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Abstract

A search is performed for the charmless three-body decays of the Λ0
b and Ξ0

b baryons
to the final states Λh+h′−, where h(′) = π or K. The analysis is based on a
data sample, corresponding to an integrated luminosity of 3 fb−1 of pp collisions,
collected by the LHCb experiment. The Λ0

b → ΛK+π− and Λ0
b → ΛK+K− decays

are observed for the first time and their branching fractions and CP asymmetry
parameters are measured. Evidence is seen for the Λ0

b → Λπ+π− decay and limits
are set on the branching fractions of Ξ0

b baryon decays to the Λh+h′− final states.
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1 Introduction

The availability of large samples of high energy pp collision data has allowed significant
improvements in the experimental studies of b baryons. The masses and lifetimes of the Λ0

b ,
Ξ0
b and Ξ−b particles are all now known to within a few percent or better [1–5], and excited

Λ0
b and Ξb baryons have been discovered [6–8]. However, relatively few decay modes of

the b baryons have yet been studied. In particular, among the possible charmless hadronic
final states, only the two-body Λ0

b → pK− and Λ0
b → pπ− decays [9], the quasi-two-body

Λ0
b → Λφ decay [10] and the three-body Λ0

b → K0
Spπ

− decay [11] have been observed,
while evidence has been reported for the Λ0

b → Λη decay [12]. No decay of a Ξb baryon to
a charmless final state has yet been observed. Such decays are of great interest as they
proceed either by tree-level decays involving the Cabibbo-Kobayashi-Maskawa [13, 14]
matrix element Vub or by loop-induced amplitudes, and they are consequently expected to
have suppressed decay rates in the Standard Model. Their study may also provide insights
into the mechanisms of hadronisation in b baryon decays. Moreover, charmless hadronic b
baryon decays provide interesting possibilities to search for CP violation effects, as have
been seen in the corresponding B meson decays [15–19].

In this paper, a search is reported for charmless decays of the Λ0
b and Ξ0

b baryons
to the final states Λπ+π−, ΛK±π∓ and ΛK+K−. The inclusion of charge conjugate
processes is implied throughout, except where the determination of asymmetries is discussed.
Intermediate states containing charmed hadrons are excluded from the signal sample and
studied separately: transitions involving a Λ+

c → Λπ+ decay are used as a control sample
and to normalise the measured branching fractions, and those with Λ+

c → ΛK+ decays
provide cross-checks of the analysis procedure. In all cases the Λ baryon is reconstructed in
the pπ− final state. Although b baryon decays to the ΛK+π− and ΛK−π+ final states can
be distinguished through correlation of the proton and kaon charges, they are combined
together in the ΛK±π∓ sample to improve the stability of the fit to the mass spectra.
The Λ0

b → ΛK+π− and Ξ0
b → ΛK−π+ decays are expected to dominate over the modes

with swapped kaon and pion charges, and therefore the results are presented assuming the
suppressed contribution is negligible, as is commonly done in similar cases [16,17,20,21].

No previous experimental information exists on the charmless hadronic decays being
studied; theoretical predictions for the branching fraction of the Λ0

b → Λπ+π− decay are
in the range 10−9–10−7 [22–24].

The paper is organised as follows. A description of the LHCb detector and the dataset
used for the analysis is given in Sec. 2. The selection algorithms, the method to determine
signal yields, and the systematic uncertainties on the results are discussed in Secs. 3–5. The
measured branching fractions are presented in Sec. 6. Since significant signals are observed
for the Λ0

b → ΛK+π− and Λ0
b → ΛK+K− channels, measurements of the phase-space

integrated CP asymmetry parameters of these modes are reported in Sec. 7. Conclusions
are given in Sec. 8.
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2 Detector and dataset

The analysis is based on pp collision data collected with the LHCb detector, corresponding
to 1.0 fb−1 at a centre of mass energy of 7 TeV in 2011, and 2.0 fb−1 at a centre of mass
energy of 8 TeV in 2012. The LHCb detector [25, 26] is a single-arm forward spectrometer
covering the pseudorapidity range 2 < η < 5, designed for the study of particles containing
b or c quarks. The detector includes a high-precision tracking system consisting of a
silicon-strip vertex detector surrounding the pp interaction region, a large-area silicon-
strip detector located upstream of a dipole magnet with a bending power of about 4 Tm,
and three stations of silicon-strip detectors and straw drift tubes placed downstream of
the magnet. The tracking system provides a measurement of momentum, p, of charged
particles with a relative uncertainty that varies from 0.5% at low momentum to 1.0% at
200 GeV/c. The minimum distance of a track to a primary vertex, the impact parameter
(IP), is measured with a resolution of (15 + 29/pT)µm, where pT is the component of the
momentum transverse to the beam, in GeV/c. Different types of charged hadrons are
distinguished using information from two ring-imaging Cherenkov detectors. Photons,
electrons and hadrons are identified by a calorimeter system consisting of scintillating-
pad and preshower detectors, an electromagnetic calorimeter and a hadronic calorimeter.
Muons are identified by a system composed of alternating layers of iron and multiwire
proportional chambers.

The online event selection is performed by a trigger [27, 28], which consists of a
hardware stage, based on information from the calorimeter and muon systems, followed by
a software stage, in which all charged particles with pT > 500 (300) MeV/c are reconstructed
for 2011 (2012) data. At the hardware trigger stage, events are required to have a
muon with high pT or a hadron, photon or electron with high transverse energy in the
calorimeters. For hadrons, the transverse energy threshold is 3.5 GeV. The software
trigger requires a two-, three- or four-track secondary vertex with significant displacement
from the primary pp interaction vertices (PVs). At least one charged particle must have
transverse momentum pT > 1.7 GeV/c and be inconsistent with originating from any PV.
A multivariate algorithm [29] is used for the identification of secondary vertices consistent
with the decay of a b hadron.

