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Abstract 

Microgrids based on renewable power generation are under increasing develop-

ment all over the world. Grid-connected inverters form an indispensable interface 

between the microgrids and power grid, to deliver the renewable energy into the grid 

by controlling the injected current. Inductor-capacitor-inductor (LCL) filters have 

been widely adopted to attenuate the high-frequency harmonics generated by the in-

verters. However resonance of the LCL filters significantly affects the system control 

performance in terms of stability, transient response, grid synchronization, and power 

quality. This thesis carries out comprehensive stability analyses and proposes novel 

current control methods for studying and improving the performance of LCL-filtered 

grid-connected inverters. 

Firstly, a systematic study is carried out on the relationship between the time de-

lay and stability of single-loop controlled grid-connected inverters that employ in-

verter current feedback (ICF) or grid current feedback (GCF). The ranges of time 

delay for system stability are analyzed and deduced in the continuous s-domain and 

discrete z-domain. It is found that in the optimal range to achieve the maximum 

bandwidth and ensure adequate stability margins, the existence of a time delay 

weakens the stability of the ICF loop, whereas a proper time delay is required to 

maintain the stability of the GCF loop. The present work explains, for the first time, 

why different conclusions on the stability of ICF loop and GCF loop have been 

drawn in previous studies. To improve system stability, a linear predictor based time 

delay reduction method is proposed for ICF, while a time delay addition method is 

used for GCF. A controller design method is then presented that guarantees adequate 

stability margins. The study of the delay-dependent stability is validated by simula-

tion and experiment. 

Secondly, three current control methods (the single-loop control based on ICF, 

that based on GCF, and a dual-loop control with capacitor current feedback (CCF) 
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active damping) are compared by investigating their LCL resonance damping mech-

anism. The virtual impedance introduced by each method is identified, which com-

prises frequency-dependent resistance (positive or negative) and reactance (inductive 

or capacitive). The reactance shifts the LCL resonance frequency while a positive 

resistance provides damping to the resonance and hence stabilizes the system. Using 

the virtual impedance, the system stability is analyzed. The stable range of sampling 

frequency for the above methods is deduced, as well as the gain boundaries of the 

controllers. The simple and intuitive stability analysis approach by means of virtual 

impedance can be extended to other single- or dual-loop control methods. The study 

facilitates the analysis and design of control loops for grid-connected inverters with 

LCL filters, and it has been verified by experiment. 

Thirdly, a pseudo-derivative-feedback (PDF) current control is, for the first time, 

applied to three-phase LCL-filtered grid-connected inverters, which significantly im-

proves the transient response of the system to a step change in the reference input 

through the elimination of overshoot and oscillation. A complex vector method is ap-

plied to the modeling of three-phase LCL-filtered inverters in a synchronous rotating 

frame (SRF) by taking cross-couplings into consideration. Two PDF controllers with 

different terms in an inner feedback path are developed for an ICF system and a GCF 

system, respectively. For the ICF system, a simple PDF controller with a proportional 

term is used. Compared with a proportional-integral (PI) controller, which can only 

reduce the transient overshoot by decreasing controller gains, the PDF controller is 

able to eliminate the transient overshoot and oscillation over a wide range of con-

troller parameters. For the GCF system, a PDF controller with a proportional term 

and a second-order derivative is developed. Active damping is achieved with only 

one feedback variable of the grid current, and simultaneously the system transient 

response is improved. Both theoretical analysis and experimental results verify the 

advantages of the PDF control over PI control methods. 
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Fourthly and finally, a direct grid current control method without phase-locked 

loop (PLL) is proposed to attenuate low-order current harmonics in three-phase 

LCL-filtered grid-connected inverters. In comparison with conventional indirect or 

direct controllers which need PLL and are difficult to achieve satisfactory harmonic 

attenuation performance, the proposed method is able to satisfactorily mitigate the 

harmonic distortion, and at the same time reduce control complexity and computa-

tion burden because PLL is avoided. It is found that the direct grid current control is 

necessary to effectively suppress the current harmonics caused by the distortion in 

grid voltage. Active damping is achieved with an inner ICF loop, which is found to 

be superior to the widely used CCF damping in improving system stability. A sys-

tematic controller design procedure is proposed to optimize the system performance. 

Experimental results confirm the improved harmonic attenuation ability of the pro-

posed method in comparison to that of conventional control methods. 
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Chapter 1  

 

Introduction 

1.1 Microgrids 

Conventional power system is facing the problems of depletion of fossil fuel re-

sources and environmental pollution, which has led to a rising deployment of re-

newable energy worldwide over the past decade. According to the Renewables 2015 

Global Status Report from the REN 21 (Renewable Energy Policy Network for the 

21st Century), installed renewable power capacity increased from approximately 800 

GW in 2004 to 1712 GW in 2014 [1]. By the end of 2014, renewables comprised an 

estimated 27.7% of the world’s power generating capacity [1]. The growth in capac-

ity and generation will continue to expand in the future [2]. Renewable energy (in-

cluding hydropower) provided about 22.8% of the global final energy consumption 

in 2014, and the percentage is expected to reach 31% by 2035 [2, 3]. 

The development in renewables brings in a new trend of generating power local-

ly at distribution voltage level using renewable energy (wind power, solar photovol-

taic, geothermal power, biomass energy, ocean energy, etc.) and their integration into 

the utility distribution network [4]. This type of power generation is termed distrib-

uted generation (DG), which is devised to distinguish this concept of generation from 

centralized conventional generation [4]. 

Microgrids are local low-voltage electric power networks with the conglomerate 

of parallel distributed power generation systems (DPGSs) and a cluster of loads [4, 

5]. The maximum capacity of per microgrid, according to IEEE recommendations, is 

normally restricted to 10 MVA [4, 5]. Microgrids give rise to significant technical 
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and economic advantages in terms of environmental and market issues, power quality, 

reliability, and flexibility [4]. 

Nevertheless, the development of microgrids based on renewable energy sources 

suffers from many challenges. For example, the intermittent nature (fluctuating wind 

speed, weather dependent illumination intensity, etc.) of the renewable energy source 

significantly challenges the power extraction. In addition, the steadily increased pen-

etration and power ratings of renewable power generation play an important role in 

the operation and management of the power system, which has to be taken into ac-

count during its integration into the main grid.  

As a consequence, microgrids have to be able to meet very high technical stand-

ards, such as voltage and frequency control, active and reactive power control, har-

monics minimization etc. [4, 6]. From an operation point of view, the power sources 

are generally equipped with power electronic interfaces (PEIs) and proper controls to 

maintain specified power quality and power rating, in order to provide the necessary 

flexibility, security, and reliability for the operation of microgrids, and thus to ensure 

customer satisfaction [7, 8]. The PEIs are also essential to process the electricity 

generated from the renewable resources that may not be in the form needed by the 

public grid. 

 
Figure 1.1: Structure of a simplified microgrid with two DPGSs. 
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A simplified microgrid with two power electronics interfaced DPGSs is illustrat-

ed in Figure 1.1. Each DPGS consists of an energy source, an energy storage system, 

and a PEI. The main function of the energy storage system is to balance the power 

and energy demand with generation [5, 9, 10]. The microgird is connected to the 

power grid through a circuit breaker at the point of common coupling (PCC). Mi-

crogrids are normally operated in a grid-connected mode, in which the microgrid 

imports from or exports power to the grid. On the other hand, especially in the case 

of disturbance in the grid, the microgrid can switch over to a stand-alone mode, in 

which it should at least feed power to critical loads which require a reliable power 

supply and good power quality [4]. 

1.2 DPGS Structure and Control 

A general DPGS is illustrated in Figure 1.2 [11]. The input power is transformed 

into electricity through a power conversion unit which consists of an input-side con-

verter and a grid-side converter [12]. Depending on the nature of input power (wind, 

solar, etc.), numerous hardware configurations for DPGS can be implemented [7, 8, 

10, 13]. For solar energy, the input-side converter usually comprises a DC-DC con-

verter. For wind power, a full-scale pulse-width-modulation (PWM) converter is 

nowadays becoming more and more attractive [14]. The grid-side converter is a 

power electronic inverter that transforms DC power into AC electricity. The generat-

ed electricity is delivered to the utility network and/or local loads. 

 
Figure 1.2: General structure of a DPGS with main control features. 
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The control of input- and grid-side power converters is an important part of the 

DPGS. The main task of the input-side controller is to extract maximum power from 

the source and transmit the information of available power to the grid-side controller 

[15, 16]. Naturally, the protection of input-sider converter should also be considered 

[12]. For wind turbine systems, the input-side controller has different tasks depend-

ing on the generator type used [7, 10, 11, 13]. The grid-side controller basically has 

the following tasks: power quality control, power flow including active and reactive 

power control, grid synchronization, and DC link voltage control [7]. Additionally, 

ancillary services like local voltage and frequency regulation might be requested by 

the operator [7, 12]. 

As introduced previously, power electronic inverters can work in grid-connected 

and stand-alone modes. Traditionally, in the grid-connected mode the inverters be-

have as a current source, since the grid voltage is generally not affected by the in-

verter operation [12]. In this case the injected current should be controlled, to deliver 

a scheduled amount of active and reactive power. By contrast, in the stand-alone 

mode, the inverters act as a voltage source which should maintain a stable voltage 

and frequency by performing active and reactive power control [17]. 

In the present work, two-level PWM voltage source inverters (VSIs) are used for 

interacting with the power grid, because at present this is the state-of-art topology 

employed by all manufacturers [7, 8, 12]. This structure of inverter allows the use of 

high switching frequencies and proper control strategies that provide flexibility in 

system design and control, making these converters suitable for the DPGS. Yet, more 

complicated three-level neutral-point-clamped VSI and multilevel converters are un-

der development and can be used for high-power systems to avoid high voltage pow-

er devices [14, 18, 19]. The proposed methods and conclusions in this thesis are also 

applicable to the latter converter topologies. 
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1.3 Challenges in the Control of Grid-Connected Invert-

ers 

The work in this thesis focuses on the current control of grid-connected inverters 

in microgrids. Similar to a common control system, the current control of the inverter 

system should concern issues such as system stability and dynamic performance. 

Particularly, the main objective of the grid-tied converter is the interaction with the 

grid. Therefore other tasks including power quality control and grid synchronization 

should be achieved. In the following subsections, the main challenges in the current 

control of grid-connected inverters are introduced in details. 

1.3.1 System Stability 

Stability is the most important issue of a control system. A system should main-

tain stable operation with adequate stability margins before other requirements are 

fulfilled. For a linear time invariant analog system, the requirement for stability is 

that all poles of the closed-loop transfer function must be in the left half-plane (LHP) 

[20]. Hence stability analysis is to determine if there is any pole either on the imagi-

nary axis or in the right half-plane (RHP). Stability analysis can be carried out in dif-

ferent approaches. Classical methods include Routh’s stability criterion, root-locus 

analysis, frequency-response based Nyquist stability criterion, etc. [20-22]. 

With the increasing performance and decreasing price of digital signal processors 

(DSPs), nowadays there has been an increasing use of digital controllers for power 

converters. Compared with analog controllers, digital controllers have a number of 

advantages such as high flexibility and complexity in control algorithms, immunity 

to switching noises, lower sensitivity to variation of control parameters, and reduc-

tion of hardware components [23]. 

Ideally, signals are expected to be transmitted immediately in a control system. 

However, digital control introduces unavoidable time delay which will significantly 

affect the stability. The time delay consists of the time for analog-to-digital conver-
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sion (ADC), computation, PWM, and signal transport [23]. The knowledge of digi-

tally controlled power inverters is still developing. A few publications have focused 

on the study of the stability of grid-connected inverters. However, there are still con-

fusions in conclusions and findings relevant to the stability analysis [23-34]. There-

fore, a thorough theoretical study is needed to investigate the relationship between 

time delay and stability of digitally controlled grid-connected inverters. 

1.3.2 Transient Performance 

When the delivered power into the power grid needs to be adjusted, there is usu-

ally a step change in the reference current, which results in a transient response in the 

system. Requirements regarding the transient response are becoming more and more 

restrictive [22, 35-37]. Specifically, characteristics such as rise time, settling time, 

overshoot and oscillation damping are all required to be satisfactory [20]. For exam-

ple, overshoot is often limited by the converter current rating, and the situation is 

more stringent in high power applications [33]. Un-damped oscillations would dete-

riorate the power quality and create objectionable flicker [38]. 

Conventionally, proportional-integral (PI) and proportional-resonant (PR) con-

trollers are employed for grid-connected inverters, and they needs to be carefully 

tuned in order to achieve reasonable dynamic performance [33, 35-37, 39]. However, 

it is difficult to obtain satisfactory system performance in all aspects. For example, 

when the rise time and resonance damping meet requirements, overshoot would oc-

cur [33]. A common method to reduce overshoot is to decrease controller gains, 

which however leads to degraded bandwidth and disturbance rejection capability [25, 

36, 40]. Several other current control techniques, including hysteresis, deadbeat, and 

nonlinear controllers, have been reported to achieve an improved transient response 

[35, 41-48]. Nonetheless, these methods are more complicated than the conventional 

PI and PR controllers. 

In view of the limitations of existing controllers in optimizing the transient re-

sponse, it is of great interest to study and propose a simple yet effective control 
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method for grid-connected inverters to achieve satisfactory transient performance 

with fast response but without overshoot or oscillation. 

1.3.3 Grid Synchronization 

The delivered current from the inverter into the power grid has to be synchro-

nized with the grid voltage [12]. For the purpose of grid synchronization, the phase 

angle used for the grid-connected inverters to generate the reference current should 

be a clean signal and be synchronized with the grid voltage. Grid synchronization 

algorithms play an important role for the inverter to accurately detect the phase sig-

nal of the positive sequence component of the grid voltage [12, 49].  

A comparison of the main techniques used for detecting the phase angle on dif-

ferent grid conditions can be found in [50]. Among the different strategies including 

zero crossing methods and filter algorithms, phase-locked loop (PLL) is most widely 

used [12, 50]. For balanced three-phase grid voltage, a synchronous reference frame 

(SRF) PLL is able to achieve satisfactory performance [51]. On the other hand, under 

non-ideal grid conditions, for example with unbalanced grid faults and/or harmonic 

distortions, improvements to the SRF-PLL are necessary [52-54]. 

It is apparent that the use of PLL increases the complexity and computation bur-

den in the control algorithm, especially for sophisticated PLLs. PLL will also affect 

the output admittance and even trigger low-frequency instability [55, 56]. Therefore 

simple and satisfactory grid synchronization method without the use of a PLL, which 

is able to reduce the control complexity and alleviate the computation burden, is at-

tractive in view that the resource of DSP is limited. 

1.3.4 Power Quality 

One of the demands for a grid-connected inverter system is the quality of the 

power injected to the grid. More and more attention has been paid on the control of 

power quality as a result of the increased use of power electronic equipment (nonlin-

ear loads) which is a significant source of current harmonics. The harmonics can 
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cause harmonic distortion to the grid voltage and result in extra losses or even in 

disturbances with other customers. Therefore it is necessary to suppress harmonics 

and to prevent power quality degradation. According to the standards in this field, the 

limit for the total harmonic distortion (THD) of the delivered current is set to 5% [12, 

38, 49]. A detailed limitation of the harmonic distortion with regard to each harmonic 

component is summarized in Table 1.1. 

Table 1.1: Distortion limits for grid-connected inverters 

Odd harmonics Distortion limit 

3rd – 9th < 4.0% 
11th – 15th < 2.0% 
17th – 21st < 1.5% 
23rd – 33rd < 0.6% 

 

In order to comply with these requirements, different control and harmonics 

compensation methods can be employed, especially for low-order harmonics that 

normally have a high content in the power system. Different current controllers im-

plemented in different reference frames provide the system with different harmonic 

attenuation capability [26, 57-60]. 

High-order harmonics, mainly caused by PWM switching, are small in magni-

tude and can be mitigated by a low-pass filter that is connected as an interface be-

tween the inverter and power grid. An inductor (L-filter) is conventionally adopted. It 

however requires a large inductance and high switching frequency in order to satis-

factorily attenuate the PWM harmonics [22, 45, 61]. To address the problem, induc-

tor-capacitor-inductor (LCL) filters have been widely applied, which have better at-

tenuating ability and require lower inductance inductors leading to cost-effective so-

lutions [23, 62-65]. The LCL filter is thus employed in the work of the thesis and will 

be introduced in more details in Section 2.2. 

Despite the above advantages, additional resonance effects are brought in by the 

third-order LCL filters, which create a pair of open-loop poles located on the 
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closed-loop stability boundary and thus cause stability problems [66-69]. The LCL 

resonance will also degrade system dynamics leading to undesired overshoot and os-

cillation [33, 40, 42, 45]. Furthermore, because of the high-order of the filter, com-

plexity and difficulty are dramatically increased in the modeling of the system as 

well as in the control of grid synchronization and power quality [25, 26, 55, 56, 70]. 

1.4 Objectives, Overview, and Achievements of the Thesis 

1.4.1 Objectives 

The objective of the thesis is to address the aforementioned issues in the current 

control of grid-connected inverters with LCL filters, by performing comprehensive 

system stability analyses and proposing novel current control methods. Specific ob-

jectives are summarized below. 

The first is to systematically study the relationship between time delay and sta-

bility of single-loop controlled grid-connected inverters, in order to clarify the confu-

sions among different conclusions and findings in existing work relevant to stability 

and to provide a unified explanation. 

The second is to study the LCL resonance damping mechanism of different con-

trol methods, and to propose a simple and intuitive approach to analyze system sta-

bility and predict controller gain boundaries. 

The third is to apply a pseudo-derivative-feedback (PDF) method, as an advan-

tageous strategy over the PI control, to improve the transient response of three-phase 

LCL-filtered grid-connected inverters to a step change in the reference input via 

eliminating overshoot and oscillation. 

The last objective is to propose a simple and effective current control method for 

power quality improvement and grid synchronization without the use of PLL, with 

the aim to effectively attenuate low-order current harmonics and significantly reduce 

control complexity and computation burden. 
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1.4.2 Thesis Overview 

This thesis contains seven chapters. In addition to Chapter 1 on the background 

and introduction of the work, the other chapters are organized as follows: 

In Chapter 2, a number of fundamental aspects that are involved in the control of 

grid-connected inverters are introduced in detail. First of all the resonance problem 

of an LCL filter is presented. Then the principle of a basic PLL is introduced, as well 

as signal transformations among three different reference frames: natural frame, sta-

tionary frame, and synchronous rotating frame (SRF). In addition, different control 

schemes in these frames are introduced. This is followed by a description of different 

PWM strategies. Furthermore, a single-loop control system is provided to exemplify 

the modeling of digitally controlled grid-connected inverters. Finally, the design and 

development of the experimental system that is used to carry out real-time experi-

ments are described. 

Chapter 3 carries out a thorough theoretical study on the relationship between 

time delay and stability of single-loop controlled grid-connected inverters with LCL 

filters. Stable ranges of the time delay are derived in the continuous s-domain as well 

as in the discrete z-domain. Following this, time delay compensation methods are 

proposed for improving the stability of the single-loop systems. This is followed by a 

simple PI tuning method, without simplification, to ensure adequate stability margins. 

In the end, simulated and experimental results are provided to validate and verify the 

delay-dependent stability study. 

Chapter 4 compares three current control methods by investigating their virtual 

impedances, which are used to study system stabilities. It is found that the virtual 

impedance achieves a potential damping to the LCL resonance. Based on this finding, 

the requirements on sampling frequency are identified by the analysis of damping 

characteristics. Furthermore, the gain boundaries of the controllers for different cases 

are deduced in an intuitive manner, which are then confirmed by root loci. Experi-

mental results validate the stability analysis by means of virtual impedance. 
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Chapter 5 applies the PDF current control method to improve the transient re-

sponse to a step change in the reference input through the elimination of overshoot 

and oscillation. This chapter begins with an introduction of a generalized PDF con-

trol system. Then a complex vector method is applied to the modeling of a 

three-phase LCL-filtered system in the SRF, with cross-couplings being taken into 

account. Two PDF controllers are then developed for an inverter current feedback 

(ICF) and a grid current feedback (GCF) system, respectively. Having designed the 

PDF controllers, experimental results are finally presented to verify their improved 

transient performance compared to conventional PI control methods. 

Chapter 6 proposes a novel current control method for three-phase 

grid-connected inverters, which generates the reference current directly from the grid 

voltage and effectively suppresses the low-order harmonic distortions. It is demon-

strated that the conventional current control methods are difficult to achieve satisfac-

tory harmonic attenuation performance because of an indirect control and/or PLL. 

The interaction between active damping methods and resonant harmonic (RESH) 

compensators is discussed. Then a systematic controller design method is proposed 

to optimize the control performance. The improved harmonic attenuation ability of 

the proposed method in comparison to that of conventional control methods is con-

firmed by experimental results. 

Finally, conclusions are summarized and possible future work is proposed in 

Chapter 7. 

1.4.3 Major Achievements 

A. Delay-dependent stability of single-loop controlled grid-connected inverters 

with LCL filters 

A systematical study is carried out on the relationship between time delay and 

stability of single-loop controlled grid-connected inverters that employ ICF or GCF. 

It is found that the time delay is a key factor that affects the system stability. The 
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study has, for the first time, explained why different conclusions on the stability of 

the single-loop control systems were drawn in different publications. 

• Stable ranges of the time delay are derived in the continuous s-domain and 

discrete z-domain. Optimal delay range is also identified. The procedure can 

be extended to analyze the influence of time delay on other control methods 

including active damping. 

• It is found that the existence of a time delay weakens the stability of the ICF 

loop, whereas a proper time delay is required for the GCF loop. 

• Time delay compensation methods are proposed to improve the stability and 

the allowed sampling frequency ranges of the single-loop control systems. 

• A simple PI tuning method without simplification is proposed, by which ade-

quate stability margins can be guaranteed. 

B. Damping investigation of LCL-filtered grid-connected inverters 

The damping mechanism of three different control methods to the LCL resonance 

has been investigated by identifying their closed-loop virtual impedances, in this way 

a simple and intuitive approach by means of the virtual impedance is proposed that is 

able to analyze system stability and predict controller gain boundaries. 

• The virtual impedances of three control methods including single- and du-

al-loop strategies are identified, and the stability of these methods are explic-

itly compared. 

• Requirements on the sampling frequency of single-loop controllers have been 

deduced, different cases of the dual-loop controller have been identified. 

• Controller gain boundaries are intuitively and easily derived by means of the 

virtual impedance. 
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C. Pseudo-derivative-feedback current control for three-phase grid-connected 

inverters with LCL filters 

The PDF current control is, for the first time, applied to three-phase LCL-filtered 

grid-connected inverters, which significantly improves the transient response of the 

system to a step change in the reference input through the elimination of overshoot 

and oscillation. Compared with the PI control, which can only reduce the transient 

overshoot by decreasing controller gains, the PDF control completely eliminates the 

overshoot and oscillation over a wide range of controller parameters. 

• Complex vector continuous and discrete models of the three-phase inverter in 

the SRF are derived, with cross-couplings being accurately taken into account. 

• A simple PDF controller with the structure similar to PI controller is designed 

for an ICF system. A complete comparison between the transient performance 

of the PDF and PI controllers is presented. 

• A PDF controller with an additional second-order derivative term is developed 

for a GCF loop. Active damping is achieved with only one feedback signal, 

and simultaneously the transient response is improved. 

• Controller tuning procedures are proposed to optimize system performance.  

D. Attenuation of low-order current harmonics in three-phase LCL-filtered 

grid-connected inverters 

A direct grid current control method is proposed that omits the use of PLL and 

effectively mitigates the low-order current harmonics in digitally controlled 

three-phase LCL filtered inverters. In comparison to conventional control methods, 

the proposed strategy obtains a much higher power quality and reduces the control 

complexity and computation burden. 

• It is found that the conventional current control methods are difficult to 

achieve a satisfactory harmonic attenuation performance because of an indi-

rect control and/or PLL. 
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• The interaction between active damping methods and RESH compensators is 

studied, and it is found an ICF damping is superior to a widely used capacitor 

current feedback (CCF) damping in improving system stability. 

• A controller design procedure is presented that guarantees adequate stability 

margins and ensures satisfactory power factor (PF) when the grid frequency 

varies. 
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Chapter 2  

 

Fundamental Aspects in the Control of 

Grid-Connected Inverters 

2.1 Introduction 

Grid-connected inverters form an indispensable interface between the DPGS and 

power grid. The inverter normally acts as a voltage controlled current source and its 

operation and control play a crucial role upon the quality of power injected to the 

grid [12]. The operation and control of grid-connected inverters involve a number of 

fundamental aspects. 

