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Abstract

In cooperative multi-agent sequential decision making un-
der uncertainty, agents must coordinate to find an optimal
joint policy that maximises joint value. Typical algorithms ex-
ploit additive structure in the value function, but in the fully-
observable multi-agent MDP (MMDP) setting such structure
is not present. We propose a new optimal solver for transition-
independent MMDPs, in which agents can only affect their
own state but their reward depends on joint transitions. We
represent these dependencies compactly in conditional re-
turn graphs (CRGs). Using CRGs the value of a joint pol-
icy and the bounds on partially specified joint policies can
be efficiently computed. We propose CoRe, a novel branch-
and-bound policy search algorithm building on CRGs. CoRe
typically requires less runtime than available alternatives and
finds solutions to previously unsolvable problems.

Introduction

When cooperative teams of agents are planning in un-
certain domains, they must coordinate to maximise their
(joint) team value. In several problem domains, such as
traffic light control (Bakker et al. 2010), system monitor-
ing (Guestrin, Koller, and Parr 2002), multi-robot planning
(Messias, Spaan, and Lima 2013) or maintenance planning
(Scharpff et al. 2013), the full state of the environment is as-
sumed to be known to each agent. Such centralised planning
problems can be formalised as multi-agent Markov decision
processes (MMDPs) (Boutilier 1996), in which the avail-
ability of complete and perfect information leads to highly-
coordinated policies. However, these models suffer from ex-
ponential joint action spaces as well as a state that is typi-
cally exponential in the number of agents. In this paper, we
identify a significant MMDP sub-class whose structure we
compactly represent and exploit via locally-computed upper
and lower bounds on the optimal policy value.

In problem domains with local observations, sub-classes
of decentralised models exist that admit a value function
that is exactly factored into additive components (Becker et
al. 2003; Nair et al. 2005; Witwicki and Durfee 2010) and
more general classes admit upper bounds on the value func-
tion that are factored (Oliehoek, Spaan, and Witwicki 2015).
In centralised models however, the possibility of a factored
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value function can be ruled out in general: by observing the
full state, agents can predict the actions of others better than
when only observing a local state. This directly implies that
the value function depends on the full state.

A class of problems that exhibits particular structure is
that of task-based planning problems, such as the mainte-
nance planning problem (MPP) from (Scharpff et al. 2013).
In the MPP every agent needs to plan and complete its own
set of road maintenance tasks at minimal (private) mainte-
nance cost. Each task is performed only once and may delay
with a known probability. As maintenance causes disruption
to traffic, agents are collectively fined relative to the (super-
additive) hindrance from their joint actions. Although agents
plan autonomously, they depend on others via these fines and
must therefore coordinate. Still, such reward interactions are
typically sparse: they apply only to certain combinations of
maintenance tasks, e.g., in the same area, and often involve
only a few agents. Moreover, when an agent has performed
its maintenance tasks that potentially interfere with others, it
will no longer interact with any of the other agents.

Our main goal is to identify and exploit such structure
in centralised models, for which we consider transition in-
dependent MMDPs (TI-MMDPs). In TI-MMDPS, agent re-
wards depend on joint states and actions, but transition prob-
abilities are individual. Our key insight is that we can exploit
the reward structure of TI-MMDPs by decomposing the re-
turns of all execution histories (i.e., all possible state/action
sequences from the initial time step to the planning horizon)
into components that depend on local states and actions.

