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Abstract. Braess’s paradox states that removing a part of a network may improve the players’ latency
at equilibrium. In this work, we study the approximability of the best subnetwork problem for the class
of random Gn,p instances proven prone to Braess’s paradox by (Roughgarden & Valiant, RSA ’10) and
(Chung & Young WINE ’10 - Chung, Young & Zhao, RSA ’12). Our main contribution is a polynomial-
time approximation-preserving reduction of the best subnetwork problem for such instances to the
corresponding problem in a simplified network where all neighbors of source s and destination t are
directly connected by 0 latency edges. Building on this, we consider two cases, either when the total
rate r is sufficiently low, or, when r is sufficiently high.
In the first case of low r = O(n+), here n+ is the maximum degree of {s, t}, we obtain an approxi-
mation scheme that for any constant ε > 0 and with high probability, computes a subnetwork and an
ε-Nash flow with maximum latency at most (1 + ε)L∗ + ε, where L∗ is the equilibrium latency of
the best subnetwork. Our approximation scheme runs in polynomial time if the random network has
average degree O(poly(lnn)) and the traffic rate is O(poly(ln lnn)), and in quasipolynomial time
for average degrees up to o(n) and traffic rates of O(poly(lnn)).
Finally, in the second case of high r = Ω(n+), we compute in strongly polynomial time a subnetwork
and an ε-Nash flow with maximum latency at most (1 + 2ε+ o(1))L∗.

1 Introduction

An instance of a (non-atomic) selfish routing game consists of a network with a source s and a sink t, and a
traffic rate r divided among an infinite number of infinitesimally small players. A picturesque way to see a
large network of links shared by many infinitesimally small selfish users is as a large pipeline infrastructure
with users as liquid molecules flowing into it. Every edge has a non-decreasing function that determines
the edge’s latency caused by its traffic. Each player routes a negligible amount of traffic through an s − t
path. Observing the traffic caused by others, every player selects an s − t path that minimizes the sum
of edge latencies. Thus, the players reach a Nash equilibrium (a.k.a., a Wardrop equilibrium), where all
players use paths of equal minimum latency, while the remaining unused paths have higher (unappealing)
latency. Under some general assumptions on the latency functions, a Nash equilibrium flow (or simply a
Nash flow) exists, it is efficiently computable and the common players’ latency in a Nash flow is essentially
unique (see e.g., [39]).

When the owner of such a selfishly congested network tries to improve its flow speed, the common
sense suggests to focus and fix links that seem older and slower. Contrary to this belief, Braess’s paradox
illustrates that destroying a part of a network, even of the most expensive infrastructure, can improve its
performance. So a wise owner should take steps cautiously and benefit by exploiting the nature of this
paradox. There are a few natural approaches for improving network performance. A simple approach, not
requiring any network modifications, is Stackelberg routing. The network owner dictatorially controls a
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Fig. 1. (a) The optimal total latency is 3/2, achieved by routing half of the flow on each of the paths (s, v, t) and
(s, w, t). In the (unique) Nash flow, all traffic goes through the path (s, v, w, t) and has a latency of 2. (b) If we remove
the edge (v, w), the Nash flow coincides with the optimal flow. Hence the network (b) is the best subnetwork of network
(a).

small fraction of flow, aiming to improve the induced routing performance of the remaining selfish flow.
Unfortunately, there are examples of unboundedly bad performance under any possible control attempt
made by the owner. Another side effect is that the dictatorially controlled flow is usually sacrificed through
slower paths, compared to the latency faced by the remaining free flow. An alternative approach is to
introduce economic incentives, usually modeled as flow-dependent per-unit-of-flow tolls, that influence
the users selfish choices towards improving performance. However, the idea of tolls is not appealing to the
users, since large tolls increase the users disutility: routing time plus tolls paid, see details in [8]. A simple
and easy to implement way out from the above side effects is to exploit the essence of Braess’s paradox
towards improving network performance.

Previous Work. It is well known that a Nash flow may not optimize the network performance, usually
measured by the total latency incurred by all players. Thus, in the last decade, there has been a significant
interest in quantifying and understanding the performance degradation due to the players’ selfish behavior,
and in mitigating (or even eliminating) it using several approaches, such as introducing economic disincen-
tives (tolls) [8] for the use of congested edges, or exploiting the presence of centrally coordinated players
(Stackelberg routing) [38], see also [39] for more references. A simple way to improve the network perfor-
mance at equilibrium is to exploit Braess’s paradox [4, 33], namely the fact that removing some edges may
improve the latency of the Nash flow(see e.g., Fig. 1 for an example and [34, 40] for more bibliography).
Thus, given an instance of selfish routing, one naturally seeks for the best subnetwork, i.e. the subnetwork
minimizing the common players’ latency at equilibrium. Compared against Stackelberg routing and tolls,
edge removal is simpler and more appealing to both the network administrator and the players (see e.g.,
[12] for a discussion).

Despite the intense research [37, Sect. 5.1.2] for algorithmically detecting the paradox, little positive
results have been shown rigorously. Unfortunately, Roughgarden [40] proved that it is NP-hard not only
to find the best subnetwork, but also to compute any meaningful approximation to its equilibrium latency.
Specifically, he proved that even for linear latencies, it is NP-hard to approximate the equilibrium latency of
the best subnetwork within a factor of 4/3−ε, for any ε > 0, i.e., within any factor less than the worst-case
Price of Anarchy for linear latencies. On the positive side, applying Althöfer’s Sparsification Lemma [1,
27], Fotakis, Kaporis, and Spirakis [12] presented an algorithm that approximates the equilibrium latency
of the best subnetwork within an additive term of ε, for any constant ε > 0, in time that is subexponential
if the total number of s− t paths is polynomial, all paths are of polylogarithmic length, and the traffic rate
is constant.

Interestingly, Braess’s paradox can be dramatically more severe in networks with multiple sources and
sinks. More specifically, Lin et al. [25] proved that for networks with a single source-sink pair and general
latency functions, the removal of at most k edges cannot improve the equilibrium latency by a factor greater
than k + 1. On the other hand, Lin et al. [25] presented a network with two source-sink pairs where the
removal of a single edge improves the equilibrium latency by a factor of 2Ω(n). As for the impact of the
network topology, Milchtaich [31] proved that Braess’s paradox does not occur in series-parallel networks,
which is precisely the class of networks that do not contain the network in Fig. 1.a as a topological minor.
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Recent work actually indicates that the appearance of Braess’s paradox is not an artifact of optimization
theory, and that edge removal can offer a tangible improvement on the performance of real-world networks
(see e.g., [23, 35, 39, 43]). In this direction, Valiant and Roughgarden [44] initiated the study of Braess’s
paradox in natural classes of random networks, and proved that the paradox occurs with high probability in
dense random Gn,p networks, with p = ω(n−1/2), if each edge e has a linear latency `e(x) = aex+be, with
ae, be drawn independently from some reasonable distribution. The subsequent work of Chung and Young
[6] extended the result of [44] to sparse random networks, where p = Ω(lnn/n), i.e., just greater than the
connectivity threshold of Gn,p, assuming that the network has a large number of edges ewith small additive
latency terms be. In fact, Chung and Young demonstrated that the crucial property for Braess’s paradox to
emerge is that the subnetwork consisting of the edges with small additive terms is a good expander (see also
[7]). Nevertheless, the proof of [6, 7, 44] is merely existential; it provides no clue on how one can actually
find (or even approximate) the best subnetwork and its equilibrium latency.

In all the work above, the graph G and the latencies ` are random. But, the traffic r is adversarial
and selected for the paradox to occur whp. Roughgarden raised the question of random traffic r > 0, or,
investigating the range of r that causes the paradox, citing the works [15, 35] with evidence of r ranges that
the paradox is unlikely. A related question is to identify the vulnerable network topologies [37, pp. 125-6]
that, given a graph G, there is a choice of traffic value rG and latency functions `G that cause the Braess
paradox to occur. As a sharp contrast, vulnerable graphs are easy [10, 33, 31].

Motivation and Contribution. The motivating question for this work is whether in some interesting set-
tings, where the paradox occurs, we can efficiently compute a set of edges whose removal significantly
improves the equilibrium latency. From a more technical viewpoint, our work is motivated by the results
of [6, 7, 44] about the prevalence of the paradox in random networks, and by the knowledge that in random
instances some hard (in general) problems can actually be tractable.

It is well known that a NP-completeness reduction may use complex structures that may rarely occur in
generic/realistic instances. NP-completeness focus to the worst-case analysis of a given class of instances,
while it provides limited or no information about the algorithmic hardness of the typical (overwhelming
majority of) instances. There is a need to get a bigger picture of the complexity landscape. Therefore, a
way to widen this limited view of an NP-hard proof, is to suggest the probabilistic analysis of algorithms
[20, 22]. Where, a meaningful target is to exhibit that algorithmic hard instances come up often, or show
that hard cases are rare, given a distribution that resembles most of the problem’s rich landscape. Towards
to achieve more insight in the underlying algorithmic complexity for the majority of the instances, random
instances are used for evaluating algorithms for NP-hard problems. Random instances are cheap and usu-
ally (but not always) lack structures that expose information and facilitate the running time of algorithms,
often unavoidably hidden in deterministic instances. Random instances often provide control parameters
for important characteristics, such as expected hardness and/or (in)solubility, that help to validate and im-
prove sophisticated heuristics [21, 32, 42]. Of course, instances obtained from real-world applications are
the best source, albeit of limited supply and sometimes suffer being structured/oriented towards specific
applications. On the positive side, there is a wide experience, constantly updated from ongoing compe-
titions [2, 9, 21], illustrating the strong correlation (wrt algorithm performance) between real-world and
random instances. Hence, in the last 20 years an area of intense research in Artificial Intelligence (AI) [5,
24, 30], Computer Science (CS) [13] and Statistical Mechanics (SM) [29] has been the typical algorithmic
complexity of hard problems wrt the Erdös-Rényi Gn,p (or G(n,m)) model [3] of random instances.

Departing from [6, 44], we adopt a purely algorithmic approach. We focus on the class of so-called
good selfish routing instances, namely instances with the properties used by [6, 44] to demonstrate the
occurrence of Braess’s paradox in random networks with high probability. In fact, one can easily verify
that the random instances of [6, 44] are good with high probability. Rather surprisingly, we prove that, in
many interesting cases, we can efficiently approximate the best subnetwork and its equilibrium latency.
What may be even more surprising is that our approximation algorithm is based on the expansion property
of good instances, namely the very same property used by [6, 44] to establish the prevalence of the paradox
in good instances! To the best of our knowledge, our results are the first of theoretical nature which indicate
that Braess’s paradox can be efficiently eliminated in a large class of interesting instances. In particular,
our work exploits algorithmically the paradox down to the connectivity threshold p = lnn

n wrt control
parameter p of a random Gn,p graph [11]. Our argument relies strongly to the existence of many “short
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& fast paths” that connect the neighbors of s to the neighbors of t. Since the existence of such paths is
critically related to the connectivity threshold, we believe it is also interesting to explore for parameter p
ranging below this threshold, whether the paradox can still be efficiently exploited or not. Another source
of randomness is the random coefficient model wrt edge latencies. But, our main focus is to assume the
same assumptions for the random edge coefficients as in [6, 7, 44]. Of course, if we change the coefficient’s
distribution it is possible to ruin the existence of such fast paths, despite p ranging above the connectivity
threshold.