The first one is the LCL filter that is widely adopted to attenuate the 

high-frequency harmonics generated from PWM switching. The LCL filter has a 

wonderful harmonic suppression capability but introduces resonance problems that 

considerably challenge the control design [25, 40, 71, 72]. Damping strategies to the 

LCL resonance are usually used to improve control performances. 

The second is PLL that is commonly adopted to detect the accurate phase infor-

mation of the grid voltage, for the purpose of grid synchronization. A basic PLL sys-

tem is implemented in the SRF, known as SRF-PLL [51]. Signal transformations 

among three different reference frames are needed to design the PLL. The three 

frames are: natural frame, stationary frame, and SRF [11, 12, 73]. Different signal 

types are obtained by the transformations. 

The transformations enable the control of three-phase grid-connected inverters to 

be implemented in these three different reference frames. In the frames, different 
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circuit models are obtained, and different control schemes and compensators are em-

ployed.  

PWM strategies are necessary to generate pulses for driving switching transistors 

(IGBTs are used) in the inverters, in this way to transfer modulation signals produced 

by controllers into inverter voltage [74]. Different PWM methods are available, and 

the most used carrier-based bipolar sinusoidal PWM (SPWM) is adopted in the work. 

The analysis and design of a digitally controlled system can be performed in the 

discrete z-domain as well as in the continuous s-domain [21, 23]. In order to com-

plete the control design, models of the PWM and control system should be obtained. 

In this chapter, the above issues in the control of grid-connected inverters are in-

troduced in detail. This chapter is closed by an introduction of the design and devel-

opment of the experimental system that is used to carry out real-time experiments. 

Hardware components and functions are described, as well as the software environ-

ment. The system has a complete hardware and software protection design to prevent 

hazards from errors. All findings and conclusions in the work have been validated 

and verified by experimental results from the system.  

2.2 LCL Filter 

The PWM inverter with a typical switching frequency between 2–15 kHz pro-

duces high-order harmonics around the switching frequency that can disturb sensitive 

equipment and cause power losses. Conventionally, an inductance with high value is 

used to reduce the harmonics. However, it becomes rather expensive to realize high 

value inductor when applications are above several kilowatts. LCL filter is an attrac-

tive alternative to solve this problem, which allows the range of power levels up to 

hundreds of kilovoltamperes while using quite small values of inductors and capaci-

tors, thus leading to cost-effective solutions. 

The LCL-filtered grid-connected inverter is shown in Figure 2.1, where the in-

verter is supplied with a constant DC voltage Vdc. The inverter-side inductor Li and 
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its parasitic resistor Ri, grid-side inductor Lg and its parasitic resistor Rg, and capaci-

tor C are the components of the LCL filter (parameters used in the work are given in 

Table 2.2). vi is the inverter voltage generated by the inverter, vc is the voltage across 

the capacitor, and vg is the grid voltage; ii is the inverter current, ic is the capacitor 

current, and ig is the grid current that is injected into the grid. 
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Figure 2.1: LCL-filtered grid-connected inverter. 
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Figure 2.2: Bode diagram of the transfer function from vi to ig. 
 

The transfer function from vi to ig is given as (considering the grid as a short cir-

cuit): 

( )3 2

( ) 1
( )

( ) )( g i

g
i v

i g i g i g i g i g i gi CL L C R L L R CR R

i s
G s

v L Ls s s s R R
= =

+ + ++ + + +
.  (2.1) 

The Bode diagram of (2.1), when the small parasitic resistances are ignored, is 

shown in Figure 2.2, where ( ) / / 2res i g i gf L L L L C π= + is the LCL resonance fre-

quency. As can be seen, the third-order filter has a pair of poles at the resonance fre-

quency, at which a ripple in the magnitude and a –180° fall in the phase are generated 
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[30]. The resonance will cause stability problems which considerably challenge the 

control design for the system [25, 40, 71, 72]. The small parasitic resistances can 

slightly alleviate the resonance problem, but the damping is far from sufficiency and 

thus can be neglected [24, 30]. 

A step-by-step procedure to design an LCL filter has been proposed in [62], 

which aims to optimize the current ripple attenuation passing from ii to ig, the voltage 

drop across the inductors, and the decrease of power factor caused by the capacitor, 

etc. In particular, the resonance frequency fres should be in a range between ten times 

the grid frequency and one-half of the switching frequency, in order to avoid reso-

nance problems in the lower and upper parts of the harmonic spectrum [62]. Note 

that the switching frequency can be adjusted to fulfill this requirement when the res-

onance frequency is set. 

A direct way to damp the resonance is adding a passive resistor to be in series or 

parallel with the capacitor or inductors. This method, called passive damping, is easy 

to be implemented but will bring in power losses [68]. To avoid the power loss, ac-

tive damping methods are widely researched by designing proper controller schemes 

[75-78]. Active damping methods can be classified into two main classes: multiloop- 

and filter-based active damping. The filter-based damping is using a high order con-

troller to cancel the resonance poles, and it can be seen as a filter [25, 79, 80]. The 

drawback of this active damping method is its complex design algorithms. The mul-

tiloop-based active damping is realized by employing an inner damping loop with the 

feedback of variables such as the inverter current, capacitor voltage, and capacitor 

current [23, 58, 76, 81]. This type of active damping is the most popular method to 

improve the stability of LCL-filtered grid-connected inverters. Nonetheless, it re-

quires the feedback of more than one signal, which increases the number of sensors. 

Besides the methods incorporating active damping techniques, simple but effec-

tive single-loop control methods without additional damping have been proposed and 

researched for the LCL-filtered grid-connected inverters, employing inverter current 
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feedback (ICF) or grid current feedback (GCF) [23-34]. It has been proved that both 

the ICF and GCF loops can be made stable because of their inherent damping char-

acteristics [24, 28, 29]. 

Apart from being used as the grid-connected inverter in microgrids, the converter 

structure in Figure 2.1 can be used in other applications, e.g., active power filters and 

rectifiers in power systems [62, 82], AC drives for electric machines [36], and power 

converters in high-voltage DC (HVDC) transmission systems [83, 84], etc. Current 

control is also essential in these applications. Therefore the work in this thesis can 

also contribute to these applications. 

2.3 PLL and Frame Transformations 

The injected current from the grid-connected inverters should be synchronized 

with the grid voltage. For grid synchronization, PLLs are commonly adopted to de-

tect the accurate phase information of the grid voltage, and thus is an important part 

of the DPGS. 

TαβgVv
gUv

gWv

gv α

gv β

gdv

gqv

0

dqT 1

s θ̂
 

Figure 2.3: Structure of the SRF-PLL. 

 

A basic PLL system is implemented in the SRF, known as SRF-PLL [51]. The 

structure of the SRF-PLL is shown in Figure 2.3. The three-phase grid voltage in the 

natural abc frame is firstly transformed into the stationary αβ frame using the Clarke 

transformation (2.2) [53] (the inverse Clarke transformation is given in (2.3)). Then 

the αβ signals are transformed into the SRF using the Park transformation (2.4) with 

the detected phase signalθ̂ (the inverse Park transformation is given in (2.5)). 
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A balanced three-phase grid voltage is represented as (2.6), where Vm is the am-

plitude and θg = ωnt, with ωn being the fundamental grid frequency. The αβ and dq 

signals are then yielded as (2.7) and (2.8), respectively. As can be seen, the αβ signals 

are AC while the dq signals are DC if the detected phaseθ̂  is identical to θg [73].  
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The linearized model of Figure 2.3 is demonstrated in Figure 2.4, where the PI 

controller is employed [51, 52]: 
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Figure 2.4: Linearized control loop of SRF-PLL. 
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It is obvious that the system is type 2 which is able to track the ramp phase signal 

with zero steady-state error, i.e., ˆ
gθ θ= . Therefore the grid synchronization is 

achieved. 

When the grid voltage is unbalanced and/or with harmonic distortions, the phase 

signal detected by the SRF-PLL would be distorted. In this case, sophisticated PLLs 

such as a decoupled double SRF-PLL and double second-order generalized integrator 

(DSOGI) based PLL can achieve a satisfactory performance [52, 53]. 

2.4 Control Schemes for Grid-Connected Inverters 

As introduced above, different signal types are obtained by the frame transfor-

mations. As a result, for three-phase grid-connected inverters, the current control can 

be performed in the three reference frames [11, 12]. In this section, control schemes 

in these frames are introduced. 

2.4.1 Natural Frame Control 

The control scheme in the natural frame is shown in Figure 2.5. The idea of the 

scheme is to have an individual controller for each phase. The inverter current ii, grid 

current ig, and/or capacitor current ic are usually sensed as the feedback variables, to 

form a single- or dual-loop current control system. The current controller can be lin-

ear and nonlinear. Typical linear controllers include PI and PR controllers. Repre-

sentative nonlinear controllers include hysteresis and deadbeat controllers [35, 41, 

48]. mU, mV, and mW are modulation signals generated from the controller. The refer-
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ence current is produced from the reference *
dqi in the SRF, to deliver controllable ac-

tive/reactive power (see Section 2.4.3) [12, 85].  
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Figure 2.5: Control scheme in the natural frame. 
 

In the situation of an isolated neutral transformer being used as grid interface, 

only two of the three-phase grid current needs be independently measured, because 

according to the Kirchhoff’s current law the third one is the negative sum of the other 

two [12]. It means that only two controllers are necessary. 

The circuit and electrical variables are considered as balanced throughout the 

thesis. Differential equations of the circuit in the natural frame are given as: 
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2.4.2 Stationary Frame Control 
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Figure 2.6: Control scheme in the stationary frame. 

The control scheme is shown in Figure 2.6. The same as in the natural frame, the 

control variables in the stationary frame are sinusoidal, leading to difficulties in reg-

ulating the fundamental frequency and rejecting harmonic distortions. The PR regu-

lator, expressed as (2.11) where kp is the proportional gain and kr the resonant gain 

and ω0 the resonant frequency (fundamental or harmonics frequency), is able to 

achieve a zero steady-state error because of the infinite at the resonant frequency [37, 

86, 87]. Therefore the PR controller is usually employed in the stationary frame and 

natural frame [22, 26, 75, 86]. More details about the PR controller can be found in 

Chapter 6. 
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Differential equations of the circuit in the stationary frame are deduced as: 

i i i c

i i
i i i c

gc i

gc i

g g gc

g g
g g gc

i i v vd
L R

i i v vdt

iv id
C

iv idt

i i vvd
L R

i i vvdt

α α α α

β β β β

αα α

ββ β

α α αα

β β ββ

        
+ = −        

       
      = −     

     
        + = −             

            (2.12) 



25 
 

It can be seen that α- and β-axis variables are independently from each other. In addi-

tion, the structure and parameters of the two-axis system are identical to that of the 

original three-phase system (2.10) [73, 87]. Consequently, the design of current con-

trollers in this frame can be done exactly as on a single-phase inverter [73]. 

2.4.3 Synchronous Rotating Frame Control 

As introduced previously, three-phase sinusoidal variables can be transformed 

into two DC signals in the SRF that synchronously rotates with the frequency of the 

grid voltage [11, 12, 73, 88]. From the control point of view, the control in the SRF 

with DC signals is advantageous and is thus widely used [12, 35, 36].  
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Figure 2.7: Control scheme in the SRF. 

The control scheme in the SRF is shown in Figure 2.7. The instantaneous active 

(P) and reactive (Q) powers injected into the power grid are given as (2.13) [89, 90]. 

Normally, PI controllers are associated with this control structure [34, 35, 61]. 
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Differential equations of the circuit in the SRF are yielded as: 
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        (2.14) 

It can be observed from (2.14) that the Park transformation creates cross-couplings 

between d- and q-axis variables, i.e., the two variables are not independent from each 

other [35, 36, 91]. In comparison to an L-filter in which the coupling is only pro-

duced by the inductor, the LCL system has much more complicated couplings gener-

ated by both the LCL inductors and capacitor [44, 45, 92]. The couplings significant-

ly increase the difficulty in the modeling and decoupling of the system, especially 

when the time delay in the control loop is considered [42, 44, 45, 93, 94]. Further-

more, the couplings would cause stability problems when a low sampling to operat-

ing frequency ratio is used [35, 95-97]. More details regarding the couplings, model-

ing, and control of the LCL-filtered system in the SRF are presented in Chapter 5. 

2.5 PWM and Control Modeling 

2.5.1 PWM 

Different PWM methods, such as carrier-based PWM and space vector PWM, 

can be applied to generate pulses to drive the IGBTs [7, 73, 98]. In the thesis, the 

carrier-based bipolar SPWM is adopted, which is achieved by comparing three mod-

ulating waveforms (–1 ≤ mU, mV, mW ≤ 1) with a carrier waveform [7, 98]. The mod-

ulations are defined as naturally sampled and uniformly sampled PWM for analog 

and digital implementation, respectively [73]. 

As introduced previously, DSP based digital controllers are more and more used 

in switching converters instead of analog controllers. The modulation signals are 

generated from digital controllers. Different types of uniformly sampled PWMs can 
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be obtained depending on the shape of the carrier waveform (sawtooth or triangular) 

and on the relationship between the sampling frequency fs and switching frequency 

fsw (fs = fsw: single-update mode; fs = 2fsw: double-update mode) [74]. The most used 

single-update-mode triangular-carrier modulator can be further classified into two 

types: symmetric-on-time type if variables are sampled when the DSP PWM counter 

reaches the peak value, and symmetric-off-time type at the zero value [74]. 

The symmetric-on-time triangular PWM is shown in Figure 2.8(a). A discrete 

modulation signal m is firstly processed by a zero-order-hold (ZOH) which is given 

as: 
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Figure 2.8: Uniformly sampled symmetric-on-time PWM. (a) Modulation process. (b) 
Model.  
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Then the processed modulation signal is compared with the triangular-carrier 

waveform, resulting in a pulse pt with a duty-ratio of d (= 
m + 1

2
) and a pulse pb with a 

duty-ratio of (1– d). The former is used to drive the top IGBT in a leg while the latter 

to the bottom IGBT. The duty ratio, in turn, is transferred into the inverter voltage vi 

waveform, which is square and thus contains high-frequency harmonics [73].  

The model of the PWM can be derived by averaging the filter input voltage (vi) 

in a sampling period Ts [21, 23]. The average value of vi is calculated as 

( )1
1

2 2

1

2

2

dc dc
i s s

s

dc

dc

V V
v dT d T

T

V d

m
V

 = − −  

 = − 
 

=

              (2.16) 

It can be seen from (2.16) that the gain of the PWM, kPWM, is equal to Vdc / 2. As a 

result, the model of the PWM is illustrated in Figure 2.8(b). 

 

2.5.2 Control Modeling 

Taking a single-loop digitally controlled GCF system for example, according to 

previous discussions and analyses, the single-phase control block diagram is shown 

in Figure 2.9(a). ss Te λ− is the processing delay time for ADC, computation, and du-

ty-ratio update, and generally λ = 1 [23, 74, 99] (λ is assumed to be a random value in 

Chapter 3 in order to deduce stable ranges of time delay, while λ = 1 is adopted in 

other chapters to form a general case). Gc(z) is the digital controller. The classical PI 

(2.9) and PR controllers (2.11) can be digitalized using the Tustin’s method (or called 

bilinear transform), with the Laplace operator s being replaced by:  

2 1

1s

z
s

T z

−=
+

                        (2.17) 

Therefore, the discrete closed-loop transfer function of the system is yielded as 
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g i

s T
g PWM PWM i vG z Z e G s k G sλ−= .  

The equivalent continuous s-domain system can be obtained as Figure 2.9(b), 

with Gd(s) = e–sTd being the total time delay in the control loop that includes the pro-

cessing delay and an equivalent half sampling period delay of the ZOH (Td = (λ + 

0.5)Ts ) [23, 71]. 

More details regarding the time delay will be presented in Chapter 3. Using the 

method in this section, the modeling of systems with different feedback variables, 

single- or multi-loop controlled, will be further discussed in the following chapters 

that concern different control structures. 
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Figure 2.9: Block diagram of a single-loop controlled grid-connected inverter with 
GCF. (a) Discrete z-domain. (b) Continuous s-domain. 

 

The bode diagrams of a proportional gain kp, PI controller, and PR controller are 

shown in Figure 2.10. In frequencies sufficiently larger than ω0, the PR (2.11) gradu-

ally returns to the PI (2.9) when kr = ki [39]. At a frequency ωL = 10ki, the phases of 

the PI and PR are approximately equal to –5°, and simultaneously the magnitudes 

approximately equal kp [39]. Therefore, when ωL is set to be sufficiently smaller than 
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the crossover frequency of an open-loop system, the integral or resonant term has a 

negligible influence on the system stability. In this case, the PI or PR controller can 

be simplified as a proportional gain kp when studying the stability of the system [25, 

39]. 
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Figure 2.10: Bode diagrams of proportional, PI, and PR controllers. 

 

 

Figure 2.11: Experimental grid-connected inverter system. 
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Figure 2.12: Hardware block scheme. 

2.6 Experimental Setup 

In this section, the design and development of the experimental system which is 

used to carry out real-time experiments, as shown in Figure 2.11, are described. 

2.6.1 Hardware Design 

The hardware block scheme of this system is shown in Figure 2.12. It consists of 

a Semikron power-processing device, a main control printed circuit board (PCB 1) 

including Texas Instrument (TI) DSP TMS320F28335, voltage and current transduc-

ers (PCB 2), a three-phase LCL filter (PCB 3), a boost inductor and capacitor bank 

board (PCB 4), circuit breakers, DC power supplies, and an isolated three-phase 



32 
 

step-up transformer. The system has a complete hardware and software protection 

design. A short description of all major components follows. 

2.6.1.1 Semikron Power-Processing Device  

bL

bC

chR

dcV
linkC

 

Figure 2.13: Semikron power-processing device. 

 

The Semikron device, as shown in Figure 2.13, is an off-the-shelf pow-

er-processing device (the boost inductor and capacitor bank board PCB 4 including 

the charging resistor Rch will be introduced later in Section 2.6.1.5). It consists of a 

three-phase uncontrolled bridge rectifier (not used, a 200 V DC power supply is used 

for power source, see Section 2.6.1.8), a boost converter, and a three-phase IGBT 

inverter. The device is equipped with IGBT drivers for the booster and inverter. As 

the voltage and frequency of the Semistack input can vary, the boost converter is to 

be utilized to control DC current to follow the optimized current reference for maxi-

mum power point operation. Since an energy storage system is not to be included, 

the three-phase inverter is to be responsible for grid synchronization and power flow 

control by regulating DC link voltage [100]. 

Semistack specification: Maximum rated root-mean-square (RMS) current: 22 A, 

rated RMS voltage: 380 V, maximum rated DC voltage applied to the capacitor bank: 

750 V, maximum collector-emitter DC voltage: 1200 V, maximum switching fre-

quency: 15 kHz. 
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2.6.1.2 Main Control Board (PCB 1)  

As shown in Figure 2.12, the main control board (PCB 1) consists of DSP, digi-

tal-to-analog converter (DAC), hardware protection circuit including Altera pro-

grammable logic device (PLD), and digital I/O (PWM, DO, and DI) conditioning. 

TI DSP TMS320F28335 

The 32-bit floating-point DSP TMS320F28335 is fixed on the top of the main 

control board. The operating speed is 150 MHz (30 MHz input clock). The integrated 

peripherals of the TMS320F28335 device used in the experiments are: 16 input 

channels with 12-bit ADC, 6 enhanced PWM modules (ePWM), 16 digital general 

purposed I/O (GPIO) and 1 serial peripheral interface (SPI) module.  

The ADC module comprises a 12-bit ADC with a built-in sample-and-hold cir-

cuit and provides flexible interface to peripherals with a fast conversion rate of up to 

80 ns at 25 MHz ADC clock. The ADC module has 16 channels, configurable as two 

independent 8-channel modules. 

An ePWM module represents one complete PWM channel composed of two 

PWM outputs. ePWM modules are chained together via a clock synchronization 

scheme that allows them to operate as a single system when required. For 

three-phase inverters, six IGBTs can be controlled using three ePWM modules, one 

for each leg. Each leg must switch at the same frequency and the three legs must be 

synchronized. Dead time can be properly set in the ePWM module. Moreover, PWM 

switching has to be synchronized with ADC sampling. Each ePWM module has two 

ADC start of conversion signals (one for each sequencer). Any ePWM module can 

trigger a start of conversion for either sequencer. Which event triggers the start of 

conversion is configured in the Event-Trigger submodule. 

The GPIO multiplexing registers are used to select the operation of shared pins. 

These pins can be individually selected to operate as digital I/O, referred to as GPIO, 

or connected to one of up to three peripheral I/O signals. If selected for GPIO, regis-

ters are provided to configure the direction of the pin as either input or output. 
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DAC 

TLV5614 is a quadruple 12-bit voltage output DAC with a flexible 4-wire serial 

interface. The 4-wire serial interface allows interface to TI DSP serial port. The 

TLV5614 is programmed with a 16-bit serial word, which is comprised of a 4-bit 

DAC address and a 12-bit DAC value. The DAC communicates with TI DSP via 

SPI-A and it is used to display and record up to eight variables from DSP. 

Hardware protection circuit and Altera programmable logic 

The protection circuit consists of an Alter PLD MAX 3000A, error signals from 

the DSP and Semikron device (IGBT switching errors), and analog inputs (DC link 

voltage and current). The PLD is a high-performance, low-cost CMOS EEPROM 

based programmable logic built on a MAX architecture. The user-configurable MAX 

3000A architecture accommodates a variety of independent combinatorial and se-

quential logic functions. The device can be reprogrammed for quick and efficient it-

erations during design development and debugging cycles. 

Table 2.1: Protection functions of the experimental prototype 

Parameter Value 

Maximum AC inverter output current 7 A 

Maximum DC link voltage (Software) 600 V 

Maximum DC link voltage (Hardware) 750 V 

Maximum DC link current (Software) 10 A 

Maximum DC link current (Hardware) 10 A 

Error output signals from Semikron (U, V, W and boost converter) DI 

The protection functions are summarized in Table 2.1. In case that any of these 

inputs is activated or in case of DSP failure, the protection logic from the PLD will 

disable all PWM outputs, digital outputs, and circuit breakers using SN74ABT541B 

octal buffers integrated circuit on PCB 1. The particular error is then visualized by 

different LED diodes on PCB 1. All outputs are disabled until a reset signal is sent. 
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Digital I/O conditioning 

PWM, DI and DO signals are processed via opto-couplers with 3.3 V on the con-

troller side and 15 V on the device side. The 15 V CMOS signal are necessary to 

control PWM outputs and to process error input signals from the Semikron device. 

For DO’s purposes, four high current MOSFET’s transistors are used to control con-

tractors and relays (circuit breaker, Semistack fan etc.). Semikron PWM control sig-

nals, error outputs and supply voltages (± 15 V and GND) are processed from PCB 1 

via two ribbon cables. 

2.6.1.3 Transducer and I/O Conditioning Board (PCB 2)  

The transducer and I/O conditioning board (PCB 2) is employed like an interface 

between voltage and current measurements and the DSP. It consists of 8 current (HY 

10-P) and 8 voltage (LV 28-P) LEM transducers with instantaneous voltage or cur-

rent outputs respectively. Both transducer types have galvanic isolation between the 

primary circuit (high power) and the secondary circuit (electronic circuit). Signals 

from transducers are further processed via conditioning circuits. As the DSP uses 

3.3V voltage level signals, the transducers outputs are scaled and shifted using two 

operational amplifiers from approximately ± 3 V to 0 – 3 V. 

2.6.1.4 Three-Phase LCL Filter (PCB 3)  

The three-phase LCL filter, as introduced previously, is used to remove 

high-order frequency PWM harmonics generated by the inverter. The filter board is 

equipped with several terminals to allow current and voltage measurements. Param-

eters of the LCL filter, chosen using the method in [62], are given in Table 2.2. 

