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ABSTRACT 

A direct current rotating gliding arc (RGA) reactor co-driven by a magnetic field and tangential 

flow has been developed for the non-oxidative decomposition of methanol into hydrogen and other 

valuable products. The influence of input CH3OH concentration and carrier gas (N2 and Ar) on the 

reaction performance of the plasma process has been investigated in terms of the conversion of 

methanol, product selectivity, and energy efficiency of the process. The maximum CH3OH 

conversion of 92.4% and hydrogen selectivity of 53.1% are achieved in the plasma methanol 

conversion using N2 as a carrier gas. Optical emission diagnostics has shown the formation of a 

variety of reactive species (e.g., H, OH, CH, CN, N2 and C2) in the plasma decomposition of 

methanol. The vibrational and electronically excited species (e.g., N2 (
3

A Σu

 ) and Ar*) could be 

critical in the conversion of CH3OH, leading to a higher CH3OH conversion in the CH3OH/N2 RGA 

due to the presence of more reaction pathways. Compared to other non-thermal plasmas, the RGA 

plasma shows a much better process performance, offering a promising and flexible route for 

hydrogen production. 
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spectroscopy; Reaction mechanisms 

 

1. Introduction 

Recently, the development of novel and cost-effective hydrogen production processes has attracted 

significant interest due to the depletion of fossil fuels and the environmental impact of the usage of 

fossil fuels. However, technical problems with the handling, storage, and transport of hydrogen 

largely limit its widespread use, particularly in portable fuel cells which have been considered as a 

promising alternative to the traditional battery technology [1]. The development of portable 

hydrogen generation systems could provide a source of clean hydrogen for portable fuel cells [2]. 

Methanol has been considered as an excellent H2-containing source for portable hydrogen 

production due to its high hydrogen to carbon ratio, easy transportation, and low boiling point [3-8]. 

Catalytic steam reforming of methanol has been extensively investigated for hydrogen production 

[9]. However, this process still faces technical challenges that limit its use in a commercial-scale 

system. Although significant efforts have been devoted to find active, stable, and cost-effective 

catalysts for producing hydrogen from methanol, rapid deactivation of catalysts and the requirement 

of high temperature in the reforming process incur high energy and operational costs and 

consequently limit its industrial applications, particularly in on-board hydrogen production systems 

[10]. 

Non-thermal plasma technology provides an attractive alternative to the conventional catalytic 

route for methanol conversion at a relatively low temperature [1-8, 11, 12]. In non-thermal plasmas, 

the overall gas temperature can be as low as room temperature, while the electrons are highly 

energetic, with a typical electron temperature of 1-10 eV, which is sufficient to break down most 

chemical bonds of gas molecules and produce chemically reactive species including the excited 
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atoms, ions and molecules for the initiation and propagation of chemical reactions [12]. High 

reaction rate and fast attainment of steady state in the plasma processes allows rapid start-up and 

shutdown of the plasma process, providing highly flexibility to be integrated into portable hydrogen 

production systems [11, 12]. Different non-thermal plasma systems have been developed for 

methanol conversion into hydrogen to maximize hydrogen production and energy efficiency of the 

plasma process, such as microhollow cathode discharge (MHCD) [2], microwave discharge [5-8], 

and dielectric barrier discharge (DBD) [13]. However, the relatively low power level of these 

plasma systems makes it difficult to achieve high, efficient conversion of methanol at a high gas 

flow rate, restricting the potential scale-up of this process [14]. For instance, Futamura et al. 

reported a methanol conversion of only 8-26% can be obtained at a feed N2 flow rate of 100 ml/min 

and an input CH3OH concentration of 1% in the plasma decomposition of methanol using a DBD 

[15]. 

Gliding arc discharge (GAD) has been considered as a transitional plasma with a relatively high 

electron density and high flexibility to work in a wide range of reactant flow rates and plasma 

power levels (up to several kW) [11, 16-18]. In a traditional GAD reactor that consists of two 

divergent knife-shaped electrodes, high flow rate (e.g., 10-20 l/min) is generally required to push 

the arc moving along the electrodes, generating a discharge zone for chemical reactions. As a 

consequence, the fast gas speed and limited two-dimensional plasma reaction area confined by the 

flat electrodes lead to a low retention time of reactants, thereby limiting the conversions of reactants 

and the energy efficiency of the plasma process [14, 19]. 

