq (4) (p7 Q) MOMq
= [-0.50% — 2.522631cr + 2.050269] a + [—0.685517a"
—6.6772440° — 14.947140a° — 0.919310a N
+15.686895c« — 2.593516 Ny — 30.385947] a® + O(a®)
30 ‘ = [-o0. 2_ 934 — 4.362272] a + [~0. 4
6 (,q) MOMq [—0.585977cx 343907 — 4.362272] a + [—0.803395cx

—7.4714500° — 14.2636650° 4 1.9532560N;
—27.9113520 4 6.075881N; — 40.243836] 0> + O(a®) .
(4.5.27)

The emergence of the relations between various amplitudes is again a check on
our computation. Like the previous two cases there are no O(a) corrections for
the channel 1 amplitudes corresponding to the vertex Feynman rule. This is due
to the definition of the MOMi schemes at the symmetric point. The MOMq

coupling constant mapping is given numerically as

apnoMq = @+ [—0.1640230% — 2.344187c — 1.111111N; + 16.715775] o
+ [0.2088600" 4 2.073303a” + 0.2377440* + 0.651396 Ny
—43.0575520r + 1.234568 N7 — 83.111217N; + 472.159094] o
+ O(a") (4.5.28)

with the conversion function corresponding to the quark-gluon vertex

CMOMA( o) = 1+ [0.0820120% + 1.172093 + 0.555556N; — 8.357887] a
+ [—0.094341a" — 0.7482760° 4 0.1366860> N; — 0.1144990
+1.627791aN; — 7.859897cr — 0.154321 N7 + 27.625796 Ny
—131.298127]a*> + O(a?) . (4.5.29)
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Finally we record the renormalization group functions for the MOMq scheme in

numerical form for SU(3) starting with the g-function as

pMOMa(, o) = [0.666667N; — 11]a>

+ [0.2460350* 4 0.218698c° N; — 0.374161a” + 1.562791aN;
—15.237214a + 12.666667N; — 102]a® + [0.048066°
+0.0000060* Ny + 2.147640a" + 1.514213a° N;
+0.0074280° + 16.598977a* Ny — 123.3452400°
+60.545481aN; — 422.073192c0 — 22.587812N}
+588.654843N; — 1843.652719)a* + O(a®)

a,a) = [1.500000c + 0.666667N; — 6.500000]a

+ [0.2460350* — 0.390651a° Ny + 8.450130a° + 1.562791aN;
—22.560876x + 9.411706 N; — 46.639132]a*

+ [0.136474a” — 0.478368a" N; + 8.765488a" — 3.497867° Ny
+57.718718a* + 11.368733a* Ny — 197.964567a>
+1.302171aeN? + 49.405307acN; — 333.3082100x
—11.178808 N7 + 415.699017N; — 2027.743722]a® + O(a”)

AMOMa (g ) = [=0.750000a — 0.666667N; 4 6.500000]

+ [0.439483a” + 0.3906510° N; — 2.754489a° — 1.562791aN;
+25.6490450 — 9.411706 Ny + 46.639132]a” + [0.960039°
+0.478368a* N; + 5.678015a + 3.497867a° Ny
+1.5382290° — 9.903791a* N} + 236.1292600
—1.302171aN} — 48.3456150.N; + 452.915078«
+11.178308 N} — 415.699015N; + 2027.743714]a’ + O(a")

AMOMa(q ) = [0.7500000 — 2.250000] a

+ [0.685517a® 4 4.2015880% — 12.311251ar + 0.750000 Ny
—13.202007]a* + [1.096513a° + 12.182240a* + 27.132851a°
+1.71097680% N; — 107.8034240 + 4.118647a Ny
—1.866574cr — 2.500000N7 + 75.503272N; — 740.134167]a’

+ O(a*)

yOM(a,0) = 1.3333330a + [1.2186980° + 8.1255820% + 2490078
—1.333333N; + 22.333333]a” + [1.949356a° + 22.0212460*

MOM
YA q(
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+74.9014630° 4 2.1669460> Ny + 30.4801040°
+3.107628c Ny + 182.913291cx + 0.888889N7
—52.191691 N} + 341.898911]a® + O(a) (4.5.30)

where all of the above results for the renormalization group functions are functions
of MOMq variables. This completes the summary of the results for all schemes

and vertices.

4.6 A-parameters

In this section we repeat the analysis of the A-ratios, carried out in chapter 3 for
the arbitrary (linear) covariant gauge (see (3.3.49)), for the Curci-Ferrari gauge.

For each MOM]i scheme we have

eMOMh(y Ny = Tis [—12¢' (2)aCy + 300/ (1)Ca + 27a2Cy + 81%aCy
+108aCy — 20m*Cy + 669C4 — 240N} Tk |

eMOMe( Ny = 3714 [36¢)'(4)aCy — 1620 (1)aCy + 138¢/(1)Ca
— 384/ (L) Ny Ty + 270°Cy — 247%0*Cy — 1620°Cy
+1087%aCy + 243aCy — 9272Cy + 2376C,
+256m Ny Ty — 864N Tx7]

OMOMA(, Ny) = o [60/(1)*C — 249/ (1)l — 964/ (3)aT

—78¢'(3)Ca + 48 (3)Cp — Am*a*Cy — 270°Cy
+1672aCy + 54aCy + 647°aCp + 216aCk + 52m2Cy
+993Cy — 327°Cp — 432Ck — 240N Tp] . (4.6.31)

The A-ratios are numerically evaluated for the same values of aw and Ny considered
in the previous chapter. These A-ratios are presented in Table 4.1. The values
for the MOMg and MOM(q schemes are equivalent to those of the linear covariant
gauge fixing of [52], displayed in Table 3.3. This is because the coupling constant
mapping is the same for both cases despite the fact that the ghost-gluon vertex
is different. This does not affect the one loop vertices since the differences cancel
out. However, this is not the case for the MOMh scheme since the quartic ghost
vertex contributes to the mapping for all a and in the Landau gauge case the
differences in the ghost-gluon vertex are significant. However, the same increase

and decrease of the ratio with o and Ny is parallel to that for the standard linear
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covariant gauge fixing results of [52], despite the difference in the A-paramters
for the MOMh scheme. This variation between the A-ratio corresponding to the

MOMh scheme can be seen via direct comparison of Tables 3.3 and 4.1.

a [ N; [ MOMg [ MOMh | MOMq
0 | 0 | 3.3341 | 2.6588 | 2.1379
0 1 | 3.0543 | 2.6837 | 2.1277
0| 2 | 27644 | 2.7123 | 2.1163
0| 3 | 24654 | 2.7456 | 2.1032
0| 4 | 2.1587 | 2.7846 | 2.0881
0| 5 | 1.8471 | 2.8312 | 2.0706
1] 0 || 2.8957 | 2.9893 | 1.9075
1] 3 || 20751 | 3.1684 | 1.8296
1| 4 | 1.7921 | 3.2505 | 1.7964
1| 5 || 1.5088 | 3.3496 | 1.7581
3 3 | 1.8392 | 5.4177 | 1.3110
3 4 | 15732 | 5.8018 | 1.2533
21 4 | 2.5437 | 2.6772 | 2.6597

Table 4.1: Values of A%‘—JSW for the Curci-Ferrari gauge in SU(3).
M

4.7 Discussion.

We make several remarks about our computation. Firstly, to summarize the three
loop renormalization group functions of QCD gauge fixed in the Curci-Ferrari
gauge have been derived for the three momentum subtraction schemes introduced
originally in [91, 52|. All results at two and three loops for the MOMi schemes
within this chapter are new. Obtaining these results required renormalizing the
3-point vertices at the non-exceptional symmetric momentum configuration at
two loops and then, using properties of the renormalization group equation we
were able to deduce the three loop anomalous dimensions and [S-functions. The
explicit form of the vertex functions to two loops, not only in the MOMi schemes
but also in the MS scheme, are useful for both lattice and Schwinger-Dyson
analyses of the vertices. The coupling constant and gauge parameter mappings
were constructed along with the conversion functions for each MOMi scheme. We
also explicitly computed the A-parameters which, when compared with those in
the linear covariant gauge gave us numerical insight in to the differences in the
ghost-gluon vertex structure between gauges. The MOMq and MOMg scheme

A-parameters remain unchanged. With renewed interest in gluon confinement,
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analysis carried out in this Curci-Ferrari gauge fixing is of interest. Originally
introduced as a possible alternative to models of vector boson mass, the model
of [42] fell out of fashion with the development of the Standard Model and its
loss of unitarity when a mass term for the gluon is present. It regained interest
primarily as lattice and Schwinger-Dyson studies appear to give evidence for a
gluon propagator which freezes in the infrared limit to a non-zero value. See, for
example, [105, 106, 107, 108, 109, 110, 111, 112, 95, 96, 113, 114| for some early
evidence of this property. This non-zero freezing has been notionally termed
a gluon mass but this is misleading as that would imply that the gluon has a
fundamental propagator for all momenta with a non-zero pole in p?. If that were
the case the gluon would not be a confined quantum. Instead one viewpoint is
that the freezing is believed to be related to the Gribov copy problem, [115], and
recent models use the Curci-Ferrari model in this respect to study the gluon’s
infrared dynamics, [116, 117, 118, 119, 120]. For studies where the gluon mass
running is necessary we have provided the corresponding anomalous dimensions
for the MOMi schemes in the Curci-Ferrari gauge. The results determined in this
chapter are new and can be used as the foundations for future calculations in this
gauge. The analysis of QCD gauge fixed in the Curci-Ferrari gauge provides a
basis for studying the more involved maximal abelian gauge. The Curci-Ferrari
gauge is strongly related to the MAG, which becomes apparent in the following

chapter where the MAG is studied in the same schemes at one loop.
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Chapter 5

The Maximal Abelian gauge

5.1 Introduction

The maximal abelian gauge (MAG) is interesting as it is thought that the low
energy beheviour of QCD may be best described using an effective abelian the-
ory, an idea first proposed by 't Hooft, [18, 19, 21, 20, 22|. It is thought that
confinement may be best explained by the condensation of abelian monopoles
originating from the diagonal elements of the colour group, [79], which is a Lie
group, and that at low energies the behaviour of the diagonal and off-diagonal
gluons may differ. Abelian monopoles are believed to dominate the infrared
dynamics and for this analysis one has to have a way of making contact with
the diagonal sector directly, [51]. It is for this reason that the maximal abelian
gauge, [19, 21, 20, 121, 122], is appealing, as one of its underlying properties is
to split the colour group into its diagonal and off-diagonal parts. The gluons
corresponding to the diagonal parts are named diagonal, while those which are
not part of this abelian subgroup are termed off-diagonal, [79, 51]. So in choosing
the MAG, anyone focusing on this supposition will find results calculated in this
gauge useful. Various lattice studies of the infrared support the hypothesis that
the confinement mechanism is driven by abelian monopoles [18, 20, 19, 21, 22.
The off-diagonal gluons become massive leaving the abelian gluons as the relevant
degrees of freedom in this regime. Therefore, simulations are carried out in this
gauge where the gluon and ghost propagators are measured as well as the vertex

functions. The results we obtain will assist with further study in these areas.

In a recent lattice study, [123], the effect of the diagonal gluons on the inter-quark
static potential was investigated. Within the theoretical setup it was possible to

identify the contributions made by the diagonal gluons to the potential. Within
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the study it was claimed that excluding these contributions forced the linearly
rising potential to collapse, indicating that the abelian sector was effectively re-
sponsible for quark confinement. The data was determined on the fine lattice,
where the authors concluded that in studying this maximally abelian projection
they had found that confinement is entirely kept in the abelian sector of QCD in
the MAG. Although this and other similar research is interesting in studying the
confinement mechanism, this lies beyond the scope of perturbation theory. The
property of the MAG we are interested in here is its structure and relationship
with other gauges. In particular the Landau gauge and the (non-linear) covariant
Curci-Ferrari gauge. To assist with accurate lattice measurements, results need
to match the ultraviolet behaviour, which we can compute in perturbation theory.
This is where our motivation lies. In this chapter we provide the one loop analysis
of QCD in the maximal abelian gauge at the symmetric subtraction point. This
allows for the MAG to be studied both in the MS and MOMi schemes. The latter
being the preferred scheme since it is a mass dependent renormalization scheme,
meaning it is physical. With the one loop results computed the g-function and
anomalous dimensions can be constructed, as in the previous chapters, to two
loops for all MOMi schemes. In addition, we comment on the relationship be-
tween the MAG and the Curci-Ferrari gauge which we explored in the previous

chapter.

5.2 Preliminaries

Having discussed the general background and formulation of the Lagrangian in
Chapter 2 we use this section to point out the essential features of the MAG,
which fundamentally differ from the previous gauges studied. To begin with let
us discuss the structure of the colour group. The basic idea behind the maximal
abelian gauge is to remove as many non-abelian degrees of freedom as possible
by partially fixing the gauge, leaving the theory with a residual abelian gauge
symmetry which is then gauge fixed separately. In the MAG it is usual to do this
by decomposing the gauge field into its diagonal (or photonic) and off-diagonal
parts

A, = ATA
= A, = AT+ AT (5.2.1)
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where we have split the group generators into two sets, where ¢ denotes the
diagonal (centre or photonic) group elements and a denotes the off-diagonal group
elements. The Faddeev-Popov ghost fields are also split in this manner. The
index 7 labels the (N, — 1) generators T° of the Cartan subalgebra of SU(N.).
For example, consider the gauge group SU(2) where, using the formula N? — 1
there are three generators. In this case a = 1,2 would denote the off-diagonal
generators with i = 3 being the only diagonal generator of SU(2). The dimensions
of these elements are 1 < ¢ < Nfl and 1 < a < N? respectively. For an SU(IV,)
gauge group the diagonal components are N{ = (N, — 1) dimensional and the
off-diagonal components are N¢ = (N? —1) — (N, — 1) = N,(N, — 1) dimensional
such that the total number of generators is given by N§ + N¢ = N4, [79, 51].
Before constructing the Lagrangian we must first discuss the new group theory
needed as a result of splitting the colour group. To determine the new identities
we can rewrite the Jacobi identity, (2.1.7), using the symmetries of the structure

constants (2.1.4). Firstly the structure constants are derived as
f9 =0 = fir. (5.2.2)
There are two new identities we must derive for the MAG, these are

fabifbjc+fabjfbci =0, (5.2.3)
fabe gbdi | pabd pbic | pabi phed () (5.2.4)

For the first identity we can write (2.1.7) as
fPaz'chj + fPaCfPij + fPaijz'c =0 (525)

where the middle term drops out as a result of applying (2.1.6) to the diagonal

counterparts

[Ti, T]] -0 = ZfleTA — Z'fijaTa + Zfljka
= if7T" = 0 (5.2.6)

which in turn implies

fraigpei 4 fpai fric. — () (5.2.7)
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Another important property of (2.1.6) is
[T T = if"Te . (5.2.8)

Now for the second identity, going back to our Jacobi identity, let D = i and
A, B,C = a,b, c respectively, then (2.1.7) becomes

fPabchi _'_fPaCfPib+ fPaibec — 0 (529)

The only choice we have for P is to set it to be off-diagonal, otherwise we will
have f4% in each term resulting in a trivial solution coming from (5.2.2). The

second identity becomes
fpabfpci + fpa(prz'b + fpaifpbc = 0. (521())

We also have the condition i fbed = () which is a result of the Lie algebra (2.1.6),

fACD chD - O 5AB
ficdfbcd — C’A(Sib (5.2.11)
where
CA(Sab _ facdfbcd + 2facjfbcj (5212)

and 6 = 0 where

s _ (070
- 0 (5ab ’

Several other useful relations have been established using the Jacobi identity and
the properties of the Lie algebra provided in chapter 2 which are detailed below.
Written in terms of the dimension of the diagonal and off-diagonal elements by

taking a contraction of (5.2.12) we have

fiabfiab — NAdCA ’ fabCfabc — [NX . QNX} CA (5213>
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where we recall N{ is the dimension of the diagonal and Ny is the dimension of

the off-diagonal. Hence we have the following

Y N9 — 2N{] Cyo0
facyfbcg — FAoch(SaLb 7 facdfbcd — [ A A} A (5214)

o
A NA

which we extend using the Jacobi identity to establish the following useful rela-

tions
o d d
apq pbpr pcqr [NA B 3NA] abc apq rbpi pcqi NA abc
g = AR = SO
) N¢ — 2Nd . . . ) Nd .
szbeprfcqr — [ A2NO A] CAfzbc 7 flqubpj fCQJ — Nz‘(l) OAfzbc (5215)
A A

where p, q are off-diagonal indices here and are not the same p, ¢ defined for the
momentum. For the group generators, in addition to the relations discussed in

chapter 3 we have
Tr (T°T") = Tpé® , Tx(T°T") = 0, Tr(T"1Y) = Tpé”  (5.2.16)

as well as

T T,
T = “EN{T 1T = { "
Nr

Cr — —NIT 5.2.17

e - ] (5:217)

where Ng is the dimension of the fundamental representation. Np is defined by
[N+ N{| T

Np = —————= 2.1
3 cr (5.2.18)

which will be used to simplify the algebra from the quark sector. These basic
results and others have been coded within a FORM module and applied prior to

the integrals being mapped to the basic topologies.

As SU(3) is a non-abelian theory we can form a subgroup within SU(3) made up
of only abelian parts i.e. diagonal (centre) pieces. This can be demonstrated via
the field strength tensor (2.1.30) which, due to this separation of diagonal and

off-diagonal components decomposes to become

Guw = G,T* = G, T+ G, T (5.2.19)
with diagonal and off-diagonal parts given respectively as

G, = 0.A,—0,A +gf"ALAL (5.2.20)
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a _ ab Ab ab Ab abc Ab Apc
G;w = Du A, — D;, Au +gf A#Ay. (5.2.21)
The covariant derivative is redefined as
Dyt = 9,6" — gf*"" Al . (5.2.22)

Notice how the structure constants can contain a mix of both diagonal and off-
diagonal components. We use the definition of the maximal abelian gauge to
split the indices A into two sectors, diagonal, a, and off-diagonal, i, [79, 51|, so in
essence it is split into an abelian part and the rest of the algebra. Thus, taking
the above into consideration, the Lagrangian contains two field strength tensors,
one for each sector
MAG L va vaw Y ai qipw | o7 MAG

L7 = _é_lG‘”’G i é_lG‘“’G M 4y, DM + Lp (5.2.23)
where Lgip© is the gauge fixing term specific to the MAG, already presented in
(2.1.52). It is useful, where possible, to write down the gauge fixing terms of the
Lagrangian in terms of interpolating parameters. This serves many purposes. An
interpolating gauge allows one to simultaneously calculate results for multiple
gauge fixings whilst at the same time be able to compare results between the
gauges by taking specific limits of these interpolating parameters. In [41] the
authors present an interpolating gauge which connects the MAG to the Landau

gauge. In this context we can rewrite Lgiz® in the form

urd = 60 %AZA““ + %acac‘l + %QALAW + (1—-2¢)6 [E@“AZ] (5.2.24)
where ( is our interpolating parameter and « is the arbitrary gauge parameter.
There is also a gauge parameter, ¢, associated with the diagonal gluons which
appears only in the quadratic term of the Lagrangian, see (5.2.27). It is necessary
in order to construct the diagonal gluon propagator and is set to zero thereafter.
Note here that we have chosen to neglect o, in (5.2.24) since this gauge parameter
neither appears in the Landau gauge nor (modified) MAG. The Landau gauge
corresponds to a = 0 and ¢ = 1, whereas the MAG corresponds to setting ( = 0
and a # 0. Setting o = 0 corresponds to the true (unmodified) MAG, however
setting a = 0 from the beginning results in the gauge being unrenormalizable, [40].
This is due to a factor of é appearing in the Feynman rule that directly affects
one of our gluon diagrams, resulting in a zero-divisor when o = 0. Therefore we

keep « arbitrary until the very end, upon which a graphical analysis of our results
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for the amplitudes can be made in the MS scheme. The other reason we keep a
and ( arbitrary is so that checks can be made against results in the Landau gauge
via interpolation. The objects 8,0 are BRST and anti-BRST transforms and the
Lagrangian is fixed in a BRST-invariant way, as discussed in section 2.1.1. The
BRST and anti-BRST transformations for the MAG are, [79],

SAL = — (9u" + gf A + gf AN + g fUFAL )
1 i i ibc c
ot = gfabkcbck—i—§fabccbcC , 0" = b, bAL = — (O +gf® AZC)
) 1 . 4 4 .
B = 0, bt = gftde sl = 8 =0 (5.2.25)
and
5AZ - _ (a}uca 4 gfajCA{LCC 4 gfabCAZCC 4 gfabkAZCk)
Sca N +gfabccbéc+gfabkcbék +gfabkébck
- 1 —
5t = gfabkébék 4 §gfabcébéc 7 Sbe = — gfabcbbéc . gfabkbbék +gfabk5bbk ’
SA, = — (8.7 + gfibcAZc*) , o = — b 4 gfitece
gy 1 . . .
sé = Sgftde | S = - gfe . (5.2.26)