2.6.1.5 Boost Inductor and Capacitor Bank Board (PCB 4) 

The inductor for the boost converter and the capacitor bank between the rectifier 

and boost converter are not part of the Semikron device, they are added according to 

design requirements. The board is equipped with a circuit to allow safe charging of 

the DC link capacitor Clink (see Figure 2.13) via a parallel combination of three 

charging resistors. Once DC link capacitors are charged, the resistors can be by-
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passed using a relay. Parameters of the boost inductor Lb and capacitor bank Cb are 

given in Table 2.2, where Rb is boost inductor winding resistance and Rch is parallel 

combination of the charging resistors. 

Table 2.2: Parameters of the experimental setup 

Parameter Value Rating Parameter Value Rating 

Li 4.4 mH 4 A Ri 0.988 Ω  4 A 

Lg 2.2 mH 4 A Rg 0.494 Ω  4 A 

C 10 μF 305 V Cb  680 μF 800 V 

Lb 8.2 mH 7.2 A Rb 1.54 Ω 7.2 A 

Rch 73 Ω 15 W Vdc 450 V 750 V 

vi 110 VRMS 380 VRMS vg 230 VRMS - 

 

2.6.1.6 Circuit Breakers 

Circuit breakers are used to protect the devices from damage caused by short 

circuit. For this purpose they are equipped with over-current protections. Circuit 

breakers status (open/close) is part of the hardware protection. 

2.6.1.7 Step-up Transformer 

The three-phase (three single-phase isolating transformers) step-up transformer is 

used to transform 110 VRMS voltages generated by the inverter to 230 VRMS for utility 

grid connection. The step-up transformer is also used for safety reasons and to allow 

better accommodate low power local resistive load. Transformer specification: 

Three-phase Y–Y connection, primary voltage: 230 VRMS (line to neutral) 50/60 Hz, 

secondary voltage: 110 VRMS (line to neutral), power rating: 2250 VA. 

2.6.1.8 DC Power Supplies 

The experimental prototype is powered from DC bench power supplies. Table 2.3 

shows voltage levels and minimum currents necessary to provide supply for the pro-

totype. Two 100 V / 10 A power supplies are connected in series, which are then 

boosted to 450 V DC link voltage (Vdc) via the boost converter. 
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Because of the large capacitance of the DC link capacitor (1360 μF) and fast re-

sponse of the booster controller, in the work of the thesis, the DC link voltage 450 V 

that is boosted from the 200 V DC supply is assumed to be constant for the purpose 

of simplification in the analysis of the operation of the inverter. 

 Table 2.3: DC power supplies 

Voltage level [V] Minimum current [A] Equipment 

5 0.7 PCB 1 (TI DSP, Altera PLD) 

± 15 ± 0.5 
PCB 2 (Transducers and measure-
ments conditioning) 

15 1.1 
PCB 1 and Semikron devices (PWM 
and relay control) 

24 1.2 Circuit breakers and charging relay 

 

2.6.2 Software Environment 

2.6.2.1 TI DSP 

MATLAB software packages, including Simulink, SimPower, and Target Support 

Package TC2, are used to simulate and implement control strategies to the TI DSP. 

The Simulink, integrated with MATLAB, is an environment for simulation and mod-

el-based design for dynamic and embedded systems. It provides an interactive 

graphical environment and a set of block libraries that allow design, simulation, and 

implementation of a variety of time-varying systems. 

For TMS320F28335 programming, the Target Support Package TC2 is used. The 

package integrates MATLAB and Simulink with TI’s eXpressDSP tool Code Com-

poser Studio (CCS). Using the TC2 package a C-language real-time implementation 

of the Simulink model is generated and automatically compiled, and the generated 

code is downloaded to DSP board. Onboard DSP peripherals are directly supported. 

A Blackhawk USB2000 controller is used to communicate with TI DSP via a 14-pin 

header mounted on PCB 1.  
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CCS is the integrated development environment for TI DSPs. It includes a suite 

of tools used to develop and debug embedded applications. It includes compilers for 

each of TI’s device families, source code editor, project build environment, debugger, 

profiler, simulators, and many other features. 

For simulation purpose, the SimPower toolbox and PLECS have been used. The 

SimPower toolbox extends the Simulink software with tools for modeling and simu-

lating electrical circuits and power systems. PLECS is efficient simulation software 

for circuit and control design, and it can be embedded in the Matlab/Simulink. 

2.6.2.2 Altera PLD 

The Quartus II development software has been used to implement hardware pro-

tection features to the Altera PLD. The Quartus II software provides a complete en-

vironment for easy design entry to programmable logic, and ensures fast processing 

and straightforward device programming. The USB-Blaster cable is used to send 

configuration data from a host computer to a standard 10-pin header connected to the 

PLD. 
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Chapter 3  

 

Delay-Dependent Stability of Single-Loop Con-

trolled Grid-Connected Inverters with LCL Fil-

ters 

3.1 Introduction 

LCL filters have been widely adopted to mitigate switching harmonics generated 

by the grid-connected inverters. However the inherent resonance of LCL filters has 

the tendency to destabilize the inverter systems [34, 62, 78]. Different passive and 

active damping methods can be adopted to improve system stability [67, 68, 78]. The 

passive damping strategy increases the power loss. The active damping methods, 

multi-loop or filter based, are complex in the realization and design of the controller 

[68, 79, 101, 102]. 

Simple but effective single-loop current control methods without additional 

damping have been proposed and researched for the LCL-filtered grid-connected in-

verters, employing ICF or GCF [23-34]. It has been proved that both the ICF loop 

and GCF loop can be made stable because of their inherent damping characteristics 

[24, 28, 29].  

However, the stability of the ICF and GCF loops has not been fully studied so far, 

especially when the time delay is taken into account. The time delay roots from the 

time for ADC, computation, duty-ratio update, and PWM generation [23, 67, 99]. 
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Much work has been devoted to the choice of the feedback current and different 

conclusions on the stability of ICF loop and GCF loop have been drawn, leading to 

much confusion. Without considering any time delay, Tang et al. [24] found that the 

ICF loop is stable due to its inherent damping characteristics, while the GCF loop is 

unstable. Similar findings were demonstrated in [25] and [26] where the grid current 

is indirectly controlled by the inverter current. Active damping methods are needed if 

the grid current is to be controlled directly [58, 66]. Considering time delay, Zhang et 

al. [23] and Bierhoff et al. [69] found that the ICF is still more advantageous than the 

GCF. Again, damping methods are necessary if the grid current is to be controlled 

directly [75, 103]. In contrast, Dannehl et al. [34] found that GCF is superior to ICF 

based on stability evaluation using root loci. Similar conclusions were drawn in 

[27-29] which showed that the GCF loop can maintain stability without any addi-

tional damping method.  

A number of publications have been devoted to the identification of the factors 

that influence the stability of the single-loop control systems. Dannehl et al. [34, 104] 

indicated that the stability is closely related to the ratio of sampling frequency to the 

LCL resonance frequency, but the nature of this relationship is not known. Yin et al. 

[29] presented the damping characteristic of the time delay in the GCF loop, and 

Park et al. [30] found that the GCF loop can be stable if the resonance frequency is 

smaller than 1 / 6 of the sampling frequency. However only the GCF with a total de-

lay of 1.5Ts (Ts is the sampling period) is studied. Rui et al. [31] implied that the 

GCF loop is stable when the time delay is between 0.53Ts and 1.33Ts, but this range 

is only valid for the controller parameters used by the authors. Zou et al. [32] pro-

posed a method to obtain the stable ranges of time delay for ICF and GCF loops. 

However the method is not based on precise derivations, and the deduced stable 

ranges, which are different to the result in [31], are only for specified LCL and con-

troller parameters. 
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In this chapter, a thorough theoretical study is carried out on the relationship be-

tween the time delay and stability of single-loop controlled grid-connected inverters 

with LCL filters. It is found that the time delay is a key factor that affects the system 

stability. The main contributions of the present work are summarized below. 

Firstly, stable ranges of the time delay (the ranges of time delay within which the 

system can be made stable) are deduced in the continuous s-domain as well as in the 

discrete z-domain, applicable to any given LCL parameters. The present study ex-

plains why different conclusions on the stability of the single-loop control systems 

are drawn in previous studies, i.e., the time delay in these cases falls into different 

ranges. Furthermore, it can be deduced that the stable ranges of time delay for the 

loop with a CCF are the same as those of the ICF loop. Therefore the study can also 

facilitate the analysis of the active damping methods which employ an inner ICF or 

CCF loop.  

Secondly, to improve the stability of the single-loop control systems, time delay 

compensation methods are proposed. For ICF, a linear predictor (LP) based time de-

lay reduction is used [105, 106]. For GCF, a proper time delay is added. By employ-

ing the proposed time delay compensators, the allowed sampling frequency ranges 

can be increased while still maintaining system stability. 

Thirdly, a simple PI tuning method without simplification is proposed. To design 

the controller, the LCL filter is often simplified as an L filter [30, 33, 39]; this ap-

proach however is not accurate enough since the LCL resonance frequency signifi-

cantly impacts stability margins. By using the proposed design method, adequate 

stability margins can be guaranteed. 

Simulation and experimental results have been obtained to validate and verify the 

delay-dependent stability study. 
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3.2 Single-Loop Controlled Three-Phase Grid-Connected 

Inverters with LCL Filters 

3.2.1  System Description 

In order to represent the worst case in stability, the parasitic resistance associated 

with the inductors is neglected [24, 30]. The circuit diagram of the three-phase 

grid-connected inverter is shown in Figure 3.1. 

The inverter current ii or grid current ig can be sensed as the feedback variable to 

form a single-loop ICF system or GCF system, respectively. The transfer functions 

from the inverter voltage vi to ii and to ig are given as (3.1) and (3.2) respectively, 

where 1 /r gL Cω = and ( ) /res i g i gL L L L Cω = +  (ωres > ωr). 
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Figure 3.1: Three-phase grid-connected inverter with LCL filters. 

 

3.2.2  Time Delay in the Control Loop 

To acquire the average value of a current in a switching period and to avoid 

switching noises, the synchronous sampling method is commonly adopted. The cur-

rents are sampled at the beginning or the middle of a switching period [74].  
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Figure 3.2: Time delays in the digital control of a grid-connected inverter system. 
 

Taking the symmetric-on-time modulator as an example, the digital control pro-

cess is shown in Figure 3.2. A current is sampled when the PWM counter reaches the 

peak value, resulting in a sampled quantity i. Td1 represents the time for ADC. With a 

digital controller, the duty-ratio d (the shadow compare register value) is calculated, 

and Td2 is the time for computation. In a DSP, d is generally updated to the compare 

register (with a value of d*, equal to d) when the counter reaches zero and/or the pe-

riod value, leading to a duty-ratio update delay Td3. The total processing delay is ex-

pressed in terms of Ts as Td1 + Td2 + Td3 = λTs. Normally, λTs is not larger than one 

sampling period Ts, and its typical values in real operation are 0.5Ts and Ts [23, 74]. 

In addition to the processing delay, there is a delay Td4 due to the PWM, and equiva-

lently Td4 = 0.5Ts [105]. Therefore the total time delay in the control loop is Td = Td1 

+ Td2 + Td3 + Td4 = (λ + 0.5)Ts [99]. In the following analysis to deduce the stable 

ranges of time delay, λ is assumed to be a random value (Note that λ = 1 is adopted in 

other chapters to form a general case). 

3.3 Analysis of the Delay-Dependent Stability in Contin-

uous s-Domain 

The block diagrams of the single-loop controlled grid-connected inverters are 

shown in Figure 3.3. The total time delay is expressed as Gd(s) = e–sTd. Gc(s) is the 
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controller, and a PI is used: 

( ) (1 )i
c p

k
G s k

s
= + .                       (3.3)   

The loop gains of the ICF and GCF are ( ) ( ) ( ) ( )
i ii PWM c d i vT s k G s G s G s= and

( ) ( ) ( ) ( )
g ig PWM c d i vT s k G s G s G s= , respectively. The stability analysis can be carried out 

using the Nyquist stability criterion. In the open-loop Bode diagram, only the fre-

quency ranges with magnitudes above 0 dB are considered. For the phase plot in 

these ranges, a ± (2k + 1)π crossing in the direction of phase rising is defined as a 

positive crossing, while a crossing in the direction of phase falling is defined as a 

negative crossing. The numbers of the positive and negative crossings are denoted as 

N+ and N–, respectively [21]. According to the Nyquist stability criterion, the number 

of the open-loop unstable poles P must equal 2(N+ – N–) to ensure system stability, 

i.e., P = 2(N+ – N–). As can be seen from (3.1) – (3.3), P = 0, hence N+ – N– = 0 is re-

quired for both of the ICF and GCF systems. 
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Figure 3.3: s-domain block diagrams of the single-loop controlled grid-connected 
inverters. (a) ICF. (b) GCF. 

3.3.1 Inverter Current Feedback 

The magnitude (in decibels) and phase of Ti(s) with Gc(s) = kp (the integral term 

kpki / s can be designed to have a negligible influence on system stability [25]) are 

given in (3.4) and (3.5), respectively. 
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Figure 3.4: Bode diagrams of the ICF loop gain with different time delays. 
 

The Bode diagrams of Ti(s) with several different time delays are shown in Fig-

ure 3.4. The magnitude at fr (= ωr / 2π) is definitely below 0 dB although there is a 

+180° jump in the phase, hence N+ = 0. N– = 0 is thus required for system stability. 

Using a sufficiently small kp, the magnitude of Ti(s) can be set below 0 dB to avoid 
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negative crossing, except at the resonance frequency fres (= ωres / 2π) where the mag-

nitude is positive infinite and there is a fall of 180° in the phase. Therefore, assuming 

kp is adjustable, the system can be made stable only if the phase at fres does not cross 

over ± (2k + 1)π. Otherwise there will be a negative crossing at fres whatever kp is, i.e., 

N– ≠ 0 and thus the system is unstable. Without any time delay, the phase at fres falls 

from 90° to –90° and no negative crossing is generated, so the system is stable, in 

agreement with the findings in [24].With a finite time delay, the phase lag increases. 

To avoid any ± (2k + 1)π crossing at fres, it can be derived from (3.5) that the time 

delay should fall into one of the following ranges: 
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3.3.2 Grid Current Feedback 

The magnitude (in decibels) and phase of Tg(s) with Gc(s) = kp are given as (3.7) 

and (3.8), respectively. 

2

2 2

2

2 2

2

2 2

20lg ( ) 20lg
( )

20lg[ ], ( )
( )

               , ( )

20lg[ ], ( )
( )

dj T r
g s j p PWM

i res

r
p PWM res

i res

res

r
p PWM res

i res

T s k k e
j L

k k
L

k k
L

ω
ω

ω
ω ω ω

ω ω ω
ω ω ω

ω ω
ω ω ω

ω ω ω

−
= =

− +


< −= +∞ =


 >
 −

          (3.7)     

2

2 2
( )

( )

π
, ( )

2                  
3π

, ( )
2

dj T r
g s j p PWM

i res

d res

d res

T s k k e
j L

T

T

ω
ω

ω
ω ω ω

ω ω ω

ω ω ω

−
=∠ = ∠

− +

− − <= 
− − >


             (3.8) 



47 
 

0

M
ag

ni
tu

de
 (

dB
)

-540

-180

0

P
ha

se
 (

de
g)

 

 

Frequency  (Hz)

T
d=0

T
d=π /4ωres

T
d=π /ωres
T
d=2π /ωres

resf

 

Figure 3.5: Bode diagrams of the GCF loop gain with different time delays. 

 

The Bode diagrams of Tg(s) with different time delays are shown in Figure 3.5. 

Similar to the ICF loop, the GCF loop can be made stable if there is no negative 

crossing at fres, i.e., the phase at fres does not cross over ± (2k + 1)π. Without any time 

delay, the phase at fres falls from –90° to –270° and a negative crossing exists, the 

system is thus unstable. To avoid any potential negative crossing at fres, it can be de-

duced from (3.8) that the time delay should be in the following ranges: 

(4 1)π (4 3)π
, ( 0,1, 2,...)

2 2d
res res

k k
T k

ω ω
+ +< < = .              (3.9)  

The result indicates that a proper time delay is required for the stability of GCF loop. 

3.4 Analysis of the Delay-Dependent Stability in Discrete 

z-Domain 

In this section, the delay-dependent stability of the single-loop controlled 

grid-connected inverters with LCL filters is studied in the discrete z-domain. The 

proportional gain kp is assumed to be adjustable. Then the stable ranges of the time 

delay for ICF and GCF loops are deduced, based on the requirement that when the 

time delay is in the stable ranges all discrete closed-loop poles should be inside the 

unit circle when an infinitely small kp is used. On the contrary, if the time delay is 
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outside the stable ranges, there will be unstable closed-loop poles outside the unit 

circle whatever kp is. 

3.4.1 Discrete Models 

To obtain the discrete models, the processing delay and PWM are analyzed sepa-

rately. The processing delay is expressed as e–sλTs. The PWM is usually modeled as  

ZOH [107], that is 
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G s
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A more precise PWM model has been proposed in [23] and [74] and is given as 
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respectively. It can be seen that the time delays of these two PWM models are iden-

tical (0.5Ts), and their magnitude gains are almost the same because a small Ts is 

commonly used. Therefore the ZOH model (3.10) is adequate for the discrete analy-

sis [107]. 
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Figure 3.6: Block diagrams of the single-loop digitally controlled grid-connected in-
verters. (a) ICF. (b) GCF. 

 

The block diagrams of the single-loop digitally controlled grid-connected invert-

ers are shown in Figure 3.6, where Gc(z) is the discrete equivalent of Gc(s) [74]. To 

obtain the closed-loop discrete transfer functions of the two control systems, the dis-

crete transfer function from d(z) to ii(z) and to ig(z) should be obtained first. There-

fore z-transform is used to obtain the discrete transfer functions of the paths which 

contain the processing delay, PWM, and the plant transfer functions ( )
i ii vG s and

( )
g ii vG s followed by ideal samplers. For a plant transfer function G(s), the discrete 

transfer function is expressed as [23, 74] 

1

( ) { ( ) ( )}

1 ( )
       ,

s

s

s T
PWM PWM

smT
PWM

G z Z e G s k G s

z G s
k Z e

z s

λ−

+

=
−  =  

 

                 (3.14) 

where ℓ is an integer, 0 ≤ m < 1, and λ =	ℓ– m. ( )
ssmTG s

Z e
s

 
 
 

 in (3.14) can be 

obtained using the following property [107]: 

1

( ) ( )
Res
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s

s

s

i

smTn
smT

sT
i s p

G s zG s e
Z e

s s z e= =

   =   −   
 ,             (3.15) 

where pi (i = 1, 2, …, n) are the poles of G(s) / s, and Res denotes the residue. 

Substituting ( )
i ii vG s and ( )

g ii vG s for G(s) in (3.14) and (3.15), discrete transfer 

functions from d(z) to ii(z) and to ig(z) are obtained as (3.16) and (3.17), respectively. 

2 2

( 1) sin sin(1 )1
( )

( ) ( 1) 2 cos 1
gPWM res s res s

i s
i g i res res s

Lk z z m T m Tmz m
G z T

L L z z L z z T

ω ω
ω ω

 − + −+ −= + + − − + 
   (3.16) 
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2 2

( 1) sin sin(1 )1 1
( )
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Therefore, the closed-loop transfer functions of the control loops with ICF and 

GCF are given as (3.18) and (3.19), respectively. 

*

( ) ( ) ( )
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( ) 1 ( ) ( )
g c g

icl
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i z G z G z
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*
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( ) 1 ( ) ( )
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G z

i z G z G z
= =

+
                 (3.19) 

A discrete closed-loop is stable if all closed-loop poles are inside the unit circle. 

From (3.16) and (3.17) it can be seen that the ICF and GCF have identical open-loop 

poles, and three are on the unit circle (z1 = 1, z2,3 = cos ωresTs ± j sin ωresTs). Thus, 

with Gc(z) = kp, for a possible stable operation, i.e. the time delay being in the stable 

ranges, all closed-loop poles should be inside the unit circle when an infinitely small 

kp is used. On the other hand, if the time delay is outside the stable ranges, there will 

be unstable closed-loop poles outside the unit circle whatever kp is.  

The w-transform z = (w + 1) / (w – 1) is used to map the area inside the unit circle 

in the z-plane into the LHP of the w-plane, such that the Routh’s stability criterion 

can be used [21]. The stable ranges of the time delay can be derived based on the re-

quirement that the roots of Di(w) = 1 + kpGi(w) = 0 and Dg(w) = 1 + kpGg(w) = 0 

should be in the LHP when an infinitely small kp is used. An exemplary derivation for 

the GCF with the case of 0 < λ ≤ 1, i.e., ℓ	= 1 and 0 ≤ m < 1, is provided in Appendix 

A. The stable ranges of GCF with other cases of λ can be derived using the same 

method, as well as those of the ICF. 

3.4.2 Inverter Current Feedback 

Using the method in Appendix A, the general requirement for the stability of the 

ICF loop can be obtained as 

sin[( 1 ) ] sin[( ) ]

sin[( 1) ] sin( ),
res s res s

res s res s

m T m T

T T

ω ω
λ ω λω

+ − > −
 + >
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which results in
1 π (4 1)π 1 (4 1)π

( )  ( 0) ,  ( )  
2 2 2 2 2s s

res res res

k k
T k Tλ λ

ω ω ω
− ++ < = < + <

( 1, 2,3...)k = , the same as (3.6) that was deduced in the s-domain. However for con-

trollability, fres should be smaller than half the sampling frequency (fs / 2, the Nyquist 

frequency), i.e., ωresTs < π [21, 108]. Considering this restriction, the stable ranges of 

the time delay are obtained as: 

1 π
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2 2
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
 − < + < + − < ≤ =

 − +< + < > =


    (3.21) 

It is interesting from (3.21) that for a given Ts, the system can be stabilized by 

modifying the value of λ, and vice versa. Moreover, there are many optional ranges 

for λ and Ts. Taking λ = 3 for example, the available values of k are 0 and 1; therefore 

the resultant condition is Ts ∈	(0, π / 7ωres) ∪	(3π / 7ωres, 5π / 7ωres). The root loci of the 

closed-loop system with Ts in different ranges are shown in Figure 3.7, which 

demonstrate that there are at least two unstable poles outside the unit circle if the 

condition is not met. 
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Figure 3.7: Root loci of the ICF loop when λ = 3 and with Ts in different ranges. (a) 
Ts ∈ (0, π / 7ωres). (b) Ts ∈ (π / 7ωres, 3π / 7ωres). (c) Ts ∈ (3π / 7ωres, 5π / 7ωres). (d) Ts ∈ 
(5π / 7ωres, π / ωres). 

 

3.4.3 Grid Current Feedback 

Using the method in Appendix A, the following stable condition can be obtained 

for the GCF loop: 

sin[( 1 ) ] sin[( ) ]

sin[( 1) ] sin( ),
res s res s

res s res s

m T m T

T T

ω ω
λ ω λω

+ − < −
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 
              (3.22) 

which results in (4 1)π 1 (4 3)π
( )  ( 0,1, 2,...)

2 2 2s
res res

k k
T kλ

ω ω
+ +< + < = , the same as (3.9) 

that was derived in the s-domain. Also considering the restriction ωresTs < π, the sta-

ble ranges of the time delay are yielded as: 
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     (3.23) 

Like ICF, the GCF loop can also be stabilized by adjusting the value of λ or Ts. 

For example, for the case of λ = 3, the available values of k are 0 and 1, thus the sta-

ble ranges of Ts are (π / 7ωres, 3π / 7ωres) ∪	 (5π / 7ωres, π / ωres). The root loci of the 

closed-loop system with Ts in different ranges are shown in Figure 3.8. As seen if Ts 
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is outside the stable ranges, there are at least two unstable poles whatever the propor-

tional gain kp is. 
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Figure 3.8: Root loci of the GCF loop when λ = 3 and with Ts in different ranges. (a) 
Ts ∈ (0, π / 7ωres). (b) Ts ∈ (π / 7ωres, 3π / 7ωres). (c) Ts ∈ (3π / 7ωres, 5π / 7ωres). (d) Ts ∈ 
(5π / 7ωres, π / ωres).   

 

It can be observed from (3.6) and (3.9), (3.21) and (3.23) that the stable ranges of 

the time delay for ICF and GCF are complementary. It means that with a given time 

delay, only one of the two single-loop controlled systems can be made stable if no 

time delay compensator is applied. 
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3.5 Optimal Range of Time Delay and Compensators 

In this section the optimal range of the time delay is discussed and identified, to 

achieve the maximum bandwidth and ensure adequate stability margins. It is found 

that in the optimal range, the existence of a time delay degrades the stability of the 

ICF loop, whereas a proper time delay is needed for the GCF loop. To improve sta-

bility, a LP based time delay reduction method is proposed for ICF, while a proper 

time delay can be added to GCF. 

