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How easy is it to suppress shake, rattle and roll in a long bridge or a skyscraper?

Most practical structures are designed so that long wave resonance vibrations

can be avoided. However, there are recent examples, such as the Millennium

Bridge in London or the Volga Bridge in Volgograd, which show that unex-

pected external forces may result in large scale unwanted shake and rattle.

Full scale alteration of a bridge (or a skyscraper) would not be considered as

an acceptable option, unless the structure has collapsed.

Can we fix this by examining a representative part of the structure only and

making small lightweight changes? We will do it here and illustrate an idea

linking the engineering analysis to elastic waveguides.

Background of the problem. Figs. 1A and 1B show the troubled automobile bridge across

the river Volga in Volgograd. The large deformation of the upper deck was completely unex-

pected. As described in the Daily Mail (see [1]) and in IMechanica professional discussion

forum [2], large vibrations have been invoked by relatively small external forces. The bridge
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was inaugurated in October 2009, and in May 2010 a long wave resonance vibration caused

sections of the bridge to bend as shown in Figs. 1B and 1C. A fundamental alteration of the

bridge on its foundation appears to be problematic and no efficient technical solutions have

been proposed to date. The model illustrated here gives a solution of this challenging problem

and, being generic, also leads to design methodologies for vibrating slender structures such as

skyscrapers and earthquake-resistant systems. The analysis complements the models of lateral

vibration induced by “crowd-synchronization” and “balancing pedestrians” for the Millennium

Bridge discussed in [3, 4, 5].

Although the general theory of waves in periodic structures is a classical topic described in

many textbooks (see, for example, [6] and [7]), until recently the bulk of the work was related

to problems of electromagnetism and acoustics as confirmed by the extensive bibliography on

photonic band gap structures [8] compiled in 2008 by J.P. Dowling.

(  )a (  )b

(  )c (  )d

Figure 1: Volga bridge, ((A), (B) HTB Volgograd News). Flexural deformation of the main
upper body of the bridge: (B) real structure, (C) simplified numerical model, (D) modified 3D
structured wave guide with lightweight resonators.
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In the recent years, the theory of elastic waves in periodic systems has received increas-

ing attention, with applications ranging from the design of elastic filters and polarisers to the

modelling of earthquake-resistant structures. Analytical models for phononic crystals, having

periodic structures, have been developed in [9, 10, 11, 12, 13]. Transmission problems for ar-

rays of elastic structured stacks were studied in [14, 15, 16]. These incorporate the comparative

analysis of the filtering properties of elastic waves in doubly periodic media and the transmis-

sion properties for the corresponding singly periodic stack structure. Propagation and dispersion

of waves in plate structures have been analysed in [17, 18, 19, 20]; in particular, Green’s func-

tions and localised vibration modes within plate structures are included in [18]. Heterogeneous

lattices were used in [30, 31] to build models of structured interfaces, which possess specially

designed transmission properties. These models also included the means of controlling dis-

persion properties. Effects of disorder on propagation of waves in structured media as well as

localisation have been addressed in [16, 18], where the multipole Rayleigh method and a novel

recurrence algorithm were used to obtain the transmission characteristics of a composite stack

incorporating multiple arrays of circular inclusions/voids.

Smart composite structures have been designed and built for a range of applications in op-

tics and problems of electromagnetism to encompass phenomena such as negative refraction

and the cloaking of finite sized objects. Complex models have been constructed in [21, 22, 23].

The theoretical findings have also been verified experimentally [24, 25, 26, 27]. Specially de-

signed composite structures, referred to as metamaterials, may channel waves around finite

sized obstacles (cloaking) or create the effect of negative refraction which can be further used

in focussing of electromagnetic waves by flat interfaces. Analysis of the geometrical transforms

used in modelling of such materials is presented in [28]. Modelling of elastic waves brings new

challenging questions in the design of metamaterials. In particular, a geometric transform was

used in [29] to model an “invisibility cloak” for elastic waves.
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In this paper, we consider a problem where elastic waves have to be channeled around some

part of an engineering structure, for example the main deck of a bridge. The background

work of the authors, which addresses analysis of waves interacting with structured interfaces,

is included in [29, 20, 30]. Although, the problem is very different from the formulations

of electromagnetism, there is a direct link with the design of metamaterial structures in [27].

Physically, the interpretation of the model can be thought of in terms of a “by-pass” for the

undesired elastic waves. The method of design is non-trivial, and the analysis presented here is

original. Our approach provides accurate estimates for frequencies of standing waves within

the elastic structure and the design for the by-pass of elastic waves, so that shake, rattle and roll

is no more.