We build on three key observations. 1) Contrary to the
optimal value function, returns can be decomposed without
loss of optimality, as they depend only on local states and
actions of execution sequences. This allows for a compact
representation of rewards and efficiently computable bounds
on the optimal policy value via a data structure we call the
conditional return graph (CRG). 2) In TI-MMDPs agent in-
teractions are often sparse and/or local, for instance in the
domains mentioned before, typically resulting in very com-
pact CRGs. 3) In many (e.g., task-modelling) problems the
state space is transient, i.e., states can only be visited once,
leading to a directed, acyclic transition graph. With our first
two key observations this often gives rise to conditional re-
ward independence, i.e. the absence of further reward inter-
actions, and enables agent decoupling during policy search.
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Here we propose conditional return policy search (CoRe),
a branch-and-bound policy search algorithm for TI-MMDPs
employing CRGs, and show that it is effective when reward
interactions between agents are sparse. We evaluate CoRe
on instances of the aforementioned MPP with uncertain out-
comes and very large state spaces. We demonstrate that
CoRe evaluates only a fraction of the policy search space
and thus finds optimal policies for previously unsolvable in-
stances and requires less runtime than its alternatives.

Related work

Scalability is a major challenge in multi-agent planning un-
der uncertainty. In response, two important lines of work
have been developed. One line proposed approximate solu-
tions by imposing and exploiting an additive structure in the
value function (Guestrin, Koller, and Parr 2002). This ap-
proach has been applied in a range of stochastic planning
settings, fully and partially observable alike, both single-
agent (Koller and Parr 1999; Parr 1998) and multi-agent
(Guestrin, Venkataraman, and Koller 2002; Kok and Vlassis
2004; Oliehoek, Whiteson, and Spaan 2013). The drawback
of such methods is that typically no bounds on the efficiency
loss can be given. We focus on optimal solutions, required
when dealing with strategic behaviour in a mechanism (Cav-
allo, Parkes, and Singh 2006; Scharpff et al. 2013).

This is part of another line of work that has not sacrificed
optimality, but instead targets problem sub-classes with ex-
ploitable structure (Becker et al. 2003; Becker, Zilberstein,
and Lesser 2004; Mostafa and Lesser 2009; Witwicki and
Durfee 2010). In particular, several methods that similarly
exploit additive structure in the value function have been
shown exact, simply because the value functions of these
sub-classes are guaranteed to have such shape (Nair et al.
2005; Oliehoek et al. 2008; Varakantham et al. 2007). How-
ever, all these approaches are for decentralised models in
which actions are conditioned only on local observations.
Consequentially, optimal policies for decentralised models
typically yield lower value than the optimal policies for their
fully-observable counterparts (shown in our experiments).

Our focus is on transition-independent problems, suitable
for multi-agent problems in which the effects of activities of
agents are (assumed) independent. In domains where agents
directly influence each other, e.g., by manipulating shared
state variables, this assumption is violated. Still, transition
independence allows agent coordination at a task level, as in
the MPP, and is both practically relevant and not uncommon
in literature (Becker et al. 2003; Spaan, Gordon, and Vlassis
2006; Melo and Veloso 2011; Dibangoye et al. 2013).

Another type of interaction between agents is through
limited (global) resources required for certain actions. While
this introduces a global coupling, some scalability is achiev-
able (Meuleau et al. 1998). Whether context-specific and
conditional agent independence remains exploitable in the
presence of such resources in TI-MMDPs is yet unclear.

Model

We consider a (fully-observable) transition-independent,
multi-agent Markov decision process (TI-MMDP) with a fi-

nite horizon of length h, and no discounting of rewards.
Definition 1. A TI-MMDP is a tuple (N, S, A, T, R):
N ={1,...,n} is a set of n enumerated agents;

S = St x ... x S™ is the agent-factored state space, which
is the Cartesian product of n factored states spaces S*
(composed of features f € F, i.e, s" ={fL, fI,...});

y?
A = A' x ... x A" is the joint action space, which is the

Cartesian product of the n local action spaces A’;

T(s,@,38) = [I,en T'(s",a’, §") defines a transition prob-
ability, which is the product of the local transition proba-
bilities due to transition independence; and

R is the set of reward functions over transitions that we
assume w.l.o.g. is structured as {R%le C N}. When e =
{i}, R is the local reward function for agent i, and when
le] > 1, R® is called an interaction reward. The total team
reward per time step, given a joint state s, joint action @
and new joint state 8, is the sum of all rewards:

R(Sv a, §) = ZReeR Re({sj }jéea {C_ij }j€€7 {éj }jEe)'
Two agents ¢ and j are called dependent when there ex-
ists a reward function with both agents in its scope, e.g., a
two-agent reward function R ({s?,s7}, {a’,a’},{8%,87})
could describe the super-additive hindrance that results
when agents in the MPP do concurrent maintenance on two
nearby roads. We focus on problems with sparse interaction
rewards, i.e., reward functions ¢ with non-zero rewards for

a small subset of the local joint actions (e.g., AY C A*x A7)

or only a few agents in its scope. Of course, sparseness is

not a binary property: the maximal number of actions with
non-zero interaction rewards and participating agents (re-
spectively o and w in Theorem 1) determine the level of
sparsity. Note that this is not a restriction but rather a classi-
fication of problems that benefit most from our approach.

The goal in a TI-MMDP is to find the optimal joint pol-
icy m* which actions @ maximise the expected sum of re-
wards V*(s;), expressed by the Bellman equation:

maxy | T(s iy se41) (DR (5 @ 5541) + V(s041)).
St41E€S ReeR
(D

At the last timestep there are no future rewards, so V*(sp,) =
0 for every s, € S. Although V*(s;) can be computed
through a series of maximisations over the planning period,
e.g., via dynamic programming, it cannot be written as a sum
of independent local value functions without losing optimal-
ity (Koller and Parr 1999).

Instead, we factor the returns of execution sequences,
the sum of rewards obtained from following state/action
sequences, which is optimality preserving. We denote an
execution sequence up until time t as 6; = [sg,do,
weey St—1,0dt—1, S¢] and its return is the sum of its rewards:
Zi_:lo R(S9.4, 00,2, 50,5+1), Where Sg 4, dg , and Sg 441 Te-
spectively denote the state and joint action at time x, and the
resulting state at time = + 1 in this sequence. A seemingly
trivial but important observation is that the return of an exe-
cution sequence can be written as the sum of local functions:

t—1
Z(Qt) = Z ZRG(Sg,maag,xvsg,z+l)v (2

ReeR =0
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Figure 1: Example of a transition for one agent of a two-
agent problem where (a) shows the complete state/transition
graph with unique rewards r, and (b) the equivalent but
more compact CRG when R; only depends on a?.

where sg’x, d’g’x and sg’zﬂ denote local states and ac-
tions from 6; that are relevant for R¢. Contrary to the op-
timal value function, (2) is additive in the reward compo-
nents and can thus be computed locally. To compute the
expected policy value using (2), we sum the expected re-
turn Pr(6,)Z(0y) of all future execution sequences 6,
reachable under policy 7 starting at so (denoted 0|7, so):

h—1
V7™(s0) = Z Z(0n) H T(so,t:m(s0,t), So,441)- (3)
9}L|7T,So t=0

Now, (3) is structured such that it expresses the value in
terms of additively factored terms (Z(6},)). However, com-
paring (1) and (3), we see that the price for this is that we
no longer are expressing the optimal value function, but that
of a given policy 7. In fact, (3) corresponds to an equation
for policy evaluation. It is thus not a basis for dynamic pro-
gramming, but it is usable for policy search. Although policy
search methods have their own problems in scaling to large
problems, we show that the structure of (3) can be leveraged.