Note that the b" field re-introduces a, which we set to zero throughout, apart
from where it contributes to the quadratic term in the final Lagrangian since
this allows us to derive the Feynman rule for the photonic gluon propagator.
Therefore the MAG gauge fixed Lagrangian, generated by a FORM procedure so

as to avoid errors, is

1 a2 1 i\ 2 —a a — )
LI\G/IgG = — % (Q“AH) — qu (8"14“) +cC (‘9“8“6 +c 8“auc
+ g [(1 o C)fabkAzékaucb - CfabkAzaucbék o fabcAZébauCc o CfabkAZEba,uck

) ey aie oy Lo agbes
— (2= Q) f Ak o — forRor Ak

+ g (1= Q) fgehd A Abrect — %fﬁ AL AT AT AT
T (1= ¢) fodei A2 A ngect — %fﬁﬁmﬁm e
(L= QAR AT (1= () fsld A AT e

L «Q «
. o cjdi A% AjpAcd " rabedza=b c.d  — rabcd=azb c d
(1= Q) f7"A A e pJaeece 8f° c'c’ce
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Q ] (0} . 87 —a—
+ gf;chdcacbcccd o ngbClCaCchCl + ngCblCaCbCCCl

e «
— nglbcéaébcccl + Efgkbléaébckcl (5.2.27)
where it is understood that «,, which is distinct from «, is set to zero after our
renormalization, |79, 51]. This means that the diagonal gluons are fixed in the
Landau gauge. Note here that we have introduced the shorthand notation

ABCD — fiABfiC’D

p ’ f:lBC’D — feABfeCD (5228)

for the diagonal and off-diagonal quartic interaction terms respectively, where

FABCD | pACDB | pADBC _ () (5.2.29)
This Lagrangian is fully renormalizable and the Feynman rules generated from it
are given in Appendix C where in addition to the quartic ghost interaction which
we encountered in the Curci-Ferrari gauge, the MAG includes quartic ghost-gluon
interactions. In addition to the standard QCD definitions of the renormalization
constants (2.1.55) we have the definitions for the photonic fields, interpolating
parameter and gauge parameter, «,, specific to the MAG. The renormalization

procedure is repeated with the full set of renormalization constants defined by

Ay = VI A = VT A & = T & = e
¢ = VZad G = Zal Yo = Zu , go=uZy9,

0o = Z'Zao | apy = Z i Zpiay, , (o = ZC (5.2.30)
where the index ¢ on objects in the subscript is to indicate the diagonal sector
and is not summed over. By splitting the Lie algebra into its diagonal and off-
diagonal components the Slavnov-Taylor identities, that we would usually apply
to our calculations to ensure that the renormalization constants are correct, differ
slightly from those of the linear and Curci-Ferrari gauges. A derivation of the
Slavnov-Taylor identities for the MAG using algebraic renormalization is given in
[40, 41]. The idea underlying this procedure for constructing the relations between
the renormalization constants is as follows. Briefly the authors of [40, 41] begin by
writing down the complete action (X) in terms of external sources introduced to
couple to the BRST-invariant fields. Under the condition that the action remains
BRST invariant a Ward identity emerges. Generalizing this Ward identity to all

orders of perturbation theory is achieved by assuming that the same Ward identity
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satisfied by the action (X) will also apply to a perturbed action (¥ 4 Ycounterterms)
where Ycounterterms jq o complete set of the most general invariant counterterms
that can be added to the classical action (3). This, in essence forces certain

conditions on both sides of the equation
Y(g,a,¢,...) + Teowmerterms — $ (g0, g, do, - - - ) (5.2.31)

with the fields ¢ € (A%, A% ¢, &%, ¢, ¢, b b"). This in turn gives us the corre-
sponding relationships between the bare and renormalized fields, gauge parameter
and coupling constant. Observing what we had (5.2.30) with what we now have
for the photonic (diagonal) gluon and photonic ghost we see that the following

Slavnov-Taylor identities emerge, [40, 41],

ZuiZs = 1 (5.2.32)
727, = 1 (5.2.33)

where Z4: is the renormalization constant for the photonic gluon and Z. and
Zz are the renormalization constants for the photonic ghost and anti-ghost. The
second of our Slavnov-Taylor identities, (5.2.33), is similar to that arising in the
background field gauge, [124, 125], which one would expect since the background
field method is to split the gauge field into the background field and the quantum
field. Similar to how the MAG is split into its diagonal and off-diagonal parts, the
diagonal gluons play a similar role to the background gluons of the background
field gauge. The Slavnov-Taylor identity (5.2.33) in the MAG gives rise to the
relationship between v4: and the S-function. Again, this strongly correlates with
the background field method where the relationship BBFG(M) = g(,u)ygFG(a)
holds, where v («) is the anomalous dimension for the background gluon field B,
[124, 125]. In the MAG a similar identity is true

Baiomi(a: 1) = antonsi (WA (a, @) (5.2.34)
in our convention for the coupling constant. Notice that if we look at the O(g)
pieces in the Lagrangian alone we can pick out the 9 vertices, which, when choos-

ing ¢ = 0 cancel down to just 6 vertices

1 a)?2 1 i)2 —a a i 7
ngG = T % (8“/1#) - T% (8“14“) + 00, c" 4 c'0"0,c

4 g [fabkAzékaucb o fabcAZébaucc
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o lfabkauAZAb Akl/ o fabkauAZcbék o lfabcauAaEbcc
a v 2 H
— 2f AR O — RO AT (5.2.35)

where the sixth comes from the iiZ'yMD“gZJ piece in the full Lagrangian. This means

that there are potentially 6 MOMi schemes, each based on one of the vertices.

The off-diagonal sector of the MAG corresponds to QCD fixed in the Curci-Ferrari
gauge, [126], except that in the Curci-Ferrari gauge the off-diagonal sector cor-
responds to the full colour group. This can be seen by removing the diagonal

LMAG " where the resulting Lagrangian is simply that fixed in the

parts from
Curci-Ferrari gauge, (4.1.1). Clearly both Lagrangians (4.1.1) and (5.2.35) in-
clude quartic ghost interactions. Again, we reiterate from the previous chapter
that whilst ordinarily an abelian gauge theory does not have coupled ghosts this
statement only applies to the case where the gauge fixing is linear. For instance in
the 't Hooft-Veltman gauge in QED, [127], there are interacting Faddeev-Popov
ghosts. The situation is the same with the Curci-Ferrari gauge and here with
the MAG that the non-linear gauge fixings produce interacting ghost terms. The

ghost terms coupling in this non-trivial way does not spoil renormalization.

Taking the naive view that there could possibly be more MOMi schemes for the
MAG due to its construction, we initially computed all the one loop diagrams
for all possible combinations of the vertex, as shown in Table 5.1, where only
eight of the vertices produced tree diagrams. It was not until we began our
renormalization procedure that we realised there was a contradiction in defining
the renormalization constants; they did not satisfy the Slavnov-Taylor identities
(5.2.32) and (5.2.33). The Slavnov-Taylor identities render the vertices involving
diagonal gluons effectively trivial. Applying the Slavnov-Taylor identities to the
MOMi scheme vertices we see that the condition Z i Zg = 1 implies that there
are no photonic vertices. We can see this specifically in the A'i) vertex as it
contains the factor \/Z4:Z,Z,; and as /Z4:Z, = 1, this implies that we must fix
both Z,: and Z,. However, we already have Z4: set from our 2-point calculations
and so we cannot change this for each different vertex structure as we would end
up with several different values for Z4:, which is not correct. So our possible
6 MOMi schemes collapse down to the three we are familiar with; the MOMhA,
MOMg, and MOMq schemes. No new MOMi schemes other than those for the
ghost-gluon, triple-gluon and quark-gluon vertex functions are introduced via a

MAG gauge fixing.
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Green’s Function | Number of one loop diagrams
Ascich 5
A Ab AC 23
AZA?,/}; 18
AZWQ 5
ALy 3
AZébcd 16
AZEbci 9
AZE“cb 11
ALA,{A(@ 11
ALAL AL 11
Anctd 2
At 3
Al ctdd 5
ALl ck 3
Total: 125

Table 5.1: Number of 3-point vertex diagrams calculated in the MAG for all
possible vertices

5.3 MS scheme

Since we only consider the MAG at one loop due to the complexity of the gauge
fixing we present all results within this chapter analytically, since at one-loop
order the results are more compact than those calculated in the arbitrary (linear)
covariant gauge and the Curci-Ferrari gauge at two and three loops. We begin

by reporting our renormalization constants in the MS scheme. These are

11 2 a
Bloconlys = 1+ [0~ )+ 5] ¢ + o)
a 13  aN{ o, (N a,N¢ 3¢N{
Zala,Cap)|_ = 1_|_{CA(__+__‘_ f(l) P OA_ pOA_I_ :
s 26 2Ny ' 2Ny Ny | 2Ng
3]\/;? 4 a
— — _N/T-| = 1) 2
g~ ¢+ o)
4 11 o 3 a
ZAi(O‘vgvap)M—S = 1+ l_g Tk + Ca (g-%-é)} - + O(a?)
3N§ 3a(N{ aN{ a a,(N{
Ze = 1 C Ar_1)— A A _ ¢ pSiVa

(N a,N{  3(N§ SCQNX+3NX a
2Ng Ng Ng 2Ng 2Ng €

+ O(a?)
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Za,(a, (o)

Zc(av C? Oép)

ZM5(a, ¢, a)

Zw(a, Ca ap) S

1 + O

Ca 3a¢N{  2aN{ 4o, (N{  «,(®N{
1+ |—|3—a— —
4 N N Ny Ng
Cdop Ny 9CNE | 3CNA N 6N\ @ L o)
Ny N N N €

3
1+ {CAg (% + Z)} % + 0(a?)
alNg n wpNi\ | a
N, N, €

1+ {—aCF + T (— + O(a?) . (5.3.36)

where we have displayed results in terms of the gauge parameters a and «, for

demonstration purposes.

Here ¢ is the label for the photonic ghost, A’ the

photonic gluon, A® the off-diagonal gluon, ¢* the off-diagonal ghost and ¢ the

quark. With the conditions, o # 0, o, = 0 and ¢ = 0, as we discussed earlier the

renormalization constants for the (modified) MAG are given by

Zy(,0,0)
Za(e,0,0)
Z ai(e,0,0)
Zo(,0,0)
Z,) (1, 0,0)
Z.(e,0,0)
Z(,0,0)

Zyp(a,0,0)|__

[ 11 2 a
1+ |——Ca+ ZTpNy| = + O(a®
+-6A+3Ff:|€+ (a®)
[ a 13  aN¢ 3N¢ 4 a 5
1 _ayz . B VA7
+_CA< 2t % Tang “awg ) 3Nt Ol
[ 4 11 a
1+ |—=NTp + —=Cql| - 2
+_3fF+3CA}€+O(CL)
[ 3N¢  aN{ o 3N{\a 5
1 72 W I e
+-CA<Q/NX+ N: ~1Tang) | tO@)
+ O(a?)
[Cy 2aN{ 6N{\] a 9
1+ A (3= ¢
+_4(3 a+NX+NX €+O(a)
+ O(a?)
NO
1+ |—aCp — O‘NATF} T4 o). (5.3.37)
. €

From these we can see that the Slavnov-Taylor identity (5.2.33) holds. For ex-

ample, in the MS scheme we have the following

ZaZy=1. (5.3.38)
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This is the same as saying z,i = —2z4. For MS we have above

4 11 a¢ 3¢
20, Q)i = —3N TP+ Ca (g - 7)
11 2
2, (2, C) S _ECA + 3 Ny (5.3.39)

which, when setting the MAG conditions ¢ = 0, a;, = 0, gives

4 11
i ,0,0‘ = —-NTp+=C
23(2:0,0) | gl et gea
( 00)‘ Yo+ 2y (5.3.40)
2, (0 = —— = 3.
o s T

which implies z4; = —2z5. This means that the Slavnov-Taylor identity holds
in MS, which we need in order to preserve gauge invariance. The reason for
introducing the interpolating parameter ¢ into our Lagrangian (5.2.27) was so
that a comparison of results can be made in the Landau gauge. Specifically,
when taking the Landau limit the renormalization constant for the off-diagonal
gluon should equal that of the diagonal gluon and likewise for the diagonal and
off-diagonal ghosts. Setting o, = 0, ( = 1 and o = 0 we can make a Landau

gauge check between these renormalization constants

(11 2 a
Z.(0,1 = 1+ |—-= “T.N:| = 2
9(0, ,0) T —I—_ 60A+3Ff}6+(9(a)
13 4 a )
Z4(0,1,0) s 1+ _ECA—g fTF} - + O(a?)
[ 4 13 a
Z4:(0.1 = 1+ |—=N/Tp + — - 2
(0, ,O)MS +_3fF+60A:|E+O(a)
Z,(0.1,0)|_ = 1+ O(?)
Z,,(0.1,0) | = 1 + O@)
3C4 | a 9
7.(0.1 = 14+ |==
<(0, ,O)MS +{4L+O(a)
z.01,0| = 14[2c|% + o)
C; ) 9 MS - 4 A €
Z,(0,1,0) o 1 + O(a®) . (5.3.41)

Because of the (( — 1) term complementing the factor of é in Z, we are able to
take the Landau limit, where v — 0. Using this check we can see that the MAG

renormalization constants in the Landau gauge agree with those in the arbitrary
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(linear) covariant gauge in the same limit for the MS scheme. Also that the off-
diagonal and diagonal counterparts match on to each other. The interpolating
parameters have allowed us to check the correctness of both the renormalization
constants and our programming. Now that we have made this check on our results
the interpolating parameters have served their purpose and are no longer needed,
therefore we record all future results in the traditional (modified) MAG with

(=o0a,=0, a #0. (5.3.42)

Essentially the diagonal gluons, corresponding to the subgroup of generators
which totally commute, are fixed in the Landau gauge, [67]. Our results for the
renormalization constants will be used to determine the renormalization group
functions as well as the conversion functions later on. As a preliminary to the
MOMi scheme computations we first record the results for the amplitudes in the
MS scheme, since this is the basic reference scheme. Indeed to deduce the two
loop MOMi scheme renormalization group functions using the conversion func-
tions, the two loop MS results are necessary. Therefore, for completeness we note
that these are, [14, 21],

1

%W(a, a) = R [N ((3a — 13)Cy + 8TpNy) + Ni(—3a + 9)Ca] a
A
1
tENE [N$2 ((6a” 4 66a — 354)CF + 240C4 Ty Ny + 192Cp Ty Ny)
A

+ NyN{ ((3¢” + 210 + 331)C — 80C4 Ty Ny)
+ lez (15a” — 6a — 33) C’j] a®> + O(a®)

S 1
W) = 5 UTeN; —11C4]a

1
+3 [— 34CF + 20C4Tp Ny + 12Cr TNy @ + O(a?)
vm(a a) = L [N2 ((— 30® + 260)Cy — 16aTFNy)
o 12aN¢
+N{(— 6a° — 36a — 36)Ca] a
1 i ,
+ BNy [N ((— 30® — 51’ + 354a)C; — 240aCATr Ny

~192aCrTiNy)
+ NYN{ ((—270° — 3390 — 647 — 928)C;
+ (160 + 512)CaTi-N;)
+ N9 (= 300° — 36602 + 294a + 2016)03] a2
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+ O(a®)

NS 1
YMS(g,a) = o [N§(a —3)Cy + Ni(—2a — 6)Cu] a

96N02 [N9? ((60* — 6 — 190)C; + 80C4 TNy )
+ NYN{ ((— 420* — 126a — 347)CF + 160CA T Ny )
+ N (120% — 588a + 510)03] @ + O

1

W8(,0) = —— [N{(—a — 3)Cs + N (—20 — 6)Cy] a
ANG

1
+ —— [N* ((— 6a® — 66a — 190)C3 + 80C4 T Ny)
96N

+ NyNY ((— 540® — 354a — 323)CF + 160C4 T Ny)
+ N9 (= 60a2 — 3720 + 510)03] a2 + O

NS NOT;
W) = =5
1
v [(— o + 220 + 23)CyCpNp + (o — 1o + 2)NCu T
F

— 6CF2NF — 8CFNfTFNF:| a2 + O(a?’) . (5343)

Though the three loop results are also available, [21|. Next, the full one loop

amplitudes for each of the three vertex functions computed in MS are

Sy 0| = e Q)‘WS
1
= — 3~ [18¢(3)aNy — 69/ (3)aNg — 33¢/ (3) N + 15¢/(2) N
—12aN{r? — 27aN{ + 4aNgn? 4 27a NS + 22N{x?
C
F2TNY — 10Ng72 + 81N] —2 4 O(a2) (5.3.44)
216N¢

for the ghost-gluon vertex. For the triple gluon vertex the amplitudes are

1

g8g — — ggg — ggg
T 2 (p,Q)‘MS =~ 524 (p,q)’l\TS = = 2P|
1
geg _ ggg
B E( 5) (p,q) S E(6)

i
= — 14 [-72¢ (2) 2CyNg + 36y (1) 2(JANA + 90y ()aCA Ny
—162¢/(3)aCa Ng — 7024 (1)Ca N + 138¢' (1) CaNg
—384¢ (L) Ny N§Tr — 810 Cy Nf + 270 Cy N
+4872a*Cy N 4 81002 Cy N§ — 24m%a*Cy N}
—4050°CyN§ — 60m2aCy N{ + 243aCy N¥
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+1087%aCy N — 243aCy NS + 46872Cy N§
+2916C4 N — 9272 Cy Ny — 243Ca N§ + 2567 N; N T

1206, N{Ti] - 45 ot O(a?)

S8 (0| . = 25880, >\W = —2380p.a)| = —TEe.0)|

= — [108¢/(1)a°CaNy — 36/ (3)a’CaNg — 3249 (L)' CaN{
+162¢)' (3)a*Ca Ny + 3244 (L)a®Cy N — 1089/ (3)a*Ca Ny
+12964 (1)a?CaN§ — 456v)' (3)a*Ca Ny
+768¢' (3)a Ny N Ty + 2169 (1) aCa N + 270¢ (1) Ca Ny
—721%0°Cy Ni — 3240°Cy N{ + 247%0°Cy NS
+108a°Cy NS + 2167%a*Cy Ny + 810a*Cy N§
—10872a*Cy NS — 4050 Cy NS — 21672a*Cy N§
—1377®CyN{ + 72123 Cy NS + 145802 C4 NS
—864m%0?CyN§ + 891a*CyN{ + 304720’ Cy N3
—873a*CyN§ — 512720 Ny N Ty — 5760 Ny N{Tr-
—1447%aCyN{ — 24300y N{ — 1807*Cy N§
+243C4 N{ | + O(a®)

)o’
(

e
97202 Ny
o) = - e
= [108¢/(1)a’CaN{ — 369/ (3)a’CaNg — 540¢ (1)a* CaN{
+270¢)' (3)a* Ca NS + 2709 (1) CaN{ — 378 (3)a*Ca Ny
—1242¢/(1)a?CaN{ + 3909 (1) a’Ca N
—384¢) (L) > Ny N T — 2169 (3)aCa NS — 2709 (1) Ca N
—7212a°CyN{ — 567a°CyN§ + 24720 Oy NS + 189a°Cy NS
+3607%a*Cy Nf + 22680 Cy N{ — 1807%a* Cy N}
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+25272aPCy NS + 24303 Cy N3 + 82872a* Oy N§
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—432¢($)a’Ca Ny — 5944 (L) aCa NY + 486¢ (1) aCa Ny
—54¢"(3)CaNg + 669 (5)CaNg — 3849 (5) Ny N3 T
+144720PCy N + 8910 Cy Ni — 4872 Cy N — 2973 Cy NS
—576m2a*Cy N — 3078a*Cy N{ + 288720 Cy N}
+15390°Cy NS + 396m%aCy N§ + 2025004 N
—324m%aCy NS — 1701aCy NS + 36m2C4 N + 162C4 N

— 4472 Cy N§ — 333CAN/§ + 2567% Ny N3 T

+1584N; N Ty ———— 972N + O(a®) (5.3.45)
A

and those for the quark-gluon vertex are

S|y = 1 [60/(3)aCaNe Ny — 3¢/ (5)a” CaNp NS
—12¢'(3)aCaNp N§ + 129 (5)aCa Ne N{
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+90%Cy Ny N§ — 47°aCy Np N§ — 45004 Np N
+472aCy Ny N§ + 45aCy Ne N — 1672 aN* Ty — 36N T
—4m*CyNp N + 45C4 Ne N — An*Cy Np N3

—9OCANFNX+72(JFNFNX]ﬁ + 0(a?)
Fivp

©) (P; q)lf = [6¢/(3)a®CaN{ — 3¢/ (3)a’CaNg + 12¢/(1)aCy N
—12¢/(1)aCa Ny + 69/ (3)CaN§ — 334/ (L) Ca Ny
+24¢/ (3)Cp N — A7°0*Ca Ny + 21°*Cu Ny — 8m°aCy N§

+87°aCyNg — 472CyN§ + 227°Cu N3 — 1672CNg] ——
54Ng
+ O(a?) . (5.3.46)

Again, one minor check on the expressions is that the correct symmetry struc-
ture for each vertex emerged. In other words the relations between the various
amplitudes for the triple off-diagonal gluon vertex, for instance, are consistent
with expectations based on [117]. At this point, instead of making checks against
the Landau gauge we can cross check directly with the Curci-Ferrari gauge MS
results for the amplitudes by taking the limit N{ — 0. Essentially by removing
the diagonal pieces the off-diagonal results in the MAG map on to the results for
the full colour group in the Curci-Ferrari gauge. We have verified the results in
the Curci-Ferrari scheme via this check which holds in all MOMi schemes unlike

the Landau check which is no longer applicable here.