Technically, we present essentially an approximation scheme. In the first case of low r = O(n+),
with n+ the maximum degree of {s, t}, given a good instance and any constant ε > 0, we compute a
flow g that is an ε-Nash flow for the subnetwork consisting of the edges used by it, and has a latency of
L(g) ≤ (1 + ε)L∗ + ε, where L∗ is the equilibrium latency of the best subnetwork (Theorem 1). In fact, g
has these properties with high probability. Our approximation scheme runs in polynomial time for the most
interesting case that the network is relatively sparse and the traffic rate r is O(poly(ln lnn)), where n is
the number of vertices. Specifically, the running time is polynomial if the good network has average degree
O(poly(lnn)), i.e., if pn = O(poly(lnn)), for random Gn,p networks, and quasipolynomial for average
degrees up to o(n). As for the traffic rate, we emphasize that most work on selfish routing and selfish
network design problems assumes that r = 1, or at least that r does not increase with the network’s size
(see e.g., [39] and the references therein). So, we can approximate, in polynomial-time, the best subnetwork
for a large class of instances that, with high probability, include exponentially many s − t paths and s − t
paths of length Θ(n). For such instances, a direct application of [12, Theorem 3] gives an exponential-time
algorithm. Finally, in the second case of high r = Ω(n+), we compute in strongly polynomial time a
subnetwork with maximum latency at most (1 + 2ε+ o(1))L∗.

The main idea behind our approximation scheme, and our main technical contribution, is a polynomial-
time approximation-preserving reduction of the best subnetwork problem for a good network G to a cor-
responding best subnetwork problem for a 0-latency simplified network G0, which is a layered network
obtained from G if we keep only s, t and their immediate neighbors, and connect all neighbors of s and
t by direct edges of 0 latency. We first show that the equilibrium latency of the best subnetwork does not
increase when we consider the 0-latency simplified network G0 (Lemma 1). Although this may sound rea-
sonable, we highlight that decreasing edge latencies to 0 may trigger Braess’s paradox (e.g., starting from
the network in Fig. 1.a with l′3(x) = 1, and decreasing it to l3(x) = 0 is just another way of triggering the
paradox). Next, we employ Althöfer’s Sparsification Lemma [1] (see also [26, 27] and [12, Theorem 3])
and approximate the best subnetwork problem for the 0-latency simplified network.

The final (and crucial) step of our approximation preserving reduction is to start with the flow-solution
to the best subnetwork problem for the 0-latency simplified network, and extend it to a flow-solution to
the best subnetwork problem for the original (good) instance. To this end, we show how to “simulate”
0-latency edges by low latency paths in the original good network. Intuitively, this works because due to
the expansion properties and the random latencies of the good network G, the intermediate subnetwork of
G, connecting the neighbors of s to the neighbors of t, essentially behaves as a complete bipartite network
with 0-latency edges. This is also the key step in the approach of [6, 44], showing that Braess’s paradox
occurs in good networks with high probability (see [6, Section 2] for a detailed discussion). Hence, one
could say that to some extent, the reason that Braess’s paradox exists in good networks is the very same
reason that the paradox can be efficiently resolved. Though conceptually simple, the full construction is
technically involved and requires dealing with the amount of flow through the edges incident to s and t
and their latencies. Our construction employs a careful grouping-and-matching argument, which works for
good networks with high probability, see Lemmas 5 and 6.

We highlight that the reduction itself runs in polynomial time. The time consuming step is the applica-
tion of [12, Theorem 3] to the 0-latency simplified network. Since such networks have only polynomially
many (and very short) s− t paths, they escape the hardness result of [40]. The approximability of the best
subnetwork for 0-latency simplified networks is an intriguing open problem arising from our work.

Our result shows that a problem, that is NP-hard to approximate, can be very closely approximated
in random (and random-like) networks. This resembles e.g., the problem of finding a Hamiltonian path
in Erdös-Rényi graphs, where again, existence and construction both work just above the connectivity
threshold, see e.g., [3]. However, not all hard problems are easy when one assumes random inputs (e.g.,
consider factoring or the hidden clique problem, for both of which no such results are known in full depth).
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2 Model and Preliminaries

Notation. For an event E in a sample space, IP[E] denotes the probability of E happening. We say that
an event E occurs with high probability, if IP[E] ≥ 1 − n−α, for some constant α ≥ 1, where n usually
denotes the number of vertices of the network G to which E refers. We implicitly use the union bound to
account for the occurrence of more than one low probability events.

Instances. A selfish routing instance is a tuple G = (G(V,E), (`e)e∈E , r), whereG(V,E) is an undirected
network with a source s and a sink t, `e : IR≥0 → IR≥0 is a non-decreasing latency function associated
with each edge e, and r > 0 is the traffic rate. A picturesque way to see the total traffic rate r in a large
network of links is that there are many infinitesimally small selfish users of total volume r that flow into a
large pipeline infrastructure. That is, users are considered as liquid molecules that start to flow from node s
through the available pipelines of the smallest latency, trying to reach destination node t. We let P (or PG,
whenever the network G is not clear from the context) denote the (non-empty) set of simple s− t paths in
G. For brevity, we usually omit the latency functions, and refer to a selfish routing instance as (G, r).

We only consider linear latencies `e(x) = aex + be, with ae, be ≥ 0. These encapsulate that the time
delay (latency), on any edge a particular commuter decides to walk, increases when x other commuters
also decide to walk along it, with a rate that depends on the road specific characteristics ae, be. We restrict
our attention to instances where the coefficients ae and be are randomly selected from a pair of distributions
A and B. Following [6, 7, 44], we define:

Definition 1. We say that A and B are reasonable if:
1. A has bounded range [Amin, Amax] and B has bounded range [0, Bmax], where Amin > 0 and Amax,
Bmax are constants, i.e., they do not depend on r and |V |.

2. There is a closed interval IA of positive length, such that for every non-trivial subinterval I ′ ⊆ IA,
IPa∼A[a ∈ I ′] > 0.

3. There is a closed interval IB, 0 ∈ IB, of positive length, such that for every non-trivial subinterval
I ′ ⊆ IB, IPb∼B[b ∈ I ′] > 0. Moreover, for any constant η > 0, there exists a constant δη > 0, such
that IPb∼B[b ≤ η] ≥ δη .

Subnetworks. Given a selfish routing instance (G(V,E), r), any subgraph H(V ′, E′), V ′ ⊆ V , E′ ⊆ E,
s, t ∈ V ′, obtained from G by edge and vertex removal, is a subnetwork of G. H has the same source s
and sink t as G, and the edges of H have the same latencies as in G. Every instance (H(V ′, E′), r), where
H(V ′, E′) is a subnetwork of G(V,E), is a subinstance of (G(V,E), r).

Given a network G and a traffic rate r, there are exponentially many subnetworks, each incurring its
own common path latency. Therefore the problem of detecting the particular subnetwork that achieves the
minimum common path latency is a combinatorial one with exponential worst case complexity.

Flows. Given an instance (G, r), a (feasible) flow f is a non-negative vector 〈fq : q ∈ P〉 indexed by P
such that

∑
q∈P fq = r. That is, fq is the amount of flow routed from s to t through the links of path q ∈ P .

For a flow f , let fe =
∑
q:e∈q fq be the amount of flow that f routes on edge e through all the paths that

traverse e. That is, path flow f induces the non-negative vector 〈fe : e ∈ E〉 indexed by E. Two flows f
and g are different if there is an edge e with fe 6= ge. An edge e is used by flow f if fe > 0, and a path q
is used by f if mine∈q{fe} > 0. We often write fq > 0 to denote that a path q is used by f . Given a flow
f , the latency of each edge e is `e(fe), the latency of each path q is `q(f) =

∑
e∈q `e(fe), and the latency

of f is L(f) = maxq:fq>0 `q(f). We sometimes write LG(f) when the network G is not clear from the
context. For an instance (G(V,E), r) and a flow f , we let Ef = {e ∈ E : fe > 0} be the set of edges used
by f , and Gf (V,Ef ) be the corresponding subnetwork of G.

Our notation is based on the fact that each path flow 〈fq : q ∈ P〉 induces a unique edge flow 〈fe :
e ∈ E〉, see [36, Th. 2.2]. In general, the converse is not true since in an edge flow it is possible to induce
cycles with positive flow, see [36, Sect. 2.2.2]. But, in our case, all edges have strictly increasing latencies,
therefore, in (or in a social optimum flow) a Nash equilibrium it is not possible for a positive amount of
flow to be trapped in cycles. This nice observation allows us to conveniently interchange between path and
edge flows. This nice fact that Nash flows are acyclic and independent of the particular flow decomposition
is extensively and implicitly being used in recent works, see for example in [38] Proposition 2.4 and the
paragraph above it.
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Nash Flow. A flow f is a Nash (equilibrium) flow, if it routes all traffic on minimum latency paths. For-
mally, f is a Nash flow if for every path q with fq > 0, and every path q′, `q(f) ≤ `q′(f). Therefore, in a
Nash flow f , all players incur a common latency L(f) = minq `q(f) = maxq:fq>0 `q(f) on their paths. A
Nash flow f on a network G(V,E) is a Nash flow on any subnetwork G′(V ′, E′) of G with Ef ⊆ E′.

Every instance (G, r) admits at least one Nash flow, and the players’ latency is the same for all Nash
flows (see e.g., [39]). Hence, we let L(G, r) be the players’ latency in some Nash flow of (G, r), and
refer to it as the equilibrium latency of (G, r). For linear latency functions, a Nash flow can be computed
efficiently, in strongly polynomial time, while for strictly increasing latencies, the Nash flow is essentially
unique (see e.g., [39]).
ε-Nash flow. The definition of a Nash flow can be naturally generalized to that of an “almost Nash” flow.
Formally, for some ε > 0, a flow f is an ε-Nash flow if for every path q with fq > 0, and every path q′,
`q(f) ≤ `q′(f) + ε.
Best Subnetwork. Braess’s paradox shows that there may be a subinstance (H, r) of an instance (G, r)
with L(H, r) < L(G, r) (see e.g., Fig. 1). The best subnetwork H∗ of (G, r) is a subnetwork of G with
the minimum equilibrium latency, i.e., H∗ has L(H∗, r) ≤ L(H, r) for any subnetwork H of G. In this
work, we study the approximability of the Best Subnetwork Equilibrium Latency problem, or BestSubEL
in short. In BestSubEL, we are given an instance (G, r), and seek for the best subnetwork H∗ of (G, r)
and its equilibrium latency L(H∗, r).
Good Networks. We restrict our attention to undirected s − t networks G(V,E). We let n ≡ |V | and
m ≡ |E|. For any vertex v, we let Γ (v) = {u ∈ V : {u, v} ∈ E} denote the set of v’s neighbors in
G. Similarly, for any non-empty S ⊆ V , we let Γ (S) =

⋃
v∈S Γ (v) denote the set of neighbors of the

vertices in S, and let G[S] denote the subnetwork of G induced by S. For convenience, we let Vs ≡ Γ (s),
Es ≡ {{s, u} : u ∈ Vs}, Vt ≡ Γ (t), Et ≡ {{v, t} : v ∈ Vt}, and Vm ≡ V \ ({s, t} ∪ Vs ∪ Vt). We also
let ns = |Vs|, nt = |Vt|, n+ = max{ns, nt}, n− = min{ns, nt}, and nm = |Vm|. We sometimes write
V (G), n(G), Vs(G), ns(G), . . ., if G is not clear from the context.

It is convenient to think that the network G has a layered structure consisting of s, the set of s’s neigh-
bors Vs, an “intermediate” subnetwork connecting the neighbors of s to the neighbors of t, the set of t’s
neighbors Vt, and t. Then, any s− t path starts at s, visits some u ∈ Vs, proceeds either directly or through
some vertices of Vm to some v ∈ Vt, and finally reaches t.