Conditional Return Graphs

We now partition the reward function into additive compo-
nents R; and assign them to agents. The local reward for
an agent i € N is given by R; = {R'} U R, where RS
are the interaction rewards assigned to ¢ (restricted to R®
where i € e). The sets R; are disjoint sub-sets of the reward
functions R. Then, a conditional return graph for agent
is a data structure that represents all possible local returns,
for all possible local execution histories. Particularly, it is
a directed acyclic graph (DAG) with a layer for every stage
t =0,...,h—1 of the decision process. Each layer contains
nodes corresponding to the reachable local states s' € S* of
agent ¢ at that stage. As the goal is to include interaction
rewards, the CRG includes for every local state st local ac-
tion a’, and successor state §* a representation of all transi-
tions (s¢, @, 3¢) for which s € s¢, a; € @, and §' € 8°.
While a direct representation of these transitions captures
all the rewards possible, with the example DAG of Fig. 1a as
a result, we can achieve a much more compact representa-
tion by exploiting sparse interaction rewards, enabling us to
group many joint actions a¢ leading to the same rewards. To
make this explicit, we first define which actions of the neigh-
bouring agents are important for R;. Given the partition of

rewards R; and an action a* for an agent i, the dependent
actions of an agent j # i are

Al(a',j)={a’ € A7 : J(R°€R;) I(s°, @, 5°)
a'€d® Aa’ €d® A R(s%,dc, 5% # 0}.

Actions by other agents that are not dependent are (made)
anonymous in the CRG for agent ¢, since they do not in-
fluence the reward from the functions in R*. A conditional
return graph (CRG) ¢; for agent ¢ is then defined as follows.

Definition 2 (Conditional Return Graph ¢;). Given a dis-
joint partitioning | J;. 5 R of rewards, the Conditional Re-
turn Graph (CRG) ¢; is a directed acyclic graph with for
every stage t of the decision process a node for every reach-
able local state s;, and for every local transition (s*, a, §%),
a tree compactly representing all transitions of the agents in
scope in R;. The tree consists of two parts: an action tree
that specifies all dependent local joint actions, and an influ-
ence tree, that contains the relevant local state transitions
included in the respective joint action.

The state s' is connected to the root node v of an action
tree by an arc labeled with action a*. The action tree with
root node v is defined recursively on the remaining N' =
N\ {i} agents as follows:

1. If N' # () take some j € N', otherwise stop.

2. For every a/ € A¥(d',j), create an internal node con-
nected from v and labeled with a”.

3. Create one internal node to represent all actions of
agent j not in A*(a*, j) (if any), labeled with 7.

4. For each child create a subtree with N' = N’ \ {j} using
the same procedure.

Each leaf u of the action tree is the root node of an influence

tree. Starting again from N' = N \ {i}:

1. If N' # () take some j € N', otherwise stop.

2. If the path from s° to the present node contains an action
a’ € Ai(a',j), create child nodes to represent all local
state transitions of agent j compatible with a’, with arcs
labeled (s7,87) € {(s7,87) : T7(s7,a’,87) > 0}.

3. For each child create a sub-tree with N' = N’'\{j} using
the same procedure.

Finally, we add for each leaf node of the influence tree an arc
to the local state node ' labeled with the transition reward.

The labels on the path to a leaf node of an influence
tree, via a leaf node of the action tree, sufficiently spec-
ify the joint transitions of the agents in scope of the func-
tions R¢® € R‘, such that we can compute the reward
> peer, 19(s%,@°, 5°). Note that for each R¢ for which an
action is chosen that is not in A(a’, j) (a wildcard in the
action tree), the interaction reward must be 0 by definition.

In Fig. 1b an example CRG is illustrated. The local state
nodes are displayed as circles; the internal nodes as black
dots and action tree leaves as black triangles. The action arcs
are labelled a!, a? and ‘wildcard’ %2, whereas influence arcs
are labelled (s2 — s3) and (s2 — s2). Note that Def. 2 cap-
tures the general case, but often it suffices to consider transi-
tions (s U Fe\F G, 5" U Fe\'), where F°\" is the set of state



features on which the reward functions R; depend. This is
a further abstraction: only feature influence arcs are needed,
typically resulting in much less arcs (see Fig. 2 later).

