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Abstract

In this thesis we study epistemic protocols for gossip. Each agent in the gossip scenario
knows a unique piece of information which is called a secret. Agents communicate with
each other by means of pairwise telephone calls, and in each call the calling pair of agents
exchange all the secrets they currently know. In an epistemic gossip protocol, an agent
a can call another agent b, not because it is so instructed, but because agent a knows
that it satisfies some knowledge-based condition defined by the protocol.

The goal of gossiping is typically epistemic, for example, that after a sequence of
calls, every agent knows the secret of every other agent. The question then arises as
to which knowledge conditions bring about the goal of gossiping, and what properties
the resulting protocols have. In this thesis we describe a theoretical framework for the
study of epistemic gossip protocols based on dynamic epistemic logic. We describe a
number of epistemic gossip protocols and formalise these protocols using our theoretical
framework. We study and prove the dynamic properties of these protocols in various
types of underlying network topologies such as the line topology network, circle topology
network, tree topology network, and the complete topology network.

Based on our theoretical framework, we implement a software framework for describ-
ing, modelling and checking the dynamic properties of epistemic gossip protocols. We
call this software framework the Epistemic Gossip Protocol (EGP) tool. The EGP tool
automates the checking of dynamic properties of a given epistemic gossip protocol, such
as, whether the given protocol achieves the goal of gossiping for every execution sequence
of the protocol, whether the given protocol can produce execution sequences that lead to
a deadlock, or whether the given protocol can produce an infinite execution sequence due
to a loop. We describe the details of the implementation of the EGP tool, and use the
tool to model, and check the dynamic properties of our example protocols. We present
and discuss the results obtained from our experiments with the EGP tool.
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Chapter 1

Introduction

The rise of ubiquitous computing through, for instance, handheld and wearable devices,
smart appliances and sensor networks, comes with a growing demand for such devices to
be able to communicate messages containing basic information. Think also of self-driving
cars and robotic vehicles that scavenge new planets, disaster areas and other environ-
ments where direct human observation is difficult to achieve. These vehicles will need
to communicate information like their position, velocity, weather and traffic conditions,
sometimes to a central monitoring system or to an information hub, and sometimes di-
rectly to each other. In this thesis, we study protocols for such communications but
within a very simple setting, namely, the gossip problem.

A well-studied phenomenon in network theory is that of optimal schedules to dis-
tribute information by one-to-one communication between nodes. One can take these
communicative interactions to be ‘telephone calls’, and this process of spreading infor-
mation is known as gossiping [30]. It is typical to assume a global scheduler who simply
executes a possibly non-deterministic protocol. Such a protocol can be seen as a general
scheme or a rule which generates a set of execution sequences of communicative interac-
tions among the agents in the scenario, where such generated execution sequences adhere
to the rule given by the protocol. When the rule given by a protocol is some knowledge
condition regarding some agent or agents in the scenario, then such a protocol is epis-
temic. We investigate distributed epistemic gossip protocols∗, where an agent a will call
another agent not because it is so instructed but based on its knowledge or ignorance of
the information that is distributed over the network.

This chapter describes the gossip problem and the motivation for this research work.
We conclude the chapter with an overview of the thesis.

1.1 The Gossip Problem

Communication protocols have the aim to share knowledge between nodes in a pre-
described way. Consider the following scenario.
∗Throughout this thesis, we will use the terms ‘distributed epistemic gossip protocol’ and ‘epistemic

gossip protocol’ interchangeably, since we always assume that each agent executes its own protocol.

1



Chapter 1. Introduction 2

Table 1.1: Information transitions for the sequence: ab; cd; ac; bd.

a b c d

A B C D
ab AB AB C D
cd AB AB CD CD
ac ABCD AB ABCD CD
bd ABCD ABCD ABCD ABCD

Six friends each know a secret. They can call each other by phone. In each
call they exchange all the secrets they know. How many calls are needed for
everyone to know all secrets?†

We will consider the “friends” as agents in a multi-agent scenario, and then generalise the
problem to the case of n ≥ 1 agents. For now let us focus on protocols that are successful
in the sense that they spread all secrets. If n = 1, no calls are needed. If n = 2, the two
friends a and b need to make only one phone call, which we denote by ab (‘a calls b’).
For n = 3, the call sequence ab, bc, ca will do.

Before we continue, let us briefly clarify some terminological assumptions. We see
a secret as a propositional variable such that ‘knowing the secret’ means knowing the
truth value of that variable. ‘Agent a knows secret A’ means that agent a knows whether
A, i.e., agent a knows that A is false or agent a knows that A is true. We represent by
ab a call from a to b. The informative consequences of a call (i.e., which secrets are
exchanged) are independent from who initiates a call, so in that sense a call ab is the
same as a call ba. But, as we will see later, for the generating protocols the order makes
a difference. Furthermore, we prefer to talk about secrets and not about propositions,
propositional variables, or facts. Knowing a proposition or a fact tends to mean that you
know that it is true, whereas knowing a secret tends to mean that you know whether it
is true. It is in this sense that we wish to consider the knowledge that the agents have
about the secrets in the gossip scenario described.

Consider a scenario with n = 4 agents, a, b, c, d, who hold, respectively, secrets
A,B,C,D. The four calls ab; cd; ac; bd distribute all secrets, and the underlying pro-
tocol, of which this call sequence is an execution, is as follows.

Four-agent Protocol Any two agents make the first call; the second call is then
between the remaining two agents; the third call is then between an agent who made the
first call and an agent who made the second call; and the fourth call is between the two
who were not chosen in the third call. The distribution of secrets given the four calls is
as shown in Table 1.1. (The rows list the distribution of secrets after a particular call
took place.) We can also show that no other protocol solves this in four calls, and that
†Presented as a puzzle at the 1999 Nationale Wetenschapsquiz (National Science Competition),

Netherlands.



Chapter 1. Introduction 3

less than four calls is insufficient to spread all secrets among all the agents. First, in an
execution of any other protocol, one of the first callers will also make the second call.
So, it has to start like this:

a b c d

A B C D

ab AB AB C D

ac ABC AB ABC D

. . .

How will this continue? For the third call, let us distinguish between the case that agent
d is not involved and the case that it is involved. If agent d is not involved, then another
call ac does not result in more information. Let the third call be ab (other possible calls
at this point are ba, bc or cb, but these cases will give rise to the same distribution of
secrets as the ab call, so suffice it here to consider only the ab call). The distribution of
secrets after the third call is then as follows:

a b c d

A B C D

ab AB AB C D

ac ABC AB ABC D

ab ABC ABC ABC D

. . .

Three more calls are now required in order for all agents to know all secrets: for example
da; db; dc or ad; ab; ac. This makes six calls altogether.

But if the third call involves agent d, there also will always remain two agents who
do not know d yet. Again, two or three further calls are needed, so that we need at least
five calls altogether.

This also demonstrates that less than four calls is insufficient to distribute all secrets,
because any execution starts with either ab; ac (at least five calls to termination) or ab; cd
(at least four calls to termination), modulo a permutation of agents.

For n = 3 and n = 4, 2n− 4 calls are sufficient to distribute all the secrets. Let there
now be n > 4 agents. Then this is also sufficient. Suppose the agents are a, b, c, d, e, f, . . . .

Fixed Schedule Choose four agents from the set of agents Ag, say a, b, c, d, and
one of those four, say a. First, agent a makes one call to each of the agents in Ag \
{a, b, c, d}. Then, the Four-agent protocol is executed among agents a, b, c, d (say, the
calls ab; cd; ac; bd are made). Finally, agent a again makes one call to each of the agents
in Ag \ {a, b, c, d}.

This adds up to (n−4)+4+(n−4) = 2n−4 calls. For n = 6 we get 2n−4 = 8 calls.
Given six agents, a, b, c, d, e, f whose respective secrets are A,B,C,D,E, F , an example
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Table 1.2: Information transitions for the sequence: ae; af ; ab; cd; ac; bd; ae; af .

a b c d e f

A B C D E F
ae AE B C D AE F
af AEF B C D AE AEF
ab ABEF ABEF C D AE AEF
cd ABEF ABEF CD CD AE AEF
ac ABCDEF AB ABCDEF CD AE AEF
bd ABCDEF ABCDEF ABCDEF ABCDEF AE AEF
ae ABCDEF ABCDEF ABCDEF ABCDEF ABCDEF AEF
af ABCDEF ABCDEF ABCDEF ABCDEF ABCDEF ABCDEF

Table 1.3: Information transitions for the sequence: ab; cd; ef ; ac; de; af ; bd; ce.

a b c d e f

A B C D E F
ab AB AB C D E F
cd AB AB CD CD E F
ef AB AB CD CD EF EF
ac ABCD AB ABCD CD EF EF
de ABCD AB ABCD CDEF CDEF EF
af ABCDEF AB ABCD CDEF CDEF ABCDEF
bd ABCDEF ABCDEF ABCD ABCDEF CDEF ABCDEF
ce ABCDEF ABCDEF ABCDEF ABCDEF ABCDEF ABCDEF

execution sequence‡ of the Fixed Schedule for such a scenario is:

ae; af ; ab; cd; ac; bd; ae; af (1.1)

That is, agent a starts by calling agent e and then agent f , etc. We illustrate the
distribution of secrets with the execution sequence, as shown in Table 1.2. After the
protocol, all friends indeed know all secrets. Less than 2n − 4 calls are insufficient to
distribute all secrets. This has been shown, for example, in [63] (see also [30, 32]). For
n > 4, the Fixed Schedule is not the only protocol to distribute the secrets in 2n − 4

calls. For example, in any execution sequence of the Fixed Schedule some calls are made
more than once (for the depicted n = 6 execution, these are ae and af). The information
transitions shown in Table 1.3 also achieves the distribution of all secrets over all agents
but, in the corresponding execution sequence, all calls are different. Not all sequences of
eight different calls distribute the secrets over all agents. For example, when we change
the sixth call from af into bf , agent a will only know the secrets A,B,C,D after those
eight calls.
‡Throughout this thesis we will use the term “execution sequence" and “call sequence" interchangeably.
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Table 1.4: Information transitions for the sequence: ab; ac; ad; bc; bd; cd.

a b c d

A B C D
ab AB AB C D
ac ABC AB ABC CD
ad ABCD AB ABC ABCD
bc ABCD ABC ABC ABCD
bd ABCD ABCD ABC ABCD
cd ABCD ABCD ABCD ABCD

Yet another protocol is obtained by imagining the agents lined up along a round-
table, such that, starting with an agent, say agent a1, each agent passes on its secrets
to its neighbour in, say, the clockwise direction, until we have almost come full circle
twice (after n − 1 calls, both an and an−1 know all secrets; it takes only n − 2 calls to
pass those on to a1, a2, . . . , an−2). This gives rise to 2n− 3 calls, only one more than the
minimum of 2n− 4. An example execution sequence is shown as follows:

a1a2; a2a3; . . . ; an−1an; ana1; a1a2, a2a3; . . . ; an−2an−1 (1.2)

Maximum number of calls If gossip is the goal, then prolonging gossip is better. As
long as two agents who call each other still exchange all the secrets that they know and
at least one of them learns something new from the call, what is the maximum number
of calls to distribute all secrets?

The maximum number of calls to distribute all secrets is
(
n
2

)
= n·(n−1)

2 (see Propo-
sition 6.12 later). This is also the maximum number of different calls among n agents.
For six agents a, b, c, d, e, f the following calls can be made such that in every call at
least one agent learns one secret—for convenience we generate the execution sequence in
lexicographic order.

ab; ac; ad; ae; af ; bc; bd; be; bf ; cd; ce; cf ; de; df ; ef

For four agents we get:
ab; ac; ad; bc; bd; cd

We give the detailed distribution of secrets for four agents as shown in Table 1.4.

1.2 Overview of the Literature on the Gossip Problem

Earlier in the chapter, we began by presenting the gossip problem as a puzzle challenge.
Let us now briefly identify some of the various other formulations of this problem in the
early literature of the problem, based on the combinatorial survey [30]. Our aim is to
present the foundation on which we build the idea of epistemic gossip protocols.
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The gossip problem has been viewed from several perspectives. For example, Hajnal
et al. [27] presented the problem in a similar form as we did earlier in the chapter, but
then in terms of “ladies” and “scandals”. Bavelas [8] formulated the gossip problem in
terms of “playing cards”, where the members of a group have the goal of producing the
highest-ranking poker hand that can be made by selecting one card from each subject.
Shimbel [60] expressed the problem in the setting of a network of nodes, where each
node has the goal of learning the neighbours of every other node in the network, whereas
Landau [41] treated the problem in terms of coloured marbles - each individual in a group
is given a set of such marbles, but one colour is common among all the sets of marbles.
The goal is for the group to learn the common colour by means of pairwise messaging.
In Cederbaum [14], nodes in a communication graph are initially given a unique value N
from the set {1, . . . , n}. At each round r of gossiping, the node labelled N = r sends all
the secrets it currently possesses to all its neighbours. The solution involves producing
a sequence of node relabellings that spreads the secret of each node to all other nodes.

The gossip problem has been approached with various motivations. For example,
whereas the work by Shimbel [60] focused on a communication network (e.g., a telephone
network), the work by Bavelas [8] sought an understanding of how graph structures
influence group tasks in social networks. In [12, 35, 46], the gossip problem surfaces
as an application in developing algorithms for various numeric computations. Miklos et
al. [46], for example, describes an ‘addition game’. In this game, each of the n players
initially holds a number whose value is one. In each pairwise communicative interaction
(or telephone call) between the agents, the value of the number held by each calling
player is updated to the sum of the values of the calling pair. Following this rule, the
aim of this game is to make the value of the number of each player equal to n.