A direct current (DC) rotating gliding arc (RGA) co-driven by a magnetic field and tangential 

flow has been developed for hydrogen production from methane conversion in our previous work 

[19]. Compared to the traditional gliding arc system with knife-shaped electrodes, the RGA reactor 
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can generate a synergetic effect resulting from the combination of swirling flow and Lorentz force, 

which can make the arc rotate rapidly and steadily without extinction (with a rotational speed of up 

to 100 rotations per second) with a wide range of gas flow rate (e.g., 0.05-40 l/min), creating a 

three-dimensional stable plasma area with the increased retention time of the reactants in plasma 

chemical reactions. Our previous study showed that this RGA system significantly improved the 

performance of plasma methane conversion with a maximum CH4 conversion of 91.8%, a hydrogen 

selectivity of 80.7% and a maximum energy yield of H2 of 22.6 g/kWh [19]. 

In this study, an RGA plasma reactor has been developed for the non-oxidative decomposition 

of methanol into hydrogen. N2 and Ar have been commonly used as the carrier gases in the plasma 

processes for energy conversion and fuel production [2, 5, 20]. Significant efforts have been 

devoted to investigating the effect of different operating parameters (e.g., input power, flow rate, 

etc.) on the performance of plasma chemical reactions, whereas less attention has been paid to 

understand the role of different carrier gases in the plasma chemical processes. This is of primary 

importance because different carrier gases will generate different reactive species and significantly 

affect the plasma chemical reactions in different ways, especially the methanol decomposition 

process [19, 21]. In this work, the effect of input CH3OH concentration and carrier gas (N2 and Ar) 

on the reaction performance (e.g., conversion of methanol, selectivity of gas products, and energy 

efficiency) of the methanol conversion process has been investigated in an RGA plasma reactor. 

Optical emission spectroscopy (OES) has been used to give new insights into the formation of 

reactive species in the plasma chemical reactions. In addition, the possible reaction pathways in the 

plasma methanol decomposition process using different carrier gases have been discussed. Finally, a 

comparison of the methanol conversion process using different plasma systems has been carried 

out. 
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2. Experimental 

2.1 Experimental setup and gas analysis 

Fig. 1 shows the schematic diagram of the experimental set-up. A con-shaped stainless steel 

electrode (anode) is placed inside a circular stainless steel cylinder which acts as a cathode. A more 

detailed description of the RGA reactor can be found in our previous work [19]. The carrier gas (N2 

or Ar) was injected through three tangential inlets at the bottom of the reactor to form a swirling 

flow in the reactor. A magnet was placed outside the reactor to generate a magnetic field for the 

stabilization and acceleration of the arc. With the combined effect of swirling flow and Lorentz 

force, the arc moves upward and finally rotates rapidly around the inner electrode, forming a stable 

plasma volume for chemical reactions. 

 

 

Fig. 1 – Schematic diagram of the experimental setup 

 

Methanol was controlled and injected into the gas tube using a high-resolution syringe pump 
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(Harvard, 11 plus). In this way, the total feed flow rate (0.6 mol/min) of the mixed stream and input 

CH3OH concentration (5-35 mol %) could be controlled. The mixed stream was then heated to 

100 °C in a stainless steel pipe with an inner diameter of 4 mm (40 cm in length) equipped with a 

temperature controller system, to generate a steady-state vapor before flowing into the RGA reactor. 

The quartz cover of the plasma reactor was also heated to 100 °C to prevent any vapor condensation 

on the inner wall of the reactor. The plasma reactor was connected to a DC power supply (380 V/10 

kV) with a 40-kΩ resistance connected in the circuit to limit and stabilize the breakdown current. A 

two-stage condenser was placed at the exit of the plasma reactor to collect the condensable vapors 

in the effluent: the first-stage condenser pipe was equipped with an ice water circulation system, 

while the second-stage liquid trap was placed inside the ice water container.  

The gaseous products were measured by a gas chromatography (GC9790A, Fuli Analytical 

Instrument) equipped with a thermal conductivity detector (TCD) for the detection of H2, O2, and 

N2 and a flame ionization detector (FID) for the analysis of CO, CO2, and hydrocarbons. The 

condensed liquid was measured by a gas chromatography – mass spectrometry (JEOL, 

JMS-Q1050GC). We found the condensed liquid was mainly methanol with trace amounts of 

ethanol, propanol and ethylene glycol. Thus, the volume of the condensed liquid can be roughly 

regarded as the volume of the unreacted methanol after the plasma reaction [4, 6, 22-24]. The 

emission spectra of the plasmas were recorded by a 750-mm monochromator (PI-Acton 2750, 

grating: 1800 grooves/mm) equipped with an intensified charge-coupled device (ICCD, PI-MAX 2, 