The efficiency with which the software trigger selected the signal modes varied during
the data-taking period, for reasons that are related to the reconstruction of the long-lived
Λ baryon. Such decays are reconstructed in two different categories, the first involving Λ
particles that decay early enough for the produced particles to be reconstructed in the
vertex detector, and the second containing Λ baryons that decay later such that track
segments cannot be formed in the vertex detector. These categories are referred to as long
and downstream, respectively. During 2011, downstream tracks were not reconstructed in
the software trigger. Such tracks were included in the trigger logic during 2012 data-taking;
however, a significant improvement in the algorithms was implemented during a technical
stop period. Consequently, the data are subdivided into three data-taking periods (2011,
2012a and 2012b) as well as the two reconstruction categories (long and downstream).
The 2012b sample has the best trigger efficiency, especially in the downstream category,
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and is also the largest sample, corresponding to 1.4 fb−1. The long category has better
mass, momentum and vertex resolution than the downstream category.

Simulated data samples are used to study the response of the detector and to inves-
tigate certain categories of background. In the simulation, pp collisions are generated
using Pythia [30] with a specific LHCb configuration [31]. Decays of hadronic par-
ticles are described by EvtGen [32], in which final-state radiation is generated using
Photos [33]. The interaction of the generated particles with the detector, and its response,
are implemented using the Geant4 toolkit [34] as described in Ref. [35].

3 Selection requirements and efficiency modelling

The selection exploits the topology of the three-body decay and the b baryon kinematic
properties, first in a preselection stage, with minimal effect on signal efficiency, and
subsequently in a multivariate classifier. Each b baryon candidate is reconstructed by
combining two oppositely charged tracks with a Λ candidate. The Λ decay products are
both required to have momentum greater than 2 GeV/c and to form a vertex with low χ2

vtx.
In addition, the tracks must not be associated with any PV as quantified by the χ2

IP

variable, defined as the difference in χ2 of a given PV reconstructed with and without the
considered track.

The track pair must satisfy |m(pπ−)−mΛ| < 20 (15) MeV/c2 for downstream (long)
candidates, where mΛ is the known Λ mass [36]. The Λ candidate is associated to the PV
which gives the smallest χ2

IP, and significant vertex separation is ensured with a requirement
on χ2

VS, the square of the separation distance between the Λ vertex and the associated
PV divided by its uncertainty. A loose particle identification (PID) requirement, based
primarily on information from the ring-imaging Cherenkov detectors, is imposed on the
proton candidate to remove background from K0

S decays. For downstream Λ candidates
pΛ > 8 GeV/c is also required.

The scalar sum of the transverse momenta of the Λ candidate and the two h+h′− tracks
is required to be greater than 3 GeV/c (4.2 GeV/c for downstream candidates).

The IP of the charged track with the largest pT is required to be greater than 0.05 mm.
The minimum, for any pair from (Λ, h+, h′−), of the square of the distance of closest
approach divided by its uncertainty must be less than 5. The b baryon candidate must
have a good quality vertex, be significantly displaced from the PV, and have pT > 1.5 GeV/c.
Furthermore, it must have low values of both χ2

IP and pointing angle (i.e. the angle between
the b baryon momentum vector and the line joining its production and decay vertices),
which ensure that it points back to the PV. Additionally, the Λ and b baryon candidate
vertices must be separated by at least 30 mm along the beam direction. The candidates
are separated with PID criteria (discussed below) into the three different final states:
Λπ+π−, ΛK±π∓ and ΛK+K−. Candidates where any of the tracks is identified as a
muon are rejected; this removes backgrounds resulting from semimuonic b baryon decays,
J/ψ → µ+µ− decays, or Λ0

b → Λµ+µ− decays [37]. Decays involving intermediate Λ+
c

baryons are removed from the signal sample with a veto that is applied within ±30 MeV/c2

3



of the known Λ+
c mass [36]; in the case of Λ+

c →Λπ+ however, these candidates are retained
and used as a control sample. A similar veto window is applied around the Ξ+

c mass,
and backgrounds from the Λ0

b → ΛD0 decay with D0 → h+h′− are also removed with a
±30 MeV/c2 window around the known D0 mass.

The b baryon candidates are required to have invariant mass within the range 5300 <
m(Λh+h′−) < 6100 MeV/c2, when reconstructed with the appropriate mass hypothesis for
the h+ and h′− tracks. To avoid potential biases during the selection optimisation, regions
of ±50 MeV/c2, to be compared to the typical resolution of 15 MeV/c2, around both the
Λ0
b and Ξ0

b masses were not examined until the selection criteria were established.
Further separation of signal from combinatorial background candidates is achieved

with a boosted decision tree (BDT) multivariate classifier [38, 39]. The BDT is trained
using a simulated Λ0

b → Λπ+π− signal sample and data from the sideband region 5838 <
m(Λπ+π−) < 6100 MeV/c2 for the background. To prevent bias, each sample is split into
two disjoint subsets and two separate classifiers are each trained and evaluated on different
subsets, such that events used to train one BDT are classified using the other.

The set of input variables is chosen to optimise the performance of the algorithm, and
to minimise variation of the efficiency across the phase space. The input variables for the
BDTs are: pT, η, χ2

IP, χ2
VS, pointing angle and χ2

vtx of the b baryon candidate; the sum
of the χ2

IP values of the h+ and h′− tracks; and the χ2
IP, χ2

VS and χ2
vtx of the Λ candidate.

Separate BDT classifiers are trained for each data-taking period and for the downstream
and long categories.

