
A Telepresence-Robot Approach for Efficient Coordination of Swarms

Karl Tuyls2?, Sjriek Alers1, Elisa Cucco2?, Daniel Claes2 and Daan Bloembergen2

1Maastricht University / Fontys University of Applied Sciences, Eindhoven the Netherlands
2Department of Computer Science, University of Liverpool, UK

?k.tuyls@liverpool.ac.uk, Elisa.Cucco@liverpool.ac.uk

Abstract

In this paper we explore a novel perspective on
surveillance robotics, which is based on a coordina-
tion principle of honeybees, and on the integration
of an autonomous telepresence robot in such system.
Coordination principles, based on biological systems
such as ant, bee and termite colonies, show several
properties which are essential to multi-robot surveil-
lance, including low computation load, robustness,
scalability and adaptability. In this paper we aim to
improve on the efficiency of such a robotic swarm by
taking a human in the loop by means of a telepresence
robot. The human operator controlling the telepres-
ence robot will aim to speed up the convergence of
the swarm. The experiments, which evaluate the pro-
posed multi-robot coordination system both in simu-
lation and on real robots, show how the telepresence
robot substantially increases the efficiency of the pro-
cess.

Introduction
In recent years there has been a rapidly growing inter-
est in using teams of mobile robots for automatically
surveilling environments of different types and com-
plexity. This interest is mainly motivated by the broad
spectrum of potential civilian, industrial, and mili-
tary applications of multi-robot surveillance systems
(Kuorilehto et al., 2005; Folgado et al., 2007). Exam-
ples of such applications are the protection of safety-
critical technical infrastructures, the safeguarding of
country-borders, and the monitoring of high risk re-
gions and danger zones which cannot be entered by
humans in the case of a nuclear incident, a bio-hazard,
or a military conflict.

Triggered by this interest, today automated surveil-
lance is a well-established topic in multi-robot re-
search, which is considered to be of particular practi-
cal relevance. Despite the remarkable progress made
on this research topic so far, there is still a huge gap
between theory and practice of multi-robot surveil-
lance systems, and as a consequence there are still
only very few on-field deployments. The reason for
this is that many basic questions about coordination
among mobile robots are not yet answered in a satis-
factory way.

In this paper a new approach on multi-robot
surveillance systems is proposed, which is based on

a bio-inspired coordination principle from swarm in-
telligence and on the integration of an autonomous
telepresence robot in such system.

Natural entities, such as ant and termite colonies
improve their collective performance by influenc-
ing one another through local messages they deposit
in their shared environment. In computer science,
robotics and economics a number of computational
variants have been developed, and it has been shown
that they allow for very efficient distributed control
and optimization in a variety of problem domains.
For instance, recent work shows a strong potential
in creating artificial systems that mimic insect be-
haviour that can solve complex coordination tasks
such as e.g., routing on the internet, mobile ad hoc
network routing, robotic tasks, etc. (Lemmens and
Tuyls, 2012; Dressler and Akan, 2010; Floreano and
Mattiussi, 2008).

Swarm optimisation algorithms, like ant colony op-
timisation (Dorigo et al., 2006), rely on pheromone
trails to mediate (indirect) communication between
agents. These pheromones need to be deposited and
sensed by agents while they decay over time. Though
easy to simulate, artificial pheromones are hard to
bring into real-life robotic applications. However, re-
cently non-pheromone-based algorithms were devel-
oped as well (Lemmens, 2011). Such algorithms are
inspired by the foraging and nest-site selection be-
haviour of (mainly) bees. In general, bees explore the
environment in search for high quality food sources
and once returned to the hive they start to dance in or-
der to communicate the location of the source. Using
this dance, bees recruit other colony members for a
specific food source. The algorithm we used draw in-
spiration from these insect behaviours with the goal to
create intelligent systems for distributed coordination
that can be deployed in real world settings.