512×512 pixel). An optical fiber was placed at the exit of the RGA reactor to collect the plasma 

radiation. 
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2.2 Definition of parameters 

For the plasma methanol decomposition process, the conversion of CH3OH is defined as: 

%100
input OHCH of moles

converted OHCH of moles
(%) OH)(CH

3

3
3 X  (1)  

The selectivities (S) of the products can be calculated: 

%100
converted OHCH of moles2

produced H of moles
(%) )(H

3

2
2 


S  (2) 

%100
converted OHCH of moles

produced CO of moles
(%) (CO)

3

S  (3) 

%100
converted OHCH of moles

produced CO of moles
(%) )(CO

3

2
2 S  (4) 

%100
converted OHCH of moles

produced HC of molesm
(%) )H(C

3

nm
nm 


S  (5) 

The energy yield of H2 is defined as: 

100%
60/3600000(W)

min.per  produced H of grams
(g/kWh) )(H

2
2 




power
EY  (6) 

The energy conversion efficiency (ECE) of the process is calculated based on the change of the 

lower heating values (LHV) of the fuels before and after the reaction. 

100%
minper  converted OHCH of moles60/1000(W)

p
(%)

CH3OH3

ii




 


LHVpower

LHV
ECE  (7) 

Where pi refers to the moles of produced fuel i (i: H2, CO, CH4, C2H4, and C2H2) per minute. 

(LHVH2 = 241.6 kJ/mol, LHVCO = 283.0 kJ/mol, LHVCH4 = 803.7 kJ/mol, LHVC2H4 = 1331.5 kJ/mol, 

LHVC2H2 = 1265.376 kJ/mol, LHVCH3OH = 638.5 kJ/mol) 

 

3. Results and discussion 

3.1 Plasma decomposition of methanol 



8 

8 

 

H2 and CO were the major gaseous products in the non-oxidative decomposition of methanol using 

the RGA plasma, while trace amounts of CO2, CH4, C2H2, and C2H4 (total selectivity: 1.1-3.8%) 

were also formed. C2H6 was only detected with a selectivity of 0.5% in the conversion of 5% 

methanol using the argon RGA plasma. Note that C2H6 was identified as the main C2 hydrocarbons 

in plasma processing of hydrocarbons using dielectric barrier discharges [25, 26]. However, 

previous work has also shown the shift of the distribution of C2 hydrocarbon from C2H6 to C2H2 and 

C2H4 in the dry reforming of methane and carbon dioxide using an AC gliding arc plasma [11]. No 

C3 or higher hydrocarbons gases were detected in this experiment. In the plasma partial oxidation or 

steam reforming of methanol, significant undesired gaseous byproducts were often generated with 

high selectivity, such as HCHO (45-60% selectivity) [27] and CO2 (11.8-95% selectivity) [13, 24], 

the plasma non-oxidative methanol decomposition process using an RGA reactor could produce 

much cleaner gas products of which the syngas is the main one. 

The effect of input CH3OH concentration on the discharge power of the CH3OH/N2 and 

CH3OH/Ar RGA plasmas is shown in Fig. 2. As we can see, the discharge power (149.8-349.4 W) 

of the CH3OH/N2 plasma is much higher than that of the CH3OH/Ar plasma (105.2-271.6 W) at the 

same CH3OH concentration. In both plasma chemical reactions, the discharge power initially 

increases with the increase of the input CH3OH concentration to 20%, over which the discharge 

power is saturated when further increasing the CH3OH concentration to 35%. 

Fig. 3 shows the effect of input CH3OH concentration on the conversion of CH3OH. Increasing 

the CH3OH concentration leads to a significant decrease of the CH3OH conversion, even though the 

discharge power of the plasmas is initially increased with methanol concentration. The conversion 

of CH3OH is higher in the CH3OH/N2 plasma than that in the CH3OH/Ar RGA at the same 

methanol concentration, since the higher discharge power is generated in the CH3OH/N2 plasma 
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with more reaction pathways due to the formation of a variety of excited species such as vibrational 

excited N2 and electronically excited N2. 

 

 

Fig. 2 – Effect of input CH3OH concentration on the discharge power 

 

Fig. 3 – Effect of input CH3OH concentration on CH3OH conversion 

 

Fig. 4 shows the influence of the CH3OH concentration on the selectivity of H2 and CO and the 
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H2/CO molar ratio. The selectivity of H2 and CO produced in the CH3OH/N2 RGA is significantly 

higher than that in the CH3OH/Ar plasma, especially at a high methanol concentration (> 20%). The 

effect of the CH3OH concentration on the selectivity of H2 and CO shows a similar evolution in 

both plasma chemical processes: the selectivity of syngas increases almost linearly as the CH3OH 

concentration initially increases from 5 to 15 %, and then plateaus to an almost constant value when 

further increasing the methanol concentration. 