The optimal BDT and PID cut values are determined separately for each subsample

by optimising the figure of merit εsig/
(
a
2

+
√
B
)

[40], where a = 5 quantifies the target

level of significance in units of standard deviations (σ), εsig is the efficiency of the signal
selection determined from simulated events, and B is the expected number of background
events in the signal region, which is estimated by extrapolating the result of a fit to the
invariant mass distribution of the data sidebands. In the optimisation of the PID criteria,
possible cross-feed backgrounds from misidentified decays to the other signal final states
are also considered; their relative rates are obtained from data using the control modes
containing Λ+

c decays. The optimised BDT requirements typically have signal efficiencies
of around 50 % whilst rejecting over 90 % of the combinatorial background. The optimised
PID requirements have efficiencies around 60 % and reject over 95 % (80 %) of π → K
(K → π) cross-feed. If more than one candidate is selected in any event, one is chosen at
random and all others discarded – this occurs in less than 2 % of selected events.

The efficiency of the selection requirements is studied using simulated events and, for
the PID requirements, high-yield data control samples of D0 → K−π+ and Λ → pπ−

decays [41]. A multibody decay can in general proceed through intermediate states as well
as through nonresonant amplitudes. It is therefore necessary to model the variation of
the efficiency, and to account for the distribution of signal events, over the phase space
of the decay. This is achieved, in a similar way as done for previous studies of b baryon
decays [11,42,43], by factorising the efficiency into a two-dimensional function of variables
that describe the Dalitz plot [44] and three one-dimensional functions for the angular
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variables. Simulated events are binned in these variables in order to determine the selection
efficiencies. If no significant b baryon signal is seen, the efficiency corresponding to a
uniform phase-space distribution is used, and a systematic uncertainty is assigned to
account for the variation across the phase space. For modes with a significant yield, the
distribution in the phase space is obtained with the sPlot technique [45] with the b baryon
candidate invariant mass used as the control variable, and the efficiency corresponding to
the observed distribution is used.

4 Fit model and results

All signal and background yields, as well as the yields of Λ0
b → Λ+

c h
− decays, are determined

using a single simultaneous unbinned extended maximum likelihood fit to the b baryon
candidate invariant mass distributions for each final state in the six subsamples, which
correspond to the three data-taking periods and two reconstruction categories. The
probability density function (PDF) in each invariant mass distribution is defined as
the sum of components accounting for signals, cross-feed contributions, combinatorial
background and other backgrounds. Fitting the subsamples simultaneously allows the
use of common shape parameters, while fitting the different final states simultaneously
facilitates the imposition of constraints on the level of cross-feed backgrounds.

Signal PDFs are known to have asymmetric tails that result from a combination of
the effects of final-state radiation and stochastic tracking imperfections. The signal mass
distributions are each modelled by the sum of two Crystal Ball (CB) functions [46] with
a common mean and tails on opposite sides, where the high-mass tail accounts for non-
Gaussian reconstruction effects. The peak positions and overall widths of the CB functions
are free parameters of the fit to data, while other shape parameters are determined from
simulated samples, separately for each subsample, and are fixed in the fit to data.

Cross-feed backgrounds are also modelled by the sum of two CB functions. The shape
parameters are determined from simulation, separately for each subsample, and calibrated
with the high-yield data control samples to account for the effects of the PID criteria. In
the fit to data, the misidentification rates are constrained to be consistent with expectation.

An exponential function is used to describe the combinatorial background, the yield of
which is treated as independent for each subsample. The shape parameter is taken to be
the same for all data-taking periods, independently for each final state and reconstruction
category. In addition, components are included to account for possible backgrounds from b
baryon decays giving the same final state but with an extra soft (low energy) particle that
is not reconstructed; examples include the photon that arises from Σ0 → Λγ decay and
the neutral pion in the K∗+ → K+π0 decay. Such partially reconstructed backgrounds are
modelled by a generalised ARGUS function [47] convolved with a Gaussian function, except
in the case of the Λ0

b → (Λπ+)Λ+
c
π− control mode where a nonparametric density estimate

is used. The shape parameters are determined from simulation, separately for the two
reconstruction categories but for the data-taking periods combined, and are fixed in the
fit to data; however, the yield of each partially reconstructed background is unconstrained
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in the fit.
In order to limit the number of free parameters in the fit, several additional constraints

are imposed. The yield of each cross-feed contribution is constrained within uncertainty to
the yield of the corresponding correctly reconstructed decay multiplied by the appropriate
misidentification rate. The peak value of the signal shape is fixed to be the same for all Λ0

b

decays, and the difference in peak values for Ξ0
b and Λ0

b decays is fixed to the known mass
difference [4]. The widths of the signal shapes differ only between the two reconstruction
categories, with a small correction factor, obtained from simulation, applied for the control
channel modes with an intermediate Λ+

c decay.
In the ΛK+K− final state, little or no background is expected in the Ξ0

b signal region.
Since likelihood fits cannot give reliable results if there are neither signal nor background
candidates, the signal yields for Ξ0

b → ΛK+K− decays in the long reconstruction category
are constrained to be non-negative. All other signal yields are unconstrained. The fit model
and its stability are validated with ensembles of pseudoexperiments that are generated
according to the fit model, with yields allowed to fluctuate around their expected values
according to Poisson statistics. No significant bias is found.

The results of the fit to data are given in Table 1 and shown, for all subsamples
combined, in Fig. 1 for the Λ0

b → (Λπ+)Λ+
c
π− control mode and the Λπ+π− signal final

state, and in Fig. 2 for the ΛK±π∓ and ΛK+K− signal final states. The expected yield
of misidentified Λ0

b → Λπ+π− decays in the Λ0
b → ΛK+π− spectrum is 2.9± 0.7; that of

Λ0
b → ΛK+π− decays in the Λ0

b → ΛK+K− spectrum is 3.2± 0.5; that of Λ0
b → ΛK+π−

decays in the Λ0
b → Λπ+π− spectrum is 14.0± 2.0; and that of Λ0

b → ΛK+K− decays in
the Λ0

b → ΛK+π− spectrum is 35.3± 2.8. All other cross-feed contributions are negligible.
The statistical significances of the Λ0