Physical model for a periodic waveguide. Instead of looking into resonance modes of a

finite slender body such as a bridge or a tall building, we consider a periodic waveguide and

then analyse dispersion properties of Bloch-Floquet elastic waves. A typical span of the bridge

between two neighboring pillars is shown in Fig. 1C and will be used as an elementary cell of

the periodic structure.

The geometrical notations are introduced as follows. We denote by Ω the domain occupied

by the elementary cell of the periodic waveguide. The boundary of Ω is divided into the

constrained part ∂Ωu, which is in contact with the supporting pillars, the traction free part ∂Ωσ

and the contact region between consecutive unit cells ∂Ωp. These notations are shown in Fig.

1C, Fig. 2A and Fig. 6H.

The elastic displacement is assumed to be time-harmonic of angular frequency ω, and its

amplitude u satisfies the Lamé equation

µ∆u + (λ+ µ)∇∇ · u + ρω2u = 0 in Ω, (1)

where µ and λ are the Lamé elastic moduli and ρ is the mass density. The boundary conditions
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are

u = 0, on ∂Ωu, (2)

representing the fixed part of the boundary, and on the remaining boundary subjected to the

traction boundary conditions we set

t(n)(u) = 0, on ∂Ωσ, (3)

where t(n)(u) is the vector of tractions. A Bloch-Floquet wave, characterised by the wave

number k, would also satisfy the quasi-periodicity condition within the elementary cell

u(x + de(1)) = u(x)eikd, (4)

where d is the period of the structure. Subject to modification of boundary conditions, a similar

formulation can be used to describe a time-harmonic vibration of a tall building. Analysis of

dispersion properties of elastic waves characterizes the group velocity for different values of

the frequency ω. In the low frequency range, this analysis also provides information about stop

bands, defined as intervals of frequencies where no waves can propagate through the structured

waveguide. One would also learn about standing waves, which may exist within the slender

engineering structure and, in turn, one would be able to suppress undesired vibrations or channel

waves around some parts of the structure such as the upper deck of a long bridge.

Two-dimensional implementation. Firstly, we provide an illustration of a periodic waveg-

uide for a two-dimensional analogue of the model of the upper deck shown in Fig. 1C, which

is given as a periodically constrained slender elastic solid, that can be approximated in the low

frequency range as an elastic beam. We refer to [32] for technical details of the asymptotic

analysis, which leads to the lower-dimensional beam type approximations of solutions of the

problem (1)–(4) for the Lamé system in the desired range of frequencies. Within the elemen-

tary cell, the beam is simply supported and such a system possesses low frequency flexural
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modes. We show with a simple representative example (see Fig. 2), that such flexural modes

can be suppressed by the addition of a lightweight periodic system of resonators. The analysis

of dispersion properties of elastic waves enables one to tune the system accurately and to choose

the correct design.

elementary cell

γ1

γ γ γ γ

u
(1)

u
(2)

original
structure

resonating
structure( )a

( )b

x1

x2

Figure 2: Two-dimensional elementary cell with the system of resonators. (A) The first eigen-
mode. (B) Truss model used for the analytical estimates of the eigenfrequencies: each mass
Mi undergoes the horizontal and vertical displacements u(i)1 and u(i)2 , respectively, with i = 1, 2.
Parameter values are: d = 4 m; the thickness s = 0.2 m; the radii of the disks are 0.1 m and
0.075 m; h1 = 2 m, h2 = 1 m, β = π/6; the longitudinal stiffness coefficients are γ = 0.14
GPa, γ1 = 0.018 GPa; the main plate has mass density ρ = 7850 kg/m3 and shear modulus
µ = 80 GPa; the disks and the elastic links have mass density ρM = 7850 kg/m3 and ργ = 200
kg/m3, respectively.

For flexural vibrations of the periodically constrained beam, the dispersion diagram, pre-

senting the normalised frequency F = fd/v as a function of kd, is shown in Fig. 3A (Here

f = ω/2π is the frequency, d is the period, v is the speed of the shear wave in the upper deck

of the bridge).

The flexural mode, that is similar to the one shown in Fig. 1C, corresponds to F = 0.0358.

Our aim is to use the data from the dispersion diagram to tune the elastic system so that the

above flexural mode is suppressed.

Now, we introduce a lightweight modification of the original structure which would alter
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Figure 3: Dispersion diagrams and corresponding eigenmodes for the 2D structured wave guide
(finite element computations). (A) The original beam structure and the eigenmode to suppress.
FA and FB correspond to the analytical values given in eqn. (5)a. (B) The modified structure
and the first several eigenmodes with corresponding normalized frequencies. FA and FB are
finite element results for the analytical frequencies FA and FB.

the long-wave flexural oscillations. Such a modification does not involve any major alteration

of the structure such as a change of the boundary conditions in the contact region between the

deck of the bridge and the supporting pillars or variation of the bending stiffness of the upper

deck.