3.5.1 Reasonable Time Delay Range 

The stable ranges (3.21) and (3.23) indicate that there are many available ranges 

for the time delay. However, for a large k, the phase lag due to the time delay is sig-

nificant. In this case, small controller gains have to be used to guarantee stability, 

leading to a low bandwidth. It is apparent that k = 0 is the case for achieving the 

highest bandwidth. The reasonable time delay ranges of ICF and GCF are thus given 

as (3.24) and (3.25), respectively. 

1 π
( ) , ( 0)

2 2s
res

Tλ λ
ω

+ < ≥                     (3.24) 

π 1 1 π
( ) ( ) , (0 1)

2 2 2

π 1 3π
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2 2 2

s
res res

s
res res

T
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λ λ λ
ω ω

λ λ
ω ω

 < + < + < ≤

 < + < >


           (3.25) 

From (3.24) it can be seen that an increase in time delay degrades the stability of 

the ICF loop. By contrast, (3.25) indicates that a proper time delay is required for the 

stability of the GCF loop. And furthermore, in the scale of 0 < λ ≤ 1, λ = 1 is the best 

option to get the largest available range for the sampling period Ts.   

For a given λ, requirements (3.24) and (3.25) can also be used to calculate the 

stable range of fs. Taking λ = 0.5 and λ = 1 for example, the stable ranges of fs are 

summarized in Table 3.1. Note that the requirement of GCF for λ = 1 is in agreement 

with the findings in [30]. 
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Table 3.1: Stable and optimal ranges of the sampling frequency 

method λ stable range optimal range 

ICF 
0.5 fs > 4fres  fs > 6fres 

1 fs > 6fres fs > 9fres 

GCF 
0.5 2fres < fs < 4fres 2fres < fs < 3fres 

1 2fres < fs < 6fres 9fres / 4 < fs < 9fres / 2 

3.5.2 Optimal Time Delay Range 

A system can be made stable when the time delay falls into the stable ranges. 

However, the possible stable operation is not enough, adequate stability margins in-

cluding phase margin (PM) and gain margin (GM) should also be guaranteed. 

For the ICF, when the time delay is within the stable range (3.24), the Bode dia-

gram of the loop gain is shown in Figure 3.9. There are three crossover frequencies: 

ωi1, ωi2, and ωi3 (ωi1 < ωr, ωr < ωi2 < ωres, ωi3 > ωres). It is apparent that the PM of iφ  

at ωi3 is the smallest one. For a predetermined PM of φ (φ < π / 2), to ensure a possi-

bility for iφ≥	φ, the phase lag of the time delay at ωres should be smaller than π / 2 – 

φ, that is  

1 π / 2
( )

2 s
res

T
ϕλ

ω
−+ < .                    (3.26) 
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Figure 3.9: Bode diagram of the ICF loop gain with time delay in the optimal range. 
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Figure 3.10: Bode diagram of the GCF loop gain with time delay in the optimal 
range. 

 

For the GCF, based on (3.25), the Bode diagram of the loop gain is shown in 

Figure 3.10. There are also three crossover frequencies: ωg1, ωg2, and ωg3. 1gφ can be 

modified to be larger than φ by adjusting kp. To make it possible for 2gφ ϕ≥ and 3gφ	≥	 φ, the following optimal range of the time delay can be yielded: 

π / 2 1 1 π
( ) ( ) , ( 1 )

2 2 π π

π / 2 1 3π / 2
( ) , ( 1 )

2 π

s
res res

s
res res

T
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ϕλ λ

ϕ

ϕ ϕ
ω ω

+ < + < + < ≤ −
 + − < + < > −


         (3.27)  

To sum up, in order to make it is possible for PM to be larger than φ, the time 

delay of the ICF and GCF must fall into the optimal range (3.26) and (3.27), respec-

tively. For a given λ, the optimal range of fs can also be deduced. Taking φ = π /6 (30°) 

for instance, the optimal range of fs for λ = 0.5 and λ = 1 are also summarized in Ta-

ble 3.1. 

3.5.3 Time Delay Compensators 

As stated previously, a time delay weakens the stability of the ICF loop. There-

fore, time delay reduction methods should be adopted if (3.26) is not met. Numerous 

compensators have been studied, such as the state observers [103] and shifting of 



57 
 

sampling instants [21, 107]. However, the state observers are sensitive to parameter 

variations, and the shifting of the sampling instants is limited by aliasing and switch-

ing noises [21]. A LP as described in [105] is adopted in the present work due to its 

effectiveness and ease of realization. Its discrete transfer function is given as 

1 13 1
( ) 1 ( )

2 2
d d

LP
s s

T T
G z z z

T T
λ λ− −= + − = + − + .           (3.28) 

The compensated block diagram is shown in Figure 3.11, where the LP is in the 

feedback loop [99]. Taking λ = 1 for example, Table 3.1 indicates that fs = 6fres is the 

critical sampling frequency. However, with the adoption of the LP, the PM is in-

creased significantly as shown in Figure 3.12, thus the stability is improved. 
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Figure 3.11: Block diagram of the ICF loop with a LP. 
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Figure 3.12: Bode diagrams of the loop gain of ICF when λ = 1 and fs = 6fres, with or 
without the LP. 
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Using the previous procedure, it can be deduced that the stable ranges of time 

delay for the loop with CCF, which is usually adopted as an inner active damping 

loop [104], are same as those of the ICF loop. This is why time delay reduction 

methods are employed to eliminate a potential non-minimum phase behavior of the 

inner loop, and thus to improve the overall system stability [21, 75]. Therefore, the 

present work can also facilitate the analysis of the active damping methods with an 

inner loop using CCF or ICF [78]. 

For the GCF, with a given fs > 2fres, if (3.27) is not fulfilled, λ should generally be 

increased properly. The available range of λ can be yielded as 

1 1 3 1
( ) ( )
4 2π 2 4 2π 2

s s

res res

f f

f f

ϕ ϕλ+ − < < − − .             (3.29) 
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Figure 3.13: Block diagram of the GCF loop with an addition of time delay. 
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Figure 3.14: Root loci of the GCF loop when fs = 6fres, with λ = 0.5 (solid lines) and λ 
= 2.5 (dotted lines). 

 

The corresponding compensated GCF is shown in Figure 3.13, where a delay z–n 

is added so that the processing time delay fulfills (3.29). In the real operation, λ is an 

integer multiple of 0.5 [23], this should be considered when using (3.29).  
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Taking λ = 0.5 and fs = 6fres for example, Table 3.1 and the root loci in Figure 3.14 

indicate this is an unstable case. According to (3.29), the optimal range for φ = 30° is 

1.5 < λ < 3.5. The root loci of the system with a compromised value λ = 2.5 (n = 2) 

are shown in Figure 3.14. It can be seen that the system can be stabilized by adding a 

proper time delay. 

3.5.4 Discussion on the Choice of the Feedback Current 

Confusions exist in conclusions and findings relevant to the stability of the sin-

gle-loop control systems from different previous work. The analysis in the present 

work is able to clarify the confusions and provide a unified explanation. 

Without considering any time delay, the ICF loop can be made stable while the 

GCF loop can never be stabilized without other measures. This is why the inverter 

current was chosen as the control variable in [24-26, 49]. The GCF has only been 

used with additional active damping methods [58, 78, 101, 102]. 

In previous studies, the total time delay is predominantly considered to be Td = 

1.5Ts (λ = 1). In this case, as indicated in Table 3.1, the ICF loop can be made stable 

when fs > 6fres, while the requirement for GCF is 2fres < fs < 6fres. In [23], fres = 1756.5 

Hz and fs = 20000 Hz gives fs / fres = 11.3863, then it found the ICF is superior to the 

GCF. Similar results were given in [69] (fres = 726.44 Hz and fs = 5000 Hz, fs / fres = 

6.8829) and [103] (fres = 1136.8 Hz and fs = 10000Hz, fs / fres = 8.7966), and it is 

shown that active damping is required if the grid current is to be controlled directly 

[75].  

In contrast, in [34], fres = 1224.1 Hz and fs ∈	 (3500 Hz, 7000 Hz) thus fs / fres ∈	
(2.8592, 5.7185), then it concluded that the GCF loop is stable whereas the ICF loop 

is unstable. Similar conclusions were drawn in [28] (fres = 2219.3 Hz and fs = 8000 

Hz, fs / fres = 3.6047) and [29] (fres ∈	(2905.8 Hz, 5058.3 Hz) and fs = 16000 Hz, fs / fres ∈	(3.1631, 5.5062)) which used the grid current as the feedback variable.  

From aforementioned analyses, the choice of the feedback current should be 

made based on the LCL parameters. For a low LCL resonance frequency, it is better 
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to choose the inverter current to obtain a large stable range of sampling frequency. 

For a high LCL resonance frequency, the grid current can be used to avoid a too high 

sampling frequency. In some cases, both of these two currents can be adopted with 

the proposed time delay compensators being applied. 

In a real circuit, the parasitic resistance of the inductors improves the stability of 

both single-loop control systems, which will lead to different stable time delay rang-

es. Taking the resistance into consideration, the magnitude at the resonance frequen-

cy fres (see Figures 3.4 and 3.5) is not infinite, and it will be smaller than 0 dB when a 

sufficiently small kp is used. Thus the negative crossing at fres can be avoided and the 

systems can be made stable irrespective of the time delay. However, the resistance 

does not make significant difference on system stability, because it is generally small 

(see Table 2.2). If the time delay is outside the stable ranges deduced in the previous 

sections, systems with the resistance would be unstable even when a small controller 

gain is used. Therefore the case without the resistance is actually the worst one. 

Finally, the robustness of the single-loop control systems against the grid induct-

ance variation is discussed. The addition of a grid inductance is equivalent to an in-

crease in Lg, hence leading to a lower ωres. For the ICF, it can be seen from (3.24) and 

(3.26) that the available time delay range is increased. The ICF is therefore robust to 

the grid inductance variation. For the GCF, (3.25) and (3.27) indicate that the de-

creased ωres shifts the available time delay range. The time delay in the system would 

not be covered by the shifted stable range. Therefore, the GCF is susceptible to the 

grid inductance variation. 

3.6 Design of the Controller 

Now that a single-loop control system can be stabilized if the time delay is in the 

stable ranges, and the optimal range makes it is possible for the PM to be larger than 

a predetermined value, the PI controller has to be designed to guarantee adequate 

stability margins. 
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The design of PI controller for an LCL-filtered inverter is usually implemented 

by simplifying the LCL as an L-filter [30, 33, 101]. However from previous analysis, 

the LCL resonance affects the stability margins significantly, this approximation is 

thus not accurate enough. In this section, a simple tuning procedure is proposed. 

3.6.1 Inverter Current Feedback 

Firstly, the proportional gain kp is discussed. There are three main values, kp1 to 

achieve a PM of φ, kp2 to ensure a GM of 3 dB [49], and the maximum value kpmax to 

ensure stability. 

For a predetermined PM of φ, according to (3.5) the crossover frequency ωi3 in 

Figure 3.9 can be yielded as 

3 3

π 1 π 2
π ( )

2 2 (2 1)i s i
s

T
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ϕϕ λ ω ω
λ

−= − − +  =
+

.           (3.30) 

kp1 is then set to achieve unity loop gain at ωi3: 
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3 3
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ω ω
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.                    (3.31)  

The frequency ωm at which the phase of the open-loop transfer function crosses 

over –180° is given as 

1 π
( )

2 2 2(2 1)
s

m s mT
ωλ ω ω
λ

+ =  =
+

,              (3.32) 

where ωs = 2πfs. kpmax is then set to achieve unity at ωm, derived as 
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[2(2 1) 8(2 1) ]
s i s res
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PWM s r

L
k

k

ω ω λ ω
λ ω λ ω
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kp2 to ensure a GM of 3 dB is therefore expressed as 

2 2 2

2 2 3 2

[ 4(2 1) ]2

2 [2(2 1) 8(2 1) ]
s i s res

p
PWM s r

L
k

k

ω ω λ ω
λ ω λ ω

− +=
+ − +

.          (3.34) 

As a result, kp is chosen to be the smaller one of kp1 and kp2. 

Finally the integral term ki can be tuned to make a small phase contribution at 

ωres / 2, given as [24, 39] 
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20
res

ik
ω= .                        (3.35) 

When a LP is applied to enhance the stability, the parameters should be modified. 

The magnitude and phase of the loop gain becomes |Ti(z)|=|kPWMGc(z)GLP(z)Gi(z)| 
and ∠Ti(z)=∠kPWMGc(z)GLP(z)Gi(z), respectively. The magnitude and phase of the 

LP are 
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Therefore following the same tuning procedure above, kp1 and kp2 can be calcu-

lated as 
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where ωi3 and ωm are modified to 

3
3

π 2 2 ( ) π 2 ( )
,

(2 1) (2 1)
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The integral term ki is still given by (3.35). 

3.6.2 Grid Current Feedback 

On the basis of (3.27), to achieve a PM of φ, the crossover frequencies ωg1, ωg2, 

and ωg3 are obtained from (3.8) as 
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The corresponding proportional gains are then derived from (3.7) as 
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The frequency ωm at which the phase of the open-loop transfer function crosses 

over –180° is the same as (3.32). The maximum value kpmax, and kp4 to give a GM of 

3 dB are then written as 

2 2 2

max 3 2

2 2 2

4 2 3

[4(2 1) ]
,

8 (2 1)
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               (3.41) 

Then kp is chosen to be the smallest value among kp1, kp2, kp3, and kp4.  

Finally, the integral term ki is tuned to have a small influence on the phase at ωg1: 

1 π 2

10 10(2 1)
g

i
s

k
T

ω
λ

ϕ−= =
+

.                  (3.42) 

 

Table 3.2: Parameters of the circuit 

Symbol Quantity Value 

Vdc DC input voltage amplitude 450 V 

Vg Single-phase grid voltage amplitude 155 V 

fn Fundamental frequency 50 Hz 

ωn Fundamental angular frequency 2π·50 rad/s 

Li Inverter side inductor 4.4 mH 

Lg Grid side inductor 2.2 mH 

C Capacitor of LCL filter 10 μF 

ωr Resonant angular frequency between Lg and C 6742 rad/s 

fr Resonant frequency between Lg and C 1073 Hz 

ωres LCL resonance angular frequency 8257.2 rad/s

fres LCL resonance frequency 1314.2 Hz 

 

3.7 Results 

Simulation and experiment were implemented to verify the delay-dependent sta-

bility of the single-loop controlled grid-connected inverters with LCL filters. Param-

eters of the circuit described in Section 2.6 are summarized in Table 3.2; note that the 

secondary voltage of the step-up transformer is looked as the grid voltage hencefor-
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ward. The control is implemented in the SRF. The transient response as the amplitude 

of the grid current stepping from 1 to 4 A is examined to evaluate the system stability. 

Therefore it is achieved by stepping the reference d-axis current from 1 to 4 A. For 

GCF, the reference q-axis current is set to 0. For ICF, as the grid current is indirectly 

controlled, the reference q-axis current is set to ωnCVg instead of 0 to achieve the 

unity PF [24]. 

3.7.1 Simulation Results 

Simulations in MATLAB/PLECS were used to verify the stable ranges of the 

time delay obtained previously. Taking fs = 6fres for example, ωresTs < π is fulfilled, 

therefore the stable ranges (3.6) and (3.21) of the ICF are identical, as well as the 

stable ranges (3.9) and (3.23) of the GCF. 

The reference d-axis current steps from 1 to 4 A at 0.02 s. For ICF, the transient 

responses when Td < π / 2ωres (k = 0), 3π / 2ωres < Td < 5π / 2ωres (k = 1), and 7π / 2ωres < 

Td < 9π / 2ωres (k = 2) are shown in Figure 3.15, the lags in the responses are due to 

the time delay in the forward-loop. It can be seen that when the time delay is within 

these ranges, the ICF loop can be made stable. The instabilities when Td is outside 

the stable ranges are also illustrated in Figure 3.15, where the range of Td changes at 

0.08 s. For k ≥ 3 in (3.6), although not shown here, the loop can also be made stable. 

However, as can be seen from Figure 3.15, for a larger k, a slower transient response 

is produced because of the lower bandwidth. 

For GCF, the stable transient responses when π / 2ωres < Td < 3π / 2ωres (k = 0), 5π / 

2ωres < Td < 7π / 2ωres (k = 1), and 9π / 2ωres < Td < 11π / 2ωres (k = 2) and the unstable 

responses when Td is outside the stable ranges are presented in Figure 3.16. For k ≥ 3 

in (3.9), the GCF loop can also be stabilized with well-designed controller parame-

ters. If the time delay is not within the stable ranges, the system can never be stabi-

lized with any controller gains. 

These simulated results verify the stable ranges of time delay derived in Section 

3.3 and 3.4. 
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Figure 3.15: Simulated transient responses of ICF when Td is in different ranges. (a) 
Td < π / 2ωres, π / 2ωres < Td < 3π / 2ωres. (b) 3π / 2ωres < Td < 5π / 2ωres, 5π / 2ωres < Td < 
7π / 2ωres (c) 7π / 2ωres < Td < 9π / 2ωres, 9π / 2ωres < Td < 11π / 2ωres. 
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Figure 3.16: Simulated transient responses of GCF when Td is in different ranges. (a) 
π / 2ωres < Td < 3π / 2ωres, 3π / 2ωres < Td < 5π / 2ωres. (b) 5π / 2ωres < Td < 7π / 2ωres, 7π 

/ 2ωres < Td < 9π / 2ωres. (c) 9π / 2ωres < Td < 11π / 2ωres, 11π / 2ωres < Td < 13π / 2ωres. 
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3.7.2 Experimental Results 

Because in the real operation the normal values of λ are 0.5 and 1, experiments 

are implemented to verify the stable range of fs in Table 3.1, and to validate the time 

delay compensators and PI design method. The uniformly sampled symmet-

ric-on-time triangle PWM is applied. Samplings are conducted when the PWM 

counter reaches the period value. λ = 0.5 is achieved by updating the duty ratio to the 

compare register when the counter reaches zero, while λ = 1 is realized by updating 

the compare register when the counter reaches the period value [23]. For the cases 

with time delay in the optimal range, controller parameters are designed using the 

method in Section 3.6. For other cases, compromised parameters are used to validate 

the stable ranges. 

3.7.2.1 Inverter Current Feedback 

Figure 3.17(a) shows the one-phase grid voltage and current. As can be seen the 

grid current can be synchronized with the grid voltage when it is controlled indirectly 

by the inverter current. 

For λ = 0.5, as shown in Table 3.1 fs = 4fres is the critical value, below which the 

system is unable to be stabilized. When fs = 6fres, the transient response is shown in 

Figure 3.17(b), which indicates the stable operation. When fs = 4fres, the system is 

marginally stable, as presented in Figure 3.17(c), where the steady-state oscillation 

appears. Although not shown here, when fs < 4fres the system is more likely to be un-

stable. When a LP is used when fs = 4fres, the transient response is shown in Figure 

3.17(d). It can be seen that the LP stabilizes the system, thus the stable range of the 

sampling frequency is increased. 

For λ = 1, fs > 6fres is required for stability. When fs = 6fres, the transient response 

is shown in Figure 3.17(e), the current ripples imply the weak stability. In compari-

son to the case of λ = 0.5, the increase in the time delay degrades the stability of the 

ICF system. However, with the adoption of the LP, the system is stabilized, as shown 
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in Figure 3.17(f). When fs = 10fres, the response in Figure 3.17(g) indicates a stable 

system.  

These experimental results verify the stable ranges of the sampling frequency 

deduced previously from the stable ranges of time delay. The stability improvement 

due to the LP has also been confirmed. 
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Figure 3.17: Experimental transient responses of ICF. (a) One-phase grid voltage and 
grid current of ICF with λ = 0.5, fs = 7fres. (b) Grid current with λ = 0.5, fs = 6fres. (c) λ 
= 0.5, fs = 4fres. (d) λ = 0.5, fs = 4fres, with LP. (e) λ = 1, fs = 6fres. (f) λ = 1, fs = 6fres, 
with LP. (g) λ = 1, fs = 10fres. 

 

3.7.2.2 Grid Current Feedback 

For λ = 0.5, 2fres < fs < 4fres is required for stability. When fs = 4fres, the transient 

response shown in Figure 3.18(a) indicates the critical stability. The system is unsta-

ble when fs > 4fres irrespective of the controller parameters. To improve the stability 

when a high sampling frequency is used, a proper time delay should be added. Tak-

ing fs = 6fres for example, by adding a delay of 2Ts, the system is stabilized, as shown 

in Figure 3.18(b). 

For λ = 1, 2fres < fs < 6fres is the stable range. When fs = 4fres the transient response 

in Figure 3.18(c) shows a stable operation. Compared with that of λ = 0.5, it is obvi-

ous that the time delay improves the stability and increases the stable range of the 

sampling frequency. The transient response when fs = 6fres is shown in Figure 3.18(d). 

In this case the system is obvious unstable, and circuit breaks are opened due to the 

overcurrent. To enhance the stability, a proper time delay should be added. Taking fs 

= 7fres for instance, an additional delay of 2Ts is used. The transient response is given 

in Figure 3.18(e), which shows the improvement on stability due to the time delay 

addition. 
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The above results validate the stable ranges of sampling frequency in Table 3.1 

which are deduced from the study of time delay requirements. It is also verified that 

the stability of the GCF system can be enhanced by using the delay addition method 

when a high sampling frequency is used. 
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Figure 3.18: Experimental transient responses of the grid current in GCF. (a) λ = 0.5, 
fs = 4fres. (b) λ = 0.5, fs = 6fres, a delay of 2Ts added. (c) λ = 1, fs = 4fres. (d) λ = 1, fs = 
6fres. (e) λ = 1, fs = 7fres, a delay of 2Ts added. 
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3.8 Conclusion 

A systematic study of the relationship between time delay and stability of sin-

gle-loop controlled grid-connected inverters with LCL filters has been carried out. 

The stable ranges of time delay for the ICF loop and GCF loop are obtained, in the 

continuous s-domain and also in the discrete z-domain. The optimal range of the time 

delay is also discussed. To improve system stability, a LP based time delay reduction 

method is proposed for the ICF, whereas a proper time delay is added to the GCF. 

The available sampling frequency ranges are therefore increased. Furthermore, a 

simple PI controller design method has been presented, by which adequate stability 

margins can be guaranteed. Simulation and experimental results have validated the 

study of the delay-dependent stability. This study has, for the first time, explained 

why different conclusions on the stability of the single-loop control systems were 

drawn in different studies. Moreover, the procedure can be extended to analyze the 

influence of time delay on the stability of LCL-filtered grid-connected inverters con-

trolled by other methods including active damping. 
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Chapter 4  

 

Damping Investigation of LCL-Filtered 

Grid-Connected Inverters 

4.1 Introduction 

In view of the inherent resonance of LCL filters which is harmful to the stability 

of grid-connected inverter systems, a function of resonance damping is essential for 

current control methods that are applied to the system [62, 104]. 

There are numerous current control strategies that can be used for LCL-filtered 

grid-connected inverters, which can be basically divided into single- and dual-loop 

methods [23, 30, 71, 76]. For single-loop control, as introduced in the previous 

chapter, the inverter current or grid current can be sensed as the feedback variable. 

For dual-loop control, an outer GCF loop plus an inner capacitor current proportional 

feedback active damping loop is usually applied [58, 75].  

For the single-loop control with ICF, Tang et al. [24] found that it provides an 

inherent damping to the LCL resonance. However the time delay is ignored, and the 

nature of the inherent damping is vague. And it is indicated that the single-loop sys-

tem with GCF is unstable [23, 24, 26]. On the contrary, the GCF has been adopted in 

[27-29, 34], and it is implied that the system can maintain stability. It is found in [34] 

that the stability is closely related to the ratio of the sampling frequency to resonance 

frequency, but the nature of this relationship is unknown. Yin et al. [29] presented the 

damping effect due to the time delay in the control loop, but the reason of the damp-

ing is also not clear. 
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To introduce a damping intentionally, the dual-loop control with CCF (capacitor 

current feedback) active damping is widely used [78, 101, 109]. It has been indicated 

that the inner CCF loop is equivalent to a virtual impedance that is connected in par-

allel with the capacitor, thus a damping is achieved [21, 55]. Nevertheless, only the 

inner loop has been analyzed, rather than the whole control system. As a result, the 

outer loop has to be considered separately, leading to a complex controller tuning 

procedure [101, 102]. 