b → Λπ+π−, Λ0
b → ΛK+π−, and Λ0

b → ΛK+K−

decays, estimated from the change in log-likelihood between fits with and without these
signal components, are 5.2σ, 8.5σ, and 20.5σ respectively. The effects of systematic
uncertainties on these values are given in Sec. 6. The statistical significances for all Ξ0

b

decays are less than 3σ.
As significant yields are obtained for Λ0

b → ΛK+π− and Λ0
b → ΛK+K− decays, their

Dalitz plot distributions are obtained from data using the sPlot technique and applying
event-by-event efficiency corrections based on the position of the decay in the phase space.
These distributions are used to determine the average efficiencies for these channels, and
are shown in Fig. 3, where the negative (crossed) bins occur due to the statistical nature
of the background subtraction. The Λ0

b → ΛK+K− signal seen at low m2(K+K−) is
consistent with the recent observation of the Λ0

b → Λφ decay [10]. Although the statistical
significance of the Λ0

b → Λπ+π− channel is over 5σ, the uncertainty on its Dalitz plot
distribution is too large for this method of determining the average efficiency to be viable.

5 Systematic uncertainties

Systematic uncertainties in the branching fraction measurements are minimised by the
choice of a normalisation channel with similar topology and final-state particles. There are
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Table 1: Signal yields for the Λ0
b and Ξ0

b decay modes under investigation. The totals are simple
sums and are not used in the analysis.

Mode Run period Yield
Λ0
b Ξ0

b

downstream long downstream long
2011 10.2± 5.5 8.7± 4.7 −0.6± 2.4 4.9± 3.2

Λπ+π− 2012a 9.1± 5.2 13.6± 5.7 5.3± 3.6 1.0± 2.6
2012b 17.2± 7.1 6.2± 4.6 3.9± 4.0 4.1± 2.7
Total 65± 14 19± 8
2011 20.9± 6.4 8.2± 3.5 3.5± 3.7 −0.7± 2.4

ΛK±π∓ 2012a 9.3± 3.7 1.7± 3.6 −0.1± 1.7 0.3± 1.5
2012b 39.7± 8.9 16.9± 5.1 2.9± 4.5 −1.8± 1.5
Total 97± 14 4± 7
2011 32.3± 6.4 20.1± 4.6 0.6± 2.3 0.0± 0.6

ΛK+K− 2012a 22.2± 5.3 15.9± 4.2 0.5± 2.4 0.0± 0.5
2012b 60.5± 8.5 34.4± 6.1 3.0± 2.7 0.0± 0.6
Total 185± 15 4± 4
2011 78.1± 9.1 78.9± 9.2

(Λπ+)Λ+
c
π− 2012a 45.0± 7.0 63.0± 8.3

2012b 115.3± 11.1 90.7± 9.8
Total 471± 22
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Figure 1: Results of the fit for the (left) Λ0
b → (Λπ+)Λ+

c
π− control mode and (right) Λπ+π−

signal final states, for all subsamples combined. Superimposed on the data are the total result of
the fit as a solid blue line, the Λ0

b (Ξ0
b ) decay as a short-dashed black (double dot-dashed grey)

line, cross-feed as triple dot-dashed brown lines, the combinatorial background as a long-dashed
green line, and partially reconstructed background components with either a missing neutral
pion as a dot-dashed purple line or a missing soft photon as a dotted cyan line.
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Figure 2: Results of the fit for the (left) ΛK±π∓ and (right) ΛK+K− final states, for all
subsamples combined. Superimposed on the data are the total result of the fit as a solid blue
line, the Λ0

b (Ξ0
b ) decay as a short-dashed black (double dot-dashed grey) line, cross-feed as triple

dot-dashed brown lines, the combinatorial background as a long-dashed green line, and partially
reconstructed background components with either a missing neutral pion as a dot-dashed purple
line or a missing soft photon as a dotted cyan line.

]4c/2) [GeV−π+K(2m
0 5 10 15 20

]4 c/2
) 

[G
eV

+
K

Λ(2
m

0

5

10

15

20

25

30

LHCb

]4c/2) [GeV−K+K(2m
0 5 10 15 20

]4 c/2
) 

[G
eV

+
K

Λ(2
m

0

5

10

15

20

25

30

LHCb

Figure 3: Background-subtracted and efficiency-corrected Dalitz plot distributions for (left)
Λ0
b → ΛK+π− and (right) Λ0

b → ΛK+K− with data from all subsamples combined. Boxes with
a cross indicate negative values.

residual uncertainties due to approximations made in the fit model, imperfect knowledge
of the efficiency, and the uncertainty on the normalisation channel yield. The systematic
uncertainties are evaluated separately for each subsample, with correlations taken into
account in the combination of results. A summary of the uncertainties assigned on the
combined results is given in Table 2.

The systematic uncertainty from the fit model is evaluated by using alternative shapes
for each of the components, for both the charmless and Λ+

c spectra. The double Crystal Ball
function used for the signal component is replaced with the sum of two Gaussian functions
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Table 2: Systematic uncertainties (in units of 10−3) on the branching fraction ratios reported in
Sec. 6. The total is the sum in quadrature of all contributions.

Fit Efficiency Phase space PID Vetoes Λ+
c π
− yield Total

Λ0
b → Λπ+π− 8.4 2.0 19.7 0.4 2.2 3.5 21.9

Λ0
b → ΛK+π− 1.7 11.7 — 2.9 1.3 4.6 13.1

Λ0
b → ΛK+K− 6.7 5.4 — 4.2 2.2 15.9 18.7

Ξ0
b → Λπ+π− 4.1 0.7 7.0 0.1 — 1.2 8.2

Ξ0
b → Λπ+K− 1.5 0.4 3.5 0.1 — 0.7 4.0

Ξ0
b → ΛK+K− 0.1 0.1 0.8 0.0 — 0.2 0.8

with a common mean. The partially reconstructed background shapes are replaced with
nonparametric functions determined from simulation. The combinatorial background
model is changed from an exponential function to a second-order polynomial shape. In
addition, the effect of varying fixed parameters of the model within their uncertainties is
evaluated with pseudoexperiments and added in quadrature to the fit model systematic
uncertainty.

