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Abstract—Cooperation among cognitive radios for spectrum
sensing is deemed essential for environments with deep shadows.
In this paper, we study cooperative spectrum sensing for cognitive
radio ad hoc networks where there is no fusion center to
aggregate the information from various secondary users. We
propose a novel consensus-inspired cooperative sensing scheme
based on linear iterations that is fully distributed and low-cost. In
addition, the trade-offs on the number of consensus iterations are
explored for scenarios with different shadow fading character-
istics. Furthermore, we model Insistent Spectrum Sensing Data
Falsification (ISSDF) attack aimed at consensus-based iterative
schemes and show its destructive effect on the cooperation
performance which accordingly results in reduced spectrum
efficiency and increased interference with primary users. We
propose a trust management scheme to mitigate these attacks
and evaluate the performance improvement through extensive
Monte Carlo simulations for large-scale cognitive radio ad hoc
networks in TV white space. Our proposed trust management
reduces the harm of a set of collusive ISSDF attackers up to two
orders of magnitude in terms of missed-detection and false alarm
error rates. Moreover, in a hostile environment, integration of
trust management into cooperative schemes considerably relaxes
the sensitivity requirements on the cognitive radio devices.

Index Terms—Dynamic spectrum access, Cognitive radio ad
hoc networks, Distributed consensus-based cooperative spectrum
sensing, Trust management, Insistent spectrum sensing data
falsification attack

I. INTRODUCTION

THE radio frequency spectrum shortage problem is origi-
nated from the static assignment of the frequency bands

to the primary users (PUs or licensees) of the bands. The
non-adaptive spectrum assignment leaves a significant portion
of RF spectrum underutilized [1]. Dynamic spectrum access
(DSA), enabled by cognitive radios, introduces an adaptive
approach for spectrum use that facilitates more flexibility by
allowing secondary users (SUs) to use licensed spectrum bands
on an opportunistic non-interference basis. As a result, DSA
offers a better utilization of the spectrum and is essential for
solving the spectrum shortage problem. Cognitive radios that
sense and dynamically share the spectrum empower today’s
smart technologies such as cognitive Internet of Things [2]
and heterogeneous networks with cognitive Femtocells [3].
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Spectrum sensing is an important step for DSA. However,
when an SU senses the spectrum, it is possible that it does not
detect the PU due to a deep shadow and this in turn increases
the risk of interference to the PU. In order to improve the SUs’
detection accuracy cooperative spectrum sensing has been
proposed. In this approach, a set of SUs cooperate by sharing
their sensing information with each other and collectively
deciding on the presence or absence of the PU [4]. In a
centralized cognitive radio network (e.g. IEEE 802.22 [5]), the
final decision is made by a fusion center that aggregates the
sensing data from all of the SUs in the network. In contrast,
in a decentralized network (e.g. a cognitive radio ad hoc
network or CRAHN), the nodes must perform a distributed
cooperation. Distributed cooperative spectrum sensing (DCSS)
is preferred to a centralized scheme because a distributed
scheme is scalable, fault-tolerant and more efficient.

DCSS is performed by exploiting existing distributed con-
sensus algorithms that have been previously used for appli-
cations such as sensor fusion [6] or Peer-to-Peer systems [7].
These consensus algorithms are based on iterative diffusion
and aggregation of data through linear iteration-based or
gossip-based schemes [8] and involve communication with di-
rect neighbors in the network graph. However, the consensus-
based DCSS schemes that have been proposed previously are
not practical for ad hoc networks as they require the individual
nodes to have knowledge about the topology of the network.

Another known issue with cooperative schemes is that in a
realistic potentially hostile environment, malicious secondary
users can broadcast falsified sensing data to their neighbors in
order to mislead them and compromise the spectrum sharing
in the cognitive radio network. This attack is called Spectrum
Sensing Data Falsification (SSDF) [9] attack. A more serious
and less studied attack particularly aimed at consensus-based
schemes is an iterative attack that we call Insistent SSDF
(ISSDF). The ISSDF attacker not only falsifies its own initial
data but it also broadcasts the falsified value in every itera-
tion of the consensus and refrains from performing updates
according to the protocol. The ISSDF attack compromises the
cooperation significantly and it may cause divergence from the
correct consensus. In order to address the above-mentioned
problems, in this paper, we introduce a trust-aware consensus-
inspired DCSS scheme which is low-overhead and resilient
to ISSDF attacks. Our contributions can be summarized as
following:
• We propose a practical distributed scheme for cooperative
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spectrum sensing in cognitive radio ad hoc networks
that is inspired by a linear iterative average consensus
algorithm and uses an equal-weighting update strategy
that does not require any topology knowledge by SUs.
Through extensive simulations for realistic large-scale
mobile networks in outdoor environments with correlated
shadow fading, we show that our proposed scheme offers
the same level of performance compared to the existing
more complex consensus-based schemes.

• We analyze the performance-complexity trade-offs on the
number of consensus iterations for a typical simulated
network under different shadowing severities.

• We show the significant potential of the collusive ISSDF
attackers in crippling the consensus-based schemes. We
propose a trust management scheme that can be integrated
with any consensus-based DCSS scheme to mitigate
the ISSDF attacks. We show that our proposed trust-
aware DCSS scheme is robust even in the presence of
a large set of ISSDF attackers that act in harmony and
simultaneously. In addition, we propose a trust-aided
outlier detection technique that when combined with the
proposed trust scheme can effectively mitigate dynamic
attackers.

• We analyze the impact of malicious attacks and trust
management mitigations on the sensitivity requirements
of cognitive radio devices which has direct relationship
with the system’s cost and flexibility.

II. BACKGROUND AND RELATED WORK

Recently, average consensus algorithms [8] including
gossip-based protocols [7] and linear iteration-based
schemes [6] [10] have been exploited for the DCSS
applications [11] [12] [13] [14]. However, all of the existing
consensus-based DCSS schemes require the individual SUs to
have some type of knowledge about the network topology. For
instance, some of these schemes require the nodes to know
the maximum degree in the network (or at least an upper
bound), while others require the nodes to know the degree
of the neighbor nodes (e.g. Metropolis weighting) [6]. These
limitations make the existing DCSS schemes impractical
for cognitive radio ad hoc networks. In this paper, we
propose a consensus-inspired DCSS scheme that is practical
for a dynamic network because the SUs are completely
topology-agnostic.