Defining the renormalization constants as before we display the results for the
MOMIi schemes. We note that at one loop the renormalization constants are the
same in all three MOM schemes. This is not true for higher orders, as we have
seen in the two previous gauges considered. This property is unique to one loop.

The renormalization constants given analytically for arbitrary « are
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saa o = 1+ |- SET 4] ¢ 4 o) (5.3.47

where the MAG condition (5.3.42) is assumed. Now, recall that the MOMi
schemes are based upon the 3-point vertices of the Lagrangian. In this scheme the
renormalization constants contain both the divergent and finite parts (as we have
seen above for the 2-point functions). Because the MOM scheme is physical the
coupling constant renormalization constants for each MOMi scheme are depen-
dent on that particular vertex. We define the coupling constant renormalization
constants as before, labelled by MOMh for the scheme corresponding to the ghost-
gluon vertex, MOMg for the triple-gluon vertex and MOMq for the quark-gluon

vertex coupling constant. These are presented below as
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11 2 8
Zéqqg)(a7 ) MOMq = 1+ {——CA + gTFNf —€ (C’F ( 2+ ﬁom +a
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‘§¢(§)a+%w(§)a)+TFNf< 9>)]z
+ O(a?) . (5.3.48)

5.4 MOMh scheme

Having discussed the structure of the 3-point vertices in the MS scheme at one
loop in detail we can now renormalize in each of the MOMi schemes defined by the
same vertices. We define the MOMi schemes in the MAG in the same way as we
have done in chapters 3 and 4, by ensuring that after renormalization there are no
O(a) corrections to the Lorentz channels containing the divergences in €. In other
words, taking the MOMg scheme for example, for the first six amplitudes there
are no O(a) parts at the symmetric point but the remaining eight amplitudes can
have O(a) contributions. In this section we present the results for the MOMh
scheme only. Given this and the nature of the MOMh scheme the amplitudes are

effectively trivial since

1
S0 D] oy =~ 20 @Dy, = —5 T 06 (54.49)

This is because of the anti-symmetric property of the original ghost-gluon vertex
and the definition of the MOMh scheme. Next we require the mappings of the
parameters between schemes. For this we apply the same fomulae as for the
arbitrary linear and Curci-Ferrari gauge analyses, see (3.3.35) and (3.3.37). The
coupling constant mapping is unique for each vertex, given for the ghost-gluon

vertex by

ayomMn = @+ [36¢' (1) aCyNY{ — 12¢/ (1) aCaNg — 661 (3) CaNY
+30¢ () CaNg — 540*CyNf + 270*C4Nj — 24aCy Nin®

—108aCy N + 8aCy N7 + 108aCy NS + 44Cy Nir?
2

108Ng
+ 0(d®) (5.4.50)

+162C4 N} — 20C4 Ngm? 4+ 669CA Ny — 240N N T | ———
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and the gauge parameter maps between schemes as

ayomi = a+ [182°CuN{ — 9a°Cu Ny + 540’ CyuN{ — 3602Cy N3
+234aCyN§ — 97aCANg + 80aN; N T + 90C4 N %LN
A
+ O(a?) . (5.4.51)

Given the nature of the one loop 2-point functions it transpires that the gauge
parameter mapping is the same for all schemes. At one loop this is assumed since
the effect the scheme choice makes on the renormalization of the gauge parameter
does not occur until two loops. This agrees with our previous work, however in
the Curci-Ferrari gauge this exact similarity between MOMi schemes also holds
at two loops. It would be interesting to see at what loop order, if any, the gauge
parameter mapping varies between MOMi schemes. The same comment applies

to the conversion functions for the field renormalizations which are given by

CMOMi( o) = 14 [= 18a2CuN{ + 902C4 N3 — 18aCuN§ + 18aCy N}
a

—108C4 Nf + 97CaNg — 80N, N{Tr| —— + O(a?)
367
CMOMig,0) = 1 + O(a?)
CMOMi(a,a) = 1+Ca 2N+ Nj] - + O(a?)
A
. N9
CMOMi(g ) — 1—0‘§—Pfa + 0(a?) (5.4.52)

at one loop. The coupling constant conversion function is different for each scheme

by the nature of its construction. For the MOMh scheme this is

CMOMb (g o) = 14 [=36¢/(3) aCaN{ + 12¢/ (1) aCuNg + 669 (L) CaN{
—30¢' (%) CaNg + 540’CaN{ — 270’ C4 Ny
+24aCy Nim? + 108aCy Ni — 8aCyNn? — 108aCy NS
—44Cy Nim? — 162C4 N§ + 2004 N2 — 669C4 NS

+240N; NS Ty ] 21gNo + O(a?) . (5.4.53)
A

Having determined the conversion functions it is straightforward to apply the
renormalization group formalism (3.3.29) and (3.4.55) to construct the two loop

MOMh renormalization group functions. In the MOMh scheme these are

2
BMOMb (4 ) = [—11C4 + 4N} Tp] =
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+72¢' (1) *CING? — 10449 () aCINY

+1728¢/ (1) aCINING — 492¢/ (1) aCINg

—576¢" (1) aCaN{N; N3Tr 4+ 1920 (1) aCa Ny N T
1188y (1) C2NG® — 22569 (1) CINYNG

+780¢ (%) CANG? + 1056¢ (§) CaN{Ny N{TE

— 4804 (L) CaN; NG Ty + 6480°CINY — 162&303N32
—1440%C2N 72 4 591302C2N + 19202C2NEN?
—46T102CENING — 4802 CAN* 7? + 91802 CiNS?
+17280*Ca NNy N T — 8640*Ca Ny NG Ty
+696aC2 N 72 + 127980 C2N Y — 1152aC2 NI N7
—4914aC2N{NS + 328aC3N*1? + 13500C3NS?
+384aCy NNy N T + 1728aCy N Ny N T
—128aC4 N; NP w* Ty — 17280 Cu N; N2 Tp — T92C2 N 72

v
v
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—243C3N{” + 150402NdN 2 4 11799C2NIN?
—52005 N§*m? — 4968CIN;? — T04C4 N{N; Nym? T

—~5616Cy N{ Ny N§Ty + 3200ANfN;;27T2TF

CL2

475204 Ny N* Ty + 5184C Ny N Ty | ————
t AN g dr PRI [ 906 N2

+ O(a®)
AMOMh (o) = [=602CaN{ — 302C4Ng — 36aCa Ny + 260Cy N3

—16aN; Ny Tk — 36CaNy]
A

+ [216¢’(1) 0P C2NS + 361/ (1) a*CZNING
—36 (1) @®CING? + 9009/ (1) a?CINY?

—13861)' (1) o’ CINING + 402y (1) o> CING?

+5761)" (3) @ CaN{ Ny NT — 1924 (1) o*CaN; N T
—1080¢ (1) aC3NY” + 23641 (1) aCIN{N

—780¢' (1) aCINZ? — 1056 (3 )aCANANfNATF
+480¢ (1) aCa N N3 T — 23769 (1) CINY
+1080¢ (L) NN — 6480 C2NS” + 1620 C3 N2

— 14463 CENE 72 — 729003 C2NT — 240PC2NI N2
+434703CANING + 2403 CENS* 12 — 67503 CANS?
172803 Cy N{N; N3 Tr + 8640°Ca Ny N3 Tie
—60002C2 NP 72 — 2219402C2NP + 92402 C2NIN o7
+72630*CINING — 26802C2NS* 12 — 110702 C2NS?
—38402Cy N{ Ny N{m* Ty — 17280°Ca Ny N; N3 T
+1280a2Ca Ny NP> 1T + 17280 Ca Ny N5 Tie
+720aC2N 72 + 14580 C2NE — 1576aC2NINS7?2
—15201aC3N{NS + 520002 N? 1% 4 49680 C3 N2
+704aCy N{ Ny N T + 9504aCy N Ny N T
—320aCy Ny NP* T — 4752aCy Ny N5 Tre
—5184aC’FNfNXQTp + 1584C2N P 7% + 44712C2 N

—T20CAN{N{T* — 9396CINLNG

&2

W
7'M (g 0) = Cy [~2aN{ + aNg - 6N{ - 3N]]

+5184C’ANXJ\GNXTF} + O(a?)

4N"
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+Cy 14407 () 02CuNg” — 1200/ () QQOANXNX
+241)' (1) *CaNG? + 1680 (3) aCa Ny
+324¢ (1) aCANijA —132¢/ (1) aCa Ny
—792¢ (1) CaN§* — 36 (1) CaN§Ng

+180¢ (4 )CAN;;2 — 960°Cy N{*72 — 3240°Cy N
+80a*CyN{N{m? — 48602Cy N{NJ — 160*Cy N§*n?
+21602C4 N2 — 11200, N 7% — 3132004 N¢°
—216aCy N{Ngm? — 702aCANANA + 88aC’A N3*r?
—162aCy N$* + 5286ANA 7?2 + 7614C4 N

+24Cy NIN§T? — 999C, NING — 120C4 NS> 72
2
—864C4 NS> + 864NijN;;TF + 432N NP T] ——
864N
+ 0(a?)
aN{Tra
WO a,0) = S

+ [-36¢' (%) a’CaCrNp + 48¢' (1) a*CANZTp

+66¢ (1) aCaCpNp — 969 (3) aCa NS T
+240*CyCp Np? — 270°CaCr N — 3202 Cy N1
+540*Cy N{ Ty — 44aCyCp Npm? + 54aCy Cp Ny

+64aCy Ny Ty — 5400y N Ty + 675C4Cp Ny — 16202 Ni
2

a
108 N

—216Cr Np Ny 1] + O(a?) (5.4.54)
which agree with the explicit direct two loop computation carried out recently in
[67]. We have chosen to present the quark anomalous dimension in terms of Ng,
where Np was defined in (5.2.18). This is simply for presentation purposes where

the results in this format are more compact.

5.5 MOMg scheme.

Having recorded the results for the ghost-gluon vertex at length we briefly present
the results for the triple-gluon vertex in the same order as the previous section.
Starting with the amplitudes in the MOMg scheme. The explicit forms of the
associated amplitudes are
ggg

1
S D oy = =6 P D|yone = ~ 2 26 P9



3888

(M

(v.9)|

MOMg

MOMg

~ ) ) MOMg % & q)‘MOMg
= 26 P D]y, =~ 1TOE@)

SEE . Q)‘MOMg = - 2255, Q)‘MOMg
- S .9) MOM

[—108¢'($)a”CaN{ + 360" (1)’ Ca NS + 324¢/ (1) a*Ca Ny
—162¢(3)a"CaNg — 3249 (5)a’Ca N{
+108¢)'(3)a’Ca Ny — 12969 (1)’ CaN{
+4561 (1) a®Ca Ny — 768¢ (3)a® Ny N{Tre
—216¢'(3)aCy N — 2709/ (3)CANy + 727°a°Cy Ny
+324a°CyN{ — 247%0°CyN§ — 108a°Cy N}
—216m%a*CyN{ — 810a*Cy N + 1087%a*Cy N2
+4050*Cy N§ + 21672 Cy N + 13770*Cy N{
—72m% a3 Cy N3 — 145803 Cy N + 86472 a*Cy N§
—891a?CyN{ — 3047202 Cy N{ + 8730*Cy N
+5127202 Ny N Ty + 5760° Ny N3 Tj + 14472 aCy N
+243aC4 N + 18072C4 N§ — 243C4 N§] ——

972a2N}
+ O(a?)
- e Q)’MOMg
(108 (3)a”CuN{ — 36¢/(1)a’CaNyg — 5409/ () a* C4 Ny
+270¢ ($)a* Ca NS + 2709 (1) Co Ny
—378¢/(1)a’CyNy — 1242¢' (1) 2OANA
+390¢ (1)a®Ca Ny — 3849 (1) Ny N

—216¢(3)aCaN{ — 2709/ (3)Ca Ny — 727r2a50ANj
—567a°CyN{ + 24720’ Cy NS + 1890°Cy N3
+360m2a*Cy N{ + 22680*Cy N — 18072 Cy N}
—11340*Cy NS — 1807% a3 Cy N — 648a°Cy N
+252%a*Cy NS + 2430* Oy NS + 82872a*Cy N
—10530*Cy N{ — 2607%0?Cy N3 + 120602 Cy N
+2567%a® Ny NT — 10080 Ny N{ Ty + 1447*aCy N§
+2430C4 N{ + 180m°Cy N — 243C4 N m
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+ O(a?)

S (@, Q)‘ = — S, Q)‘

MOMg MOMg

= [-216¢/(1)aPCaN{ + 72¢/ (1)’ Ca NS + 8644 (1)’ CaN{
—432¢(1)a®CaNg — 5949/ (3)aCa NS + 486v (3)aCa Ny
—54¢"(3)CaNg + 669 (3)CaNg — 3849 (§) Ny N3 T
+144720*Cy N + 8910 Cy N{ — 4872a* Oy N
—29703CyN§ — 57612’ Cy N — 3078a*Cy N
12881202 Cy NS + 153902C4 NS + 39612 aCy N
+2025aCy N¢ — 32412 Cy N — 1701aCy NS + 367°Cy N
+162C4 Ny — 4472 Cy N — 333C4 N3 + 2567 Ny N Tr-

a

FIBSAN; NS T oo
A

+ O(a?) . (5.5.55)

Again we observe that the same symmetries emerge as in the MS case which is
a minor check on the computation. These symmetries are consistent with those
in the Curci-Ferrari gauge, where the limit N{ — 0 gives us the Curci-Ferrari

amplitudes.

The coupling constant mapping between the MOMg and MS schemes is

apoMg = @+ [—72¢/(3)a’CaN{ + 361 (3)a*CaNg + 909 (3)aCa Ny
—162¢/(3)aCy NS — 7024 (3)CaN§ + 138y (1) CaNg
—384¢/ () Ny N{T — 81a°CaN§ + 270> Cu Ny + 487°a*Cy N
+3240°CyNf — 24720 Cy N — 1620°Cy N§ — 60m2aCy Ni
—243aCy N§ + 1087%aCy N§ + 243aCy Nj + 4687>Cy N

—92m*CyN§ + 2376C4 N + 2567 Ny N§Tr-
2

—864N; N Tp] % + 0(d®) (5.5.56)
A

where we reiterate that the gauge parameter mapping (5.4.51) is the same in
all schemes. In order to construct the two loop renormalization group functions

we need only record the conversion function for the coupling constants. In the
MOMg scheme this is

CMOMe (4 0) = 14 [72¢/(4)a?CaNg — 369/ (1)a?CaNg — 909/ ()aCuN§
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+162¢' (3)aCa N + 702¢ (3)Ca N — 138¢ (1) CaNy
+384¢)' () N; N T + 81a°Ca N — 270°Cy Ny
—480*Cy Nin? — 3240*CyN{ + 240*Cy Ny7*
+162a°Cy NS + 60aCy Nin? + 243aCy Ni

—108aCy N2 — 243aCy N§ — 468Cy Nin? 4+ 920, Ny7?
—2376C4 NS — 256 Ny N> T + 864N; N{ T |

a
648N

+ O(a?) . (5.5.57)

For the other conversion functions we do not label them with a scheme but note
that like C’;\/IOMh(a, «) and C’;\AOMg(a, «) the variables on the left hand side are
the MS ones, where a mapping is made from MOMi — MS as is our convention.
For the g-function we find

gMOMe(q,

Q) = [~11C4 + AN, Tp]

+6481)(
—1404¢/(4
8644 (1)aCy Ny NP> Tje — 10804 (1) C2NG?

+19444) (1) C2NYNG + 4860 C2NE + 810 CINYNG
—81a C2ND? — 1927203 C2NT + 162003C2 N
—3078a*CANING + 4812 CINS® + 10260 C3 NS?
+12960°Ca N{N; Ni T — 4320° Ca Ny N> T
—1032722C2NT — 437402C2NP + 125272 C2 NI NG
1828902 CENINYG — 52472 CING? — 305102 CE NS>
—5127%202Cy N{ Ny N Ty — 345602 Cy Ny N; NS T
+256m2a*Ca Ny N3 T + 17280 Cy Ny N5 Tie
—43272aC2NE? — 4860aC2N — 124072 C2NING
—1134aC3i N{NS 4 93672aCiNS? + 2106aC5 NS
+320m2aCa N{N; N3 T + 1296aCy NNy NS T
—576m2aCuN; NPT — 12960C4 Ny N2 Ty + 7207 2N

2

3

[288¢( JaPCINT — 729/ (1)aPCENS? + 15480 (1) 02 C2NS?
—1878¢/(L)a*CIN{NS + 786v (1)a*CiNS?
+768¢' (3)a?Ca NS Ny N T — 3849 (3)a?Ca Ny NS> Tie

%

(

)aC2N, d2+1860¢( )aC2NEN?
DaCiNGg — 480y (1) aCa N Ny N{ T
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+2916C2NF — 120672 C2NING — 2916C2NIN?

—14688CF NS + 8640C Ny N> Tr

CL3

5184CH Ny N Ty | ————
FOIBACE N NITE 206N

O(a*) (5.5.58)
and the anomalous dimensions for the fields at two loops in the MOMg scheme
are

MOMe (4 0) = [ 3aCHNY + 3aCHNS + ICHNE — 13C4 NS + SN, NS Tx]

6N0
+ |- 4320/ (5)a"CEN” + 6480 (1)’ CINANG

2164 (1)a®CINS? + 18364 (1)a?CIN{”
—4032¢/(3)a?CLNING + 1908y (L)a*CI NS
+1152¢(§)a20AN NSTr — 5769 (1)’ CaN; NS T
—5832¢(1)aCING” + 102961 (1)aCINING
—5040¢/(3)aCING® — 37444 (1)aCy N Ny N3 T
+48961) (1)aCa Ny NS Ti + 126364 (1) CIN{
—207367 (1 )CijNA+3588¢( YCANG?
+181444)'(

+61449 (1 Nf 2N92T2 — 4860 C2N* + 6480 C2NIN?

— 1620 C2NS? + 288720 C2NY” + 6318a3C2NY”
—43212aPC2N{ NS — 69660°C2N{ NS + 1447° a3 CINS?
+16740°CINS? + 12960°Cy N{N; NS T
—43203CUN; N T — 12247202 CENS + 947702 C2NT
+2688m% a2 CINING + 202502 CINLNG — 127212 a?CiNS?
—3078°Ci N — 7687°a*Ca NNy N T
—25920°Ca Ny N; N Ti + 384720 Cy Ny N T
+129602Cy Ny N2 T + 388872 C2N{’

+34020aC2N* — 686472 C2NING — 6048 C2NIN©
+3360m%aCIN? — 270aC2NS? 4 24967°aCy N{ Ny N Ty
+3024aCy N{ Ny N§Ty — 326472 aCa Ny N> Ti:
—30240C4 N; N2 T — 84247 C3NG” + 8019C3 NS
+1382472CEN{NS + 16119CINING — 23927 CINS?
—5310CINS? — 1209672 Cy N Ny N§Ti> — 6480Cy Ny Ny N5 Ty
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+812872Cy Ny N{*Ti + 4608Cy Ny N3 * T
+15552C Ny N{* Ty — 40967 N7 N3 T}

a2

3888 N2
AMOME (4 0) = [= 6a°CyN{ — 3a2C4Ng — 36aC4 Ni + 260C4 Ny

—16aNy N5 T — 36CaNi] — “NO
(6]

+ [~ 4320/ (1) ' CINS + 1089 (D)o CENE
—2052¢ (1)aPCING + 24661 (1)a’ CING NG
—1422¢/(1)a’CING? — 1152¢ (1) a®Ca NI N; NS T
5760 (1)aPCy N N2 Th — 35641 (1)a?CING
—8154¢/ (1)’ CINING + 46261 (L)a*CINS?
—864¢ (L) a®CAN{ Ny N T — 37440 (1) Ca Ny NP T
—22032¢/ (1)aCINT + 17383¢/ (1) aCINING
3
(
(3

+2304N7 N> T7] + O(a®)

+12192¢)' (3)aCAN; NPT — 61449 (L) aeNF N2 T3
—25272¢/ (1)CENG + 4968 (1) CZNING

—13824¢) (1) CuNEN; N T — 4860° 2N
—81a°C2NYN? + 81a°C2NS? + 288720 C2N T
—19440*C2N% + 3078 CANIN? — 7272 C2NS?
—9450*CNS? — 12960 Cy N{ Ny N Ty
4320 Cy N} N2 Ty + 1368720 C2NY”

—680403C2NH — 16447r2a3chjNg — 76140 C2NIN?
+94872a3CINS? + 405003 CE NG + 768720 Cy N{ Ny NS T
+25920°Cy N{ Ny N Ty — 384720 Cy Ny N* T
—129603Cy N; N Ty + 2376m202C2NG — 4908602C2 NS
+5436m%02CANING + 877502 CANING — 3084m% 02 CANS?
—108a2CiNS? + 57672 *Cy NY Ny NS T
—47520°Ca NNy N{ Ty + 24967° o> Cy Ny NS> T
+34560°Ca Ny N> Tj- 4 1468872 C5 N

—102060C2N% — 1159272 aC2NIN? — 225990 C2NIN?
1239212 aCENS? + 53100C3NS? 4 1670472 aCy NLN; NS T
+155520Cy NNy N T — 812872 aCy Ny N$* T

1
3
—3588Y(1)aCINSG? — 25056 (1)aCa Ny Ny N{Tre
1
3
1
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MOM
v, o8

(a,0) =

—4608aCy Ny N§* Ty — 15552aCr Ny N T
+4096m>a NZNG T2 — 2304a NP NGPT2 + 1684872 C3NS”
+116640C2N%* — 331272 C2NIN? — 14904C2NIN?