These three control methods have been adopted in different articles. However, no 

comparison among them has been presented, for instance in which condition one can 

be used. The reason of their damping effect is not clear either. Furthermore, there is 

not a simple but accurate method to predict the gain boundary of the controllers. 

In Chapter 3, the stability of the single-loop control methods has proved to be 

delay-dependent by means of classical stability analysis methods, they are Nyquist 

stability criterion and root locus. The study finds that the single-loop control systems 

can be stable if the time delay falls into their stable ranges. Yet the inherent damping 

mechanism of the systems has not been revealed, and thus should be studied using a 

method that is different to the classical ones. 

In this chapter, these three control methods are compared, through investigating 

the damping due to their virtual impedances. It will be revealed that the single-loop 

control with ICF results in a virtual impedance connected in series with the inverter 

side inductor, while the other two methods introduce a virtual impedance connected 

in parallel with the capacitor. In all cases, the virtual reactance, inductive or capaci-

tive, shifts the resonance frequency, while a positive virtual resistance at the virtual 

resonance frequency provides the necessary damping to stabilize the system. 

Based on the analysis of the virtual impedance, it is found that the single-loop 

control systems can be stable if the sampling frequency falls into their respective sta-

ble range. The results agree with those obtained in the former chapter through metic-

ulous derivations [71]. On the other hand, it is found that the stability requirement for 
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the dual-loop control method varies when different sampling frequencies are used. 

The gain boundaries of the controllers are then deduced, and are verified by means of 

root locus. Finally, experimental results validate the stability analysis using the virtu-

al impedance. 

4.2 Control Strategies for LCL-Filtered Grid-Connected 

Inverters 

( )gi s( )iv s 1

isL
1

sC

1

gsL

( )ci s

( )cv s
 

Figure 4.1: Plant model of the LCL-filtered grid-connected inverter. 

 

The circuit diagram of the LCL-filtered grid-connected inverter was shown in 

Figure 3.1. The plant model is demonstrated in Figure 4.1. The grid voltage is not 

included because it is considered as the disturbance [61]. The inverter current ii, grid 

current ig, and/or capacitor current ic are usually sensed as the feedback variables, to 

form a single- or dual-loop current control system. The transfer functions from the 

inverter voltage vi to ii, ig, and ic are given in (3.1), (3.2), and (4.1), respectively. 

2 2

( )
( )

( ) ( )c i

c
i v

i i res

i s s
G s

v s L s ω
= =

+
                  (4.1)  

There are many alternative current control strategies for the LCL-filtered 

grid-connected inverter, mainly including single-loop controllers and dual-loop con-

trollers. For the single-loop control, ii or ig can be chosen as the feedback variable. 

For the dual-loop control, an outer GCF loop plus an inner active damping loop with 

CCF is usually adopted [58].  

The s-domain block diagrams of the single-loop control methods were given in 

Figure 3.3 (with λ = 1), while the dual-loop systems is shown in Figure 4.2(a). A 

compensator Gc(s) is used, generally a PI in the SRF or a PR in the stationary frames 
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[11]. kd is the proportional gain of the inner damping loop, and Gd(s) = e–1.5sTs is the 

time delay due to computation (Ts) and PWM generation (0.5Ts) [75]. Note that in 

this chapter, the general case with a total time delay of 1.5Ts is discussed, the other 

cases with different delays or even random values as presented in Chapter 3 can also 

be studied using the same method proposed in this chapter.  
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Figure 4.2: Block diagram of the dual-loop control loop with CCF active damping. (a) 
Continuous s-domain. (b) Discrete z-domain.  

The z-domain block diagrams of the single-loop control methods were given in 

Figure 3.6, and the corresponding closed-loop transfer functions were given in (3.18) 

and (3.19). The dual-loop system is shown in Figure 4.2(b). The discrete transfer 

function Gci(z) can be obtained using the digitization method in Section 3.4.1, i.e. 

applying the ZOH transform to (4.1) together with kPWM and the processing delay, as 

expressed in (4.2). The discrete closed-loop transfer function is then yielded as (4.3), 

where Gc(z) is the discrete equivalent of Gc(s), and Gg(z) was given in (3.17) with ℓ	= 1 and m = 0. 
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Although these controllers have been adopted in different publications, there is 

neither a general research to clarify in which condition these controllers can be used, 

nor a simple but accurate method to predict the gain boundary of the compensators. 

In the following sections, these issues are addressed using the virtual impedance in-

troduced by these control methods. 

4.3 Virtual Impedance and Stability Analysis of Sin-

gle-Loop Control Methods 

In this section, the virtual impedance of the single-loop control methods is ana-

lyzed. The system can be stable if the virtual resistance is positive at a virtual reso-

nance frequency [21, 75]. As a result, the stable range of sampling frequency for each 

controller is derived, as well as the gain boundaries, which are validated by means of 

root locus. 

Gc(s) is simplified as a proportional gain kp, because either the integral term in a 

PI or the resonant term in a PR can be designed to have a negligible influence on 

system stability [23, 39]. 

4.3.1 Single-Loop Control with ICF  

4.3.1.1 Virtual Impedance 

To illustrate the damping due to the virtual impedance introduced by the control 

strategy, the equivalent block diagram is drawn in Figure 4.3(a). It can be seen that a 

virtual impedance Zvi expressed in (4.4) is connected in series with Li. 

( ) ( )vi p PWM dZ s k k G s=                        (4.4) 

When the delay is ignored, i.e., Gd(s) = 1, (4.4) results in a resistance of kpkPWM, 

implying that the closed-loop is always stable because of the damping to the LCL 

resonance [24]. 
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On the other hand, in the frequency domain, (4.4) becomes (4.5) after incorpo-

rating the delay. 

sin1.5
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( ) ( )

p PWM s
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k k T
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−
= +
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       (4.5) 

It is apparent that the time delay leads to a resistor Rvi and an inductor Lvi, the value 

of both are frequency-dependent. The equivalent circuit is shown in Figure 4.3(b). 
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Figure 4.3: Single-loop control with ICF (a) Equivalent block diagram. (b) Equiva-
lent circuit. (c) Plots of Rvi (ω)and Lvi(ω). 

4.3.1.2 Stability Analysis 

The plots of Rvi(ω) and Lvi(ω) are shown in Figure 4.3(c). As can be seen, the 

frequency boundary for Rvi to be positive and negative is fs / 6. For stability, Rvi 

should be positive at the resonant frequency fres [72, 75]. Therefore the stability re-

quirement on fs is given as 

6s resf f> .                          (4.6) 

The result matches the frequency stable range derived in Chapter 3 for the case with 
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λ = 1 (see Table 3.1). 

However, the existence of Lvi causes the virtual resonance frequency '
resf to devi-

ate from fres. The frequency boundary for Lvi to be positive and negative is fs / 3. In 

the range below fs / 3, an increase of kp leads to larger negative inductance, thus a 

higher '
resf . To ensure stability, '

resf is required to be smaller than fs /6, such that the 

damping resistance Rvi at '
resf is positive [109]. The maximum of kp is therefore the 

value which yields '
resf = fs / 6 (i.e., a virtual resonance angular frequency ωv =

'2 resfπ

= ωs / 6, with ωs = 2πfs). According to ( ) / [( ) ]v i v g i v gL L L L L L Cω = + + + , kpmax is 

derived as: 

max
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2 2
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−
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              (4.7) 

For the circuit parameters in Table 3.2, using fs = 12 kHz (fs > 6fres), the root loci 

are shown in Figure 4.4. It can be seen that the natural resonance frequency is in-

creased when kp rises. From (4.7), kpmax = 0.1961, which is identical to the boundary 

in Figure 4.4, validating the previous analysis. 

Real Axis

Im
ag

in
ar

y 
A

xi
s

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0.9π/T

π/T

0.1π/T

0.2π/T

0.3π/T

0.4π/T0.5π/T0.6π/T

0.7π/T

0.8π/T

0.9π/T

π/T

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.1π/T

0.2π/T

0.3π/T

0.4π/T0.5π/T0.6π/T

0.7π/T

0.8π/T

0.1961pk =

 

Figure 4.4: Root loci of single-loop control with ICF. 
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4.3.2 Single-Loop Control with GCF  

4.3.2.1 Virtual Impedance 

The equivalent block diagram is shown in Figure 4.5(a), it is obvious that equiv-

alently a virtual impedance Zvg is connected in parallel with the capacitor: 

2

( )
( )

i g
vg

p PWM d

s L L
Z s

k k G s
=                      (4.8) 

Without considering the time delay, the frequency domain expression of (4.8) is 

written as 

2( ) i g
vg

p PWM

L L
Z j

k k
ω ω

−
= .                     (4.9) 

Obviously, a negative resistance is added in the circuit, indicating an ineffective 

damping without delay. 

Taking the time delay into account, (4.8) is denoted as 
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                 (b)                                (c) 

Figure 4.5: Single-loop control with GCF. (a) Equivalent block diagram. (b) Equiva-
lent circuit. (c) Plots of Rvg(ω) and Cvg(ω). 
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where 

2

3

sin1.5
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i g p PWM s
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It is revealed that a virtual resistor Rvg and capacitor Cvg are in parallel with the ca-

pacitor, as shown in Figure 4.5(b). Thanks to the time delay, Rvg is positive in a cer-

tain frequency range, which provides a potential damping. This is why it is indicated 

in [29] that the time delay in GCF loop generates an inherent damping. 

4.3.2.2 Stability Analysis 

The plots of Rvg(ω) and Cvg(ω) are shown in Figure 4.5(c). Rvg is positive above fs 

/ 6, fres is therefore required to be in this range. The basic stability requirement is 

given in (4.12), which also matches the result in Table 3.1. (fs > 2fres is necessary for 

controllability according to the Nyquist criterion [108].) 

2 6res s resf f f< <                        (4.12) 

In the frequency range above fs / 3, the negative Cvg leads to '
res resf f> , but it will 

not trigger instability because of the positive resistance in this range. By contrast, a 

positive Cvg is generated below fs / 3, which decreases '
resf . Furthermore, '

resf reduces 

with a larger kp. Hence, the gain boundary of kp is the value which renders '
resf = fs / 

6, given as 

max
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                (4.13) 

Using fs = 5 kHz (fs < 6fres), the root loci are shown in Figure 4.6. It can be seen 
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that the resonance frequency decreases when kp rises. Based on (4.13), kpmax = 0.0918, 

which coincides with the gain boundary in Figure 4.6. 
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Figure 4.6: Root loci of single-loop control with GCF. 

4.4 Analysis of Dual-Loop Control with CCF Active 

Damping 

4.4.1 Virtual Impedance 

The equivalent block diagram is shown in Figure 4.7(a). As can be seen, both the 

outer GCF and inner CCF produce a virtual impedance that is connected in parallel 

with the capacitor, denoted as Zvg and Zvc respectively:  

2

( ) , ( )
( ) ( )

i g i
vg vc

p PWM d d PWM d

s L L L
Z s Z s

k k G s k k CG s
= = .         (4.14) 

Therefore, a total virtual impedance ZvAD is obtained as 

2

2
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The frequency domain expression of (4.15) is given as 

1
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where RvAD(ω) and CvAD(ω) are written as 
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          (4.17) 

The equivalent circuit is shown in Figure 4.7(b), where the virtual resistor RvAD 

and capacitor CvAD are inserted. 
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Figure 4.7: Dual-loop control with CCF active damping (a) Equivalent block dia-
gram. (b) Equivalent circuit. (c) RvAD and CvAD of case I. (d) RvAD and CvAD of case II. 

4.4.2 Stability Analysis 

RvAD and CvAD in (4.17) are also frequency-dependent. However, unlike the sin-
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gle-loop controllers in which the damping resistance is only positive below fs / 6 or 

above fs / 6, RvAD can be positive in both ranges by tuning kp and kd. The element 

cos(1.5ωTs) in (4.17) is positive below fs / 6 while negative above fs / 6. Therefore, 

there are two cases for the requirement of the controller parameters: case I for fres < fs 

/ 6, and case II for fres > fs / 6. 

4.4.2.1 Case I: fres < fs / 6 

The same as the single-loop controllers, the basic requirement for system stabil-

ity is that RvAD is positive at fres. cos(1.5ωTs) in (4.17) at fres is positive, thus kp and kd 

should meet the following condition: 

2
p d g resk k L Cω< .                       (4.18) 

The curves of RvAD(ω) and CvAD(ω) are shown in Figure 4.7(c). In the frequency 

range between fres and fs / 3, CvAD is negative which increases the virtual resonance 

frequency '
resf . However, for a given kd, an increase in kp decreases '

resf . Since the 

critical frequency for RvAD changing from positive to negative is fs / 6, the requirement 

on the controller parameters falls into two situations: assuming kp = 0, '
resf < fs / 6 or 

'
resf > fs / 6 with the inner CCF only.  

The value of kd to obtain '
resf = fs / 6 is denoted as  

2
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                 (4.19) 

If kd < kdc, this is '
resf < fs / 6, increasing kp will reduce '

resf , until the maximum 

value determined by (4.18). If kd > kdc, this is '
resf > fs / 6 with the inner CCF only, it is 

necessary for kp to ensure '
resf < fs / 6, the minimum kp is therefore obtained as 
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To sum up, for the case I with fs > 6fres, the requirements on kp and kd are given as 

(4.21) or in another situation (4.22). 
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For the circuit parameters in Table 3.2, using fs = 12 kHz (fs > 6fres), kdc in (4.19) 

is 0.1396. When kd < kdc, kp is required to meet (4.21). Choosing kd = 0.07, kp < 0.105 

is obtained, which is identical to the maximum gain in the root loci shown in Figure 

4.8(a). When kd > kdc, (4.22) results in 0.1396 < kd < 0.2457. Choosing kd = 0.19, it is 

drawn from (4.22) that 0.175 < kp < 0.285. The root loci are illustrated in Figure 

4.8(b), from which the same gain boundaries can be observed. 
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Figure 4.8: Root loci of dual-loop control with CCF active damping. (a) Case I: fs = 
12 kHz > 6fres and kd < kdc. (b) Case I: fs = 12 kHz > 6fres and kd > kdc. (c) Case II: fs = 
5 kHz < 6fres. 
 

4.4.2.2 Case II: fres > fs / 6 

Likewise, the basic requirement is that the damping resistance RvAD is positive at 

fres. cos(1.5ωTs) in (4.17) at fres is negative, hence kp and kd should meet the following 

condition: 

2
p d g resk k L Cω> .                      (4.23) 

The curves of RvAD(ω) and CvAD(ω) are shown in Figure 4.7(d). There is a fre-

quency ( / / 2c p d g resf k k L C fπ= > ) determined by kp and kd that shifts RvAD from 

positive to negative, and below which CvAD is positive leading to a smaller '
resf . Fur-

thermore, an increase of kp results in a larger positive CvAD, causing '
resf to fall. 

Therefore the design of kp and kd should guarantee that '
resf > fs / 6. The maximum 

value of kp can be obtained using the same procedure that deduces (4.20), and then 

the following is yielded: 
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With fs = 5 kHz (fs < 6fres), from (4.24) we can get kd < 0.1024. Using kd = 0.05, 

0.075 < kp < 0.122 is gained from (4.24). The root loci when kp changes are shown in 

Figure 4.8(c), it can be seen that the range of kp is the same as that deduced using 

(4.24). The matched result validates the stability analysis using the virtual imped-

ance. 

4.5 Experimental Results 

The control is implemented in the SRF; hence the PI controller is applied. kp is 

chosen as half of the gain boundaries derived from Section 4.3 and 4.4. 

For the single-loop control with ICF, fs > 6fres is required for stability. As the grid 

current is indirectly controlled, the reference q-axis current is set to ωnCVg instead of 

0 to achieve the unity PF [24]. Using fs = 12 kHz, the steady-state one-phase grid 

voltage and current (4 A) are shown in Figure 4.9(a), which shows that the grid cur-

rent is in phase with the grid voltage. The transient response with ig stepping from 1 

to 4 A is shown in Figure 4.9(b), which indicates the stability as well as good transi-

ent performance. 

gv

gi

: [50V / div]

:[2A / div]

g

g

v

i

Time :[5ms / div]  

: [2A / div]gi

Time :[5ms / div]  

                (a)                                (b) 

Figure 4.9: Experimental results of single-loop control with ICF. (a) Steady-state 
one-phase vg and ig. (b) Transient response.  
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Figure 4.10: Experimental transient response of single-loop control with GCF.  
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Figure 4.11: Experimental transient responses of dual-loop control with CCF active 
damping. (a) Case I: fs = 12 kHz > 6fres and kd < kdc. (b) Case I: fs = 12 kHz > 6fres and 
kd > kdc. (c) Case II: fs = 5 kHz < 6fres. 

 

For the single-loop control with GCF, fs < 6fres is required and fs = 5 kHz is used. 

The reference q-axis current is set to 0 because ig is controlled directly. The stable 

transient response when ig changes from 1 to 4 A is shown in Figure 4.10. 
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Finally, the dual-loop control with CCF active damping is tested. For fs = 12 kHz, 

when kd = 0.07, the transient response is demonstrated in Figure 4.11(a). When kd = 

0.19, the experimental result is given in Figure 4.11(b). For fs = 5 kHz, the transient 

response with ig stepping from 1 to 4 A is shown in Figure 4.11(c). All the stable re-

sults verify the damping investigation using the virtual impedance in this chapter. 

4.6 Conclusion 

This chapter has studied the virtual impedance of three different control methods 

for LCL-filtered grid-connected inverters. It has been shown that the virtual imped-

ance achieves a potential damping to the LCL resonance. Based on the fact that a 

positive virtual resistance at the virtual resonance frequency is required for system 

stability, the requirement on the sampling frequency has been obtained for the sin-

gle-loop control methods, and different cases of the dual-loop control method have 

been discussed. Furthermore, the gain boundaries of these controllers have been de-

duced in an intuitive manner, which facilitates the design of the control loop. The 

stability analysis using the virtual impedance has been verified by experiments. The 

stable frequency range of the single-loop control methods matches the results that 

were derived in Chapter 3 using classical methods including Nyquist stability crite-

rion and root locus. In comparison to these methods, the virtual impedance approach 

is more general and intuitive, which can be extended to the cases with a different 

time delay and to other control methods. 
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Chapter 5  

 

Pseudo-Derivative-Feedback Current Control 

for Three-Phase Grid-Connected Inverters with 

LCL Filters 

5.1 Introduction 

The operation and control of grid-connected inverters play a crucial role upon the 

quality of power injected from the DPGSs into the power grid [12]. Requirements for 

steady-state and transient response are becoming more and more restrictive [11, 33, 

38]. Specifically, in the case of current reference changes, transient response charac-

teristics such as rise time, settling time, overshoot and oscillation damping are all 

required to be satisfactory. For example, the overshoot is often limited by the con-

verter current rating, and it is more stringent to limit the overshoot in high power ap-

plications [33]. Un-damped oscillations would deteriorate the power quality and cre-

ate objectionable flicker [38]. 

LCL filters tend to cause stability problems due to the resonance, and the stability 

of different current control methods have been studied in previous two chapters. 

Apart from the stability problems, the LCL resonance will degrade the transient re-

sponse, particularly leading to oscillations and overshoots. 

Numerous control strategies can be applied to control the current of 

grid-connected inverters [34, 80]. Traditionally, a PI controller is employed in the 

SRF [33, 37, 110], and a PR or damped PR controller in the stationary frame [26, 78, 
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86]. Most of previous publications concerned system stability [71, 72, 80], the ro-

bustness against grid impedance variations [25, 75], and/or harmonic rejection [26, 

59, 75]. The transient response in these studies contains overshoot and oscillation 

and has not been considered at the design stage, while only examined at simulation 

or experiment stages. Several other current control techniques, including hysteresis, 

deadbeat, and nonlinear controllers etc., have been reported to achieve an improved 

transient response [35, 41-48, 111]. Nonetheless, these methods are more complicat-

ed than the conventional PI and PR controllers. 

The PI controller in the SRF is widely used because the control variables become 

DC signals, which is advantageous from the control point of view, although the 

transformation creates cross-couplings between d- and q-axis currents, i.e., the two 

currents are not independent from each other [61, 95, 112]. A number of methods 

have been proposed with an attempt to improve the transient performance of PI con-

trolled LCL-filtered grid-connected inverters. Different tuning methods such as tech-

nical optimum, symmetric optimum (SO), and optimized design (OP) have been re-

ported but cannot eliminate the transient overshoot and oscillation [33, 34, 36]. A 

common method to reduce the overshoot is decreasing controller gains, which how-

ever leads to degraded bandwidth and disturbance rejection capability [25]. A PI state 

space current control was presented in [33] to improve the rise time and resonance 

damping, but overshoot still occurs. In [22], controller parameters were optimized 

using discrete pole-zero plots to achieve a short settling time only. 

Another effective alternative strategy is to introduce an additional damping to the 

LCL resonance. Multi-loop based active damping methods have been researched 

widely to form a damping term [40, 72, 81, 104]. However, they require the feedback 

of more than one signal, which complicates the controller design. Furthermore, most 

of the controllers are designed for good performance in stability, disturbance rejec-

tion, or robustness against grid impedance variations, resulting in transient responses 

with overshoot and/or oscillation [21, 58, 78, 104]. To obtain an improved transient 
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performance, controller parameters should be redesigned, which would degrade other 

performances. A second-order derivative method implemented as a high-pass filter 

has been used in [63, 66, 113] to provide active damping for the grid current. How-

ever, there are also significant overshoots and oscillations in the transient response. 

In this chapter, the PDF control method [114-116] is applied, as an advantageous 

strategy over the PI control in the SRF, to improve the transient response of 

three-phase grid-connected inverters with LCL filters to a step change in the refer-

ence input via eliminating overshoot and oscillation.  

Firstly, a generalized PDF controller is introduced. And a complex vector method 

is fully applied to modeling the LCL-filtered system in the SRF, which simplifies the 

system from multiple-input multiple-output (MIMO) to single-input single-output 

(SISO) while takes the cross-couplings into account [117, 118]. 

Then a simple PDF controller with a proportional feedback is designed for an 

ICF system. A complete comparison between the performance of PDF and PI con-

trollers is presented. The main merit of the PDF controller is the removal of the addi-

tional zero of the closed-loop transfer function and the resultant impact of the transi-

ent response from the zero. Compared with the PI controller which can only reduce 

the overshoot by decreasing the controller gains, the PDF controller completely 

eliminates the overshoot and oscillation over a wide range of controller parameters. 

To directly control the grid current, a PDF controller with a proportional plus a 

second-order derivative feedback is developed for a GCF system. The practical im-

plementation of the PDF controller is discussed using the Nyquist stability criterion. 

The stable condition for the controller parameters is derived. Adequate stability mar-

gins are ensured by a controller design procedure. The analysis regarding the 

high-pass filter and system stability is more explicit than that in [63, 66, 113]. Com-

pared with common active damping methods which require more than one feedback 

signal, the PDF controller provides damping with the GCF only, and simultaneously 

improves the transient response.  
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Having designed the PDF controllers, experimental results are finally presented 

to verify their improved performance compared to conventional PI control methods. 

5.2 PDF Control and Complex Vector Modeling 

5.2.1 PDF Control 

A generalized PDF control system is shown in Figure 5.1(a). The generalized 

PDF controller comprises two parts: an integral term ki / s in the forward path, and 

the superposition of a proportional term kd1 and selective derivative terms kdns
n–1 (n > 

1) in the inner feedback path [114]. 
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                   (a)                             (b) 

Figure 5.1: Generalized PDF control system. (a) System block diagram. (b) Equiva-
lent block diagram. 

 

The equivalent block diagram is shown in Figure 5.1(b) where the second part of 

the PDF controller is moved to the feedback path which is used to be compared with 

the reference. It can be seen that the orders of the pseudo-derivative terms are in-

creased by 1, and the proportional term becomes a first-order pseudo-derivative term. 

This is why the method is called PDF control [114]. The highest order m of the 

pseudo-derivative terms is not larger than the order of the plant G(s) [114]. 