The other significant issue in the current cooperative spec-
trum sensing schemes is ensuring the robustness of the co-
operation against malicious SSDF [9] attackers that broadcast
falsified sensing data. Moreover, in the context of iterative
consensus-based DCSS schemes, ISSDF attackers, that do not
follow the consensus update protocol and broadcast falsified
data in every iteration, are much more destructive than the
conventional SSDF attackers. In addition, a set of collusive
ISSDF attackers can amplify the effect of each-other. Sun-
daram et. al. prove that a set of conspiring malicious nodes,
who do not follow the update protocol, are able to prevent the
network from converging to the correct answer [15] [16].

ISSDF attackers are in a sense similar to the stubborn
agents [17] that have been studied in the context of opinion

propagation and convergence. It is shown that the stubborn
agents can cause the network to converge to their opinions.
Moreover, the optimal selection and placement of stubborn
agents for maximized impact on a fixed network is investi-
gated [17] [18] [19]. In contrast, in this paper, we consider a
mobile network of SU nodes, where a random subset of nodes
are ISSDF attackers and they move randomly similar to the
normal nodes. We do not make any assumption that ISSDF
attackers collude to move in a way to maximize their effect
on the network. This may be an interesting scenario for further
research.

The conventional SSDF attacks and mitigation approaches
against them have been well-studied in the literature for the
centralized schemes [9] [20] [21] [22]; however, the problem
of coping with ISSDF attacks in the consensus-based DCSS
schemes is hardly explored. A proposed approach to miti-
gate the effect of ISSDF attackers in consensus-based DCSS
schemes is adaptive outlier detection [23] [24] which is based
on detecting the nodes that broadcast values that are deviated
from the the rest of the neighbors. This approach is distributed
however, it requires every node to compute a deviation thresh-
old at each consensus iteration which imposes a significant
computational overhead on each SU. As will be described
in the following sections, in our proposed scheme the SUs
update the trust scores only once the consensus iterations are
completed and therefore the computational overhead is low.
Zhang et. al. propose a weighted average consensus scheme to
count for channel conditions and multi-path fading in DCSS,
however, they do not address the ISSDF attacks nor the impact
of correlated shadow fading.

In this paper, we introduce trust scores as weights for the
average consensus update rule to mitigate ISSDF attacks. Liu
et. al. [25] propose a trust scheme using trust propagation and
a set of pre-trusted nodes to mitigate the effect of Byzantine
adversaries in linear iterative consensus in sensor networks.
However, trust propagation is costly and generally there are no
pre-trusted nodes in an ad hoc network. A trust-aware DCSS
based on single neighbor gossip has been proposed in [12]
which can mitigate SSDF attacks; however, due to the nature
of wireless networks, this model is less efficient compared
to a broadcast model which we consider in this paper. In
addition [12] considers sharing of binary decisions only. In
this paper, we consider the model where the SU nodes share
raw PU power values.

In this paper, we extend our previous work [26] by analyzing
our proposed trust-aware consensus-inspired DCSS scheme for
a mobile CRAHN in realistic environments with correlated
shadow fading of various severity. In addition, we study
the trade-offs that determine the best choice for number of
consensus iterations. Moreovesr, we analyze the operating
characteristics of a CRAHN under various detection thresholds
in the presence of ISSDF attackers and show the significant
improvement through trust management. Our trust manage-
ment scheme does not depend on pre-trusted nodes and only
requires the nodes to perform a single local trust evaluation per
sensing round for each direct neighbor. These features make
our proposed trust-aware DCSS scheme practical and low-cost
for CRAHNs.
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III. SYSTEM MODEL

Our model consists of a network of n SUs that form a
CRAHN in a square location area which is far away from a
PU transmitter. The PU transmitter is assumed to have a high
transmission power (e.g. a TV station), therefore the whole SU
network is within the transmission range of the PU transmitter.
A network of PU receivers are also collocated in the same area.
See Figure 1 for the system overview. SU nodes are initially
uniformly spread throughout the location area and during the
time of simulation, they move randomly. The neighbor set of
the SU node i, denoted by Ni, consists of all of the SUs that
are located within the communication range of SU node i.
Obviously, the neighbor sets are always changing due to the
mobility of the nodes; however, we assume the SU network
topology remains unchanged during one sensing period. When
node i broadcasts a message, all of its one-hop neighbors will
receive that message. Here we assume perfect communication
between the SUs via a common control channel. The detection
of a PU is modeled as a binary hypothesis testing problem as
follows: H0 if PU is absent and H1 if PU is present. Each
SU node is equipped with a power detector for sensing the
received power from the PU. The received signal by an SU
can be modeled as follows:

y(m) =

{
w(m) H0

s(m) + w(m) H1
(1)

where s(m) is the signal component with power PS and
w(m) is the zero-mean additive white Gaussian noise with
noise power PN . When the PU is inactive, the sensed power
at an SU will essentially be equal to the received noise
power. On the other hand, when the PU is active, the signal
component power PS can be modeled as PT −PL(d), where
PT is the PU transmission power and PL(d) is the distant-
dependent path loss from the PU to the SU. Details on the
path loss and fading model is given in subsection III-A. If the
power detector takes M samples, the test statistic is given by:
Γ = 1

M

∑M
m=1 y(m)y(m)∗. Using the central limit theorem,

it can be shown that for large enough M [27] [28], the test
statistic for a detector follows a normal distribution [29]:

Γ ∼ N (PS + PN ,
2(PS + PN )2

M
) (2)

In a non-cooperative scenario, an SU node decides on
the PU activity by comparing its own received power test
statistic, Γ, with a detection threshold, γ. The spectrum sensing
performance is characterized by the probability of false alarm
(PFA) and missed-detection (PMD):

PFA = Pr(Γ > γ|H0) and PMD = Pr(Γ < γ|H1) (3)

Therefore, setting the right detection threshold is important
in the performance of a cognitive radio. Obviously, the sensi-
tivity of a device puts a minimum bound on the detection
threshold. The IEEE 802.22 working group for spectrum
sensing modeling recommends setting PFA = 1% or 10%
for an independent SU and deriving the detection threshold
based on that [29] [30]. False alarms occur when H0 is true;
therefore, in order to derive the threshold for a desired PFA,
we set PS = 0 in (2) and based on (3) we will have:

Fig. 1. System Overview

γ = PN (1 +

√
2

M
Q−1(PFA)) (4)

where Q−1(.) is the inverse Gaussian Q-function.
In our cooperative spectrum sensing model, the SU nodes

first sense and measure the received power and then share their
power measurements with each-other to estimate the average
received power. After a number of broadcast and update
iterations, each SU compares its own estimate of the average
power with a threshold to make its final binary decision about
the PU presence. In our cooperative model, we also consider
a set of collusive malicious nodes that perform ISSDF attack
(See Section VII) to evaluate their impact on the performance.