CL2

+9216m2Cy NEN N Ty + 10368C4 NN NOTy | ——————
ATAS AR AAfAF}3888aNj2
+ (’)(a3)

C
[— 2aN? + aN§ — 6N — 3Ng] 22

4N
+ [~ 2880/(1)a’ CuNg” + 2880/ (1)a* CuNNG
~720/(§)aPCaNg? — 5049 (3)a’Cu N~
—828¢(3)a’CaN{ NG + 5409 (1)’ CaNS*
—1728y/ (%)aOANA + 552¢'(3)aCa NN
—1248¢/(1)aCa N5 — 15369 (1) aN{N; N Ty
5o
(3

)

3
47680 (1)a N NP Tje — 84249 (1) Cy N
—2556v (1) CANJ NG + 828y (3)CaNS? — 3240 Cy Ny
—4608¢" (L) N{ N N{T — 23044 (L) Ny NS> Tie
270 C4NING — 54a*C4N92 + 1927203 Cy N
+97203C4NE — 1927203 C4 NINS — 210603 C4 NING
487203 CUNS? + 64803 C4 NS + 33672 Cy N
+518402CH NP + 5521%02CyNING — 194402Cy NN
—360m20°C4NS? — 6480°C4 N§2 + 1152720 Cy N
—10368aCA N — 36872aC4 NIN? — 144aC4 NINS
+83272aCy N3 — 1710aCa NJ* + 102472 N{ N N§T;:
—576a N4 N; N T — 51202 aN; N5 Tr + 288Ny N5 T
F5616m2Cu NS + 17010C4 N> + 170472Cy NINS
—1485C4 N{N§ — 552m*Cy N§? — 378C4y N§?
+3072m > N{N; N Ty + 864NN, NS Ty + 153672 Ny N> T

Cya?
502N T Ofa’)

2

+432N; N3* Ty |

a’CaCpNe — 1084 (3)a’ Ca NS Ty
)o*CaCr Ny + 2520 (3)a*CaN{ T
%)QCACFNF — 840’¢ (%)O&CANATF
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+384¢)' ()N NYTE + 81a* CaCr Ny — 1080 Ca NS T
— 4872 CyCp Np — 4860°CyCp N + 7272a* Co NS T
+7290°Cy N Ty + 607%a?CyCr Ny — 1620°CyCr Nip
—16872a*Cy Ny + 324> Cy N1y — 4687°aCyCr Ny
+648aC4Cr Nr + 560m7*aCy N1y — 1017aCy N1y

—256m*aN; NI + 144aN; NYT + 2025C4Cp Np
2

—486C3 Np — 648Cp Np Ny Ty ] + 0@@®) .  (5.5.59)

324 Np

5.6 MOMq scheme.

In this section we simply present our results, where our method of determining
the results in this scheme is the same as in the previous two sections. For the
MODMq scheme we also give the results analytically. Starting with the amplitudes
we have

qqg — 2
2(1) (p’Q)’MOMq = 1+ O(a”)

Ser q)‘ = EE, Q))

MOMq MOMq

= [-6¢/(}) ®CaNeN{ + 3¢/ (%) o’ CaNp Ny
=249/ (1) aNP*Tir — 69 (L) CaNp N}
—15¢ (%) CaNpN§ + 24¢/ (%) Cp Np Ny
+402Cy Np Nim? 4+ 360*Cy Ny N§ — 20*Cy Ny N7?
—1802Cy Ny N§ + 36aCy Np N§ — 36aCy Ny N
+16aN* w1y + 720N T + 4Cy Np Nir?
—36C4 Ny N{ + 10Cy Ny N97? 4 12604 Np N
—16Cr NpN97? — 144Cp Np NS m + O(a?)

SHEp,q) ’

MOMq MOMq

= [-6¢'(}) aCaNpN{ + 69/ (1) aCyNp Ny
—240)' (1) aNP*Tir — 64/ (3) CaNpN{ — 64’ (%) CaNp Ny
+18a? CANFNA — 9042CANFNA + 4aCANFNA7r
+45004 Np Ni — 4aCy Ny N{7? — 450Cy Ny N
+16aN* 1Ty + 36N Ty + 4Cy Ny Nin? — 45C4 Np N4

a
AC4NpN¢7? + 90C4 Np N¢ — 72C Np N9 | ————
FACANp Ny + AINFINY FFA]54NFNX
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+ O(a?)
zgg%,q)\MOMq = [60/(3) A’ CuNg — 3¢/ (1) a®Cu NS + 120/ (4) aCy N}
—12¢/(3) aCaNg + 6¢(3) CaN{ — 33y (1) CaNg
+244' (3) CpNg — 40’ CyNim* 4 20°CyNy7°
—8aCy Nin? + 8aCyNyn? — ACy Nin? 4+ 220, Ny7?
—16CpN{m*] + 0(a?) . (5.6.60)

a
54N
The coupling constant mapping is

apoMq = o+ [—12¢/(3) @’ CaNpN{ + 69/ (3) o*CaNe N;
+24¢' (1) aC4Np Ny — 249 (1) aCaNe NS — 969 (1) aNJ* T
—60¢’ (%) CaNpN{ — 78/ (%) CaNp NS + 48¢' (%) Cr Np N
+802Cy Ny N AT(' + 54a2CANFNA — 4a20ANFNA7T
—270*Cy Ny N — 16aCy Ne Nim? — 54aCy Ny N§
+16aCy Np N{7? + 54aCy Np NS + 64a NP7 T + 216N T
+40Cy Np Nim? + 52C4 Np N2 + 993C4 Ny N

CL2

—32CFr Np N{m?* — 432CF Np N — 240Nz Ny N{ T |

108 Np N§
+ o). (5.6.61)
The associated coupling constant conversion function is
CMOMa(q o) = 14 [12¢/ (1) a®?CaNeN§ — 64/ (1) a2CaNe N

—24¢)' (1) aCyNp NY{ + 249 (%) aCaNp N
+961 (%) aN§* T + 60y (1) CaNp Ny

+78¢' (%) CaNp NS — 480" (%) Cp Np N
—8a’CyNpNim? — 540?Cy Np N + 40*Cy Np N{m?
+270*Cy Np NS + 16aC4y Np Nin? + 54aC4y Np N
—16aCy Ne N{7? — 54aCy N NS — 64a NP * T
—216aN§*Ty — 40C4 Np Nim? — 5204 Np N7
—993C4 Ny N§ + 32Ck Np N7* + 432Ck Np N3,

+240NFNfNXTF]m + 0(a?) (5.6.62)
Fivp
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from which we deduce that the two loop renormalization group functions are

2

pMOMa(g o) = [—11C, + ANy Tp] %

+ (7200 (3) 0P CENE NG — 189/ (3) * CE NN

+192¢)
—96¢ (

(
(3) QCjNFNXQ +288¢/(3) o’ CaCr NZN;NY
%
+288¢ (
(
(
(

a’CyNp N{N; N T — 3844 (1) o*CaNe Ny N§* T
PCyNINP Ty + 1440 (1) 2CAN;{3TF

+528¢ CjNFNgNA 312¢ (3 ) aCjNF

—5761)

1768y

+1440¢ (1) CACpNZNy Ny — 14401/; () CaNp NSNy NS T3
—1440¢" (%) CANp Ny NPT + 17280 (3) CANAINZ* T
4803 C2Ny N 72 — 32403 C2Ne NE + 1203 C2Np NS 12
+81a3C2NENS? — 24002C2Ne N 12 — 178202 C2Np NY”
+3280*CENe N{NJT? 4 229502 CENp N{ NG
—1280°CENpN$*1? — 78302 CENp N§?
—1920°CaCr NEN; Nim* — 12960 CaCp NE Ny NY
+640*Cy Np N{ Ny Ny T + 43202 Cy Np Ny Ny NS T
+25602Cy Np Ny NP> T + 17280 Ca Np Ny N> T
—1920°CyN{NP* 7Ty — 64802 Cy NN T

—9602Cy N2*n T — 32402C4 NPTy — 9720C2NpNY”
—3520C3 Ne N{NJ7m* — 7020C3Np N{ NG
+2080C% Np N§* % + 7020C5 Np N2
+384aCyCp NZN; N> + 1296aCa Cr NAN; N3,
—2560Cy Np N{ Ny N> Ti — 864aCy Ne NNy N Ty
—512aCy Np Ny N§* 7T — 1728aCy Np Ny Ny Tie
—11520Cy NN Ty — 3888 Cy NN Tp
+832aCy N> 1T + 2808aCy N> T

—512aN; NP r2 T2 — 1728 N; NO¥ T2 + 288C2 Np N2
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+97202NFNX2 — 288C2NpNINo7? — 97202 Ny NIN?
—T7344Ci N, — 960C4 Cr NF Ny Ny
+96OOANFNA]\GNA7TZTF + 960Cy Np Ny N> 7 T

+4320C4 Np Ny N Ty — 115204 N{NP* 7T
3
—3888C4 NI N2Tp + 25920 Np Ny NO2Tp] — &
AATA OF r Ne Ny NE T 648 NpN¢’

+ O(a*)
OMAG ) = [=3aCuN{ + 3aCyNg + 9CANY — 13CA N3 + 8N; N{ T ]
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Unlike in the MOMh scheme the quark anomalous dimension in the MOMq
scheme is cubic in the gauge parameter. This is also the case for the Curci-
Ferrari gauge for the same anomalous dimension. However in the arbitrary linear
covariant gauge fixing no differences in the power of the gauge parameter are
observed. The results for the renormalization group functions have been verified
in all MOMi schemes by taking the Curci-Ferrari limit, N§{ — 0. In this limit all
known results in the MAG in all schemes considered here agree with those of the

Curci-Ferrari gauge in the same schemes at the same loop order for a full colour

group.

5.7 A-ratios

For completeness we use this section to present the numerical analysis of the A-
ratios for comparison with those of the linear covariant and Curci-Ferrari gauges
as well as for applications to computations in different schemes. Using the cou-
pling constant mappings we can construct the A-ratios as defined in chapter 3.
For each of the three MOMi schemes we have

1
OMMe(a, ) = 324N} [— 720/(3)a”CaN{ + 361/ (3)a” CaNg
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In Table 5.2 we record our results for the A-ratios numerically for the same choice
of Ny and « given in both previous analyses for the arbitrary (linear) covariant
and Curci-Ferrari gauges for SU(3) in chapters 3 and 4 respectively. Interestingly
for certain choices of o and Ny the ratio for the MOMg scheme in the MAG is
less than unity. This does not happen for the other two gauges considered, nor
does it happen in the MAG for the other two MOM schemes.

Although unrelated to the A-parameters we now plot the truncated channel 1
amplitude for the MAG ghost-gluon vertex in the MS scheme. This is plotted

as a function of the partial coupling constant a;(u, A) where only the one loop
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MOMg | MOMh | MOMq
2.3583 | 2.5816 | 1.9562
2.1127 | 2.6008 | 1.9359
1.8642 | 2.6228 | 1.9129
1.6167 | 2.6484 | 1.8869
1.3668 | 2.6784 | 1.8572
1.1239 | 2.7140 | 1.8229
2.0664 | 2.8596 | 1.8073
1.3739 | 3.0010 | 1.7128
1.1480 | 3.0655 | 1.6729
0.9298 | 3.1429 | 1.6271
0.9591 | 4.1883 | 1.3858
0.7787 | 4.3939 | 1.3308
1.8624 | 2.2372 | 2.2445

WWHRFEFFHROOOOOOR
B G0 T W O Ul W N O

1
(]

Table 5.2: Values of AlXIOéVH for the MAG in SU(3).
M

coupling is required since we have only computed the amplitudes for the MAG at
one loop. This means however that no comparison can be made with a two loop
result, as was the case with the other gauges considered in the previous chapters.
Therefore we have plotted both the one loop Curci-Ferrari and one loop MAG
amplitudes on the same plots for visual comparison of the gauges. These should
be equivalent when taking the limit N — 0. This can be seen in Figure 5.1. For
large N, it should be the case that we start to see the two results overlapping.
This is indeed true and is displayed in Figure 5.2 for SU(100).
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Comparison of one loop Curci-Ferrari gauge and MAG ghost-gluon
vertex functions for SU(3) and N_f=3
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Comparison of one loop Curci-Ferrari gauge and MAG ghost-gluon
vertex functions for SU(3) and N_f=5
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Comparison of one loop Curci-Ferrari gauge and MAG ghost-gluon
vertex functions for SU(3) and N_f=4
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Comparison of one loop Curci-Ferrari gauge and MAG ghost-gluon
vertex functions for N_f=6
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Figure 5.1: Comparison of one loop MS Curci-Ferrari and MAG ghost-gluon
vertex functions in SU(3) for different values of Nj.
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Comparison of one loop Curci-Ferrari gauge and MAG ghost-gluon
vertex functions for SU(100) and N_f=3
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Comparison of one loop Curci-Ferrari gauge and MAG ghost-gluon
vertex functions for SU(100) and N_f=5
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Comparison of one loop Curci-Ferrari gauge and MAG ghost-gluon
vertex functions for SU(100) and N_f=4
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Comparison of one loop Curci-Ferrari gauge and MAG ghost-gluon
vertex functions for SU(100) and N_f=6
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Figure 5.2: Comparison of one loop MS Curci-Ferrari and MAG ghost-gluon
vertex functions for large SU(N.) for different values of N;.

5.8 Discussion

We make some comments on our analysis. First, we have provided all the infor-

mation on the 3-point vertex functions relevant for the definition of the MOMi

schemes for the maximal abelian gauge. This is an analysis parallel to that of

[52] for QCD fixed in the canonical linear covariant gauge, which we considered



in chapter 3. It is also a parallel analysis of QCD fixed in the Curci-Ferrari gauge
considered in chapter 4. Our motivation for studying the MAG was to provide
data in relation to future lattice analyses of the vertex functions in the infrared
in order to have precision matching at high energy. Moreover, the explicit values
of the amplitudes in both the MS and MOMi schemes will be useful for assisting
overlap with Schwinger-Dyson studies. Several features which were observed in
[79] are present here. One is the relation to the Curci-Ferrari gauge. In order to
have confidence in our results it is important to indicate the checks we have car-
ried out on our work. We have checked all our expressions with the independent
evaluation of the same quantities in the Curci-Ferrari gauge, where this gauge
fixing is synonymous with the off-diagonal sector of the MAG, in the limit where
the diagonal gluons are omitted. Specifically, by substituting

d

N
A 0 & Ni=Ny (5.8.65)
NY

in all the RG functions, amplitudes, renormalization constants, conversion func-
tions and mappings for the MAG we get the direct result for the same RG func-
tions, amplitudes, renormalization constants, conversion functions and mappings
in the Curci-Ferrari gauge. This provides a highly non-trivial check on our anal-
ysis. We note here that it is possible to present results in the MAG in terms of
N, for SU(N,.) by fixing the Casimirs, i.e. C4 = N,, Cp = (A;ij_cl). However, it
is not evident how the Curci-Ferrari limit is taken if the parameters N¢ and Ng

are not present, [51]. Given properties of the renormalization group equation the
one loop conversion functions for relating parameters in the MOMi schemes to
those of the MS scheme have allowed us to compute the two loop renormalization
group functions in each of the three MOMi schemes. These have direct parallels
with those of [79] since they are based on the triple-gluon, ghost-gluon and quark-
gluon vertices. Though an essential difference here is that with the split nature
of the colour group in the MAG, it is the vertices with the off-diagonal gluons
which are relevant. This is due in part to the fact that there are Slavnov-Taylor
identities which ensure that the structure of the vertices with diagonal gluons are
predetermined. Indeed this is not unrelated to the fact these gluons are similar to
the background fields of the background field gauge of [37, 128, 129, 130, 131, 132]
with the off-diagonal gluons corresponding to the quantum fluctuations. Whether
this scenario is significant in the picture of abelian monopoles underlying a picture

of colour confinement would be interesting to investigate.
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Chapter 6
Summary and conclusions

In Part 1 of this thesis we have studied the renormalization of QCD at the sym-
metric subtraction point for various linear and non-linear gauges. We applied
the renormalization group method to determine the next loop order anomalous
dimensions and S-functions at one higher loop for the momentum subtraction
schemes of [52|. Specifically we obtained the three loop MOMi scheme results
for both the arbitrary linear covariant and Curci-Ferrari gauges and the two loop
MAG MOMi results. All results computed in the non-linear gauges are new with
results for the one loop MAG published in [51], and the Curci-Ferrari analysis at
three loops published in [67]. We have discussed how our motivation for study-
ing the QCD vertices in various gauge fixings and schemes lies in providing data
to assist in future developments within the field. These developments could lie
in the structure of the nucleons, where the main computing tools for studying
this area are lattice gauge theory and Schwinger-Dyson methods. Both of which
complement each other. In particular, providing the full off-shell massless vertex
functions for each of the three distinct QCD vertices is important in order to have

precision matching at high energy.

The amplitudes and RG functions were determined in all three gauges; the ar-
bitrary (linear) covariant, Curci-Ferrari and maximal abelian gauges. Where the
former two gauges were computed explicitly at two loops in order to determine
the three loop MOMi scheme RG functions. Due to the technical difficulty of
the MAG gauge fixing we studied this at the one loop level, where the two loop
MOMi scheme RG functions were constructed. Although we have only presented
the MOMh, MOMg and MOM(q results for each of the ghost-gluon, triple-gluon
and quark-gluon vertices respectively we comment that it is possible to carry out,

for example, the MOMg renormalization on the ghost-gluon and quark-gluon ver-
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tices also. The results presented in this thesis allow one carry out this extension
if needed. As a remark on our computational setup, the symmetry of the sub-
traction point heavily simplified the structure of the basic Feynman graphs. This

symmetry about all three external legs resulted in a smaller set of master integrals.

Throughout Part 1 of this thesis we have focused heavily on the MAG. The MAG
provides us with direct access to examining the separately treated diagonal and
off-diagonal gluons. Results in this gauge will assist in abelian monopole studies
where one requires a way of separating out the Abelian part of the group. No di-
rect access to an abelian projection was available through any of the other gauges
we studied. However a strong link between the MAG and Curci-Ferrari gauge was
observed. If one simply omits an interaction with the diagonal field the results

for the MAG directly correspond with results in the Curci-Ferrari gauge, [102].

As an extension to our work the next step would be to consider the 4-point ver-
tices of QCD. Having completed the 3-point analysis at two loops the natural
progression would be to consider the 4-point functions, in particular those of the
Curci-Ferrari gauge and the MAG. The 4-point analysis has been considered re-
cently for the arbitrary (linear) covariant gauge in [103| at one loop where a two
loop explicit calculation is not yet possible. This is due the the master integrals
which to date are not yet known. A calculation at this level would be extremely
difficult, however it would be interesting to see the influence these quartic ver-
tices have on our results, since in our work we only considered the 2- and 3-point
functions. Studying the renormalization of these 4-point vertices in a momentum
subtraction scheme would introduce new MOMi schemes, as is the case for the
quartic-gluon vertex of [103] with the MOMgggg scheme. It would be interesting

to study these other MOMi schemes and their corresponding [S-functions.

Alternatively the same computation could be repeated in all gauges to the next
loop order. This would require doing a three loop calculation explicitly, which

would require the three loop master integrals.