 

 

Fig. 4 – Effect of input CH3OH concentration on (a) H2 selectivity and CO selectivity; and (b) 

H2/CO molar ratio 

 

It is expected that N-containing products (e.g., NH3 and HCN) were produced in the plasma 

methanol decomposition process in the CH3OH/N2 plasma, as evidenced from the present of NH 

and CN bands in the emission spectra of the CH3OH/N2 plasma. 

From the stoichiometry of methanol decomposition reaction, a H2/CO molar ratio of 2 would 
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be expected. In this study, the H2/CO ratio is slightly below 2 for most operating conditions. We can 

see that increasing the CH3OH concentration from 5 to 10% leads to a noticeable drop of the H2/CO 

ratio from 2.51 to 2.07 in the CH3OH/N2 plasma, while the H2/CO molar ratio in the CH3OH/Ar 

RGA increases from 1.52 to 2.00. This might be attributed to the formation of different byproducts 

in both plasma systems. As the methanol concentration increases from 10% to 35%, the H2/CO 

molar ratio in the CH3OH/N2 plasma slightly decreases, whilst this parameter in the CH3OH/Ar 

plasma is almost constant. 

Fig. 5 shows the effect of CH3OH concentration on the selectivities of gaseous byproducts. The 

selectivity of the gas products (CO2, CH4, C2H2, and C2H4) in the CH3OH/N2 plasma decreases in 

the order: CH4  C2H2  C2H4 ≈ CO2, whilst in the CH3OH/Ar gliding arc, the selectivity of these 

gases follows the order CO2  CH4  C2H2  C2H4. CO2 was formed with significantly higher 

selectivity in the CH3OH/Ar RGA compared to the CH3OH/N2 plasma. Increasing the concentration 

of CH3OH from 5 to 35% significantly decreases the CO2 selectivity from 46.30 to 1.15% in the 

CH3OH/Ar plasma. In contrast, the selectivity of CO2 is almost independent on the input 

concentration of CH3OH in the CH3OH/N2 plasma and remains low (0.2%).  

In the plasma methanol conversion process, CO2 is more likely to be formed from the reaction 

of CO with OH radicals (Eq. (8)) [7].  

CO + OH → CO2 + H (8) 

Strong OH bands were observed in the spectra of the CH3OH/Ar plasma, whereas no OH bands 

were detected in the spectra of the CH3OH/N2 RGA (see Fig. 9 and Fig. 10), which suggests that 

more CO2 could be produced via Eq. (8) when Ar is used as a carrier gas, leading to a higher CO2 

selectivity. In addition, CO2 could also be formed from the Boudouard reaction of CO: 

2CO → CO2 + C  (9) 
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Very low selectivity of CO2 (0.2%) was obtained in the CH3OH/N2 RGA, which reveals that 

this reaction (Eq. (9)) might be inhibited in the plasma methanol conversion process using N2 as a 

carrier gas.  

 

 

Fig. 5 – Effect of input CH3OH concentration on the selectivity of gaseous byproducts (a) CO2, 

(b) CH4, C2H2, and C2H4 
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Fig. 6 – Effect of input CH3OH concentration on energy conversion efficiency and energy 

yield of H2  

 

The effect of CH3OH concentration on the energy conversion efficiency and energy yield of H2 

is presented in Fig. 6. Both parameters follow the similar evolution of the selectivity of H2 and CO 

with the increase of the CH3OH concentration (Fig. 4). At a CH3OH concentration of higher than 

20%, both the energy conversion efficiency and energy yield of H2 are higher in the CH3OH/N2 

RGA than those in the CH3OH/Ar RGA. 