Our layered graph construction above allows us to think that each path latency is only contributed by
the latency of the edge exiting s plus the edge latency entering to t, while the remaining edges (those not
touching s, t) of the path contribute 0 latency. The main concern here is that a path, while exiting Vs and
visiting vertices in Vm, is possible to come back and visit again some vertex in u ∈ Vs. This bad scenario
can hurt our argument only if this path also sends positive flow back from u to s. In this scenario however, a
cycle appears, but, as mentioned above, it is known that an arbitrary Nash equilibrium can be made acyclic
with no increase of the common latency. The idea is that a Nash equilibrium is the solution of a convex
program and hence, we can remove the flow trapped around a cycle (it important that it traverses edges with
strictly increasing latency functions, otherwise the removing of circulated flow would not turn beneficial)
without increasing any path latency. See for example the recent work [40] below Proposition 2.3, or, for a
detailed exhibition of this argument the nice book of Patriksson [36, Sect. 2.2.2].

Thus, we refer to Gm ≡ G[Vs ∪ Vm ∪ Vt] as the intermediate subnetwork of G. Depending on the
structure of Gm, we say that:

– G is a random Gn,p network if (i) ns and nt follow the binomial distribution with parameters n and p,
and (ii) if any edge {u, v}, with u ∈ Vm∪Vs and v ∈ Vm∪Vt, exists independently with probability p.
Namely, the intermediate network Gm is an Erdös-Rényi random graph with n − 2 vertices and edge
probability p, except for the fact that there are no edges in G[Vs] and in G[Vt].

– G is internally bipartite if the intermediate network Gm is a bipartite graph with independent sets Vs
and Vt. G is internally complete bipartite if every neighbor of s is directly connected by an edge to
every neighbor of t.

– G is 0-latency simplified if it is internally complete bipartite and every edge e connecting a neighbor
of s to a neighbor of t has latency function `e(x) = 0.

Definition 2. The 0-latency simplification G0 of a given network G is a 0-latency simplified network ob-
tained from G by replacing G[Vm] with a set of 0-latency edges directly connecting every neighbor of s to
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Algorithm 1: Approximation Scheme for BestSubEL in Good Networks
Input: Good network G(V,E), rate r > 0, approximation guarantee ε > 0
Output: Subnetwork H of G and ε-Nash flow g in H with L(g) ≤ (1 + ε)L(H∗, r) + ε

1 if L(G, r) < ε, return G and a Nash flow of (G, r) ;
2 create the 0-latency simplification G0 of G ;
3 if r ≥ (Bmaxn+)/(εAmin), then let H0 = G0 and let f be a Nash flow of (G0, r) ;
4 let H ≡ Gg ⊆ G the g-used subnetwork with g computed by Lemma 5 given H0 and f computed above ;
5 else, let H0 be the subnetwork and f the ε/6-Nash flow of Thm. 2 applied with error ε/6 ;
6 let H ≡ Gg ⊆ G the g-used subnetwork with g computed by Lemma 6 given H0 and f computed above;
7 return the subnetwork H and the ε-Nash flow g ;

every neighbor of t. Moreover, we say that a 0-latency simplified networkG is balanced, if |ns−nt| ≤ 2n− .

Definition 3. We say that a networkG(V,E) is (n, p, k)-good, for some integer n ≤ |V |, some probability
p ∈ (0, 1), with pn = o(n), and some constant k ≥ 1, if G satisfies that:
1. The maximum degree of G is at most 3np/2, i.e., for any v ∈ V , |Γ (v)| ≤ 3np/2.
2. G is an expander graph, namely, for any set S ⊆ V , |Γ (S)| ≥ min{np|S|, n}/2.
3. The edges of G have random reasonable latency functions distributed according toA×B, and for any

constant η > 0, IPb∼B[b ≤ η/ lnn] = ω(1/np).
4. If k > 1, we can compute in polynomial time a partitioning of Vm into k sets V 1

m, . . . , V
k
m, each of

cardinality |Vm|/k, such that all the induced subnetworksG[{s, t}∪Vs∪V im∪Vt] are (n/k, p, 1)-good,
with a possible violation of the maximum degree bound by s and t.

In our text whenever we wish to give emphasis to these particular 4 properties above that good networks
posses, we explicitly use the term (n, p, k)-good networks. Our assumption 3 above: IP[B ≤ η

logn ] =

ω( 1
np ), for constant η > 0, is equivalent to the assumption in [6, Corollary 6 and Lemmata 7,8] requiring

that for any small constant δ > 0, there are constants c > 1 and n0 > 0 such that for n > n0 to
hold IP[B ≤ δ

logn ] ≥
c logn
np . Our assumption 3 also is in comparison to [6, Lemma 5], that requires

that for any small constant δ > 0, there are constants c > 1 and n0 > 0 such that for n > n0 to hold
IP[B ≤ δ

logn ] ≥
4
np . It is also helpful for the reader to see our assumption 3 in comparison to [7, Sect. 1.2-

1st paragraph] stating that if pn ≥ c log n then theGnp graph is an
(
α = 3

5np, β = 1
4

)
-expander. Therefore

in the subsequent paragraph in [7, Sect. 2.2-pp. 457] the 2nd bullet becomes IP[B ≤ δ
logn ] >

20
3np . Our

assumption 2 above: ∀S ⊆ V it holds |Γ (S)| ≥ 1
2 min{np|S|, n} is more relaxed than [6, Lemma 4]

stating that for Gnp graphs with p ≥ c
logn whp ∀U ⊆ V it holds that |Γ (U)| ≥ e−1

e min{np|U |, n}, since
e−1
e > 1

2 . Our assumption 1 above: ∀u ∈ V whp it holds Γ (u) ≤ 3
2np follows from a standard Chernoff

bound. Our assumption 4 above: it is easy to see that it holds for Gnp graphs due to the fact that each edge
appears independently and hence each subset V ′ ⊆ V with |V ′| = n′ of a Gnp graph behaves as Gn′p.

If G is a random Gn,p network, with n sufficiently large and p ≥ ck lnn/n, for some large enough
constant c > 1, then G is an (n, p, k)-good network with high probability (see e.g., [3]), provided that the
latency functions satisfy condition (3) above. As for condition (4), a random partitioning of Vm into k sets
of cardinality |Vm|/k satisfies (4) with high probability. Similarly, the random instances considered in [6]
are good with high probability. Also note that the 0-latency simplification of a good network is balanced,
due to (1) and (2).

3 The Approximation Scheme and Outline of the Analysis

In this section, we describe the main steps of the approximation scheme (see also Algorithm 1), and give
an outline of its analysis. We let ε > 0 be the approximation guarantee, and assume that L(G, r) ≥ ε.
Otherwise, any Nash flow of (G, r) suffices, see step 1 of Algorithm 1.
Algorithm 1 is based on an approximation-preserving reduction of BestSubEL for a good network G
to BestSubEL for the 0-latency simplification G0 of G. The first step of our approximation-preserving
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reduction is to show in Lemma 1 in Section 4 that the equilibrium latency of the best subnetwork does
not increase when we consider the 0-latency simplification G0 of a network G instead of G itself. Since
decreasing the edge latencies (e.g., decreasing l′3(x) = 1 to l3(x) = 0 in Fig. 1.a) may trigger Braess’s
paradox, we need Lemma 1, in Section 4, and its careful proof to make sure that zeroing out the latency of
the intermediate subnetwork does not cause an abrupt increase in the equilibrium latency.
Next, we focus on the 0-latency simplification G0 of G (Def. 2), see step 2 in Algorithm 1. We show that
if the traffic rate is large enough, i.e., if r > (Bmaxn+)/(εAmin), the paradox has a marginal influence
on the equilibrium latency and can be approximated in step 3 and 4 of Algorithm 1. In particular, in
Section 6.3, we first consider the Nash flow f on (G0, r) computed in strongly polynomial time. Then,
using Lemma 5 we “extend” f in poly(|V |) time to a corresponding flow g on the g-used subgraph Gg
of the random instance G. Flow g satisfies the s, t-link capacity constraints imposed by f , while being
the minimizer of a potential over all G and, hence, g is a Nash flow on the remaining g-used subgraph
Gg ⊆ G (after discarding all the empty paths of G). Furthermore, if L(H∗) = ω(1) then g approximates
within (1 + ε+ o(1)) the BestSubEL, and if L(H∗) = O(1) then g approximates within (1 + 2ε+ o(1))
the BestSubEL (Remark 2). On the other hand, if r ≤ (Bmaxn+)/(εAmin) we work as step 5 and 6 of
Algorithm 1. In Section 6.2 we use [12, Theorem 3] restated as Theorem 2 here, and we obtain (within the
time bounds of this theorem) a subnetwork H0 and an ε/6-Nash flow f that comprise a good approximate
solution to BestSubEL for the simplified instance (G0, r). The next step of our approximation-preserving
reduction is to extend f to an approximate solution to BestSubEL for the original instance (G, r). The
intuition is that due to the expansion and the reasonable latencies of G, any collection of 0-latency edges
of H0 used by f to route flow from Vs to Vt can be “simulated” by an appropriate collection of low-latency
paths of the intermediate subnetwork Gm of G. In fact, this observation was the key step in the approach
of [6, 44] showing that Braess’s paradox occurs in good networks with high probability. We first prove this
claim for a small part of H0 consisting only of neighbors of s and neighbors of t with approximately the
same latency under f (see Lemma 5, the proof draws on ideas from [6, Lemma 5]). Then, using a careful
latency-based grouping of the neighbors of s and of the neighbors of t in H0, we extend this claim to the
entire H0 (see Lemma 6). Thus, we obtain a subnetwork H of G and an ε-Nash flow g in H such that
L(g) ≤ (1 + ε)L(H∗, r) + ε (step 6).

Theorem 1. Let G(V,E) be an (n, p, k)-good network (Def. 3), with k ≥ 1 is a large enough constant.
• Let r ≤ Bmaxn+

Aminε
be any traffic rate. Let H∗ be the best subnetwork of (G, r). Then, for any ε > 0,

Algorithm 1 computes in time nO(r2A2
max ln(n+)/ε2)

+ poly(|V |), a flow g and a subnetworkH ofG such that
with high probability, wrt the random choice of the latency functions, g is an ε-Nash flow of (H, r) and has
common path latency L(g) ≤ (1 + ε)L(H∗) + ε.
• Let r > Bmaxn+

Aminε
be any traffic rate. Then, for any ε > 0, Algorithm 1 computes in strongly polynomial

time a subnetwork H of G such that with high probability, wrt the random choice of the latency functions,
g is an ε-Nash flow of (H, r) and has common path latency L(g) ≤ (1 + 2ε+ o(1))L(H∗).

By the definition of reasonable latencies, Amax is a constant. Also, by Lemma 2, r affects the running
time only if r = O(n+/ε). In fact, previous work on selfish network design assumes that r = O(1), see
e.g., [39]. Thus, if r = O(1) (or more generally, if r = O(poly(ln lnn))) and pn = O(poly(lnn)), in
which case n+ = O(poly(lnn)), Theorem 1 gives a randomized polynomial-time approximation scheme
for BestSubEL in good networks. Moreover, the running time is quasipolynomial for traffic rates up to
O(poly(lnn)) and average degrees up to o(n), i.e., for the entire range of p in [6, 44]. The next sections
are devoted to several lemmas and theorems that are useful and combined together in Section 6.2 and 6.3
for achieving the corresponding approximation for low and high values of r

4 Network Simplification

We first show that the equilibrium latency of the best subnetwork does not increase when we consider the
0-latency simplificationG0 of a networkG instead ofG itself. We highlight that the following lemma holds
not only for good networks, but also for any network with linear latencies and with the layered structure
described in Section 2. Lemma 1 will be important in the proof of Lemmata 2-4, since we can work directly
in the 0-latency simplification G0 of G.
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Fig. 2. In (a), we have a cycle C = (u1, v2, u2, . . . , vk, uk, v1, u1) in the intermediate subnetwork H1[Γ (s) ∪ Γ (t)].
We assume that fk1 is the minimum amount flow through an edge of C in the equilibrium flow f . In (b), we have
removed the edge ek1, and show the corresponding change in the amount of flow on the remaining edges of C. Since
the latency functions of the edges in C are constant, the change in the flow does not affect equilibrium.