The key idea put forward in this paper is that a
telepresence robot can improve upon the efficiency of
such a swarm. Telepresence robotics is a form of tele-
operation, namely the extension of a person’s sens-
ing and manipulation capability to a remote location,
in which a human operator act as a supervisor inter-
mittently communicating information about goals and



actions relative to a specific task. The human operator
will receive information about accomplishments, dif-
ficulties and, as requested, raw sensory data, while the
subordinate telepresence robot executes task based on
information received from the human operator plus
its own sensing and artificial intelligence (Sheridan,
1989). In the approach we propose in this paper the
human operator controlling the telepresence robot can
observe the environment and will aim to steer the be-
haviour of the swarm by means of direct communica-
tion.

In the following sections we introduce telepresence
robotics and the biological background of our forag-
ing approach. Then we show our experiments and dis-
cuss the efficiency of the algorithm and the improve-
ment obtained by integrating a telepresence robot in
the system.

Telepresence robotics
Already more than 30 years ago, artificial intelligence
pioneer Marvin Minsky (Minsky, 1980) laid out an
ambitious plan calling for the development of ad-
vanced teleoperated robotics systems that would re-
sult in a remote-controlled economy. He coined the
term “telepresence” to describe these systems, which
in his futuristic vision would transform work, man-
ufacturing, energy production, medicine and many
other facets of modern life. Although the idea of
a teleoperated robot for remote presence is not new,
only recently telepresence robots become available
to the broader public (Lazewatsky and Smart, 2011;
Takayama et al., 2011; Tsui et al., 2011). Basically,
telepresence robotics systems can be described as em-
bodied video conferencing on wheels, providing a
physical presence and independent mobility in addi-
tion to communication, unlike other video conferenc-
ing technologies, allowing the user to interact more
naturally in the remote office environment.

However, telepresence robots can be deployed in
a wide range of application domains: the informal
meeting scenario in offices, in hospitals to allow doc-
tors to provide consultations from a distance (Tsui
et al., 2011) or to pay a virtual visit when it is not
possible to be present in person, or to give people with
restricted mobility a new way to interact beyond their
possibility. Furthermore, many work-sites are haz-
ardous to human health or even survival. With telep-
resence robotics it will be potentially possible to op-
erate in dangerous environments without such risks.

Adding a level of autonomy to a telepresence robot
can greatly improve the experience of the user, as it
reduces their cognitive load. This allows to focus
more attention on the interaction and to the task and
less on controlling the robot (Tsui et al., 2011). How-
ever, it remains important for the operator to have
control over the behaviour of the system. Indeed, as
a telepresence robot is controlled from a remote lo-
cation, precise control and feedback of the robot is

required. One possible solution, assisted navigation,
is investigated by Takayama et al. (2011). Adding
more autonomy and integrating the findings of recent
AI research into the platform can greatly increase the
usability of these robots.

Biological coordination
A great deal of research in swarm intelligence is sit-
uated in the area of bio-inspired computation; more
precisely in the area that investigates algorithms that
find inspiration from nature in order to develop novel
computational models, often to solve coordination
problems. Foraging is one of the coordination prob-
lem in this domain. Essentially it consists of two
sub-problems: path construction/planning and path
exploitation/repair. The task of foraging consists of
gathering objects out of the environment and return-
ing them to a central point, most often the starting
location. A commonly used method for solving for-
aging problems focuses mainly on the behaviour of
social insects such as ants and bees.

Ants deposit pheromone on the path they take dur-
ing travel. Using this trail, they are able to navigate
toward the food location and communicate with other
members of the colony, not directly but by accumulat-
ing pheromone trails in the environment. Pheromone
strength indicates the “fitness” of a trail but is not
able to indicate direction, therefore an ant is not able
to know a priori to which destination it is travelling.
When a trail is strong enough, other ants are attracted
and will follow it towards a destination which results
in a reinforcement of the trail. This is known as an
autocatalytic process: the more ants follow a trail, the
more that trail becomes attractive for being followed.
Short paths are reinforced more often over time and
will eventually be preferred. This principle is used to
address several problems, such as Routing Problem
(Di Caro et al., 2005) and area coverage with robots
(Wagner et al., 1999; Ranjbar-Sahraei et al., 2012).