There are several sources of systematic uncertainty related to the evaluation of the
relative efficiency. The first is due to the finite size of the simulation samples, and is
determined from the effect of fluctuating the efficiency, within uncertainties, in each
phase-space bin. The second is determined from the variation of the efficiency across the
phase space, and is relevant only for modes without a significant signal yield. The third,
from the uncertainty on the kinematical agreement between the signal mode and the PID
control modes, is determined by varying the binning of these control samples. Finally, the
effects of the vetoes applied to remove charmed intermediate states are investigated by
studying the variation in the result with different requirements.

In order to determine relative branching fractions, it is necessary to account also for
the statistical uncertainty in the yield of the Λ0

b → (Λπ+)Λ+
c
π− normalisation channel.

The uncertainty on its branching fraction is included when converting results to abso-
lute branching fractions. The total systematic uncertainty is determined as the sum in
quadrature of all contributions.

6 Branching fraction results

The relative branching fractions for the Λ0
b decay modes are determined according to

B(Λ0
b → Λh+h′−)

B(Λ0
b → (Λπ+)Λ+

c
π−)

=
N(Λ0

b → Λh+h′−)

N(Λ0
b → (Λπ+)Λ+

c
π−)
×
ε(Λ0

b → (Λπ+)Λ+
c
π−)

ε(Λ0
b → Λh+h′−)

, (1)

where N denotes the yield determined from the maximum likelihood fit to data, as
described in Sec. 4, and ε denotes the efficiency, as described in Sec. 3. For the Ξ0

b decay
modes the expression is modified to account for the fragmentation fractions fΞ0

b
and fΛ0

b
,
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i.e. the probability that a b quark hadronises into either a Ξ0
b or Λ0

b baryon,

fΞ0
b

fΛ0
b

× B(Ξ0
b → Λh+h′−)

B(Λ0
b → (Λπ+)Λ+

c
π−)

=
N(Ξ0

b → Λh+h′−)

N(Λ0
b → (Λπ+)Λ+

c
π−)
×
ε(Λ0

b → (Λπ+)Λ+
c
π−)

ε(Ξ0
b → Λh+h′−)

. (2)

Since fΞ0
b

is yet to be measured, the product of quantities on the left-hand side of Eq. (2)
is reported.

The ratios in Eq. (1) and Eq. (2) are determined separately for each subsample, and
the independent measurements of each quantity are found to be consistent. The results for
the subsamples are then combined, taking correlations among the systematic uncertainties
into account, giving

B(Λ0
b → Λπ+π−)

B(Λ0
b → (Λπ+)Λ+

c
π−)

= (7.3± 1.9± 2.2)× 10−2 ,

B(Λ0
b → ΛK+π−)

B(Λ0
b → (Λπ+)Λ+

c
π−)

= (8.9± 1.2± 1.3)× 10−2 ,

B(Λ0
b → ΛK+K−)

B(Λ0
b → (Λπ+)Λ+

c
π−)

= (25.3± 1.9± 1.9)× 10−2 ,

fΞ0
b

fΛ0
b

× B(Ξ0
b → Λπ+π−)

B(Λ0
b → (Λπ+)Λ+

c
π−)

= (2.0± 1.0± 0.8)× 10−2 ,

fΞ0
b

fΛ0
b

× B(Ξ0
b → ΛK−π+)

B(Λ0
b → (Λπ+)Λ+

c
π−)

= (−0.1± 0.8± 0.4)× 10−2 ,

where the first quoted uncertainty is statistical and the second is systematic. The signif-
icances for the Λ0

b → Λπ+π−, Λ0
b → ΛK+π−, and Λ0

b → ΛK+K− modes, including the
effects of systematic uncertainties on the yields, are 4.7σ, 8.1σ, and 15.8σ respectively.
These are calculated from the change in log-likelihood, after the likelihood obtained from
the fit is convolved with a Gaussian function with width corresponding to the systematic
uncertainty on the yield.

The relative branching fractions are multiplied by B(Λ0
b → (Λπ+)Λ+

c
π−) to obtain

absolute branching fractions. The normalisation channel product branching fraction
is evaluated to be (6.29 ± 0.78) × 10−5 from measurements of B(Λ0

b → Λ+
c π
−) [48],

B(Λ+
c → Λπ+)/B(Λ+

c → pK−π+) [49] and B(Λ+
c → pK−π+) [50].

As the likelihood function for Ξ0
b → ΛK+K− decays is not reliable, owing to the absence

of data in the signal region in the long reconstruction category, a Bayesian approach [51] is
used to obtain an upper limit on the branching fraction of this decay mode. The Ξ0

b signal
region, 5763 < m(Λh+h−) < 5823 MeV/c2, is assumed to contain the Poisson distributed
sum of background and signal components. The prior probability distribution for the
signal rate is flat, whereas the prior for the background rate is a Gaussian distribution
based on the expectation from the maximum likelihood fit, found by extrapolating the
combinatorial background component from the fit into the signal region. Both of these
prior distributions are truncated to remove the unphysical (negative) region. Log-normal
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priors are used for the normalisation mode yield, the signal and normalisation channel
efficiencies, and all other sources of systematic uncertainty. The posterior probability
distribution is obtained by integrating over the nuisance parameters using Markov chain
Monte Carlo [52]. For consistency, the same method is used to obtain upper limits on the
branching fractions of all modes which do not have significant yields.