Lemma 1. Let G be any network, let r > 0 be any traffic rate, and let H be the best subnetwork of (G, r).
Then, there is a subnetwork H ′ of the 0-latency simplification of H (and thus, a subnetwork of G0) with
L(H ′, r) ≤ L(H, r).

Proof. We assume that all the edges of H are used by the equilibrium flow f of (H, r) (otherwise, we can
remove all unused edges from H). The proof is constructive, and at the conceptual level, proceeds in two
parts.
1st Part: Given the equilibrium flow f of the best subnetwork H of G, we construct a simplification H1

of H that is internally bipartite and has constant latency edges connecting Γ (s) to Γ (t). H1 also admits f
as an equilibrium flow, and thus L(H1, r) = L(H, r). We also show how to further simplify H1 so that its
intermediate bipartite subnetwork becomes acyclic.

To construct the simplification H1 of H , we let f be the equilibrium flow of H , and let L ≡ L(H, r).
For each ui ∈ Γ (s) and vj ∈ Γ (t), we let fij =

∑
p=(s,ui,...,vj ,t)

fp be the flow routed by f from
ui to vj . The network H1 is obtained from H by replacing the intermediate subnetwork of H with a
bipartite subnetwork connecting Γ (s) and Γ (t) with constant latency edges. More specifically, instead
of the intermediate subnetwork of H , for each ui ∈ Γ (s) and vj ∈ Γ (t) with fij > 0, we have an
edge {ui, vj} of constant latency bij = L − (a{s,ui}f{s,ui} + b{s,ui}) − (a{vj ,t}f{vj ,t} + b{vj ,t}) (the
corresponding aij is set to 0). If fij = 0, ui and vj are not connected in H1. We note that by construction,
H1 admits f as an equilibrium flow, and thus L(H1, r) = L.

Furthermore, we modify H1 by deleting some edges from its intermediate subnetwork so that the in-
duced bipartite subgraph H1[Γ (s) ∪ Γ (t)] becomes acyclic. Therefore, in the resulting network, for each
ui ∈ Γ (s) and each vj ∈ Γ (t), there is at most one (s, ui, vj , t) path in H1. Hence, the resulting network
admits a unique equilibrium flow with a unique path decomposition.

To this end, let us assume that there is a cycle C = (u1, v2, u2, . . . , vk, uk, v1, u1) in the intermediate
subnetworkH1[Γ (s)∪Γ (t)]. We let ek1 = {uk, v1} be the edge of C with the minimum amount of flow in
f , and let fk1 be the flow through ek1 (see also Fig. 2). Then, removing ek1, and updating the flows along
the remaining edges of C so that f ′ii = fii + fk1, 1 ≤ i ≤ k, and f ′i(i+1) = fi(i+1) − fk1, 1 ≤ i ≤ k − 1,
we “break” the cycle C, by eliminating the flow in ek1, and obtain a new equilibrium flow f ′ of the same
rate r and with the same latency L as that of f . Applying this procedure repeatedly to all cycles, we end
up with an internally bipartite network H1 with an acyclic intermediate subnetwork that includes constant
latency edges only. Moreover, H1 admits an equilibrium flow f of latency L. This concludes the first part
of the proof.
2nd Part: The second part of the proof is to show that we can either remove some of the intermediate
edges of H1 or zero their latencies, and obtain a subnetwork H ′ of the 0-latency simplification of H with
L(H ′, r) ≤ L(H, r). To this end, we describe a procedure where in each step, we either remove some
intermediate edge of H1 or zero its latency, without increasing the latency of the equilibrium flow.

Let us focus on an edge ekl = {uk, vl} connecting a neighbor uk of s to a neighbor vl of t. By the first
part of the proof, the latency function of ekl is a constant bkl > 0. Next, we attempt to set the latency of ekl
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to b′kl = 0. We have also to change the equilibrium flow f to a new flow f ′ that is an equilibrium flow of
latency at most L in the modified network with b′kl = 0. We should be careful when changing f to f ′, since
increasing the flow through {s, uk} and {vl, t} affects the latency of all s − t paths going through uk and
vl and may destroy the equilibrium property (or even increase the equilibrium latency). In what follows,
we let rq be the amount of flow moving from an s− t path q = (s, ui, vj , t) to the path qkl = (s, uk, vl, t)
when we change f to f ′. We note that rq may be negative, in which case, |rq| units of flow actually move
from qkl to q. Thus, rq’s define a rerouting of f to a new flow f ′, with f ′q = fq − rq , for any s − t path q
other than qkl, and f ′kl = fkl +

∑
q rq .

We next show how to compute rq’s so that f ′ is an equilibrium flow of cost at most L in the modified
network (where we attempt to set b′kl = 0). We let P = PH1 \ {qkl} denote the set of all s − t paths
in H1 other than qkl. We let F be the |P| × |P| matrix, indexed by the paths q ∈ P , where F [q1, q2] =∑
e∈q1∩q2 ae −

∑
e∈q1∩qkl

ae, and let r be the vector of rq’s. Then, the q-th component of Fr is equal to
`q(f)− `q(f ′). In the following, we consider two cases depending on whether F is singular or not.

If matrix F is non-singular, the linear system Fr = ε1 has a unique solution rε, for any ε > 0.
Moreover, due to linearity, for any α ≥ 0, the unique solution of the system Fr = α ε1 is α rε. Therefore,
for an appropriately small ε > 0, the linear system Qε = {Fr = ε1, fq − rq ≥ 0 ∀q ∈ P, fkl +

∑
q rq ≥

0, `qkl
(f ′) ≤ L + bkl − ε} admits a unique solution r. We keep increasing ε until one of the inequalities

of Qε becomes tight. If it first becomes rq = fq for some path q = (s, ui, vj , t) ∈ P , we remove the
edge {ui, vj} from H1 and adjust the constant latency of ekl so that `qkl

(f ′) = L − ε. Then, the flow f ′

is an equilibrium flow of cost L − ε for the resulting network, which has one edge less than the original
network H1. If

∑
q rq < 0 and it first becomes

∑
q rq = −fkl, we remove the edge ekl from H1. Then,

f ′ is an equilibrium flow of cost L − ε for the resulting network, which again has one edge less than H1.
If
∑
q rq > 0 and it first becomes `qkl

(f ′) = L + bkl − ε, we set the constant latency of the edge ekl to
b′kl = 0. In this case, f ′ is an equilibrium flow of cost L− ε for the resulting network that has one edge of
0 latency more than the initial network H1.

If F is singular, proceeding similarly, we compute rp’s so that f ′ is an equilibrium flow of cost L
in a modified network that includes one edge less than the original network H1. When F if singular, the
homogeneous linear system Fr = 0 admits a nontrivial solution r 6= 0. Moreover, due to linearity, for
any α ∈ IR, α r is also a solution to Fr = 0. Therefore, the linear system Q0 = {Fr = 0, fp − rp ≥
0 ∀p ∈ P, fkl +

∑
p rp ≥ 0} admits a solution r 6= 0 that makes at least one of the inequalities tight and

has `qkl
(f ′) ≤ L+ bkl

5. We recall that the p-th component of Fr is equal to `p(f)− `p(f ′). Therefore, for
the flow f ′ obtained from the particular solution r of Q0, the latency of any path p ∈ P is equal to L. If r
is such that rp = fp for some path p = (s, ui, vj , t) ∈ P , we remove the edge {ui, vj} from H1 and adjust
the constant latency of ekl so that `qkl

(f ′) = L. Then, the flow f ′ is an equilibrium flow of cost L for the
resulting network, which has one edge less than the original network H1. If r is such that

∑
p rp = −fkl,

we remove the edge ekl fromH1. Then, f ′ is an equilibrium flow of cost L for the resulting network, which
again has one edge less than H1. Moreover, we can show (see Property 1 below) that if qkl is disjoint from
the paths q ∈ P , the fact that the intermediate network H1 is acyclic implies that the matrix F is positive
definite, and thus non-singular. Therefore, if qkl is disjoint from the paths in P , the procedure above leads
to a decrease in the equilibrium latency, and eventually to setting b′kl = 0. So, by repeatedly applying these
steps, we end up with a subnetwork H ′ of the 0-latency simplification of H with L(H ′, r) ≤ L(H, r). ut

Property 1. If the path pkl is disjoint to the paths p ∈ P , the matrix F is positive definite, and thus non-
singular.

Proof. We first note that if pkl is disjoint to all p ∈ P , then for all p1, p2 ∈ P , F [p1, p2] =
∑
e∈p1∩p2 ae.

Hence, for all x ∈ IR|P|, xTFx =
∑
e∈E(P) aex

2
e ≥ 0, where E(P) denotes the set of edges included

in the paths of P and xe =
∑
p:e∈p xp. Since the intermediate network of H1 is acyclic and any flow in

H1 has a unique path decomposition, if x has one or more non-zero components, there is at least one edge
5 If the direction of a solution r0 gives increase to `qkl(f

′) then, because of linearity, the direction of−r0 decreases it.
So we can assume that we can hit one of the constraints and have `qkl(f

′) ≤ L+ bkl (e.g. by choosing the direction
that decreases `qkl(f

′)). Note that in both directions of r0 and −r0 we are bounded by one of the constraints
because, in any direction, either some rq would be increasing and fq−rq ≥ 0 will be bounding us, or all rq’s would
be decreasing and fkl +

∑
q rq ≥ 0 will be bounding us.
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e adjacent to either s or t such that xe > 0, and thus xTFx > 0. Otherwise, the difference of the flow
defined by x with the trivial flow defined by 0 would indicate the existence of a cycle in the intermediate
subnetwork of H1. This is a contradiction, since by the first part of the proof, the intermediate part of H1

is acyclic. ut

5 Approximating the Best Subnetwork of Simplified Networks

We proceed to show in Theorem 2 how to approximate the BestSubEL problem in a balanced 0-latency
simplified network G0 with reasonable latencies. We may always regard G0 as the 0-latency simplification
of a good network G. Before proving this theorem, we first prove two useful lemmas, that is, Lemma 2
about the maximum traffic rate r up to which BestSubEL remains interesting, and Lemma 3 about the
maximum amount of flow routed on any edge / path in the best subnetwork. The combination of these
two lemmas readily yields the proof of Lemma 4, concluding that the best subnetwork of any simplified
instance (G0, r) routesO(1) units of flow on any used edge and on any used path. This is the “missing tile”
for finally proving Theorem 2.

Lemma 2. Let G0 be any 0-latency simplified network, let r > 0, and let H∗0 be the best subnetwork of
(G0, r). For any ε > 0, if r > Bmaxn+

Aminε
, then L(G0, r) ≤ (1 + ε)L(H∗0 , r).

Proof. We assume that r > Bmaxn+

Aminε
, let f be a Nash flow of (G0, r), and consider how f allocates r units

of flow to the edges of Es ≡ Es(G0) and to the edges Et ≡ Et(G0). For simplicity, we let L ≡ L(G0, r)
denote the equilibrium latency of G0, and let As =

∑
e∈Es

1/ae and At =
∑
e∈Et

1/ae.
Since G0 is a 0-latency simplified network and f is a Nash flow of (G0, r), there are L1, L2 > 0, with

L1 +L2 = L, such that all used edges incident to s (resp. to t) have latency L1 (resp. L2) in the Nash flow
f . Since we assume arbitrarily small constant 0 < ε < 1, then r > Bmaxn+

Amin
, L1, L2 > Bmax and all edges

in Es ∪ Et are used by f .
A useful property is that ∃e ∈ Es with aefe ≤ r/As and similarly, ∃e ∈ Et with aefe ≤ r/At.