On the other hand, bees and desert ants do not use
pheromones to navigate in unfamiliar environments.
Their navigation mainly consists of Path Integration
(PI). The PI vector represents the continuously up-
dated knowledge of direction and distance and, as a
consequence, bees are able to return to their starting
point by choosing the direct route rather than their
outbound trajectory. More precisely, when the path
is unobstructed, the insect exploit previous search
experience. However, when the path is obstructed,
the insect has to fall back on other navigation strate-
gies such as exploration (Collett and Collett, 2009).
For recruitment bees communicate with other colony
members by means of a waggling dance performed
in the hive. The direction of the food source is read
from the angle between the sun and the axis of a bee’s
waggle segment on the vertical hive comb, while the
duration of the waggle phase is a measure of the
distance to the food and the “fitness” of a solution



Figure 1: MITRO interface and Turtlebots foraging supervised by a telerobot.

(von Frisch, 1967). More precisely, depending upon
the strength of the dance, more bees are attracted and
follow the PI vector toward a destination. Further-
more, the more bees follow a PI vector, the more that
destination will be communicated and the more it will
attracts other bees. Eventually, the best solution pre-
vails.

Transferring these principles to algorithms is the
domain of computational swarm intelligence. Com-
parisons of these algorithms (Lemmens et al., 2008)
show that the bee-inspired mechanism is able to col-
lect all the items in the environment faster than the
ant-inspired mechanism in a relatively unobstructed
environment. However, in an environment with
more obstacles and/or dynamic environment, the bee-
inspired mechanism is less adaptive.

System & Approach
The main idea of the proposed approach is to integrate
swarm algorithms with telepresence robotics. We
build on previously developed algorithms in swarm
robotics, aiming to achieve a food foraging applica-
tion in the real world guided by a telepresence robot
that will be shepherding the swarm.

Similar to the Path Integration principle, the robots
in our swarm estimate their positions by integrat-
ing information coming from the gyroscope and the
wheel odometry. Using this, the robots can always
compute the home vector (HV), and if the food lo-
cation is seen, the path integration (PI) vector can be
used to communicate the location to other robots.

Therefore, no map of the environment needs to be
built by the robots and the only common reference
point that is needed for the correct communication of
the food locations is the hive location, i.e. the HV.

As a consequence, if the odometry is faulty, the
robot might not find the hive or food location, and
if this problem occurs the robots fall back in search
mode. As soon as the hive or the food are seen again,
the robots update their internal reference system.

In contrast to the honeybees’s behaviour, we also
allow communication outside of the hive, since it is
very likely that the robots see each other under way.
Additionally, there’s also a probability that the robots
return to the hive after being in the search state for
a long time, in order to increase the chance to meet
another robot that might already be in foraging mode.

This approach has been demonstrated to work rea-
sonably well for small environments (Alers et al.,
2014a,b). However, there was no human supervision
involved and also no simulation runs were performed
to gain empirical insights about the performance of
the swarm, i.e. how long it takes the swarm to con-
verge on the food locations, what is the throughput of
the system, etc.

In this paper, we propose a novel approach to add
a human shepherd to the system, which can supervise
the swarming robots and help to enable faster conver-
gence. The idea is that a human can interact with the
swarm using a telepresence robot as a shepherd. The
human operator can have more knowledge of the en-
vironment, i.e. a map and a camera. After a food loca-
tion has been found, the shepherd can steer the swarm
towards that location or catch “lost” swarm robots.

We implemented the approach using the Turtlebot1

platform as swarm robots and a custom-built telepres-
ence robot MITRO (Alers et al., 2013) as shepherd.
These platforms will be explained in more detail in
the next subsections.

1http://www.turtlebot.com

http://www.turtlebot.com


Figure 1 shows an overview of the system. On the
left, the interface for the human controlling MITRO
is shown. It gives an overview of the system’s sta-
tus, allows the user to control the robot and shows the
live video feed of the environment. Additionally, the
internal view of the robot is shown, below the video
feed. The reference frame is depicted as axis, and
the two circles with arrows are the detected robots.
On the right, a picture of the real-life experiment is
shown, where MITRO is shepherding in the middle
of several Turtlebots.