In principle we could consider another setup, for example the asymmetric point
with an interpolating parameter to map between this setup and the symmetric
subtraction point. In the second part of this thesis we do exactly this, where we

consider an operator insertion through the top leg of our Green’s function (¢1)).
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Renormalization of the Quark
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Chapter 7

Operator Renormalization

7.1 Background

A strong motivation of this thesis has been to provide results via perturbation
theory which can be used to map on to the non-perturbative or low energy regime,
where perturbation theory is not applicable. Whilst lattice computations concen-
trate on the low energy regime the resulting matrix elements must still match the
high energy behaviour computed perturbatively. These matrix elements can in-
volve various operators, with the aim being to achieve a good approximation to
the physics of hadrons. The matrix elements give us the moments of the operators
related to the structure functions, where the moments are the number of free in-
dices on each operator. Incorporating operators in the form of the scalar, vector,
tensor and deep inelastic scattering (DIS) operators may give us a more physical
description of the low energy regime. Contributing to the structure functions, the
matrix elements for each operator help one to measure the distribution of quarks
within the nucleon. As mentioned in chapter 2 the lattice uses the MS scheme as
well as other schemes which are physical in their definition. Although the lattice
does not use the MS scheme directly, a conversion to MS is needed in order to
make calculations on the lattice useful to the outside world. To perform any cal-
culations in perturbation theory which are useful in lattice matching, knowledge
of these matrix elements in the same schemes, whether MS or a scheme preferred
by the lattice such as MOM or a regularization invariant (RI) scheme [134, 135], is
required. The RI scheme is a physical scheme similar to the MOM scheme which
was analysed in the previous chapters. Physical schemes such as MOMi serve as
useful intermediate schemes which can be implemented both on the lattice and
in continuum perturbation theory. The scheme we consider in this chapter is a

modification on the RI scheme called RI’. The RI’ scheme is a preferred scheme
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of the lattice, however with more results available in MS, in order to improve
lattice matching the conversion functions between these two schemes are neces-
sary. We discuss the definitions of the regularization invariant schemes and the

renormalization procedure in the following section.

In this chapter we determine the two loop amplitudes for various flavour non-
singlet operator insertions in to a massless quark two-point function at both the
symmetric subtraction point and at a more general point which is asymmetric
with interpolating parameter w. We consider only flavour non-singlet operators
since the current lattice interest concentrates on these. For the scalar (or mass)
operator we renormalize in two schemes; MS and RI’. The results for the renor-
malization constants and amplitudes are presented at two loops, as well as the
scalar conversion function for comparison with [133]. We reproduce the conver-
sion function for the scalar in the RI’ scheme since this was the scheme used
in [133]. Once these checks have been carried out and the results for the scalar
conversion function have been confirmed we continue this chapter by producing
new and original results for the vector current, tensor operator and DIS operators
for MS only. The motivation and reasoning behind this is developed in the next
section. We make the important note that throughout our work we consider only

massless quarks.

7.2 Setup differences

We now turn to the setup for the particular Green’s function we are interested
in. Rather than study the ghost-gluon, triple-gluon and quark-gluon vertices of

QCD as before we now solely focus on the Green’s function

WOy, (= — OP(q)) (7.2.1)

as illustrated in Figure 7.1, where O" is the operator of interest and 1, are
massless quarks. Here p and ¢ are independent external momenta flowing in
through each quark leg, similar to earlier. Our convention is that the operators
are inserted through the top leg, indicated by a circle containing a cross in our
diagram, with momenta incoming there too. We consider a non-exceptional mo-

mentum configuration throughout. The operators we will be considering, which
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Figure 7.1: Momentum flow for the Green’s function (¢ (p)O%, . (—p—q)1(q)).

are gauge invariant, are

S = Yy
Vo= gyt
T = Yo"y
Wy, = SQZWHDV¢
oWy = So"(Yy" ) (7.2.2)

where S,V and T are the scalar (or mass), vector and tensor operators respec-
tively and W5 and its total derivative W5 are twist-2 Wilson operators for mo-
ment n = 2. Twist is defined such that

twist = dimension — spin . (7.2.3)

In the tensor operator o is given by o = 1 [y#,~”]. We note that all derivatives
(ordinary and covariant) act to the right and S means that the free Lorentz indices
are totally symmetrized and traceless. We consider all operators in both a sym-
metric momentum subtraction setup, which we label as SMOM to differentiate
the momentum setup from the MOM scheme. The asymmetric setup or inter-

polating momentum subtraction setup is labelled IMOM. All computations are
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done for an arbitrary (linear) covariant gauge. Computing results in the former
configuration enables us to make checks against original work, [59, 134, 135, 137],

whilst ensuring our programming is consistent.

In the SMOM configuration the momentum is defined at the symmetric subtrac-

tion point with

Pr=q =1 =p+te’ = —u (7.2.4)

which as before implies

pq = 31 (7.2.5)

with p previously defined in section 2.1.2.

Ultimately, upon reproducing the results of [134, 137] for the renormalization
constants and amplitudes of the scalar, vector, tensor and DIS operators, we
aim to produce new results for the Green’s function of the same operators in an
IMOM configuration. In this setup we choose our interpolating parameter, w, to
be situated at the operator insertion, see Figure 7.1. This way the operator can

be tuned. Considered at an asymmetric point the momenta now satisfy

pP=q¢ = -, = (pt+q’ = —wi (7.2.6)

where the squared momenta of two external quark legs are the same whilst the

third is proportional to the other two. This implies

w w
pg = [1—5] pweoopro=qr = —p’. (7.2.7)

This is a much more desired setup than a SMOM configuration as there is more
flexibility with results in this setup, meaning improved precision measurements
on the lattice. In particular a zero-momentum quark is difficult to incorporate on
the lattice. By taking w = 1 in our results we will be able to check with earlier
work at the symmetric point, and we make reference to these checks throughout.
Introducing an interpolating parameter has implications. For instance, in chapers
2 - 5 of this thesis our master integral reduction was greatly simplified due to the
symmetries which came with considering the Green’s functions at the symmetric

subtraction point. These symmetries are no longer applicable for obvious reasons.
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With this in mind we present in Figure 7.2 the basic one and two loop topologies
encountered in our calculation for an IMOM configuration, where we note that

away from the symmetric point we have two additional ladder topologies. This

(a) (b) ()

Figure 7.2: Basic topologies for the IMOM setup, where it is understood that (b)
and (c) are no longer contained within (d), and (b) and (c) are symmetric about
p and ¢, where p and ¢ are defined as the incoming momenta on the two lower
legs.

loss of symmetry along with the new structures appearing in the Green’s function

gives rise to more involved master integrals.

Since the background to the SMOM setup (or momentum subtraction setup at
a symmetric subtraction point, where the two descriptions are synonomous) has
been considered at length in chapter 2, in the remainder of this section we focus
solely on the IMOM setup. Prior to this however let us first make some important
remarks on earlier work that has been carried out for the set of RI schemes in
a SMOM configuration. As we have said previously, the lattice have their own
set of preferred schemes, with RI and RI’ being two of them. These schemes
were originally defined in lattice computations [134, 135| and developed up to
four loops for the Landau gauge [59] and arbitrary (linear) covariant gauge [137].
All computations prior to the development of the RI'’/SMOM renormalization
scheme in [138] were considered at an exceptional point, where essentially the

operator insertion was at zero momentum, [139]. This scheme has been applied
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to the scalar, vector and tensor operators at one and two loops [138, 133] and
also to low moment operators used in deep inelastic scattering to three loops,
[75, 140]. An introduction to the notation of the RI'’/SMOM and RI'’/IMOM
schemes are given in section 7.3. We note that all calculations performed in this
chapter are considered at a non-exceptional momentum configuration and the
above references along with [133, 137] will be used when comparing results in a
SMOM setup for MS and RI’ schemes.

The Green’s function (7.2.1) requires a new tensor basis since the tensor basis
used in the previous chapters is only applicable to the Green’s functions for the
ghost-gluon, triple-gluon and quark-gluon vertices respectively. Following the
same technique as discussed in Appendix B we decompose the Green’s function

in to a set of scalar amplitudes multiplying a basis of Lorentz tensors

WP)Op, o (=P = DY(Q)], = i:PZZ:) oD OE0 (q)  (7.2.8)
k=1

where u is the operator label (7.2.2) and we have introduced the shorthand no-

tation

(7.2.9)

2,2

—p?, r2=—wp?

w p?=q

to denote the IMOM configuration. The explicit tensors for each operator in-
sertion are given in Appendix B along with their respective projection matrices,
which differ for each operator level. The number of tensors in each tensor basis

for all operators are presented in Table 7.1.

Operator S|V |T| Wy | oW,

Number of basis tensors | 2 | 6 | 8 | 10 10

Table 7.1: Number of projectors for each operator insertion.

7.3 Renormalization

In the analyses of the operators in a SMOM and IMOM setup we use the same
renormalization techniques as described in chapter 2 with dimensional regular-
ization in d = 4 — 2¢ dimensions. Another calculation using a similar setup to

ours has been carried out first by Gorbahn and Jéger in [133]. We make ref-
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erence to this calculation where checks are made against their results for the
scalar (or mass) conversion function in a regularization invariant (RI) renormal-
ization scheme. The authors of [133] also introduced the more general kniematic
setup with interpolating parameter w. Therefore in order to make contact with
this work we first reproduce the results of [133, 137] in this new renormalization

scheme. In part this is used as a check for the extension discussed here.

In this section we discuss the details surrounding renormalization of the La-
grangian in the RI and RI” schemes. There are several ways in which the schemes
are defined [134, 135, 137, 139|. In our work, which compliments that of [137, 139],
we choose to renormalize using a modified regularization invariant (RI') scheme.
There are so many different ways to define an RI’ scheme for an operator inser-
tion with tensor indices. It is appropriate at this point to clarify the different
nomenclatures in the literature with that which we use in [141]. RI and RI" are
both defined with respect to the quark two-point wave function renormalization.
As with the modification on the MS scheme resulting in a new definition of the
scheme, namely MS, RI’ is a modification of the RI scheme. Their differences
lie in which part of the Green’s function is renormalized. Determining both the
RI and RI’ schemes requires the renormalization of the Lagrangian to get the
wave function renormalization of the external legs first. These are the two-point
functions for the ghost, gluon and quark wave functions. The difference between
the two schemes is as follows. The RI’ scheme definition of [142, 134, 135] is to

renormalize the quark wave function such that

lim [Z}}I’zw(p)] — (7.3.10)

2,2

pr=p

where X, (p) is the bare (massless) quark two-point function and Z,, is the related
renormalization constant for the quark. The RI scheme acts on a different part
of the Green’s function, [139], which is

|1 R, O
i ()

From the above it can be seen that the RI scheme is more involved. Due to the

= 1. (7.3.11)

p?=p?

presence of the derivatives it is much more difficult and costly to implement this
scheme on the lattice compared with (7.3.10). This cost refers to the computer
time needed, which greatly increases with the addition of derivatives within op-

erators, since a derivative in a vertex increases the degree of divergence. It is for
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this reason the RI’ scheme is the preferred mass dependent scheme for the lattice

when considering an operator insertion.

The renormalization constants for the wave functions in both the RI and RI’
schemes are defined such that the poles in e are absorbed in to the wave func-
tion renormalization constants along with the finite pieces. This is similar to
the MOM scheme definition. Throughout the literature the usual definition of
the RI’ scheme is to not renormalize the gauge parameter, where the relation
ZolyTS = ZCE{I/ holds between the two schemes. However we define our gauge pa-
rameter, «, to be renormalized. The renormalization of this parameter is the
same as that for the wave functions, where both the poles and finite parts are
absorbed in to the renormalization constants. It is because of our convention for
the renormalization of o that we cannot compare directly with available results,
[141]|. Therefore when comparing with [133] we do so in the Landau gauge, since
in this limit the way in which « is defined can be neglected. In other words we

only find agreement when a = 0.

It is also the case that the coupling constants are the same in both the RI’ and

MS schemes, and this is known up to five loops, [59, 137],
agy = ayg + Olagg) - (7.3.12)

This relation also holds between the MS and RI’ schemes and so when we con-
struct the conversion function for the scalar operator there will be no need to
produce a coupling constant mapping between the two schemes first, at least not
to the loop order we require. Contrary to the wave function renormalization,
the coupling constant renormalization constant is renormalized in an MS way
where only the poles in € are absorbed in to the renormalization constant. This
is the setup for the Lagrangian which defines the basic wave function coupling
constant and gauge parameter renormalization constants for the external legs of

any Green’s function, for example with an operator renormalization.

On the lattice the above RI’ scheme is commonly referred to as RI'’/MOM. This
should not be confused with applying a MOMi scheme renormalization to the
vertex. For this reason we choose not to adopt this choice of labelling since

the notation could be ambiguous and we do not want the reader to confuse

the MOM scheme with a "MOM" configuration. Another definition of the RI’
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scheme applied to the operator renormalization which we can use is RI'’/SMOM.
This identifies that the operator renormalization is considered at the completely
symmetric point. This is the notation we will use in this chapter to distinguish
the modified regularization invariant scheme applied to the quark wave function
with operator renormalization considered at the symmetric subtraction point in
the MS scheme (RI'’/SMOM). When moving to the asymmetric setup we will
use RI'/IMOM to indicate that we have introduced an interpolating parameter.
However, the method of renormalizing the 2-point wave functions in an RI" way
and the operators in an MS way remains the same as defined for the SMOM

configuration. The details may be different but the method remains unchanged.

In [133] we note that where the authors define an RI/SMOM scheme with in-
terpolating parameter w this is synonomous to our definition of RI’/IMOM. Al-
though [133] use the RI/SMOM labelling they have specified that the vertex is
not symmetric, with an external leg tuned differently to the other two. Their
choice of labelling could be misleading, which is why we have introduced the la-
bel RI'’/IMOM when specifically considering an asymmetric setup for the vertex
with an interpolating parameter. It is hoped that further development in this
area will encorouge others to adopt the same standard notation so that there is

no confusion surrounding schemes and momentum configurations used.

With the ambiguity in defining regularization invariant schemes we reiterate that
all checks with other authors carried out in this chapter are performed in the
Landau limit. This is because we have used a different definition of the arbitrary
gauge parameter o as mentioned before, and so it is only for the limit « — 0
that our results can be compared with [133] for example. Once checks against
[133| have been made, confirming our results and computational method and
programs are correct, all further renormalization will be carried out for the mass
independent MS scheme. Although RI’ has been described in the literature as
being a preferred scheme of the lattice, it is more convenient for lattice theorists
at this time, who are interested in using our data, to have results presented for
arbitrary a in the standard reference scheme; MS. The MS results can then
be transformed to any scheme of their choice via conversion functions and map-
pings. As we have already mentioned, the RI'’/SMOM and RI'’/IMOM schemes
can be defined in a number of ways. This definition depends on the choice of
the tensor basis. If a different tensor basis is used and the renormalization car-

ried out on a projection which does not directly correspond to the Feynman rule
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then renormalization constants computed in this scheme will not match those
defined in what is thought to be the same scheme. In this thesis, when working
with mass-dependent renormalization schemes, we have chosen to always use the
channel 1 projection to define the renormalization constants for the operator in
the RI'’/SMOM and RI’/IMOM schemes. This means that we absorb the finite
pieces in the channel 1 projection, leaving this part of the amplitude with no O(a)
corrections after renormalization. It can be seen straight away that if one were
to choose a different tensor basis to that of ours and define the renormalization
such that the channel with the divergence, for example, was left with no O(a)
corrections, the results for the renormalization constants would not match on to
our own results for the same objects. This is why we only present the amplitudes
for the vector, tensor and DIS operators in the MS scheme. If we were to define
the amplitudes in the RI'’/SMOM or RI'’/IMOM schemes using a particular tensor
basis and projection this may not be the most efficient choice for numerical lattice
calculations. It is for this reason that most RI' computations on the lattice are
usually considered in the Landau gauge, [135, 136]. Another reason for choosing
to represent results in terms of MS variables is that this scheme still remains the
cheapest to run on the lattice. The results for MS in an interpolating momen-
tum subtraction configuration have not been determined before it was carried out
in [141] for operator insertions above the most basic level; the scalar (or mass).
The five operators we consider are the scalar, vector and tensor operators and
the Wilson DIS operators Wy and 0W,. The details surrounding each of these

individual operator insertions are discussed in the subsequent sections.

In our vertex setup there are 3 one loop diagrams and 37 two loop diagrams. This
is consistent for all operator insertions considered. These have been computed
using QGRAF. We note that no additional computer packages have been used in
this chapter other than those detailed in chapter 2 which we use throughout. We
do note however that there are new master integrals which are w-dependent that
we need to compute. These are detailed in Appendix C. Also the new projection

matrices depend on this interpolating parameter w.

7.4 Scalar (Mass) operator

On discussing our renormalization procedure we now move on to presenting results
for each operator insertion. We begin with the scalar operator, ¥). The first step

in our process is to renormalize in an MS way. Since we have already established
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the MS renormalization constants for an arbitrary (linear) covariant gauge in
Part 1 of this thesis it is simply a matter of plugging these in to the amplitudes.
In addition to the renormalization constants defined in (3.1.2) and (3.1.3) we
introduce a renormalization constant specific to the operator, Z}, where u €

{S,V, T, Wy, 0W,}. This operator renormalization constant is defined as

k% k% k%

Z%(a) =14 2a+ (% + L) a* + O(d®) (7.4.13)
€ € €

where a is the coupling constant defined for any scheme. This operator renor-

malization multiplies the entire Green’s function.

Our initial aim is to reproduce the scalar conversion function. In order to do this
one has to renormalize in two schemes, where we have chosen MS and RI’. Let
us first renormalize the Green’s function using an MS prescription. By inserting
the MS renormalization constants of (3.1.2) and (3.1.3) in to the amplitudes at
two loops we are able to set the corresponding operator renormalization constant
73 which we do in an MS way. Our results for the renormalization constants in
the MS scheme for the wave functions are the same as (3.1.2) in chapter 3. For

the operator renormalization constant we find

3Cra 5 97 3
S . N F e 70 S 2
Zo(a,a)‘m = 1-= [ SCTpNy — T3CrCa — 5CF
11 17 a?
€ €

which is independent of the gauge parameter «.

Once the renormalization constants have been verified, we remove the MS wave
function and coupling constant renormalization constants but keep Zp set for the
scalar. Following an iterative procedure we are able to determine the RI' wave

function and coupling constant renormalization constants which we find are given

by

13 « 4
78 ‘ = 11| (=2 -2) _Znn
ala )l + { A(G 2) 3
20 97 o o? a
CENT o (L)) L+ ow?
+e( 5 1l + A(36+2+4>)]6+ (a®)
75 ‘ — 1 4+ O
Saa) = 1+ o)
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11 2 a
A ‘ = 14+ |——Cy+ =TpNi| — + O(a?
J(a,a) R +{ 5 A+3 3 f} ; + O(a%)
Craa 3a a? 1 1
S _ . F ot @ L2 o 4
Zw(a,a)‘m/ = 1—[1+¢ ; —|—HC’FC'A<4 + 4)—1—26};@}62

(25 133 5a? a3)

9 4

7 20 41
+€ (NfTFCF (5 + 30&) + CFCA (—Z + 3(304 + 3C3

331 13 1 5 1
—%Oé — gO&Q — ZOéS) + C}% (g + CY2>>:| E:| a2

+ O(a®) (7.4.15)

20 3
+1r Ny Cr (1 + —a) + Cf% (— + 052)

where it can be seen that the wave function renormalization constants have been
renormalized such that the poles in € and the finite pieces are absorbed in to the
renormalization constants, resulting in no O(a) pieces remaining in the channel 1
amplitude. These results agree with those of [137]. The coupling constant renor-
malization however is carried out in an MS way, where only the divergences are
absorbed in to the definition of the renormalization constant. Note that the label
on the renormalization constant defines the labelling of the parameters a and «,
in other words Z5(a, o) ‘RI’ = ZJ(agy,agy). Also here RI' is shorthand for the
RI'’/IMOM scheme where it cannot be written out fully when presented within

results due to lack of space.

The next step in our iterative procedure is to remove the MS values for the
operator renormalization constant. This can now be set for the scalar in the
RI'’/IMOM scheme where the operator is renormalized in the same way as the
wave functions; absorbing both the % pieces and finite parts in to the operator
renormalization constant. The renormalization constant for the scalar (or mass)

operator is

3 1
Z3(a, ) ‘RI’ = 1+ {—301: + eCp (—4 —a+ §®1(1,w) w+ §®1(1,w) aw)}

ol e

11 9 1 5
+ K—QCFTFNf + 5 CirCa + 503) 5+ (gcpTFNf

97 , (45 9 3
il = ~ 20 (Lw)w— Sdy (1
120FCA—I-CF<4 + 3a 5 1(Lw)w 5 1 ( ,w)aw)

83 20 10

10
+eCrTr Ny <€ + 94~ §q>1(1,w) w— Edh(l,w) aw)
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1285 223 5 4 1 4
+€CFOA (—7 + 12(3 — %Oé — ZOC — Z__la
1 11 1 11
+§Q2 (;, ;) - Q(w,1) — 2 In(w)®(1,w) w — @y (;7 ;)
385 223
+(I)2(1,(A)) w+ gq)l(l,w)w + ﬁqH(l,w) aw

d 1
+§<I>1(1,w) ow + §<I>1(1,w) adw— o (1,w)w

1 19 11
+§<I>1(1,w)2w2> + ECF2 (—{—g + 4o + Oz2 — Qg (;, ;)

+20s(w, 1) — gln(w)q)l(l,w)w — gln(w)q)l(l,w) aw

11 11
— P, (_ _> — ®, (—7—) a—T7P(1,w)w—29(1,w) aw

w w w' w

5
—®y(1,w) a’w + 20, (1,w)* w + ZCI>1(1, w)? w?

1 1
+g<1>1(1,w)2 aw® + Z®1(1,w)2 a2w2>> E] >+ 0O(a%) .