A. Path loss and shadow fading model

A radio propagation model (analytical or empirical), pro-
vides an average path loss for a given transmitter-receiver
distance. In our model, we apply Hata path loss model
(suburban areas variant) [31]. The IEEE 802.22 working group
recommends the Hata model for spectrum sensing modeling
in wireless regional area networks (WRAN) operating in TV
whitespace.

In addition, a signal transmitted through a wireless link
naturally experiences random variations due to obstacles in
the path. As a result, two receivers at two different locations
with equal distance from a transmitter will not be affected by
the same path loss despite the fact that the average path loss
is the same at both locations. The random variation about the
average path loss due to blockage of objects in the signal path
such as buildings and trees is called shadow fading.

It is safe to assume that shadow fading remains constant at a
single location over time since normally there is no significant
change in the terrain such as the surrounding buildings or trees
(a space-time correlated shadow fading model [32] may be
used if the shadows are not constant over time.) Obviously,
the reception of the mobile radio nodes changes when they
move in and out of shadows over time. The loss due to shadow
fading is commonly modeled by a random variable with log-
normal distribution [31]. That is the shadow fading loss in dB
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(a) Decorrelation distance = 25 m
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(b) Decorrelation distance = 100 m

Fig. 2. Correlated shadow fading examples in a square area 300 m × 300 m, σψdB = 8dB, circle markers are SU nodes (white: normal, black: malicious)

(denoted by ψdB) is a Gaussian random variable in dB with
zero mean and a standard deviation of σψdB in dB:

ψdB ∼ N (0, σψdB) (5)

The log-normal shadowing loss is added to the average path
loss to derive the total dB loss at a location with distance d
from the transmitter: PL(d) = PL(d) + ψdB [dB] where
PL(d) is the average path loss as a function of transmitter-
receiver distance d based on the Hata model. Therefore the
total dB loss is characterized by a Gaussian distribution with
mean PL(d) and standard deviation σψdB .

It has been shown that the correlation between shadow
fading at two locations separated by distance δ can be char-
acterized by [31]:

A(δ) = σ2
ψdBe

−δ/Xc (6)

where Xc is the decorrelation distance and is usually in the
order of the size of the obstacles in the environment. For
example for outdoor environments, the decorrelation distance
is typically between 50 m and 100 m [31]. As it is inferred
from Equation 6, closely located receivers (with smaller δ) ex-
perience highly correlated shadowing. This is intuitive because
the two receivers that are close to each-other are likely affected
by the same obstacles. Figure 2 shows heat-map plots of two
examples of simulated correlated shadow fading with different
decorrelation distances. For our Monte Carlo simulation (as we
will describe in Section VI-A), we generate random shadow
maps based on the above model.

IV. DISTRIBUTED AVERAGE CONSENSUS-BASED
COOPERATIVE SPECTRUM SENSING

In an average consensus-based DCSS scheme, the SUs aim
at estimating the average of the received power by all of the
SUs. At each sensing round, each SU first measures its own
received power as its initial value; then it participates in a
series of broadcast and update iterations. In each iteration, the
SUs broadcast their current values and update their average
estimates based on the received values from neighbors. Finally,
each node independently compares its estimate of the average
power with a threshold and makes its final decision about the

PU presence. In this section, we briefly describe two categories
of average-consensus algorithms: gossip-based and weighted
linear iteration-based, that are used for DCSS application.
We will compare our proposed DSCC scheme against these
schemes.

A. Weighted linear iteration-based

In the weighted linear iteration scheme, the nodes in the
network follow a weighted linear combination update strategy
at each iteration in order to converge to a consensus about
the global average [6]. The value of node i at consensus
iteration c is denoted by vi(c). At each sensing round, each
node i is initialized with vi(0) = received power at node i.
In order to converge to the global average, at each consensus
iteration c, each node i updates its value with a weighted linear
combination of its own value and the received values from its
neighbors [6]:

vi(c+ 1) = Wiivi(c) +
∑
j∈Ni

Wijvj(c), i = 1, ..., n, (7)

where Wij is the weight for vj(c) at node i for neighbor
j. If j is not a neighbor Wij = 0. Also, Wii is the self-
weight of node i. If we consider the vector of the values
at all nodes at iteration c, v(c) = (v1(c), ..., vn(c)) and the
n × n matrix W consisting of all of the mutual weights, the
above linear iteration can be written in vector form as follows:
v(c+ 1) = Wv(c). For asymptotic convergence to the global
average, matrix W must satisfy the following [10]:

lim
c→∞

W c = (
1

n
)11T . (8)

Obviously, for the distributed linear iterations to asymptot-
ically converge to the global average, the graph must be
connected; otherwise, the convergence can only be reached
for each isolated subgraph. Optimal and heuristic approaches
have been proposed to realize the weight matrix that satisfies
the convergence condition as described above. The optimal
solution [10] is not a distributed solution and therefore is
not practical for our purpose. Two heuristic weight choices
that satisfy the convergence condition and therefore guarantee
asymptotic convergence to the global average are [6]:
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• Metropolis: Weights are calculated based on the larger
number of neighbors in each pair of nodes:
Wij = 1

1+max{|Ni|,|Nj |} , j ∈ Ni
• Maximum-degree: Weights are calculated based on the

maximum degree (number of neighbors) in the net-
work [13]:
Wij = 1

1+max degree , j ∈ Ni
In both of the above schemes, Wij = 0, if j is not a neighbor
and the self-weight is set such that the sum of weights is 1:
Wii = 1−

∑
j∈Ni

Wij .

B. Gossip-based

We also compare our proposed scheme against DCSS
schemes based on Push-Sum protocol [7] which is a gossip-
based solution for the average consensus problem. In Push-
Sum algorithm, each node maintains a sum, which is initialized
to be the received PU power at this node; it also maintains a
gossip weight which is initialized to 1. At each consensus
iteration, each node sends a fraction of its sum and weight to
one or more randomly chosen neighbor(s). We will compare
our proposed DCSS scheme against the following two variants
of the Push-Sum scheme: 1) One-neighbor gossip, where at
each iteration, each node picks one of its neighbors at random
and sends half of its sum and weight to it [12]. 2) Flooding
gossip, where at each iteration, each node distributes its sum
and weight values uniformly among all of its neighbors [26].
See [7] for details of the Push-Sum algorithm.