Swarm robots
As explained before, for the real world experiments,
we use the Turtlebot platform. It has a laptop on
board with a core-i3 CPU for computation, running
the Robot Operating System (ROS) (Quigley et al.,
2009) framework. The robots are also equipped with
a Kinect sensor and the RGBD information is used
to detect and locate AR markers, see black and white
markers in Figure 1. This sensor is also used for the
obstacle detection, together with three bumpers lo-
cated in front half of the robot.

To enable visual robot-robot detection every
Turtlebot has six unique markers, oriented in a way
that at least one marker is always visible. To track
and decode these markers we use the ROS wrapper
of the ALVAR toolkit 2. We use a customised bundle
detection method to determine the center of the de-
tected robot. Each marker in the bundle encodes the
robot number and its location with respect to the cen-
ter of the robot. This information is used to predict
the position of the detected robot. Kalman filtering
is also applied to get more stable and accurate esti-
mation of the detected robots position, heading and
speed. These parameters are also used for the colli-
sion avoidance.

Communication between Turtlebots is realised
over wi-fi using a UDP connection to each Turtlebot.
Even though global communication would be possi-
ble, we limit the communication of each robot to its
own channel and allow only communication after vi-
sual detection of its peer. Therefore, the robots can
communicate only with another robot if it is in close
proximity.

In order to avoid collisions between robots we
rely on the marker detection to predict positions and
speeds of the other robots. The obtained informa-
tion could be used to efficiently compute a non-
colliding speed vector (Claes et al., 2012). In con-
trast to the previous approach, in which the robots
avoided each other by using a global reference frame
and broadcasting the positions to all robots via Wi-
Fi, we adapted this method to only rely on the marker
detection and the predictions using a Kalman filter.
However, a few collisions still might occur due to

2http://www.wiki.ros.org/ar_track_
alvar

the failed detection of other robots and additionally
in such configurations in which the robots cannot see
each other because of the field of view of the Kinect
sensor.

Telepresence robot
In addiction to the Turtlebot platform we also use a
custom-built telepresence robot, shown in the right
panel of Figure 1 (Alers et al., 2013). The advantage
of using a custom-built system over a commercial
platform is the flexibility, extendibility and knowl-
edge of the complete system, that for our purpose is
crucial.

The robot has a height of approximately 160 cm
and is based on the Parallax Mobile Robot Base kit,
which includes the base plate, powerful motors and
6 inch wheels with pneumatic tires. The sensors in-
clude a low-cost LIDAR, an Asus XTION PRO 3D
sensor, sonar sensors, and two cameras (one pointing
forward for conversations, one fish-eye camera point-
ing downwards for driving). The robot is also running
ROS.

Since the robot is controlled from a remote lo-
cation, we implemented low level autonomy on the
robot in the form of assisted teleoperation. With
assisted teleoperation the robot follows the steering
commands of the operator except for a situation when
there is a high chance of collision. This can easily oc-
cur when the user is not experienced in navigating the
robot, the network connection is delayed or an ob-
stacle suddenly appears in front of the robot. Addi-
tionally, the video feed can be switched from front-
to down-facing, and is augmented with a projection
of the expected navigational path. Furthermore, the
robot is able to perform SLAM (simultaneous local-
ization and mapping) to build a map of its environ-
ment (Thrun et al., 2005); this map is used subse-
quently for localization and autonomous navigation
to a chosen destination, or back to his charging loca-
tion, all to ease the remote operation.

Experiments
In our experiments the Turtlebots are performing a
foraging task, starting at the hive (H) location and ran-
domly exploring the unknown environment for a spe-
cific food (F) location. The robots can also locate the
food location by asking bypassing robots for a known
food location, see Figure 2. When the source is found
the Turtlebots start to exploit this source, driving from
the food to the hive, where they drop the food, until
the food is depleted or another source is found. The
telepresence robot works as a “shepherd” sending rel-
ative location information to the Turtlebots.

We implemented our approach on the real robots as
in simulation for getting additional statistics. In this
experiment section we will describe the simulation re-
sults, in the demonstration section the real-world set-
ting is shown. Simulations are run in real time using

http://www.wiki.ros.org/ar_ track_ alvar
http://www.wiki.ros.org/ar_ track_ alvar


(a) (b) (c)

Figure 2: Multi-Robot foraging. (a) All robots start at the hive (H) location. (b) Robots are exploring the unknown
environment randomly. The left two robots have found the food (F) location and are foraging between the hive
and the food location. (c) All robots have converged to foraging behaviour.