For the two-dimensional configuration, the proposed design is shown in Fig. 2, where a

connected system of lightweight resonators is attached to the main body of the bridge. The

overall mass of a single resonator is much smaller compared to the total mass of the elementary
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cell of the structure. Also, this system has a relatively low stiffness (γ, γ1) of additional elastic

links compared to the stiffness of the main deck of the bridge. In turn, the eigenfrequencies

of such a resonator system can be placed sufficiently close to the low eigenfrequencies of the

original macrostructure.

The new set of dispersion curves is shown in Fig. 3B, which contains stop bands, i.e.

the frequency intervals where no propagating elastic waves exist. We note a narrow band gap

around the normalised frequency F = 0.0359 and a wider band gap at normalised frequencies

around F = 0.1699.

It is vital to pay attention to the vibration modes near the boundaries of the band gaps

mentioned and emphasise that they do not involve large flexural vibrations of the main body of

the bridge, as required in the proposed design.

It is important to be able to tune the system correctly to match the band gap frequency

with the frequency of an unwanted vibration of the upper deck of the bridge. This task can be

achieved by using the analytical approximations described below.

Analytical tuning of the vibrating elastic system. Analytical estimates of the eigenfrequen-

cies for a class of standing waves provide a convenient design tool for the resonating structure

and are accompanied by a numerical finite element simulation for an elementary cell comprising

a computation of the eigenmodes and providing a dispersion diagram for elastic waves within

the structured waveguide.

The approximation scheme is illustrated for the configuration displayed in Fig. 2B, where

the system of resonators is represented as a low-frequency truss structure with two masses M1

and M2 and linear elastic links with longitudinal stiffness values γ for the diagonal connections

and γ1 for the horizontal one. Assuming that the upper deck is fixed, the low eigenfrequencies of

vibration involving translational motion of massesM1 andM2 are given in the simple analytical
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form

f 2
A,B = 1

8π2

(
1
M1

+ 1
M2

) [
γ1 + 2γ sin2 β ±

√
γ21 + 4

(
M1−M2

M1+M2

)2
γ sin2 β(γ1 + γ sin2 β)

]
,

f 2
C = γ

2M1π2 cos2β, f 2
D = γ

2M2π2 cos2β, (5)

The frequencies fA,B (fB < fA) correspond to horizontal translational motions of the intercon-

nected masses M1 and M2, whereas the frequencies fC , fD describe the vertical motion of the

masses M1 and M2, respectively. We use the notation f∗ = min{fB, fC , fD}, representing the

quantity which serves as an upper bound for a cluster of frequencies corresponding to standing

waves associated with rotational motion of the resonators and flexural vibration of the inertial

links. Some of these standing waves are shown to correspond to flat bands on the dispersion

diagram in Fig. 3B. For our particular choice of material parameters, we have f∗ = fB. We

also note that fA gives an analytical estimate for the position of the second band gap displayed

in Fig. 3B.

A supplementary finite element computation for an elementary cell of the structure, ad-

dressed in Fig. 3B, allows for a full interaction between the elastic upper deck of the bridge

and the built-in resonator structure, which acts as the energy localizer and hence reduces signif-

icantly the amplitude of vibration of the upper deck of the bridge, as shown in Fig. 2A.

Comparative analysis of the dispersion diagrams in Figs. 3A and 3B shows formation of

band gaps and a cluster of standing waves for the structure containing lightweight resonators.

It appears that some of the waves of sufficiently low group velocity, illustrated in Fig. 3B,

correspond to vibrations of low frequency near the boundaries of the band gaps. The change of

the inertial and stiffness properties of the high-contrast lightweight resonator structure would

alter the position of the stop bands and hence can be used as the means of control of propagating

waves of other frequencies within the periodic elastic system.

Further fine tuning of the system may involve, for example, a very slight change of stiffness
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γ1 of the horizontal bar. This would lead to an accurate match of a band gap frequency with

the frequency of vibration of the upper deck of the unaltered bridge. In the proposed design,

vibrations of the upper deck of the bridge become negligibly small compared to the vibration of

the additional resonator structure, as shown in Fig. 2A, and this has been achieved without any

alterations of junction conditions between the bridge deck and supporting pillars or any change

in the stiffness of the main deck. A full three-dimensional simulation is discussed in the text

below.