C. Neighbor discovery overhead

The existing average consensus-based DCSS schemes
that are described above impose overhead related to neigh-
bor discovery at each sensing round. In the Metropolis
linear iteration-based scheme, the weights are calculated
based on the larger degree in each pair of nodes. Therefore,
the nodes must first discover their neighborhood sizes
(degrees) and then broadcast their degrees to others. As a
result, this scheme requires the nodes to perform neighbor
discovery that needs to be updated every sensing round
which imposes significant overhead. In addition to that
overhead, each node also needs to broadcast its degree
to the other nodes at each sensing round. Note that in a
mobile network the neighborhoods are changing all the
time and therefore the number of neighbors of a node is
different from one sensing round to the next. As a result
using the perceived number of neighbors based on the
broadcasts received in the immediately previous sensing
round introduces error in convergence. Similarly, for
the maximum-degree variant, determining the maximum
degree is not trivial in a distributed ad hoc network where
nodes only have local views of the network.

In the gossip-based DCSS scheme, each node needs to
know the number of its active neighbors in advance to
calculate the fraction to broadcast in the current sensing
round (or to pick one random neighbor in the case
of one-neighbor gossip). As mentioned above, using the
perceived number of neighbors based on the previous
round introduces error (leakage of some fractions of values

in this case). Therefore, a neighbor discovery phase is
necessary at each sensing round.

Neighbor discovery in mobile ad hoc networks is a
non-trivial task and an active area of research. The
determination of the direct neighboring nodes is generally
done using hello protocols where each node periodically
broadcasts a hello message. Each node considers another
node as a direct one-hop neighbor only if it receives at
least one hello message from it [33] [34]. The random
access discovery schemes require the nodes to be randomly
in a “listen” or “transmit” mode in each time slot so
that each node receives the hello message from every
neighbor at least once in a predefined time period. These
algorithms generally require a large number of time slots
to reliably discover all neighbors [35] [36]. Therefore,
neighbor discovery imposes a significant time overhead in
particular for mobile networks with changing topologies.

The communication overhead of neighbor-discovery is
similar to the cost of one consensus iteration. If the
neighbor discovery is needed at each consensus iteration,
the overhead is 100%. In the case where neighbor dis-
covery is performed only once per sensing round, the
overhead is less than 100% but still considerably high
because generally the number of consensus iterations per
sensing round is small (e.g. 4) to limit the cost. As we will
show next, our proposed equally-weighted DCSS scheme
is considerably more efficient than the existing schemes
because it does not require the neighbor discovery phase
and thus completely eliminates the associated overhead.

V. PROPOSED EQUALLY-WEIGHTED LINEAR
ITERATION-BASED DCSS

We introduce a novel DCSS scheme based on iterative linear
combinations with equal weight assignment. At each iteration,
each node simply broadcasts its value and then updates its
value as an equally-weighted average of its own value and all
of the received values in this iteration as follows:

vi(c+ 1) =
vi(c) +

∑
j∈Ri

vj(c)

1 + |Ri|
, i = 1, ..., n, (9)

where Ri denotes the set of nodes from which node i received
a value in this iteration. Thus, the nodes do not need to know
the number of their active neighbors in advance; instead
they only listen and count the number of received messages
and average them to update their current estimates. As
a result, there is no overhead associated with any sort
of neighbor discovery. As discussed in Section IV-C, the
neighbor discovery overhead of the existing DCSS schemes
makes them costly and unattractive. Our proposed equally-
wighted approach offers significantly lower overhead com-
pared with the existing schemes due to the elimination of
neighbor discovery. Note that if every neighbor broadcasts its
value to node i, then Ri will be essentially equal to Ni (the
neighbor set), therefore translating the proposed scheme back
to Equation (7), the equal weights that node i assigns to any
neighbor j and to itself will be equal to 1

1+|Ni| and a weight
of zero is assigned to the other nodes.
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While the average consensus algorithms are originally de-
signed to asymptoticly converge to the exact global average for
sufficient number of iterations (e.g. in sensor fusion applica-
tions), in DCSS applications the nodes do not need to converge
to the exact average as the estimated average is solely used
for comparison against a detection threshold. Therefore, the
accuracy of estimation can be relaxed. Obviously with more
consensus iterations the accuracy of the estimated average
improves, however the consensus overhead also increases. As
a result there is a cost-performance trade-off and the number
of iterations must be kept as few as possible for the required
performance.

The corresponding weight matrix of this approximate ap-
proach does not necessarily satisfy the condition for asymp-
totic convergence to the exact global average as described in
Equation (8); however, we show with Monte Carlo experi-
ments, that this scheme results in an approximate convergence
with a small error offset and it converges faster compared to
the Metropolis and maximum-degree heuristics (See Figure 3).
In addition, we will show in the next sections that the
small convergence error does not degrade the performance of
DCSS. This is because in the DCSS applications, an exact
convergence is not necessary; instead, a practical solution is
desired where the nodes estimate the average power within
only a few iterations to quickly arrive at binary decisions about
the PU presence.

Since for asymptotic convergence weights must satisfy
Equation (8), we define the n × n weight error matrix Υ
as a metric to evaluate the convergence for any number of
iterations, c:

Υ = W c − (
1

n
)11T (10)

We evaluate the convergence of W c in different schemes
through Monte Carlo simulations. In each Monte Carlo run,
we consider a different random network topology which corre-
sponds to a different weight matrix W for each of the schemes.
For each of these different weight matrices, we derive Υ
and then compute the mean of the square of its elements:
1
n2

∑n
i=1

∑n
j=1 Υ2

ij . Then we average that over the many

random network topologies in the Monte Carlo simulations.
Figure 3 compares the convergence of the three different
schemes in terms of weight error convergence. All of the
random topologies include a graph of 50 nodes in a 300 m ×
300 m area. All of the three schemes almost converge within
around 6 iterations.

As expected, for the proposed equally-weighted scheme,
there is an associated error offset in the convergence; however,
the weight errors drop faster than the other two schemes. As a
result, the convergence errors of the equally-weighted scheme
are smaller in the first few iterations. This faster convergence
of weights in the equally-weighted scheme directly translates
to a faster convergence of nodes’ values towards the global
average. Note that fast convergence in a few iterations is
vital for a practical DCSS scheme whereas higher number
of iterations might not be affordable anyway. In Section VI,
we present our performance results in terms of PU detection
error rates which confirm that our proposed equal-weighting
scheme performs as well as other more complex schemes. In
addition, as discussed above, it is the most practical choice for
DCSS due to its simplicity.