5.2.2 Three-Phase Grid-Connected Inverter with LCL Filters 

Several methods have been used to model three-phase grid-connected inverters 

with LCL filters in the SRF, but they all have limitations. In numerous studies, all 

cross-couplings from the LCL inductors and capacitor were ignored for the sake of 

simplicity, i.e., the plant model in the SRF is identical to that in the stationary frame 
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[24, 34, 58, 62, 110, 113]. This simplification is obviously not accurate because of 

the dynamic dependency between d- and q-axis currents, see Section 2.4.3. The other 

approximation is only dismissing the coupling caused by the capacitor, since the LCL 

filter is similar to an L-filter in low frequency ranges [33, 40, 59, 61, 119, 120]. It is 

not precise either because the capacitor introduces resonance problems and 

non-ignorable coupling in high frequency ranges. State-space modeling has been 

used as an improved method which takes all couplings into account [44, 45, 48, 121]. 

However, it results in a MIMO system, and the state transition matrix computation 

brings complex work, especially when time delays are accounted for [23]. 

Complex vector based complex transfer functions have been proved to be useful 

in the modeling of three-phase systems, because the MIMO system is simplified to a 

SISO system while the couplings are included [117, 118, 122, 123]. The complex 

vector has been widely used in the current regulation of three-phase systems with 

RL-type loads (ac machines [95-97, 112, 124]) or L-filters (grid-tied converters [61, 

125]). Several attempts have been made at applying the complex vector to 

LCL-filtered systems. In [41, 126, 127], the complex vector was used in state-space 

models. Again, the state-space form increases the complexity in derivations and 

computations. Complex transfer functions were concerned in [56, 92, 128, 129] for 

the analysis and design of power converters with LCL filters. However, complex 

vector models, especially discrete ones, have not been fully derived. 

In this section, a thorough study is carried out on the application of complex 

vector to the modeling of a three-phase LCL-filtered grid-connected inverter (see 

Figure 3.1) in the SRF, in the continuous s-domain as well as in the discrete 

z-domain. 

5.2.2.1 Stationary Frame Models 

In the stationary frame, the differential equations of the LCL filter were given as 

(2.12) (In this chapter, the minor parasitic series resistors Ri and Rg associated with 

the inductors are neglected in the modeling, control design, and simulations, in order 
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to represent a worst case in stability and transient response). Using complex vector 

notation fαβ = fα + jfβ, the complex vector state equation is expressed as 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

i i i c

c i g

g g c g

sL s s s

sC s s s

sL s s s

αβ αβ αβ

αβ αβ αβ

αβ αβ αβ
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i v v
v i i
i v v

                (5.1) 

As a result, transfer functions from viαβ to iiαβ and to igαβ are obtained as (5.2), and 

those from vgαβ to iiαβ and to igαβ are given as (5.3).  
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The s-domain model of the grid-connected inverter is shown in Figure 5.2(a). mαβ 

(–1 ≤ mα, mβ ≤ 1) is the modulation signal generated from controllers which will be 

discussed later. The total time delay is Gd(s) = e–s1.5Ts [63, 77]. 
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Figure 5.2: Stationary frame models. (a) Continuous s-domain. (b) Discrete 
z-domain. 
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The digital model is shown in Figure 5.2(b). The grid voltage is not presented 

because it is considered as disturbance [61]. The processing delay is described as   

e–sTs and GPWM(s) = (1 – e–sTs) / s. Using (3.14) – (3.17), the transfer function from 

mαβ(z) to iiαβ(z) and to igαβ(z) are derived as (5.4) and (5.5), respectively: 

2
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     (5.5) 

The real transfer functions reveal the independence between α- and β-axis currents. 

5.2.2.2 SRF Complex Vector Models 

The differential equations in the SRF were denoted in (2.14) (ignoring Ri and Rg). 

Using complex vectors fdq = fd + jfq, which gives fdq = fαβ
ˆje θ− ( 0

ˆ
ntθ ω θ= + , ωn is the 

fundamental angular frequency, θ0 is initial phase angle), the complex vector state 

equation is yielded as: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

n i idq idq cdq

n cdq idq gdq

n g gdq cdq gdq

s j L s s s

s j C s s s

s j L s s s

ω
ω
ω

 + = −


+ = −
 + = −

i v v
v i i
i v v

               (5.6) 

Complex transfer functions in the SRF, including the time delay ( )d s =G

( )1.5n ss j Te ω− + , can be obtained by replacing the Laplace operator, s, in the stationary 

frame with s + jωn [87, 117, 118, 123]. The frequency shift property can also be ob-

served by comparing (5.1) and (5.6). Thus, complex transfer functions from vidq to 

iidq and to igdq are yielded as (5.7), and those from vgdq to iidq and to igdq are written as 

(5.8). 
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The poles of (5.7) and (5.8) are s1= –jωn, s2,3 = j(± ωres – ωn), which are asym-

metric about the real axis [41, 117]. These transfer functions are denoted in boldface 

since they are complex. 

The s-domain SRF complex vector model of the grid-connected inverter is shown 

in Figure 5.3(a). The digital complex vector model is shown in Figure 5.3(b). The 

relationship between discrete complex transfer functions in the stationary frame and 

in the SRF is derived in Appendix B, i.e., G(z) = Gs(zejωnTs). Therefore, the z-domain 

complex vector models in the SRF can be obtained by substituting zejωnTs to z in (5.4) 

and (5.5), given as (5.9) and (5.10), respectively, where φ = ωnTs and θ = ωresTs. 
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Figure 5.3: SRF models. (a) Continuous s-domain. (b) Discrete z-domain. 
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The complex transfer function (5.10) can be expressed in different forms, derived 

and presented in Appendix C. Different expressions of (5.9) can also be yielded by 

the method. 

To control the grid current ig to deliver power to the grid, either the inverter cur-

rent ii or grid current ig can be used as the feedback signal [71]. The diagram of a 

generalized PDF controlled three-phase grid-connected inverter is shown in Figure 

5.4. Since the LCL-filtered inverter is a third-order plant, the highest order m of the 

pseudo-derivative term is set to 3. The grid voltage feed-forward is used to improve 

the harmonic attenuation ability (see more details in Section 6.3.2) [56, 130]. 

In the following sections, two PDF controllers with different terms in the inner 

feedback path will be developed for an ICF and a GCF system, respectively. 
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Figure 5.4: PDF controlled three-phase grid-connected inverter in the SRF. 

5.3 PDF for Inverter Current Feedback System 

The inverter current can be used as the feedback variable to indirectly control the 

grid current based on the following two reasons. Firstly, the inverter current is usual-

ly used to protect the power circuits in industrial applications [62]. Secondly, it can 

utilize the inherent damping characteristics of the LCL filter to neutralize its reso-

nance to enhance system stability [24]. As presented in Chapter 3 and 4, a sin-

gle-loop controlled ICF system can be made stable on condition that fs is larger than 

6fres (for the general case with a total time delay of 1.5Ts) [71, 72, 76]. Using fs = 
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15000 Hz, the ratio of fs to fres is 11.4, which meets the stability condition with ade-

quate margins (a ratio larger than 9 for a PM of 30°) [71]. 

In this section, a simple PDF controller with the inner feedback path employing 

only a proportional term is designed for the ICF system. In terms of structure, the 

difference between the PDF controller and PI controller rests with the change of the 

position for the proportional term. However, overshoot and oscillation in the transi-

ent response caused by reference changes, which are unavoidable for the PI control-

ler, can be easily eliminated by the PDF controller. 

5.3.1 Control Loops 

The s-domain block diagram of an ICF system controlled by the simple PDF 

controller is shown in Figure 5.5. The block diagram of a PI controlled ICF system is 

shown in Figure 5.6. It can be seen that the difference between the PDF controller 

and PI controller is the change of the position of kp. 
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Figure 5.5: Block diagram of the PDF controlled ICF system. 
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Figure 5.6: Block diagram of the PI controlled ICF system. 
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The closed-loop transfer function of the PDF control system is yielded as 
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while that of the PI control system is expressed as 
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As can be seen the PI system has one more closed-loop zero (s = – K = – ki / kp) than 

that of the PDF system. Yet their loop gains are identical provided that identical con-

troller parameters are used, thus the same stability characteristics. 

It can be derived from Figure 5.5 and 5.6 that the PDF and PI systems have an 

identical closed-loop transfer function from the grid voltage to grid current, given as 
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which implies that their disturbance rejection abilities for grid voltage harmonics are 

identical when identical controller parameters are used. 
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Figure 5.7: Block diagram of the PDF control system in the z-domain. 
 

The z-domain block diagram of the PDF controlled grid-connected inverter is 

shown in Figure 5.7. The integral term is discretized using the Tustin’s method [131]. 

Discrete closed-loop transfer functions of the PDF and PI systems are expressed as 
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respectively. As seen in the z-domain the difference between the PDF and PI systems 

is the modification of one closed-loop zero (z = –1 for PDF and (2kp – kiTs) / (2kp + 

kiTs) for PI). 
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Figure 5.8: Root loci of ICF system controlled by a proportional compensator, shown 
in the stationary frame. 

5.3.2 Transient Responses 

Same as the PI control system, the stability of the PDF system is mainly deter-

mined by the proportional gain kp [25], hence the stability boundary of kp is investi-

gated first. Moreover, the frequency shift between transfer functions in the stationary 

frame and SRF will not alter the stability, hence kp can be evaluated in the stationary 

frame in which the transfer function is real [117] (This is also why the stability study 

in previous two chapters conducted in the stationary frame can be verified in the 

SRF). Parameters of the circuit are given in Table 3.2. The root loci of an ICF loop in 

the stationary frame with a proportional compensator are shown in Figure 5.8, where 

the arrows indicate the changing directions of four poles (p1–p4) when kp increases. 

p1 and p2 are caused by the LCL resonance and are generally the dominant poles, p3 is 

due to the inductors and p4 due to the time delay [33]. The stable boundary of kp is 

0.263, which can also be calculated using (4.7). To guarantee a GM of 3 dB, kp 

should be set to a value smaller than 0.186. When kp = 0.134, the system would have 
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the fastest step response, since the dominant poles p1 and p2 are farthest away from 

the unit circle boundary. 

Because the grid current ig is indirectly controlled by the inverter current ii, 
*
qi  is 

set to ωnCVg instead of 0 to achieve the unity PF [24]. With a unit step change in *
di , 

the simulated step responses of the PDF system with kp = 0.134 and different values 

of K are shown in Figure 5.9(a), while those of the PI system are shown in Figure 

5.9(b). As can be seen, in the PI control systems obvious couplings exist, whereas the 

coupling in PDF systems is much milder and even negligible. Concerning the re-

sponse in the d-axis current, it is apparent that there are overshoots (60% – 100%) 

and oscillations in the PI system, and the overshoot increases when K rises. By con-

trast, much smoother responses are obtained by the PDF controller, in spite that mild 

overshoot also appears when a large K is used. Although the rise time of the PDF 

system is longer than that of the PI system, its settling time is relatively shorter than 

that of the latter when K is large ( K = 1400: tsPDF = 2.24 ms, tsPI = 2.51 ms; K = 2000: 

tsPDF = 1.83 ms, tsPI = 2.75 ms. A tolerance band of 1% is defined for the settling time 

[36]). The slower response of the PDF system with a small K will be discussed later 

in Section 5.3.3. It can be seen that kp = 0.134 and K = 1400 are suitable parameters 

for the PDF controller to give a satisfactory transient response, with a fast response 

and no overshoot or oscillation. 
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Figure 5.9: Step responses for kp = 0.134 with different values of K (ki / kp). (a) PDF 
control system. (b) PI control system. 
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There are many parameter optimization methods for the PI controller to optimize 

its performance, such as the SO [34] and OP [39]. Parameters of SO and OP are 

tuned to have the values 

1
,

3 9
i g
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PWM s s

L L
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= =                   (5.16) 

and  
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= = ,                (5.17) 

respectively, ωc in (5.17) is the crossover frequency that can be chosen as ωc = 

0.3ωres [24]. The step responses of the PI system with the optimized parameters, and 

those of the PI and PDF systems with kp = 0.134 and K = 1400 are shown in Figure 

5.10(a). It can be seen that the PI controller always gives overshoot and oscillation. 

Particularly the settling time of the PI system with OP is much longer than that of the 

PDF system. The advantage of the PDF controller over PI controller in the transient 

response is obvious. 

When the PI controller is tuned to give an identical rise time as the PDF control-

ler (0.96 ms, from 10% to 90%), the step responses are presented in Figure 5.10(b), 

which shows that the PI controller (kp = 0.035, K = 150) still produces overshoot and 

oscillation. Furthermore, the settling time of the PI system (18 ms) is about eight 

times that of the PDF system (2.24 ms). 
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Figure 5.10: Step responses of the PDF control system and PI system with different 
parameters. (a) By different design methods. (b) With same rise time. 
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In fact, there are unavoidable overshoots in the PI system, whereas the PDF con-

troller can achieve an over-damping transient easily. Overshoots of the PI and PDF 

system with varied kp and K values are shown in Figure 5.11(a) and (b), respectively. 

As seen, the overshoot generated by the PI controller ranges from 20% to 110%. To 

reduce the overshoot, smaller controller gains have to be used, resulting in a lower 

bandwidth and disturbance rejection ability [36, 40]. In contrast, no overshoot exists 

in the PDF system over a wide range of controller parameters. Although overshoot 

appears when the PDF controller employs a small kp and large K, it is much smaller 

than that of the PI system. Therefore the PDF controller can achieve a better transient 

performance without degrading the bandwidth and disturbance rejection ability. 
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Figure 5.11: Overshoots of PI and PDF control systems with varied controller pa-
rameters. (a) PI controller. (b) PDF controller. 
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5.3.3 Discussion of Influence of Controller Parameters on the 

Transient Response 

Corresponding to the transient responses of the PDF and PI systems in Figure 5.9, 

the closed-loop pole-zero maps are shown in Figure 5.12 (a complex zero outside the 

unit circle is omitted for a better view), where the arrows indicate the changing di-

rections of poles and zeroes when K increases. Note that the poles and also zeros are 

asymmetric about the real axis because of the complex transfer functions [41, 95]. In 

comparison with Figure 5.8, the additional pole p5, zeroes z0 and z1 are introduced by 

controllers. The difference between the PDF and PI systems, as demonstrated in 

(5.14) and (5.15), is that the zero z0 = –1 is affiliated only to the PDF system whereas 

z1 = (2kp – kiTs) / (2kp + kiTs) is only to the PI system. With a small K value of 200, in 

the PI system, p5 and z1 are canceled by each other, but in the PDF system, p5 is the 

dominant pole which is near the unit circle, leading to a slow transient response (see 

Figure 5.9(a)). When K increases, the dynamics of the PDF system becomes faster 

since p5 moves more inside of the unit circle. Meanwhile, for the PI system, p5 is not 

canceled by z1, and thus the PI and PDF systems have identical closed-loop poles. 

Therefore, the times for the two systems to reach their steady-state values are ap-

proximately identical. When K is sufficiently large (= 2000), p1 and p2 are less 

damped, leading to mild overshoot and oscillation in the PDF system. 
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Figure 5.12: Pole-zero map of the PI and PDF systems with kp = 0.134 and different 
values of K. 
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5.4 PDF for Grid Current Feedback System 

As deduced in Chapters 3 and 4, a single-loop PI controller can stabilize a GCF 

system if 2fres < fs < 6fres [30, 71], and in this case a simple PDF controller can be 

adopted to improve the transient response. However, this region is not attractive be-

cause the grid impedance variation in weak grids may shift fres in a wide spectrum 

across the point of fs / 6, which would trigger instability [75]. Instead, an additional 

inner active damping feedback loop is needed, but more than one signal is to be 

sensed [40, 72, 104]. A second-order derivative method implemented as a high-pass 

filter has been used in [63, 66, 113] to provide active damping for the grid current. 

However, the time delay is not considered in [66], thus the analysis of the control 

loop can potentially be unreliable [96, 97]. In [113], the design of the outer current 

controller is conducted before that of the inner loop, which would lead to inadequate 

stability margins or even an unstable system. In [63], the critical value for the cutoff 

frequency to ensure a positive virtual resistance has been discussed, but the relation-

ship between the filter’s cutoff frequency and gain to guarantee a stable inner active 

damping loop was not studied. Moreover, the so-called co-design flow for control 

parameters and the stability analysis of the overall system are vague. In all cases, it is 

difficult for the PI plus active damping methods to eliminate the transient overshoot 

and oscillation [21, 40, 58, 104, 113]. 

In this section, a PDF controller with a proportional gain and a second-order de-

rivative in the inner feedback path is developed for a GCF system. Active damping is 

achieved with the GCF only. In addition to giving a stable operation, the PDF con-

troller can also respond without overshoot to a step change in the reference input. A 

controller design procedure is proposed to ensure adequate stability margins and sat-

isfactory transient performance. 

5.4.1 Control Loops 

The block diagram of the PDF controlled GCF system is shown in Figure 5.13. 
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In comparison to the simple PDF controller for the ICF system, a second-order de-

rivative term kds
2 is added in the inner feedback path. It is actually a single-loop con-

trol system rather than a multi-loop one, because there is only one controller and one 

feedback signal [114]. Nonetheless, the second-order derivative feedback loop can be 

treated as an inner loop, for the purpose of damping analysis. 

 

* ( )dq si
ik

s
( )

g ii v sG
( )gdq si

( )d sG PWMk
( )idq sv

2
p dk k s+

 
Figure 5.13: Block diagram of the PDF controlled GCF system. 

 

It has been proved in [63, 66, 113] that the second-order derivative is able to pro-

vide damping because it is equivalent to a proportional kd feedback of the capacitor 

current, which is a common active damping method as discussed in Chapter 4. 

However, the derivative term will dramatically amplify noise disturbances, which 

would lead to unreasonable consequences [113]. Therefore, the practical implemen-

tation of kds
2 should be developed. A high-pass filter with a negative gain can achieve 

this target and avoid the influence of noises [63, 66, 113], with the transfer function 

given as 

( ) hp
hp

hp

sk
G s

s ω
= −

+
,                     (5.18) 

where ωhp is the cut-off angular frequency (should be in the range of (0, 0.5ωs], ωs = 

2πfs [63]).  

Nevertheless, the high-pass filter is proposed for the control in the stationary 

frame. For controllability, (5.18) should be transformed into the SRF, resulting in a 

complex high-pass filter, given as 

( )
( ) n hp

hp
n hp

s j k
s

s j

ω
ω ω

+
= −

+ +
G ,                 (5.19) 
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Consequently the stability analysis can be carried out in the stationary frame, in 

which transfer functions are real [112, 117]. Hence only the positive frequency range 

needs to be concerned when using the Nyquist stability criterion [117, 118]. The 

Bode diagram of the loop gain in the stationary frame, i.e., ( ) ( )s
i d PWMT s G s k=

( ) ( )
g i

s
i v hpG s G s is shown in Figure 5.14. As can be seen no ± (2k + 1)π crossing exists 

at the resonance frequency, thus the inner loop can be tuned to be stable. 
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Figure 5.14: Bode diagram of the high-pass filter active damping loop gain, shown in 
the stationary frame. 

5.4.2 Tuning of Controller Parameters 

5.4.2.1 Inner Active Damping Loop 

The magnitude (in decibels) and phase of ( )s
iT s are given as 

22
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The phase starts from 180° at ω = 0, and crosses over –180° at a frequency ω1. The 

frequency ω1, which should be larger than ωres to avoid the negative crossing at ωres 

(i.e., the phase does not cross over –180° at ωres), can be obtained by solving the fol-

lowing equation: 

1 13
arctan

s hp

πω ω π
ω ω

+ = .                   (5.21) 

It is interesting to note that ω1 from (5.21) is identical to the ‘critical frequency’ 

in [63], below which a positive virtual resistance is achieved. The requirement on ωhp 

can be deduced to ensure ω1 > ωres (i.e., a positive virtual resistance at ωres [76]), 

whereby the inner loop is possible to be stable [63]. Yet, the possible stability is not 

enough; the stable condition for khp should also be derived. According to the Nyquist 

stability criterion, if the magnitude in (5.20) is tuned to be below 0 dB at ω = 0 (the 

phase crosses 180°) and ω1 (the phase crosses –180°), no negative crossing exists, 

and the inner loop is stabilized. Therefore, with a given ωs and a proper ωhp, the two 

gain boundaries for khp are deduced as (5.22), and the smaller one of khp0 and khp1 is 

the critical value.  
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Figure 5.15: Gain boundaries khp0 and khp1 as a function of ωhp / ωs for the case with fs 
= 15000 Hz. 
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With a high fs = 15000 Hz = 11.4ωres, it is indicated in (5.21) that a positive ωhp is 

adequate for the possible stability. In this case, the curves of the two gain boundaries 

in (5.22) as a function of ωhp / ωs are shown in Figure 5.15. It can be seen that khp0 is 

always smaller than khp1, hence khp can be chosen as khp = khp0 / 2 = (Li + Lg)ωhp / 

2kPWM. ωhp is to be tuned later to obtain adequate stability margins for the whole 

loop. 
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Figure 5.16: Discrete block diagram of the PDF controlled GCF system. 
 

The z-domain block diagram of the grid-connected inverter with the PDF con-

troller is shown in Figure 5.16, where Ghp(z) is the Tustin’s discrete equivalent of 

Ghp(s), Ghp(z), with z being replaced by z = e–jωnTs, given as 

 
2 ( 1)

( )
( 2) 2

hp
hp

hp s hp

j

j
s

k z
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T
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Tez

ϕ

ϕω ω
−

= −
+ + −

G .              (5.23) 

The discrete inner loop gain in the stationary frame ( ) ( ) ( )s s
i g hpT s G z G z= is given 

as: 

2

3 2

2
( )

( )

( sin ) (2sin 2 cos ) sin
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i
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z T T z T T T T T

T z T z z T z

ω

ω ω ω ω ω ω ω
ω ω ω

= − ⋅
+

− + − + −
+ + − − +

(5.24)           

Therefore, in the stationary frame, the closed-loop transfer function of the inner loop 

is expressed as 

( ) ( )
( )

( ) 1 ( )

s
g gs

cli s
i

i z G z
G z

m z T z
αβ

αβ

= =
+

.                  (5.25) 
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In the frequency range below ωres, ( )s
gG z is similar to an L-filter with an induct-

ance of Li + Lg [24, 101]. The discrete transfer function of the L-filter is given as 

2

( )
( )

( ) ( ) ( )

ssT
PWM PWM PWM s

L
i g i g i g

e G s k k T
G z Z

s L L L L z L L z

−  = = + + − +  
      (5.26) 

With khp = (Li + Lg)ωhp / 2kPWM, ( )s
iT z ≈ –1/ 2, hence ( ) 2 ( ) 2 ( )s s

cli g LG z G z G z= ≈ . 

It means that in the frequency range below ωres, the inner loop approximately be-

haves as an L-filter with an inductance of (Li + Lg) / 2. 

 

5.4.2.2 Outer Loop 

Since the loop from mdq(z) to igdq(z) has been treated as an inner loop, there is an 

outer loop with a simple PDF controller that was used in the ICF system. As dis-

cussed in Section 5.3, the loop gain of the outer loop with a simple PDF controller is 

identical to that with a PI controller. 

Because ( )s
cliG z is similar to an L-filter with an inductance of (Li + Lg) / 2 below 

ωres, the simple outer PDF controller can be designed based on the OP method in 

(5.17). It is suggested in [24, 30] that ωc equal to or be larger than 0.3ωres. In the pre-

sent work ωc = 0.4ωres is used to obtain adequate stability margins and a larger 

bandwidth so that a better transient response is achieved. Consequently kp and ki are 

tuned to 

( )
,

5 25
res i g p res

p i
PWM

L L k
k k

k

ω ω+
= = .                (5.27) 

With (5.27), the integral term has a negligible influence on the stability margins. 

Therefore, the outer loop can be discussed in the stationary frame by treating the PI 

as a proportional gain kp. To pick a satisfactory ωhp, the relationship between stability 

margins and the term ωhp / ωs is illustrated in Figure 5.17. It can be seen that ωhp = 

ωres (ωhp /ωs = 0.0876) is a good option, with which GM = 5.53 dB and PM = 44.07°. 
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                 (a)                                (b) 

Figure 5.17: Relationship between stability margins and ωhp /ωs. (a) GM. (b) PM. 
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Figure 5.18: Step responses of the PDF system and PI plus high-pass filter active 
damping control system, with fs = 15000 Hz. 