Three-dimensional simulation. We use the ideas described above to give the required design

solution for the “Volga bridge problem”, discussed in [1, 2]. In the three-dimensional computa-

tional model, we consider two cases: the original bridge structure, which possesses a standing

flexural wave as shown in Fig. 1C, and the new design including a system of lightweight res-

onators illustrated in Fig. 1D, where the flexural wave in question has been suppressed.

As above, instead of referring to a full scale finite length bridge, we consider a waveguide,

with emphasis on the dispersion properties of elastic waves within a periodic structure.

A simple analysis of the resonator structure on its own (as shown in Fig. 4), with the

assumption that the surfaces of contact with the bridge deck are fixed, gives an accurate estimate

of frequencies for a class of standing waves within the modified bridge after installation of the

periodic system of resonators. Fig. 4 also shows the four eigenmodes within the frequency

interval 0 < F < 0.0303. The physical and stiffness parameters of the resonators are chosen

so that one of the eigenfrequencies of the lightweight resonator structure of Fig. 4 matches the

frequency F = 0.0182 of the standing wave of the unaltered bridge. When the two frequencies

in question are sufficiently close to each other the combined structure will change its dynamic

response within the required low frequency range. Embedding of a periodic system of low-

frequency resonators leads to the formation of the required cluster of standing waves, where the
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Mode 1: = 0.0181 Mode 2: = 0.0227

Mode 3: = 0.0245 Mode 4: = 0.0302

Figure 4: First four vibration modes of the resonant structure. The first mode, at normalised
frequency F = fd/v = 0.0181, is designed to eliminate the flexural vibration of the deck of
the bridge. In the computation d = 4 m and v =

√
µ/ρ = 3194 m/s is the shear wave speed in

the upper deck.

amplitude of vibration of the bridge deck becomes negligibly small. The proposed mechanical

system can be tuned to filter waves of desired frequencies and hence to eliminate vibration of

the upper deck of the bridge within the specified frequency range.

The computation shows that for the unaltered bridge, the fundamental flexural mode corre-

sponds to the flexural vibrations of the upper deck of the bridge at a low normalised frequency

F = 0.0182. After embedding of the appropriately tuned lightweight structure of the resonators

the eigenfrequency in question has been slightly shifted, and the eigenmodes of vibration have

been dramatically changed.

In Fig. 5 we show a finite structure representing a sufficiently large section of the modified

bridge, where the left and the right boundaries of the deck of the bridge are simply supported.

By analysing the vibration mode of the modified structure, we confirm that the motion of the

main body of the bridge is negligibly small compared to the motion within the system of res-
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Figure 5: Modified bridge: the flexural vibration of the main body has been suppressed. The
built-in resonators have taken on the vibrational motion.

onators. This gives the desired design, which eliminates the flexural vibration of the upper

deck of the bridge without any major alteration of the structure in terms of mass, stiffness or

boundary conditions.

Suppression of lateral vibrations of a skyscraper. The generic method based on the anal-

ysis of waves in a periodic waveguide is now applied to such a system as a tall building, or

‘skyscraper’, composed of several copies of an elementary cell, as shown in Fig. 6 panel (2).

The displacement vector is assumed to be time-harmonic, with the radian frequency ω and the

amplitude u, which satisfies the Lamé system (1) and the boundary conditions (2) and (3) on

the fixed foundation and on the boundary, which is free of tractions, respectively.

We introduce a multi-scale resonator within every elementary cell, as shown in Fig. 6H, and

make use of the analysis of elastic waves within a periodic plain strain structure. The resonator

consists of a mass connected to the main frame of the elementary cell by a set of parallel thin

ligaments, whose overall flexural stiffness is sufficiently small.
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Figure 6: Eigenmodes of the multi-storey buildings. The horizontal foundation of the structure
is fixed, whereas all the remaining boundary is traction free. Panel 1: first four eigenmodes
of the multi-structure, each showing energy absorption by the resonators. Normalised eigen-
frequencies F = fd/v: (A) 0.0225; (B) 0.2254; (C) 0.3936; (D) 0.4446. Panel 2: first two
eigenmodes of the frame structure. Normalised eigenfrequencies: (E) 0.0144; (F) 0.0260. (G)
The dispersion diagram showing normalised frequency F versus k2 d. (H) Square elementary
cell with dimension d = 1 m. The external structure has thickness s = 0.1 m, the resonator is
composed of a rectangular solid with dimensions 0.3 m × 0.14 m and three thin ligaments with
dimensions 0.2 m × 0.01 m. Material parameters are: shear modulus µ = 80 GPa, Poisson
ratio ν = 0.28, mass density ρ = 7850 Kg/m3.
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As a design target, we would like to alter the flexural vibration modes of the original struc-

ture, within a predefined range of frequencies, to provide a set of vibration modes which do

not involve a large amplitude motion of the walls of the building. Moreover, the “thin-legged

resonators” may move and hence absorb the energy of the system. This is clearly a task of high

practical importance, which may appear in problems such as the design of earthquake-resistant

structures.