Now we investigate the maximal size of the CRGs. Let

|Smaz‘ = maxieN|Si| ‘Amar‘ = maX,EN\Aﬂ =
maxpgecRre |e| — 1, i.e., the maximal interaction funct10n
scope size, and @ = max; jen maxqic4: [A'(a’, j)| the

largest dependent action set size. First note that the full joint
policy search space is ©(h|S™e% |2 Amaz|n) however we
show that the use of CRGs can greatly reduce this.

Theorem 1. The maximal size of a CRG is
O( h - |Amam||5mam‘2 . (a‘Smam|2)w ) (4)

Proof. A CRG has as many layers as the planning horizon h.
In the worst case, in every stage there are |S™%*| local state
nodes, each connected to at most |S™%%| next-stage local
state nodes via multiple arcs. The number of action arcs be-
tween two local state nodes s and 8° is at most |A*| times
the maximal number of dependent actions, a*. Finally, the
number of influence arcs is bounded by (|S™%|%)2. O

Note that in general all actions can be dependent,
in which case the size of all n CRGs combined is
O(nh|§maz|2+2w| gmaz|1+w). typically still much more
compact than the full joint policy search space unless w ~
|N|. For many problems however, the interaction rewards
are more sparse and o < |A™**|*. Moreover, (4) gives
an upper bound on the CRG size in general, for a spe-
cific CRG ¢; this bound is often expressed more tightly by
O(h-[A™||5 2T,y (maxyic ac |4 (a?, §)][57]2)). or even
|F'| instead of |:S| when conditioning rewards on state fea-
tures is sufficient.

In addition to storing rewards compactly, we use CRGs
to bound the optimal policy value. Specifically, the maximal
(resp. minimal) return from a joint state s; onwards, is an up-
per (resp. lower) bound on the attainable reward. Moreover,
the sum of bounds on local returns bounds the global return
and thus the global optimal value. We define the bounds re-
cursively:

U(s') = max

(s€,a¢,3%)€pi(s?)
such that ¢;(s?) denotes the set of local transitions available
from state s° € s¢ (ending in ' € $°). The bound on the
optimal value for a joint transition (s, @, §) of all agents is

Uls:@8) =,y (Rils,8.89 +UE), - ©)

and lower bound L is defined similarly over minimal returns.

Furthermore, CRGs can exploit independence in local re-
ward functions as a result of past decisions. In many task-
modelling MMDPs, e.g., those mentioned in the introduc-
tion, actions can be performed a limited amount of times, af-
ter which reward interactions involving that action no longer
occur. When an agent can no longer perform dependent ac-
tions, the expected value of the remaining decisions is found
through local optimisation. More generally, when dependen-
cies between groups of agents no longer occur, the policy
search space can be decoupled into independent components
for which a policy may be found separately while their com-
bination is still globally optimal.

(Ri(s®, a5, 8%+ US)), (5

Algorithm 1: CoRe(®, 0N h, N)

Input: CRGs &, execution sequence 0?’ , horizon h, agents N
1 if t = h then return 0;
2 V¥« 0
3 foreach conditionally independent subset N'CN given 9,{\' do
// Compute weighted sums of bounds:

- N N = ’
4 Vaév U(se o 3<—ZT(59 t,afv,sﬁl)U(sé\jt,a,{V,sﬁl)

N’ =N' NN
5 Lmaﬂ—maxﬂ ZT(set,a{V sPL(sY . al s )

// Find jOlnt actlon max1mlslng expected reward

6 foreach @ at for which U(sg ;, a ) > Limaz do

7 VqN/ 0

8 foreach s, reachable from s} 'y Land @’ do

9 V,-I'{V’-'__T(se t7a£\f st+1)(R(59 t7at 78t+1) +
coRe(®, 0" @ [a’,s},),h, N') )

10 Lmaz < maX(VaN/ s Lmaz) 3 // update 1lb

t
1 V4= max(_iéw Va{\,/

12 return V*

Definition 3 (Conditional Reward Independence). Given an
execution sequence 0, two agents i, 7 € N are conditionally
reward independent, denoted CRI (i, j,0:), if for all future
states s, St+1 € S and every future joint action ay € A:

h—1
VR® € Rs.t. {i,j} Ce: Zx:t R%(Sy, g, Sp41) = 0.