To reach a contradiction, assume this is not true: ∀e ∈ Es it holds fe > r
aeAs

and: ∀e ∈ Et it holds
fe >

r
aeAt

. But, this contradicts the total r of the s-links flow, since r =
∑
e∈Es

fe >
∑
e∈Es

r
aeAs

=
r
As

∑
e∈Es

1
ae

= r
As
As = r (similar is the omitted contradiction for r on the t-links). Since all s-links

with positive flow must have equal edge latency L1, due to this particular s-link e, it follows that L1 =
aefe+be ≤ r/As+be ≤ r/As+Bmax. Similarly, since all t-links with positive flow must have equal edge
latency L2, due to this particular t-link e, it follows that L2 = aefe + be ≤ r/At + be ≤ r/At + Bmax.
Thus,

L = L1 + L2 ≤
(
r

As
+

r

At

)
+ 2Bmax (1)

On the other hand, consider the best subnetwork H∗0 with Nash common path latency L(H∗0 , r) and hence,
with cost r × L(H∗0 , r). Let OPT the cost of the optimum6 flow on H∗0 , which by definition it holds

rL(H∗0 , r) ≥ OPT

Note thatOPT is at least the costOPT ′ of separately assigning optimally the flow r on s-links (considered
as parallel links), plus, the cost of separately assigning the flow r on t-links (considered as parallel links).
Because we optimize the same objective

∑
e∈Es∪Et

xe(ae ·xe+ be) consisting only of the s, t-links (since
the intermediary links have 0-latency) without imposing the flow constraints for the intermediary paths of
H∗0 that connect Γ (s) to Γ (t). In symbols:

OPT ≥ OPT ′ ≡ min

{ ∑
e∈Es∪Et

xe(ae · xe + be)

}
s.t.

∑
e∈Es

xe = r,
∑
e∈Et

xe = r (2)

6 Recall Sect. 1, paragraph Previous work, that for the optimum cost, we compute the flow X that minimizes the
total latency cost C(X) =

∑
e∈E(H∗0 ) xe(ae · xe + be) incurred by all users on network H∗0 wrt flow X .
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In turn, OPT ′ is at least the cost OPT ′′ of the optimum flow assignment as above, but, assuming now that
each s, t-link e has be = 0. This holds because we change the objectiveC ′(x) =

∑
e∈Es∪Et

xe(ae ·xe+be)
ofOPT ′ into the objectiveC ′′(x) =

∑
e∈Es∪Et

xe(ae ·xe) ofOPT ′′, which trivially gives better solution,
since ∀x it holds C ′(x) ≥ C ′′(x). In symbols:

OPT ′ ≥ OPT ′′ ≡ min

{ ∑
e∈Es∪Et

xe(ae · xe)

}
= min

{∑
e∈Es

xe(ae · xe) +
∑
e∈Et

xe(ae · xe)

}
s.t.

∑
e∈Es

xe = r,
∑
e∈Et

xe = r (3)

But, this OPT ′′ is an instance of affine parallel s-links (similarly, t-links) and the optimal load ∀e ∈
Es is oe = r

aeAs
(similarly, for the t-links, oe = r

aeAt
), inducing optimum cost per s-link oe`e(oe) =

r
aeAs

ae
r

aeAs
= r

aeAs

r
As

and cost over all s-links
∑
e∈Es

r
aeAs

r
As

= r r
As

. Similarly, we get for the t-links

the optimum cost is r r
At

. ThereforeOPT ′′ = r
(
r
As

+ r
At

)
. The above series of inequalities establish that:

rL(H∗0 , r) ≥ OPT ≥ OPT ′ ≥ OPT ′′ = r

(
r

As
+

r

At

)
which readily implies that

L(H∗0 , r) ≥
(
r

As
+

r

At

)
(4)

otherwise the Nash flow on H∗0 would improve the cost of the optimum flow on H∗0 , a contradiction. Now,
recall our assumption that r > Bmaxn+

Aminε
and note also that As =

∑
e∈Es

1
ae
≤
∑
e∈Es

1
Amin

= ns
1

Amin
and

similarly that At ≤ nt 1
Amin

. Plugging these into the above inequality, we get:

L(H∗0 , r) ≥ r
As

+ r
At
≥ Bmaxns

Aminε
Amin

ns
+ Bmaxnt

Aminε
Amin

nt
≥ 2Bmax/ε, (5)

therefore 2Bmax ≤ εL(H∗0 , r). Plugging this and (17) into (1) we conclude:

L ≤ (1 + ε)L(H∗0 , r)

ut

We proceed to show that in a 0-latency simplified instance (G0, r), the best subnetwork Nash flow
routesO(r/n+) units of flow on any edge and on any s−t path with high probability (where the probability
is with respect to the random choice of the latency function coefficients). Intuitively, we show that in the
best subnetwork Nash flow, with high probability, all used edges and all used s− t paths route a volume of
flow not significantly larger than their fair share. We first prove the following technical lemma. Recall that
we assume below thatL(G0, r) ≥ ε, because otherwise it becomes trivial to ε-approximate the BestSubEL
problem.

Lemma 3. Given a random instance G and total flow r, let the balanced 0-latency simplified network G0

and the Nash flow on (G0, r) with common path latency L(G0, r) ≥ ε > 0. Then the Nash flow of the
best subnetwork H∗0 of G0 whp7 induces edge load ≤ 24Amaxr

δεAminn+
on each edge, with δε > 0 a constant that

depends on ε > 0 and the reasonable input distribution of Definition 1(3).

Proof. Given a random instance G and flow r > 0 construct the the 0-latency simplified network G0 of G.
That is, G0 consists of the random snapshot of s-links and t-links that are realized in random instance G.
Also G0 contains the construction of the complete bipartite subnetwork that connects with 0-latency links
each neighbor of s to all the neighbors of t. We let L ≡ L(G0, r) ≥ ε > 0 denote the unknown equilibrium

7 With probability at least 1− e−δεn−/8.
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latency and g denote a Nash flow of the original instance (G0, r). We wish to bound L whp as a function
of the given total flow r. Since G0 is a 0-latency simplified network and g is a Nash flow of (G0, r), there
are L1, L2 > 0, with L1 + L2 = L, such that:
(i) for any edge e incident to s, if be < L1, ge > 0 and aege + be = L1, while ge = 0, otherwise,
(ii) for any edge e incident to t, if be < L2, ge > 0 and aege + be = L2, while ge = 0, otherwise.
Namely, all used edges incident to s (resp. to t) have latency L1 (resp. L2) in the Nash flow g. Wlog., we
assume that L1 ≥ L2, and thus, L1 ≥ L/2 ≥ ε/2.

Inequality (6) below gives the lower bound L
4Amax

on the load of each random s-link e that has the nice
random property be ≤ ε/4. Let e be any edge incident to s with be ≤ ε/4. By the discussion above, in the
Nash flow g of (G0, r), ge > 0 and aege + be = L1. Using that L1 ≥ L/2 ≥ ε/2, we obtain that:

L1 = aege + be ≤ aege + ε/4⇒ ge ≥
L1 − ε/4

ae
≥ L1

2ae
≥ L

4Amax
(6)

In the sequel, a Chernoff bound (e.g., [18, (7)]) establishes that whp there are at least δεns/2 such s-
links with the property of ≥ L

4Amax
load per link, for an appropriate constant δε > 0 that depends on

ε > 0 and Definition 1(3). In particular, from Definition 1(3), there exists a constant δε > 0 such that
IP[B ≤ ε/4] ≥ δε and Chernoff bounds yield:

IP[|{e ∈ Es(G0) with be ≤ ε/4}| ≥ δεns/2] ≥ 1− e−δεns/8 (7)

Therefore the total of accumulated load on these s-links whp is at least δεns/2× L
4Amax

, which, of course
is upper bounded by our fixed total flow r, that is, δεnsL

8Amax
≤ r. Solving this wrt L, gives:

L ≤ 8Amaxr

δεns
≤ 24Amaxr

δεn+
(8)

The last inequality holds because G0 is balanced, and |ns − nt| ≤ 2n−.
To conclude the proof, observe that in the equilibrium flow f of the best subnetworkH∗0 ofG0, no used

s, t-link e has edge latency greater than the common path latency L of g on G0, which is bounded as in (8).
Therefore, for any used edge e incident to either s or t, it holds:

aefe + be ≤ L⇒ fe ≤
L

ae
≤ L

Amin
≤ 24Amax

δεAmin
× r

n+
(9)

where the last inequality follows from (8). Moreover, any edge e in the intermediate subnetwork of G has
fe ≤ L/Amin due to the flow conservation constraints. ut

Remark 1. Lemma 2 shows that the interesting case for the paradox is for r ≤ Bmaxn+

Aminε
, in this case we

combine Lemma 4 and Theorem 2 below and finally proceed to approximate the best subnetwork in Section
6.2. On the other hand, if r > Bmaxn+

Aminε
we combine the ideas of Lemma 2 and Lemma 3 and proceed to

approximate the best subnetwork in Section 6.3.

Lemma 4. Given a random instance G and total flow 0 < r ≤ Bmaxn+

Aminε
, let the balanced 0-latency

simplified network G0 and the Nash flow on (G0, r) with common path latency L(G0, r) ≥ ε > 0. Then
the Nash flow of the best subnetwork H∗0 of G0 whp7 induces edge load % ≤ 24AmaxBmax

δεA2
minε

on each edge,
with δε > 0 a constant that depends on ε > 0 and the reasonable distribution of Definition 1(3).

Proof. Recall that we assume above thatL(G0, r) ≥ ε, because otherwise it becomes trivial to ε-approximate
the BestSubEL problem. Moreover, by Definition 1(3) of reasonable latency functions, we have that for
any constant ε > 0, there is a constant δε > 0, such that IP[B ≤ ε/4] ≥ δε. Combining these with Lemma 2
and Lemma 3, we obtain Lemma 4. ut

So from now on, we can assume, with high probability and wlog., that the Nash flow in the best subnetwork
of any simplified instance (G0, r) routes O(1) units of flow on any used edge and on any used path.
Approximating the Best Subnetwork of Simplified Networks. We proceed to derive an approximation
scheme for the best subnetwork of any simplified instance (G0, r).
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Theorem 2. Let G0 be a balanced 0-latency simplified network of a random instance G with reasonable
latencies and let the total rate 0 < r ≤ Bmaxn+

Aminε
. Let H∗0 be the best subnetwork of (G0, r). Then, for any

ε > 0, we can compute, in time nO(A2
maxr

2 ln(n+)/ε2)
+ , a flow f and a subnetwork H0 ⊆ G0 consisting of

the edges used by f , such that (i) f is an ε-Nash flow of (H0, r), (ii) L(f) ≤ L(H∗0 , r) + ε/2, and (iii)
there exists a constant 0 < % ≤ 24AmaxBmax

δεA2
minε

, such that fe ≤ %+ ε, for all e.

Theorem 2 is a corollary of [12, Theorem 3] (depicted as Theorem 3 below), since in our case the number
of different s − t paths is at most n2+ and each path consists of 3 edges. So, in [12, Theorem 3], we have
d1 = 2, d2 = 0, α = Amax, and the error is ε/r. Moreover, we know from Lemma 4 above that any Nash
flow g of (H∗0 , r) routes ge ≤ % units of flow on any edge e, and that in the exhaustive search step, in
the proof of [12, Theorem 3], one of the acceptable flows f has |ge − fe| ≤ ε, for all edges e (see also
[12, Lemma 3]). Thus, there is an acceptable flow f with fe ≤ % + ε, for all edges e. In fact, if among all
acceptable flows enumerated in the proof of [12, Theorem 3], we keep the acceptable flow f that minimizes
the maximum amount flow routed on any edge, we have that fe ≤ %+ ε, for all edges e.

Theorem 3. Let G = (G(V,E), (aex + be)e∈E , 1) be an instance with linear latency functions, let α =
maxe∈E{ae}, and let HB be the best subnetwork of G. For some constants d1, d2, let |P| ≤ md1 and
|p| ≤ logd2 m, for all p ∈ P . Then, for any ε > 0, we can compute in time

mO(d1α
2 log2d2+1(2m)/ε2)

a flow f̃ that is an ε-Nash flow on Gf̃ and satisfies `p(f̃) ≤ L(HB) + ε/2, for all paths p in Gf̃ .

