
Constraint Patterns for Tractable
Ontology-Mediated Queries with Datatypes

André Hernich, Julio Lemos, and Frank Wolter

University of Liverpool, UK
{hernich,jlemos,wolter}@liverpool.ac.uk

Abstract. Adding datatypes to ontology-mediated conjunctive queries
(OMQs) often makes query answering hard. This applies, in particular, to
datatypes with non-unary predicates. In this paper we propose a new, non-
uniform way, of analysing the data-complexity of OMQ answering with
datatypes containing higher-arity predicates. We aim at a classification of
the patterns of datatype atoms in OMQs into those that can occur in non-
tractable OMQs and those that only occur in tractable OMQs. Our main
result is a P/coNP-dichotomy for OMQs over DL-Lite TBoxes and rooted
CQs using the datatype (Q,≤). The proof employs a recent dichotomy
result by Bodirsky and Kara for temporal constraint satisfaction problems.

1 Introduction

In recent years, querying data using ontologies has become one of the main
applications of description logics (DLs). The general idea is that an ontology
is used to enrich incomplete and heterogeous data with a semantics and with
background knowledge, thus serving as an interface for querying data and allowing
to derive additional facts. In this area called ontology-based data management
(OBDM) one of the main research problems is to identify ontology languages
and queries for which query answering scales to large amounts of data [11, 6]. In
DL, ontologies take the form of a TBox, data is stored in an ABox, and the most
important class of queries are conjunctive queries (CQs). A basic observation
regarding this setup is that even for DLs from the DL-Lite family that have
been designed for tractable OBDM the addition of datatypes to the TBoxes or
the CQs typically leads to non-tractable query answering problems [2, 20]. As
a consequence of this, the use of datatypes in ontology and query languages
for OBDM has been severely restricted. For example, the OWL2 QL standard
admits datatypes with unary predicates only. Nevertheless, in applications there
is clearly a need for more expressive datatypes and, in particular, datatypes with
predicates of higher arity.

The aim of this paper is to revisit OBDM with expressive datatypes from a
new, non-uniform, perspective. Instead of the standard approach that aims at
the definition of DLs L and query languages Q such that for any TBox T in L
and any query q in Q, answering q under T is tractable in data-complexity we
now aim at describing the complexity of query answering with datatypes at a
more fine-grained level by taking into account the way in which datatype atoms

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/80776292?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 André Hernich, Julio Lemos, and Frank Wolter

can occur in queries. In more detail, an ontology-mediated query (OMQ) Q is a
triple Q = (T , q,D) consisting of a TBox T 1, a CQ q, and a datatype D (that
we identify with a relational structure (D,R1, . . .)). The TBox T in Q can refer
to the datatype D using existential restrictions ∃U where U is an attribute. The
CQ q can contain atoms using attributes and relations Ri from D. We aim at
a classification of the data complexity of query answering with OMQs (T , q,D)
based on the datatype pattern dtype(q) of q that consists of all atoms using the
relations in D. To illustrate, the CQ q uses the datatype D = (Q,≤) and asks
for all rectangles whose width is larger than its height:

q(x) ← rectangle(x) ∧ height(x, u) ∧ width(x, v) ∧ u ≤ v.

Thus, height and width are attributes and the datatype pattern dtype(q) of q is
u ≤ v. The following CQ q′ uses (Q,≤) as well and asks for all countries having
a neigbour to the west that is larger and a neighbour to the east that is smaller:

q′(x)← country(x) ∧ westneighbour(x, y1) ∧ eastneighbour(x, y2) ∧
area(x, u) ∧ area(y1, u1) ∧ area(y2, u2) ∧
(u ≤ u1) ∧ (u2 ≤ u).

Its datatype pattern dtype(q′) is (u ≤ u1) ∧ (u2 ≤ u).
Our main results assume that either the CQ q is a rooted CQ (a CQ in

which each variable is connected to an answer variable not in dtype(q)) or that
the chase of the TBox under consideration is finite for all ABoxes. Under this
assumption, we first show a close link between the complexity of query evaluation
for OMQs with datatype D and the evaluation problem for positive existential
sentences in the structure D̄ in which every relation R has been replaced by its
complement (thus, D̄ = (Q, >) if D = (Q,≤)). In more detail, we show that
evaluating an OMQ with datatype D and a datatype pattern with at most k
atoms is polynomially reducible to the complement of the problem PEk(D̄) of
evaluating positive existential formulas in k-CNF in D̄. Conversely, PEk(D̄) is
polynomially reducible to the complement of evaluating a single fixed OMQ
(depending only on k) with datatype D and a datatype pattern with nk atoms,
where n is the number of relations in D.

Basic complexity results can be obtained easily from this observation. For
example, from the fact that PE1(D) is tractable for D ∈ {(Z, <), (Z,≤), (Q, <),
(Q,≤)}, we obtain that evaluating OMQs (T , q,D) in which q is a rooted CQ
whose datatype pattern is a singleton is tractable. Conversely, from the fact
that PE2(Q, >) is non-tractable we obtain an intractable OMQ (T , q,D) with
datatype D = (Q,≤) and a rooted CQ q whose datatype pattern consists of two
atoms.

Our main result is a P/coNP-dichotomy for OMQs using the datatype D =
(Q,≤). Namely, we show that for any datatype pattern q0 over (Q,≤) exactly
one of the following two conditions holds (unless P=coNP):

1 The results presented in this paper do not depend on the particular tractable DL we
extend with datatypes. To prove the lower bounds we require that the TBox is given
in a DL containing DL-Litecore; the upper bounds can be proved for all standard
Horn-DLs for which CQ evaluation is in PTime.

Tractable Ontology-Mediated Queries with Datatypes 3

– Evaluating rooted OMQs (T , q,D) with dtype(q) = q0 is in PTime.
– There exists a rooted OMQ (T , q,D) with dtype(q) = q0 whose evaluation

problem is coNP-hard.

The proof uses a recent dichotomy result by Bodirsky and Kára for temporal con-
straint satisfaction problems [7] and provides a sufficient and necessary condition
for the evaluation problem to be in PTime that can be checked in linear time.