The lowest translational and rotational eigenfrequencies of the thin-legged resonators can

be estimated analytically [20, 32] and the design of the resonators can be chosen to place these

eigenfrequencies within the required interval corresponding to the modes of the original struc-

ture in panel (2) of Fig. 6.

The dispersion diagram of Fig. 6G has been computed for the periodic system with the

unit cell given in Fig. 6H. This includes a group of flat bands corresponding to standing waves

related to vibration of resonators within the periodic structure. We emphasize the connection

between the standing waves associated with vibrations of the thin-legged resonator and groups

or clusters of eigenmodes of the finite structure, some of which are shown in Fig. 6, panel (1).

For such frequencies, the motion of the sides of the skyscraper is negligibly small. We note

that an ad-hoc estimate of such frequencies is difficult for any realistic structure, and hence

the appropriate spectral analysis on a single unit cell is desirable, in particular, in the design

process.

The two low frequency modes of vibration of the “multi-storey” structure without built-in

resonators in Fig. 6 panel (2) show that the whole macro-structure behaves like a homogenized

beam. It is noted that the building, without the system of resonators, will experience lateral

vibrations of significant amplitude and, in practical configurations, this may lead to an overall

structural failure. In Fig. 6 panel (2) we show the structure vibrating at normalised frequencies

F = 0.0144, 0.0260. These values represent two neighboring frequencies at the ends of the

14



interval containing F = 0.0225, which is the first eigenfrequency of the thin-legged resonator,

as shown in Fig. 6 panel (1).

The alteration of the vibration modes of panel (2) of Fig. 6 is achieved by introduction

of the resonators, as shown in Fig. 6 panel (1). This is fully consistent with the idea of the

modified design for the Volga Bridge discussed earlier.

We pay particular attention to clusters of normalised eigenfrequencies around the values

0.0225, 0.2254, 0.3936 and 0.4446, corresponding to standing waves. For such waves, the

exterior boundary of the elementary cell moved with very small amplitude compared to the

amplitude of vibrations of the thin-legged resonators. The four frequencies outlined above

correspond to lateral motion of the resonator, rotational mode of the resonator, localised vi-

brations of thin legs within the resonator and finally, the longitudinal translational mode of the

resonator, respectively. The associated eigenmodes are shown in Fig. 6 panel (1) where the

color map corresponds to the total displacement. In Fig. 6A we have a mode dominated by

the lateral translational motion of the resonators; in Fig. 6B we observe the rotational motion

of the resonators; Fig. 6C gives an example from a large cluster of eigenmodes corresponding

to the case of localised vibrations of thin legs within the resonators. Finally, in Fig. 6D we

observe a localisation near the foundation of the structure (namely only one resonator located

at the ground level is moving, whereas the motion of the remaining structure has a negligi-

bly small amplitude). This last example shows an exponential localisation within a structured

waveguide; in this case, the skyscraper is treated as a waveguide and the embedded structure

of resonators creates a stop band preventing the waves of certain frequencies from propagating

along such a waveguide. In all of these computations, the amplitude of vibration of the sides

of the large structure is very small compared to that of the individual resonators. Hence, if the

solid is subjected to an external impact, such resonance modes can be initiated and the energy

can be absorbed into the resonators and then dissipated via the desired mechanism, for example
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damage of the thin legs. Even though you may not be able to eat your lunch off the resonating

tables the building will survive the earthquake.

Dissipation of energy and final remarks In the re-designed bridge structure shown in Fig.

5 the waves have been channeled through the system of resonators, away from the upper deck

of the bridge. For the case of a skyscraper, inclusion of a system of resonators has led to

suppression of low-frequency lateral vibrations. Although the models discussed above did not

incorporate energy dissipation, additional viscous dampers attached to the resonators can be

considered as a feasible development in a practical implementation.

The main emphasis of the paper is on the analysis of waves in a periodic system, rather

than resonance modes of a finite solid. It is shown that the analysis of the elementary cell

of the periodic waveguide provides insight and required numerical data for the design of the

full-scale engineering system. The ideas presented in this paper are generic, and the bridge

problem in addition to the structural modification of a skyscraper, can be considered as possible

practical implementations. The proposed methods of analysis would equally apply to other

slender structures in civil engineering and problems of structural design.
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