However, there are common questions running through the various formulations and
motivations around various studies of the gossip problem, namely: how many commu-
nicative interactions are necessary to successfully reach the goal of gossiping? (The goal
of gossiping is, in general, that every agent knows the piece of information initially held
by each other.) How does the network structure affect the problem? Which commu-
nication sequences solve the problem, and what are the characteristics of various such
sequences? Which general schemes or procedures yield solutions to the problem?

The minimum number of pairwise communicative interactions§ needed for successful
gossiping was proved in [13, 27, 61, 63]. They all showed that for n ≥ 4, this minimum is
given by the expression 2n−4. Farley and Proskurowski [23] proved that for a line graph,
the minimum number of pairwise communicative interactions for successful gossiping is
2n − 3. Harary and Schwenk [28] showed that if the underlying communication graph
§Note that in the discussions in this chapter, and throughout this thesis, when we refer to an un-

derlying communication graph or network graph, we also assume that the graph is undirected, unless
otherwise stated. It is assumed that the direction of an edge on a graph indicates which of the two
adjoining nodes can disclose their secrets during a pairwise communicative interaction or phone call
(only a node with an outgoing edge can disclose the secrets they know during such a communicative
interaction). As such, when we assume that a graph is undirected we indicate that in each pairwise
communicative interaction, the communicating pair tell each other all the secrets they know.
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is a tree then this minimum is given by 2n − 3, for n ≥ 2. Also, [28] and [26] showed
that if a connected communication graph contains a 4-cycle, then the minimum number
of pairwise communicative interactions is 2n − 4, for n ≥ 4. However, Bumby [13]
and Kleitman [36] showed that for any connected but incomplete communication graph
without a 4-cycle, this minimum is 2n−3. Harary and Schwenk [28] also showed that for
a strongly connected directed communication graph with n nodes, the minimum number
of calls required for successful gossiping is 2n− 2. This result corresponds with the case
where there is only a one-way communication between the nodes in the communication
graph, as in text messaging.

Instead of consecutive telephone calls wherein all secrets are exchanged between both
parties, several calls between pairs of agents might as well take place at the same time,
to speed up the exchange of information. In that case, what is the minimum number
of rounds to communicate all secrets between n agents? The answer is given in [37] as:
dlog2ne for n even, and dlog2ne+ 1 for n odd.

Motivated by the goal of minimising various redundancies in communicative interac-
tions in a gossip execution sequence, some researchers began to study general procedures
that give rise to execution sequences with specific properties. For example, Cot [18] found
that for n = 4 and n = 8 nodes, it is possible to gossip successfully in the minimum
number (2n−4) of pairwise interactions, and still have that the pairwise interactions are
between nodes that do not yet know all the secrets. West [69] showed that for all even
n ≥ 4 agents, there are gossip procedures that produce successful execution sequences in
which no agent learns its own unique secret from another agent in any communicative
interaction. West also gave some of the graph-theoretic properties of the graphs that
allow for such procedures. Seress [57] proved that for all even n (except 6, 10, 14 and 18),
there are successful execution sequences in which no agent learns a secret that it already
knows. Still under the restriction that no agent learns a secret that it already knows,
[59] showed that where n is divisible by 4, and n ≥ 8, the number of communicative
interactions required for successful gossiping is 9

4n − 6. However, in [58], Seress showed
that there are no successful execution sequences under this restriction if the underlying
communication graph allows only one-way communicative interactions, as in directed
graphs. Finally, other than the purpose of minimising redundancy in communicative
interactions among agents, Harary and Schwenk [29], for example, focus on how well the
underlying communication graph is utilised.

The very close precursors to our work are those that study gossiping under randomly
staged communicative interactions. For one-way communication graphs, Landau [41]
determined the average number of communicative interactions for successful gossiping if
a pair of agents is randomly chosen to communicate in each round. Note that several
pairwise communicative interactions may be possible in each round, but only one of
them is randomly chosen. Moon [47] studied the same problem using undirected (two-
way) communication graphs. Again, several pairwise communicative interactions may
be possible in each round but only one of them is randomly chosen. In each pairwise
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communicative interaction, the pair of agents exchange all the secrets they currently
know. Under this two way communication graph, Boyd and Steele [11] showed that
the average number A(n) of pairwise communicative interactions needed for successful
gossiping among n agents is given by:

A(n) =
3

2
n ln n+O(n(ln n)0.5)

1.3 Epistemic Gossip Protocols

In the approaches discussed so far, there is a global scheduler that orders the call actions
among the agents. The Fixed Schedule, for example, begins by coordinating the agents:
a designated group of four agents is chosen (in our examples, the agents in this group
are a, b, c, d), then one agent from the designated group is further designated to call the
non-designated agents (in our example this agent is a). So the scheduler, while adhering
to the protocol, assigns to each agent the calls to be made. In the example execution
sequence of the Fixed Schedule given earlier in this chapter, the agent named a is assigned
to make the first call, and to make this call to another agent named b; then, the agent
named c is assigned to call the agent named d. And so on. This kind of pre-coordination
would be natural for instance if the agents are likened to a subset of a cohort of students
who have common knowledge that some specific exam result will be made available to
each of them individually (so the secret of agent a is either ‘a passed’ or ‘a failed’), and
the students can lookup a plan on how to communicate their results to each other, before
the exam results are initially revealed to each student. However, a better way to define
a protocol seems to be, for example, that any two agents can make the first call, and
then any two other agents can make the second call. So it does not have to be between
a predetermined set of four individuals. Furthermore, often such pre-coordination is
not possible. Suppose all students of the said cohort receive an unexpected invitation
for a party. The students may be curious to find out about each other whether they
will accept, in which case they will have to make phone calls based on the knowledge,
or better ignorance, they have about the secrets of others. Since in such a distributed
protocol several agents may decide to initiate a call at the same time, we assume the
presence of an arbiter who breaks a tie in such cases.

Still considering the Fixed Schedule, the question can then be asked whether the
protocol can be rephrased such that these scheduling decisions can be made by the agents
themselves, at execution time, and based on what they know. One can still imagine the
first two callers being determined randomly. One of them is simply the agent getting
through before the others, in making a call, and the recipient of that call can be any other
agent. All agents only know their own secret initially. But for the second call we have
a problem. Now there are two agents who know two secrets, and the remaining agents
only know one secret. In other words, they have different knowledge. We may pick any
agent who only knows one secret to initiate a call, this choice is knowledge-based (and
anyone fulfilling the condition can be chosen), and this rules out those who made the call
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in the first round. In our attempt to generalise the Fixed Schedule, this agent now has to
call another agent who only knows one secret. But the agent initiating that second call
cannot choose such a one-secret-only agent based on its knowledge. If agent c initiates
the second call, it has no reason to prefer agent d over any other agent, if agent c were
ignorant about who made the first call. It seems not unreasonable to assume that agent
c only knows that it was not involved herself in that first call. That means that, from
the point of view of agent c, the first call could have been between agent a and agent b,
or between agent a and agent d, or between agent b and agent d. (And from each pair,
either agent initiating the call.) Agent c does not know which one really happened. We
can also say that agent c cannot distinguish different histories of calls, as in [50, 51].

In this thesis we study such epistemic gossip protocols wherein an agent calls another
agent based on its knowledge (or ignorance) only, and when more than one call is enabled
simultaneously by such criterion, we assume an arbiter which randomly selects one of
the possible calls. Hence, the agents are enriched with full autonomy within the gossip
scenario. We will describe a number of epistemic gossip protocols and analyse their
performance on the gossip problem.

1.3.1 Dynamic Epistemic Logic and Epistemic Planning

The planning problem in the field of artificial intelligence can be described as follows:
given an initial state of the world, and a description of a desired state, how can the initial
state be changed into the desired state [56, Section 10.1]. Typically, the set of actions
that can be performed in the scenario are also given. The change from the initial state to
the desired state may be accomplished by a sequence of such allowable actions starting
from the initial state, but sometimes such desired states may not be reachable by any
sequence of the allowable actions. Such a sequence of allowable actions is a plan. A
successful plan gives a way to change an initial situation into a desired situation, thus
yielding a solution to the planning problem.

Another way of giving the solution to a planning problem is to describe a high level
scheme, procedure or rule which gives rise to a set of plans or programs. We refer to
such high level scheme as a protocol. Such protocols may also generate plans that do
not give rise to the desired state of the system. Hence another consideration within
the planning problem is whether an agent can know for sure that a current plan will
lead to a desired state, or whether a protocol guarantees that the desired state will be
reached. The planning problem becomes more involved when it is extended to scenarios
with multiple agents, or scenarios wherein the set of allowable actions differ for each of
the agents, or scenarios wherein the allowable actions may be performed by any one of
the agents or jointly by some subset of the given agents.

In epistemic planning, the initial state corresponds to an initial state of knowledge (or
epistemic state) of an agent or a group of agents, whereas the desired state corresponds
to a desired state of knowledge of an agent or a group of agents. The solution to the
epistemic planning problem can likewise be described as a plan consisting of a sequence of
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allowable epistemic actions performed by the agents; and on the other hand, an epistemic
protocol consists of knowledge-based or epistemic rules that give rise to a set of epistemic
plans. Such epistemic rules may be expressed in terms of the knowledge of various agents,
and agents may act synchronously (at fixed and commonly known time intervals) or
asynchronously, at individually convenient time intervals (which may make the desired
state of knowledge more difficult to accomplish).

The planning problem is related to the synthesis problem, which, according to Church
[16, 17], is as follows:

Given a requirement which a circuit is to satisfy, we may suppose the require-
ment is expressed in some suitable logistic system which is an extension of
restricted recursive arithmetic. The synthesis problem is then to find recur-
sion equivalences representing a circuit that satisfies the given requirement
(or alternatively, to determine that there is no such circuit).

We consider the synthesis problem from the point of view of program synthesis in com-
puter science and artificial intelligence. The synthesis problem has two components,
namely, the decision component and the synthesis component. The decision component
asks whether there exists a program which changes the input state of the given system
into the desired state, whereas the synthesis component describes a procedure by which
such a program is synthesised when it is the case that such a program exists. Formal
logics, especially temporal logics, are typically used to specify a program in terms of
its inputs, its outputs and its behaviour with respect to the inputs and outputs of the
system. Hence the question arises for each such specification whether there is a program
that satisfies the specification.

Given that x is the variable for the input to a program, and y is the variable for the
output of the program. Let ϕ(x, y) be a linear time temporal specification for a single
agent system. Pnueli and Rosner [53] gave and proved the condition for the existence of a
program that satisfies the specification ϕ(x, y). They gave an algorithm for synthesising
the program if it exists and showed that whether such a program exists is decidable if
x and y range over finite domains. Kupferman and Vardi [39] solve the single agent
synthesis problem for the temporal logics CTL and CTL* specifications [20, 21, 40].
For program synthesis with incomplete information (part of the input is unavailable),
and for temporal specifications for a single agent system, Meyden and Vardi [65] used a
knowledge-based or epistemic approach to express the uncertainty of the agent about its
environment. Thus they solved the single agent synthesis problem for specifications given
in temporal epistemic logic. For specifications given in multiagent temporal epistemic
logic, Pnueli and Rosner [54] prove that for two agents, synthesis under incomplete
information is already undecidable. Nevertheless, there are some special cases of multi
agent temporal epistemic specifications that are decidable. For example, Pnueli and
Rosner [54] prove that in the setting where the observational powers of the agents form
a total order, then program synthesis from the temporal epistemic specification of such
a setting is decidable.
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When we consider input and output states that are a description of the knowledge
(and possibly higher-order knowledge) of agents in a system, and consider actions that
can change the knowledge of such agents (epistemic actions), then such input and output
states are regarded as epistemic, and a program or plan (a sequence of actions) that
changes the input or initial state of the system to the desired or output state is regarded
as an epistemic plan or epistemic program.

For a multiagent system specification in dynamic epistemic logic [66, 67], Bolander
and Andersen [10], show that single agent epistemic planning is decidable whereas the
general case of multiagent epistemic planning is undecidable. Löwe et al. [44] describe a
tractable fragment of epistemic planning which is due to the restriction of allowable ac-
tions to “almost-mutually-exclusive" actions with only propositional preconditions, and
having transitive accessibility relations. They also show that such a fragment is interest-
ing by using it to formalise and reason about change of knowledge of agents due to actions
performed in a multiagent video game example. Parikh and Krasucki [49] characterise
the conditions under which a sequence of communications that realise a specified level of
knowledge can be synthesised, for a distributed system, where a level of knowledge is a
formula of the form KiKj . . . A, and {i, j, . . . } is the set of processes (agents) in the dis-
tributed system. They also provide an algorithm to synthesise such a protocol where it
exists. Chandy and Misra [15] give a characterisation of the number of communications
required by processes to know specific facts about a distributed system.

Let ϕ be a dynamic epistemic logic formula that describes what is true about an
initial situation; let ϕ′ be a dynamic epistemic logic formula that describes what is true
about an action occurring at the initial situation; and let ϕ′′ be a dynamic epistemic
logic formulae that describes what is true about the resulting situation due to the action
occurring at the initial situation. Aucher [6, 7] provide the following axiomatisations:
(a) an axiomatisation of all the information that is true in the resulting situation given
ϕ and ϕ′, (b) an axiomatisation of all the information that is true in the initial situation
given ϕ′ and ϕ′′, and (c) an axiomatisation of all the information that is true about the
action taking place at the initial situation, given ϕ and ϕ′′. For a finite set of atomic
actions, Aucher [7] described a way to synthesise the action that changes a given initial
situation to a situation satisfying a dynamic epistemic logic formula that expresses what
is true in the resulting situation.