VI. PERFORMANCE ANALYSIS OF CONSENSUS-BASED
DCSS SCHEMES

A. Simulation Setup

We study a cognitive radio ad hoc network with 50 SU
mobile nodes spread and moving in a 300 m×300 m square,
according to a random way point model [37], operating in a
TV whitespace channel of 6 MHz bandwidth with 615 MHz
center frequency. SU network is at a 15 km distance from the
PU transmitter (TV station). We assume a 54 dBm transmit
power for PU transmitter. Using the Hata path loss model,
the nominal loss only due to distance is about 138 dB. In
addition to path loss, we consider log-normal shadow fading
with dB spread of 4, 8, 12 dB. We analyze the performance
of different schemes in different scenarios through Monte
Carlo simulations, where at each run, the network is randomly
initialized. PFA and PMD of the network are derived as the
average fraction of the honest nodes in the network that make
a false alarm and missed-detection error in a sensing round,
respectively. The simulation parameters listed in Table I, will
be used for the experiments presented in the rest of the paper.

B. Comparison results

In this section, we evaluate and compare the performance
of the distributed consensus schemes that were described ear-
lier using complementary Receiver Operating Characteristics
(ROC) curves plotting missed-detection rate versus false alarm
rate for various values of detection threshold. We have picked a
wide range of detection thresholds ranging from −96 dBm to
−82 dBm that result in very high to very low missed-detection
and false alarm error rates. Figure 4 shows ROC curves for all
of the schemes that were described in the previous sections,
for 8 consensus iterations. The results show that the proposed
equally-weighted linear scheme performs as well as the other
consensus more complex schemes.
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TABLE I
SIMULATION PARAMETERS

Path Loss and Shadow Fading Random Way Point Mobility Model Noise and Threshold Monte Carlo Simulation

PU Distance from CRAHN 15 km CRAHN Area 300 m×300 m Noise Figure 11 dB # SU Nodes 50
PU Antenna Height 30 m Min Velocity 1 m/s Channel Bandwidth 6 MHz SU Node Range 80 m
SU Antenna Height 1 m Max Velocity 2 m/s Noise Power -95.22 dBm Simulation Time 8000 s
Center Frequency 615 MHz Min Pause 60 s Threshold Range [-96 , -82] dBm Sense Interval 2 s
Log-normal Shadowing
Standard Deviation {4, 8, 12} dB Max Pause 120 s

Transmit Power (Pt) 54 dBm
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Fig. 4. ROC for consensus-based DCSS schemes.
Number of consensus iterations = 8, σψdB = 8 dB

As discussed in Section V, the estimated average of received
power at each SU node is used merely for a binary decision
about the PU activity; therefore, the accuracy of the average
is of less significance. Our simulation results show that for
the DCSS application, the weight error does not degrade the
performance for our target number of iterations which must be
small (e.g. 8 iterations). In addition, as discussed before, the
equally-weighted linear scheme also offers the lowest overhead
among all as no information about the network topology and
neighborhoods is needed. As a result, the proposed equally-
weighted scheme is the most practical choice among all of
these schemes. We will further analyze this scheme in the rest
of the paper.

C. Performance-complexity trade-offs on the number of con-
sensus iterations

Cooperative spectrum sensing is deployed to overcome the
correlated shadow fading by exploiting the spatial diversity
among the cooperating nodes with the hope that different
nodes at various locations experience different shadow sever-
ity. Therefore, the nodes that enjoy a better reception can
help the other nodes who may suffer from a deep shadow. As
discussed in Section III, the decorrelation distance associated
with an environment determines the size of the shadows (see
Figure 2 for example). When decorrelation distance is large
(shadows are large), in order to better exploit the existing
spatial diversity, nodes must cooperate within larger areas (i.e.
with nodes that are multiple hops away.) For example, if SUs

consult with their direct neighbors only (i.e. only 1 iteration),
the cooperation will be ineffective. The reason is that the
neighboring nodes are under the effect of the same shadow
and their sensing data is highly correlated. As a result, a “local
averaging” scheme is not effective particularly for scenarios
with large decorrelation distances.

On the other hand, the communication and computational
overhead of the consensus-based DCSS schemes is directly
related to the number of consensus iterations. If C denotes the
number of consensus iterations, the communication overhead
of consensus for each node will be C packets per sensing
round. In addition, if we denote the average number of
neighbors of a node at any given time by B, the computational
overhead is of the order of O(C ×B). Therefore, in order to
keep the consensus overhead affordable for DCSS application,
the number of iterations must be as small as possible. In a
nutshell, there is an important complexity-performance trade-
off in determining the optimal number of iterations.

Figure 5 compares the missed-detection rates of the equally-
weighted scheme with only 1 consensus iteration versus the
same scheme with 4 and 8 iterations. On the horizontal axis the
decorrelation distance is increased from 25 m up to 100 m. For
large decorrelation distances, in particular, a local cooperation
(# Iterations = 1) is not sufficient; higher number of iterations
is required to better use the spatial diversity. The gap is even
more significant for the case of higher dB spread as seen in
Figure 5(c) with σψdB = 12 dB. Figure 6 shows ROC plots
for our proposed equally-weighted consensus-based DCSS
scheme with 1, 4, and 8 iterations. With only 1 consensus
iteration, each node receives information solely from direct
neighbors. 4 iterations is significantly better than 1 iteration,
however the performance resulting from 8 iterations is very
close to 4 iterations. For the rest of the paper we fix the number
of consensus iterations to 4.

VII. INSISTENT SPECTRUM SENSING DATA
FALSIFICATION

In iterative average consensus-based DCSS schemes, in all
of the iterations, all of the nodes must follow a predefined up-
date strategy. We study a destructive type of Spectrum Sensing
Data Falsification (SSDF) attack [9] aiming at these iterative
schemes. This attack is different from the conventional SSDF
attack in that, here the attacker not only falsifies its initial
sensed value, it also disregards the received values from the
other nodes and it never updates its estimate. Thus the attacker
broadcasts the same falsified data (possibly with some added
noise) in every iteration of the consensus. We call this attack
Insistent SSDF or ISSDF. Since the falsified data is repeatedly
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fed into the consensus process, an ISSDF attack is significantly
more destructive than the conventional SSDF. We will show
that ISSDF attacks make the honest (non-malicious) nodes,
diverge from the correct average. In the case of SSDF attack,
if the number of attackers is sufficiently small, the malicious
effect may be neutralized by the honest nodes in the network
by only using simple cooperation. In contrast, as we will show
in our experiments, even a very small set of ISSDF attackers
can have much larger impact which makes trust management
a necessity.

The existing SSDF mitigation schemes are mainly adapted
for the non-iterative or centralized cooperative spectrum sens-
ing schemes. While the negative effect of SSDF attacks on
PU detection performance is well-known, the effect of ISSDF
attack in the context of iteration-based distributed cooperative
sensing schemes has not been sufficiently studied. Our pro-
posed trust management technique which will be introduced
in the next sections is designed to mitigate both SSDF and
ISSDF attacks, however, since the effect of ISSDF attack is
much more severe, we focus on this worst case scenario.