Although reward independence is concluded from joint
execution sequence #;, some independence can be detected
from the local execution sequence 6! only, for example
when agent ¢ completes its dependent actions. This local
conditional reward independence occurs when Vj € N :
CRI(i,,0!) and is easily detected from the state during
CRG generation. For each such state s¢, we find optimal pol-
icy 77 (s%) and add only the optimal transitions to the CRG.

Together this leads to the Conditional Return Policy
Search (CoRe) (Alg. 1). CoRe performs a branch-and-bound
search over the joint policy space, represented as a DAG
with nodes s; and edges (dt, $:+1), such that finding a joint
policy corresponds to selecting a subset of action arcs from
the CRGs (corresponding to d@; and $;y1). First, however,
the CRGs ¢; are constructed for the local rewards R; of
each agent ¢ € N, assigned heuristically to obtain balanced
CRGs. The generation of the CRGs follows Def. 2 using a
recursive procedure, during which we store bounds (Eq. 5).
During the subsequent policy search CoRe detects when
subsets of agents, N’ C N, become conditionally reward
independent, and recurses on these subsets separately.

Theorem 2 (CoRe Correctness). Given TI-MMDP M =
(N, S, A, T, R) with (implicit) initial state sy, CoRe always
returns the optimal MMDP policy value V*(s¢) (Eq. 1).

Proof. (Sketch) Conditional reward independence enables
optimal decoupling of policy search, the bounds are admissi-
ble with respect to the optimal policy value and our pruning
does not exclude optimal execution sequences. O

'The full proof can be found in the extended version of this
paper, available at http://arxiv.org/abs/1511.09047.
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Figure 2: The CRGs of the two agents. We omit the branches
for a? and b? from states s? and sg,. The highlighted states
are locally reward independent (reward arcs are omitted).

CoRe Example

We present a two-agent example problem in which both
agents have actions a, b and ¢, but every action can be per-
formed only once within a 2-step horizon. Action ¢? of
agent 2 is (for ease of exposition) the only stochastic action
with outcomes ¢ and ¢, and corresponding probabilities 0.75
and 0.25. There is only one interaction, between actions al
and a2, and the reward depends on feature f! of agent 1
being set from f1? to f! or = f'. Thus we have one inter-
action reward function with rewards R*2(f1?, {a', a®}, f1)
and RY2(f1?,{a', a®}, ~f), and local rewards R' and R?.

Figure 2 illustrates the two CRGs. On the left is the
CRG ¢! of agent 1 with only its local reward R', while the
CRG of agent 2 includes both the reward interaction func-
tion RY2 and its local reward R2. Notice that only when
sequences start with action a? additional arcs are included
in CRG ¢? to account for reward interactions. The sequence
starting with a? is followed by an after-state node with two
arcs: one for agent 1 performing a' and one for its other
actions, *! = {b', c'}. The interaction reward depends on
what feature f! is (stochastically) set to, thus the influence
arcs f! and —f1. As the interaction reward only occurs when
{a',a?} is executed, the fully-specified after-state node af-
ter a® and *' (the triangle below it) has a no-influence
arc @'. All other transitions are reward independent and
captured by local transitions (s3, b2, s2) and (s2, ¢2, s?). Lo-
cally independent states are highlighted green, from which
only the optimal action transitions are kept in the CRG, e.g.,
only action arc ¢! (and not b') is included from s..