Related Work Expressive DLs with datatypes (or concrete domains) have been
introduced in [4] and studied extensively [15]. In the context of tractable DLs,
reasoning with datatypes has been studied in [3, 17] for EL and in [19, 20, 2] for DL-
Lite. These works focus on finding ontology languages for which typical reasoning
tasks are tractable. In contrast, here we start with ontology languages for which
query answering is intractable in general, and aim at a complexity classification
of query answering guided by the datatype pattern. Our methodology is closely
related to recent work relating OBDM to constraint satisfaction problems [16, 5,
13]. However, here we classify datatype patterns according to the data-complexity
of evaluating the OMQs containing them, whereas in [16] TBoxes are classified
according to the data-complexity of OMQs containing them, and in [5] OMQs
themselves are classified according to their data-complexity. Consequently, here
we establish a link to temporal constraint satisfiaction [7] whereas the work
mentioned above establishes a link to standard constraint satisfaction and the
Feder-Vardi conjecture [12, 10].

2 Preliminaries

A datatype is a tuple D = (D,R1, R2, . . .), where D is a non-empty set and
R1, R2, . . . are relations on D. We call dom(D) := D the domain of D. To
simplify the presentation, we will not distinguish between a relation Ri and its
name (i.e., we use Ri both as a relation and as the name of the relation Ri). The
complement of D, denoted by D̄, is obtained by replacing each k-ary relation Ri
in D by its complement R̄i := Dk \Ri. For example, we have (Q,≤) = (Q, >).

We assume countably infinite and mutually disjoint sets of concept names, role
names, attribute names, and individual names. Concept names will typically be
denoted by A, role names by P , attribute names by U , and individual names by
a, b, c. The logic DL-Litecore and Horn DLs such as Horn-ALCHIQ are defined as
usual [11, 1, 14, 9]. We consider the extension Lattrib of such DLs L in which the
existential restrictions ∃U for attribute names U can occur in exactly the same
places in concepts and concept inclusions as concept names can occur in L. Unless
stated otherwise, TBoxes range over Lattrib TBoxes, where L is DL-Litecore or
any standard Horn-DL with data complexity for CQs in PTime.

Let D be a datatype. A D-ABox consists of assertions of the form A(a),
P (a, b), and U(a, u), where A is a concept name, P is a role name, U is an
attribute name, a, b are individual names, and u ∈ dom(D). A D-knowledge base
(D-KB) is a pair (T ,A) consisting of a TBox T and a D-ABox A.

An interpretation I = (∆I , ·I) over a datatype D consists of a non-empty
domain ∆I = ∆Iind∪dom(D) and an interpretation function ·I that assigns to each

4 André Hernich, Julio Lemos, and Frank Wolter

concept name A a set AI ⊆ ∆Iind, to each role name P a relation P I ⊆ ∆Iind×∆Iind,
and to each attribute name U a relation UI ⊆ ∆Iind × dom(D). The elements in
∆Iind are called individuals, whereas the elements in dom(D) are called data values.
We assume that ∆Iind and dom(D) are disjoint. Throughout this paper, we make
the standard name assumption: if I is an interpretation, then we set aI := a for
all individual names a. We also set uI := u for each u ∈ dom(D), and RI := R
for each relation R of D. The interpretation I induces the interpretations CI

and SI for each complex concept C and complex role S in the standard way.

We say that I is a model of a KB (T ,A) if aI ∈ AI , (aI , bI) ∈ P I , and
(aI , uI) ∈ UI for all assertions A(a), P (a, b), and U(a, u) in A, and if for every
inclusion X v Y in T we have XI ⊆ Y I . A KB (T ,A) is satisfiable if it has a
model; in this case we say that A is satisfiable relative to T .

We consider conjunctive queries (CQs) q (over D) of the form q(x̄) ← ϕ,
where x̄ is the tuple of answer variables of q, and ϕ is a conjunction of atomic
formulas of the form A(y), P (y, z), U(y, u), or R(u1, . . . , uk), where A, P , U , and
R range over concept names, role names, attribute names, and relation names in
D, respectively; each y, z is a variable; and each u, u1, . . . , uk is a variable. As
usual, all variables of x̄ must occur in some atom of ϕ. The size |q| of q is the
number of atoms in q. The datatype pattern of q, denoted by dtype(q), is the
conjunction of all atoms in ϕ that use a relation in D. The variables that occur
in dtype(q) are called data variables. We assume that all data variables occur in
some atom U(·, ·) outside of dtype(q). A match of q in an interpretation I is a
mapping µ from the variables of ϕ to ∆I such that for each atom X(t1, . . . , tk)
of ϕ we have (µ(t1), . . . , µ(tk)) ∈ XI . A tuple c̄ of individual names and data
values is an answer to q in an interpretation I if there is a match µ of q in I
such that µ(x̄) = c̄. We denote this by I |= q(c̄). Given a KB (T ,A), we write
T ,A |= q(c̄) if c̄ is an answer to q in every model of (T ,A).

The connection graph of a CQ q is the undirected graph with the variables
of q as its vertices and an edge between any two distinct variables if they occur
together in an atom of q that does not belong to dtype(q). We say that q is rooted
if for every variable y of q the connection graph contains a path from y to an
answer variable of q.

We consider ontology-mediated queries (OMQs) of the form Q = (T , q,D),
where D is a datatype, T is a TBox, and q is a CQ over D. Given a D-ABox
A and a tuple c̄, we write A |= Q(c̄) if (T ,A) |= q(c̄). An OMQ Q = (T , q,D)
is rooted if q is rooted. The query evaluation problem for Q is the problem to
decide for given D-ABox A and c̄ whether A |= Q(c̄).

3 Query Evaluation and Positive Existential Sentences

We establish a tight link between the OMQ evaluation problem with datatype D
and the satisfaction problem for positive existential sentences over D̄. To this end
we first introduce a variant of the universal (or canonical) model for standard
Horn-DL KBs. In contrast to KBs with Horn-DL TBoxes without datatypes, in
general there does not exist a universal model for KBs with datatypes.

Tractable Ontology-Mediated Queries with Datatypes 5

Example 1. Consider the KB (T ,A) with T = {A v ∃U1, A v ∃U2} and A =
{A(a)} and with datatype (Q,≤). Consider the OMQs Qi = (T , qi, (Q,≤)),
i = 1, 2, where

q1(x)← U1(x, u1)∧U2(x, u2)∧u1 ≤ u2 q2(x)← U1(x, u1)∧U2(x, u2)∧u2 ≤ u1

Clearly A 6|= Q1(a) since for the interpretation I with UI1 = {(a, 2)} and
UI2 = {(a, 1)} we have I 6|= q1(a). Also, A 6|= Q2(a) since for the interpretation J
with UJ1 = {(a, 1)} and UJ2 = {(a, 2)} we have J 6|= q2(a). However, there does
not exist a model I of T and A such that I 6|= qi(a) for both i = 1 and i = 2.