Our approach to the gossip problem can be considered as a special case of the plan-
ning problem, namely, epistemic planning. Based on Bolander et al. [10] in which the
epistemic planning problem is defined as a special case of the classical planning problem,
an epistemic planning problem is a tuple EP = (S,Act, γ, s0, ϕg), where: S is a finite
set of epistemic situations; s0 ∈ S is the initial situation; Act is a finite set of epistemic
actions; γ is a function that takes a situation s ∈ S and an action a ∈ Act, and returns
a situation that is a result of executing the action a at the situation s. Note that γ is
undefined if the action a cannot be executed in the situation s; finally, ϕg is an epistemic
goal. The solution to the epistemic planning problem is then a sequence σ of actions
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α ∈ Act, such that the execution of σ at s0 gives rise to a situation that satisfies the goal
formula ϕg.

Likewise, the gossip problem GP = (S, C, F,M init , ϕeg) can defined as a special case
of the epistemic planning problem as follows:

• S is a finite set of gossip situations,

• C = {ab | a 6= b ∈ Ag} is a set of call actions,

• F is a function that takes a gossip situation M ∈ S and a call ab ∈ C and returns
a gossip situation that is a result of executing the call action ab at M ,

• M init ∈ S is the initial gossip situation,

• ϕeg is an epistemic formula which expresses the goal of gossip, which typically is,
that every agent knows the secret of every other agent in the set Ag of agents.

And, analogous to epistemic planning, the solution to the gossip problem can also be
expressed as a sequence σe of calls c ∈ C such that the execution of σe at the initial
situation M init gives rise to a situation that satisfies the goal formula ϕeg. The reader is
referred to Chapter 3 for details of the elements of the gossip problem.

1.4 Aim of the Thesis

In this thesis we argue that distributed epistemic gossip protocols¶ can provide a solution
for the gossip problem of successfully spreading the information in a network of agents,
while enriching the agents with autonomy.

1.4.1 Research Questions

The thesis is based on four main research questions, as follows.

Research Question 1: Is it possible to describe epistemic gossip protocols for the
successful spreading of information in a network of autonomous agents?

We provide the answer to this research question in Chapter 3, Chapter 5 and Chapter
6 of the thesis. In Chapter 3 we describe a number of epistemic gossip protocols. We
study the properties of these protocols from an empirical point of view (in Chapter 5)
and from an analytical point of view (In Chapter 6).
¶Recall that throughout this thesis, we will use the terms ‘distributed epistemic gossip protocol’ and

‘epistemic gossip protocol’ interchangeably, since we always assume that each agent executes its own
protocol.
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Research Question 2: Is it possible to create, and use, some formalism based on
dynamic epistemic logic to specify, model, analyse and verify epistemic gossip protocols?

We provide the answer to this question mainly in Chapter 3 of the thesis, where we
present a formalism based on dynamic epistemic logic for reasoning about epistemic
properties of agents in a gossip scenario. We extend our formalism in Chapter 4, a
difference being that we then interpret epistemic formulas on a more abstract structure
than that presented in Chapter 3. In both Chapter 3 and Chapter 6, we use our formalism
to study the logical properties of epistemic gossip protocols.

Research Question 3: Is it possible to create a software framework to automate the
empirical analysis of epistemic gossip protocols, given a specification of such a protocol?

In Chapter 4, we build upon the work in Chapter 3 by implementing a software framework
to automate the empirical analysis of epistemic gossip protocols. In Chapter 5, we present
and discuss the empirical results obtained from the use of our software tool in the analysis
of our epistemic gossip protocols.

Research Question 4: How does various network connectivity constraints affect the
properties of epistemic gossip protocols?

We do an empirical study (in Chapter 5), and an analytical study (in Chapter 6), of how
various epistemic gossip protocols perform on various types of network graphs.

1.4.2 Methodology

The research methodology that we employ in answering the research questions posed in
the preceding subsection, is as follows.

Formal Logic: We create a formalism based on dynamic epistemic logic, by which
to specify and model epistemic gossip protocols.

Protocol Specification and Analysis: We specify a number of epistemic gossip
gossip protocols using our logical formalism, and we prove a number of properties of
these protocols on various types of network graphs.

Framework Implementation and Experimentation: We implement a software
framework to be used in the automated analysis of epistemic gossip protocols. Using our
software tool, we perform empirical studies on a number of such protocols, with various
network graph constraints. And, we interpret the results of our experiments to indicate
the performance of these protocols in themselves and in comparison with each other.



Chapter 1. Introduction 14

1.4.3 Overview of the Thesis

In this chapter we introduced the gossip problem, gave an overview of the literature on
the problem, introduced an epistemic approach to the solution of the gossip problem,
and presented our research questions and methodology for the thesis.

In Chapter 2 we provide technical background to the work that will be presented in
this thesis. The main contributions of this thesis are then presented in the next four
chapters, from Chapter 3 through Chapter 6.

In Chapter 3 we present some epistemic gossip protocols. We introduce a formal logic
for the formalisation of epistemic gossip protocols. We discuss and prove some of the
properties of our logical formalism, and we use this formalism to describe our epistemic
gossip protocols.

In Chapter 4 we introduce a framework for automated empirical analysis of epis-
temic gossip protocols. Within this framework, we introduce a high level programming
language for describing epistemic gossip protocols, and a program interpreter for this
high level language. An epistemic gossip protocol is then described in form of a pro-
gram, and translated into an abstract model of the gossip protocol, from which some key
performance characteristics of the protocol are determined.

In Chapter 5 we use the framework introduced in Chapter 4 to describe and analyse
the epistemic gossip protocols we described in Chapter 3. We then provide results of
experiments on the performance of these protocols.

In Chapter 6 we describe some of the properties of epistemic gossip protocols for
various network topologies, and then prove some of the properties of the epistemic gossip
protocols introduced in Chapter 3 for various network types of network graph.

Finally, Chapter 7 concludes the thesis and provides some ideas for further research.

Sources of Materials Chapters 3, 4, 5 and 6 are based on collaborations with Prof.
Wiebe van der Hoek, Dr. Davide Grossi and Prof. Hans van Ditmarsch. The core of the
work in Chapter 3 was published in the proceedings of European Conference on Artificial
Intelligence (ECAI) 2014 [3]. Some part of the work in Chapter 3 was also published as
a contribution to a book in honour of Rohit Parikh [5]. The core of the work in Chapter
4, and part of Chapter 5, was published in the proceedings of European Conference on
Multi-Agent Systems (EUMAS) 2014 [4]. The contributions and collaborations of my
co-authors are highly appreciated.



Chapter 2

Background

In this thesis, we formalise epistemic gossip protocols using dynamic epistemic logic
(DEL). Our objective in this chapter is twofold. First, to provide the reader with some
of the rudiments of dynamic epistemic logic which we build upon in other chapters of
this work. The second objective is to specify some of the notation and assumptions we
use throughout this thesis. The material in this chapter is mainly based on [45] and [67],
to which the reader is referred for more details and examples.

Dynamic epistemic logic is a logical formalism which can be used to describe and
reason about the change of information in agents as a result of communication. We
begin our presentation with a basic epistemic logic (which has no dynamic operators and
as such does not describe information (or knowledge) change). The aim is to use this
basic logic as a vehicle to convey the background theory on which our later presentation
of DEL is based.

2.1 Basic Epistemic Logic

Definition 2.1 (Basic Epistemic Language, L). Given a set of atomic propositions P,
and a set Ag of agents, the language L of multi-agent epistemic logic is defined by the
following BNF grammar:

ϕ ::= A | ¬ϕ | (ϕ ∧ ϕ) | Kaϕ

where A ∈ P and a ∈ Ag.

Notation. We read Kaϕ as “agent a knows that ϕ". Where we use the symbols
a, b, c, . . . for agent names, we will use the symbols A,B,C, . . . for propositional atoms.
And where we use ai, aj , ak, . . . for agent names, we will use the symbols Ai, Aj , Ak, . . .
for propositional atoms. Throughout this thesis we will often talk about the unique
secret of an agent, that is, the secret that an agent possesses ab initio. Such secret is
treated as a propositional atom. We will use an agent name and the secret of such agent
in tandem, as follows: the name of an agent is a if and only if the unique secret of agent

15
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a is the propositional atom A. More elaborately, the agent names are a, b, c, d, e, f, . . . if
and only if the unique secret of each of these agents, respectively, is A,B,C,D,E, F, . . . .
Likewise, where the agent names are ai, aj , ak, al, am, an, . . . , the respective unique secret
of each agent is Ai, Aj , Ak, Al, Am, An, . . . .

We will also assume some conventional abbreviations such as:

> = A ∧ ¬A
⊥ = ¬>

(ϕ ∨ ψ) = ¬(¬ϕ ∧ ¬ψ)

(ϕ→ ψ) = ¬ϕ ∨ ψ
(ϕ↔ ψ) = (ϕ→ ψ) ∧ (ψ → ϕ)

Regarding other notation used throughout the thesis, we may sometimes leave out paren-
thesis when writing formulas of a formal language, if doing so does not lead to confusion.
Also, especially in the proofs presented, we may sometimes use =⇒, ⇐⇒, ∀ and ∃ as
abbreviations for the meta-logical expressions ‘implies’, ‘is equivalent to’, ‘for all’ and
‘there exists’, respectively. We may also use the convenient word ‘iff’ for ‘if and only if’,
and, where a ∈ Ag and ϕ is a logical formula, we will sometimes write ¬Ka¬ϕ as K̂aϕ.

We now give examples of the use of formulas of the language L, as follows.

Example 2.1. Consider a gossip scenario with three agents a, b, c. The unique secret of
agent a is the propositional atom A; the unique secret of agent b is the propositional atom
B; and the unique secret of agent c is the propositional atom C. At the start, every agent
knows only its own unique secret. That is, (KaA∨Ka¬A)∧(KbB∨Kb¬B)∧(KcC∨Kc¬C)

holds, but we also have that agent a, for example, does not know the secret of agent b and
agent c, that is, ¬KaB∧¬Ka¬B∧¬KaC∧¬Ka¬C. Moreover, agent a knows that agent
b knows only secret B, and that agent c knows only secret C (each agent knows of the
unique secret of each of the other agents, and knows that each of the other agents knows
only their unique secret). So we have, for example, Ka(KbB ∨ Kb¬B) ∧ Ka¬(KbA ∨
Kb¬A) ∧ Ka¬(KbC ∨ Kb¬C). Let the situation described in this example be called the
initial gossip situation. Later in Example 2.2, we will give more epistemic properties of
this initial gossip situation.

2.1.1 Semantics of the language L

Let us now address the question of how to give a precise meaning to sentences of the
language L. Following the usual practice in modal logics, we express the meaning of the
sentences of the language L in terms of the elements of a mathematical structure known
as a Kripke model.

Definition 2.2 (Kripke Model). Let P be a countable set of atomic propositions, and
let Ag be a finite set of agents. A Kripke model is a triple, M = (S,R, V ), where S,
the domain of M , is a set of states; and R : Ag → S × S is a function that assigns an
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accessibility relation to a ∈ Ag; and V : S → P → {0, 1} assigns a truth value (‘0’ for
false, and ‘1’ for true) to each atom in any given state of M .

Given a Kripke modelM = (S,R, V ), let a be an arbitrary agent from Ag, then some
of the classes of models in epistemic logic are as follows:

1. The class of all Kripke models.

2. The class of Kripke models where the accessibility relation R(a) is serial : the
accessibility relation R(a) is serial if for all s ∈ S there is a t ∈ S such that
(s, t) ∈ R(a).

3. The class of Kripke models where the accessibility relation R(a) is reflexive: the
accessibility relation R(a) is reflexive if for all s ∈ S, (s, s) ∈ R(a).

4. The class of Kripke models where the accessibility relation R(a) is symmetrical :
the accessibility relation R(a) is symmetrical if for all s, t ∈ S, if (s, t) ∈ R(a) then
(t, s) ∈ R(a).

5. The class of Kripke models where the accessibility relation R(a) is transitive: the
accessibility relation R(a) is transitive if for all s, t, u ∈ S, if (s, t) ∈ R(a) and
(t, u) ∈ R(a) then (s, u) ∈ R(a).

6. The class of Kripke models where the accessibility relation R(a) is Euclidean: the
accessibility relation R(a) is Euclidean if for all s, t, u ∈ S, if (s, t) ∈ R(a) and
(s, u) ∈ R(a) then (t, u) ∈ R(a).

7. The class of Kripke models where the accessibility relation R(a) is an equivalence
relation: the accessibility relation R(a) is an equivalence relation if R(a) is reflexive,
transitive and symmetrical. The class of Kripke models with equivalence relations
is denoted by S5.

Definition 2.3 (Epistemic model). An epistemic model M is a tuple M = (S,∼, V )

such that:

• S is a non-empty set of possible worlds,

• ∼ : Ag→ P(S × S) assigns an equivalence relation to each agent,

• V : S → P→ {0, 1} is a valuation for each s ∈ S.