(7.4.16)

where again Z3(a, ) ‘RI’ = Z3(agpy, apy) and RI’ defined on the operator renor-
malization constant is shorthand for RI'’/IMOM. This is assumed throughout,
unless otherwise specified. Note that all results presented so far have been for
the IMOM setup with interpolating parameter w. However it is only at this point
where the w dependence becomes apparent. There are several functions of w
which appear here. These come directly from the master integrals given explic-

itly in Appendix C.

With the renormalization constants determined we present the amplitudes in
each scheme. For the scalar operator there are only two channels coming from

the tensor basis

2
S0 (P 0) L = ) Piye0: 0S50 q) - (7.4.17)

k=1

Throughout this chapter we present the results for only one or two amplitudes
per operator and scheme considered. Despite applying the full tensor basis to
construct all amplitudes for each scheme, we choose to display a small set of

results in this chapter due to restrictions on the space available. The channel 1
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amplitude for the scalar (or mass) in the MS scheme is

11 11 a
=3 = -1 i) ® —do— 8| =
(1)(p,q)1\TS +CF{ 1( ) +3 1<w w) o 8] :
11
+Cr {—3611& )aC’Fw—12ln( )Py (;,;) Chw

—60 In(w) ( ) Crw + 120 (1 ) Cyw
w’ w

—240 Crw — 24Q5(1,w) Caw + 4805 (1, w) Cpw

11
) CAW — 24(131 (— —) CA
W w

) C'F(J.J—i-48q>1(l l) CF
w w

11
2C'Aw + 120, (—, —) OCQCFW
w w

+129,

€l= &= &=

— 24,

roo (2.2

11
+42P, < ) aCyw + 1569, ( ) aCrw
w' w w' w

—_ 7 N N N

1
‘W
1
‘W
1
E

11 11
+385q)1 (—, —) CAW + 120(1)1 <—, —) CFC&)
w W w W
1

11 1
—80¢1 (—7 —) ]Vf(.UTF - 24@2 (—, —) aC’Fw
W w W w

11 11
—24(132 ( ) C’Aw — 24(132 ( ) CFW
w w w w

424®,(1,w) Cpw? — 450*Cyw — 240 Crw + T20C 1w 3

—240aChrw — 192aCrw + 360C w(s — 1531C 1w
2

—312Cpw + 416 N;wTk] 2Z—w + O . (7.4.18)

In order to make contact with the known results of [139] we take the SMOM limit
by setting w = 1. This gives us the channel 1 amplitude for the scalar operator

at the symmetric subtraction point as

=% (P q) = TG [3¢/(3) a+ 99/ (3) — 2a7® — 18a — 67% — 36] g
+Cr | ~144V307 ()" Ca + 288V30' (3)
+162v/3¢/ (1) a*Cy + 216V/3¢/ (%)
+756v/3¢ (1) aCa + 2808V/3¢/ (%) aCp
+192V/3¢/ (3) Cam® + 8226V/3¢ (1) Ca
—384V/30/ (§) Cpm® — 432v/3y/ (1) C
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—1440V3¢/ (1) N; T — 18V3¢" (1) aCp
—18v/3¢" (1) Cp + T776v/3s5 (T) Cu
—15552V/3s2 (F) O — 15552V/3s5 (%) Ca

+31104v/352 (%) Cp — 12960v/3s3 () C4
+25920V/353(T) C + 10368v/353 (%) Ca
—20736v/3s3 (%) Cr — 108v3a*Can? — 1215v/30°Cy

—144v/302Cpm? — 648v/30Cr — 504v/3aCy?
+1944V3aCs (5 — 6480v3aCy + 48v/3aCpr
—1872V3aCpm?® — 5184v/3aCp — 64V/3C,
—54841/3C, 2 + 8424304 (5 — 41337V/3Cy
+176V3Crm + 288v/3Ckm? + 2592v/3Ck (s
—8424v/3Cp + 960V/3N;w? T + 11232v/3N; T

+541n(3)2Cym — 1081n(3)*Crm — 6481n(3)Cyrr

(12

48+/3
+ O(a®) (7.4.19)

+1296 In(3)Cpm — 58Ca7* + 116Cpr’| .

which agrees exactly with the results of [139]. In order to obtain this result the
following identities have been applied, [62, 63, 64, 149],

Bl = Blw) = L {%(l’l) —ln(w)(bl(l’l)}

Oy (w,1) = &(lw) = i@l (%,%)
11
o, (;, a) = w[®;(1,w)In(w) + &1 (1,w)]
Uy(w, 1) = Uy(l,w)
Dy(w,1) = Py(l,w)
D(l,w) = Q(w,1) (7.4.20)

which arise from the various underlying master integrals and have been evaluated
explicitly in terms of polylogarithm functions in [62, 63, 64, 149]. The above
identities are based on the asymmetric properties of the Green’s function in an
IMOM configuration. Note that although W; does not appear explicitly it is

needed in the € expansion. Generalising to the SMOM limit we need only consider,
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62, 136, 151, 103]

2 2
®:(1,1) = _3 3 (%)
35 In?(3
Wi(1,1) = 12s3(%) — 108¢_7T3_ Z\ﬁ;
@2(1,1) = 227 + w///()

My(1,1) = 4 Ew + (s = 652 (§) + 1255 (3) + 1055 (§) — 853 (3) —v/'(5)

29 5, 1 1 2}
+ T 4+ In(3)r — ——=1In(3)*w| .
648+/3 2V/3 (3) 244/3 3)

Next we present the amplitudes for the RI'’/IMOM scheme, these are

(7.4.21)
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We have checked that our results agree exactly with the results of [137, 139] for
both the MS and RI'’/SMOM schemes. Note that between the two amplitudes for

the scalar it was found that no relations exist; the two channels are independent
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of each other.

From the above results for the renormalization constants and amplitudes we are
able to construct the conversion function for the scalar. Since the mapping of the
coupling constant is not required we simply define the gauge parameter mapping,
where we have used the same techniques to determine it as was defined in chapter
3. This is

apr = o+ [-9a°Cy — 18aCy — 97C4 + 80NfTF] %

+ [18a'C} — 18a°C} + 1900°C} — 3200°C4N; T — 576aC3¢s
+463aC; — 320004 Ny T + 864C3 (3 — 7143C5 + 23O4CANfTFC3

+4248C Ny Tr — 4608Ck Ni (3 + 5280Ck Ny T ] aa® + O

288
(7.4.23)

which is in direct agreement with [137, 139], where the result for the gauge param-
eter mapping is the same for both the SMOM and IMOM setups for RI’. This
is as expected since this mapping only uses the wave function renormalization
constants in its construction. It is only in the operator renormalization constant
where we see the w dependence emerging. The three loop result for the gauge
parameter mapping is also available in [137]. We are now able to construct the

conversion function using the definition

ZRr

g O3S) = A

RI’/IMOM(
MS
ZS

Cs

(7.4.24)

RI/IMOMMS

where it is our convention to always have the conversion functions in terms of
MS scheme parameters. In other words the conversion function is a funcion of
(ayrs, ogpg) where a = g?/(167%). The conversion function for the scalar operator
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where in the Landau limit o = 0 we are able to make checks against other work.

This is fine since lattice simulations are usually carried out in the Landau gauge,

[75]. The result
RI//IMOM 1 1 a
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w w
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w w w w
11 11
—24CI)2 (—, —) OAW - 24@2 (—, —) C’Fw
w w w W
1240, (1, w) Caw? + 288C w3 — 1285C,w

2

+57Cpw + 332N;wTk] 2Z—w + O (7.4.26)

is in exact agreement with [133] in this limit, where we have chosen the Casimirs
to be
(N2 - 1)

1
Cao =N, Gp = —F—, Tr =

= 4.2
N 5 (7.4.27)

in order to match the convention of the published result in [133]. Note that in
all of our above results for the conversion function the parameter « is mapped to
the MS scheme. As would also be the case with the coupling constant a if agyr

and aypg were not equivalent up to the loop order required.

The anomalous dimension for the scalar operator in the MS scheme at two loops
is
_ 2
WS(a,a) = 3Cpa+ [Cr(97C4 + 9Cr — 20N, T5)] % + O@d®) (7.4.28)

where there is no dependence on the gauge parameter. The anomalous dimension
for the scalar operator in this scheme is gauge independent. This result has been
confirmed with [139] and is in exact agreement with [75]. We note that this

anomalous dimension for the MS scheme has been constructed using the formula

5, %,
15 = Bla,a)z-InZs + arala,a)z-InZs (7.4.29)

which is a variation on the formula we have used to determine the anomalous
dimensions throughout, where 7, and 4 have been determined using (4.1.3).
Although we have constructed the conversion function and confirmed our results
with [133], which was the main reason for computing in the RI'’/IMOM scheme,
we present the anomalous dimension for the scalar in the RI’/IMOM scheme for

completeness. For this we needed to adjust (3.4.55) to the following

RI’/IMOM MS MS 0 RI/IMOM
R R ORI OF e N
M
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MS 0 RI’/IMOM
+opg e (4 oyrg) 5o— I C (@, 0319) |
MS MS—RI/IMOM

(7.4.30)

where we have not labelled the coupling constant a with a scheme dependence
since the MS coupling is equivalent to the RI'’/IMOM coupling constant up to
five loops, [137]. We also partly do this due to lack of space when presenting the
equation fully. In comparison to (3.4.55) a minus sign is introduced. This is as
a result of the renormalization of the mass not being computed directly. With
all operators, if one were to deduce the RI'’/IMOM anomalous dimensions the
same way in which we have done for the mass, the above formula would always
carry a minus sign. We have chosen this convention to match with other work,
[133, 137, 139]. If we were to carry out the full massive calculation then we would
not need to manually include this sign in the formula since the correct convention
for the sign of the anomalous dimensions would naturally be projected out. For

completeness the mass anomalous dimension for the RI'/IMOM scheme is given

as
/ 1 1 11
Vgu/IMOM — 3Cpa+ Cp [_3@(_,_) a*Cy — 99, (—,—) aCy
w w W W

11 11
—66D, <—, —> Cya + 249, (—, —) NTr + 6a°Cy
w W w w

CL2

+18aCy + 370C4 + 18Ck — 104N;T5| o+ O(a?) .
(7.4.31)

where we have used the identities (7.4.20) to rearrange (7.4.31) in to the same
form as [133] in order to make comparing results easier. Our result agrees with
the same results in [75, 138, 133, 139] for the scalar anomalous dimension when

w = 1.

7.5 Vector operator

We now move on to the vector current. As in the case of the scalar operator,
we have a quark 2-point function where the operator is inserted through the top
leg with momenta incoming. We now replace the scalar with the vector current
1/?7,#1. This operator is strongly related to the DIS operator 0W5. Analysing the
vector operator helps us to build a bigger picture of what is happening inside the

nucleus and is a preliminary computation to that of 0Wj.
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Using the MS renormalization constants defined in chapter 3 we determine the

operator renormalization constant. For the vector operator this is found to be
Z5(a, ) - L O(a®) (7.5.32)

With this, we construct the amplitudes for the MS scheme in an IMOM configu-

ration setup where the amplitudes are defined by

6
Siyo (P2 0) ‘w =Y Pl p.a)Shy (0. q) - (7.5.33)
k=1

where P(‘{C)U(p, q) are the tensors for the vector operator defined in Appendix C.
We have computed all six amplitudes but choose to display only one here. The

channel 1 amplitude, corresponding to the tree-level vertex, in the MS scheme is
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whereby taking the limit w — 1 this becomes
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—2320Cp7® — 145Cy7° — 116Cpr®]

which exactly matches the SMOM result of [137, 139].

214



Of the six MS amplitudes computed it was found that, when taking the limit

w = 1, the following relations hold. These are

S (p:q) = 2%, (,q) o S () = St (P a) ., (7.5.36)

w=1 w=

where the above relations are consistent with those of the quark-gluon vertex in
Part 1 of this thesis and must be satisfied in the MS scheme. These relations
are symmetric under the interchange of p and ¢ in the external legs, where this

property emerges naturally and acts as a useful check on our calculation.

Since the vector current is a physical operator its renormalization is trivial in all
schemes, this implies that its anomalous dimension is zero, i.e. v”(a) = 0. If the
anomalous dimension of a physical operator vanishes in one scheme it vanishes
in all other schemes. This is consistent with our result, where the vector current

anomalous dimension is zero in [137].

This concludes our analysis of the vector operator, where we have produced results
for a new configuration in the MS scheme. It is not necessary to compute these
results in any other scheme since at this moment in time the Landau gauge is

preferred by lattice theorists over any other scheme, [135, 136].

7.6 Tensor operator

Next we record the results for the tensor operator ¢»o**1). Using the MS renormal-
ization constants defined in chapter 3 we determine the operator renormalization

constant. For the tensor operator this is found to be
Zh(a, )| = 1 + O(d®) . 7.6.37
Sa.a)| o (a*) (7.6.37)

With this, we construct the amplitudes for the MS scheme for an IMOM config-

uration setup where the amplitudes are defined by

8
= D Ployo 00 (0 0) - (7.6.38)

v k=1

Eg;c) U(p7 q)

We have computed all eight amplitudes but, similarly to the vector current, choose

to display only one here. As with the vector operator we present the channel 1

215



amplitude in the MS scheme. There is no need to compute the same set of results
for the RI’ scheme since the MS results are adequate. The channel 1 amplitude

is given by
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for the asymmetric configuration, where w is the interpolating parameter. Taking
the SMOM limit and applying the identities (7.4.21) we see that the same result

at the symmetric point is
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On inspection it was found that the following relationships must be satisfied

between the amplitudes at two loops

T T T T
X0, q) = X 9) . By (ps9) = 25 9) (7.6.41)

w=1 w=1 w=1 w=1

when w = 1. We have checked that these amplitudes satisfy the relationships at
two loops in the MS scheme, [141].

7.7 W, and OW, operators

Finally we record our results for the DIS operators (or Wilson operators) Syy*D")
and SO*(¥y*1)). Due to the way in which the tensor basis has been defined we
note that the channel 2 amplitude for the DIS operator W5 is the channel cor-
responding to the Feynman rule, i.e. the tree level vertex. Therefore we present
the channel 2 amplitude as
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w w w w

11 11 .
—|—1621n(w)(1>1( )C’Aw + 3888 In(w) P, (—,—> Cyw?

w w w w

11 11
—53461n(w)q)1( )CAw — 4860 In(w) P, (—,—> Caw

w w w w

11 11 ,
+864 In(w)Pq | — Crw* — 17496 In(w)®; [ —, — ) Cpw

w w ww

11 11
+33048 In(w)® (w )C’Fw — 5616 In(w )(I)l(w )pr

+567 In(w)a?Caw® — 2754 In(w)a®Caw® + 5832 In(w)a®Cyw?
+486 In(w)a?Crw* — 2592 In(w)a*Crw® + 4536 In(w)a*Crw?
42430 In(w)aCyw* — 12312 In(w)aCiw?® + 25920 In(w)aCyw?
—6030 In(w)aCrw* + 25632 In(w)aCrw® — 47304 In(w)aCrw?
—19881 In(w)Cyw? + 97434 In(w)Cyw® — 123696 In(w) Cyw?
411934 In(w)Crw®* — 59436 In(w) Crw?® + 65808 In(w) Crw?

+6624 In(w) Nyw* T — 30672 In(w) Nyw® T

11
+40032 In(w) Nyw? Tp 4 16292 (—, —) aCaw*
W w

W

w

)
)

w

W w

11 11
—7290), (—, —> aCaw?® + 648, <—, —) aCyw?
w w

11
+162OQQ OéCAw — 167492( ) CAM

ww

11
+79119, Caw® — 61569, (—, —) Cyw?
w w

11

—81001 Caw + 17280 (;, —) Crw?
11

—9072@2 OFCU + 734492 (w (,d) CFCU

777682 Crw + 3240, (1, w) aCyw*

€l= &l €l &= &+
€l &l &= &l &1
O~ NN

N N N N N
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—162084(1, w) aCaw® + 32400, (1, w) aCaw?
—1296€(1, w) aCrw* + 648082 (1, w) aCrw®
—1296082(1, w) aCrw? — 36720 (1, w) Caw*
+723685(1, w) Cyw® — 84240 (1, w) Cyw?

1864082 (1, w) Crw* — 164168 (1, w) Cpw?
11

+233280 (1, w) Cpw? + 3240, (— —> Caw*

w W

11\’ 11\, ,
—2916@1 —, — CAW —|—7776CI)1 —, — CAQ}
w W w w

1 1\2 11
—5184(1)1(— —) C’Aw—648<I>1<— —) Crw?
w w w w

11\ 11\, ,
+5832(I)1 — CFW - 15552@1 —, — OFCU
(U w w w

11 11
+10368<I>1(— —) Crw — 2430, (— —) a?Cyw?
w w w w

ww

11

11
+5832q>1< ) a?Cuw — 1620®1< ) a?Cpw?
) a?Crw — 819, (— —) aCyw?
w w

+45369, (

ww

1 11
+972<I>1( ) aCyw® — 14256(1)1( ) aCyw?
w w

1 11
+31104c1>1( > aCaw + 2916@1( ) aCrw?
w w
1 5 11 )
—19008P, | —, — | aCpw?® + 48276®, | —, — | aCrw
w w w w
11 11
—34344®, (— —) aCrw + 9918D, (—,—> Cyw?
w w w w
11 5 11 )
—64548D, [ —, = | Caw® + 1499220, — = Chw
w w w
11 11
—149616%, (— —> Caw — 12222, (— —) Cruw?
w w w

11
+65808%, Crw® — 89964®1<; —) Crw?

1

1
+70128%, Crpw — 22320, (-, —) Nyw' T
W w

1

1
+152649, Nyw? T — 411849, (—, —) Nyw?Tpe
W w

+400329,

N TN N
EIH EI»—‘ Elv— EI'—
N~ N N

El— €|~ &~ &+

11
NiwTp — 3240, <—, —) aCyw?
w W
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11 11
+16209, <— —) aCyw — 3240<I>2< ) aCy

W w w w

11 11
+5184¢)2 (— —) CYCFW - 12960@2( ) QCFM

W w w w

11 1 5
—1296®5 [ —, — | Cyw® + 9720, Caw

(JJ w w w

11 11
—23004D, (- —) Caw? + 10692D, (—, —) Chaw

w w w w

11 11
+162000, (— —) Cy — 6480, (—, —) Crw?

w w w

11 11
+18144®, (— > Crw — 15552%( ) Cr

w w w w

+1944®5 (1, w) Caw® + 1296®5(1, w) Cyw*

—2592P, (1, w) Crpw® — 12960P (1, w) Crw*

+10368®P,(1, w) Crw® — 129602 Crw? + 972002 Cyw®
—181440*Cyw? — 4860*Crw®* + 35640 Crw® — 64800 Cpw?
—66420Cyw* — 58320:Cyw3(s + 50544 Cyw?
+116640Caw?Cs — 95904aCyw? + TT76aCrw*(s
+55260Crw? — 38880aCrw(s — 37332aCrw?
H+77760aCrw?Cs + 609120Cpw? 4 648C w*(s 4 24337Cw*
+8424C 1w — 186020C w® — 3240004 w? (s + 354688Cw?
—22032C0pw* (s — 10861Crw? + 103680CFw?(s + 83720CkHw?

—139968Crw?Cs — 161104Crw? — 9044 N;w* Tje
a2
648w?(w — 4)?

4 O(a3) (7.7.42)

+68464Npw? Ty — 129152 N;w* T |

in the MS scheme evaluated at the IMOM configuration. For the DIS operators
the amplitudes are the only results we provide, which are sufficient for lattice

manipulations.

For the operator 0W, the channel 1 and 2 amplitudes are related such that

oW oW
0 I A )

= —14 Cr [In(w)aw® — 2In(w)aw — 2In(w)w® + 4In(w)w
w' w w' w w' w

222



a

11
+4P, (—, —> — 2aw? 4 S8aw + 2w? — 84

w w w(w—4)
+Cr [—180In(w)*Caw® + 432 In(w)*Crw?
11 11
1181n(w)d,  — )CAw 4108 In(w)®; ( >CAw
w' w w' w

11
—4321In(w <I>1< ) Crw + 54 In(w)a?Cyw?
" w

)

—108In(w)a*Cyw + 72In(w)a?Crw? — 144 In(w)a?Crw

4252 In(w)aCyrw? — 504 In(w)aCyrw — 288 In(w)aCrw?

+576 In(w)aCrw — 1414 1In(w)Caw?® + 2828 In(w)Cyw

+252 In(w) Crw?® — 504 In(w) Crw + 464 In(w) N;w? T
(w)

ww

1
—3692( ) aCyw — 1262 (w ) Cyw?

1
—1—28892( > Cuw + 7292( ) Crw?
w w w

11
=928 In(w) NywTp + 1862 <— —) aCyw?