(a) 5x5 simulation environment with 1
food source.

(b) 10x10 simulation environment with
2 food sources.

(c) 10x10 L-shaped simulation envi-
ronment with 3 food sources.

Figure 3: The different simulation environments with the shepherding robot (black square), food sources (red
square), and 9 robots located at the hive-location (blue square)

Stage (Gerkey et al., 2003; Vaughan, 2008). We use
simulated Turtlebots and a simple differential drive
robot as telepresence robot. For the detections, mock-
ups are written, so that the same state-machine is run
on the real robots and in simulation. Having the sim-
ulation setup allows us to investigate the system per-
formance for different scenarios and using more rep-
etitions than would be feasible in the real world.

The main goal of our experiments is to compare
the performance of the original bee-inspired algo-
rithm with the newly proposed approach that has the
telepresence robot in the system. We evaluate the
proposed approach in simulation for 3 different en-
vironments: 5x5 meters square shaped, 10x10 meters
square shaped, and 10x10 meters L-shaped, shown in
Figure 3.

In the first case, we compare the performance of the
swarm for different numbers of Turtlebots involved
in the foraging task. We evaluate the throughput, the
speed of convergence and the efficiency of the forag-
ing process with and without the shepherding telep-
resence robot. We also collect statistics showing the
user effort, expressed as the number of times the user
interfered (i.e. corrected a Turtlebot’s navigation),
and the total distance driven by the telepresence robot.
We repeat the same experiments in the 10x10 world

and in the 10x10 L-shaped environment with 9 Turtle-
bots, and for these cases we evaluate the convergence
of the algorithm after moving the food to a differ-
ent location, e.g. due to depletion of the first food
source. Each experiment lasts until 50 food units have
been transported from the source to the hive. Simi-
larly, in the 10x10 environments, a food source be-
comes “depleted” after 50 food units, upon which a
new source becomes active. Every experiment is re-
peated 10 times, and the results are averaged.

Discussion
Figure 4 shows the results of simulations in the 5x5
world. In this relatively small environment the swarm
will often converge without the interference of the
telepresence robot, except for a few cases when the
number of robots get too large for the environment,
leading to collisions, and robots getting stuck. How-
ever, through minimal user effort the shepherd still
improves the efficiency of the process.

Figure 4(a) shows the total time, in seconds,
needed to complete the task (i.e., transport 50 food
units), with the error bars representing the standard
deviation intervals. We observe that the optimal
swarm size is reached at 6 robots, both with and with-
out shepherd. When the swarm size increases beyond
this point, the small environment becomes too clut-



1 2 3 4 5 6 7 8 9

Number of agents

0

200

400

600

800

1000

1200
T

o
ta

l 
ti
m

e
 (

s
e

c
)

W/o shepherd

With shepherd

(a) Total time needed for 50 food
drops.

1 2 3 4 5 6 7 8 9

Number of agents

2

4

6

8

10

12

T
h
ro

u
g
h
p
u
t 
(f

o
o
d
/m

in
)

W/o shepherd

With shepherd

(b) Average throughput in food drops
per minute.

1 2 3 4 5 6 7 8 9

Number of agents

0

50

100

150

200

250

300

T
im

e
 t
o
 c

o
n
v
e
rg

e
n
c
e
 (

s
e
c
)

W/o shepherd

With shepherd

(c) Time to first convergence.

1 2 3 4 5 6 7 8 9

Number of agents

0

20

40

60

80

100

T
im

e
 c

o
n
v
e
rg

e
d
 (

p
e
rc

)

W/o shepherd

With shepherd

(d) Percentage of time during which
the swarm was converged.

1 2 3 4 5 6 7 8 9

Number of agents

500

600

700

800

900
D

is
ta

n
c
e
 t
ra

v
e
le

d
W/o shepherd

With: swarm only

With: swarm + shepherd

(e) Total distance traveled by the
swarm.