As the grid current ig is controlled directly, *
qi  is set to 0. With a unit step change 

in *
di , the step response of the PDF controlled GCF system is shown in Figure 5.18. 

Apparently, a smooth transient without overshoot is produced. For comparison, the 

system controlled by a PI plus high-pass filter active damping (HD) method [63, 66, 

113] is also tested in two scenarios: One with the same parameters (kp = 0.0484, ki = 

15.972) as those of the PDF controller, and the other with the same rise time (5.97 

ms) as the latter by reducing the PI gains (kp = 0.08, ki = 0.52). Identical high-pass 

filter parameters are used in the PDF and PI systems. In the first scenario, the transi-
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ent contains oscillation and strong overshoot (47%), while in the latter scenario, an 

overshoot of 9% exists and the settling time is about five times that of the PDF sys-

tem (61.8 versus 12.8 ms). Moreover, the coupling between d- and q-axis currents in 

the PDF system is much milder than that in the PI systems. Similar to the simple 

PDF controller used for the ICF system, the PDF controller for the GCF system can 

achieve a well-damped transient response over a wide range of control gains, where-

as the PI method can only reduce the overshoot by using small gains. 

5.4.3 Performance at Low Sampling Frequency 

It is known that the time delay may impose influence on the transient response 

[33, 105]. To evaluate the influence of a larger time delay on the PDF controller, the 

system with a lower sampling frequency (fs = 6000 Hz, fs / fres = 4.567, fres / fs = 0.219) 

is examined. It can be deduced from (5.21) that ωhp should be larger than 0.1177ωs to 

ensure ω1 > ωres. Therefore, ωhp = 0.5ωs is chosen to achieve a robust damping [63]. 

Then ω1 is obtained as 0.279ωs from (5.21). In this case khp0 = 0.5489 and khp1 = 

0.392 are calculated from (5.22). khp1 is smaller than khp0, contrary to the case with fs 

= 15000 Hz. Hence khp can be set to khp1 / 2. kp and ki are still tuned according to 

(5.27). With the designed PDF controller, GM = 6.18 dB and PM = 46.5°. 
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Figure 5.19: Step responses of the PDF system and PI plus high-pass filter active 
damping control system, with fs = 6000 Hz. 
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Likewise, step responses of the PDF and PI plus high-pass filter active damping 

controlled systems are shown in Figure 5.19. As expected, the transient response of 

the PDF system is smooth without overshoot. The PI controlled systems, in contrast, 

exhibit large overshoot (40 and 8%) or a long settling time (60.2 versus 12.2 ms of 

the PDF system; kp = 0.012 and ki = 0.78). These results further verify the advantage 

of the PDF controller even at a low sampling frequency. 

5.5 Experimental Results 

5.5.1 PDF for Inverter Current Feedback System 

 

:[50V / div]gv :[2A / div]gi

Time :[5ms / div]  
Figure 5.20: Steady-state one-phase grid voltage and current of the PDF controlled 
ICF system. 
 

First, the steady-state response of the PDF control system with *
di = 4 A was per-

formed. Figure 5.20 shows the steady-state one-phase grid voltage (THD ≈ 1.9%) 

and current (THD ≈ 2.6%). It illustrates that the grid current is in phase with grid 

voltage. Note that a same current quality would be obtained by the PI system when 

identical controller parameters are used because of the identical disturbance rejection 

ability. 

The transient responses with *
di  stepping from 1 to 4 A have been tested. With the 

parameters obtained before (kp = 0.134, K = 1400), the output currents of the PDF 

and PI systems are shown in Figure 5.21 and 5.22, respectively. The settling time of 

the PI system is about 4 ms, longer than that of the PDF system (2.5 ms). Moreover, 
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the PI system contains great overshoots (56.7% in iid and 66.7% in igd, slightly dif-

ferent from simulation results because of issues such as the minor parasitic resistors 

and the variation of circuit parameters) and oscillations, whereas the transient re-

sponse of the PDF system is without overshoot or oscillation. Furthermore, the cou-

pling effect in the PI system from the change of the d-axis current on the q-axis cur-

rent is more dramatic than that in the PDF system. 
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Figure 5.21: Transient response of PDF controlled ICF system. (a) Grid current. (b) 
dq inverter currents. (c) dq grid currents. 
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gdi

gqi

[1A / div]

Time :[5ms / div]  
 (c) 

Figure 5.22: Transient response of PI controlled ICF system. (a) Grid current. (b) dq 
inverter currents. (c) dq grid currents. 

 

When the PI controller is tuned to give a same rise time (1 ms) with the PDF 

controller, the transient response is shown in Figure 5.23. It can be seen that the set-

tling time of the PI system is eight times that of the PDF system (20 versus 2.5 ms). 

In comparison to the simulation result in Figure 5.10, overshoot is damped out by 

parasitic resistors. 
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Figure 5.23: Transient response of PI controlled ICF system with the same rise time 
as the PDF system. (a) Grid current. (b) dq inverter currents. (c) dq grid currents. 
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5.5.2 PDF for Grid Current Feedback System 

Figure 5.24 shows the steady-state response of one-phase grid voltage and cur-

rent of the PDF system when igd = 4 A. It illustrates that the grid current, with a THD 

about 3.6%, is synchronized with the grid voltage. The grid voltage adds significant 

harmonic components to the grid current, but the THD meets the IEEE standard 

(THD < 5% [11, 26]). In order to mitigate the harmonics, harmonic resonant com-

pensators can be added in the forward path or inner feedback path, but the transient 

response would be affected [22, 26]. 

:[50V / div]gv :[2A / div]gi

Time :[5ms / div]
 

Figure 5.24: Steady-state one-phase grid voltage and current of the PDF controlled 
GCF system. 

 

With fs = 15000 Hz, the transient response of the PDF system with *
di  stepping 

from 1 to 4 A is shown in Figure 5.25. The result indicates a stable operation due to 

the active damping introduced by the PDF controller. Moreover, there is no over-

shoot in the transient response. For comparison, the GCF system controlled by PI 

plus high-pass filter active damping was also examined. For the case with the same 

parameters as the PDF controller, the transient response of igd shown in Figure 5.26 

illustrates a significant overshoot (46.7%), in a good agreement with the simulation 

result. For the one with the same rise time (6 ms) as the PDF system, the transient 

response in Figure 5.27 shows a much longer settling time (60 versus 12 ms). More-

over, the harmonic disturbance from the grid is much more dramatic (THD ≈ 10.1% 

for 1 A and 6.3% for 4 A) due to the lower disturbance rejection ability caused by 

smaller controller gains. Again, the overshoot is decreased in contrast with the simu-

lation due to parasitic resistors. 
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               (a)                                  (b) 

Figure 5.25: Transient response of PDF controlled GCF system (fs = 15000 Hz). (a) 
Grid current. (b) dq grid currents.  
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Figure 5.26: Transient response of PI plus high-pass filter active damping controlled 
GCF system, with the same parameters as the PDF controller (fs = 15000 Hz). (a) 
Grid current. (b) dq grid currents. 
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Figure 5.27: Transient response of PI plus high-pass filter active damping controlled 
GCF system, with the same rise time as the PDF system (fs = 15000 Hz). (a) Grid 
current. (b) dq grid currents.  
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For the case with fs = 6000 Hz, the experimental transient responses correspond-

ing to Figure 5.19 are shown in Figure 5.28. The transient response of the PDF sys-

tem is smooth without overshoot. The PI controlled systems, however, exhibit a 

strong overshoot of 40% or a longer settling time (about 60 versus 13 ms of the PDF 

system) with high harmonic distortion. These results further confirm the advantage 

of the PDF controller. 
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Figure 5.28: Transient responses of GCF systems with fs = 6000 Hz. (a) PDF. (b) PI 
plus high-pass filter active damping with the same parameters as the PDF. (c) PI plus 
high-pass filter active damping with the same rise time as the PDF.  

5.6 Conclusion 

The PDF has been applied to the current control of three-phase grid-connected 

inverters with LCL filters, which significantly improves the transient response to a 

step change in the reference input via eliminating overshoot and oscillation. The 

complex vector method has been adopted for the modeling of the LCL-filtered sys-

tem, in the continuous s-domain as well as in the discrete z-domain. Two PDF con-
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trollers have been developed for an ICF system and a GCF system, respectively. For 

the ICF, a simple PDF controller with identical stability characteristics to that of the 

PI controller is developed. Compared with the PI controller which can only reduce 

the transient overshoot by decreasing the controller gains, the PDF controller com-

pletely eliminates the overshoot and oscillation over a wide range of controller pa-

rameters. For the GCF, a PDF controller with an additional second-order derivative 

implemented as a complex high-pass filter has been developed which provides an 

active damping. The stable condition for the controller parameters has been derived 

by means of Nyquist stability criterion. A design procedure has been presented that 

ensures adequate stability margins and satisfactory transient performance. Experi-

mental tests have confirmed the significant performance improvement of the PDF 

controllers in comparison with the conventional PI control methods.  
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Chapter 6  

 

Attenuation of Low-Order Current Harmonics 

in Three-Phase LCL-Filtered Grid-Connected 

Inverters 

6.1 Introduction 

Grid-connected inverters play a critical role in the quality of the power injected 

from the DPGSs into the power grid. The delivered grid current is required to have a 

low THD, which, according to many standards such as the IEEE Standard 15471, 

should be smaller than 5% (see more details in Table 1.1) [12, 38]. There are mainly 

two aspects that are involved in the THD: high frequency PWM switching harmonics, 

and low-order harmonics due to the distortion in grid voltage [26]. 

To mitigate the switching harmonics, LCL filters are adopted widely that exhibit 

wonderful attenuation ability [23, 71, 119]. As deduced in Chapters 3 and 4, the sin-

gle-loop control with the GCF can provide damping if fs < 6fres. Nonetheless it is 

rarely adopted because the time delay is significant which weakens system stability 

[63, 71]. In contrast, the single-loop indirect control with ICF has been adopted in 

many works [23, 49, 71, 132], and the system can be made stable if fs > 6fres [71, 72, 

76]. Apart from the single-loop methods, multiloop-based active damping techniques, 

which include an inner damping loop with the feedback of other variables such as the 

inverter current, capacitor voltage, and capacitor current, can be used to stabilize the 

system [23, 58, 81]. In particular, the CCF damping is the most widely used one [58]. 
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It has been found that a second-order derivative feedback of the grid current can 

produce active damping, still it is equivalent to a proportional feedback of the capac-

itor current [119]. 

As for the rejection of the low-order harmonics, there are basically two methods. 

The first one is the feed-forward of the grid voltage, especially the full feed-forward 

schemes [91, 130]. However, this method is sensitive to parameter variations and 

time delay, and multiple derivative terms are introduced which are difficult to im-

plement [56]. The other method is utilizing selective resonant harmonic (RESH) 

compensators that provide an infinite harmonic impedance [25, 86]. This method has 

the merit of easy plug-in for the traditional PI and PR controllers and is thus widely 

used [75]. In this case, the control loop bandwidth needs to be designed carefully to 

cover the resonant frequencies, in order to avoid stability problems caused by the 

phase steps of the resonant terms [25]. 

Both of the damping methods and RESH compensation have been widely studied. 

However, most research works have focused on either of them; the interaction be-

tween them has been seldom researched [75]. Furthermore, in conventional current 

control methods, a PLL is generally required to generate the reference current [12, 

51]. However, a simple PLL will create distorted reference signals which aggravate 

the harmonic distortion [51], while a sophisticated PLL can generate a harmonic free 

reference but increases the control complexity and computation load [53]. The PLL 

will also affect the output admittance and even trigger low-frequency instability [55, 

56]. Castilla et al. [26, 49, 132] proposed a linear single-loop control scheme in 

which a PLL is not needed. Nonetheless, the harmonic mitigation in the grid current 

is unsatisfactory, because it is indirectly controlled by the inverter current. 

In this chapter, a direct grid current control method is proposed for three-phase 

LCL-filtered grid-connected inverters, which generates the reference current directly 

from the grid voltage and effectively suppresses the grid current harmonic distortion. 

It will be demonstrated that the conventional current control methods are difficult to 
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achieve a satisfactory harmonic attenuation performance because of an indirect con-

trol and/or PLL. The interaction between active damping methods and RESH com-

pensators is discussed, and it is found the ICF damping is superior to the CCF damp-

ing in improving system stability. A systematic design procedure is then proposed to 

optimize the control performance. Finally the improved harmonic attenuation ability 

of the proposed control method in comparison to conventional ones is verified by 

experimental results. 

6.2 Conventional Current Control Methods for 

LCL-Filtered Grid-Connected Inverters 

6.2.1 System Transfer Functions 

dcV

iv iR gv
gLgR

C

iL ii gi

ci

ii ci gi

*
dqi

θii αβ
*iαβ

gv

ci αβ gi αβ

U

W
V

 
Figure 6.1: Current controlled three-phase LCL-filtered grid-connected inverter. 

 

The circuit diagram of the three-phase LCL-filtered grid-connected inverter is 

re-drawn in Figure 6.1. The sampling frequency used in this chapter is fs = 12 kHz. In 

this part, the parasitic resistors associated with the inductors are taken into considera-

tion. Parameters of the circuit can be found in Table 2.2 and 3.2. The inverter current 

ii, grid current ig, and capacitor current ic are usually sensed as the feedback variables, 

to form a single- or dual-loop current control system [76]. 
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Defining fa = CLiLg, fb = C(RiLg + LiRg), fc = CRiRg + Li + Lg, and fd = Ri + Rg, the 

transfer functions from the inverter voltage vi to ii, ig, and ic are expressed as (6.1) – 

(6.3): 

2

3 2

1( )
( )

( )i i

g gi
i v

i a b c d

s CL sCRi s
G s

v s s f s f sf f

+ +
= =

+ + +
              (6.1) 

3 2

( ) 1
( )

( )g i

g
i v

i a b c d

i s
G s

v s s f s f sf f
= =

+ + +
              (6.2) 

2

3 2

( )
( )

( )c i

g gc
i v

i a b c d

s CL sCRi s
G s

v s s f s f sf f

+
= =

+ + +
              (6.3) 

Considering the grid voltage vg which may be distorted by low-order harmonics 

as the disturbance, the transfer functions from vg to ii, ig, and ic are given as (6.4) – 

(6.6): 

3 2

( ) 1
( )

( )i g

i
i v

g a b c d

i s
G s

v s s f s f sf f

−= =
+ + +

              (6.4) 
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3 2

( ) 1
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( )g g

g i i
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3 2
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( )

( )c g

c i i
i v

g a b c d

i s s CL sCR
G s

v s s f s f sf f

+= =
+ + +

              (6.6) 

In a closed-loop control system, the output ig is given in (6.7) as a function of the 

reference current i* and the disturbance vg: 

*( ) ( )g cl gd gi G s i G s v= +                    (6.7) 

where Gcl(s) is the closed-loop transfer function from the reference to grid current, 

and Ggd(s) is the closed-loop transfer function from the grid voltage to grid current 

that reflects the disturbance rejection capability. In this chapter, the control is imple-

mented in the stationary αβ frame, thus single-phase analysis and design is used [12]. 

6.2.2 Conventional Current Controllers and Their Limitations 

Conventionally, the synchronization of ig to vg through a PLL (see Figure 6.1) is 
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needed to obtain the unity PF, and the RESH compensators are in parallel with the 

PR regulator for the purpose of harmonic mitigation [75, 86]. As mentioned in pre-

vious chapters, there are two control methods that are widely applied to the 

LCL-filtered grid-connected inverter. The first one is single-loop indirect control with 

ICF [23, 119]. The second is dual-loop direct control with CCF active damping [58]. 

In this section, the limitations of these two methods on the harmonic attenuation will 

be identified and discussed. 

6.2.2.1. Single-Loop Indirect Control 

A single-loop controlled ICF system can utilize the inherent damping of the LCL 

filter and can be made stable if fs > 6fres [71]. The control block diagram is shown in 

Figure 6.2(a). The PR regulator GPR(s) and RESH terms GHC(s) are expressed as: 

2 2 2 2
5,7,11,13...

( ) (1 ), ( ) .
( )
rnr

PR p HC
n hn n

k sk s
G s k G s

s s nω ω=

= + =
+ +        (6.8) 

The closed-loop transfer function from the grid voltage to inverter current and 

that to the grid current are obtained as 

         1

( )( )
( )

( ) 1 ( ) ( ) ( )
i g

i i

i vi
gd

g c d PWM i v

G si s
G s

v s G s G s k G s
= =

+
            (6.9) 

and 

( ) ( ) ( ) ( )( )
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( ) 1 ( ) ( ) ( )
i g g i

g g

i i

c d PWM i v i vg
gd i v

g c d PWM i v

G s G s k G s G si s
G s G

v s G s G s k G s
= = −

+
,      (6.10) 

respectively, where Gc(s) = GPR(s) + GHC(s). 
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Figure 6.2: Single-loop indirect control with ICF. (a) Block diagram. (b) Bode dia-
grams of closed-loop transfer function from the grid voltage to inverter current ii and 
that to the grid current ig. 

 

Taking n = 5, 7, 11, 13 for example, the Bode diagrams of (6.9) and (6.10) are 

shown in Figure 6.2(b). It can be seen the disturbance in the inverter current from the 

distorted grid voltage can be successfully suppressed, but the rejection in the grid 

current is unsatisfactory, because of the existence of the capacitor branch. Note that 

the disturbance rejection transfer functions of the linear single-loop indirect control 

scheme proposed in [26, 49, 132] are identical to (6.9) and (6.10). Therefore the 

scheme in these references is actually insufficient to mitigate the harmonic distortion 

in the grid current. 

In view of the limitation of the indirect control method, a direct grid current con-

trol should be adopted for the purpose of harmonic attenuation. As deduced in Chap-

ters 3 and 4, a single-loop GCF system can be made stable if fs < 6fres [30, 71]. How-

ever, in this case the phase lag caused by the time delay is significant, making the 

insertion of RESH terms impossible. Instead, a dual-loop with active damping is 

generally needed for the direct control [133]. 
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6.2.2.2. Dual-Loop Control with CCF Active Damping 
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Figure 6.3: Dual-loop control with CCF active damping. (a) Block diagram. (b) Bode 
diagram of the closed-loop reference to grid current transfer function. 
 

The block diagram is shown in Figure 6.3(a). A high disturbance rejection from 

Ggd(s) is achieved as the grid current is directly controlled. But this is not the case for 

Gcl(s) in (6.7), which is deduced as 

( ) ( ) ( )
( ) .

1 ( ) ( ) ( ) ( ) ( )
g i

c i g i

c d PWM i v

cl
d d PWM i v c d PWM i v

G s G s k G s
G s

k G s k G s G s G s k G s
=

+ +
      (6.11) 

The Bode diagram of (6.11) is shown in Figure 6.3(b). It is apparent that the sys-

tem can track the fundamental component, but also the harmonics which may exist in 

the reference input. Therefore, in order to get a high quality output, a harmonic free i* 

should be provided. However, a simple PLL is unable to detect a harmonic free phase 
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signal, resulting in a distorted i* [51]. A sophisticated PLL can avoid the phase dis-

tortion, but will dramatically increases the control complexity and computation load 

[53]. The limitations are also applicable to the cases with other damping variables 

such as the inverter current and capacitor voltage. 

In brief, neither of the two conventional control methods is satisfactory for the 

harmonic attenuation in LCL-filtered grid-connected inverters. In the next section, an 

effective current control method will be proposed to address the problems. 

6.3 Proposed Current Control Method 

In this section, the proposed control method is introduced, which is able to effec-

tively mitigate the harmonics and omits the use of PLL. Two active damping meth-

ods are compared, i.e., the CCF damping and ICF damping. It is found that the latter 

has the advantage in improving system stability when the resonant terms are used. 

6.3.1 Proposed Control Method 
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Figure 6.4: Block diagram of the proposed control system. 

 

The block diagram of the proposed control system is shown in Figure 6.4. A 

proportional feed-forward of vg(s) is used to enhance the harmonic attenuation [130]. 

Active damping is achieved with the ICF. Different from the conventional controllers 

and the scheme in [26], the RESH compensators are in a separate inner-feedback 

path, while the PR regulator is not split, thus the merit of easy application for a PR 

control system is retained. The reference current is generated by proportioning the 
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grid voltage (see Figure 6.1), as given in (6.12), such that no PLL is needed for syn-

chronization.  

*( ) gi s Kv=                          (6.12) 

The loop gain is obtained as 

( ( ) ( )) ( ) ( )
( ) .

1 ( ) ( )
g i

i i

PR HC d PWM i v

d d PWM i v

G s G s G s k G s
T s

k G s k G s

+
=

+
           (6.13) 

When the CCF active damping is used, the loop gain can be obtained by replacing

( )
i ii vG s with ( )

c ii vG s , which is identical to that of the system in Figure 6.3(a). 

To explain why the ICF damping is employed rather than the CCF, the two 

damping methods are compared here. Bode diagrams of the loop gains, with different 

controllers, are shown in Figure 6.5. As can be seen the resonant terms introduces 

abrupt magnitude ripples and ± 90° phase jumps at the resonant frequencies. Looking 

at the case without resonant terms (solid lines), if the magnitude is below 0 dB and 

simultaneously the phase is smaller than –90° at the resonant frequencies, the addi-

tion of a resonant term will bring in negative (–) or positive (+) crossings over –180° 

that may not be counteracted by each other, leading to stability problems [25, 75]. 

According to the Nyquist stability criterion, to avoid the stability problems when the 

resonant terms are inserted, at the resonant frequencies the magnitude should be 

above 0 dB or the phase be larger than –90°. It is interesting to note that, although the 

ICF decreases the magnitude to be below 0 dB, it increases the phase in low fre-

quency range, which contributes to accommodate the resonant terms. By contrast, the 

CCF makes no phase improvement. This is because the capacitor can be ignored in 

low frequency range, making the CCF ineffective. The magnitude can be increased to 

be larger than 0 dB by using a larger kp, but it leads to low stability margins and even 

instability [25]. Therefore the ICF is superior to the CCF in improving system stabil-

ity. 

The reason behind the phase increase introduced by the ICF can be intuitively 

explained using the virtual impedance method proposed in Chapter 4. As presented in 



129 
 

Section 4.3.1, in the low frequency range below fs / 6 the ICF control equivalently 

adds a virtual impedance containing a positive resistor that is connected in series 

with the inverter side inductor. Meanwhile, in this range the capacitor can be ne-

glected. As a result, the addition of the virtual resistor increases the phase angle. 
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Figure 6.5: Bode diagrams of the loop gains with different active damping variables. 
(a) ICF. (b) CCF. (Dashed line: kd = 0, kp; solid line: kd ≠ 0, kp; dotted line: kd ≠ 0, 
GPR(s) + GHC(s).) 



130 
 

6.3.2 Discrete Model 

( )PRG z
* ( )i z

( )iG z
( )ii z

( )gG z
( )gi z

( )
g gi vG z

( )
i gi vG z

( )gv z

dk( )HCG z

1/ PWMk
( )gv z

 

Figure 6.6: Block diagram of the digitally controlled grid-connected inverter. 

 

To evaluate a digitally controlled system which contains unavoidable time delay, 

the discrete model should be gained. The proposed digital control system is shown in 

Figure 6.6, where ( ) { ( ) ( )}s

i i

sT
i PWM PWM i vG z Z e k G s G s−= and ( ) { ssT

g PWMG z Z e k−=

( ) ( )}
g iPWM i vG s G s . A detailed derivation for these discrete transfer functions with a 

processing time delay of e–sλTs (0 < λ ≤ 1) is provided in Appendix D. ( )
i gi vG s and

( )
g gi vG s are discretized to their discrete equivalents using the Tustin’s method (2.17). 

The Tustin’s method with pre-warping is used for the resonant terms in (6.8) to avoid 

frequency warping, by replacing ‘s’ with 

1
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ω
ω
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+
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For instance, the RESH terms are discretized to: 
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Figure 6.7: Bode diagrams of closed-loop transfer functions. (a) Reference to grid 
current transfer function. (b) Grid voltage to gird current transfer function (solid lines: 
with grid voltage feed-forward, dotted lines: without grid voltage feed-forward). 

 

The following closed-loop transfer functions are then yielded: 

( ) ( )
( )

1 ( ) ( ( ) ( )) ( )
PR g

cl
d i PR HC g

G z G z
G z

k G z G z G z G z
=

+ + +
            (6.16) 

( ) / ( ) ( ) (1 ( )) ( )
( ) .