The results for the absolute branching fractions are

B(Λ0
b → Λπ+π−) = (4.6± 1.2± 1.4± 0.6)× 10−6 ,

B(Λ0
b → ΛK+π−) = (5.6± 0.8± 0.8± 0.7)× 10−6 ,

B(Λ0
b → ΛK+K−) = (15.9± 1.2± 1.2± 2.0)× 10−6 ,

f
Ξ0
b

f
Λ0
b

× B(Ξ0
b → Λπ+π−) = (1.3± 0.6± 0.5± 0.2)× 10−6 ,

< 1.7 (2.1)× 10−6 at 90 (95) % confidence level ,
f
Ξ0
b

f
Λ0
b

× B(Ξ0
b → ΛK−π+) = (−0.6± 0.5± 0.3± 0.1)× 10−6 ,

< 0.8 (1.0)× 10−6 at 90 (95) % confidence level ,
f
Ξ0
b

f
Λ0
b

× B(Ξ0
b → ΛK+K−) < 0.3 (0.4)× 10−6 at 90 (95) % confidence level ,

where the last quoted uncertainty is due to the precision with which the normalisation
channel branching fraction is known.

7 CP asymmetry measurements

The significant yields observed for the Λ0
b → ΛK+π− and ΛK+K− decays allow mea-

surements of their phase-space integrated CP asymmetries. The simultaneous extended
maximum likelihood fit is modified to allow the determination of the raw asymmetry,
defined as

Araw
CP =

N corr
f −N corr

f̄

N corr
f +N corr

f̄

, (3)

where N corr
f (N corr

f̄
) is the efficiency-corrected yield for Λ0

b (Λ0
b) decays. The use of the

efficiency-corrected yields accounts for the possibility that there may be larger CP violation
effects in certain regions of phase space, as seen in other charmless three-body b hadron
decays [19].

To measure the parameter of the underlying CP violation, the raw asymmetry has
to be corrected for possible small detection (AD) and production (AP) asymmetries,
ACP = Araw

CP − (AP +AD). This can be conveniently achieved with the Λ0
b → (Λπ+)Λ+

c
π−

control mode, which is expected to have negligible CP violation. Since this mode shares
the same initial state as the decay of interest, it has the same production asymmetry;
moreover, the final-state selection differs only in the PID requirements and therefore most
detection asymmetry effects also cancel. Thus,

ACP (Λ0
b → Λh+h′−) = Araw

CP (Λ0
b → Λh+h′−)−Araw

CP (Λ0
b →

(
Λπ+

)
Λ+
c
π−) . (4)

11



Table 3: Systematic uncertainties on ACP (in units of 10−3).

ACP (Λ0
b → ΛK+π−) ACP (Λ0

b → ΛK+K−)
Control mode 66 57
PID asymmetry 20 –
Fit model 27 32
Fit bias 14 4
Efficiency uncertainty 80 28
Total 110 71

The measured raw asymmetries, including the efficiency correction for the signal modes,
for Λ0

b → ΛK+π−, Λ0
b → ΛK+K−, and Λ0

b → (Λπ+)Λ+
c
π− are determined by performing

the fit with the data separated into Λ0
b or Λ0

b candidates, depending on the charge of the
p from the Λ → pπ− decay. They are found to be Araw

CP (Λ0
b → ΛK+π−) = −0.46 ± 0.23,

Araw
CP (Λ0

b → ΛK+K−) = −0.21± 0.10 and Araw
CP (Λ0

b → (Λπ+)Λ+
c
π−) = 0.07± 0.07, where

the uncertainties are statistical only. The asymmetries for the background components
are found to be consistent with zero, as expected.

Several sources of systematic uncertainty are considered, as summarised in Table 3.
The uncertainty on AP +AD comes directly from the result of the fit to Λ0

b → (Λπ+)Λ+
c
π−

decays. The effect of variations of the detection asymmetry with the decay kinematics,
which can be slightly different for reconstructed signal and control modes, is negligible.
However, for the Λ0

b → ΛK+π− channel, a possible asymmetry in kaon detection, which
is taken to be 2 % [53], has to be accounted for. Effects related to the choices of signal
and background models, possible intrinsic fit biases, and uncertainties in the efficiencies
are evaluated in a similar way as for the branching fraction measurements. The total
systematic uncertainty is obtained by summing all contributions in quadrature.

The results for the phase-space integrated CP asymmetries, with correlations taken
into account, are

ACP (Λ0
b → ΛK+π−) = −0.53± 0.23± 0.11 ,

ACP (Λ0
b → ΛK+K−) = −0.28± 0.10± 0.07 ,

where the uncertainties are statistical and systematic, respectively. These are both less
than 3 σ from zero, indicating consistency with CP symmetry.

8 Conclusions

Using a data sample collected by the LHCb experiment corresponding to an integrated
luminosity of 3 fb−1 of high-energy pp collisions, a search for charmless three-body decays
of b baryons to the Λπ+π−, ΛK±π∓ and ΛK+K− final states has been performed. The
Λ0
b → ΛK+π− and Λ0

b → ΛK+K− decay modes are observed for the first time, and their
branching fractions and CP asymmetry parameters are measured. No evidence is seen

12



for CP asymmetry in the phase-space integrated decay rates of these modes. Evidence
is seen for the Λ0

b → Λπ+π− decay, with a branching fraction somewhat larger than
predicted by theoretical calculations [22–24], and limits are set on the branching fractions
of Ξ0

b → Λπ+π−, Ξ0
b → ΛK−π+, and Ξ0

b → ΛK+K− decays. These results motivate
further studies, both experimental and theoretical, into Λ0

b and Ξ0
b decays to Λh+h′− final

states.
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A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852,
arXiv:0710.3820.

[31] I. Belyaev et al., Handling of the generation of primary events in Gauss, the LHCb
simulation framework, J. Phys. Conf. Ser. 331 (2011) 032047.

[32] D. J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth.
A462 (2001) 152.

[33] P. Golonka and Z. Was, PHOTOS Monte Carlo: A precision tool for QED corrections
in Z and W decays, Eur. Phys. J. C45 (2006) 97, arXiv:hep-ph/0506026.

[34] Geant4 collaboration, J. Allison et al., Geant4 developments and applications, IEEE
Trans. Nucl. Sci. 53 (2006) 270; Geant4 collaboration, S. Agostinelli et al., Geant4:
A simulation toolkit, Nucl. Instrum. Meth. A506 (2003) 250.