The reason that universal models do not exist is that distinct interpretations
of attributes can be required to refute the entailment of CQs. The notion of
pre-interpretation formalizes this intuition: it fixes the interpretation of concept
and roles names but leaves the interpretation of attributes open by adding
placeholders for data values (called data nulls) to the set of possible values
of attributes. A pre-interpretation J over D is the same as an interpretation
over D with the exception that attribute names U are now interpreted as sets
UJ ⊆ ∆Jind × (dom(D) ∪∆Jnull), where ∆Jnull is a set of data nulls disjoint from

∆Jind ∪ dom(D). The definitions of the interpretations CJ of a concept C and SJ

of a role S are extended from interpretations to pre-interpretations in the obvious
way. A pre-model of a KB is a pre-interpretation that satisfies all assertions and
inclusions in the KB.

Pre-interpretations J can be completed to interpretations by assigning data
values to data nulls. A completion function f for J is a mapping f : ∆Jnull →
dom(D). The completion f(J) of J by f is the interpretation I obtained from
J by setting AI = AJ for all concept names A, P I = PJ for all role names P ,
and UI = (UJ ∩ (∆Jind × dom(D))) ∪ {(d, f(v)) | (d, v) ∈ UJ , v ∈ ∆Jnull} for all
attribute names U . An interpretation I is called a completion of J if there exists
a completion function f for J such that f(J) = I.

Using a straightforward modification of the standard chase procedure for
Horn-DLs (see, e.g., [9]) one can construct a pre-model can(T ,A) of any satisfiable
D-KB (T ,A) such that for any CQ q over D and any c̄:

(T ,A) |= q(c̄) ⇔ f(can(T ,A)) |= q(c̄) for all completion functions f .

We call can(T ,A) with this property a universal pre-model of T and A.

Lemma 1. For every satisfable D-KB (T ,A) there exists a universal pre-model
can(T ,A).

Example 2. A universal pre-model can(T ,A) for the KB (T ,A) given in Exam-

ple 1 is given by setting ∆can(T ,A) = {a, u1, u2}; Acan(T ,A) = {a}; U can(T ,A)
1 =

{(a, u1)}; and U
can(T ,A)
2 = {(a, u2)}.

A completion function f for can(T ,A) maps u1 and u2 to rational numbers
and defines a completion f(can(T ,A)) in which U1 is interpreted as (a, f(u1))
and U2 is interpreted as (a, f(u2)).

6 André Hernich, Julio Lemos, and Frank Wolter

The universal pre-model can(T ,A) can be infinite. If we are given a rooted OMQ
Q = (T , q,D), then it is sufficient to consider the subinterpretation cann(T ,A) of
can(T ,A) induced by the set of domain elements that are reachable from ABox
elements in at most n = |q| steps. We call cann(T ,A) a n-universal pre-model of
T and A. As Q is rooted, it has the following property for any c̄:

(T ,A) |= q(c̄) ⇔ f(cann(T ,A)) |= q(c̄) for all completion functions f .

A straightforward modification of the standard chase shows that an n-universal
pre-model cann(T ,A) can be computed in polynomial time in the size of A [9].

Lemma 2. Assume OMQ Q = (T , q,D) is given. Then one can compute for
any ABox A that is satisfiable relative to T a |q|-universal pre-model of T and
A in polynomial time in the size of A.

A positive existential sentence Φ over a datatype D is a first-order sentence
built from atomic formulas over the relations in D by using solely conjunction,
disjunction and existential quantifiers. Atomic formulas can use both individual
variables and constants from D. Φ is in Conjunctive Normal Form (CNF) if it
has the form

Φ = ∃x̄
m∧
i=1

ci, where ci =

ni∨
j=1

ci,j for i = 1, . . .m

where ci,j are atomic formulas. If ni = k, for each i, then we say that Φ is in
k-CNF. The problem of deciding whether a positive existential sentence in k-CNF
is satisfied in D is denoted PEk(D). We now show that we have a polynomial
time reduction from evaluating OMQs over D to the complement of the problem
PEk(D̄) and vice versa.

Theorem 1. Let k > 0 and let D = (D,R1, . . . , Rn) be a datatype.
Let Q = (T , q,D) be a rooted OMQ and assume that dtype(q) has k atoms.

Then evaluating Q is polynomially reducible to the complement of PEk(D̄).
Conversely, there is a rooted OMQ Q = (T , q,D) such that dtype(q) has nk

atoms and PEk(D̄) is polynomially reducible to the complement of evaluating Q.

Proof. Assume q is given as q(x̄)← ϕ. Let A be an ABox satisfiable relative to
T and let c̄ be a tuple of individual names and data values in A of the same
length as x̄. Remove from ϕ the datatype pattern of q and denote by ψ the
remaining atoms in ϕ. A match of ψ in a pre-interpretation I is a mapping µ
from the variables in ψ to ∆I such that for each atom X(t1, . . . , tk) in ψ we have
(µ(t1), . . . , µ(tk)) ∈ XI . Consider the set X of all matches µ of ψ with µ(x̄) = c̄

in cann(T ,A), where n = |q|. Now assume that dtype(q) =
∧k
i=1 Si(z̄i) and let

Φ := ∃ū
∧
µ∈X

k∨
i=1

S̄i(µ(z̄i)),

where ū is a repetition-free enumeration of all data nulls in the set {µ(z̄i) | µ ∈ X,
1 ≤ i ≤ k} (here we identify data nulls with individual variables in the k-CNF

Tractable Ontology-Mediated Queries with Datatypes 7

Φ). It is readily checked that T ,A |= q(c̄) if, and only if, D̄ 6|= Φ. This establishes
the first part.

Conversely, assume Φ = ∃x̄
∧m
i=1 ci, where ci =

∨k
j=1 ci,j for 1 ≤ i ≤ m. We

first assume that Φ is uniform, that is, for each 1 ≤ j ≤ k there exists a relation
Sj (independent from i) such that ci,j is of the form S̄j(t̄i,j). In this case we
can construct the required OMQ (T , q,D) with |dtype(q)| = k. The TBox T is
independent from k and defined as T = {A v ∃U}. Assume that the relations Sj
are of arity lj and ci,j = S̄j(t̄i,j) for all 1 ≤ i ≤ m. Before defining the CQ q we
define an ABox AΦ as follows:

– AΦ uses individuals cΦ and c1, . . . , cm that are connected by a role name P
using the assertions P (cΦ, ci) for 1 ≤ i ≤ m;

– in addition AΦ uses individuals ci,j which are connected to the individuals ci
by role names P1, . . . , Pk using the assertions Pj(ci, ci,j) for 1 ≤ i ≤ m and
1 ≤ j ≤ k;

– in addition AΦ uses individuals dt for each variable and constant t in Φ that
are connected to the ci,j using role names N j

1 , . . . , N
j
lj

for 1 ≤ j ≤ k and the

assertions N j
r (ci,j , dt) if the r-th component of t̄i,j equals t;

– finally AΦ contains A(dt) if t is a variable in Φ and U(dt, t) if t is a constant
in Φ.