1 2 3 4 5 6 7 8 9

Number of agents

0

5

10

15

20

25

30

Distance traveled

Times interfered

(f) Distance traveled and number of
times interfered by shepherd.

Figure 4: Results for the 5x5 world with different swarm size.

tered as robots start colliding, hindering each other’s
performance. The same trend can be observed when
looking at the total throughput in Figure 4(b), mea-
sured in units of food delivered per minute. Here
again we see that the optimum is reached for a swarm
size of 6 robots. Shepherding significantly improves
the performance of the swarm in both cases.

We also investigate the convergence performance
of the system. In Figure 4(c) we show the time needed
in seconds until the whole swarm is converged, mean-
ing that all robots are aware of the food location and
are continuously going back and forth between the
hive and food location to transport food units. The
figure shows that the time needed to converge stays
more or less stable up to 5 robots, after which the
environment becomes more cluttered, preventing the
robots from converging quickly. Additionally, the
converged state can be lost again, e.g. due to colli-
sions, or robots driving in each others line of sight
preventing them from relocating the food. In Fig-
ure 4(d) we plot the percentage of experiment time
during which the whole swarm is converged, and
note that this value decreases approximately linearly
with an increasing swarm size. The fact that robots
may get in each other’s way can also be observed
by looking at the total distance travelled (in meters)
by the swarm during the course of one experiment,
which increases exponentially with the swarm size
(Figure 4(e)). This shows that even though a swarm
of size 6 is optimal in both time and throughput, it is

not necessarily the most efficient in terms of per robot
performance.

Finally, in Figure 4(f) we look at the effort required
by the user to guide the swarm. The figure shows the
distance travelled by the telepresence robot, as well as
the number of interferences, i.e. the number of times
that the user has corrected a swarm robot’s naviga-
tion target. We can see that the required effort doesn’t
necessarily grow with the number of swarm robots,
indicating that the robots are able to relay the new in-
formation among the swarm.

We now move on to the larger environment. Table
1 shows the results for the 10x10 world (with terms
between parenthesis representing the standard devia-
tion) with and without moving the food source. In
both experiments the shepherd can significantly im-
prove the performance of the system. In particular,
after moving the food source the swarm without shep-
herd takes more than twice as long to re-converge
(third column in the table) as the swarm with shep-
herd. Also note that when moving food, without shep-
herd the swarm only fully re-converged in 3 out of 10
runs, while with shepherd this happened in 9 out of
10 runs.

Results for the 10x10 L-shaped environment are
shown in Table 2. Again, shepherding significantly
improves the performance of the swarm with rela-
tively limited effort. However, this task is clearly
harder, as the food source is moved twice. A break-
down of time to re-convergence, as well as the num-



Table 1: Results for the 10x10 world with and without moving the food source.

Total time Time to Time to % of time Throughput Shepherd Times
conv. (1) conv. (2) converged distance interfered

Static
W/o shepherd 510.5 (56.4) 304.7 (68.5) n/a 38.5 (4.9) 5.9 (0.6) n/a n/a
With shepherd 389.7 (12.9) 191.9 (42.4) n/a 47.7 (10.1) 7.7 (0.3) 44.8 (12.6) 8.0 (2.8)
Moving food
W/o shepherd 922.6 (68.2) 328.1 (75.1) 316.9 (81.7) 20.0 (5.6) 6.5 (0.5) n/a n/a
With shepherd 677.7 (42.9) 181.2 (51.3) 146.7 (37.7) 46.0 (11.3) 8.8 (0.5) 88.9 (19.4) 20.4 (3.2)

Table 2: Results for the L-shaped world with and without shepherding.

Total Throughput Distance Shepherd Times
time traveled distance interfered

W/o shepherd 1068.8 (167.4) 8.3 (1.0) 3347.9 (466.6) n/a n/a
With shepherd 895.2 (73.4) 10.1 (0.8) 2984.5 (96.9) 121.2 (14.0) 26.8 (6.6)

Table 3: Break-down of convergence times in the L-shaped world with and without shepherding. Food is moved
twice. Convergence times are listed for the three food locations, as well as the number of runs that did converge.