Notation As in the definition of Kripke model (Definition 2.2), assigning the value ‘1’
to an atomic proposition can be thought of as assigning the value true to it. Likewise,
assigning the value ‘0’ to an atomic proposition can be thought of as assigning the value
false to it. If M = (S,∼, V ), rather than s ∈ S, we will also write s ∈ M . For ∼ (a)

we will write ∼a, and for V (s) we will write Vs. A pointed epistemic model is a pair
(M, s) where s ∈ M . We will also consider multi-pointed epistemic models (M,S′),
where S′ ⊆ S.
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Note that a Kripke model M = (S,R, V ) is an epistemic model if for all a ∈ Ag,
R(a) is an equivalence relation. Notice that since R(a) is an equivalence relation for the
case of an epistemic model, for all a ∈ Ag, instead of writing M = (S,R, V ) we write
M = (S,∼, V ), and whenever any pair s, t ∈ S is such that (s, t) ∈∼a, we write s ∼a t
instead.

Definition 2.4 (Interpretation of Formulas of L). We will interpret epistemic formulas
on pairs (M, s) consisting of an epistemic model M = (S,∼, V ) and a state s ∈ S.
Properly speaking, (M, s) is called an epistemic state but we will sometimes refer to it
simply as a state. Note also that sometimes we write M, s instead of (M, s). We write
M, s |= ϕ for ‘a formula ϕ holds in (M, s)’, and instead of ‘not M, s |= ϕ’ we write
‘M, s 6|= ϕ’. The truth condition for such claims is as follows:

M, s |= A iff Vs(A) = 1

M, s |= (ϕ ∧ ψ) iff M, s |= ϕ and M, s |= ψ

M, s |= ¬ϕ iff M, s 6|= ϕ

M, s |= Kaϕ iff for all t such that s ∼a t, M, t |= ϕ

If M, s |= ϕ for all s ∈ T ⊆ S, we write M,T |= ϕ. If a formula ϕ holds in (M, s) for
all s ∈ S, where S is the domain of M , we write M |= ϕ. Alternatively, we say that such
a formula ϕ is valid in M . If a formula ϕ is valid in all M ∈ C where C is a subclass of
the class K of all Kripke models, then we write C |= ϕ. Alternatively, we say that such
formula ϕ is valid in the class of models C or that ϕ is C−valid. If a formula ϕ is valid
in all M ∈ K then we write K |= ϕ or we write |= ϕ. On the other hand, we use 6|= to
deny any of such claims. For example, when we write that M 6|= ϕ, we mean to say that
it is not the case that the formula ϕ holds in all s ∈ S. And this also implies that there
is some s ∈ S such that M, s 6|= ϕ. Moreover, if there is some s ∈ S such that M, s |= ϕ,
we say that the formula ϕ is satisfied in (M, s). We often use the abbreviation KwaB
for the formula KaB ∨Ka¬B.

In drawing epistemic models we will represent the equivalence relations using undi-
rected lines. Also, for the sake of visual clarity, we will leave out the reflexive and
transitive accessibility links in our graphical representations of such models. To give an
example, the drawing shown in Figure 2.1 is a drawing of an epistemic model of the initial
gossip situation described in Example 2.1. Note that each of the states is represented by
a three-digit binary number. The digit at the most significant bit represents the value of
the secret of agent a, whereas the middle bit and the least significant bit represent the
value of the secret of agent b and c, respectively. The bit value ‘1’ means that the value
of the corresponding propositional atom is true, whereas the bit value ‘0’ means that the
value of the corresponding propositional atom is false. For example, at the state 100, we
have that the value of the secret of agent a is true, while that of both agent b and c are
false. Notice also the undirected labelled lines used to show the pair of states that are
indistinguishable for a given agent. For example, the line labelled ‘ac’ from state 000 to
state 010 shows that both agent a and agent c cannot distinguish between the two states
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(this is not surprising as agent a knows the value of its own unique secret, but not that
of the unique secret of the other agents; so we see that in both states, agent a knows the
same value for A, but not for the other atoms; the situation is analogous for agent c).
Notice also that none of the agents can distinguish between a state and that same state
(the accessibility relation for each agent is reflexive).

000

001

010

011

100
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110

111
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bc

bc

ac

ac ac

ab

ab

ab

ab

bc

ac

Figure 2.1: Graphical representation of an epistemic model of the initial
gossip situation.

Throughout this thesis we deal with epistemic models or S5 models. Given the nature
of S5 models, there is a set of formulas such that each formula in this set is valid in the
class of S5 models. We can define a system of logic S5 based on S5 validities, as given
in Definition 2.5.

Definition 2.5. The logic system S5, where we have an operator Ka for every a ∈ Ag,
comprises of all instances of propositional tautologies, the K axiom, the veridicality ax-
iom, positive introspection, negative introspection, and the derivation rules modus ponens
and necessitation, as follows:

All instances of propositional tautologies
Given ϕ and ϕ→ ψ, infer ψ modus ponens
Given ϕ, infer Kaϕ necessitation
Ka(ϕ→ ψ)→ (Kaϕ→ Kaψ) K axiom
Kaϕ→ ϕ veridicality
Kaϕ→ KaKaϕ positive introspection
¬Kaϕ→ Ka¬Kaϕ negative introspection

The K axiom states that knowledge is closed under consequence. For example if an
agent knows that “if today is Sunday then tomorrow is Monday”, then, if the agent knows
that “today is Sunday” it follows that the agent also knows that “tomorrow is Monday”.
The veridicality axiom (or truth axiom) states that what is known is indeed the case.
For example, an agent cannot know that “today is Sunday”, if actually it is the case
that “today is not Sunday”. The positive introspection axiom states that an agent knows
what it knows, that is, if an agent knows that “an apple is a fruit", then it knows that it
knows that “an apple is a fruit". Finally, the negative introspection axiom states that if
an agent does not know something, then it also knows that it does not know that thing.
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For example, if an agent does not know that “it is raining", then it also knows that it
does not know that “it is raining".

2.1.2 Group Knowledge

We come now to knowledge among a group of agents. Let ϕ be a formula of the language
L. Given a set of agents Ag, we say that a piece of information ϕ is general knowledge if
and only if every agent in Ag knows ϕ. That is, Eϕ, read as “Everybody knows that ϕ"
holds if and only if

∧
a∈Ag Kaϕ holds. Of course, the fact that everybody knows a piece

of information does not imply that everybody knows that everybody knows that piece
of information. That is, Eϕ does not imply EEϕ. Take the example of an email sent
to a group of four friends. The message in the email reads “Tomorrow is a holiday”. All
four friends read the email privately in their various apartments. But although all four
friends know the content of the email, each is still unsure as to whether indeed every
one of them knows the content of the email. Each friend considers it possible that one
of them has not read the email.

Now let us define iterated general knowledge Em inductively as follows:

[Base Case] E0ϕ = ϕ

[Inductive Case] Emϕ = EEm−1ϕ, for m ≥ 1

We can use the definition of iterated general knowledge to illustrate another kind of
group knowledge, namely, common knowledge, described as the infinite conjunction:

Cϕ =

∞∧
m=0

Emϕ

Common knowledge that ϕ (written Cϕ) is usually described as “any fool knows that ϕ"
because it usually holds only for very weak formulas ϕ.

But there is yet another notion of group knowledge, namely distributed knowledge,
which is described as “the wise man knows that ϕ”, where it is distributed knowledge
that ϕ (written Dϕ). This kind of knowledge is implicit in a group, and can be made
explicit by aggregating the knowledge of the members of the group. A simple example is
set in a group consisting of two agents a and b: agent a knows that “if the time is 13:00
then students are at lunch", and agent b knows that “the time is 13:00"; therefore it is
distributed knowledge that “students are at lunch".

To define the truth conditions for general knowledge, common knowledge and dis-
tributed knowledge on an epistemic model, we begin with the following definition of the
relevant language and accessibility relations.

Definition 2.6 (Language LG with group knowledge). Given a set of atomic propositions
P, and a set Ag of agents, the language LG is defined by the following BNF grammar:

ϕ ::= A | ¬ϕ | (ϕ ∧ ϕ) | Kaϕ | Dϕ | Eϕ | Cϕ
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where A ∈ P and a ∈ Ag.

Definition 2.7. Given a set Ag of agents, and an epistemic model M = (S,∼, V ) then:

• Let ∼E=
⋃
a∈Ag

∼a

• Let ∼D=
⋂
a∈Ag

∼a

• The reflexive transitive closure ∼∗ of a relation ∼ is the smallest relation such that:

– ∼⊆∼∗

– s ∼∗a s, for every s ∈ S and for every a ∈ Ag

– if s ∼∗a t and t ∼∗a u then s ∼∗a u, for all s, t, u ∈ S and where a ∈ Ag

Definition 2.8 (Truth conditions for the language LG). Given a set of atomic proposi-
tions P, and a set Ag of agents, letM = (S,∼, V ) be an epistemic model. We extend the
truth conditions given in Definition 2.4 with the following clauses, to obtain the truth
condition for M, s |= ϕ, where ϕ ∈ LG.

M, s |= Dϕ iff for every t, s ∼D t implies M, t |= ϕ

M, s |= Eϕ iff for every t, s ∼E t implies M, t |= ϕ

M, s |= Cϕ iff for every t, s ∼∗E t implies M, t |= ϕ

Example 2.2. Consider the gossip scenario described in Example 2.1 (a model of that
scenario is shown in Figure 2.1). Then we see that everybody knows that agent a knows
the value of secret A, that is, E(KaA ∨Ka¬A) holds in the model for the scenario. It
also holds in the model for the scenario that EE(KaA ∨ Ka¬A). Furthermore, it is
common knowledge that each agent knows the value of its own unique secret, that is,
C((KaA∨Ka¬A)∧ (KbB∨Kb¬B)∧ (KcC∨Kc¬C)) holds in the model for the scenario.
It is also common knowledge that each agent knows only its own unique secret. Finally,
since each agent knows the value of its own unique secret, we can see that the knowledge
of all the secrets in the scenario is distributed knowledge among all the agents in the
scenario. So for example, the implication (¬A∧B ∧¬C)→ D(¬A∧B ∧¬C) also holds
in the model for the scenario. Explicit knowledge of all the secrets will be brought about
by a sequence of calls among all the agents. The reader is referred to Section 3.3 for
more discussion about group notions of knowledge in the gossip scenario.

2.2 Dynamic Epistemic Logic

Dynamic epistemic logic extends the basic epistemic logic to enable the formalisation of
knowledge and change of knowledge due to epistemic actions. Hence, in its language,
dynamic epistemic logic includes a new type of modality called action modality. The
action modality gives rise to dynamic constructs in the language, and such dynamic



Chapter 2. Background 22

constructs are used to express an epistemic action together with an epistemic property
that is brought about due to the execution of the epistemic action.

In its semantics, dynamic epistemic logic gives meaning to the dynamic constructs in
the language. In both the language and the semantics of dynamic epistemic logic that
we will present, we focus on an approach that expresses an action using an action model.
Hence we refer to this logic as action model logic.

We begin now by presenting the definition of action models, and in the subsections
that follow, we present the syntax and semantics of action model logic.

Definition 2.9 (Action Model). Given a set Ag of agents and a set P of atomic proposi-
tions, an action model is a structure M = (S,∼, pre), where S is a domain of action points,
and ∼a is an equivalence relation on S for each a ∈ Ag, and pre : S → L is a function
that takes an action point s ∈ S and returns a precondition pre(s) ∈ L. A pointed action
model is a structure (M, s) where s ∈ S.

2.2.1 Syntax of Action Model Logic

Definition 2.10 (Language of action model logic). Given a set Ag of agents, and a set
of propositional atoms P, the language LAM of action model logic is defined as follows:

LAM 3 ϕ ::= A | ¬ϕ | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | (ϕ→ ϕ) | Kaϕ | Dϕ | Eϕ | Cϕ | [α]ϕ

α ::= (M, s) | (α ∪ α)

where a ∈ Ag, and A ∈ P, and (M, s) is a pointed action model, with M having a finite
domain of action points, and where pre(s) ∈ L.

2.2.2 Semantics of Action Model Logic

Definition 2.11 (Semantics of the formulas of LAM ). Let (M, s) be a pointed epistemic
model, whereM = (S,∼, V ), and let M = (S,∼, pre) be an action model. Then the truth
conditions of ϕ,ψ ∈ LAM is defined inductively as follows:

M, s |= A iff Vs(A) = 1

M, s |= ¬ϕ iff M, s 6|= ϕ

M, s |= ϕ ∧ ψ iff M, s |= ϕ and M, s |= ψ

M, s |= ϕ ∨ ψ iff M, s |= ϕ or M, s |= ψ

M, s |= ϕ→ ψ iff M, s |= ¬ϕ or M, s |= ψ

M, s |= Kaϕ iff for all t, s ∼a t implies M, t |= ϕ

M, s |= Dϕ iff for all t, s ∼D t implies M, t |= ϕ

M, s |= Eϕ iff for all t, s ∼E t implies M, t |= ϕ

M, s |= Cϕ iff for all t, s ∼∗E t implies M, t |= ϕ

M, s |= [α]ϕ iff for all (MM, (s, s)), (M, s)[[α]](MM, (s, s)) implies MM, (s, s) |= ϕ
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where ∼D, ∼E and ∼∗E are as defined in Definition 2.7; and where [[α]] is a binary relation
such that:

[[α ∪ α′]] = [[α]] ∪ [[α′]], and
(M, s)[[M, s]](MM, (s, s)) iff MM = (SM,∼M, V M) is given by:

SM = {(s, s) | s ∈ S, s ∈ S, and M, s |= pre(s)}
(s, s) ∼M

a (t, t) iff s ∼a t and s ∼a t

V M
(s,s)(A) = Vs(A)

The semantics of action model logic is used to derive a model of the gossip situation
resulting from executing an action at an initial gossip situation. In the semantics of action
model logic, we represent factual states in a model of the resulting gossip situation as pairs
consisting of (a) name of the factual state in the model for the initial gossip situation,
and (b) name of the action point executed in that factual state in the model for the
initial gossip situation. For example, for the factual state (s, s), the letter s is the name
of the factual state in the initial model, and the letter s is the name of the action point
executed in the factual state s. The only (s, s) pairs that are allowed in the domain SM

of the resulting modelMM are pairs such that the action s can be executed in s. That is,
M, s |= pre(s). Considering the points (or the factual states) of the models, the valuation
V M

(s,s) of the factual state (s, s) in the resulting model is equal to the valuation of the
state s in the initial model (we consider actions that do not change the facts of the real
world, but can only change the epistemic property of agents). Furthermore, the names
given to such factual states are not relevant. What matters is which facts are true in
those states and how those states relate to other states.