Define the query q(x)← ψ, by setting

ψ = P (x, y)∧
k∧
j=1

(
Pj(y, yj)∧

lj∧
r=1

(
N j
r (yj , zj,r)∧U(zj,r, uj,r)

)
∧Sj(uj,1, . . . , uj,lj)

)
It is not difficult to show that D̄ |= Φ if, and only if, T ,AΦ 6|= q(cΦ). For

Φ0 = ∃x1∃x2
(
(R1(1, x1) ∨R2(x2, x1)) ∧ (R1(x1, x2) ∨R2(x2, 2))

)
the ABox AΦ and query q are shown in Figure 1.

cΦ

c1 c2

c11 c12 c21 c22

d1 A dx1 dx2 d2

1 2

P P

P1 P2 P1 P2

N1
1 N1

2
N2

1

N2
2

N1
1

N1
2

N2
1

N2
2

U U

x

y

y1 y2

z11 z12 z21 z22

u11 u12 u21 u22

P

P1 P2

N1
1 N1

2 N2
1 N2

2

R1 R2

Fig. 1. ABox AΦ0 and CQ q

It remains to consider the case in which Φ is not uniform. We may assume that
Ri 6= ∅ for all 1 ≤ i ≤ n. We equivalently transform Φ into a uniform sentence Ψ

8 André Hernich, Julio Lemos, and Frank Wolter

in nk-CNF over D̄. To this end, each conjunct ci of Φ is equivalently transformed
into a conjunct c′i of the form

k∨
j=1

R̄1(t̄1i,j) ∨ · · · ∨
k∨
j=1

R̄n(t̄ni,j)

We construct R̄1(t̄1i,j) for a fixed i and 1 ≤ j ≤ k. The remaining atoms are
constructed in the same way. ci contains between 0 and k disjuncts of the form
R̄1(t̄). Thus, if ci contains at least one disjunct of this form we take sufficiently
many copies to obtain R̄1(t̄1i,1)∨. . . ,∨R1(t̄1i,k) that is equivalent to the disjunction

over all atoms of the form R̄1(t̄) in ci. If ci does not contain any R̄1(t̄), then
take c̄ with c̄ ∈ R1 and let t̄1i,1 = · · · = t̄1i,k = c̄. Then R̄1(t̄1i,1) ∨ . . . ∨ R̄1(t̄1i,k) is
unsatisfiable, as required. ut

We illustrate Theorem 1 by transfering some complexity results from temporal
CSP over (Q, <) to OMQs. Recall that we are after a complexity classification.
The following result shows that answering OMQs with datatype (Q,≤) can be
intractable already for datatype patterns of size two.

Corollary 1. There is a rooted OMQ Q = (T , q, (Q,≤)) with T = {A v ∃U}
and |dtype(q)| = 2 such that evaluating Q is coNP-hard.

Proof. The BETWEENNESS problem in temporal constraints satisfaction is the
problem to decide whether β := ∃u

∧
(x,y,z)∈C (x < y < z ∨ z < y < x) is

satisfiable in (Q, <), where C is a set of triples of the form (x, y, z). This problem
is NP-complete [18]. Clearly, β is equivalent to the 2-CNF

∃u
∧

(x,y,z)∈C (x < y∨z < y)∧(x < y∨y < x)∧(y < z∨z < y)∧(y < z∨y < x).

The claim now follows from Theorem 1. ut

This is optimal as shown by the following result.

Corollary 2. Let D ∈ {(Z, <), (Z,≤), (Q, <), (Q,≤)}. Then evaluating rooted
OMQs Q = (T , q,D) with |dtype(q)| = 1 is in PTime.

Proof. Follows from Theorem 1 and the observation that satisfiability of sentences
in 1-CNF in D is decidable in PTime. ut

4 A Dichotomy for (Q,≤)

In this section, we focus on rooted OMQs that use the datatype (Q,≤). We prove
a P/coNP-dichotomy of evaluating such OMQs based on their datatype pattern,
and provide a simple syntactic characterization of the datatype patterns of rooted
OMQs with datatype (Q,≤) for which the evaluation problem can be solved
in polynomial time (Theorem 4). These results are based on a recent dichtomy
result by Bodirsky and Kára [7] for temporal constraint satisfaction problems.

Tractable Ontology-Mediated Queries with Datatypes 9

We start by reviewing the temporal constraint satisfaction framework of [7].
A temporal constraint language is a logical structure Γ = (Q, R1, R2, . . .), where
each Ri of arity k is definable by a first-order formula Φ(x1, . . . , xk) over (Q, <),
i.e., Ri = {(a1, . . . , ak) ∈ Qk | (Q, <) |= Φ(a1, . . . , ak)}. A primitive positive sen-
tence over Γ is a first-order sentence over Γ built from atomic formulas using
conjunction and existential quantification. It is crucial for the results in [7] that
both first-order definitions of relations in Γ and primitive positive sentences over
Γ do not contain constants. The problem of deciding whether a primitive positive
sentence over Γ is satisfied in Γ is denoted by CSP(Γ).

Bodirsky and Kára [7] proved that for every temporal constraint language
Γ , CSP(Γ) is either in PTime or NP-complete. They characterize the temporal
languages Γ for which CSP(Γ) is tractable in terms of preservation properties of
the relations in Γ . A function f : Qk → Q preserves a relation R ⊆ Qn if for all
t1, . . . , tk ∈ R we have f(t1, . . . , tk) ∈ R. Here, f(t1, . . . , tk) is obtained as follows.
Given a tuple t of length n and an integer i ∈ {1, . . . , n}, let t[i] denote the ith
component of t. Then, f(t1, . . . , tk) =

(
f(t1[1], . . . , tk[1]), . . . , f(t1[n], . . . , tk[n])

)
.

We say that f preserves a temporal constraint language Γ if f preserves all
relations in Γ . The following functions are considered in [7]:

– min : Q2 → Q which maps its two arguments to the minimal one;
– mi : Q2 → Q which maps (x, y) ∈ Q2 to α(x) if x = y, to β(y) if x > y, and to
γ(x) if x < y, where α, β, γ are any functions with α(x) < β(x) < γ(x) < α(y)
for all x < y;

– mx : Q2 → Q which maps (x, y) ∈ Q2 to β(x) if x = y, and to α(min{x, y})
if x 6= y, where α, β are any functions with α(x) < β(x) < α(y) for all x < y;

– ll : Q2 → Q which is any function that satisfies ll(x, y) < ll(x′, y′) iff x ≤ 0
and (x, y) is lexicographically smaller than (x′, y′), or x, x′ > 0 and (y, x) is
lexicographically smaller than (y′, x′);

– The dual of f ∈ {min,mi ,mx , ll}, which maps (x, y) ∈ Q2 to −f(−x,−y).