Time to Time to Time to Nr. of Nr. of Nr. of
conv. (1) conv. (2) conv. (3) conv. (1) conv. (2) conv. (3)

W/o shepherd 223.3 (57.0) 235.6 (91.3) 278.2 (60.7) 8/10 6/10 4/10
With shepherd 188.9 (73.2) 137.6 (39.0) 201.4 (67.6) 10/10 10/10 9/10

ber of runs that fully re-converged, is given in Table 3.
Both metrics are significantly improved by the shep-
herd. We note that the first time the food is moved,
the shepherd is able to make a big difference, as the
distance between both food locations is easy to over-
come. In contrast, the last food location lies in the
opposite side of the L-shape, around the corner. This
makes it harder for the swarm to re-locate the food,
even with the help of the shepherd.

Demonstration
We have also undertaken a real-world experiment in
which 5 Turtlebots are foraging in an unknown en-
vironment. All the robots are initially located around
the hive and they start to explore the environment ran-
domly for the food location. An operator supervises
the group using the MITRO telepresence robot. The
user is able to send the food location information to
individual Turtlebots, e.g. when they get stuck. A
video showing this demonstration can be found on-
line.3 In this physical implementation the sheperd
robot increases the efficiency of the foraging process
and speed up the convergence of turtlebots, especially
when the food is moved.

Conclusion and further work
We have proposed a new approach for swarm robotics
systems, which is based on both the coordination
principle of honeybees and on human-robot interac-
tion through telepresence robotics. In order to vali-

3http://smartlab.csc.liv.ac.uk/
shepherding/

date the approach we performed swarm experiments,
i.e., a foraging task in a unknown environment, both
in simulation and in a situated environment. Our re-
sults show that the telepresence robot, acting as a
shepherd, can substantially increase the efficiency of
the foraging process, especially in dynamic and com-
plex scenarios, in which food sources change over
time. Only a limited effort by the telepresence robot
can already make a great difference in performance.
In future work we aim to integrate an augmented
telepresence robot in a swarm, allowing interaction
between a human operator and the multi-robot sys-
tem in a complex, potentially dangerous surveillance
task. The human operator would be able to steer the
behaviour of the swarm from a remote location by
means of direct communication.

References
Alers, S., Bloembergen, D., Claes, D., Fossel, J.,

Hennes, D., and Tuyls, K. (2013). Telepresence
robots as a research platform for AI. In Proc. of
the AAAI Spring Symp. on Designing Intelligent
Robots: Reintegrating AI II, pages 2–3.

Alers, S., Claes, D., Tuyls, K., and Weiss, G. (2014a).
Biologically inspired multi-robot foraging. In
Proceedings of the 2014 international confer-
ence on Autonomous agents and multi-agent sys-
tems (AAMAS), pages 1682–1684.

Alers, S., Tuyls, K., Ranjbar-Sahraei, B., Claes, D.,
and Weiss, G. (2014b). Insect-inspired robot co-

http://smartlab.csc.liv.ac.uk/shepherding/
http://smartlab.csc.liv.ac.uk/shepherding/


ordination: Foraging and coverage. In Artificial
Life 14, pages 761–768.

Claes, D., Hennes, D., Tuyls, K., and Meeussen, W.
(2012). Collision avoidance under bounded lo-
calization uncertainty. In Intelligent Robots and
Systems (IROS), 2012 IEEE/RSJ International
Conference on, pages 1192–1198.

Collett, M. and Collett, T. S. (2009). Local and global
navigational coordinate systems in desert ants.
Journal of Experimental Biology, 212(7):901–
905.

Di Caro, G., Ducatelle, F., and Gambardella, L.
(2005). Swarm intelligence for routing in mobile
ad hoc networks. In Swarm Intelligence Sympo-
sium, 2005. SIS 2005. Proceedings 2005 IEEE,
pages 76–83.

Dorigo, M., Birattari, M., and Sttzle, T. (2006). Ant
colony optimization – artificial ants as a compu-
tational intelligence technique. IEEE COMPUT.
INTELL. MAG, 1:28–39.

Dressler, F. and Akan, O. B. (2010). A survey on
bio-inspired networking. Computer Networks,
54(6):881 – 900. New Network Paradigms.