Regarding the accessibility relations, two new states are indistinguishable for an
agent if and only if they result from two indistinguishable action points executed at two
indistinguishable states.

Consider again the initial gossip situation described in Example 2.1, the epistemic
model of which is illustrated in Figure 2.1 (the model is also shown in the left hand side
of the transition in Figure 2.2). Recall that we omit reflexive and transitive accessibility
links in the drawing of epistemic models, for the sake of visual clarity. Let agent a
and agent b call each other in this initial gossip situation. (Assume that it is common
knowledge among all the agents that they are in the initial gossip situation (see Example
2.1 and 2.2); also assume that the agents have common knowledge about whom is calling
who, although the agent who is not involved in a call does not know exactly the value
of the secrets exchanged in the call). The resulting gossip situation due to this call ab
is shown at the right hand side of the transition in Figure 2.2. We model the call ab as
an action model, and use the semantics of action model logic to derive the model of the
resulting gossip situation due to the ab call at the initial gossip situation. Note that at
the initial gossip situation, both agent a and agent b are uncertain about the value of
each other’s secret, and they are both uncertain about the value of secret C. However,
the agents know that during the ab call at the initial gossip situation, both agent a and
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agent b can only learn the value of each other’s secret, but both will remain ignorant of
the value of secret C after the ab call.
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Figure 2.2: State transition after an ab call at the initial gossip situation.

From agent c’s point of view, during the ab call, agent a could be learning that B is
true, or it could be learning that B is false. Also, agent b could be learning that A is
true, or it could be learning that A is false. But agent c cannot distinguish between the
four actions, namely: (i) agent b learns ¬A and agent a learns ¬B (action point ĀB̄),
(ii) agent b learns A and agent a learns ¬B (action point AB̄), (iii) agent b learns ¬A
and agent a learns B (action point ĀB), and (iv) agent b learns A and agent a learns B
(action point AB).

ĀB̄

ĀB

AB̄

AB

c

c

c

c

Figure 2.3: Action model for ab call at the initial gossip situation.

From agent a’s point of view, either agent a learns ¬B or agent a learns B. And
from agent b’s point of view, either agent b learns ¬A or it learns A. Moreover, agent b
knows the value of secret B and agent a knows the value of secret A. Also, both agent
a and agent b can distinguish between any pair among the four action points ĀB̄, ĀB,
AB̄ and AB, since they are both involved in each of the actions, and know which is the
actual action point. The preconditions for the four action points are as follows:

pre(ĀB̄) = Ka¬A ∧Kb¬B
pre(ĀB) = Ka¬A ∧ KbB

pre(AB̄) = KaA ∧Kb¬B
pre(AB) = KaA ∧ KbB

The action model for the ab call at the initial gossip situation is shown in Figure 2.3.
Note that each agent cannot distinguish an action point and that same action point. So
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the accessibility relation for each agent in the action model is reflexive. But we have
chosen to omit these reflexive accessibility links (and the transitive accessibility links) in
the drawing of action models, again, for visual clarity.

To illustrate the accessibility relations, consider that in the initial gossip situation
agent c cannot distinguish between a factual state where secret A is true and another
factual state where secret A is false, if secret C is the same in both states. Also, in the
action model for the ab call, agent c cannot distinguish between an action point wherein
agent b is learning that A is true, and another action point wherein agent b is learning
that A is false. Since agent c cannot distinguish between the said action points, and
since it cannot distinguish between the said factual states, if the said action points are
each executed in the said factual states, then agent c can also not distinguish between
any two of the resulting factual states. Particularly, the factual state (000, ĀB̄) in the
model for the resulting gossip situation (right hand side of the transition in Figure 2.2) is
the result of executing the action ĀB̄ in the factual state 000 in the model for the initial
gossip situation (left hand side of the transition in Figure 2.2). Also, the factual state
(100,AB̄) in the model for the resulting gossip situation is the result of executing action
AB̄ at the state 100 in the model for the initial gossip situation. Notice that the two
action points ĀB̄ and AB̄ are indistinguishable for agent c, and the two factual states
000 and 100 in the model for the initial gossip situation are indistinguishable for agent
c. Notice also how the preconditions of the said action points are satisfied in the factual
states where they are executed, and see that indeed, agent c cannot distinguish between
state (000, ĀB̄) and state (100,AB̄) in the model for the resulting gossip situation.

On the other hand, even though agent a could not initially distinguish between state
000 and state 010 in the model for the initial gossip situation, we see that agent a can
distinguish between the action point wherein agent a learns that B is false and agent b
learns that A is false (that is, action point ĀB̄), and the action point wherein agent a
learns that B is true and b learns that A is false (that is, action point ĀB). Therefore,
agent a can distinguish between the factual states resulting from the execution of both
of those action points in the initial gossip situation, namely state (000, ĀB̄) and state
(010, ĀB) in the model for the resulting gossip situation. Finally, using the semantics of
the knowledge operator given in Definition 2.11, it is easy to verify at any factual state
in the model for the resulting gossip situation, that both agent a and agent b know the
value of each other’s secret, and that they both remain ignorant of the value of agent c’s
secret, whereas agent c remains ignorant of the value of the secret of both agent a and
agent b.

However, agent c also learns something new after the ab call. For example, after the
ab call agent c learns that agent a now knows the value of b’s secret. That is, Kc(KaB ∨
Ka¬B) holds in all the states in the model of the resulting gossip situation, and for
example, we demonstrate this for one of the states in the resulting model. Consider state
(000, ĀB̄) in the model for the resulting gossip situation. To check thatKc(KaB∨Ka¬B)

holds in (000, ĀB̄) we follow the semantics given in Definition 2.4. At (000, ĀB̄), the
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factual states that are indistinguishable for agent c are as follows: (000, ĀB̄), (010, ĀB),
(100,AB̄) and (110,AB) (these factual states respectively resulted from the factual states
000, 010, 100 and 110 in the model for the initial gossip situation). We now show that
it is not the case that (KaB ∨Ka¬B) holds in all of the states 000, 010, 100 and 110,
but on the other hand (KaB ∨ Ka¬B) holds in all of the states (000, ĀB̄), (010, ĀB),
(100,AB̄) and (110,AB). That is, we show that at state 000 agent c does not know that
agent a knows the value of b’s secret, but after the ab call, at state (000, ĀB̄), agent c
knows that agent a knows the value of b’s secret. We now proceed as follows.

At 000, agent a cannot distinguish between 000 and 010, and these two states differ
in their respective values for secret B. That is, at 000, agent a considers it possible that
the actual state is 010 (that is, agent a considers it possible that the value of b’s secret
is true), and also agent a considers it possible that the actual state is 000 (that is, agent
a also considers it possible that the value of b’s secret is false), so agent a does not know
the value of secret B at 000. In turn, since 000 is accessible to 000 for agent c, we also see
that ¬Kc(KaB∨Ka¬B) holds at 000. But at (000, ĀB̄), agent a can distinguish between
(000, ĀB̄) and (010, ĀB). So, for agent a, the only possible value for secret B at (000, ĀB̄)

is false, and therefore agent a knows ¬B at (000, ĀB̄). On the other hand, the states that
agent a cannot distinguish from 010, namely, 010 and 011, have the same value (namely,
true) for secret B, and this indistinguishability is maintained between states (010, ĀB)

and (011, ĀB), that is, in the factual states that resulted from 010 and 011 after the
ab call. Likewise the states that agent a cannot distinguish from 100, namely, 100 and
101, have the same value (namely, false) for secret B, and this indistinguishability is
also maintained between states (100,AB̄) and (101,AB̄). Finally, the states that agent a
cannot distinguish from 110, namely, 110 and 111, have the same value (namely, true)
for secret B, and this indistinguishability is also maintained between states (110,AB)

and (111,AB).
From the foregoing, we see that in (000, ĀB̄) indeed agent c knows that agent a cannot

distinguish only those pair of factual states where the value of secret B is the same. And
this is equivalent to saying that Kc(KaB ∨ Ka¬B) holds in (000, ĀB̄), following the
semantics given in Definition 2.4.

We conclude here our presentation of some of the basics of epistemic and dynamic
epistemic logic, we now turn briefly to another topic in order to present other background
definitions for later chapters of the thesis.

2.3 Network Topologies

In Chapters 5 and Chapter 6, particularly, we study epistemic gossip protocols in the
setting of various network topologies. The following are some of the basic concepts from
graph theory which we employ.

Definition 2.12 (Graph). A graph is a tuple G = (V,E), where V is a finite set of
nodes (or vertices), and E is a finite set of edges such that E ⊆ V × V .
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We assume that the edges of G are undirected. When describing an edge of a graph
we also write uv for the pair (u, v), where u, v ∈ V and (u, v) ∈ E. If uv ∈ E then u
and v are said to be adjacent vertices. Such u is a neighbour of v (and v a neighbour
of u since the edges are undirected). We assume G is a simple graph in which case no
edge joins any node to itself and there is only one edge between any two nodes in V ,
where both V and E are non-empty, and G is non-trivial, that is, the size of the set V
is greater than one. There is a path between two nodes u0, um ∈ V if and only if there
is some sequence 〈u0u1, u1u2, . . . , um−1um〉 consisting of edges in E. Finally, we assume
G is connected, that is, for every pair of nodes u, v ∈ V , there is a path between u and
v [62].

Consider a gossip scenario in which the set of agents is Ag, where |Ag| = n. Let us
describe the network of such agents using the graph G = (V,E), as follows.

Definition 2.13 (Network Topology). Let V = Ag, and let an edge aiaj ∈ E between
any pair of agents denote that there is a communication link between agent ai and aj .
Then we define various topologies of such networks as the type of graph G, as follows:

• Circle Topology Network. Let E = {(a1, a2), (a2, a3), . . . , (ak, ak+1), . . . ,

(an, a1)}, (for all 3 ≤ k < n), and let Es be the symmetric closure of E. We define
the graph G = (V,Es) as a circle topology network. For an illustration, see Figure
2.4(a).

• Line Topology Network. Let E = {(a1, a2), (a2, a3), . . . , (ak, ak+1), . . . ,

(an−1, an)}, (for all 3 ≤ k < n− 1), and let Es be the symmetric closure of E. We
define the graph G = (V,Es) as a line topology network. For an illustration, see
Figure 2.4(e).

• Star Topology Network. Let E = {(a1, a2), (a1, a3), . . . , (a1, ak), . . . , (a1, an)},
(for all 3 < k < n), and let Es be the symmetric closure of E. We define the graph
G = (V,Es) as a star topology network. For an illustration, see Figure 2.4(c).

• Binary Tree Topology Network. Let E = {(a1, a2), (a1, a3), . . . , (ak, a2k),

(ak, a2k+1), . . . }, (for all 1 < k ≤ dn−1
2 e), and let Es be the symmetric closure of

E. We define the graph G = (V,Es) as a binary tree topology network. For an
illustration, see Figure 2.4(b).

• Complete Topology Network. A complete topology network is obtained when
for every pair aj , ak ∈ V there is a corresponding edge ajak in E of the graph G.
For an illustration, see Figure 2.4(d).

Finally, when the graph G consists of the vertices and edges of a tree of n nodes, we
will generally refer to such network as a Tree Topology Network. On the other hand, a
graph G is a Connected Topology Network if and only if G is connected. And, a network
topology that is not a complete topology network is also said to be an Incomplete Topology
Network.
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Figure 2.4: Network topologies.

2.4 Summary of Chapter

In this chapter we provided some logical background and presented some notation that
will be used throughout this thesis. We Introduced a basic epistemic logic for describing
scenarios in which there is no change in the knowledge of agents. We then went further
and showed one way that this basic logic can be extended to account for change of
knowledge of agents due to epistemic actions. In Chapter 3 especially, we build on
these ideas to create a logical formalism for describing and reasoning about epistemic
gossip protocols. Finally, from graph theory we presented some definitions, notation and
assumptions that we rely on in the material presented in the later chapters of this thesis.



Chapter 3

Epistemic Protocols for Gossip

3.1 Introduction

In Chapter 1 we introduced the gossip problem and described its solution for a scenario
comprising of n ≥ 1 agents. Particularly we described the Fixed Schedule, which dis-
tributes all the secrets in a gossip scenario among all the agents in 2n − 4 rounds. For
ease of reference let us repeat the Fixed Schedule here.

Consider a gossip scenario with agents a, b, c, d, e, f . . . . Then the Fixed Schedule is
as follows.