We find that the selectivities of gas products are almost constant as the methanol concentration 

varies between 15% and 35%, except the CO2 selectivity in the argon plasma process, as shown in 

Figs. 4 and 5. This phenomenon suggests that there might be no significant changes of the dominant 

reaction routes in the plasma methanol conversion process. Fig. 7 shows the production of gaseous 

products increases linearly with increasing the converted methanol at the CH3OH concentration of 

15-35% in the CH3OH/N2 plasma. Similar evolution behavior of the gas products (except CO2) can 

be found in the Ar plasma-assisted methanol conversion process (Fig. 8). Note that the CO2 

formation decreases linearly with increasing the methanol converted, indicating that there is a 
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significant change in the formation of CO2. Both reactions can be globally represented by  

 

CH3OH/N2 RGA plasma 

1 CH3OH → 0.9993 H2 + 0.5801 CO + 0.0026 CO2 + 0.0182 CH4 + 0.0073 C2H2 + 0.0013 

C2H4 +…. (10) 

 

CH3OH/N2 RGA plasma 

1 CH3OH → 0.7648 H2 + 0.4113 CO + (variable) CO2 + 0.0130 CH4 + 0.0055 C2H2 + 0.0008 

C2H4 +…. (11) 

 

 

Fig. 7 – Production of gaseous products as a function of methanol converted in the CH3OH/N2 

RGA at the CH3OH concentration of 15-35% 
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Fig. 8 – Production of gaseous products as a function of methanol converted in the CH3OH/Ar 

RGA at the CH3OH concentration of 15-35% 

 

 

3.2 Optical diagnostics of plasma chemical processes 

Optical emission diagnostics has been carried out to understand the formation of reactive species 

and to give new insights into the possible reaction mechanisms in the plasma methanol conversion 

processes. Fig. 9 shows typical emission spectra of the CH3OH/N2 RGA. The spectra are clearly 

dominated by numerous strong CN (  22 XB , ∆v = 1, 0, -1) violet bands at an exposure time of 

500 μs. In addition, C I line (193.09 nm), N2 second positive system (
3 3

u gC B   ), NH 

(  33 XA ) at 336.0 nm, C2 swan system ( ug ad  33
, ∆v =1, 0), and CN violet system of ∆v 

= -2 can be observed using a long exposure time of 25 ms, as plotted in Fig. 9. 

Different emission spectra were detected in the CH3OH/Ar plasma (Fig. 10) to those in the 

CH3OH/N2 RGA. Besides the CN bands due to gas impurity, numerous C2 swan bands (∆v = 1, 0, 

-1) and weak CO fourth positive system (  11 XA , ∆v = 6-10) can be observed. In addition, OH 

(  22 XA , ∆v = 0) and CH (  22 XA , ∆v = 0) bands, as well as H Balmer lines (Hα, Hβ, 

and H) can be clearly seen in the spectra. In contrast, these bands (OH, CH, and C2) and H atomic 

lines cannot be found in the spectra of the CH3OH/N2 RGA. C I spectral lines at 193.09 nm and 
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247.87 nm, together with numerous argon atomic lines are also visible in the CH3OH/Ar plasma. Fe 

spectra lines from the electrode materials are detected in both plasma systems. An overview of these 

atomic lines and molecular bands that detected in the CH3OH/N2 and CH3OH/Ar plasmas is 

presented in Table 1. 

Vibrational temperature represents the chemical reactivity of vibrational excited species, and 

provides insight into the relative rates of vibration-vibration and vibration-translation energy 

exchange processes [28]. The vibrational temperature of CN in the CH3OH/N2 RGA was 

determined from a group of CN (  22 XB , ∆v=0) violet bands using a Boltzmann plot [29]. The 

results show that increasing the input concentration of CH3OH from 5 to 35% results in a 

quasi-linear drop of the vibrational temperature from 14300 ± 800 K to 8930 ± 1300 K in the 

CH3OH/N2 plasma, since CH3OH could quench the vibrational levels of CN [30]. It is interesting to 

note that the vibrational temperature in the CH3OH/N2 plasma is considerably higher than that of 

other typical non-thermal plasmas, such as DBD in N2 or Ar (2000-5000 K) [31-34] and glow 

discharge in N2 (2000-4000 K) [35]. In addition, the vibrational temperature in the CH3OH/N2 RGA 

plasma is also found higher than that of a pure N2 RGA plasma (4000 K) [36] and an air/water 

gliding arc with knife-shaped electrodes (3900-4500 K) [37], showing higher vibrational levels of  
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Fig. 9 – Typical emission spectra of the CH3OH/N2 plasma (CH3OH concentration= 5%, 

exposure time= 500 μs; for enlarged area: exposure time= 25 ms) 

 

 

Fig. 10 – Typical emission spectra of the CH3OH/Ar plasma (CH3OH concentration= 5%, 

exposure time= 25 ms) 

Table 1 – Overview of the atomic lines and molecular bands in the spectra of the CH3OH/N2 and 

CH3OH/Ar plasmas 

Species Transition 

Wavelength (nm) 

CH3OH/N2 CH3OH/Ar 

C I 2s22p2→2s22p3s 193.09 193.09, 247.87 
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N2 