11
—144€), (—, —) Crw + 368 (1, w) aCyw?
w w

—720(1,w) aCyw — 1440 (1, w) aCrw?
12880 (1, w) aCrw — 2880 (1, w) Cyw?
42169 (1, w) Caw + 7200 (1, w) Crw? — 576 (1, w) Crw

11 11
+36CI)1 <— —) CAW - 21661)1 (— —) CAW
W w W w

1 2
+2880, (—,

11\, ,
W w

[\

11

2
+4329, Crw — 5769, <—, —> Cr
W w

Y

11
—108%, a?Cy — 144, (— —> a?Ch
w w

El— €|~ &+
\_/\_/\/\/

EI»—‘ EIH gl— &

—5049,

7 N NN

11
aCly + 288D, < ) aCrw?
UJ w

11 11

—1152@1 (— —) anw + 576@1 ( ) CECF
w w w W
1 ) 11

+9209, | — Caw?” — 36809 | —, — | Chw
W w W

11 11
+2828P, (—, —) Cy — 10449, (—, —> Crw?
w w w W
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11 11
+4176CI)1 ( —) CFW — 504@1( ) CF
w w w

11 11
—208%, (— —) N;w? T + 8320, (—, —) NywTp
w w W w
11 11
w w w w
11 11
—144(192 <— —) CAW -+ 648(132 ( ) CAOJ
w w w w
11 11
—648P, (— —) Cy — 288<I>2( > Cr
w w w’

216D, (1, w) Cyw® — 288Py(1,w) Crw® — 576P,(1, w) Crw?
—13502Cyw? + 5400°Cyrw — 7202 Crw? + 28802 Cpw
—7200Cyw? — 43200C4w(s + 28800Cyw + 864aCrw?(s
+2880Crw? — 17280 Crw(s — 11520Crw + 216Caw?(s
+676C w? — 432Caw(s — 2704C 1w — 1728Crw?(s

—207Crw® + 3456Crw(z + 828Ckw — 212Npw?Ti
2

+ O(a?) . (7.7.43)

Other relations between the amplitudes were found as

8W2 o 8W2 8W2 _ aWQ

E(3) V2 Q)’wzl = E(g) (s Q))wzl ) E(4) (p, Q)‘w:l = E(7) (p.q) et

oW oW oW oW

2(5)2(p,q))w:1 = 2(6)2(p,q))w:1 S IAS Q(p,q)‘w:1 = 2(10)2(p,q)‘w:1
(7.7.44)

This completes our analysis of the operator insertion in to a quark 2-point function

at the asymmetric point.

7.8 Discussion

We have evaluated the flavour non-singlet Green’s function (¥(p)Oy;, . (—p —
q)®(q)) in the chiral limit, [59]. Developing the work of [137] we have considered,
in addition to the scalar, vector and tensor operators, the twist-2 Wilson oper-
ators Wy and 0W,. By reproducing the results of [133] for the mass conversion
function and verifying this result in the Landau gauge we have been able to check
that our programming works before building up to more complicated operators,

such as the DIS operators. In this chapter we do not concern ourselves with the
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analysis of schemes for the operators, where we only considered the RI’ scheme in
order to compare with [133]|. This is completely separate to Part 1 of this thesis

where scheme analysis was our main focus.

On confirming our result for the mass conversion function, where we note that
this was only verified in the Landau gauge since our convention for the definition
of a differs to that of [133], we then returned to the MS scheme where all further
operator analysis was carried out. For the vector, tensor and DIS operators we
are only interested in the amplitudes, where the conversion functions and RG
functions are not necessary. We define the amplitudes in the MS scheme since
there is no flexibility in how one defines this scheme. We discussed at the start
of the chapter that there are several ways to define a regularization invariant
renormalization scheme. By sticking with MS this saves the lattice a lot of work.
This is also the cheapest scheme to run in simulations. With no scheme or gauge
analysis we reiterate that in this chapter we have simply produced wanted results

which others will develop.

In this calculation we have considered an asymmetric point. This brought with it
new master integrals which we have defined in Appendix C in terms of the various
functions arising as a result of the asymmetry in the graph. This configuration
setup is easier to simulate on the lattice since the symmetric point has relatively

noisier signals, [51].

We close with a few remarks. Firstly the amplitudes for the mass, vector, tensor
and DIS operators have been computed at two loops in the MS scheme. This
data will contribute to improving the measurement of Green’s functions relevant
for deep inelastic scattering. In order to develop our understanding of the QCD
vertex functions our next step could be to apply this asymmetric point renor-
malization to those gauges we heavily analysed in chapters 3 - 5. Studying these
non-linear gauges in this new configuration setup would provide more results for
Schwinger-Dyson analyses. There are also more complicated operators such as
SzﬁwD”D"vﬁ which one could potentially study in this setup. Again, assisting in

lattice research.
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Appendix A

Gauge Fixing and BRST Symmetry

As discussed in Chapter 2 it is necessary to first fix a gauge, where the gauge
fixing terms satisfy a symmetry, before any calculations can be carried out using
the Lagrangian for that theory. Since the addition of these gauge fixing terms
breaks gauge invariance we require another symmetry which restores as much of
this gauge symmetry as possible. It was Becci, Rouet, Stora, |33, 34] and Tyutin,
[35] who independently noticed that by choosing a Landau gauge fixing which

transforms as

SAY = (DA (A.0.1)
e = ngB%BAC (A.0.2)
och = vt (A.0.3)
bt = 0 (A.0.4)

where ¢ is the BRST transform that anticommutes with the ghost and anti-ghost
fields ¢, ¢*, one can determine the gauge fixing terms. The authors of [33, 34, 35]

proposed that by setting
A" = —c"A (A.0.5)

where )\ is some Grassmann constant required in order to make A® non-Grassmann,

the following identities must hold in order to render the QCD Lagrangian gauge

invariant
a 1 a
6A% = ——(Duc)* A
g
1
5c* = _§fabccbcc/\



=a 1 a
5" = “og (0" A%) A (A.0.6)

where the quarks and anti-quarks also transform in a BRST way as

st = gt (T), 0" (A.0.7)
st = —ige (T, 4" (A.0.8)

Generalizing this to all gauges we define our BRST transformations as

0AS, = —(Duc)* (A.0.9)
oc" = —gf“bccbcC (A.0.10)
5 = b (A.0.11)
Wt =0 (A.0.12)

where we will take this as our consistent set of transformations for subsequent

manipulations.

We will now explicitly show that the QCD Lagrangian is indeed invariant under
the BRST transformations. Neglecting the quark contribution, since its gauge
invariant term means that this is trivially BRST-invariant, and splitting (2.1.44)
into its gluon and ghost counterparts, we can show that both gauge-fixed terms
are invariant under the above transformations. Applying the BRST transforms

to each of the gauge fixing terms we have

1 14
0Lgp = 0| =5~ (0"4,)(0"A))
1 1
= _—— H v I 123 14
(0"54,) (07 A,) — o= (0"A,) (95 A,)
1 1
_ T oAaM( a v o 12 v (_ a
= 2@8 (—=Dne)* (0"A)) 5 (0"A,) 0" (—=Dye)
1 1
— v a(gu B v a
= 50" (Du0)" (0" 4,) + 5~ (9"4,) 0" (Dye)
1 a
= ~(9"4,)9" (Dye) (A.0.13)
and
MLghost = O[~0"D,c"]
= —(68%) 0"D,c” — 0" (6 (D,c)?) (A.0.14)
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The second piece of (A.0.14) is tedious to evaluate, and so we tackle this piece

separately

5 (Duc)" = (9" — gf™Alcc)
= §(0"c") — gf ™ (6AY) ¢ — gf ™A (6c%)

2
g aoc C aoc C g aoc rcae (&
— _§f begr (cbc) + gf™ (Duc)bc +5f be fed Achc
g aoc C aoc C aoc € e _C
= —§f b (aﬂcbc ) + gf (aucb)c — g2 fabe fhd AZC c
9° vabe pede gb d
+Efa CfereAb e (A.0.15)
By rearranging and interchanging indices the first two terms drop out, leaving
2 pabe pbde gd g9’ be pede b d
0 (Due)* = —g*frefrreAn e + 5]”“ CfALC (A.0.16)
Applying the following generalization of the Jacobi identity (2.1.7)

abed  _ _ gadbe _ facdb (A.0.17)

where f¢*d is shorthand notation for fbd = fabe feed (A (.16) becomes

2
5 (DuC)a — QZfZebdAzcdce + %fitbdeAzche
2
ae e g ae e ade e
= ¢fs bdAchc + 5 (—f4 bdAchc — fgd bAchc)
2
— %fzebdAzcdce . gfjedbAzcecd
= 0 (A.0.18)

leaving us with

OLghost = 0[—E0"D,c’]
= —(5") 9"D,uc" — 0" (6 (D,u0))
= —b"0MD,c" (A.0.19)

and

SLap = —(0"A,) 0 (Dyo)* — b°0"D,c” (A.0.20)

1
o
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which implies that
a 1 w Aa

This agrees with the definition (A.0.6) for an arbitrary (linear) covariant gauge in
QCD given by the authors of [33] and [35], up to a factor of the coupling constant
which we defined differently in the general definitions (A.0.9) - (A.0.12).

Above we have shown an example of how the fields transform under BRST sym-
metry and how one would determine the Nakanishi-Lautrup (b) field, which is
dependent on the type of gauge fixing. We now move on to the Curci-Ferrari
gauge. Briefly the complete set of BRST transformations for the Curci-Ferrari

gauge fixing are

0AY, = —D,c* (A.0.22)
" = —gf“bccbcc (A.0.23)
~ 1 g be=b
¢ = ZOMA? — Z (1 — abegd et A.0.24
0c a@ pT ( Q) f@ec’e (A.0.24)

where ( is again our interpolating parameter where this time ( = 1 takes us to
the covariant BRST transformation (A.0.6). In addition to the above we also
have the transform of 1 and ¢). These transform as before in (A.0.7).

Using a BRST approach to fixing the gauge is the easiest way in determining all
of the gauge fixing terms in the theory. The original terms of the Lagrangian
are naturally BRST-invariant by definition. An important property of the BRST

and anti-BRST transformations is that they remain nilpotent, that is to say that
2 =0 (A.0.25)

must hold for all fields. This also ensures that the gauge fixed theory is uni-
tary. If a BRST invariant gluon mass, m, is included in the theory, such as for

2

computations in the Curci-Ferrari model, then 6% o« m?. Performing a second

BRST transform on each of (A.0.22) we will prove this for the Curci-Ferrari case,

starting with the gluon field

) [6AZ] = 9 [—ﬁuc‘l + gf“bCAZCC]
= —0,(6c")+ gfabc(cSAz)cc + gfabcAi’L (6c°)
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2
— gfabcaucbcc o gfabc ((%cb +gfbdeAZCe) & — %fabCfcdeAZCdce
9 rabe c 9 rabe c abc c abc rbde e .c
= §f b (('ch)c +§f b cb(aﬂc ) — gf® ((9#05’)6 — g fabe fod Aﬁc c
9° rabe ode gb d
—?f JAL e
— _ngabCfbdeAdcecc_ffabCfcdeAdeCe
M 2 H
g2
— _ngcheAzcecc_ EfzdecAﬁcecc
2 2
9~ racde e .c 9~ raec e .c
= —= 4dAch +§f4 dAffcc

2
= 0 (A.0.26)

and by performing another BRST transform on the ghost field we have

5[(56(1] = 4 [_gfabccbcc}
= Ly (acet — oct)
— —gfabC(SCbCC
92
_ 5fab0fbdecdcecc
g2
— _E (fabdfbec + fabefbcd) Cdcecc
g2
— _Efabdfbec (Cdcecc + CCCdCe)
— _g2fabdfbeccdcecc
— _92fab0fbdecdcecc
g2
_ Efabc]cbdecdcecc
— _g2fab0fbdecccecc

= 0 (A.0.27)

where we apply the Jacobi identity in step 7. Finally the BRST transform on the

anti-ghost is

§[6c] = oY
= 0 (A.0.28)

where the transform on the Nakanishi-Lautrup field is zero by definition. There-
fore we have proven that 6> = 0. This can also be proven for the MAG BRST
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and anti-BRST tranformations given by

SA}
oc®

ob”

and

o (a'uca +gfajCAZCC + gfabCAZCC ‘f'gfabkAZCk)
1 ~a a 7 7 ibc c
gfekcet 4 §fabccbcc ;o6 = b 6AL = — (9. +gf b AZC )

. 1 . . . .
0, o = Sgftde sl = o =0 (A.0.29)

o (aﬂca _'_gfachicc 4 gfabcAl;Cc —|—gfabkAZCk)
— +gfabccbéc+gfabkcbék —f—gfabkEbCk
1 —
gfabkébék + §gfabcééc 7 ot = — gfabcbbéj . gfabkbbék —i—gfabkébk 7
) . - ) ) - 1 .
o (auéz"i_gflbcAZEC) 7 5t = — bz+gfzbccbéc 7 5& = §gfzbcébéc’
— gfibe (A.0.30)

Note that this property of nilpotency can be seen when we apply the BRST trans-

form to D,c”, which is ultimately zero, as we have proven in (A.0.18).

Since their discovery the BRST identities have helped in the study of Yang-
Mills theories, rendering the problem of renormalization considerably simpler,
[143, 144].
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Appendix B

Tensor Basis

In this Appendix we record the explicit form of the tensors that are used in the
decomposition of each 3-point vertex into scalar amplitudes. In chapter 2 we

showed that we can decompose the Lorentz amplitudes into scalar amplitudes as

14
SRR D=z = Y Plare (0 053 (0,0)

k=1
6
B B
), g = (PG00S0
k=1
2
cC ccC
»CB(p, Qa2 = Zp(k)g(n q)E(k)g(n q) . (B.0.1)
k=1

H1...Vn

the scalar amplitudes. The tensors are chosen as follows. Since the colour group

where 77(‘,2) (p, q) are the basic tensors for each vertex, V', and ZX{) (p,q) are
structure has already been factored out we are left with three free Lorentz indices
to play with for the triple gluon vertex. The only combinations of tensors which

can be made out of these three Lorentz indices are of the form

1
Niex X and E[X*X*X*] (B.0.2)

where X € {p,q} and x € {u,v,0}. The factor x? is included for dimensionality
purposes. In the case of the quark-gluon vertex the basis of Lorentz tensors can
also be built from the y-matrices in addition to p, ¢ and the metric. With these
constraints applied the full set of basic tensors at the symmetric point for the
triple-gluon vertex is

,ngg

(1)uua<p7q> = NuwDo ngg &

e 0:0) = MuoDu s Plipe(0:0) = Noubs
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p(%l%;%ya(p’ Q> = MNwq , ng%yg(p7 CI) = Mvolu ’P(g(i%%yo(pa Q) = NopQv
1 1
Pove0: @) = L Piie:a) = gPubute

1 1
ng%l%ljo'(p’ q) = Ep,u(bpa ) Pgi%iujg(pa Q) = Equypa

1 1
Pifint) = apte . Pl = Lruma.
1 1
'Pglg:ﬁul/a(p,q) = EQALQVPU ) ,Pgl%l%uua(p7Q> = Equq’/qg' (BO?))

The first six tensors all appear in the Feynman rule for the triple-gluon vertex
(A% (p)AY(q)AS(r)), where r = —p — q. Although other authors choose to com-
pute only with one or two channels, we consider all possible channels (for the
triple-gluon vertex this is 14) since a combination of these channels assists in
lattice studies where they have the freedom to select only the channels they are
interested in. Measurements can be made on the lattice in various directions to
extract specific data. Another reason for considering all channels is to get the full
picture and gain a deeper understanding of each vertex whilst checking that the
symmetries between channels still hold at higher loop order. Once we have our
tensor basis we would now like to project out the scalar amplitudes for each in-
dividual channel, k. Since an integration by parts routine can only be applied to
scalar integrals it is important we rewrite (2.1.65) making E’ék) (p, q) the subject.

We begin by defining the matrix

Viwr...un
N = Pliyur iy, 0Py (0,0) (B.0.4)

p?=q>=—p?>

where k and [ distinguish the projection tensors. The matrix N}, is symmetric

in k and [. We can write

e (pa) = SE 0P 0P, a)
Pot " (0. X a) = ZE (. a)Pas " (0, PG 0 (0: )
p(ggg " (p q)SEE (pq) = LEB(p, q)NEEE (B.0.5)

pvo () lj

Multiplying by M%:® which is defined to be the inverse of N5 we have

ngg lWU( )Eggg ( )Mggg — Eggg( )Nggg ggg

/u/cr
PE " (0, ) S5 (0 OMES = S (0, 000
MEEPESE 1 (p, )55 (p,q) = SE%(p.q) - (B.0.6)
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Since there are 14 basis tensors for the triple-gluon vertex the projection matrix
MEE8 s a 14 14 matrix which allows one to project out the amplitudes Z%%g (p,q).
For the associated projection matrix we partition it into submatrices for ease of

presentation. With the general form

MEE M M

R el B S W
( MBS A(888 71888

31 32 33

then each of the submatrices are

36 0 0 18 0 0 48 24 24 24
0 36 0 0 18 0 48 924 24 24
s 0 0 36 0 0 18 e _ | 4824 24
H 18 0 0 3 0 o | " 24 48 12 12
0 18 0 0 36 0 24 12 12 48
0 0 18 0 0 36 24 12 48 12
12 12 48 24
48 12 12 24 A8 48 48 24 924 24
e _ | 1248 12 e _ | 24024 24 48 12 12
13 24 24 24 48 | 77 24 24 24 12 12 48
24 24 24 48 24 24 24 12 48 12
24 24 24 48
64(d+1) 32(d+1) 32(d+1) 32(d+1)
s 32d+1) 3202d—1) 16(d+1) 16(d+1)
- 32d+1) 16(d+1) 32(2d—1) 16(d+1)
32(d+1) 16(d+1) 16(d+1) 32(2d—1)
16(d+4) 16(d+4) 16(d+4) 8(d+ 10)
s 8(4d+1) 8(4d+1) 8(d+4) 16(d+4)
% 8(4d+1) 8(d+4) 8(4d+1) 16(d+4)
8(d+4) 8(4d+1) 8(4d+1) 16(d+4)
12 48 12 24 24 24
e _ | 1212 48 24 24 2
Bl 4s 12 12 24 24 w4

24 24 24 48 48 48
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16(d+4) 8(4d+1) 8(4d+1) 8(d+4)
e 16(d+4) 8(4d+1) 8(d+4) 8(4d+1)
2o | 16(d+4) 8(d+4) 8(4d+1) 8(4d+1)
8(d+10) 16(d+4) 16(d+4) 16(d+ 4)
322d—1) 16(d+1) 16(d+1) 32(d—+1)
16(d+1) 322d—1) 16(d+1) 32(d+1)
16(d+1) 16(d+1) 32(2d—1) 32(d+1)
32d+1) 32(d+1) 32(d+1) 64(d—+1)

MESS (B.0.7)

Similarly for the ghost-gluon vertex the tensor basis have the form X, where

X € {p,q} and o is the only free Lorentz index,

Paeq) = pe » Poe(pa) = 4 - (B.0.8)

The projection matrix for the two tensors is

4 2
Mo — % ( ) 4) | (B.0.9)

Likewise for the quark-gluon vertex where the number of independent tensors one
can build from two independent external momenta and the generalized ~-matrices

are

qqg _ qqg _ Pol qqg _ Pofl
73(1)0(]% Q9 = Y% P(g)g(pa Q) = F ) 73(3)0(29, q) = F’
QUfﬁ QUﬂj 1
P((ﬁ%( q) - N2 ’ P(%()lg(pu q) - Iug ) P%C)lf(p> Q) = EF(?))qu .

(B.0.10)

where I'(3)pq is shorthand for I'(s) .0p*g”. This choice of tensors leads to the

projection matrix

9 12 6 6 12 0
12 16(d—1) 8(d—1) 8(d—1) 4d+2) 0
e L 6 8d—1) 4(dd—7) 4(d—1) 8d-1) 0
36(d—2) | 6 8(d—1) 4(d—1) 4(4d—7) 8d—1) 0
12 4(d+2) 8(d-1) 8d—1) 16(d—1) 0
0 0 0 0 0 —12
(B.0.11)
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We have used the convention that when a momenta is contracted with a Lorentz
index then that momentum appears instead of the index in the tensor. We note
that these forms are specific to the symmetric point only. At another external
momentum configuration the elements in each MV would be different. For the
quark-gluon vertex we use the generalized y-matrices F’(g)“ " which are defined
by

F/(té) Mmoo ’Y[M - /yﬂn] (B.O.l?)

where the factor of 1/n! is understood and n is an integer with n > 0. These
generalized matrices were introduced in [61, 145, 148] and are totally antisym-
metric in the Lorentz indices. These generalized matrices span spinor space in
d-dimensions and the underlying algebra necessary for loop calculations has been
developed in [61]. The trace operation is isotropic with respect the basis since,
[146, 147],

Y YR v e R (B.0.13)
It is also possible to write products of the original y-matrices as a finite sum over

F%“ ™. This can be achieved recursively by applying the relations, [146, 147, 148]

R N Z ) Ty e (B0,14)

VI = T ST B0

where 7, is the metric. Restricting to four dimensions, for example, one would

have
% - uv nrop __ _pvop. b
F(2) L, = , F(4) L=
F% Hn = 0 forn>5 (B.0.16)
d=4

where €777 is the totally antisymmetric pseudotensor in four dimensions. We
reiterate that 7 exists in strictly four dimensions and defines chirality. Notation-

ally we will use v* and Fé) synonymously in d-dimensions.