6 Extending the Solution to the Good Network

First, in Section 6.2, we consider sufficiently low values of r and given a good instance (G, r), we create
the 0-latency simplificationG0 ofG, and using Theorem 2, we compute a subnetworkH0 and an ε/6-Nash
flow f that comprise an approximate solution to BestSubEL for (G0, r). Next, we show how to extend f
to an approximate solution to BestSubEL for the original instance (G, r). The intuition of this extension
is that the 0-latency edges of H0 used by f to route flow from Vs to Vt can be “simulated” by low-latency
u-v paths of Gm, for any u ∈ Vs and v ∈ Vt. In Section 6.1 and particularly in Lemma 5, we formalize
this intuition for the subnetwork of G induced by the neighbors of s with (almost) the same latency Bs and
the neighbors of t with (almost) the same latency Bt, for some Bs, Bt with Bs + Bt ≈ L(f). We may
think of the networks G and H0 in the Lemma 5 below as some small parts of the original network G and
of the actual subnetwork H0 of G0. Thus, we obtain Lemma 5, the building block for proving the more
general Lemma 6 in Section 6.2, that helps to match the neighbors of s of almost equal s-link latency to
the corresponding neighbors of t of almost equal t-link latency.

Finally, in Section 6.3, we show how to compute in strongly polynomial time a subnetwork G′ ⊆ G
that approximates the best subnework.

6.1 Bounding the latency of the intermediary paths for any r > 0

Lemma 5. Let instance (G, r) with G an (n, p, 1)-good network (Def. 3) with the relaxed degree bound
n+ ≤ 3knp/2, for some constant k > 0 and let r > 0 be any traffic rate. Assume that ∃Bs, Bt ≥ 0 :
∀e ∈ Es ⇒ `e(x) = Bs and ∀e ∈ Et ⇒ `e(x) = Bt. Consider the 0-latency simplification G0 of G. Let
any H0 ⊆ G0 endowed with a flow f on (H0, r) that satisfies an edge load bound 0 < ρ′ ≤ r, that is,
∀e ∈ E(H0) : fe > 0⇒ fe ≤ ρ′.
Then, for any constant ε1 > 0, whp we can compute in time poly(|V |) a subnetwork G′ ⊆ G and a flow g
on (G′, r) with the properties:
1. Es(G′) = {e ∈ Es(H0) : fe > 0} and Et(G′) = {e ∈ Et(H0) : fe > 0}.
2. ∀e ∈ Es(G′) ∪ Et(G′)⇒ ge = fe > 0.
3. Em(G′) = {e ∈ Em(G) : ge > 0}.
4. Flow g can be regarded as a Nash flow on G′ for any pair u ∈ Vs(G′) and v ∈ Vt(G′) connected by
g-used paths.
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5. Each g-used path q = (s, u, . . . , v, t) in G′ has s-t path latency:

`q(g) ≤ Bs +Bt + 6ε1 + ρ′
8Amax

Pb(ε1)

[
2

np

(
1 +

6k

Pb(
ε1
lnn )

)
+

9kp

2Pb(ε1)

]
= Bs +Bt + 6ε1 + ρ′ × o(1)

Proof. We will construct G′ as the subnetwork Gg containing only the edges that receive positive load by
the flow g computed below. Therefore property (3) above will be satisfied by our construction. For each
e ∈ Es ∪ Et, we set the capacity constraint ge = fe. Therefore the flow g satisfies property (1) above by
construction, that is, Es(G′), Et(G′) contain only the s, t-links that have positive load wrt f .
We compute the extension of g through Gm as an “almost” Nash flow in the modified version G′ of G,
where each edge e ∈ Es ∪ Et has the capacity constraint ge = fe, therefore property (2) above is satisfied
as well. Also, we set the constant latency `e(x) = Bs, if e ∈ Es, and `e(x) = Bt, if e ∈ Et. All other
edges e of G have no capacity constraint and have (randomly chosen) reasonable latency function `e(x).
We let g be the flow of rate r that respects the capacities of the edges in Es ∪Et, and minimizes Pot(g) =∑
e∈E

∫ ge
0
`e(x)dx. Such a flow g can be computed in strongly polynomial time (see e.g., [45]). The

subnetworkG′ ofG is simplyGg , namely, the subnetwork that includes only the edges that receive positive
flow by g. It could have been that g is not a Nash flow of (G, r), due to the capacity constraints on the edges
of Es ∪ Et. However, since g is a minimizer of Pot(g), for any u ∈ Vs(G′) and v ∈ Vt(G′), and any pair
of s − t paths q, q′ going through u and v, if gq > 0, then 8 `q(g) ≤ `q′(g). Thus, g can be regarded as a
Nash flow for any pair u ∈ Vs(G′) and v ∈ Vt(G′) connected by g-used paths, which proves property (4)
above.
It remains to prove property (5) above that upper bounds the path latency of any g-used path. Towards this,
we adjust the proof of [6, Lemma 5] in Proposition 1 below. To prove this, we let p = (s, u, . . . , v, t) be
the s − t path used by g that maximizes `p(g). We show the existence of a path p′ = (s, u, . . . , v, t) in G
of latency `p′(g) ≤ Bs + Bt + 6ε1 + ρ′ × o(1). Therefore, since g is a minimizer of Pot(g), the latency
of the maximum latency g-used path p, and thus the latency of any other g-used s − t path, is at most
Bs +Bt + 6ε1 + ρ′ × o(1).

Proposition 1. For any s-t path q used by g it holds `q(g) ≤ Bs +Bt + 6ε1 + ρ′ × o(1).

Proof. Let p = (s, u, . . . , v, t) be the s− t path used by g that maximizes `p(g). To show the existence of
a path p′ = (s, u, . . . , v, t) in G of latency `p′(g) ≤ Bs + Bt + 6ε1 + ρ′ × o(1), we start from S0 = {u}
and grow a sequence of vertex sets S0 ⊆ S1 ⊆ · · · ⊆ Si∗ , stopping when |Γ (Si∗)| ≥ 3n/5 for the first
time. We use the expansion properties of G, and condition (3), on the distribution of B, in the definition of
good networks, and show that these sets grow exponentially fast, and thus, i∗ ≤ lnn, with high probability.
Moreover, we showthat there are edges of latency ε1 + o(1) from S0 = {u} to each vertex of S1, and
edges of latency ε1/ lnn + o(1/ lnn) from Si to each vertex of Si+1, for all i = 1, . . . , i∗ − 1. To see
this, the intuition is that if among the edges e incident to Vs ∪ Vt, we keep only those with be ≤ ε1, and
among all the remaining edges e, we keep only those with be ≤ ε1/ lnn, then due to condition (3) on
the distribution of B, a good network G remains an expander. Thus, there is a path of latency at most
2ε1 + o(1) from u to each vertex of Si∗ . Similarly, we start from T0 = {v} and grow a sequence of vertex
sets T0 ⊆ T1 ⊆ · · · ⊆ Tj∗ , stopping when |Γ (Tj∗)| ≥ 3n/5 for the first time. By exactly the same
reasoning, we establish the existence of a path of latency at most 2ε1 + o(1) from each vertex of Tj∗ to v.
Finally, since |Γ (Si∗)| ≥ 3n/5 and |Γ (Tj∗)| ≥ 3n/5, the neighborhoods of Si∗ and Tj∗ contain at least
n/10 vertices in common. With high probability, most of these vertices can be reached from Si∗ and from
Tj∗ using edges of latency ε1 + o(1). Putting everything together, we find a u − v path (in fact, many of
them) of length O(lnn) and latency at most 6ε1 + o(1) ≤ 7ε1.

For completeness, we next give a detailed proof, by adjusting the arguments in the proof of [6, Lemma 5].
For convenience, for each vertex x, we let ds(x) (resp. dt(x)) be the latency wrt g of the shortest latency
path from s to x (resp. from x to t). Also, for any δ > 0, we let Pb(δ) ≡ IP[B ≤ δ] denote the probability

8 This holds because the flow travelling from u to v inside G faces no capacities. For this flow and the edges used by
it in G, a new minimization problem similar to the one above could be defined. The objective would be the same
and the flows other the one going from u to v would be handled as constants. A solution to this problem could be
used to minimize the initial objective and that’s why the initial problem returns a solution that solves also the new
problem, which in turn has an equilibrium flow as a solution.
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that the additive term of a reasonable latency is at most δ. Recall also that by hypothesis, there exists a
constant ρ′ > 0, such that for all e ∈ E(H0), fe ≤ ρ′. Hence, the total flow through G (and through H0) is
r ≤ ρ′n+.

At the conceptual level, the proof proceeds as explained above. We start with S0 = {u}. By hypothesis,
the flow entering u is at most ρ′. By the expansion property of good networks and by Chernoff bounds9,
with high probability, there are at least Pb(ε1)np/4 edges e adjacent to uwith be ≤ ε1. At most half of these
edges have flow greater than 8ρ′

Pb(ε1)np
, thus there are at least Pb(ε1)np/8 edges adjacent to u with latency,

wrt g, less than 8Amaxρ
′

Pb(ε1)np
+ ε1. We now let d1 = Bs +

8Amaxρ
′

Pb(ε1)np
+ ε1 and S1 = {x ∈ V : ds(x) ≤ d1}. By

the discussion above, |S1| ≥ Pb(ε1)np/8.
We now inductively define a sequence of vertex sets Si and upper bounds di on the latency of the

vertices in Si from s, such that Si ⊆ Si+1 and di < di+1. This sequence stops the first time that |Γ (Si)| ≥
3n/5. We inductively assume that the vertex set Si and the upper bound di on the latency of the vertices
in Si are defined, and that |Γ (Si)| < 3n/5. By the expansion property of good networks |Γ (Si) \ Si| ≥
np|Si|/3, for sufficiently large n. Thus, with probability at least 1− ePb(ε1/ lnn)np|Si|/24, there are at least
Pb(

ε1
lnn )np|Si|/6 vertices outside Si that are connected to a vertex in Si by an edge e with be ≤ ε1/ lnn.

Let S′i be the set of such vertices, and let Ei be the set of edges that for each vertex v ∈ S′i, includes a
unique edge e ∈ Ei with be ≤ ε1/ lnn connecting v to a vertex in Si. Since the flow g may be assumed
to be acyclic, a volume r ≤ ρ′n+ of flow is routed through the cut (Si, V \ Si). Then, at most half of
the edges in Ei have flow greater than 2ρ′n+/|S′i|. Consequently, at least half of the vertices v ∈ S′i have
latency from s:

ds(x) ≤ di +
ε1
lnn

+Amax
2ρ′n+
|S′i|

≤ di +
ε1
lnn

+
12Amaxρ

′n+
Pb(

ε1
lnn )np|Si|

Thus, we define the next latency upper bound di+1 in the sequence as:

di+1 = di +
ε1
lnn

+
12Amaxρ

′n+
Pb(

ε1
lnn )np|Si|

,

and we let Si+1 = {x ∈ V (G)|ds(x) ≤ di+1}. By the discussion above, and using the inductive definition
of Si’s, we obtain that:

|Si+1| ≥
(

1
12Pb(ε1/ lnn)np+ 1

)
|Si|

≥
(

1
12Pb(ε1/ lnn)np+ 1

)i
|S1|

We recall that i∗ is the first index i such that |Γ (Si)| ≥ 3n/5. Then, the inequality above implies that:

i∗ ≤ ln (3n/(5|S1|))
ln
(

1
12Pb(ε1/ lnn)np+ 1

) ≤ ln (24n/(5Pb(ε1)np))

ln
(

1
12Pb(ε1/ lnn)np+ 1

)
Using that pn ≥ lnn and that Pb(ε1/ lnn)np = ω(1), the inequality above implies that i∗ ≤ lnn, for
sufficiently large n.