3 3

u gC B    

(2, 1), (1, 0), (0, 0) 

312-316, 337.1 NDa 

NH 3 3
A X  , (0, 0) 336.0 ND 

CN 2 2
B X   

v =1, 0, 

-1 

355-360, 376-389, 410-420 

2nd order: 715-718.5, 

756-777, 808-844 

355-360, 376-389, 

410-420 

v =-2 444-461 ND 

C2 
3 3

g ud a    
v = 1, 0 464-474, 512-517 464-474, 512-517 

v = -1 ND 546-564 

CO 1 1
A Π X Σ , 6 10v    ND 190-250 

OH 2 2
A X


   , v = 0 ND 

306-320,  

2nd order: 611-640 

H Balmer system 

δ ND 410.2 

β ND 486.16 

α ND 656.3 

CH 2 2
A X  , v = 0 ND 

421-440 

2nd order:835-880 

Ar - ND 695-844 

Fe - 314.43, 334.23, 334.98 
314.4, 628.8, 647-655, 

795-810, 820-827, 880.9 

a ND: Not detected 

 

the RGA CH3OH/N2 plasma. The vibrational temperature of CN in the CH3OH/Ar plasma was also 

obtained using the aforementioned method by adding 5 mol % N2 into the CH3OH/Ar plasma, and 

the corresponding vibrational temperature is in the range of 6600 ± 900 to 8100 ± 400 K, which is 

also much lower than that in the CH3OH/N2 plasma. 

The electron density of the CH3OH/Ar plasma can be determined from the Stark broadening of 

the Ar atomic line at 696.5 nm. The detailed method can be found in previous works [38, 39]. The 

estimated electron density of the 5% CH3OH/Ar RGA is (1.53 ± 0.14)×1016 cm-3. This value is 

about an order of magnitude lower than that of the AC gliding arc with knife-shaped electrodes [11]. 
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In this study, the electron density obtained in the CH3OH/Ar and CH3OH/N2 RGA plasmas is 

significantly higher (several orders of magnitude) than that of typical non-thermal plasmas, such as 

DBD (1010-1013 cm-3) and corona discharge (109-1013 cm-3) [11, 40]. 

 

3.3 Reaction Mechanisms 

The possible dominant reaction pathways in the RGA decomposition of methanol are schematically 

shown in Fig. 11. At a high concentration of CH3OH (e.g., 20-35%), electron impact dissociation of 

methanol via different reaction channels (Eq. (12)-(18)) plays a dominant role in the decomposition 

of CH3OH into a variety of radicals or intermediates [41-43], with subsequent radical recombination 

reactions to form higher hydrocarbons or further dissociation of radicals and intermediates [25].  

CH3OH + e → CH3 + OH + e          (12) 

CH3OH + e → CH2OH + H + e         (13) 

CH3OH + e → CH3O + H + e          (14) 

CH3OH + e → CH2 + H2O + e         (15) 

CH3OH + e → tran-HCOH + H2 + e     (16) 

CH3OH + e → cis-HCOH + H2 + e      (17) 

CH3OH + e → CH2O + H2 + e          (18) 
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Fig. 11 – Possible reaction pathways of methanol decomposition in CH3OH/N2 and 

CH3OH/Ar gliding arc plasmas 

 

In the CH3OH/N2 and CH3OH/Ar gliding arc plasmas, initially formed highly energetic 

electrons interact with the carrier gas (N2 or Ar) to produce a cascade of processes yielding a variety 

of chemically reactive species including electronically excited metastable N2(
3

A Σu

 ), vibrationally 

excited N2(
2

X Σ ,g 


), and electronically excited Ar* species [44-47]. These excited species are 

believed to make a significant contribution to the dissociation of methanol (Eq. (19)-(21)) into a 

variety of radicals and intermediates (e.g., CH3, OH, CH2O, CH2OH), especially at a low 

concentration of methanol (e.g., 5%) [44, 45]. 

CH3OH + N2 (
3

A Σu

 ) → radicals and intermediates + N2 (19) 

CH3OH + N2 (
2

X Σ ,g 


) → radicals and intermediates + N2 (
2

X Σ , 'g 


) (20) 

CH3OH + Ar* → radicals and intermediates + Ar (21) 

Previous plasma modeling work has demonstrated that quenching reactions with metastable 

nitrogen N2 (
3

A Σu

 ) appear to be important in the destruction of ethylene (10-10000 ppm) besides 

the reactions with radicals in an atmospheric pressure air DBD, while the direct electron impact 
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dissociation reactions are negligible for the destruction of ethylene [47]. Diamy et al. have also 

shown that metastable N2 species are critical in the initial decomposition of methane in a CH4/N2 

glow discharge [30, 48]. In addition, Pintassilgo et al. have demonstrated that the vibrational excited 

N2 could contribute much to the decomposition of CH4 in a 2% CH4/N2 afterglow plasma [44, 45]. 