Fixed Schedule Choose four agents from the set of agents Ag, say a, b, c, d, and
one of those four, say a. First, agent a makes one call to each of the agents in Ag \
{a, b, c, d}. Then, the Four-agent protocol is executed among agents a, b, c, d (say, the
calls ab; cd; ac; bd are made). Finally, agent a again makes one call to each of the agents
in Ag \ {a, b, c, d}.

An example execution sequence of the Fixed Schedule is as follows:

ae; af ; ab; cd; ac; bd; ae; af

In the Fixed Schedule, the order of the calls is pre-designated. In this chapter we describe
epistemic (or knowledge-based) protocols for gossip, wherein an agent calls another agent,
not because it has been instructed to do so, but based on its knowledge. We begin, in
Section 3.2 and in Section 3.3, with an informal discussion of these protocols. In Sections
3.4 and 3.5, we present logical formalisms for describing and reasoning about epistemic
gossip protocols, and pairwise calls in a gossip scenario. And in Section 3.6 we present a
formalisation of epistemic gossip protocols introduced in Section 3.2, and present some
logical properties of these protocols. We conclude the chapter in Section 3.7.

29
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3.2 Epistemic Gossip Protocols

A gossip protocol can be described as a rule that expresses the condition under which an
agent can communicate with another agent by means of a telephone call within the gossip
scenario. Following this way of thinking, we can describe an epistemic gossip protocol
in terms of a rule that expresses some knowledge-based calling condition required for an
agent to call another agent in the scenario. Such a calling condition is based on what an
agent knows about an agent, or about an agent’s knowledge of the secrets in the scenario.
The idea is that in each round of gossiping, each agent makes use of the calling condition
given by its protocol to determine whom it can call in the round. When the calling
condition of a protocol enables an agent to call more than one agent in a round, the
agent randomly chooses one callee among those agents whom it is enabled to call. Since
each agent executes its own protocol, more than one agent may be enabled to make a
call in each round of gossiping, in that case we assume an arbiter who randomly chooses
one agent among all the agents who are enabled to make a call in any given round. The
goal is that after a series of rounds, every agent knows the secret of every other agent in
the scenario. In the rest of this section we informally describe and discuss a number of
epistemic gossip protocols, and we begin with a protocol which we call the Learn New
Secrets protocol, as follows.

Learn New Secrets For any agent ai, the protocol for ai is: choose an agent aj such
that ai does not know the secret of aj , and let ai call aj .

It is easy to see that this protocol will achieve the goal that everybody knows every
secret. No call sequence obtained from the Fixed Schedule can be obtained by the Learn
New Secrets protocol. The agent who initiates the call in each of the final two calls of
the Fixed Schedule, calls another agent whose secret it already knows. For example, in
the execution sequence of the Fixed Schedule which we considered earlier, in the final
two calls (ae; af) agent a calls agents whose secret it already knows. But the same
information transitions∗ can be achieved by an execution sequence of Learn New Secrets:
instead of final calls ae; ef , make final calls from agent e and agent f to agent b (or to
agent c, or to agent d): eb; fb. This is allowed by the protocol, as agent e and agent f do
not know the secret of agent b at the time of that call. The Learn New Secrets protocol
also allows for longer execution sequences than the Fixed Schedule. For example, for
n = 4, the following is an execution sequence of Learn New Secrets: ab; ac; ad; bc; bd; cd.
The longest execution sequence of Learn New Secrets is given by n(n − 1)/2 (we prove
this later, in Chapter 6), and the given execution sequence is an example of such a longest
execution sequence.
∗See Table 1.1 for an example of information transitions due to a call sequence.
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Possible and Known Information Growth protocols

In the execution sequence of the Fixed Schedule given earlier, agent a called the same
agents at the end as at the beginning. When agent a first called agent e, agent a learnt
secret E and agent e learnt secret A. When agent a called agent e again, agent e learnt
secrets B,C,D, and F from agent a. One can say that agent a called agent e again
because agent a learnt some new secret in the intervening calls which it knows agent e
have not learnt. In other words, agent a knows that agent e will learn some new secret if
agent a calls agent e again. This feature can also be used in an epistemic protocol. Let
us define ‘Ak is learnt in the call aiaj ’ as ‘before the call, only one of ai and aj did not
know Ak, but after the call both ai and aj know Ak’. Now consider these protocols.

Known Information Growth de Dicto For any agent ai, the protocol for ai is:
choose an agent aj such that ai knows that there is some secret Ak that would be learnt
in the call aiaj , and let ai call aj .

Possible Information Growth de Dicto For any agent ai, the protocol for ai is:
choose an agent aj such that ai considers it possible that there is some secret Ak that
would be learnt in the call aiaj , and let ai call aj .

The Possible Information Growth de Dicto protocol may loop and therefore termina-
tion is not guaranteed. For example, for four agents, the following is an infinite execution
sequence: ab; cd; ab; cd; ab; . . . (that is, the sub-sequence ab; cd repeats infinitely). In the
third round, a considers it possible that b has learnt something new, namely if the second
call had been one of bc, bd, cb, db. Therefore, after ab; cd, call ab can be chosen according
to the protocol. We could also say that in the third round agent a is unable to distinguish
the call sequences ab; cd, ab; dc, ab; bc, ab; cb, ab; bd, ab; db.

At first sight, the Possible Information Growth de Dicto protocol seems to have
an advantage over the Known Information Growth de Dicto protocol. Maybe there
are situations wherein after a certain number of calls, due to the uncertainty about
who called who, no agent knows for certain that calling any other agent will result in
information growth. That would cause a deadlock in the Known Information Growth de
Dicto protocol, from which an agent can still escape when using the Possible Information
Growth de Dicto protocol. But on second sight, such a situation cannot occur. Consider
any situation wherein it is not yet the case that all agents know all secrets. Then there
is an agent ai who does not know secret Aj . Agent ai knows that when it calls agent aj ,
it will learn Aj . So the knowledge condition that ai knows that there is a secret Ak that
is learnt in the call aiaj , is fulfilled, namely for Ak = Aj .

Now, consider the following ‘de Re’ variation of the Known Information Growth
protocol. A similar variation exists for the Possible Information Growth protocol. ‘De
Re’ and ‘de Dicto’ knowledge are considered in e.g., [1, 34, 64].
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Known Information Growth de Re For any agent ai, the protocol for ai is: choose
an agent aj such that ai knows of a secret Ak that would be learnt in the call aiaj , and
let ai call aj .

Possible Information Growth de Re For any agent ai, the protocol for ai is: choose
an agent aj such that there is a secret Ak of which ai considers possible that it will be
learnt in the call aiaj , and let ai call aj .

Consider the call sequence: ab; cd; ac; ab, where the set of agents in the scenario is
{a, b, c, d}. Let us assume that the system is synchronous, that is, calls are made at fixed
intervals. Clearly, the given call sequence is not a possible execution sequence of the
Learn New Secrets protocol, because two agents will never call each other twice in an
execution sequence of the Learn New Secrets protocol. But the given call sequence is a
possible execution sequence of the Known Information Growth de Re protocol. Consider
the point of view of agent b. After the initial call ab, agent b is not involved in the two
subsequent calls (since the system is synchronous, it knows that it missed two calls).
The second and third calls must therefore have been among a, d and c. At the fourth
round, the following histories are then possible from the perspective of agent b—for now,
in order to keep the following list of possible histories brief, let us identify calls ab with
ba:

ab; ac; ad (i)

ab; ac; cd (ii)

ab; ad; ac (iii)

ab; ad; cd (iv)

ab; cd; ac (v)

ab; cd; ad (vi)

Now, the fourth round call is between agent a and agent b. So following each of the
histories in cases (i) through (vi), agent b will learn new secrets from agent a in the
fourth round call: namely C,D in (i), C in (ii), C,D in (iii), D in (iv), C,D in (v),
and C,D in (vi). Therefore, agent b knows that there is a secret (namely C or D) that
it will learn by calling agent a again. Thus, the epistemic calling condition of Known
Information Growth de Dicto is satisfied for agent b to call agent a in the fourth round.
However, agent b does not know that it will learn secret C by calling agent a, and agent
b also does not know that it will learn secret D by calling agent a. So, it is not the case
that there is a secret such that agent b knows that it will learn that secret by calling
agent a. Therefore, the epistemic calling condition of Known Information Growth de Re
is not satisfied for agent b to call agent a in the fourth round.

Although we chose, for the sake of brevity, to identify calls ab and ba in the foregoing
example of possible histories for agent b, note however that in reasoning about possible
histories of a protocol it is important to distinguish between such symmetric calls. The
reason is that there are situations where the call ab, for example, may not be possible,
that is, the calling condition for agent a to initiate a call to agent b does not hold,
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although the call ba is possible. To illustrate this point, consider the following example
execution sequence of Learn New Secrets: bc; ac. In the third round, agent a can no
longer call agent b since agent a already knows the secret of agent b. But agent b can
call agent a in the third round since at that point agent b does not yet know the secret
of agent a.

Many more variations of epistemic gossip protocols are possible, for example, (i)
epistemic gossip protocols with uncertainty over the number of calls that have taken place
(asynchronous systems), such that only after the fourth call in the sequence ab; cd; ac; ab

does agent b learn that two intervening calls must have taken place after its first call
with agent a; and (ii) epistemic gossip protocols for rounds of parallel calls, wherein, for
five agents a, b, c, d, e, agent e learns that two calls must be taking place in a given round
when it finds every other agent engaged (so it is unable to distinguish rounds {ab, cd},
{ac, bd}, {ad, bc}). We do not explore protocols with parallel calls in this thesis, nor do
we investigate asynchronous systems.

3.3 Knowledge and Gossip

What sort of knowledge do the agents obtain in these gossip protocols? This becomes
interesting if we do not only consider what agents know about the secrets but also
consider what they know about each other. In this section, we give an informal overview
of: knowledge in the initial state of information (wherein every agent only knows its own
secret), the change of knowledge due to a call between two agents, and the knowledge
conditions after termination of a protocol.

Initial State of Information We can represent the uncertainty of the agents about
their secrets in a kind of multi-agent Kripke model, namely, an epistemic model† (see
Section 2.1.1 for some background on Kripke models). Let us consider agent a’s secret
as a proposition A of which the value is initially only known by agent a. So we depict a
model for a scenario consisting of three agents a, b, c and at the initial state of information
(or initial gossip situation) as shown in Figure 3.1, where a node like 011 stands for ‘A
is false and B is true and C is true’ (in the order 〈a, b, c〉 the digits 0 and 1 stand for the
value of the propositions A,B,C, respectively).

This is a rather standard kind of situation in epistemic logic. The secret of an agent is
its local state, and every agent only knows its local state (and this is common knowledge).
For example, in state 011 we have that agent a knows that A is false (because A is false
in 011, 010, 001 and 000, the four states considered possible by a), and that agent b
knows that B is true and that agent c knows that C is true. We can also represent the
distribution of secrets over agents as a list (or, as a function from agents to subsets of
the set of all secrets). The situation in Figure 3.1 is succinctly represented by A.B.C,
whereas the situation in Figure 3.2 is represented as AB.AB.C.
†Note that in the graphical depiction of S5 models throughout this thesis we omit the reflexive and

transitive accessibility links for the sake of visual clarity.
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Figure 3.1: The uncertainty of agents about the secrets at the initial gossip
situation.
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Figure 3.2: Epistemic model for the gossip situation AB.AB.C.

Executing a Phone Call Let us now execute a telephone call in this setting. We get
from A.B.C to AB.AB.C by executing the call ab. What sort of dynamics is a telephone
call? A telephone call is a very different form of communication than an announcement
in the presence of other agents. An announcement is public. This means that, after
agent a says ‘The old name of Chennai is Madras’ in the presence of agent b and agent c,
then agent b knows that the old name of Chennai is Madras, but agent c also knows that
agent b knows that, and agent a knows that agent c knows that agent b knows that, and
so on. The information that the old name of Chennai is Madras, is common knowledge
between the three agents. But if first agent a calls agent b to tell him that, and then
agent b calls agent c, all three know that the old name of Chennai is Madras, but it is
not common knowledge. It is even impossible that this becomes common knowledge if
nothing is known about the timing of the phone calls [67, Section 2.3].

Instead of the mere transition for the call ab we list those for the sequence ab; ac; bc.
The corresponding transitions between the gossip situations, that is, the list of who
knows what secrets are as follows (the same transitions are depicted in Figure 3.3):

A.B.C
ab→ AB.AB.C

ac→ ABC.AB.ABC
bc→ ABC.ABC.ABC

Now here is an obvious but surprising observation. Having first explained that calls
do not create common knowledge of the secrets, after all, at the end of the execution
sequence ab; ac; bc, there is common knowledge that all three agents know all the secrets.
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We can understand this as follows: the agents have common knowledge what protocol is
being carried out (the agents also have common knowledge about the number of agents
in the scenario). In this case, the call sequence could be an execution sequence of the
Fixed Schedule, but also an execution sequence of the Learn New Secrets protocol. On
the assumption of synchronisation, if there are three agents and the second call is ac,
then agent b knows that the call ac—or ca—is taking place, because that is the only
call that it is not involved in. The agents know that after three steps all agents know
all secrets. In each step there is some change in common knowledge, that finally results
in common knowledge of all secrets. For any call sequence of the Fixed Schedule this
remains the case for more than four agents, under conditions of synchronicity and when
we then assume that there is common knowledge which call sequence is executed, and
with what time interval between calls - we could imagine the agents sitting around a
table and making the calls from there, in view of each other, but whispering, so that any
other person only notices that a call is made, but not what is said.
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Figure 3.3: Information transitions for the sequence of calls: ab; ac; bc.