Floreano, D. and Mattiussi, C. (2008). Bio-Inspired
Artificial Intelligence: Theories, Methods, and
Technologies. The MIT Press.

Folgado, E., Rincón, M., Álvarez, J. R., and Mira,
J. (2007). Nature Inspired Problem-Solving
Methods in Knowledge Engineering: Second In-
ternational Work-Conference on the Interplay
Between Natural and Artificial Computation,
IWINAC 2007, La Manga del Mar Menor, Spain,
June 18-21, 2007, Proceedings, Part II, chapter
A Multi-robot Surveillance System Simulated in
Gazebo, pages 202–211. Springer Berlin Hei-
delberg, Berlin, Heidelberg.

Gerkey, B. P., Vaughan, R. T., and Howard, A. (2003).
The player/stage project: Tools for multi-robot
and distributed sensor systems. In In Proceed-
ings of the 11th International Conference on Ad-
vanced Robotics, pages 317–323.

Kuorilehto, M., Hännikäinen, M., and Hämäläinen,
T. D. (2005). A survey of application distribution
in wireless sensor networks. EURASIP J. Wirel.
Commun. Netw., 2005(5):774–788.

Lazewatsky, D. A. and Smart, W. D. (2011). An in-
expensive robot platform for teleoperation and
experimentation. In Proceedings of ICRA 2011.

Lemmens, N. (2011). Bee-inspired Distributed Op-
timization. SIKS dissertation series. Maastricht
University.

Lemmens, N., De Jong, S., Tuyls, K., and Nowé,
A. (2008). Adaptive Agents and Multi-Agent
Systems III. Adaptation and Multi-Agent Learn-
ing: 5th, 6th, and 7th European Symposium,
ALAMAS 2005-2007 on Adaptive and Learning
Agents and Multi-Agent Systems, Revised Se-
lected Papers, chapter Bee Behaviour in Multi-
agent Systems, pages 145–156. Springer Berlin
Heidelberg, Berlin, Heidelberg.

Lemmens, N. and Tuyls, K. (2012). Stigmergic land-
mark optimization. Advances in Complex Sys-
tems, 15(8).

Minsky, M. (1980). Telepresence. Omni, pages 45–
51.

Quigley, M., Conley, K., Gerkey, B. P., Faust, J.,
Foote, T., Leibs, J., Wheeler, R., and Ng, A. Y.
(2009). Ros: an open-source robot operating
system. In ICRA Workshop on Open Source Soft-
ware.

Ranjbar-Sahraei, B., Weiss, G., and Nakisaee, A.
(2012). Stigmergic coverage algorithm for
multi-robot systems (demonstration). In van der
Hoek, W., Padgham, L., Conitzer, V., and
Winikoff, M., editors, AAMAS, pages 1497–
1498. IFAAMAS.

Sheridan, T. B. (1989). Telerobotics. Automatica,
25(4):487–507.

Takayama, L., Marder-Eppstein, E., Harris, H., and
Beer, J. M. (2011). Assisted driving of a mo-
bile remote presence system: System design
and controlled user evaluation. In ICRA, pages
1883–1889. IEEE.

Thrun, S., Burgard, W., and Fox, D. (2005). Proba-
bilistic robotics. MIT press Cambridge.

Tsui, K. M., Desai, M., Yanco, H. A., and Uhlik,
C. (2011). Exploring use cases for telepresence
robots. In Proceedings of the 6th International
Conference on Human-robot Interaction, HRI
’11, pages 11–18, New York, NY, USA. ACM.

Vaughan, R. (2008). Massively multi-robot simula-
tion in stage. Swarm Intelligence, 2(2):189–208.

von Frisch, K. (1967). The dance language and ori-
entation of bees. Belknap Press of Harvard Uni-
versity Press.

Wagner, I. A., Lindenbaum, M., and Bruckstein,
A. M. (1999). Distributed covering by ant-robots
using evaporating traces. IEEE T. Robotics and
Automation, 15(5):918–933.


	Introduction
	Telepresence robotics
	Biological coordination
	System & Approach 
	Swarm robots
	Telepresence robot

	Experiments
	Discussion
	Demonstration

	Conclusion and further work