Theorem 2 ([7]). Let Γ be a temporal constraint language. If Γ is preserved
under min, mi, mx, ll , one of their duals, or a constant function, then CSP(Γ)
is in PTime. Otherwise, CSP(Γ) is NP-complete.

We now translate the evaluation problem for rooted OMQs over (Q,≤) into
the temporal constraint satisfaction framework. With every datatype pattern

q0(z1, . . . , zn) =
∧k
i=1 zsi ≤ zti we associate the temporal constraint language

Γq0 := (Q, <,Rq0) where Rq0 := {(c1, . . . , cn) ∈ Qn | (Q, <) |=
∨k
i=1 cti < csi}.

Theorem 3. Let q0(z1, . . . , zn) =
∧k
i=1 zsi ≤ zti be a datatype pattern.

If Q = (T , q, (Q,≤)) is a rooted OMQ with dtype(q) = q0, then evaluating Q
is polynomially reducible to the complement of CSP(Γq0).

Conversely, there is a rooted OMQ Q = (T , q, (Q,≤)) with dtype(q) = q0 such
that CSP(Γq0) is polynomially reducible to the complement of evaluating Q.

Proof (Sketch). We refine the proof of Theorem 1. For the first part, we construct
the positive existential sentence as in the proof of Theorem 1, and then express

10 André Hernich, Julio Lemos, and Frank Wolter

each disjunctive clause by a single Rq0-atom. The result is a primitive positive
sentence Ψ ′ over Γq0 . Note that Γq0 may still contain constants. To obtain a
primitive positive sentence Ψ without constants, we turn each constant in Ψ ′

into an existentially quantified variable and add constraints that ensure that
the order of the elements assigned to these variables corresponds to the order
of the constants. More precisely, let c1 < · · · < cl be the constants in Ψ ′. Then,

Ψ = ∃c1 · · · ∃cl
(
Ψ ′ ∧

∧l−1
i=1 ci < ci+1

)
. It can be shown that Γq0 |= Ψ iff Γq0 |= Ψ ′.

For the second part, we first translate a given primitive positive sentence over
Γq0 into a positive existential sentence over (Q, >). Atoms using the relation Rq0
are replaced by disjunctive formulas expressing the predicate defining the relation
Rq0 . Atoms using < are expanded into disjunctions with k atoms. The resulting
sentence is in k-CNF. The second part of the theorem now follows from the
construction in the proof of Theorem 1. Details can be found in Appendix A.2. ut

Since < is preserved under min, mi , mx , ll and their duals, but not under
any constant function (see Proposition 1 in Appendix A.1), Theorem 2 implies
that CSP(Γq0) is in PTime iff Rq0 is preserved under min, mi , mx , ll or one of
their duals. Together with Theorem 3, we obtain the following corollary.

Corollary 3. Let q0 be a datatype pattern. If Rq0 is preserved under min, mi,
mx, ll , or one of their duals, then evaluating rooted OMQs (T , q, (Q,≤)) with
dtype(q) = q0 is in PTime. Otherwise, there is a rooted OMQ Q = (T , q, (Q,≤))
with dtype(q) = q0 such that evaluating Q is coNP-complete.

To illustrate, consider the datatype pattern q0(x, y, z) = x ≤ y ∧ y ≤ z. It
is straightforward to verify that Rq0 = {(a, b, c) ∈ Q3 | a > b ∨ b > c} is not
preserved under min, mi , mx , ll or their duals, so there are OMQs (T , q, (Q,≤))
with dtype(q) = q0 for which the evaluation problem is coNP-complete. On the
other hand, if q0 has the form

∧n
i=1 x0 ≤ xi or

∧n
i=1 xi ≤ x0, then it follows

from [8, Proposition 3.5] that Rq0 is preserved under ll or its dual. In particular,
evaluation of OMQs (T , q, (Q,≤)) with dtype(q) = q0 is in PTime. In fact, we will
now show that these two forms of datatype patterns, which we call min-pattern
and max-pattern, respectively, essentially characterize all the tractable cases.

The following lemma is the core of the characterization result. It implies that
preservation under min, mi , mx or their duals collapses to preservation under
ll or its dual for relations that are definable by normal disjunctive formulas.
By a disjunctive formula we mean a disjunction of atoms of the form x < y. A
disjunctive formula Φ(x1, . . . , xn) is normal if the directed graph with vertex set
{x1, . . . , xn} and edge set {(xj , xi) | xi < xj ∈ Φ} is acyclic.

Lemma 3. Let R ⊆ Qn be defined by a normal disjunctive formula Φ(x1, . . . , xn)
over (Q, <). If R is preserved under min, mi, mx, ll , or one of their duals, then
Φ has the form

∨n
i=1 x0 > xi or

∨n
i=1 xi > x0.

In particular, [8, Proposition 3.5] implies that a relation defined by a formula
of the form

∨n
i=1 x0 > xi or

∧n
i=1 xi > x0 is preserved under ll or its dual. The

proof of Lemma 3 can be found in Appendix A.3.

Tractable Ontology-Mediated Queries with Datatypes 11

We apply the lemma to relations Rq0 for acyclic datatype patterns q0. A
datatype pattern q0 is acyclic if the directed graph with the variables of q0 as
vertices and an edge (x, y) for each atom x ≤ y of q0 is acyclic. Since a cycle
x0 ≤ x1∧x1 ≤ x2∧· · ·∧xn ≤ x0 tells us that x0, x1, . . . , xn have to be mapped to
the same data value, we can eliminate any cycle by removing all of its atoms, and
replacing x1, . . . , xn by x0. Let qacyclic0 be the acyclic datatype pattern obtained
from a datatype pattern q0 by eliminating all of its cycles.

Theorem 4. Let q0 be a datatype pattern over (Q,≤). If qacyclic0 is a min-pattern
or a max-pattern, then evaluating rooted OMQs (T , q, (Q,≤)) with dtype(q) = q0
is in PTime. Otherwise, there is a rooted OMQ Q = (T , q, (Q,≤)) with dtype(q) =
q0 such that evaluating Q is coNP-complete.