Now consider four agents, and a call between agent a and agent b such that agent
c and agent d consider any other call possible that does not involve them. Although
the real transition is A.B.C.D ab→ AB.AB.C.D, agent c considers it possible that the
transition was A.B.C.D ad→ AD.A.C.AD. As we are here only interested in what secrets
are learnt from the call, we abstract from who initiates the call and who receives it, so
ab and ba are treated on a par, for now. So we get the transitions shown in the right
hand side of Figure 3.4. Let the transitions shown on the right hand side of Figure
3.4 be considered as a simple graphical depiction of a gossip model. Then, the unit of



Chapter 3. Epistemic Protocols for Gossip 36

A.B.C.D
ab→

AB.AB.C.D

A.BD.C.BD AC.B.AC.D

AD.B.C.AD A.BC.BC.D

A.B.CD.CD

d
c d

c

b
d

b

c

b

a

a

a

Figure 3.4: A gossip model after a call at the initial situation.

interpretation of a call is the combination of the gossip model and a designated gossip
situation, namely the result AB.AB.C.D of the ab call at the initial situation. Such a
gossip model also represents a multi-agent epistemic model, as we will shortly see.

Postconditions of Protocol Execution One outcome of executing a gossip protocol
could be that all the agents have general knowledge of all secrets, that is, every agent ai
knows the value of all secrets A,B, . . .—wherein we consider such secrets as propositional
variables with value true or false. Suppose that it is indeed the case that after executing
a gossip protocol the agents attain general knowledge of all secrets. Do they know
more than that? This depends somewhat on further assumptions. If we suppose that
the agents have common knowledge that the protocol is the Fixed Schedule, and if we
suppose a synchronous system, then after the last call of each execution sequence all the
agents have common knowledge that all secrets are general knowledge. This is because
each of the agents knows that for any possible execution sequence of the Fixed Schedule,
after 2n− 4 calls all the agents know all the secrets.

For an epistemic gossip protocol, it may not be the case that the secrets are common
knowledge after termination of the protocol. Take the Learn New Secrets protocol, and
four agents, and assume also that the system is synchronous. The executions consist of
between four and six calls (between 2n− 4 and n(n− 1)/2). What if general knowledge
is already obtained after four calls? The two agents not involved in that call do not
necessarily know that all the secrets are now general knowledge. In this case, ‘stuffing’
the protocol with a number of skip actions will still achieve common knowledge, after six
time steps.

Let us now proceed, in the next sections, to formalise the intuitions described so far.
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3.4 Logical Dynamics of Gossip

3.4.1 Languages and Structures

Let a finite set of n agents Ag = {a, b, . . . } and a corresponding set of secrets (proposi-
tional atoms) P = {A,B, . . . } be given. Recall (from Chapter 2) that upper case letters
(for example, A) denote the secrets of the agents denoted by the corresponding lower
case letters (for example, a).

Definition 3.1 (Language LK). We consider three modes µ ∈ {−, 0,+} of phone calls
abµ (see below Section 3.5). We define LK as:

LK 3 ϕ ::= A | ¬ϕ | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | (ϕ→ ϕ) | Kaϕ | [π]ϕ

π ::= ?ϕ | abµ | skip | (π ;π) | (π ∪ π) | π∗

where a 6= b ∈ Ag, and A ∈ P.

The program fragment π of the language LK adopts the usual Propositional Dynamic
Logic constructs (see [9, Section 1.2]). The construct [abµ]ϕ stands for ‘after a call of
mode µ between agents a and b, ϕ (is true)’. For (?ϕ ;π)∗ ; ?¬ϕ we may write ‘while
ϕ do π’. Epistemic protocols will be defined as such programs π but with additional
constraints. Informally, a protocol is a program that intends to get all agents to know
all secrets.

We also consider the languages LKw and L∗Kw . The language LKw ⊆ LK is such that
the atomic formulas are of the form KwaB, which is an abbreviation for the LK formula
KaB ∨ Ka¬B, meaning: ‘a knows b’s secret’, or ‘a knows whether B’. The language
L∗Kw ⊂ LKw uses only the static operators of LKw . The definition of the languages LKw

and L∗Kw are given below.

Definition 3.2 (Language LKw ). The language LKw is defined as follows:

LKw 3 ϕ ::= KwaB | ¬ϕ | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | (ϕ→ ϕ) | Kaϕ | [π]ϕ

π ::= ?ϕ | abµ | skip | (π ;π) | (π ∪ π) | π∗

Definition 3.3 (Language L∗Kw ). The language L∗Kw is defined as follows:

L∗Kw 3 ϕ ::= KwaB | ¬ϕ | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | (ϕ→ ϕ) | Kaϕ

Let us now present a set of definitions for the structures on which we will interpret
epistemic formulas for our gossip scenarios. We begin by re-presenting the definition of
epistemic model given in Chapter 2 as follows.

Definition 3.4 (Epistemic model). An epistemic model M is a tuple M = (S,∼, V )

such that:

• S is a non-empty set of possible worlds,
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• ∼ : Ag→ P(S × S) assigns an equivalence relation to each agent,

• V : S → P→ {0, 1} is a valuation for each s ∈ S.

If M = (S,∼, V ), rather than s ∈ S, we will also write s ∈ M . For ∼ (a) we write ∼a,
and for V (s) we write Vs. A pointed epistemic model is a pair (M, s) where s ∈ M . We
also consider multi-pointed epistemic models (M,S′), where S′ ⊆ S.

Epistemic models are also known as S5-models, and the S5 validities are well-known
(see Section 2.1.1; for further references, see [22]). The scenarios we envisage will only
use some specific S5-models.

Definition 3.5 (≡MQ ). Given an epistemic modelM = (S,∼, V ), and given some Q ⊆ P.
Then, for every pair s, t ∈ S, s ≡MQ t if and only if: Vs(A) = Vt(A) for all A ∈ Q.

With respect to notation, note that when the gossip situation M is clear from the
context, we will sometimes write ≡Q rather than ≡MQ .

Definition 3.6 (Gossip situation). An epistemic model M = (S,∼, V ) is a gossip situ-
ation if S = {sM | s ∈ {0, 1}|P|} (the domain consists of all valuations‡ ), and for every
a ∈ Ag, ∼a equals ≡Q for some Q ⊆ P with A ∈ Q. The initial (respectively terminal)
gossip situation is the situation in which, for all agents a, Q = {A} (respectively, Q = P).

See Figure 3.1 for a graphical illustration of an initial gossip situation for three agents.

Definition 3.7 (Gossip model). A gossip model is a pair G = (S,≈), where S is a set of
gossip situations and ≈ assigns to each agent an equivalence relation ≈a on S satisfying,
for all M = (S,∼M , V ) and N = (T,∼N ,W ):

M ≈a N iff ∃Q : ∼Ma = ≡MQ and ≡NQ = ∼Na (3.1)

A pointed gossip model is a pair (G,M) = ((S,≈),M), where M ∈ G. The initial gossip
model is the (singleton) gossip model consisting of the initial gossip situation.

A gossip situationM is a description of who knows which secret. In a gossip situation,
if ∼a equals ≡Q for Q ⊆ P, this means that agent a knows exactly the value of the secrets
in Q (as in Theorem 3.8). An alternative way to represent a gossip situation M is by
a function fM : Ag → P(P) where fM (a) denotes the secrets that are known by agent
a. So: M |= KwaD iff D ∈ fM (a). We may represent such a function as a list:
AB.ABC.ABC.D for instance is the function f where a knows the secrets A and B, b
knows A, B and C, etc.

We also can describe gossip models similarly: they can be represented as F = (F,≈)

where F is a set of functions Ag→ P(P) and ≈a an equivalence relation for every agent
‡Seeing states as abstract names we may still write VsM for the valuation in sM , although strictly

VsM = s. Furthermore, when it is clear, from the context, to which gossip situation s belongs we will
omit the subscript M and write s rather sM .
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a, defined by f ≈a g iff f(a) = g(a). An advantage of this functional representation is
its succinctness: Figure 3.4 gives an example.

So, whereas a gossip situation encodes that for each agent a there is a Q such that
agent a knows exactly the secrets in Q, a gossip model allows agents to be uncertain
which gossip situation is the actual one.

Semantics of the Static Operators of LK and LKw

The truth conditions for the static operators of the language LK on epistemic models are
the same as those for the operators of the language L on epistemic models, as given in
Section 2.1. We now present the truth conditions for the operators of the language L∗Kw

on gossip models, but before we do so we first present and prove a useful theorem. (Note
that the static operators of LKw are the same as the operators of L∗Kw , therefore the
truth conditions presented for the operators of L∗Kw are the same for the static operators
of LKw , on gossip models).

Theorem 3.8. Let M = (S,∼, V ) be a gossip situation, and s ∈ S, a ∈ Ag, B ∈ P, and
assume ∼a = ≡MQ . Then

M, s |= KwaB iff B ∈ Q

and, consequently,

(i) M, s |= KwaB iff M |= KwaB;

(ii) M, s |= ¬KwaB iff M |= ¬KwaB;

(iii) M |= KwaB or M |= ¬KwaB

Proof. From left to right, suppose M, s |= KwaB, i.e., M, s |= KaB ∨ Ka¬B. Now
suppose towards contradiction that B 6∈ Q. Consider the state t such that s ∼a t, and
Vs(X) 6= Vt(X) iff X = B (t only differs from s in that it assigns a different value to B).
Then s ≡MQ t, but then M, s |= ¬KaB ∧ ¬Ka¬B, contradicting our assumption. From
right to left is immediate: if B ∈ Q, then all states that a considers possible in s agree
on the value they assign to B, so we have M, s |= (B → KaB) ∧ (¬B → Ka¬B). Since
M, s |= B ∨ ¬B, we then obtain M, s |= KaB ∨Ka¬B.

For (i), from the foregoing, given s ∈ S, we obtainM, s |= KwaB iff B ∈ Q iffM, t |=
KwaB, for any t ∈ S, from which we indeed obtain M, s |= KwaB iff ∀t M, t |= KwaB

iff M |= KwaB. For (ii), right to left is immediate as well, and for the other direction,
note that M, s |= ¬KwaB implies B 6∈ Q, and hence M, t |= ¬KwaB for any t.

For (iii), we have from (i) that M, s |= KwaB iff M |= KwaB iff B ∈ Q. Also, from
the main proposition and by contraposition, we have thatM, s |= ¬KwaB iff B /∈ Q, and
from (ii) we have that M, s |= ¬KwaB iff M |= ¬KwaB. Therefore M |= ¬KwaB iff
B /∈ Q. Since either B ∈ Q or B /∈ Q, we then obtainM |= KwaB orM |= ¬KwaB.

The above theorem says that, if we are interested in who knows which secret, a gossip
situation is an appropriate level of abstraction to reason about that. In particular, item
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(iii) above indicates that a gossip situation, even if it is a collection of states (valuations),
can be conceived of as a ‘state’ on itself. This item also justifies the first clause in the
next truth definition.

Definition 3.9 (Interpretation of the formulas of L∗Kw on gossip models). Let (G,M) be
a pointed gossip model, where G = (S,≈). We inductively define the conditions under
which a formula ϕ ∈ L∗Kw holds in (G,M), as follows:

G,M |=g KwaB iff M |= KwaB

G,M |=g ¬ϕ iff G,M 6|=g ϕ

G,M |=g ϕ ∧ ψ iff G,M |=g ϕ and G,M |=g ψ

G,M |=g ϕ ∨ ψ iff G,M |=g ϕ or G,M |=g ψ

G,M |=g ϕ→ ψ iff G,M |=g ¬ϕ or G,M |=g ψ

G,M |=g Kaψ iff G,N |=g ψ for every N such that M ≈a N

If a formula ϕ ∈ L∗Kw holds in (G,M) for allM ∈ S, then we writeG |=g ϕ. Alternatively,
we say that ϕ is valid in G. If a formula ϕ ∈ L∗Kw is valid in all gossip models, we write
|=g ϕ.

Notation. Having defined the relation ‘|=g’ in the foregoing definition, we will however
henceforth adopt the simpler notation ‘|=’ when it is clear from the context that a given
formula ϕ is being interpreted on a gossip model. Specifically, we will write G,M |= ϕ

for G,M |=g ϕ, and write G |= ϕ for G |=g ϕ (likewise, we will write G,M 6|= ϕ for
G,M 6|=g ϕ, and write G 6|= ϕ for G 6|=g ϕ), but we will retain the notation ‘|=g’ when
we intend to express that a formula ϕ is valid in all gossip models, in which case we will
still write |=g ϕ.

3.4.2 Logical Properties of Gossip Models and Gossip Situations

We now present and prove some of the properties of gossip models and gossip situations.
We begin with some elementary validities on gossip situations as follows.

Proposition 3.10. Let G = (S,≈), and letM,N ∈ S. Suppose ∼Ma =≡MQ and ∼Na =≡NQ ,
for some Q ⊆ P and for a ∈ Ag. Then

G,M |= KwaB if and only if G,N |= KwaB

Proof.
G,M |= KwaB ⇐⇒ M |= KwaB (Definition 3.9)
M |= KwaB ⇐⇒ B ∈ Q (Theorem 3.8)

Likewise,
G,N |= KwaB ⇐⇒ N |= KwaB

N |= KwaB ⇐⇒ B ∈ Q
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Therefore,
G,M |= KwaB ⇐⇒ B ∈ Q ⇐⇒ G,N |= KwaB

So we conclude that:

G,M |= KwaB ⇐⇒ G,N |= KwaB

Corollary 3.11. Let G = (S,≈) and M,N ∈ S. Suppose M ≈a N , for some a ∈ Ag.
Then:

G,M |= KwaB if and only if G,N |= KwaB

Proof. The proof of Corollary 3.11 follows from Definition 3.7 and Proposition 3.10.