In this paper, we study fabricating ISSDF attack where the
attacker broadcasts a high constant value, when the PU is

absent and a low constant value when the PU is present in all
of the consensus iterations. Therefore, in our attack model, the
attacker falsifies its sensing data as follows in both presence
and absence of the PU:

1) If PU is present, a fabricating ISSDF attacker constantly
broadcasts a value of zero in all consensus iterations with the
goal of dropping the honest nodes’ estimates of global average
below the detection threshold: vAttacker(c) = 0, c = 1, .., I .
Therefore, the attacker tries to deceive the honest nodes into
interfering with the PU by causing missed-detection in the
network. This attack can seriously disrupt the spectrum sharing
as it directly conflicts with the fundamental requirement of
non-interference in a cognitive radio network.

2) If PU is absent, a fabricating ISSDF attacker repeatedly
broadcasts a high constant in all of the consensus iterations so
that the honest nodes’ estimate of the global average is raised
above the detection threshold: vAttacker(c) = D, c = 1, .., I ,
where D is a positive high constant. Therefore, the attacker
tries to mislead the honest nodes to decide that the PU is
present so that the misguided nodes back-off and leave the
channel. Thus, one potential motivation behind this attack is
selfishness: By increasing the false alarms in the network, the
attacker aims at eliminating some of its competitors for using
the free channel. This attack can leave the CRAHN completely
inoperable as the honest nodes may not find any opportunity
to use the free channel.

Note that, in order to prevent detection only based on being
constant during all times, an ISSDF attacker may add a random
noise to either low or high malicious values that it broadcasts.
Our proposed trust scheme, introduced in the next section,
is able to mitigate these ISSDF attackers as well. In our
attack model, we assume a collusive set of fabricating ISSDF
attackers who coordinate to broadcast either low or high values
to strengthen the effect of each-other.

Figure 7 shows the effect of a collusive set of 10 ISSDF
attackers (out of 50 nodes in total, that is 20% malicious)
on our proposed equally-weighted consensus-based DCSS for
two example scenarios where PU is present or absent. In
both examples, the values of the the 40 honest nodes during
consensus iterations of a single sensing round is shown in
box plots. Note that the left-most box of each sub-figure
corresponds to the initial values of all of the honest nodes,
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Fig. 7. Examples showing the impact of collusive fabricating ISSDF attacks in causing divergence from the correct average in one sensing round. The values
of the honest nodes are shown with box plots. Blue boxes: nodes in honest network; Red boxes: 20% of nodes are ISSDF malicious. The horizontal solid
line shows the correct global average.

therefore the starting point of both scenarios (honest and under
attack) is the same. The true average of the initial values of
the honest nodes is shown with a horizontal line for reference.
While, in an honest network, the values of the nodes converge
to the true average (with a small error offset, as explained
before), Figure 7(a) shows that the ISSDF fabricating attackers
successfully make the honest nodes’ values diverge from
the correct average and cause their values to approach zero,
potentially causing missed-detection. On the other hand, when
the PU is absent (Figure 7(b)), the attackers raise the estimated
averages of all of the honest nodes significantly higher than
the true average, potentially causing false alarms. Note that
the effect of ISSDF attackers is amplified with each iteration
as the attackers keep broadcasting incorrect values and their
falsified data is diffused further throughout the network.

VIII. PROPOSED TRUST MANAGEMENT SCHEME

Our trust management works based on trust scores that the
nodes assign to each other based on their previous interactions.
The trust score that node i assigns to node j at time step
(sensing round) t is a value in the interval [0, 1] and is denoted
by θij(t). This score can be interpreted as the estimated
probability of j being honest from the viewpoint of node
i. In order to make the DCSS schemes resilient to data
falsifying attacks, each node must be aware of the level of
trustworthiness of its neighbors before relying on the received
values from them. As we will explain in the next paragraphs,
the trust scores are used as weights associated with reports
received from different neighbors.

Using our proposed trust system, the nodes do not simply
accept neighbors’ reports; instead they gradually determine the
level of trust of their neighbors through interaction observa-
tions. The trust score calculation method that we have devised
in this work is inspired by the Beta Reputation System which
is previously used in [9] and [20]. When node i compares its
final estimate of the average received power with the threshold
and makes a final binary decision about the presence of the

PU, it also verifies whether the initial values received from its
neighbors are consistent with this decision. Therefore, at each
sensing round t, the following observation is made by node i
from each of its neighbors j:

oij(t) =


1 if gij(t) > γ AND fi(t) = PU present

OR gij(t) < γ AND fi(t) = PU absent

0 Otherwise
(11)

where gij(t) denotes the initial value that node i received from
neighbor j in the first consensus iteration of sensing round t
and fi(t) is node i’s final decision in this round. If the broad-
casted value from j is in agreement with i’s final decision, the
binary observation is 1 (a positive observation) and otherwise
it is 0 (a negative observation). In our ISSDF attack model,
the same falsified value is repeated in every iteration, thus, it
is sufficient to only observe the received values in the very
first iteration of the consensus. It is noteworthy that as SU
nodes do not know the “ground truth” about the activity of
the PU, the best strategy for them is to rely on their own final
decisions when evaluating neighbors’ trustworthiness.

We propose that each node i maintains a sliding binary
observation vector, Oij , for each neighbor j. The observation
vector can grow up to a maximum length, after which the
newest observations replace the oldest ones. The trust score
can be calculated as follows:

θij(t) =
H(Oij)

|Oij |
(12)

where H(.) denotes the Hamming weight of the binary vector
Oij and |Oij | is the length of it. As described in the previ-
ous sections, at each sensing round, a number of consensus
iterations (e.g. 4) are needed to finalize the decisions. Note
that, at each sensing round, the trust scores are updated only
when the final decisions are made (after the final consensus
iteration) and not in between the consensus iterations. From
one sensing round to the next, the nodes move randomly. As
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a result, the nodes might have different set of neighbors at
each sensing round. When nodes i and j are neighbors (within
the range of each other) in a sensing round, they record their
observations from each other in their observation vectors. If
they move farther from each other, they might not be neighbors
any more in the next sensing round, however, the nodes do not
drop the existing observations from each other as it is possible
that they become neighbors again in the future sensing rounds,
when they can use these observations. (Note that we assume
that within the iterations, the nodes are static as the consensus
is reached quickly relative to the nodes’ movement.)