9 We repeatedly use the following form of the Chernoff bound (see e.g., [18]): Let X1, . . . , Xk be random variables
independently distributed in {0, 1}, and let X =

∑k
i=1Xi. Then, for all ε ∈ (0, 1), IP[X < (1 − ε)IE[X]] ≤

e−ε
2 IE[X]/2, where e is the basis of natural logarithms.
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Therefore, we obtain an upper bound on the latency from s of any vertex in Si∗ :

di∗ ≤ d0 + i∗
ε1
lnn

+

i∗∑
i=1

12Amaxρ
′n+

Pb(
ε1
lnn )np|Si|

≤ d1 +
ε1
lnn

lnn+

lnn∑
i=1

12Amaxρ
′n+

Pb(
ε1
lnn )np

(
1
12Pb(

ε1
lnn )np+ 1

)i |S1|

= d1 + ε1 +
12Amaxρ

′n+
Pb(

ε1
lnn )np|S1|

lnn∑
i=1

(
1
12Pb(

ε1
lnn )np+ 1

)−i
≤
(
Bs +

8Amaxρ
′

Pb(ε1)np
+ ε1

)
+ ε1 +

96Amaxρ
′n+

Pb(
ε1
lnn )Pb(ε1)(np)

2

∞∑
i=1

2−i

≤ Bs + 2ε1 +
8Amaxρ

′

Pb(ε1)np
+

144Amaxρ
′k

Pb(
ε1
lnn )Pb(ε1)np

For the penultimate inequality, we use thatPb(ε1/ lnn)np = ω(1), which implies that 1+Pb(ε1/ lnn)np/12 ≥
2, for n sufficiently large. For the last inequality, we use that n+ ≤ 3knp/2, for some constant k > 0, by
hypothesis.

Moreover, we observe that probability that the above construction fails is at most:

i∗∑
i=1

e−Pb(ε1/ lnn)np|Si|/24 ≤
i∗∑
i=1

e−(
1
12Pb(ε1/ lnn)np+1)

i|S1|/24

≤ lnn e−(
1
12Pb(ε1/ lnn)np+1)Pb(ε1)np/192

Therefore, the construction above succeeds with high probability.

Similarly, we start from T0 = {v}, and inductively define a sequence of vertex sets T0 ⊆ T1 ⊆ · · · ⊆
Tj∗ , and a sequence of upper bounds d′0 < d′1 < · · · < d′j∗ on the latency from t of the vertices in each Tj .
We let Tj = {x ∈ V (G)|dt(x) ≤ d′j}. The sequence stops as soon as |Γ (Tj)| ≥ 3n/5 for the first time.
Namely, j∗ is the first index with |Γ (Tj∗)| ≥ 3n/5. Using exactly the same arguments, we can show that
with high probability, we have that j∗ ≤ lnn, and that:

d′j∗ ≤ Bt + 2ε1 +
8Amaxρ

′

Pb(ε1)np
+

144Amaxρ
′k

Pb(
ε1
lnn )Pb(ε1)np

Wlog., we assume that Si∗ ∩ Tj∗ = ∅. Since |Γ (Si∗)| + |Γ (Tj∗)| ≥ 6n/5, there are at least n/10
edge disjoint paths of length at most 2 between Si∗ and Tj∗ . Furthermore, by Chernoff bounds, with high
probability, there are at least Pb(ε1)2n/12 such paths with both edges e on the path having be ≤ ε1. At
most half of these paths have flow more than 2 12ρ′n+

Pb(ε1)2n
and thus there is a path from a vertex of Si∗ to a

vertex of Tj∗ that costs at most 2ε1 + 2Amax
24ρ′n+

Pb(ε1)2n
.

Putting everything together, we have that there is a path p′ that starts from s, moves to u, goes through
vertices of the sequence S1, . . . , Si∗ , proceeds to a vertex of Γ (Si∗) ∩ Γ (Tj∗), and from there, continues
through vertices of the sequence Tj∗ , . . . , T1, until finally reaches v, and then t. The latency of this path is:

`p′(g) ≤ Bs +Bt + 6ε1 + 2
( 8Amaxρ

′

Pb(ε1)np
+

48Amaxρ
′k

Pb(
ε1
lnn )Pb(ε1)np

)
+

48Amaxρ
′n+

Pb(ε1)2n
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We recall that since the flow g is a minimizer of Pot(g), for any g-used path q = (s, u, . . . , v, t),
`q(g) ≤ `p′(g). Thus we obtain that any g-used path q = (s, u, . . . , v, t) has latency

`q(g) ≤ Bs +Bt + 6ε1 + 2
( 8Amaxρ

′

Pb(ε1)np
+

48Amaxρ
′k

Pb(
ε1
lnn )Pb(ε1)np

)
+

48Amaxρ
′n+

Pb(ε1)2n

= Bs +Bt + 6ε1 + ρ′
8Amax

Pb(ε1)

[
2

np

(
1 +

6k

Pb(
ε1
lnn )

)
+

9kp

2Pb(ε1)

]
= Bs +Bt + 6ε1 + ρ′ ×Θ(1)

[
O

(
1

np

)
+O

(
1

npPb(
ε1
lnn )

)
+O(1)p

]
= Bs +Bt + 6ε1 + ρ′ × o(1) (10)

In the above asymptotic expressions we used the assumption of Lemma 5 that n+/n = max{ns, nt}/n ≤
3kp/2, for constant k > 0. We also used in the Definition 3 of good networks the condition (3) that
Pb(ε1/ lnn)np = ω(1). We also used in the Definition 1 of reasonable latency coefficients the condition
(3) that for any constant ε1 > 0 there exists a constant δε1 > 0 such that Pb(ε1) ≥ δε1 . Finally, we used in
the Definition 3 of good networks that pn = o(n)⇒ p = o(1) and pn = Ω(log n). ut

We conclude that the flow g satisfies property (5) of Lemma 5 by Proposition 1 proved above in (10). ut

Corollary 1. If ρ′ = O(1) in (10) then ∀ε1 > 0⇒ `q(g) ≤ Bs + Bt + 7ε1, for each g-used path in (10).
Thus, g is an 7ε1-NE, ∀ε1 > 0.

6.2 Approximating the best subnetwork when r ≤ Bmaxn+

Aminε

Grouping the Neighbors of s and t: Let us now consider the entire random instance G and the best
subnetwork H∗0 of G0 (recall,G0 is the 0-latency simplification of G, see Def. 2) and f∗ the corresponding
NE flow onH∗0 . A subtle issue of Lemma 5 is that it applies only to subsets of s-links inEs(H∗0 ) and t-links
in Et(H∗0 ) that have (almost) the same s, t-link latency (recall the role of Bs, Bt in Lemma 5) under the
given NE flow f∗ in H∗0 . But, unlike G0, now H∗0 need not be internally complete bipartite, therefore may
exist neighbors of s (resp. t) connected to disjoint subsets of Vt (resp. of Vs) in H∗0 , and thus have quite
different s, t-link latency. Hence, to apply Lemma 5, we partition the neighbors of s and the neighbors of
t into an at most a constant number of classes V is and V jt according to their latency. For convenience, we
let ε2 = ε/6 and apply Theorem 2. By Theorem 2 there is an acceptable flow f , determined by exhaustive
search within the time bound of this theorem, and a network H0 containing only the f -used paths, which
is an ε2-Nash flow on H0 and induces a path latency L ≡ LH0(f). By Theorem 2, applied with error
ε2 = ε/6, there exists a constant % such that 0 < % ≤ 24AmaxBmax

δεA2
minε

(where this bound on % holds by
Lemma 4), where for all e ∈ E(H0), 0 < fe ≤ % + ε2. The highest latency wrt f of an s-link, plus the
highest latency of an t-link upper bounds the latency of any s-t path used by f in H0. Thus, using the error
ε2 = ε/6 above, we can define in (11) the following constants κ,L, k that will be useful in the sequel:

L ≡ LH0
(f) ≤ 2Amax(%+ ε2) + 2Bmax ≤ 2Amax

(
24AmaxBmax

δεA2
minε

+ ε/6

)
+ 2Bmax = L

κ = dL/ε2e = d6L/εe

0 ≤ k ≤ κ2 =

12
Amax

(
24AmaxBmax

δεA2
minε

+ ε/6
)
+Bmax

ε


2

(11)

Note that constant L in (11) above is independent of the particular value that r takes and independent of
f∗, f . Recall (11) and partition the interval [0,L] of the possible s, t-link latency values into the constant
number κ = dL/ε2e = d6L/εe of subintervals, where the i-th subinterval is Ii = (iε2, (i + 1)ε2], i =
0, . . . , κ− 1. Once more κ is independent of the particular value that r takes and independent of f∗, f . We
partition the vertices of Vs (resp. of Vt) that receive positive flow by f into the same constant number κ of
classes V is (resp. V it ), i = 0, . . . , κ − 1. Precisely, a vertex x ∈ Vs (resp. x ∈ Vt), connected to s (resp. to
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t) by the edge ex = {s, x} (resp. ex = {x, t}), is in the class V is (resp. in the class V it ), if `ex(fex) ∈ Ii. If
a vertex x ∈ Vs (resp. x ∈ Vt) does not receive any flow from f , x is removed from G and does not belong
to any class. Hence, from now on, we assume that all neighbors of s and t receive positive flow from f ,
and that V 0

s , . . . V
κ−1
s (resp. V 0

t , . . . , V
κ−1
t ) is a partitioning of Vs (resp. Vt). In exactly the same way, we

partition the edges of Es (resp. of Et) used by f into the same constant number κ of classes Eis (resp. Eit),
i = 0, . . . , κ− 1.

To find out which parts of H0 will be connected through the intermediate subnetwork of G, using the
construction of Lemma 5, we further classify the vertices of V is and V jt based on the neighbors of t and
on the neighbors of s, respectively, to which they are connected by f -used edges in the subnetwork H0. In
particular, a vertex u ∈ V is belongs to the classes V (i,j)

s , for all j, 0 ≤ j ≤ κ− 1, such that there is a vertex
v ∈ V jt with f{u,v} > 0. Similarly, a vertex v ∈ V jt belongs to the classes V (i,j)

t , for all i, 0 ≤ i ≤ κ− 1,
such that there is a vertex u ∈ V is with f{u,v} > 0. A vertex u ∈ V is (resp. v ∈ V jt ) may belong to many
different classes V (i,j)

s (resp. to V (i,j)
t ), and that the class V (i,j)

s is non-empty iff the class V (i,j)
t is non-

empty. We let k ≤ κ2 in (11) to be the number of pairs (i, j) for which V (i,j)
s and V (i,j)

t are non-empty.
We note that k is bounded above by constant κ2 that does not depend on |V |, r, f, f∗. In particular, the
flow f at hand determines k which, by virtue of Theorem 2, the f at hand is the best outcome flow via
deterministic exhaustive search over all acceptable flows. We let E(i,j)

s be the set of edges connecting s
to the vertices in V (i,j)

s and E(i,j)
t be the set of edges connecting t to the vertices in V (i,j)

t . We conclude
that, when f is handed, the above construction of all the corresponding subsets takes time bounded by κ2

in (11).