An example of CoRe policy search is shown in Figure 3,
with the policy search space on the left and the CRGs on
the right, now annotated with return bounds. Only several
of the branches of the full DAG and CRGs are shown to
preserve clarity. At ¢ = 0, there are 9 joint actions with
12 result states, while the CRGs need only 3 + 4 states
and 3 + 6 transitions to represent all rewards. The execu-
tion sequence 6, that is evaluated is highlighted in thick red.
This sequence starts with non-dependent actions {b', %},
resulting in joint state s;; (ignore the bounds in blue for
now). The execution sequence at ¢ = 1 is thus 6; =
[s0, {b*,b%}, 5p.]. In the CRGs the corresponding transi-
tions to states s and s are shown. Now for ¢ = 1 CoRe
is evaluating joint action {a', a?} that is reward-interacting

Policy Search

[13,16] \ [125,125]

Figure 3: Example of policy evaluation. The left graph
shows (a part of) the policy search tree with joint states and
joint actions, and the right graph the CRGs per agent.

and thus the value of state feature f! is required to deter-
mine the transition in ¢? (here chosen arbitrarily as —f1).
The corresponding execution sequence (of agent 2) is there-
fore 02 = [s3, {b, b}, s7 U{f17}, {al,a®}, 52, U {=f1}].
If agent 1 had chosen c! instead, we would traverse the
branch ! leading to state s?, without reward interactions.
Branch-and-bound is shown (in blue) for state sy 3, with
the rewards labelled on transitions and their bounds at the
nodes. The bounds for joint actions {a',a?} and {al,c?}
are [13, 16] and [12.5, 12.5], respectively, found by summing
the CRG bounds, hence {a', ¢?} can be pruned. Note that we
can compute the expected value of {a', ¢} in the CRG, but
not that of {a', a®} because agent 2 does not know the value
of f1 or the probability of a! during CRG generation.
Conditional reward independence occurs in the green
states of the policy search tree. After joint action {b', a?},
the agents will no longer interact (a? is done) and thus the
problem is decoupled. From state s; , CoRe finds optimal
policies 75 (s} ) and 73 (s2) and coinbines them into an opti-

mal joint policy 7*(sp.q) = (7] (s3), 73(s2)).

Evaluation

In our experiments we find optimal policies for the main-
tenance planning problem (MPP, see the introduction) that
minimise the (time-dependent) maintenance costs and eco-
nomic losses due to traffic hindrance. Using this domain
we conduct three experiments with CoRe to study 1) the
expected value when solving centrally versus decentralised
methods, 2) the impact on the number of joint actions eval-
uated and 3) the scalability in terms of agents.

First, we compare with a decentralised baseline by treat-
ing the problem as a (transition and observation indepen-
dent) Dec-MDP (Becker et al. 2003) in which agents can
only observe their local state. Although the (TI-)Dec-MDP
model is fundamentally different from TI-MMDP — in the
latter decisions are coordinated on joint (i.e., global) ob-
servations — the advances in Dec-MDP solution methods
(Dibangoye et al. 2013) may be useful for TI-MMDP prob-
lems if they can deliver sufficient quality policies. That is,
since they assume less information available, the value of
Dec-MDP policies will at best equal that of their MMDP
counterparts, but in practice the expected value obtained
from following a decentralised policy may be lower. We in-
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Figure 4: Experimental results

vestigate if this is the case in our first experiment, which
compares the expected value of optimal MMDP policies
found by CoRe with optimal Dec-MDP policies, as found
by the GMAA-ICE* algorithm (Oliehoek et al. 2013).

For this initial experiment we use two benchmark sets:
rand [h], 3 sets of 1000 random two-agent problems with
horizons h € [3,4,5], and coordint, a set of 1000
coordination-intensive instances where poor coordination
results in low expected values. Figure 4a shows the ra-
tio Vigo/Viiupp- In the random instances the expected
values of both policies equal in approximately half of the
instances. For coordination-intensive instances coordint
decentralised policies result in worse results — on average the
reward loss is about 33%, but it can be 75% — demonstrating
that decentralised policies are inadequate for our purposes.