We can find that more reaction channels for the conversion of methanol exist in the CH3OH/N2 

plasma due to the formation of more excited species compared to the CH3OH/Ar plasma, which can 

also explain the higher conversion of methanol obtained in the plasma reaction using N2 as a carrier 

gas.   

CH2O is a key intermediate from the initial decomposition of methanol (Eq. (16)-(21)). CH2O 

is unstable in non-thermal plasmas and can be further decomposed to form H2 and CO through the 

dissociation with electrons and excited species (e.g., N2 (
3

A Σu

 ), N2 (
2

X Σ ,g 


), Ar*), 

CH2O + e, N2 (A), N2 (X, v) → CHO + H + e, N2, N2 (X, v’) (22) 

CHO + e, N2 (A), N2 (X, v) → CO + H + e, N2, N2 (X, v’) (23) 

H + H → H2  (24) 

H2 can also be generated from the direct dissociation of methanol (e.g., Eq. 16-21) or the 

recombination of H radicals from methanol decomposition (e.g., Eq. (24)).  

In addition, the H and OH radicals that present in the plasma bulk may also contribute to the 

conversion of CH2O and CHO through the following reactions, generating CO, H2, and H2O [49]. 

CH2O + H → CHO + H2 (25) 

CH2O + OH → CHO + H2O (26) 

CHO + H → H2 + CO  (27) 

CHO + OH → CO + H2O (28) 

Very low selectivities of hydrocarbons (mainly CH4, C2H2 and C2H4) have been obtained in the 
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CH3OH/N2 (2.7-3.8%) and CH3OH/Ar (1.1-2.6%) plasmas. The initially generated CH3 and CH2 

radicals are the key species to form these hydrocarbons (CH4, C2H2, and C2H4) through further 

dissociation or recombination reactions. For instance, CH4 can be formed from the recombination of 

CH3 and H, which can explain why the selectivity of CH4 is one order of magnitude higher than that 

of C2 hydrocarbons.  

Carbon can be mainly formed from the Boudouard reaction (Eq. (9)), which also leads to the 

formation of CO2. CO2 might also be formed via water gas shift reaction (Eq. (29)). 

CO + H2O → CO2 + H2 (29) 

 

3.4 Comparison of different plasma technologies for hydrogen production from methanol 

Table 2 shows a comparison of the performance (e.g., methanol conversion rate, selectivity of 

syngas, and energy yield of H2) of plasma methanol conversion using different processes and 

plasma systems.  

In the steam reforming of methanol using a pulsed gliding arc reactor, a high energy yield of H2 

was achieved with a relatively low conversion of methanol [3]. Note the energy cost for the 

production of steam has not been considered in the calculation of energy yield of H2. The 

combination of plasma with catalysts (e.g., Cu/Al2O3 and Cu/ZnO) was also used to enhance the 

conversion of CH3OH in the steam reforming of methanol by a DBD [13, 24]. However, the energy 

efficiency of the plasma-catalytic process is much lower in a DBD plasma reactor compared to that 

using a gliding arc.  
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Table 2 – Comparison of the performance of RGA plasmas with other non-thermal plasmas 

for hydrogen production from methanol conversion 

Plasma 

type 
Process 

Carrier 

gas 
Reactants 

Power supply/ 

Discharge 

power 

CH3OH 

conversion  

(%) 

S(H2) 

(%) 

S(CO) 

(%) 

H2/ 

CO 

EY(H2)c 

(g/kWh) 
Ref. 

Pulsed 

GAD 
SRa 

Ar  

2 l/min 

H2O + 5-85% 

CH3OH: 

2-20 ml/min 

AC, 250 Hz,  

25 kV, 

0.3-0.45W  

3-33 - - - 
~50- 

176 
[3] 

DBD + 

Cu/Al2O 

catalyst 

SR 
Ar  

10 ml/min 

H2O+50 % 

CH3OH;  

CH3OH: 

0.0165 ml/min 

AC, 18.5 kHz 

~12.5-21.5 W 
15-80 

~16- 

45 
- - ~0.5-16 [13] 

DBD + 

Cu/ZnO 

catalyst 

SR N2 

H2O + 50 % 

CH3OH;  