15

http://dx.doi.org/10.1103/PhysRevD.75.012008
http://dx.doi.org/10.1103/PhysRevD.75.012008
http://arxiv.org/abs/hep-ex/0608003
http://dx.doi.org/10.1007/JHEP10(2012)037
http://arxiv.org/abs/1206.2794
http://dx.doi.org/10.1103/PhysRevD.58.096013
http://arxiv.org/abs/hep-ph/9805332
http://dx.doi.org/10.1103/PhysRevD.69.017901
http://arxiv.org/abs/hep-ph/0307307
http://arxiv.org/abs/hep-ph/0602043
http://dx.doi.org/10.1088/1748-0221/3/08/S08005
http://dx.doi.org/10.1088/1748-0221/3/08/S08005
http://dx.doi.org/10.1142/S0217751X15300227
http://dx.doi.org/10.1142/S0217751X15300227
http://arxiv.org/abs/1412.6352
http://dx.doi.org/10.1088/1748-0221/8/04/P04022
http://arxiv.org/abs/1211.3055
http://cdsweb.cern.ch/search?p=LHCb-PUB-2014-046&f=reportnumber&action_search=Search&c=LHCb+Notes
http://dx.doi.org/10.1088/1748-0221/8/02/P02013
http://arxiv.org/abs/1210.6861
http://dx.doi.org/10.1088/1126-6708/2006/05/026
http://dx.doi.org/10.1088/1126-6708/2006/05/026
http://arxiv.org/abs/hep-ph/0603175
http://dx.doi.org/10.1016/j.cpc.2008.01.036
http://arxiv.org/abs/0710.3820
http://dx.doi.org/10.1088/1742-6596/331/3/032047
http://dx.doi.org/10.1016/S0168-9002(01)00089-4
http://dx.doi.org/10.1016/S0168-9002(01)00089-4
http://dx.doi.org/10.1140/epjc/s2005-02396-4
http://arxiv.org/abs/hep-ph/0506026
http://dx.doi.org/10.1109/TNS.2006.869826
http://dx.doi.org/10.1109/TNS.2006.869826
http://dx.doi.org/10.1016/S0168-9002(03)01368-8


[35] M. Clemencic et al., The LHCb simulation application, Gauss: Design, evolution and
experience, J. Phys. Conf. Ser. 331 (2011) 032023.

[36] Particle Data Group, K. A. Olive et al., Review of particle physics, Chin. Phys. C38
(2014) 090001, and 2015 update.

[37] LHCb collaboration, R. Aaij et al., Differential branching fraction and angular anaysis
of Λ0

b → Λµ+µ− decays, JHEP 06 (2015) 115, arXiv:1503.07138.

[38] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and
regression trees, Wadsworth international group, Belmont, California, USA, 1984.

[39] R. E. Schapire and Y. Freund, A decision-theoretic generalization of on-line learning
and an application to boosting, Jour. Comp. and Syst. Sc. 55 (1997) 119.

[40] G. Punzi, Sensitivity of searches for new signals and its optimization, in Statistical
Problems in Particle Physics, Astrophysics, and Cosmology (L. Lyons, R. Mount, and
R. Reitmeyer, eds.), p. 79, 2003. arXiv:physics/0308063.

[41] M. Adinolfi et al., Performance of the LHCb RICH detector at the LHC, Eur. Phys.
J. C73 (2013) 2431, arXiv:1211.6759.

[42] LHCb collaboration, R. Aaij et al., Study of beauty baryon decays to D0ph− and Λ+
c h
−

final states, Phys. Rev. D89 (2014) 032001, arXiv:1311.4823.

[43] LHCb collaboration, R. Aaij et al., Observation of the Λ0
b → J/ψpπ− decay, JHEP

07 (2014) 103, arXiv:1406.0755.

[44] R. H. Dalitz, On the analysis of tau-meson data and the nature of the tau-meson,
Phil. Mag. 44 (1953) 1068.

[45] M. Pivk and F. R. Le Diberder, sPlot: A statistical tool to unfold data distributions,
Nucl. Instrum. Meth. A555 (2005) 356, arXiv:physics/0402083.

[46] T. Skwarnicki, A study of the radiative cascade transitions between the Upsilon-prime
and Upsilon resonances, PhD thesis, Institute of Nuclear Physics, Krakow, 1986,
DESY-F31-86-02.

[47] ARGUS collaboration, H. Albrecht et al., Exclusive hadronic decays of B mesons, Z.
Phys. C48 (1990) 543.

[48] LHCb collaboration, R. Aaij et al., Study of the kinematic dependences of Λ0
b production

in pp collisions and a measurement of the Λ0
b → Λ+

c π
− branching fraction, JHEP 08

(2014) 143, arXiv:1405.6842.

[49] FOCUS collaboration, J. M. Link et al., Study of Λ+
c Cabibbo-favored decays containing

a Λ baryon in the final state, Phys. Lett. B624 (2005) 22, arXiv:hep-ex/0505077.

16

http://dx.doi.org/10.1088/1742-6596/331/3/032023
http://pdg.lbl.gov/
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://dx.doi.org/10.1007/JHEP06(2015)115
http://arxiv.org/abs/1503.07138
http://dx.doi.org/10.1006/jcss.1997.1504
http://arxiv.org/abs/physics/0308063
http://dx.doi.org/10.1140/epjc/s10052-013-2431-9
http://dx.doi.org/10.1140/epjc/s10052-013-2431-9
http://arxiv.org/abs/1211.6759
http://dx.doi.org/10.1103/PhysRevD.89.032001
http://arxiv.org/abs/1311.4823
http://dx.doi.org/10.1007/JHEP07(2014)103
http://dx.doi.org/10.1007/JHEP07(2014)103
http://arxiv.org/abs/1406.0755
http://dx.doi.org/10.1080/14786441008520365
http://dx.doi.org/10.1016/j.nima.2005.08.106
http://arxiv.org/abs/physics/0402083
http://inspirehep.net/record/230779/
http://dx.doi.org/10.1007/BF01614687
http://dx.doi.org/10.1007/BF01614687
http://dx.doi.org/10.1007/JHEP08(2014)143
http://dx.doi.org/10.1007/JHEP08(2014)143
http://arxiv.org/abs/1405.6842
http://dx.doi.org/10.1016/j.physletb.2005.08.014
http://arxiv.org/abs/hep-ex/0505077


[50] Belle collaboration, A. Zupanc et al., Measurement of the branching fraction B(Λ+
c →

pK−π+), Phys. Rev. Lett. 113 (2014) 042002, arXiv:1312.7826.