Proof. To simplify the presentation, we assume without loss of generality that
q0 is acyclic. By Corollary 3, it suffices to show that q0 is a min-pattern or a
max-pattern iff Rq0 is preserved under min, mi , mx , ll , or one of their duals.

If q0 is a min-pattern, then Rq0 is defined by a formula of the form
∨n
i=1 x0 >

xi. Similarly, if q0 is a max-pattern, then Rq0 is defined by a formula of the form∨n
i=1 xi > x0. It is known [8, Proposition 3.5] that relations defined by such

formulas are preserved under ll and dual-ll , respectively.
Now suppose that Rq0 is preserved under min, mi , mx , ll , or one of their

duals. Let q0(z1, . . . , zn) =
∧k
i=1 zsi ≤ zti . Then, Rq0 is defined by Φ(z1, . . . , zn) =∨k

i=1 zti < zsi . Clearly, Φ is disjunctive, and since q0 is acyclic it is also normal.
Thus, Lemma 3 implies that Φ has the form

∨n
i=1 x0 > xi or

∨n
i=1 xi > x0. This

implies that q0 is a min-pattern or a max-pattern. ut

Note that the fact that qacyclic0 is neither a min-pattern nor a max-pattern
does not imply that evaluation is hard for all OMQs Q = (T , q, (Q,≤)) with

dtype(q) = q0. For example, qacyclic0 may have several connected components, each
a min-pattern or a max-pattern. If no component is connected to another one via
a path of existential variables in q one can show that evaluating Q is in PTime.

5 Conclusion

We have presented first promising results for a non-uniform complexity analysis
of ontology-mediated queries with expressive datatypes. Many research questions
arise within this framework, including the following: (1) It remains an interesting
open problem whether our results generalize to non-rooted OMQs. Such OMQs
can “look” arbitrarily deep into a universal pre-model. We suspect that it is
enough to inspect only a finite portion of it, but this is far from obvious. (2)
The TBoxes we consider have very limited expressive power regarding datatypes
and it would be of interest to generalize our method to TBoxes that admit
more constructors using datatypes. (3) In this paper, we have used datatype
patterns within CQs to classify the complexity of OMQs. It would be of interest
to complement and extend this approach with classifications based on TBoxes,
OMQs, or extended patterns in CQs that take into account additional atoms

12 André Hernich, Julio Lemos, and Frank Wolter

not using datatype relations. (4) In addition to the PTime/coNP dichotomy
considered above, it would be of interest to investigate FO-rewritability and
Datalog-rewritability of OMQs as well [5].

References

1. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family
and relations. J. Artif. Intell. Res. (JAIR) 36, 1–69 (2009)

2. Artale, A., Ryzhikov, V., Kontchakov, R.: DL-Lite with attributes and datatypes.
In: ECAI. pp. 61–66 (2012)

3. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: IJCAI-05. pp.
364–369 (2005)

4. Baader, F., Hanschke, P.: A scheme for integrating concrete domains into concept
languages. In: IJCAI 1991. pp. 452–457

5. Bienvenu, M., ten Cate, B., Lutz, C., Wolter, F.: Ontology-based data access: A
study through disjunctive datalog, csp, and MMSNP. ACM Trans. Database Syst.
39(4), 33:1–33:44 (2014)

6. Bienvenu, M., Ortiz, M.: Ontology-mediated query answering with data-tractable
description logics. In: Reasoning Web 2015. pp. 218–307

7. Bodirsky, M., Kára, J.: The complexity of temporal constraint satisfaction problems.
J. ACM 57(2) (2010)

8. Bodirsky, M., Kára, J.: A fast algorithm and datalog inexpressibility for temporal
reasoning. ACM Trans. Comput. Log. 11(3) (2010), http://doi.acm.org/10.1145/
1740582.1740583

9. Botoeva, E., Kontchakov, R., Ryzhikov, V., Wolter, F., Zakharyaschev, M.: Query
inseparability for description logic knowledge bases. In: KR 2014

10. Bulatov, A.A., Jeavons, P., Krokhin, A.A.: Classifying the complexity of constraints
using finite algebras. SIAM J. Comput. 34(3), 720–742 (2005)

11. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
J. Autom. Reasoning 39(3), 385–429 (2007)

12. Feder, T., Vardi, M.Y.: Monotone monadic SNP and constraint satisfaction. In:
Proc. of the ACM Symposium on Theory of Computing. pp. 612–622 (1993)

13. Hernich, A., Lutz, C., Ozaki, A., Wolter, F.: Schema.org as a description logic. In:
IJCAI 2015. pp. 3048–3054

14. Hustadt, U., Motik, B., Sattler, U.: Data complexity of reasoning in very expressive
description logics. In: IJCAI 2005. pp. 466–471

15. Lutz, C.: Description logics with concrete domains-a survey. In: Advances in Modal
Logic 4. pp. 265–296 (2002)

16. Lutz, C., Wolter, F.: Non-uniform data complexity of query answering in description
logics. In: KR 2012

17. Magka, D., Kazakov, Y., Horrocks, I.: Tractable extensions of the description logic
EL with numerical datatypes. J. Autom. Reasoning 47(4), 427–450 (2011)

18. Opatrny, J.: Total ordering problem. SIAM J. Comput. 8(1), 111–114 (1979)
19. Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.:

Linking data to ontologies. J. Data Semantics 10, 133–173 (2008)
20. Savkovic, O., Calvanese, D.: Introducing datatypes in DL-Lite. In: ECAI 2012. pp.

720–725

Tractable Ontology-Mediated Queries with Datatypes 13

A Proofs omitted in Section 4

A.1 Preservation Properties of <

Proposition 1.

1. < is preserved under min, mi, mx, ll and their duals.
2. < is not preserved under any constant function.

Proof. We only consider preservation under min, mi , mx , ll and constant func-
tions. The proofs for the duals of min, mi , mx , ll are similar.

Preservation under min: Let a1 < a2 and b1 < b2. We have to show
that c1 < c2, where ci := min(ai, bi). If c1 = a1, then c1 = a1 < a2 and
c1 = a1 ≤ b1 < b2, thus c1 < c2. Similarly, if c1 = b1, then c1 = b1 ≤ a1 < a2 and
c1 = b1 < b2, thus c1 < c2. This shows that < is preserved under min.

Preservation under mi : Let a1 < a2 and b1 < b2. We have to show that
c1 < c2, where ci := mi(ai, bi). Since < is preserved by min, we have min(a1, b1) <
min(a2, b2). This implies c1 = mi(a1, b1) < mi(a2, b2) = c2. Altogether, we have
shown that < is preserved under mi .