CH3OH: 0.008 

ml/min  

AC, 50 kHz, 

0-4 kV, 

0.12-0.47 W 

6-54.4 - ~3-14 - - [24] 

MHCD DECb 

N2  

10.5-23.7 

ml/min 

4.7-56.7%  

CH3OH 

DC,  

~0.8-1.3 W 
7.4-47.0 

55- 

80 

50- 

80 

1.5- 

2.8 
1.2-10.8 [2] 

GAD DEC 

Ar 

43.3-86.6 

ml/min 

17.4-37.8%  

CH3OH 
AC, < 300W 51.8-62.2 

43.4- 

49.5 

81.4- 

81.9 

1.14- 

1.2 
~6.9 [4] 

Corona  DEC 
Ar  

40 ml/min 

20-75%  

CH3OH 

AC, 2 kHz  

0.8 kV, 12 W 
10-80 - - - ~4.5 [22] 

DBD DEC 

N2 

100 

ml/min 

1%  

CH3OH 

AC, 50 Hz, 

0.21-1.99 W 
8-26 

12- 

21.7 

11.7- 

20.0  

1.96- 

2.70 

~0.05- 

0.63 
[15] 

RGA DEC  

Ar 

7.9-11.5 

l/min 5-35%  

CH3OH 

DC, 10 kV,  

105.2-271.6 W 
36.1-87.5 

14.8- 

44.3 

19.5- 

45.6 

1.52- 

2.00 

8.95- 

25.40 
This 

work N2 

8.8-12.8 

l/min 

DC, 10 kV,  

149.8-349.4 W 
43.0-92.4  

24.4- 

53.1 

19.4- 

60.3 

1.76- 

2.51 

10.94- 

34.54 

a SR: Steam reforming of methanol 

b DEC: Non-oxidative decomposition of methanol 

c The energy yield of H2 (1 g/kWh) corresponds to the energy cost of 31.67 kJ/mol H2 

 

In Table 2, we can see that non-oxidative decomposition of methanol offers relatively higher 

selectivities of H2 and CO, as well as higher H2/CO molar ratio, compared with steam reforming of 

methanol processes due to limited water gas shift reaction. Compared to other plasma systems (e.g. 
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DBD), the RGA plasma shows a significantly higher conversion of methanol, a relatively high 

selectivity of syngas, and a highest energy yield of hydrogen in plasma decomposition of methanol 

process. It is also interesting to note that the RGA plasmas can provide a feed flow rate, or 

processing capacity, of several orders of magnitude higher (e.g., 7.9-11.5 l/min) than that using 

other non-thermal plasma systems (e.g., 10.5-100 ml/min in a DBD reactor), whilst allowing for the 

conversion of a wider range of reactant concentration, both of which are beneficial to the industrial 

applications. 

 

4. Conclusions 

In this study, non-oxidative decomposition of methanol for hydrogen production has been carried 

out in the atmospheric pressure DC rotating gliding arc plasma reactor. The effect of carrier gas and 

input CH3OH concentration on the reaction performance of the plasma conversion processes has 

been evaluated. The use of N2 as a carrier gas in the plasma methanol conversion shows much better 

performance compared with the CH3OH/Ar gliding arc in terms of the CH3OH conversion, syngas 

selectivity, energy yield of H2, and energy conversion efficiency of the plasma process. It is found 

that increasing the input methanol concentration from 5 to 35 % significantly decreases the CH3OH 

conversion from 92.4 to 43.0 % in the CH3OH/N2 RGA and from 87.5 to 36.1 % in the CH3OH/Ar 

RGA. Optical emission diagnostics of the plasma process clearly shows the generation of a variety 

of reactive species in both plasmas. The estimated electron density of the 5% CH3OH/Ar plasmas is 

(1.53 ± 0.14) ×1016 cm-3, which is significantly higher than that of other typical non-thermal 

plasmas, such as DBD (1010-1013 cm-3) and corona discharges (109-1013 cm-3), indicating a high 

processing capacity of the RGA plasma. The vibrational and electronically excited species (e.g., N2 
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( 3
A Σu

 ), N2 (
2

X Σ ,g 


), Ar*) are expected to play an important role in the methanol decomposition 

process. we find that the RGA plasma can provide a feed flow rate, or processing capacity, of 

several orders of magnitude higher (e.g.,, 7.9-11.5 l/min) than that using other non-thermal plasma 

systems (e.g., 10.5-100 ml/min in a DBD reactor), whilst allowing for the conversion of a wider 

range of reactant concentration, both of which are beneficial to the industrial applications. 
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