A. Analysis on node agreement probability
The trust score is essentially a quantization of the prob-

ability of agreement between the two nodes in the recent
interactions. In this section, we analyze the trust score that
an honest node assigns to a fabricating ISSDF attacker. A
fabricating attacker always reports the opposite of the truth
about the PU activity. Therefore, when an honest node i makes
an observation from a fabricating node a, node i is able to
detect the conflict and tag the observations as negative. There
are two conditions where the two nodes agree: 1) if H0, then
a’s report indicates the PU is present; therefore, if i makes a
false-alarm error, the two node agree, 2) if H1, then a’s report
indicates the PU is absent; thus, i agrees with a in case of
a missed-detection error. Equation (13) shows the agreement
rate which is directly translated to the trust score that a typical
honest node assigns to a fabricating attacker.

Pr(agreei,a) = Pr(agreei,a|H0)Pr(H0)

+ Pr(agreei,a|H1)Pr(H1)

= Pr(Fi)Pr(H0) + Pr(Mi)Pr(H1)

(13)

where Fi and Mi are the events of honest node i making
a false alarm and missed-detection error, respectively. In the
conditions where the false alarm and missed-detection rate of
the honest nodes are not too high, the agreement rate with
the fabricating attacker will be sufficiently small as well, thus
the assigned trust scores will be small as desired. When honest
nodes make too many honest mistakes (even with cooperation),
they may increase the associated trust scores. This type of trust
error in these extreme conditions is clearly inevitable. As we
will show in the results, the integration of trust management
with the proposed DCSS significantly improves the error rate
performance in the presence of fabricating attackers.

B. Trust integration
We incorporate the trust management into the linear iter-

ations of our proposed equally-weighted DCSS scheme by
using the trust scores as weights associated with received
values from different nodes:

vi(c+ 1) = θii(t)vi(c) +

∑
j∈Ri

θij(t)vj(c)

1 + |Ri|
, i = 1, ..., n

(14)
where Ri denotes the set of nodes from which node i received
a value in this iteration and θii(t) = 1−

∑
j∈Ri

θij(t)

1+|Ri| . The in-
tegration of trust scores as weights into our proposed equally-
weighted linear iteration-based consensus scheme, makes the

weighting biased so that the values from more trustworthy
neighbors are more effective than the others. Moreover, our
proposed trust system does not introduce any communication
overhead. Denoting the number of consensus iterations by C
and average number of neighbors by B, the computational
overhead of incorporating the trust scores is on the order
of O(C × B). This overhead is reasonably low for realistic
scenarios with a bounded number of consensus iterations (e.g.
4 iterations) and typical neighborhood sizes (e.g. 8 to 10
neighbors).

C. Discussion on trust initialization strategy

Our proposed trust assignment strategy is conservative
which means each node must perform a minimum number
of observations (Omin) from a neighbor before it assigns a
non-zero trust score to it (i.e. θij = 0 if |Oij | < Omin). As
a result, a node builds up a sufficient record of observations
from a new neighbor before considering the neighbor’s sensing
reports in its decisions. This strategy necessitates an initial
warm-up period during which the nodes only trust their own
sensing values for making decisions, while they observe the
values received from their neighbors and also update their trust
scores. This conservative strategy does not take any risk in
accepting values from unknown nodes and therefore yields
better results than a strategy where the nodes start with high
trust scores for the other nodes. We observed in our simulation
results that the ISSDF attackers, if trusted, can influence their
neighbors severely and can cause errors in neighbors’ final
decisions that result in higher trust in ISSDF attackers and
higher impact of the network. The reason is that the malicious
value of an ISSDF attacker is broadcasted repeatedly in every
consensus iteration, which amplifies its effect and therefore
even a few ISSDF attackers in comparison to a majority of
honest nodes can cause errors. As a result, we choose the
more conservative strategy for trust assignment.

D. Mitigating dynamic attackers

In this section, we consider a more complex attack scenario
where a subset of the honest nodes become malicious while
the network is in operation. The main complication of this
dynamic behavior is that a node which has been honest and
therefore has already built up high trust in the viewpoint of the
other honest nodes, suddenly starts to broadcast falsified data.
This type of attack is harder to mitigate because the dynamic
attackers abuse their initial high trust score to influence the
final decision of the honest nodes to be in agreement with
them which in turn makes the honest nodes continue to trust
the dynamic attackers.

In order to mitigate the dynamic attacks, we introduce
an outlier detection technique as another layer of defense
in our proposed trust management scheme: At the first
consensus iteration, c = 0, of a sensing round, each node
i receives a set of values: vj(0), j ∈ Ri, where Ri denotes
the set of nodes from which node i received a value. Node i
identifies both the largest and the smallest values among all
of the received values and tags the corresponding nodes
as the “high outlier” and the “low outlier”, respectively
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for that sensing round. The received values from both
of the outlier nodes are excluded from the updates of
node i in the following iterations of that sensing round.
As a result, the falsified values received from a currently
trusted dynamic attacker is filtered out. Note that, the trust
score update is performed without any change as before;
therefore, the trust score of a dynamic attacker will be
decreased gradually during the following sensing rounds
as its reports are repeatedly in conflict with the honest
nodes.

At each point of time, an honest node i may have several
malicious neighbors that broadcast falsified values. Assume
node i has already recognized its malicious neighbors and
has assigned low trust scores to them. At this time, one
of node i’s honest neighbors who has already built up
high trust score, starts to broadcast falsified values. The
goal of the outlier detection technique is to detect and
exclude the dynamic attacker (with currently high trust
score) rather than the other already-recognized attackers
because the other attackers are already mitigated with low
trust scores.

We propose the following strategy for the high outlier
detection: Node i needs to identify the new dynamic at-
tacker among all of its malicious neighbors that broadcast
falsified high values when PU is absent. In order to do that,
i weights all of the values received from its neighbors by
their corresponding trust scores. We denote the weighted
value from node j by ωj . With this strategy, the dynamic
attacker is likely to have the largest ωj among all since both
its falsified value and its trust score are high. Thus, the
dynamic attacker can be correctly identified and excluded.

On the other hand, for the low outlier detection, the new
dynamic attacker should be identified among all of the
attackers in the neighborhood that broadcast low values
when PU is present. In this case, weighting the received
values by the corresponding trust scores is not helpful. The
reason is that for the already-recognized attackers, weight-
ing their values by their current low trust scores further
decreases their weighted values. In addition, for the new
dynamic attacker, weighting its value by its current high
trust score relatively increases its weighted value compared
to the already-recognized attackers. Therefore, by trust-
weighting, the smallest weighted value (low outlier) most
likely will not be the new dynamic attacker. As a result we
propose that for low outlier detection, the values should
not be weighted by trust score (or equivalently, they are
weighted by 1).