Preservation under mx : Let a1 < a2 and b1 < b2. We have to show
that c1 < c2, where ci := mx (ai, bi). Since < is preserved by min, we have
min(a1, b1) < min(a2, b2). This implies c1 = mx (a1, b1) < mx (a2, b2) = c2.
Altogether, we have shown that < is preserved under mx .

Preservation under ll : Let a1 < a2 and b1 < b2. We have to show that
ll(a1, b1) < ll(a2, b2). If a1 ≤ 0, then a1 < a2 immediately yields ll(a1, b1) <
ll(a2, b2). Now suppose that a1 > 0. Since a1 < a2, we also have a2 > 0. But
then, b1 < b2 immediately yields ll(a1, b1) < ll(a2, b2).

Non-preservation under constant functions: For a contradiction,
suppose that < is preserved under a constant function f : Qk → {c}. Take
any a1 < b1, . . . , ak < bk. Since f preserves <, we have c = f(a1, . . . , ak) <
f(b1, . . . , bk) = c, which is clearly false. ut

A.2 Proof of Theorem 3

Theorem 3. Let q0(z1, . . . , zn) =
∧k
i=1 zsi ≤ zti be a datatype pattern.

If Q = (T , q, (Q,≤)) is a rooted OMQ with dtype(q) = q0, then evaluating Q
is polynomially reducible to the complement of CSP(Γq0).

Conversely, there is a rooted OMQ Q = (T , q, (Q,≤)) with dtype(q) = q0
such that CSP(Γq0) is polynomially reducible to the complement of evaluating Q.

Proof. Let A be an ABox satisfiable relative to T , let x̄ be the tuple of answer
variables of q, and let c̄ be a tuple of individual names and data values in A of
the same length as x̄. As shown in the proof of Theorem 1, we have T ,A |= q(c̄)

if, and only if, (Q, >) 6|= Φ, where Φ = ∃ū
∧
µ∈X

∨k
i=1 µ(zsi) > µ(zti), and X and

ū are defined as in the proof of Theorem 1. We have constructed Γq0 in such a

14 André Hernich, Julio Lemos, and Frank Wolter

way that (Q, >) |= Φ is equivalent to Γq0 |= Ψ ′, where Ψ ′ := ∃ū
∧
µ∈X Rq0(µ(z̄)).

Note that Ψ ′ may contain constants. To eliminate these constants, let c1, . . . , cl
be the list of all constants that occur in Ψ ′, sorted in ascending order. We view
these constants as variables, and define

Ψ := ∃c1 · · · ∃cl∃ū

 ∧
µ∈X

Rq0(µ(z̄)) ∧
l−1∧
i=1

ci < ci+1

 .

Then, Γq0 |= Ψ ′ if, and only if, Γq0 |= Ψ . The “only if” direction is trivial. To
see the “if” direction, suppose that Γq0 |= Ψ . Let f be an assignment of data
values to the existential variables in Ψ that satisfies the quantifier-free part of
Ψ in (Q, <). Pick any automorphism α of (Q, <) such that α(f(ci)) = ci for all
i ∈ {1, . . . , l}. Then, α ◦ f satisfies the quantifier-free part of Ψ ′ in (Q, <), and
consequently Γq0 |= Ψ ′. Altogether, this shows that T ,A |= q(c̄) if, and only if,
Γq0 6|= Ψ , and establishes the first part.

For the second part, let Ψ = ∃x̄
∧m
j=1 cj be a primitive positive sentence over

Γq0 . We translate Ψ into a positive existential sentence Ψ ′ = ∃x̄
∧m
j=1 c

′
j over

(Q, >), where the c′j are defined as follows. If cj has the form y1 < y2, then

c′j :=
∨k
i=1 y2 > y1. If cj has the form Rq0(y1, . . . , yn), then c′i :=

∨k
i=1 ysi > yti .

By the definition of Rq0 , we have Γq0 |= Ψ iff (Q, >) |= Ψ ′. The second part of
the lemma now follows from the construction in the proof of Theorem 1. ut

A.3 Proof of Lemma 3

Before we prove Lemma 3, we establish two auxilliary lemmas. Lemma 3 then
follows as a corollary of the second lemma.

Recall that t[i] denotes the ith component of a tuple t.

Lemma 4. Let f : Q2 → Q and let a1, . . . , a4, b1, . . . , b4 ∈ Q be such that

f(a1, b1) ≥ · · · ≥ f(a4, b4).

Let 1 ≤ i1 ≤ i2 ≤ i3 ≤ i4 ≤ n, and suppose that (aj , bj) = (aj′ , bj′) if ij = ij′ .
Then, there are tuples t1, t2 ∈ Qn such that t1[ij] = aj and t2[ij] = bj for all
j ∈ {1, 2, 3, 4}, and

f(t1[1], t2[1]) ≥ · · · ≥ f(t1[n], t2[n]).

Proof. Define t1, t2 ∈ Qn such that for all p ∈ {1, . . . , n}, we have that

t1[p] :=

a1, if p ≤ i1
a2, if i1 < p ≤ i2
a3, if i2 < p ≤ i3
a4, if i3 < p.

t2[p] :=

b1, if p ≤ i1
b2, if i1 < p ≤ i2
b3, if i2 < p ≤ i3
b4, if i3 < p.

Clearly, t1[ij] = aj and t2[ij] = bj for all j ∈ {1, 2, 3, 4}. From the construction of
t1 and t2 and the properties of a1, . . . , a4, b1, . . . , b4, it immediately follows that
f(t1[1], t2[1]) ≥ · · · ≥ f(t1[n], t2[n]). ut

Tractable Ontology-Mediated Queries with Datatypes 15

Lemma 5. Let R ⊆ Qn be defined by a normal disjunctive formula Φ(x1, . . . , xn)
over (Q, <). If R is preserved under min, mi, mx, or one of their duals, then
for every two disjuncts xi < xj and xi′ < xj′ of Φ, either i = i′ or j = j′.

Proof. We will only consider the case that R is preserved under min, mi , or mx .
The duals of min, mi , or mx can be dealt with analogously (just replace the
numbers in the constructions below by their negative).

So, let R be preserved under f ∈ {min,mi ,mx}, and let xi < xj and xi′ < xj′
be disjuncts of Φ. For the sake of contradiction, assume i 6= i′ and j 6= j′. Without
loss of generality, we assume that i < i′. We are going to construct tuples t1, t2 ∈ R
such that t3 = f(t1, t2) /∈ R.