[51] LHCb collaboration, R. Aaij et al., First evidence for the annihilation decay mode
B+ → D+

s φ, JHEP 02 (2013) 043, arXiv:1210.1089.

[52] W. R. Gilks, S. Richardson, and D. Spiegelhalter, Markov Chain Monte Carlo in
Practice, Chapman & Hall/CRC Interdisciplinary Statistics, Taylor & Francis, 1995.

[53] LHCb collaboration, R. Aaij et al., Measurement of CP asymmetry in D0 → K−K+

and D0 → π−π+ decays, JHEP 07 (2014) 041, arXiv:1405.2797.

17

http://dx.doi.org/10.1103/PhysRevLett.113.042002
http://arxiv.org/abs/1312.7826
http://dx.doi.org/10.1007/JHEP02(2013)043
http://arxiv.org/abs/1210.1089
http://dx.doi.org/10.1007/JHEP07(2014)041
http://arxiv.org/abs/1405.2797


LHCb collaboration

R. Aaij39, C. Abellán Beteta41, B. Adeva38, M. Adinolfi47, Z. Ajaltouni5, S. Akar6, J. Albrecht10,
F. Alessio39, M. Alexander52, S. Ali42, G. Alkhazov31, P. Alvarez Cartelle54, A.A. Alves Jr58,
S. Amato2, S. Amerio23, Y. Amhis7, L. An3,40, L. Anderlini18, G. Andreassi40, M. Andreotti17,g,
J.E. Andrews59, R.B. Appleby55, O. Aquines Gutierrez11, F. Archilli39, P. d’Argent12,
A. Artamonov36, M. Artuso60, E. Aslanides6, G. Auriemma26,n, M. Baalouch5, S. Bachmann12,
J.J. Back49, A. Badalov37, C. Baesso61, S. Baker54, W. Baldini17, R.J. Barlow55, C. Barschel39,
S. Barsuk7, W. Barter39, V. Batozskaya29, V. Battista40, A. Bay40, L. Beaucourt4, J. Beddow52,
F. Bedeschi24, I. Bediaga1, L.J. Bel42, V. Bellee40, N. Belloli21,k, I. Belyaev32, E. Ben-Haim8,
G. Bencivenni19, S. Benson39, J. Benton47, A. Berezhnoy33, R. Bernet41, A. Bertolin23,
F. Betti15, M.-O. Bettler39, M. van Beuzekom42, S. Bifani46, P. Billoir8, T. Bird55,
A. Birnkraut10, A. Bizzeti18,i, T. Blake49, F. Blanc40, J. Blouw11, S. Blusk60, V. Bocci26,
A. Bondar35, N. Bondar31,39, W. Bonivento16, A. Borgheresi21,k, S. Borghi55, M. Borisyak67,
M. Borsato38, M. Boubdir9, T.J.V. Bowcock53, E. Bowen41, C. Bozzi17,39, S. Braun12,
M. Britsch12, T. Britton60, J. Brodzicka55, E. Buchanan47, C. Burr55, A. Bursche2,
J. Buytaert39, S. Cadeddu16, R. Calabrese17,g, M. Calvi21,k, M. Calvo Gomez37,p, P. Campana19,
D. Campora Perez39, L. Capriotti55, A. Carbone15,e, G. Carboni25,l, R. Cardinale20,j ,
A. Cardini16, P. Carniti21,k, L. Carson51, K. Carvalho Akiba2, G. Casse53, L. Cassina21,k,
L. Castillo Garcia40, M. Cattaneo39, Ch. Cauet10, G. Cavallero20, R. Cenci24,t, M. Charles8,
Ph. Charpentier39, G. Chatzikonstantinidis46, M. Chefdeville4, S. Chen55, S.-F. Cheung56,
M. Chrzaszcz41,27, X. Cid Vidal39, G. Ciezarek42, P.E.L. Clarke51, M. Clemencic39, H.V. Cliff48,
J. Closier39, V. Coco58, J. Cogan6, E. Cogneras5, V. Cogoni16,f , L. Cojocariu30, G. Collazuol23,r,
P. Collins39, A. Comerma-Montells12, A. Contu39, A. Cook47, M. Coombes47, S. Coquereau8,
G. Corti39, M. Corvo17,g, B. Couturier39, G.A. Cowan51, D.C. Craik51, A. Crocombe49,
M. Cruz Torres61, S. Cunliffe54, R. Currie54, C. D’Ambrosio39, E. Dall’Occo42, J. Dalseno47,
P.N.Y. David42, A. Davis58, O. De Aguiar Francisco2, K. De Bruyn6, S. De Capua55,
M. De Cian12, J.M. De Miranda1, L. De Paula2, P. De Simone19, C.-T. Dean52, D. Decamp4,
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5Clermont Université, Université Blaise Pascal, CNRS/IN2P3, LPC, Clermont-Ferrand, France
6CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
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nUniversità della Basilicata, Potenza, Italy
oAGH - University of Science and Technology, Faculty of Computer Science, Electronics and
Telecommunications, Kraków, Poland
pLIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain
qHanoi University of Science, Hanoi, Viet Nam
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