In particular in d-dimensions we require

v 1 v v
Ioy = 50" ="
Ly = 2" =" + 07" =0
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LT = "7 = + 0y = 07y
=" (VYT = n"7) + 0" (7 = ")
=77 (" = ") (B.0.17)

in order to compute the vector and tensor operators. This is also the case for the

DIS operators.

The tensor basis and projection matrices are the same for all three schemes con-
sidered in Part 1 of this thesis. Again, this is because the same three vertices
are considered in all gauge fixings. For the operator insertions the tensor basis is
different.

B.1 Operator Tensor Basis

In this section of the appendix we record in succession the basis of projection
tensors used for each operator level. The projection matrix My}, is defined as

before but now in terms of operators, O, such that

(B.1.18)

w

Shy(a) = MEPL" " (p,q) ()0}, . (=P — 0)P(q)))

with u € {S, VT, WQ,@WQ}.

When presenting our tensor basis for each operator in the following sections we
will do so for an IMOM configuration with arbitrary w. It is understood that to
obtain the SMOM tensor basis the limit w — 1 is taken.

B.1.1 Scalar (Mass)

For the scalar we define a tensor basis of two projections

1
Piyp.a) = To - Phpa) = 516 (B.1.19)

with projection matrix

s 1 ww—4] 0
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By setting w = 1 the above reduces to the projection matrix for a SMOM con-

1 (3 0
M5 = ﬁ(o _4) : (B.1.21)

with the tensor basis remaining unchanged.

figuration

B.1.2 Vector

The tensor basis for the vector current involves six independent tensors, these are

' p
,P(‘{)M(Z%Q) = Tu > P(‘g)u(paQ) = _f ) 7)(‘3)“(]% ) = Lﬁ

p?
qup qudl 1
7D(‘ﬁ/l)u(p’cl) - ﬁ ) 73(‘g)u(p’(—’) - # ’ 73(‘é)u(p’q) - EF@))MPQ
(B.1.22)
with the projection matrix
MY — L MY (B.1.23)
4(d — 2)w?|w — 4]? ' o
Each component of MV is given as
MY = w—4P?, MY = —dw—dw , MY = 2w — 2w — 4w
MY, = 2w-2w—4w , M = —4w—-4w , Mz =0
MY, = 16[d—1] , M¥y=-8[d—1][w—-2] , M}, = —8[d—1][w— 2]
MY = A2 —dw+2 —w—2%d] , MYy =0
MY, = A —dw—4+4d . MY, = 4ld—1]w —2)?
MY = 8d—1)w—-2] , MY =0, MY = 4w?— 4w — 4+ 4d]
MYy = 8[d—1w—-2 , MY, =0, MY = 16[d—1]
MY = 0, My = 4w — 4w (B.1.24)

where we take the convention M, w column-
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B.1.3 Tensor

For the tensor operator there are eight independent tensors making up the tensor

basis
T T 1
P(l)w/(p7 Q) F(2) 172 P(Q)uy<p7 Q> = P [quZ/ - pl/Qu] 1—‘(0) )
1
7)(T3)uv(p’ q) 17 [F(2) upPv — L'(2) Vppu} )
1
Pty (05 0) 2 [T wpte = T2y vpd]
1
7D(zg)lw(p’ q) /ﬁ [F(Q) ugPv — L'2) quu} ]
1
7D(Tﬁ)wf(p’ q) /ﬁ [F(2) uglv — L) quu] )
1 1
Py a) = o L@ pabuts = Typalote] + Plywpia) = AL @
(B.1.25)
The corresponding projection matrix is
T 1 =T
M° = M (B.1.26)

4(d—2)(d - 3)w?w — 47

where the components of M7 are displayed below

/\;lfl = —[w—4%* , /\;lip? =0, M1T3 = 4w — 4w

ML = QQu—-2w—-4w , ML = 2w —2w—4w

M1T6 = 4w—4w , M1T7 = 4w —A4w , Mng =0

ML = 2d-2[d-3|w-4w , ML =0, ML =0, ML =0
ME =0, ML =0, ML =0, ML = —8[d—1]

Mg = 4d—1]w-2 , M = 4[d—1]jw—2]

ME = —2dw? — 4dw + 4d — 3w® + 12w — 4] , ML = —8[d—1]

M =0, ML = —4d+w?—dw—2] , ML = —2[d—1][w - 2)?

ME = Ad—1w—-2] , ML = 4d—1Jw-2] , ML =0

ME = —42d+w?—dw—2] , ML = 4[d—1][w -2

ML = 4d—1w-2 , MLk =0, ML = —8[d—1]

ML = 8[d—1] , ML =0, ML = —8[d—1][d—2]

M = 0, ML = —djw—4w. (B.1.27)
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B.1.4 W2 and (9W2

We choose our tensor basis for the DIS operators to be symmetric and trace-
less. We want our results to be in terms of symmetric traceless projections since
the operator is also defined to be symmetric and traceless. This is achieved by

enforcing the following conditions on to our projections

Poy w@an™ =0 Piyw®a) = Phy,upa) (B.1.28)

It turns out that by comparing with the tensor basis for the same operators in the
SMOM setup, [150], there are only two projections which do not already satisfy

the traceless condition in (B.1.28), these are

1 1 1
Pit,pa) = P [Epuqu P~ amw}

1 1 1
P(%Qul/(p’ Q> - ﬂj [Ep,u%j + quu,pu - C_lnuy:| (B129)

for the SMOM setup. Therefore these are the only two in the IMOM tensor basis
below that carry a factor of w. This is as a result of pg appearing in requiring the
tracelessness condition. Since the Lorentz indices on the Green’s functions are
the same for both operators W5 and 0W5, they both share the same tensor basis.

The tensor basis is

2 2
’P(‘/Y)Q“V(p’ Q) = by + TwPu — C_Z}énl“’ ’ ,P(V;/)Q,uy<pa Q) = Tulv + Tl — 3gnuu

1 1
Py (Pa) = P Empﬁgmu}

1 1 (2 —w)
P(‘Z/f/ﬂ/(p’ q) = ﬁ Ep/iqy + Equpl/ - 7]‘11,1/:|

i d
1 1 1 1
PW2 5 - ™ v Sy ) PW2 s - - v e
(5)[,“/(]) Q) ?6 _quﬂq + dnu :| (6),uu<p Q> g [MQp“p + dT/,u :|
1 1 (2 — w)
PW2 ’ - ) v DY v — — ;7  lu| >
(7 (D5 @) i Pl 5P T ]
U, 0) = f| gt
(g)wj p7 q - _#2 q,uql/ dnuy
1
W-
P P:a) = -5 (L) upaPe + T(3) vpaPi]
1
4%
P(lg)uu(p’ Q) = E [F(3) ppgdv + 1—‘(3) I/pqu] . (B130>
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The projection matrix for Wy and 0W, is

1

Wa
M = 4(d — 2)2w3w — 4]3

MW: (B.1.31)

where the entries for the matrix M"2 are

MWV = 9ld — 2w —4]%w? , MU = —[d - 2w — 2w — 4]%w?

MUz = —16[d — 2w — 4w , M = 8[d — 2w — 2][w — 4w

MW = —d[d - 2w — 2w — 4w , MIZ = 8[d— 2w — 2|[w — 4w
MWV = 9ld — 2)[w? — dw + 8w — 4w , MW = 8[d - 2][w — 2w — 4w
M= 0, M2 =0, MY = 2[d- 2w — 4%

MY = 8ld—2Jw—2w—4w , M2 = —2[d - 2][w? — 4w + 8w — 4w
MY = 8ld—2Jw—2w—4w , Mi2 = —4[d-2)[w - 2P[w — 4w
MY = 8[d - 2w — 2w — wuMiz = —16[d — 2][w — 4w

M2 = 0, M¥2 =0, M = 64[d+1][d — 2]

Mz = _32d+1)[d— 2w —2] , M2 = 16[dw? — ddw + 4d + 4][d — 2
MUz = —32[d+1)[d— 2w —2] , MY = 16[dw? — ddw + 4d + 4][d — 2]
M = —8[dw?® — 4dw + 4d — 2w + 8w + 4][d — 2J[w — 2] , MY = 0
MP = 0 M2 = 8[dw? — ddw + 8d + 3w® — 12w + §][d — 2]

MW = _8[4d + w? — 4w + 4][d — 2][w — 2]

My = 16[d +1][d — 2][w — 2)?

M2 = —d[d+ 1][d — 2][w? — 4w + 8][w — 2]

MWz = 16[dw? —ddw+4d+4][d—2] , Mz =0, M2 =0

M2 = 3202d 4 w® — 4w + 2)[d — 2]

MY = 8[dw? — 4dw + 4d + 4][d — 2][w — 2]

M = 16[d +1][d — 2w — 2J?

M = —32d+ 1) d—2w—-2] , M2 =0, M2 =0

M = 32[2d +w® — 4w + 2)[d — 2

M2 = —8[4d + w? — 4w + 4][d — 2][w — 2]

M2 = 16[dw? —4ddw +4d +4)[d—2] , Mz =0, M2 =0

M2 = §[dw?® — 4dw + 8d + 3w? — 12w + 8][d — 2]

MW = —32d+ 1) d—2w—-2] , M2 =0, M2 =0

MIPE = 6ald+1)[d—2] , MP2 =0, M2 =0
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My = 8ld—2Jw—4w , M2 = —4[d— 2w — 2w — 4w
Mz = 8ld— 2w — 4w . (B.1.32)
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Appendix C

Feynman rules

In this appendix we record the Feynman rules used within this thesis.

C.1 Linear gauge Feynman rules

For the linear covariant gauge at the symmetric subtraction point we have

(A2(p) AL(—p)) = —1—2 o —
b 5ab
(c"(p)c’(—p)) = —
WE)I(-p) = pﬁ
(A% (p)(p2)ct(p3)) = — igf™pay

)
)

Y(p3)) = 9T,
)

PuDv
p2

= igf" Nyo(P2 — P3)u + Nou(P3 — P1)s

+1u(P1 — P2)s) - (C.1.1)

C.2 MAG and Curci-Ferrari Feynman rules

For the maximal abelian gauge fixing the propagators are

5AB

(Ad(p)AD(—p)) = o
(AP () =
PE(D) = ——
W@)i(-p) = pﬁ

Ny — (1-a)

PubPv
p2

(C.2.2)



where p is the momentum and the indices A, B can be either diagonal or offdiag-

onal but not a combination of the two. In the case of the diagonal (or photonic)

gluon propagator the arbitrary gauge parameter « is replaced by the photonic

gauge parameter «,. The non-zero 3- and 4-point vertices are, [41, 79,

(A7 (p1) Y (p2) ¥ (ps))
(A% (p1)e (p2)c(ps))

(A5 (1) (p2)c*
(A (p)2 (
(A} (p)(p
(A5 (p1) A (p2) A

(AL (1) A} (p2) A5 (p3) A5 (pa))

(AL (1) Ay (p2) Ag (p3) A (pa))

(A% (p1) AL (p2) Ak (p3) AL (pa))

9T,

— igf*" (=p1 — 2ps + ps(),,
igfabc (nua(p2 - p3)u + nou(pS - pl)u

+77w/<p1 - pZ)U)
[ abed NuoTvp + NupTvo

acbd Ny Mo T NupTvo

adbc Ny Mo + NyoTvp

(— )
(— )
(— )
L5 (Mo + Ny le)
+/s o (= Mop + NMupTvo)
+ 2P =DMy + NoTlop)]
9 (3" (o + Myapive)

+f:)mbl (=N Mop + MppTvo)

+fglbc (=NMop + 77#0771//)))

a Q(Q B C)
- 92 (fokbl <_77;w770p + . NuoTvp

2a
1
2

+f;llbk (_%u'f?op + NueTvp

C(2—¢ 1
+¥77up77w = 5 Mup"lvo

Mo Mvp + mwm)

2a0 2a0
a [C2—=¢ 1
fbk : ( ( 2% >77up77ua - %nupnua

fblak (wnuonup 21 nuanup>>

- g ( gebd ( 77/u/ + gn/u/) + fbcad ( 77;11/ + CUW))

92 (fgdcj (—77;“/ + me)
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+fgj6d (%n/w - gnpuC)>

(A% (p)AL(p2)E (p3) (pa)) = — * (fZ M — Cp) + L2 (—Cs + M)
(AL (p)AL(P2)E (p3)c (pa)) = — &° (fY (v — Cnwr) + £ (St — M)
@) ()E(s)c(pa)) = — ¢ (a acbd fabcd i Qfgcbd _ %fgdbc>
(@ () (p2) () (p1)) - = 2( o Sl = S a)
(@) (p2)E(3)' (1)) = —¢° (= afa”’ + af“l‘*) (C.2.3)

where we choose the momentum flow for each vertex to be incoming*. This set of
Feynman rules has been generated from the full MAG Lagrangian, using a FORM
routine. We have not used any simplification coming from the Jacobi identity
when displaying the above rules, however it can be seen that applying the Jacobi
identity results in several of the above rules to be trivially zero. Note that we
have chosen not to present any of the Feynman rules which are trivially zero. By
neglecting all diagonal elements and taking the limit f; — 0 the above Feynman
rules for the MAG reduce to the full set of Feynman rules for the Curci-Ferrari
gauge. Therefore the only contributing Feynman rules to the Curci-Ferrari gauge

are

<AZ(Z71)1L(]92)@/)(P3)> = gTa%
A ) a)) = = s (o - )

<AZ(p1)Alb,(p2)A§(p3)> = igfabc (Mo (p2 — pg)# + Uau(p?) — D)y
1 (P1 — P2)o)
(A% (p1) AL (p2) Ag(p3) ALpa)) = — g% S (—NuoTp + Tplvo)
+ (=N Mg + Tuplvs)
e A G S
(@ () (p2)E(p3)c(pa)) = — g (_%fabcd X %facbd _ %fadbc) (C.2.4)

in addition to those defined for the propagators in (C.2.2) where for the Curci-
Ferrari gauge the indices a,b, ¢, d represent the full colour group. In the limit
where we go to the off-diagonal sector we note that fad — fabed where now
fa<d in the case of the Curci-Ferrari gauge represents the colour group structure

constant for a full colour group.

*Note this corrects several typographical errors in [79].
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C.3 One loop Feynman integral solutions

In this section we display several integrals encountered when considering the one
loop renormalization of QCD. We first recall the essential integrals needed in

deducing the 2-point functions. Defining

d'k 1
Li(e, B,7) = /k (2m)d (k2)2((k — p)2)B((k + q)2)

(C.3.5)

the corresponding 2-point integrals are

[SI[oH

g - F2= G- DrE - e 6
e (47)4T(d — 2) e

I B A C e INC Y e can
e (47)5T(d — 3) >

Loag) - TU-BTE-arG-oEtt
e (4m)3T(d — 4) ' -

Followed by the 3-point integrals

LB 9T -2T(§ - DE?) " (d-4)

1,(2,1,1) = TR i I,(1,1,1) (C.3.9)
0(2,2,1) = 4(]912)2(8—d) (2, 1,1)
T
FE-9rE—1 [, T(E-1) I(§-2)
L21,-1) = (Am)3(p?)* 3 _qul“(d —2) T T 3)|
L Te=5T(E - DTG - 1)(p?): > (C3.11)
(4m)2T(d — 2) o
2 2 _a
1,(2,1,-2) = [2¢*+ (d23 o 4(123_(1)2922)] I,(1,1,0)
+ {( Vot (dd(p_q)l)} 1(2.1,0)
(2- Hr(¢ - YL@ )i
o (Am)iT(d—1)
T dpg(¢?) (3= — DG -HE*):—* (€312)
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2¢° 2d(pq)*
bz = [ e MO0

s A 4(pq)*
* {QQ HCE R >p2}

N [(q2)2 P - d(m)z} 1(2.2,0)

(C.3.13)

where 1;(1,1,1) is the only master integral for the 3-point function at one loop.
This is evaluated in |63, 64] as

L(1,1,1) = —% Oy (z,y) + Uy (z,y)e + %@1(9&,@;) + x1(z, y)} g2 + 0(53)}
(C.3.14)

where ®;(z,y) involves Liy(z) and Wi(x,y) involves Liz(2), [151], where both
polylogarithms were defined in (2.1.73) and (2.1.74). The function x;(z,y) is not
known, where this is not important since it always appears with a similar term

X3(z,y) coming from the two loop master such that

xs(@,y) — xalz,y) = Pa(z,y) — %ln(wy)%(x, y) + i [In®(z) 4 In*(y)] @1 (x,y)
(C.3.15)

where this combination of harmonic polylogarithms has already been defined in

(2.1.76) as
1

G (L) = () -
S ne 367 ‘3 o7

for = y = 1 defined at the completely symmetric point.

(C.3.16)

C.4 Master integral derivation

Returning to section 2.2 where we defined a general definition of a one loop

integral containing three propagators by

d?k 1
Li(a,8,7) = /k 2m)d () ((k — p)2)2((k + )2)

(C.4.17)
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where «, 8,7 take any integer value, represented diagramatically in Figure 2.2
with internal loop momenta k. Using Feynman parametrization we can rewrite

the above as, [53],

Li(a, B,7) = /(OZL—;&))

041,81715 o —

Yz —r—y—=z

/dx/y/d22 ( a+;ﬂ.
k2x + (k —p)%y + (k + q)?2]

(C.4.18)

Rearranging the denominator by completing the square the integral becomes

/ m+ﬁ+w

o1y B=1.9-15(1 o
/da:/dy/dz y_ = (- yaJrZﬁ)Jr .
(k)2 + zyp? + x¢?z + y2r?] v

(C.4.19)

11(04, 67 7)

where k' = k —yp + zq and = + y + 2 = 1. Then integrating with respect to &’

using

O[—d d
[ = ot 420

where we let zyp® + x¢*z + yzr* = m? then I;(a, 3,7) becomes

F(oz—kﬁ-l-v—%l)

1 1 U o1y B-1,9-15(1 — 4 — oy —
></da:/dy/dzm A ( xyi)
0 0 0 [zyp? + xqdz 4 yar TP

(C.4.21)

Il<a7577) =

Now let D = zyp® + x¢*2 + yzr? and without loss of generality we can set 7% = 1

since this is a common factor which appears in our integrals as (p2)!™ and so we
can factor this out, giving
M(a+B+vy—4¢
Il (OZ, ﬂa 7) = ( 2)
F(a)I(B)T(7)
1 1 U a1y B=1,7=1§5(1 _ 0 — o —
 [an [ay [a:2 00 =02y =2) g g
0 0 0 Dotb+r=5
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Taking the simplest case for «, 5 and v we have

Li(1,1,1) = /dx/dy/dz -

= F(l—l—e)/ 5 |:1—€1HD+ In D} . (C.4.23)
Y,z

applying I'(1 +¢) = %CQ we can rewrite the above as

1
I,(1,1,1) = / D {l—elanL In? D+§2} . (C.4.24)
T,Y,2
Now by uniqueness, [62],
L(1,1,1) = (p}) (Py) “Ii(d —3,1,1) (C.4.25)

Then I;(d — 3,1, 1) becomes

1 € 5| T(1—¢)
L(d—3,1,1) = — |1 InD—-2nX)+—=(InD—-3InX)"| ————=
l(d 377) /mvyzD|:+E(n n >+2(n n ) F(1—2€)
(C.4.26)
with r((1 26)) = —3¢%(, . By comparing both (C.4.24) and (C.4.26) we get the
following relationships between the integrals
(In X —In D) 1 / In(p?q?)
—_ = —= 4.2
/ D 2 D (C.4.27)

and

/%IHX(IHD —InX) = /% [—C2 - %ln(p2q2)(lnD —2InX) + iln2(p2q2)
(C.4.28)

From [62] it follows that the integrals can be written in the form

11(1, ]_, ]_) = F(]_ + 6) [CI)I + 6\111 + 62)(1]

1
L (3 - g, 1, 1) = I(1+¢) {@1 +e (\111 ~3 ln(quZ)(Pl) + €2X3:|
(C.4.29)
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where numerically these can be evaluated to, [62],

,(1,1) = 2r* -2/ (})

3 3

- 357 In*(3)m

Uy(1,1) = 1233(5)—108\/3— 3
2

™

vo= M - e (C.4.30)

at the symmetric subtraction point. This is enough to enable us to take the

SMOM limit for all results computed at the asymmetric point.

The general expression for ®;(z,y) includes the usual dilogarithm function Liy(2)
via, [64, 149, 103],

®i(r,y) = ~ |2Lia(—px) + 2Wiz(—py) + In (%) In (_(1 + py))

A (1+ px)
2

+In(pzx) In(py) + %} (C.4.31)

where

2
A = VAc | y) = C.4.32
and

Ag(z,y) = 2° — 20y + 9* — 20 — 2y + 1 (C.4.33)

is the Gram determinant. When one evaluates these functions from (C.4.31)
the dilogarithms involve the Clausen function, Cly(#), since the argument of the

dilogarithm is complex.
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