1 ( ) ( ( ) ( )) ( )
i g g gg PWM d i v g d i i v

gd
d i PR HC g

G z k k G z G z k G z G z
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− + +
=

+ + +
     (6.17) 
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The Bode diagrams of (6.16) and (6.17), with the optimized parameters in the 

next section, are shown in Figure 6.7. From Figure 6.7(a), it is apparent that the sys-

tem can track the fundamental component accurately, with unity gain and zero phase 

deviation, while has great attenuation ability for the harmonics in i*(s) generated 

from (6.12). On the other hand, Figure 6.7(b) shows a strong rejection for the fun-

damental as well as harmonic components in the grid voltage (it can be seen that the 

feed-forward of the grid voltage improves the attenuation ability). Therefore the 

proposed control method has significant advantages over the conventional methods, 

and is able to produce clean output grid currents that are free from grid voltage har-

monics. It is obvious that the method also allows the use of a simple PLL to obtain 

adjustable active and reactive power without distorting the output. 

6.4 Controller Design 

Several methods can be found in existing publications for multi-loop controller 

parameter tuning, but they all have obvious limitations. An interesting method was 

implemented by pole-zero cancellation in [102]. However, approximations were 

made on the pole-zero positions, leading the results to be potentially unreliable. A 

two-step approach was reported to first design the outer loop controller based on a 

simplified L-filter plant, then tune the inner loop based on open-loop transfer func-

tions to maintain system stability [69]. In this method, since the damping perfor-

mance is examined after the design of the outer loop controller, the system might be 

sensitive to filter resonances if the outer loop controller is not designed properly. In 

[78] the inner active damping loop was considered as a virtual impedance, but the 

design of the virtual impedance value is based on a trial-and-error method, thus is not 

explicit. A step-by-step controller design procedure was reported in [101], in which a 

few complicated equations have to be concerned. 

To settle the limitations, an explicit and accurate discrete design method is pro-

posed in this section. This method is able to achieve a proper damping performance, 

adequate GM and PM, as well as satisfactory PF angles. 
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6.4.1 Active Damping Loop 

The system loop gain T(z) in Figure 6.6 is yielded as 

( ( ) ( )) ( )
( )

1 ( )
PR HC g

d i

G z G z G z
T z

k G z

+
=

+
.               (6.18) 

When the outer controller is disregarded, i.e., only considering the closed active 

damping loop, the Bode diagram and pole-zero map of T(z) with a serial values of kd 

are shown in Figure 6.8(a) and (b), respectively. As can be seen, when kd = 0 a reso-

nance exists at ωres. The resonance is damped when kd increases because of the posi-

tive virtual resistor it introduces. When an excessively large kd is adopted, however, 

the equivalent resistor at the virtual resonance frequency is negative such that no 

damping is achieved (i.e., the virtual resonance frequency is beyond the critical fre-

quency fs / 6, see Section 4.3.1.2). This results in a non-minimum phase behavior as 

shown in Figure 6.8(a), which should be avoided for the sake of overall system sta-

bility [75, 109]. The stable boundary of kd can be obtained using (4.7). This gives a 

value of 0.195, which is confirmed in Figure 6.8(b). 
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Figure 6.8: Closed inner active damping loop. (a) Bode diagram. (b) Pole-Zero map. 

 

In this case, an optimized value kd = 0.116 is used, by which a good active 

damping is achieved as demonstrated in Figure 6.8(a). At the same time, from the 

pole-zero map it can be observed that the dominant poles are farthest from the unit 

circle boundary, thus the fastest response in the inner loop is obtained.  

6.4.2 Proportional Gain 
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Figure 6.9: Relationship between GM and kp. 

 

The resonant terms only influence the frequency response around the resonant 

frequencies [25, 49]. As can be seen from Figure 6.5(a), the resonant terms have a 
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negligible impact at the –180° crossover frequency. Therefore the proportional gain 

kp is the key parameter that affects the GM. The curve of GM in terms of kp is shown 

in Figure 6.9. A low value yields a high GM but slow transient response, kp = 0.031 is 

chosen that gives a GM of 6 dB. 

6.4.3 Fundamental Resonant Term 

According to the requirements for inverters, the PF should generally be in the 

range 0.999 ≤ cos φ ≤ 1, where φ is the PF angle which should fall into [–2.6°, 2.6°] 

[49]. In particular, there would be a grid frequency deviation of ±1Hz. Hence the PF 

angle range should be fulfilled when the grid frequency varies from 49 Hz to 51 Hz. 

Since i* is generated directly from vg by (6.12), φ is the inverse of the phase of 

Gcl(z) (see Figure 6.7(a)). Therefore the fundamental resonant term should be tuned 

to ensure a satisfactory φ. The relationships between φ and kr at 49 Hz and 51 Hz are 

shown in Figure 6.10. As clearly illustrated, kr should be larger than 1095, but a too 

great value would trigger instability. In this case a compromised kr = 1200 is used. 
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Figure 6.10: PF angle in terms of kr. 

6.4.4 RESH Terms 

Finally, the RESH compensators are designed. Assuming identical gains krn are 

used, then krn and the highest harmonic order h are to be set. To avoid any –180° 

crossing around the resonant frequencies, the phase of the loop gain without GHC(z) 

at the h-order frequency should be larger than –90°. The phase crosses over –90° at 

673 Hz, therefore h = 13. On the other hand, with the RESH compensators the mag-
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nitude crosses over 0 dB around the harmonic frequencies, hence it is GHC(z) that af-

fects the PM. The relationship between PM and krn is presented in Figure 6.11, from 

which krn = 9.3 is chosen that gives PM = 40.2°.  

It has been considered that the GM is determined by kp. However, the plots in 

Figure 6.5 show that the resonant terms affect both the magnitude and phase re-

sponses. The influence on the GM should therefore be examined. Taking kr = 4krn / kp 

for example, the 3D-plot describing the GM as a function of kp and kr is shown in 

Figure 6.12. This figure reveals that the GM is mainly decided by kp, while is slightly 

changed with the addition of the resonant terms. Therefore, the tuning of the propor-

tional gain kp in Section 6.4.2 is reasonable. 
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Figure 6.11: PM as a function of krn. 

 

 
Figure 6.12: GM as a function of kp and kr. 
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Table 6.1: Parameters of the designed controller 

Symbol Quantity Value 

kp The proportional gain 0.031 
kd Active damping proportional gain 0.116 

kr Fundamental resonant gain 1200 

n Order of harmonics to be compensated 5,7,11,13 

krn Harmonics resonant controllers gain 9.3 
fs Sampling and switching frequency 12 kHz 

 

With the parameters obtained previously, as summarized in Table 6.1, GM is 5.9 

dB which slightly deviates from the value with kp only, and the PM is 40.2°. The 

phases of Gcl(z) at 49 Hz and 51 Hz are 2.19° and –2.22°, respectively. The design 

procedure is therefore validated.  

6.5 Experimental Results 

The distorted grid voltage is simulated using a programmable AC source Omi-

cron CMC 156, with a THD of 5.47%, as shown in Figure. 6.13. The magnitudes of 

fifth, seventh, eleventh, thirteenth harmonics with respect to the fundamental com-

ponent are 4%, 3%, 2%, 1%, and the phases are 30°, 0°, 60°, 0°, respectively. 

: [50V / div]gv

Time :[5ms / div]  

Figure 6.13: The distorted grid voltage from programmable AC source. 

 

Firstly, the conventional methods are tested. The d-axis currents are set to 4 A. 

For the single-loop indirect control, a SRF-PLL [51] with a DSOGI based frequency 

locked loop [53] is used to generate a harmonic free reference, the q-axis current is 
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set to ωnCVg [71]. The output grid current is shown in Figure 6.14(a). The current is 

distorted with a high THD of 7.67%, due to the low disturbance rejection ability in 

(6.10). For the dual-loop control with CCF active damping, a SRF-PLL is used, and 

the q-axis current is set to 0. The result is shown in Figure 6.14(b), with a THD of 

6.81% caused by the distorted reference. Moreover, the significant current ripples 

reveal the marginal stability of the CCF active damping. Therefore, the limitations of 

the conventional methods on the harmonic attenuation are verified. 

 

: [2A / div]gi

Time :[5ms / div]
 

: [2A / div]gi

Time :[5ms / div]
 

                (a)                                (b) 

Figure 6.14: Output grid current of conventional control methods. (a) Single-loop 
indirect control with ICF. (b) Dual-loop control with CCF active damping. 

 

: [2A / div]gi

Time :[5ms / div]  

Figure 6.15: Experimental grid current of the proposed current control method. 
 

Then the performances of the proposed control method are examined. The scal-

ing factor K in (6.12) is set to 0.0258 to get a current amplitude of 4 A. The grid cur-

rent is shown in Figure 6.15, with a low THD of 0.88%, which verifies the improved 

harmonic distortion attenuation ability. Also, the enhanced system stability due to 



139 
 

ICF damping is confirmed. Single-phase grid voltage and grid current when the fun-

damental frequency is set to 50 Hz, 49 Hz, and 51 Hz are presented in Figure 6.16(a) 

– (c), respectively. For 50Hz, the grid current is well synchronized with the grid 

voltage. For 49 Hz and 51 Hz, the PF angles are about –2° and 1°, respectively, both 

are within the restriction of ± 2.6°. The expected performances are therefore 

achieved. 

 

:[50V / div]gv

Time :[5ms / div]

: [2A / div]gi

 

: [50V / div]gv

Time :[5ms / div]

: [2A / div]gi

 

                (a)                               (b) 

:[50V / div]gv

Time :[5ms / div]

: [2A / div]gi

 

(c) 

Figure 6.16: Experimental single-phase grid voltage and grid current when the fun-
damental grid frequency varies. (a) 50 Hz. (b) 49 Hz. (c) 51 Hz. 

 

The experimental results are obtained under a significantly distorted grid condi-

tion with a THD of 5.47%. When the grid voltage is with a lower THD, the 

grid-current generated from the conventional two methods would meet the require-

ment. The proposed method, however, is able to produce a higher quality output with 

reduced control complexity. 
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6.6 Conclusion 

This chapter has proposed a novel current control method that omits the use of 

PLL and effectively mitigates low-order current harmonics in three-phase 

LCL-filtered grid-connected inverters. Grid synchronization is achieved by generat-

ing the reference current directly from the grid voltage instead of by PLL. The RESH 

compensators are in the inner-feedback path rather than in parallel with the PR con-

troller. Direct grid current control is achieved with the ICF active damping, which 

has been proved to be superior to the widely used CCF active damping in improving 

system stability when the RESH terms are inserted. A controller design procedure has 

been presented that guarantees adequate stability margins and ensures satisfactory 

PFs when the grid frequency varies. In comparison with conventional single- or du-

al-loop control methods which have been found to be unsatisfactory in attenuating 

the low-order harmonic distortion, the proposed strategy is able to obtain a much 

higher power quality and reduce the control complexity and computation burden. 

Results have been verified by experiment. 

It has been found that both the single-loop ICF and GCF control methods are not 

suitable for harmonic attenuation in the grid current. This is because the RESH com-

pensators significantly affect the frequency response in low frequency ranges, which 

would degrade harmonic mitigation and lead to stability problems. In contrast, the 

single-loop methods in the previous chapters only employ a PI or PDF controller 

without RESH compensators. Therefore, the finding does not downgrade the im-

portance of the stability analysis for the single-loop control methods carried out pre-

viously. 
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Chapter 7  

 

Conclusions and Future Work 

7.1 Conclusions 

The work in this thesis focused on the current control of grid-connected inverters 

in microgrids in terms of system stability, transient performance, grid synchroniza-

tion, and power quality. A number of limitations and problems in existing work have 

been tackled by performing comprehensive system stability analyses and proposing 

novel current control methods.  

The stability of single-loop controlled grid-connected inverters with LCL filters 

has, for the first time, found to be delay-dependent. The stable ranges of time delay 

for the ICF and GCF loop have been derived, in the continuous s-domain and also in 

the discrete z-domain. The optimal range of time delay has also been discussed. It has 

been shown that in the optimal range, the existence of a time delay weakens the sta-

bility of the ICF loop, whereas a proper time delay is required for the GCF loop. To 

improve system stability, a LP based time delay reduction method is proposed for the 

ICF, while a proper time delay is added to the GCF. Moreover, a simple PI controller 

design method has been presented, by which adequate stability margins can be guar-

anteed. The delay-dependent stability study has explained why different conclusions 

on the stability of ICF and GCF systems were drawn in different previous studies, i.e., 

the time delay in these cases falls into different ranges. The procedure can be ex-

tended to analyze the influence of time delay on the stability of LCL-filtered 

grid-connected inverters controlled by other methods including active damping. 
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Then the LCL resonance damping mechanism of three different control methods 

has been investigated, including the single-loop methods and a dual-loop with CCF 

active damping. The virtual impedances of these control methods have been identi-

fied. It has been shown that the virtual impedance achieves a potential damping to 

the LCL resonance. Based on the fact that a positive virtual resistance at the virtual 

resonance frequency is required for system stability, the requirement on the sampling 

frequency has been obtained for the single-loop control methods, and different cases 

of the dual-loop control method have been discussed. Furthermore, the gain bounda-

ries of these controllers have been deduced. The damping investigation inspires a 

simple approach by means of virtual impedance to analyze system stability and pre-

dict controller gain boundaries, which facilitates the design of control loops. In com-

parison with classical stability analysis tools such as the Nyquist stability criterion 

and root locus, the proposed approach is much more intuitive. 

Regarding the transient performance, the PDF current control has been applied to 

three-phase LCL-filtered grid-connected inverters, as an advantageous strategy over 

PI control in the SRF, to improve the transient response to a step change in the refer-

ence input via eliminating overshoot and oscillation. The complex vector method has 

been adopted for the modeling of the LCL-filtered system. Two PDF controllers have 

been developed for an ICF system and a GCF system, respectively. For the ICF, a 

simple PDF controller with identical stability characteristics to that of the PI control-

ler is designed. Compared with the PI controller which can only reduce the transient 

overshoot by decreasing the controller gains, the PDF controller completely elimi-

nates the overshoot and oscillation over a wide range of controller parameters. For 

the GCF, a PDF controller with an additional second-order derivative implemented as 

a complex high-pass filter has been developed, which provides active damping with 

only one feedback signal. A controller design procedure has been presented that en-

sures adequate stability margins and satisfactory transient performance. 
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As for the grid synchronization and power quality issues, a novel current control 

method has been proposed that omits the use of PLL and effectively mitigates 

low-order current harmonics in three-phase LCL-filtered grid-connected inverters. 

Grid synchronization is achieved by generating the reference current directly from 

the grid voltage instead of by PLL. The RESH compensators are in a separate in-

ner-feedback path rather than in parallel with the PR controller. Direct grid current 

control is achieved with an ICF active damping, which has been proved to be superi-

or to the widely used CCF active damping in improving system stability when the 

RESH terms are inserted. A controller design procedure has been presented that 

guarantees adequate stability margins and ensures satisfactory PFs when the grid 

frequency varies. In comparison with conventional single- or dual-loop control 

methods which have been found to be unsatisfactory in attenuating the harmonic 

distortion, the proposed strategy is able to obtain a much higher power quality and 

reduce the control complexity and computation burden. 

The validity of the stability analyses and the proposed control methods has been 

verified by simulation and experiment. 

In the thesis, several current control methods have been studied, which can be 

basically classified into two types: without or with active damping. The control 

without active damping includes the single-loop ICF and GCF, and also the PDF for 

ICF. The control with active damping includes the dual-loop approach with an inner 

ICF or CCF damping loop, and also the PDF for GCF. The control without active 

damping is very simple, but the stability is delay-dependent, which means the sys-

tems are only stable in certain sampling frequency ranges. By contrast, the control 

with active damping is more complicated in structure and design, but the systems can 

be made stable under different conditions. Furthermore, active damping methods im-

prove the harmonic attenuation capability for the grid current. To sum up, these cur-

rent control methods can be employed according to different requirements. 
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7.2 Future Work 

Based on the research achievements, various issues can be taken care of in the 

future work. 

At present active damping techniques for the LCL resonance is a hot research 

subject. The active damping strategies involved in this thesis include multiloop-based 

inner inverter current and capacitor current proportional feedback damping, and sin-

gle-loop with the GCF through a high-pass filter. Apart from these feedback variables, 

the capacitor voltage can be sensed to form an inner damping loop using different 

feedback strategies such as lead-lag networks [40, 72, 81]. Filter-based active damp-

ing methods are also widely researched [79]. Recently, numerous new and interesting 

damping methods, mainly multiloop-based, have been reported [63, 64, 121]. There-

fore, the existing active damping methods can be reviewed and compared. Further-

more, the virtual impedance method could be applied to investigate the damping ef-

fect of the various methods and thus to give an explicit overview and comparison. 

As introduced in Chapter 5, in the SRF the cross-coupling between d- and q-axis 

currents of the LCL system is complicated, which will affect the transient response 

and even cause stability problems. The coupling has not been completely eliminated 

in the work. Several attempts have been made by different researchers to cancel the 

coupling, but the result is unsatisfactory or the method is rather complicated [41, 45, 

92, 93]. Considering the fact that the complex vector models have taken the coupling 

into consideration, complex vector based method would be effective to achieve the 

target. The complex vector modeling and control method for the LCL-filtered 

grid-connected inverter has been introduced in the thesis. Based on the achievement, 

a complex vector method could be developed to eliminate the cross-coupling.  

In the thesis, the grid voltage is considered as balanced. However, grid faults 

usually give rise to the appearance of unbalanced grid voltages. The unbalanced con-

dition may bring in negative effects like introducing uncontrolled oscillations in the 

active and reactive power delivered to the grid. According to the grid requirements, 
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the DPGSs should have a fault ride-through capability against short grid disturbances. 

This is achieved by proper control of the grid-connected inverters. The PDF control 

method and the proposed harmonic attenuation method could be applied and tested 

under non-ideal conditions to see whether they can improve the fault ride-through 

capability. Furthermore, novel strategies for instantaneous active and reactive power 

control are promising in enhancing the fault ride-through capability, for example 

those can obtain different power and current characteristics according to different 

requirements. 
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Appendix A 

 

A Derivation Example of the Stable Ranges of 

Time Delay in the Discrete z-Domain 

This is a derivation example of the stable ranges of time delay in Chapter 3. 

For the GCF, Gg(z) in (3.17) can be written as 

3 2

3 2
( )

( ) ( 1)
PWM

g
i g res

k z a z b zc d
G z

L L z z z e zeω
+ + +=

+ − + − ,          (A.1) 

with a = mθ – sin mθ, b = (1 – m)θ – sin (1 – m)θ + 2 sin mθ – 2mθ cos θ, c = mθ – 

2(1 – m)θ cos θ – sin mθ + 2sin(1 – m)θ, d = (1 – m)θ – sin (1 – m)θ, e = 2cos θ + 1, 

and θ = ωresTs (θ < π). With Gc(s) = kp, the denominator of the closed-loop transfer 

function (3.19) is denoted as  

 3 2 1 3 2( )D z z z e z e z z Ka z Kb zKc Kd+ + += − + − + + + +    ,       (A.2) 

where K = 
kpkPWM

(Li+Lg)ωres
.  

Taking ℓ	= 1 and 0 ≤ m < 1, i.e., 0 < λ (λ =	ℓ	– m) ≤1 for example, in this case 

D(z) = z4 + (Ka – e)z3 + (Kb + e)z2 + (Kc – 1)z + Kd. Using the w-transform z = (w + 1) 

/ (w – 1), D(w) can be expressed as 
4 3 2

1 4
1

( ) ( )
( 1)

w
z

w

Aw Bw Cw Dw E
D w D z

w
+=
−

+ + + += =
−

,      (A.3) 

with A = K(a + b + c + d), B = 2(3 + Ka – Kc – 2Kd – e), C = 2(3 – Kb + 3Kd – e), D 

= 2(1 – Ka + Kc – 2Kd + e), E = 2 – Ka + Kb – Kc + Kd + 2e. Defining e1 = 1 + e = 

2(1 + cos θ), e2 = 3 – e = 2(1 – cos θ), K1 = K(a – c – 2d), K2 = K(–b + 3d), K3 = K(–a 

+ c – 2d), and K4 = K(–a + b – c + d), we have: 

 2 2 1 2 2 1 3 1 4, 2( ), 2( ), 2( ), 2 .A K e B e K C e K D e K E e Kθ= = + = + = + = +   (A.4) 

Note that 0 < θ < π, e1 > 0 and e2 > 0 are obtained, hence A > 0, B > 0, C > 0, D > 0, 

and E > 0. 

To ensure system stability, all of the roots of the characteristic equation Aw4 + 

Bw3 + Cw2 + Dw + E = 0 should be in the LPH, this can be evaluated using the 
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Routh’s stability criterion. The Routh array of Aw4 + Bw3 + Cw2 + Dw + E = 0 is 

given as: 

w4: A C E 

w3: B D  

w2:
BC AD

B

−
 E  

w1:
2B E

D
BC AD

−
−

  

w0: E   

A > 0, B > 0, and E > 0 have been satisfied. To ensure stability BC – AD > 0 and 

BCD – AD2 – B2E > 0 are also required, i.e., 

2 1 2 2 2 1 3

2 2
2 1 2 2 1 3 2 1 3 2 1 1 4
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  (A.5) 

Note that K1, K2, K3, and K4 all contain a factor of K, the first inequality can be 

fulfilled using an infinitely small K (i.e., by setting an infinitely small kp). The sec-

ond inequality can be simplified to (A.6) below when an infinitely small K is used so 

that the second-order and third-order terms for K can be eliminated. 

2
3 4 2 2 1 1 1(2 ) 2( )K K e K K e K eθ− + − >                (A.6) 

Eliminating K in (A.6) gives 

2( 3 5 )(3 ) 2( 5 )(1 ) (1 )a b c d e a b c d e eθ− − + − − + − − + + + > + ,    (A.7) 

which can be converted to  
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Finally, because ωresTs < π and in this GCF example 0 < λ ≤1, the following sta-

ble range of time delay is obtained 
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( ) ( ) , (0 1)

2 2 2s
res res

Tλ λ λ
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Appendix B 

 

Transformation between Discrete Complex 

Transfer Functions in Stationary Frame and 

SRF 

This is a derivation of the relationship between discrete complex transfer func-

tions in the stationary frame and SRF in Chapter 5. 

 

( )s zG
( )zαβx ( )zαβy

ˆje θ
( )dq zx ( )dq zy

ˆje θ−
( )tαβy ( )dq ty( )dq tx ( )tαβx

( )zG  

Figure B.1: Signal transmission diagram. 

 

The diagram of signal transmission in the stationary frame and SRF is shown in 

Figure B.1, where x is the input signal and y the output. Gs(z) and G(z) are discrete 

complex transfer functions in the stationary frame and SRF, respectively, i.e., Gs(z) = 

yαβ(z) / xαβ(z) and G(z) = ydq(z) / xdq(z). 

The sequence yαβ(t) can be written as 
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Its Laplace transform expression is 
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Using z = esTs, yαβ(z) can be yielded as 
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According to the Laplace transform in the stationary frame and SRF, i.e., 

( ) ( )ˆ
( ) ( ) ( )dq n

jeL t L t s jαβ
θ

αβ ω−= = +f f f [117, 118], we have 
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Hence, ydq(z) is yielded as 
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              (B.5) 

Likewise, the z-transform of the input signals in the two frames results in xdq(z) = 

xαβ(zejωnTs). Therefore, the transformation between discrete complex transfer func-

tions in the stationary frame and SRF is given as: 

( ) ( )n sj Tsz ze ω=G G                        (B.6) 
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Appendix C 

 

Derivation of Different Forms for the z-Domain 

Complex Vector Plant Model in the SRF 

This is a derivation of different forms for the discrete SRF complex vector model 

in Chapter 5. 
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Alternatively, Gg(z) can be expressed as: 
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Appendix D 

 

Derivation of Discrete Plant Transfer Functions  

This derivation aims to obtain the discrete plant transfer functions in Chapter 6, 

for the case with a processing time delay of e–sλTs (0 < λ ≤ 1).  

Defining the following terms: 
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The transfer function ( )
i ii vG s can be split to 
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With the processing time delay e–sλTs, the z-domain transfer function Gi(z) is yielded 

as 
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Equation (D.3) can be deduced using the following property [23, 74] 
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Then the discrete transfer function Gg(z) can be deduced as 
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