Building the Intermediate Subnetworks of G. The last step is to replace the 0-latency simplified parts
connecting the vertices of each pair of classes V (i,j)

s and V
(i,j)
t in H0 with a subnetwork of Gm. We

partition, as in condition (4) of Definition 3 of good networks, the set Vm of intermediate vertices of G into
k subsets, each of cardinality |Vm|/k, and associate a different such subset V (i,j)

m with any pair of non-
empty classes V (i,j)

s and V (i,j)
t . For each pair (i, j) for which the classes V (i,j)

s and V (i,j)
t are non-empty,

we consider the induced subnetwork G(i,j) ≡ G[{s, t} ∪ V (i,j)
s ∪ V (i,j)

m ∪ V (i,j)
t ], which is an (n/k, p, 1)-

good network, since G is an (n, p, k)-good network. Therefore, we can apply Lemma 5 to G(i,j), with
H

(i,j)
0 ≡ H0[{s, t} ∪ V (i,j)

s ∪ V (i,j)
t ] in the role of H0, the restriction f (i,j) of f to H(i,j)

0 in the role
of the flow f , and since ρ′ = % + ε2 = O(1) we can apply, in particular, Corollary 1. Moreover, we let
B

(i,j)
s = max

e∈E(i,j)
s

`e(fe) and B(i,j)
t = max

e∈E(i,j)
t

`e(fe) correspond to Bs and Bt, and introduce

constant latencies `′e(x) = B
(i,j)
s for all e ∈ E(i,j)

s and `′e(x) = B
(i,j)
t for all e ∈ E(i,j)

t , as required by
Lemma 5. Thus, we obtain, with high probability, a subnetworkH(i,j) ofG(i,j) and a flow g(i,j) that routes
as much flow as f (i,j) on all edges of E(i,j)

s ∪ E(i,j)
t , and satisfies the conclusion of Lemma 5, if we keep

in H(i,j) the constant latencies `′e(x) for all e ∈ E(i,j)
s ∪ E(i,j)

t .
The final outcome is the union of the subnetworks H(i,j), denoted H (H has the latency functions of

the original instance G), and the union of the flows g(i,j), denoted g, where the union is taken over all k
pairs (i, j) for which the classes V (i,j)

s and V (i,j)
t are non-empty. By construction, all edges of H are used

by g. Using the properties of the construction above, we can show that if ε1 = ε/42 and ε2 = ε/6, the flow
g is an ε-Nash flow of (H, r), and satisfies LH(g) ≤ LH0

(f) + ε/2. Thus, we obtain:

Lemma 6. Fix any ε > 0 and set constant k = κ2 as in (11). Let (G, r) with G a (n, p, k)-good network
(Def. 3) and arbitrary r : 0 < r ≤ Bmaxn+

Aminε
. Consider by Theorem 2 an acceptable (ε/6)-Nash flow f and

the subnetwork H0 ⊆ G0 used by f which satisfies: ∀e ∈ E(H0) ⇒ 0 < fe ≤ % + ε/6, with constant
0 < % ≤ 24AmaxBmax

δεA2
minε

. Then whp10 we can compute in poly(|V |) time a subnetwork H ⊆ G and an ε-Nash
flow g of (H, r) with LH(g) ≤ LH0

(f) + ε/2.

Proof. We consider the subnetwork H (with the original latency functions of G), computed as the union
of subnetworks H(i,j), and the flow g, computed as the union of the flows g(i,j), where the union is taken
over all k pairs (i, j) for which the classes V (i,j)

s and V (i,j)
t are non-empty. We recall that by construction,

10 wrt. the random choice of the latency functions of G
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all edges of H are used by g. We show that if ε1 = ε/42 and ε2 = ε/6, the flow g is an ε-Nash flow of
(H, r), and satisfies LH(g) ≤ LH0

(f)+ ε/2. We stress that the edge and path latencies here are calculated
with respect to the original latency functions of G and under the edge congestion induced by the flow g (or
the flow f ).

For convenience, we let B(i,j) = B
(i,j)
s + B

(i,j)
t for any pair of non-empty classes V (i,j)

s and V (i,j)
t .

Since the difference in the latency of any edges in the same group is at most ε2, we obtain that for any
edge e ∈ E(i,j)

s , B(i,j)
s − ε2 ≤ `e(fe) ≤ B

(i,j)
s , and similarly, that for any edge e ∈ E(i,j)

t , B(i,j)
t − ε2 ≤

`e(fe) ≤ B
(i,j)
t . Therefore, since H0 is a 0-latency simplified network, and since by hypothesis, all the

edges of H0 are used by f , for any pair of non-empty classes V (i,j)
s and V (i,j)

t , and for any s − t path p
going through a vertex of V (i,j)

s and a vertex of V (i,j)
t ,

B(i,j) − 2ε2 ≤ `p(f) ≤ B(i,j)

Moreover, since f is an ε2-Nash flow of (H0, r), for any s− t path p ∈ PH0
,

LH0
(f)− ε2 ≤ `p(f) ≤ LH0

(f)

Combining the two inequalities above, we obtain that for any pair of non-empty classes V (i,j)
s and V (i,j)

t ,

B(i,j) − 2ε2 ≤ LH0
(f) ≤ B(i,j) + ε2 (12)

As for the flow g, by construction, we have that ge = fe for all edges e ∈ Es ∪ Et. Therefore, for
any edge e ∈ E(i,j)

s , B(i,j)
s − ε2 ≤ `e(ge) ≤ B

(i,j)
s , and similarly, for any edge e ∈ E(i,j)

t , B(i,j)
t − ε2 ≤

`e(ge) ≤ B
(i,j)
t . Thus, by Lemma 5 and its Corollary 1, and since all the edges of any subnetwork H(i,j)

are used by g, for any s − t path p in the subnetwork H(i,j), B(i,j) − 2ε2 ≤ `p(g) ≤ B(i,j) + 7ε1. Using
(12), we obtain that for any subnetwork H(i,j) and any s− t path p of H(i,j),

LH0(f)− 3ε2 ≤ `p(g) ≤ LH0(f) + 2ε2 + 7ε1 (13)

Furthermore, we recall that the subnetworks H(i,j) only have in common the vertices s and t, and
possibly some vertices of Vs ∪ Vt and some edges of Es ∪ Et. They have neither any other vertices in
common, nor any edges connecting vertices in the intermediate parts of different subnetworks H(i,j) and
H(i′,j′). Hence, any s− t path p of H passes through a single subnetwork H(i,j). Therefore, and since by
construction, all the edges and the paths of H are used by g, (13) holds for any s− t path p of H .

Thus, we have shown that g is a (5ε2+7ε1)-Nash flow of (H, r), and that LH(g) ≤ LH0(f)+2ε2+7ε1.
Using ε2 = ε/6 and ε1 = ε/42, we obtain the performance guarantees of g as stated in Lemma 6. ut

6.3 Approximating the best subnetwork when r >
Bmaxn+

Aminε

In Lemma 2 we have proved that: for an arbitrary net G at hand, if G0 denotes the 0-latency simplified
network (Def. 2) of G the Nash flow f can be computed in strongly polynomial time (see e.g., [45]) on
(G0, r) and there are L1, L2 > 0, with L1+L2 = L, such that all used edges incident to s (resp. to t) have
latency L1 (resp. L2) in the Nash flow f . Since r > Bmaxn+

Amin
then L1, L2 > Bmax and all edges in Es ∪Et

are used by f . In particular, recall here (1) that the common path latency of the NE of G0 is

L(G0, r) = L1 + L2 ≤
(
r

As
+

r

At

)
+ 2Bmax (14)

Also, in Lemma 2 we have proved that the common edge latency L1 of loaded s-links is L1 ≤ r
As

+Bmax.
From this, we derive that the upper bound ρ′ used in the property (5) of Lemma 5 on the load of any s-link
e, satisfies:

Aminρ
′ = L1 ≤

r

As
+Bmax ⇒ ρ′ ≤

(
r

As
+Bmax

)
1

Amin
(15)
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which bounds the flow traversed by any loaded path departing from a u ∈ Γ (G0) and arriving at a u ∈
Γ (G0). By the NE flow f on (G0, r) all the loaded s-links have equal latency L1 and all the loaded t-links
have equal latency L2, therefore we can plug f into Lemma 5 and compute in poly|V | time a flow g and a
subnetwork G′ ⊆ G that satisfies properties (1-5) of Lemma 5. In particular, g is a NE on the subnetwork
G′ = Gg that contains all g-used paths, where each g-used path has latency as in property (5) of Lemma 5,
that is, for any constant ε1 > 0:

L(G′, r) ≤ L1 + L2 + 6ε1 + ρ′ × o(1) ≤
(
r

As
+

r

At

)
+ 2Bmax + 6ε1 + ρ′ × o(1)

≤
(
r

As
+

r

At

)
+ 2Bmax + 6ε1 +

(
r

As
+Bmax

)
1

Amin
× o(1) (16)

where above we have plugged the ρ′ in (15). The expression in (16) will be useful bellow, when divided
by the common path latency L(H∗, r) of the best subnetwork H∗ ⊆ G and derive the approximation ratio
of our algorithm 1. Towards this, in Lemma 2 we have proved that the best subnetwork H∗0 ⊆ G of the
0-latency simplification of our initial graph G has a common path latency L(H∗0 , r) at least:

L(H∗, r) ≥ L(H∗0 , r) ≥
(
r

As
+

r

At

)
>> 1 (17)

In particular, by virtue of our Lemma 1, the expression in (17) is a lower bound of the common path
latency L(H∗, r) of the best subnetwork of the original G. We should stress here that we assume that this
expression is >> 1, since we refer to very high values of total rate r that loads all s, t-links thus inducing
high common path latency. Otherwise, if the common path latency isO(1), our previous analysis in Section
6.2 applies as is. We conclude that, if we consider the ratio of (16) and (17), then for any positive constant
ε1 > 0, our approximation ratio for computing an ε-NE is at most:

L(G′, r)

L(H∗, r)
≤

(
r
As

+ r
At

)
+ 2Bmax + 6ε1 +

(
r
As

+Bmax

)
1

Amin
× o(1)(

r
As

+ r
At

)
≤ 1 + ε+

6ε1(
r
As

+ r
At

) +

(
r
As

+Bmax

)
(
r
As

+ r
At

)
Amin

× o(1)

≤ 1 + ε+ o(ε1) +

(
r
As

+ r
At

)
(
r
As

+ r
At

)
Amin

× o(1) + Bmax(
r
As

+ r
At

)
Amin

× o(1)

= 1 + ε+ o(ε1) +
o(1)

Amin
+

ε

2Amin
× o(1)

= 1 + ε+ o(ε1) + o(1)⇒
L(G′, r) ≤ (1 + ε+ o(ε1) + o(1))L(H∗, r) = (1 + ε+ o(1))L(H∗, r) (18)

To derive (18), we have used the following bounds. From the 1st line to 2nd line we used that: 2Bmax

( r
As

+ r
At
)
≤

ε, proved in (5). From the 2nd line to 3rd line we used that: r
As

<
(
r
As

+ r
At

)
and that

(
r
As

+ r
At

)
>> 1

that we assumed in (17) because we study the case of high values of r. From the 3rd line to 4th line, we
recall the bound used in 1st to 2nd line, to obtain: Bmax

( r
As

+ r
At
)
≤ ε/2. From the 4th line to 5th line we used

that: 1
Amin

= Ω(1), see assumption (1) of the reasonable coefficients in Definition 1.

Remark 2. We can also relax the assumption that
(
r
As

+ r
At

)
>> 1 and obtain a slightly weaker approx-

imation ratio than in (18). In particular, recall 2Bmax

( r
As

+ r
At
)
≤ ε, proved in (5) that yields in the 2nd line of

(18) that term 6ε1
( r

As
+ r

At
)
≤ 3ε1ε

Bmax
< ε,∀ε1 < Bmax

3 . Thus, in a scenario that
(
r
As

+ r
At

)
= Ω(1) then

∀ε1 : 0 < ε1 <
Bmax

3 we get L(G′, r) ≤ (1 + 2ε+ o(1))L(H∗, r).
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7 Open problem

Once more we highlight that the reduction itself runs in polynomial time. The time consuming step is
the application of [12, Theorem 3] to the 0-latency simplified network. Since such networks have only
polynomially many (and very short) s − t paths, they escape the hardness result of [40]. The (improved)
approximability of the best subnetwork for 0-latency simplified networks is an intriguing open problem
arising from our work.
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