In our remaining experiments we used a random test
set mpp with 2, 3 and 4-agent problems (400 each) with 3
maintenance tasks, planning horizons 5 to 10, random de-
lay probabilities and binary reward interactions. We com-
pare CoRe against the current state-of-the-art MPP method
from (Scharpff et al. 2013), solving a compact encoding
of the problem through value iteration (SPUDD) (Hoey et
al. 1999), and a dynamic programming algorithm that max-
imises Eq. 1 with added domain knowledge to quickly iden-
tify and prune infeasible branches. We included CRG pol-
icy search without bounds (CRG-PS) to study the impact of
branch-and-bound.

Figure 4b shows the search space size reduction by CRGs
in this domain. Our CRG-enabled algorithm (CRG-PS, blue)
approximately decimates the number of evaluated joint ac-
tions compared to the DP method (green). Furthermore,
when value bounds are used (CoRe, red), this number is re-

duced even more, although its effect varies per instance.

Figure 4c shows the percentage of problems from the mpp
test set that are solved within 30 minutes per method (all
two-agent instances were solved and hence omitted). CoRe
solves more instances than SPUDD (black) of the 3 agent
problems (cross marks), and only CRG-PS and CoRe solve
4-agent instances. This is because CRGs successfully ex-
ploit the conditional action independence that decouples the
agents for most of the planning decisions. Only when reward
interactions may occur actions are coordinated.

As CoRe achieves a greater coverage than SPUDD, we
compare runtimes only for instances successfully solved by
the latter (Fig. 4d). We order the instances on their SPUDD
runtime (causing the apparent dispersion in CoRe runtimes)
and plot runtimes of both. CoRe solves almost all instances
faster than SPUDD, both with 2 and 3 agents. CoRe failed on
3.4% of the instances solved by SPUDD whereas SPUDD
failed 63.9% of the instances that CoRe solved.

Finally, to study the agent-scalability of CoRe, we gener-
ated a test set pyra with a pyramid-like reward interaction
structure: every first action of the k-th agent depends on the
first action of agent 2k and agent 2k + 1. Figure 4e shows
the percentage of solved instances from the pyra test for
various problem horizons. Whereas previous state-of-the-
art solved instances up to only 5 agents, CoRe successfully
solved about a quarter of the 10 agent problems (h = 4) and
overall solves many of the previously unsolvable instances.

Conclusions and Future Work

In this work, we focus on optimally (and centrally) solving
fully-observable, stochastic planning problems where agents
are dependent only through interaction rewards. We partition
individual and interaction rewards per agent in conditional
return graphs, a compact and efficient data structure when
interactions are sparse and/or non-recurrent. We propose a
conditional return policy search algorithm (CoRe) that uses
reward bounds based on CRGs to reduce the search space
size, shown to be by orders of magnitude in the maintenance
planning domain. This enables CoRe to overall decrease the
runtime required compared to the previously best approach
and solve instances previously deemed unsolvable.

We consider only optimal solutions, but CRGs can be
combined with approximation in several ways. First, the re-
ward structure of the problem itself may be approximated.
For instance, the reward function approximation of (Koller
and Parr 1999) can be applied to increase reward sparsity, or
CRG paths with relatively small reward differences may be
grouped, trading off a (bounded) reward loss for compact-
ness. Secondly, the CRG bounds directly lead to a bounded-
approximation scheme, usable in for instance the approxi-
mate multi-objective method of (Roijers et al. 2014). Lastly,
CRGs can be implemented in any (approximate) TI-MMDP
algorithm or, vice versa, any existing approximation scheme
for MMDP that preserves TI can be used within CoRe.

Although we focused on transition-independent MMDPs,
CRGs may be interesting for general MMDPs when transi-
tion dependencies are sparse. This would require including
dependent-state transitions in the CRGs similar to reward-
interaction paths and is considered to be future work.
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