Therefore, we propose the trust-aided outlier detection
strategy as follows: At the first iteration of sensing round
t, each node i identifies among the received values the
high outlier, j∗h, as the largest weighted received value and
identifies the low outlier, j∗l , as the smallest unweighted
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Fig. 8. ISSDF attack and mitigation with trust management for our proposed
trust-aware DCSS scheme

received value:
High outlier detection:
j∗h = arg max

j∈Ri

ωj , ωj = θij(t)vj(0)

Low outlier detection:
j∗l = arg min

j∈Ri

vj(0)

(15)

Obviously, in both cases of high and low outlier detec-
tion, it is possible that the outlier is a correct and non-
malicious value; nevertheless, excluding the outliers signif-
icantly reduces the risk of dynamic attacks. In addition,
as we will show with simulations, there is essentially no
negative effect due to the exclusion of potentially correct
outlier values since a correct final decision can be achieved
exploiting the cooperation with the non-outliers.

When combined with our proposed trust scheme, the pro-
posed trust-aided outlier detection technique can effectively
neutralize dynamic attacks. Unlike the existing high-overhead
outlier detection schemes where the nodes need to compute a
deviation threshold at each iteration [23], our scheme does not
require additional computations by the nodes at each iteration
and is only based on comparison among the received values.
Note that it is unlikely that while the network is in operation,
several neighbors of a node turn malicious at the same time in
a non-collusive scenario and therefore our proposed scheme is
able to detect and exclude the dynamic attacker. The study of
collusive dynamic attacks is an interesting subject for future
research.

E. Simulation results

Figure 8 shows the ROC curves for the scenario where 20%
of the nodes are ISSDF with and without trust enabled. The
ROC curve for an honest network (no attackers) is also shown
for comparison. For a fixed false alarm rate, enabling trust
management improves the missed-detection rate by as much
as two orders of magnitude. From right to left of the plots,
the detection threshold is increased. As a result intuitively, the
false alarm rate is reduced and the missed-detection rate is
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increased. As it is clear from the figure, using our proposed
trust scheme improves both PMD and PFA significantly. For
the simulations, we use Omin = 10 and we have excluded
the initial warm-up sensing rounds in the reported results.
We analyze various levels of attack severity and the trust
improvements in those scenarios in Figure 9. Our proposed
trust-aware scheme outperforms the schemes that are not trust-
enabled in all of the scenarios including the case where
the majority of the SUs are malicious (See the ROC curve
corresponding to 60% ISSDF).

1) Operating regions and sensitivity requirements: The
ROC curves are perfect tools for determining the system
requirements for a desired operating region in terms of missed-
detection and false alarm rates. We have shown two examples
of desired operating regions overlaid on top of the plots in
Figure 9. The operating region 2 corresponds to both missed-
detection and false alarm rates smaller than 10−2 and the more
relaxed region 1 corresponds to the rates smaller than 10−1.
Figure 10 shows the detection threshold subranges out of the
range [-96 dBm, -82 dBm] that satisfy the corresponding error
rate requirements of the operating regions 1 and 2 shown in
Figure 9 for different malicious scenarios and also for the
honest case.

As can be seen from Figure 10, without trust management,
for most of the scenarios, the desired error rates cannot
be realized. In contrast, when our proposed trust system is
enabled, all of the scenarios except for 60% ISSDF can satisfy
the requirements for both regions 1 and 2 for some threshold
subrange. Furthermore, the trust management increases the
dynamic range of the detection thresholds that support the
target performance; therefore, a wider range of radio devices
with diverse sensitivity thresholds can be supported while
maintaining the desired performance. As a result, using the
proposed trust scheme enables us to relax the sensitivity
requirements on the cognitive radio devices and potentially
reduce the cost. The presented results confirm the significance
of integration of the proposed trust system into cooperative
spectrum sensing.

−96 −94 −92 −90 −88 −86 −84 −82

60% ISSDF (w/ trust)
40% ISSDF (w/ trust)
20% ISSDF (w/ trust)

20% ISSDF (w/o trust)
10% ISSDF (w/ trust)

10% ISSDF (w/o trust)
Honest Network

Detection Threshold (dBm)

(a) Operating Region 1: PMD < 10−1 AND PFA < 10−1

Note: Without trust, in 40% and 60% scenarios, the error rate of 10−1

cannot be realized, regardless of the threshold.

−96 −94 −92 −90 −88 −86 −84 −82

40% ISSDF (w/ trust)

20% ISSDF (w/ trust)

10% ISSDF (w/ trust)

Honest Network

Detection Threshold (dBm)

(b) Operating Region 2: PMD < 10−2 AND PFA < 10−2

Note: Without trust, none of the scenarios can achieve the error rate of
10−2, regardless of the threshold.

Fig. 10. Range of detection thresholds to realize the two desired operating
regions shown in Figure 9 under different scenarios.
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Fig. 11. Dynamic ISSDF attack and mitigation with trust management

2) Dynamic attackers: We analyze the performance of our
proposed trust scheme with trust-aided outlier detection in
mitigating dynamic attackers. We assume that at the beginning
of each Monte Carlo simulation 10% of the nodes are mali-
cious ISSDF attackers and during the time of the simulation
another 10% of the nodes become malicious. Therefore, at
the end of a Monte Carlo simulation, in total 20% of the
nodes are malicious. Figure 11 shows that our trust scheme
can effectively mitigate dynamic ISSDF attackers who become
malicious when the network is in operation.

IX. CONCLUSION

In this paper we present a novel trust-aware consensus-
inspired scheme for distributed cooperative spectrum sensing
that is robust against malicious Insistent Spectrum Sensing
Data Falsification (ISSDF) attacks. The proposed equally-
weighted linear iteration-based scheme is a practical method
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for ad hoc networks because it does not require the nodes to
have any topology knowledge. We compare the performance of
the proposed scheme against other more complex consensus-
based methods and show that despite the simplicity, the
performance enhancement through cooperation is as effec-
tive as the other schemes. We evaluate our proposed trust
management scheme in the presence of collusive fabricating
ISSDF attackers with various severity levels through extensive
Monte Carlo simulations. We show that integration of our trust
management with the proposed equally-weighted consensus-
based scheme improves the performance in terms of missed-
detection and false alarm error rates by as much as two orders
of magnitude. Furthermore, we present an analysis of the op-
erating characteristic curves and the desired operating regions
and we show that adopting the proposed trust scheme increases
the dynamic range of the supported sensitivity thresholds of
the cognitive radio devices and therefore can reduce the cost
and enhance the flexibility of the cooperative system.
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