Since Φ is normal, we can assume that the variables x1, . . . , xn are topologically
sorted, i.e., if xp < xq is an atom of Φ, then p < q. In particular, i < j and i′ < j′.
By the topological ordering, any tuple t ∈ Qn with t[i] < t[j] or t[i′] < t[j′]
belongs to R, whereas no tuple t ∈ Qn with t[1] ≥ · · · ≥ t[n] can belong to R.
We will use these properties to obtain the desired tuples t1 and t2.

We distinguish the following three cases:

Case 1 (i < j ≤ i′ < j′): Let ai, aj , ai′ , aj′ ∈ Q and bi, bj , bi′ , bj′ ∈ Q be defined
by ai = 2, bj = bi′ = 1, aj′ = 0, and bi = aj = ai′ = bj′ = 3; see Figure 2
for an illustration. Then, ai < aj and bi′ < bj′ . It is also straightforward to

2

ai

3

aj

3

ai′

0

aj′

3

bi

1

bj

1

bi′

3

bj′

Fig. 2. Choice of ai, aj , ai′ , aj′ ∈ Q and bi, bj , bi′ , bj′ ∈ Q in Case 1.

verify that f(ai, bi) > f(aj , bj) = f(ai′ , bi′) > f(aj′ , bj′). Indeed, min(ai, bi) = 2,
min(aj , bj) = min(ai′ , bi′) = 1, and min(aj′ , bj′) = 0, so the claim is true
for f = min. For mi and mx , the claim is true, since min(x, y) > min(x′, y′)
implies mi(x, y) > mi(x′, y′) and mx (x, y) > mx (x′, y′). Now, Lemma 4 implies
that there are tuples t1, t2 ∈ Qn such that t1[i] < t1[j], t2[i′] < t2[j′], and
f(t1[1], t2[1]) ≥ · · · ≥ f(t1[n], t2[n]). Hence, t1, t2 ∈ R and t3 = f(t1, t2) /∈ R.

Case 2 (i < i′ < j′ < j): Let ai, ai′ , aj′ , aj ∈ Q and bi, bi′ , bj′ , bj ∈ Q be defined
by ai = 3, bi′ = 2, aj′ = 1, bj = 0, and ai′ = aj = bi = bj′ = 4; see Figure 3
for an illustration. Then, ai < aj and bi′ < bj′ . It is also straightforward to
verify that f(ai, bi) > f(ai′ , bi′) > f(aj′ , bj′) > f(aj , bj). Indeed, min(ai, bi) = 3,
min(ai′ , bi′) = 2, min(aj′ , bj′) = 1, and min(aj , bj) = 0, so the claim is true
for f = min. For mi and mx , the claim is true, since min(x, y) > min(x′, y′)
implies mi(x, y) > mi(x′, y′) and mx (x, y) > mx (x′, y′). Now, Lemma 4 implies
that there are tuples t1, t2 ∈ Qn such that t1[i] < t1[j], t2[i′] < t2[j′], and
f(t1[1], t2[1]) ≥ · · · ≥ f(t1[n], t2[n]). Hence, t1, t2 ∈ R and t3 = f(t1, t2) /∈ R.

16 André Hernich, Julio Lemos, and Frank Wolter

3

ai

4

ai′

1

aj′

4

aj

4

bi

2

bi′

4

bj′

0

bj

Fig. 3. Choice of ai, ai′ , aj′ , aj ∈ Q and bi, bi′ , bj′ , bj ∈ Q in Case 2.

Case 3 (i < i′ < j < j′): Let ai, ai′ , aj , aj′ ∈ Q and bi, bi′ , bj , bj′ ∈ Q be defined
by bi = 3, ai′ = 2, bj = 1, aj′ = 0, ai = bi′ = 4, and aj = bj′ = 5; see Figure 4
for an illustration. Then, ai < aj and bi′ < bj′ . It is also straightforward to

4

ai

2

ai′

5

aj

0

aj′

3

bi

4

bi′

1

bj

5

bj′

Fig. 4. Choice of ai, ai′ , aj , aj′ ∈ Q and bi, bi′ , bj , bj′ ∈ Q in Case 3.

verify that f(ai, bi) > f(ai′ , bi′) > f(aj , bj) > f(aj′ , bj′). Indeed, min(ai, bi) = 3,
min(ai′ , bi′) = 2, min(aj , bj) = 1, and min(aj′ , bj′) = 0, so the claim is true
for f = min. For mi and mx , the claim is true, since min(x, y) > min(x′, y′)
implies mi(x, y) > mi(x′, y′) and mx (x, y) > mx (x′, y′). Now, Lemma 4 implies
that there are tuples t1, t2 ∈ Qn such that t1[i] < t1[j], t2[i′] < t2[j′], and
f(t1[1], t2[1]) ≥ · · · ≥ f(t1[n], t2[n]). Hence, t1, t2 ∈ R and t3 = f(t1, t2) /∈ R.

Altogether, this concludes the proof. ut

An ll -Horn formula is a formula of the form
∨n
i=1 x0 > xi. A dual-ll -Horn

formula is a formula of the form
∨n
i=1 xi > x0.

Lemma 3. Let R ⊆ Qn be defined by a normal disjunctive formula Φ(x1, . . . , xn)
over (Q, <). If R is preserved under min, mi , mx , ll , or one of their duals, then
Φ is a ll -Horn or a dual-ll -Horn formula.

Proof. If R is preserved under ll or its dual, then the lemma follows from [8].

Otherwise, let Φ(x1, . . . , xn) =
∨k
i=1 xsi < xti . Without loss of generality, we can

assume that any two pairs (sp, tp), (sq, tq) with p 6= q are distinct. If k = 1, then
Φ is ll -Horn. Otherwise, by Lemma 5, for each j ∈ {2, . . . , k} we have s1 = sj or
t1 = tj . To show that Φ is a ll -Horn or a dual-ll -Horn formula, it suffices to show
that there are no two j, j′ ∈ {2, . . . , k} such that s1 = sj and t1 = tj′ .

For a contradiction, suppose that there are j, j′ ∈ {2, . . . , k} with s1 = sj
and t1 = tj′ . By Lemma 5, we either have sj = sj′ or tj = tj′ . In the first

Tractable Ontology-Mediated Queries with Datatypes 17

case, we have (s1, t1) = (sj , tj′) = (sj′ , tj′), and in the second case we have
(s1, t1) = (sj , tj′) = (sj , tj). Both cases violate our assumption that any two
pairs (sp, tp), (sq, tq) with p 6= q are distinct. Consequently, there are no two
j, j′ ∈ {2, . . . , k} such that s1 = sj and t1 = tj′ , which implies that Φ is a ll -Horn
or a dual-ll -Horn formula. ut