Corollary 3.11 tells us that if an agent considers two gossip situations to be equivalent,
then it knows the same secrets in both gossip situations.

Proposition 3.12. If M is a gossip situation and ϕ ∈ L∗Kw , then M |= ϕ or M |= ¬ϕ.

Proof. We need to show that if a formula ϕ ∈ L∗Kw is not valid in a gossip situation,
then ¬ϕ is valid in that situation. Now let M = (T,∼, V ) be any gossip situation. We
proceed by induction on ϕ ∈ L∗Kw .

Base Case: ϕ is KwaB. This follows from (the proof of) Theorem 3.8, that is, we have
that:

M |= KwaB or M |= ¬KwaB

Inductive Hypothesis For every ϕ′∈L∗Kw , it is the case that:

M |= ϕ′ or M |= ¬ϕ′

Inductive Step Let ϕ′, ϕ′′∈L∗Kw . We distinguish the following cases.

Case ϕ is ¬ϕ′. This case is straightforward from the inductive hypothesis:

M |= ϕ′ or M |= ¬ϕ′

Case ϕ is (ϕ′ ∧ ϕ′′). By the inductive hypothesis:

(M |= ϕ′ or M |= ¬ϕ′) and (M |= ϕ′′ or M |= ¬ϕ′′)

We will consider then four possible cases as a result of the inductive hypothesis:
(i) M |= ϕ′ and M |= ϕ′′, (ii) M |= ϕ′ and M |= ¬ϕ′′, (iii) M |= ¬ϕ′ and M |= ϕ′′,
and (iv) M |= ¬ϕ′ and M |= ¬ϕ′′.

From propositional logic, cases (i)-(iv) can be written correspondingly as follows:
(i) M |= ϕ′ ∧ ϕ′′ (ii) M |= ϕ′ ∧ ¬ϕ′′ (iii) M |= ¬ϕ′ ∧ ϕ′′ (iv) M |= ¬ϕ′ ∧ ¬ϕ′′.
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For Case (i), obviously, M |= ϕ′ ∧ϕ′′ if and only if M |= ϕ. And, each of the cases
(ii), (iii) and (iv) implies that M |= ¬(ϕ′ ∧ ϕ′′), which is equivalent to M |= ¬ϕ
(by the assumption on ϕ).

Case ϕ is Kaϕ
′. By the inductive hypothesis, M |= ϕ′ or M |= ¬ϕ′. Now, since only

one of ϕ and ¬ϕ′ can hold in the same M , let us consider the following two cases.
First, suppose that it is the case that M |= ϕ′. Then for every s ∈ M , we have
that M, s |= ϕ′ holds. But then it also holds that for every s, t ∈M , s ∼a t implies
M, t |= ϕ′, which is equivalent to M, s |= Kaϕ

′ (from the semantics of the ‘Ka’
operator). And since M, s |= Kaϕ

′ for all s ∈ M , we conclude that M |= Kaϕ
′

holds, which is equivalent to M |= ϕ (by the assumption on ϕ).

For the second case, suppose that M |= ¬ϕ′. Then, similar to the foregoing argu-
ment, M |= Ka¬ϕ′, which implies that M |= ¬Kaϕ

′ (from the semantics of the
‘Ka’ operator). And so we conclude that M |= ¬ϕ (by the assumption on ϕ).

This concludes the inductive argument.

Proposition 3.13. Let M = (S,∼, V ) be a gossip situation, and let ϕ ∈ L∗Kw . Then:
M |= Kaϕ→ KbKaϕ, for a ∈ Ag.

Proposition 3.13 says that in a gossip situation all knowledge is public. We give the
proof of this proposition below.

Proof of Proposition 3.13. From Proposition 3.12 we know that M |= Kaϕ or M |=
¬Kaϕ. Now suppose M |= Kaϕ. That is M, t |= Kaϕ, for all t ∈ M . Now take s ∈ M ,
and any u such that s ∼b u. Since M,u |= Kaϕ, we have that M, s |= KbKaϕ (from the
semantics of ‘Kb’ operator).

On the other hand, suppose M |= ¬Kaϕ. We then obtain by propositional logic that
M |= Kaϕ→ KbKaϕ.

Proposition 3.14. A gossip model is an epistemic model.

Proof. Each gossip model G gives rise to an epistemic model E(G) = (J,∼, X) where:

• J = {sM |M = (S,∼, V ) ∈ S and s ∈ S};

• sM ∼a tN with M = (S,∼M , V ), N = (T,∼N , U) iff there are vM and uN such
that Vv = Uu, s ∼Ma v, t ∼Na u, and M ≈a N (†)

• XsM = Vs (††)

We show the following:

1. If sM ∼a tN , then there is a set of atoms Q ⊆ P such that XsM (A) = XtN (A) for
all A ∈ Q.

2. If s ∼Ma v then sM ∼a vM
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3. ∼a is an equivalence relation.

1. Take sM , tN ∈ J with sM ∼a tN . It implies that there are vM and uN such that
Vv = Uu, s ∼Ma v, t ∼Na u and M ≈a N . The later implies that there is some Q ⊆ P

such that ∼Ma =≡MQ and ≡NQ =∼Na (from Definition 3.7). Now, let A ∈ Q. We have:

XsM (A) = Vs(A) (by (††))
= Vv(A) (since ∼Ma =≡MQ and s ∼Ma v)

= Uu(A) (since Vv = Uu)

= Ut(A) (since ∼Na =≡NQ and u ∼Na t)

= XtN (A) (by (††))

2. We now show that s ∼Ma v implies sM ∼a vM . This follows directly from the
definition of ∼a: take M = N , t = u = v ∈ S, then we get Vt = Uu, s ∼Ma t,
v ∼Na u (from the reflexivity of ∼Na ), and M ≈a N , and hence, by (†), we have
sM ∼a vM .

3. Reflexivity of ∼a follows directly from Item 2: from s ∼Ma s, we obtain sM ∼a sM .
From Item 1 it is also clear that ∼a is symmetric. For transitivity, suppose for
M = 〈S,∼M , V 〉, N = 〈T,∼N , U〉 and O = 〈W,∼O, Z〉 we have sM ∼a tN and
tN ∼a wO. This gives us:

∃s′M , t′N s.t. (i) Vs′ = Ut′ , (ii) s ∼Ma s′, (iii) t ∼Na t′, and (iv) M ≈a N, and

∃τ ′N , ω′O s.t. (v) Uτ ′ = Zω′ , (vi) t ∼Na τ ′, (vii) w ∼Oa ω′, and (viii) N ≈a O

We need to show that we also have that sM ∼a wO. Since by definition, a gossip
situation contains all possible valuations for the secrets, there is a w′ ∈W for which
Vs′ = Zw′ . Note that, by (iv) and (viii) and by Definition 3.7, there is some Q ⊆ P

such that in each of the three gossip situations, two points are indistinguishable for
a iff they agree on the valuation of atoms in Q (in particular, we obtain M ≈a O).
Take an arbitrary A ∈ Q. Then obviously Vs′(A) = Zw′(A). Moreover,

Vs(A) = Vs′(A) (since s ∼Ma s′)

= Ut′(A) (by (i))

= Ut(A) (by (iii))

= Uτ ′(A) (by (vi))

= Zω′(A) (by (v))

= Zw(A) (by (vii)

We conclude that for all A ∈ Q, Zw(A) = Zw′(A). In sum, we now have:

Vs′ = Zw′ , s ∼Ma s′, w ∼Oa w′, and M ≈a O,

which allows us to conclude sM ∼a wO.
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The pointed gossip model (G,M) corresponds to the multi-pointed epistemic model
(E(G), S), where S is the domain of M .

Proposition 3.15. Let (G,M) be a gossip model and ϕ ∈ L∗Kw . Then

G,M |= ϕ⇐⇒ E(G), S |= ϕ

where E(G) = (J,∼, X) is as in Proposition 3.14, G = (S,≈), M = (S,∼M , V ), and S
is equal to the domain of M .

Proof. Let sM , tM ∈ S, where M ∈ S. We begin with proofs of some ancillary items, as
follows:

1. sM ∼a tM if and only if s ∼Ma t

2. E(G), S |= KwaB if and only if E(G), sM |= KwaB if and only if M |= KwaB

3. E(G), S |= ¬KwaB if and only if E(G), sM |= ¬KwaB if and only if M |= ¬KwaB

4. E(G), S |= KwaB or E(G), S |= ¬KwaB

The proofs of Items 1 through 4 are as follows.

1. We first show the following:

• E(G), sM |= KwaB if and only if XsM (B) = XtM (B) for all tM such that
sM ∼a tM
• M, s |= KwaB if and only if Vs(B) = Vt(B) for all t such that s ∼Ma t

E(G), sM |= KwaB ⇐⇒ E(G), sM |= KaB ∨Ka¬B (♦)

⇐⇒ E(G), sM |= KaB

or E(G), sM |= Ka¬B
⇐⇒ E(G), tM |= B ∀tM such that sM ∼a tM
or E(G), tM |= ¬B ∀tM such that sM ∼a tM
⇐⇒ XtM (B) = 1 ∀tM such that sM ∼a tM
or XtM (B) = 0 ∀tM such that sM ∼a tM
⇐⇒ XsM (B) = XtM (B) ∀tM such that sM ∼a tM

Similarly,

M, s |= KwaB ⇐⇒ M, s |= KaB ∨Ka¬B (♦♦)

⇐⇒ M, s |= KaB

or M, s |= Ka¬B
⇐⇒ M, t |= B ∀t such that s ∼Ma t

or M, t |= ¬B ∀t such that s ∼Ma t

⇐⇒ Vt(B) = 1 ∀t such that s ∼Ma t

or Vt(B) = 0 ∀t such that s ∼Ma t

⇐⇒ Vs(B) = Vt(B) ∀t such that s ∼Ma t
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We now come to the left-to-right proof of Item 1. Suppose sM ∼a tM . From the
definition of ∼a given in Proposition 3.14, we obtain that:

sM ∼a tM if and only if there exists some v ∈ M and some u ∈ M such
that Vv = Vu, s ∼Ma v and t ∼Ma u and M ≈a M (†)

Since the domain of M is the set of all valuations for the atoms in P, then Vv = Vu

implies v = u. Therefore we have that s ∼Ma v and t ∼Ma u imply s ∼Ma t (recall
that ∼Ma is an equivalence relation).

For the right-to-left proof of Item 1: s ∼Ma t implies sM ∼a tM follows directly
from the definition of ∼a: suppose s ∼Ma t, then from (†) take v = t = u ∈M , then
we get Vv = Vu, s ∼Ma v, t ∼Ma u and M ≈a M , and hence we have sM ∼a tM .

2. From (♦), (♦♦) and Item 1, and given that XsM = Vs for all sM ∈ S, we conclude
that:

E(G), sM |= KwaB ⇐⇒ M, s |= KwaB

⇐⇒ M |= KwaB (from Theorem 3.8)
⇐⇒ M, s |= KwaB for every s ∈ S
⇐⇒ E(G), sM |= KwaB for every sM ∈ S
⇐⇒ E(G), S |= KwaB

(‡)

3. Similar to Item 2, we obtain the following:

E(G), sM |= ¬KwaB ⇐⇒ M, s |= ¬KwaB (contraposition on (‡),
truth conditions for ‘¬’)

⇐⇒ M |= ¬KwaB (from Theorem 3.8)
⇐⇒ M, s |= ¬KwaB for every s ∈ S
⇐⇒ E(G), sM |= ¬KwaB for every sM ∈ S
⇐⇒ E(G), S |= ¬KwaB

(‡‡)

4. From Item 2 and Item 3 we have, respectively, M |= KwaB ⇐⇒ E(G), S |= KwaB

and M |= ¬KwaB ⇐⇒ E(G), S |= ¬KwaB. But from Theorem 3.8 we know
that M |= KwaB or M |= ¬KwaB. Hence we see also that E(G), S |= KwaB or
E(G), S |= ¬KwaB.

To prove the main proposition, we now proceed with the base cases of the inductive
proof on ϕ,ψ ∈ L∗Kw .

Base Case 1: ϕ is KwaB.

G,M |= KwaB ⇐⇒ M |= KwaB (from Definition 3.9)
⇐⇒ E(G), S |= KwaB (from (‡))
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Base Case 2: ϕ is ¬KwaB.

G,M |= ¬KwaB ⇐⇒ M |= ¬KwaB (from Definition 3.9)
⇐⇒ E(G), S |= ¬KwaB (from (‡‡))

Inductive Hypothesis For every ϕ′∈L∗Kw , it is the case that:

1. G,M |= ϕ′ ⇐⇒ E(G), S |= ϕ′

2. G,M |= ¬ϕ′ ⇐⇒ E(G), S |= ¬ϕ′

Inductive Step Let ϕ′, ϕ′′∈L∗Kw . We distinguish the following cases.

Case ϕ is ¬ϕ′. This case is immediate from the inductive hypothesis.

Case ϕ is (ϕ′ ∧ ϕ′′). By the inductive hypothesis:

G,M |= ϕ′ ⇐⇒ E(G), S |= ϕ′ and G,M |= ϕ′′ ⇐⇒ E(G), S |= ϕ′′.

Therefore, G,M |= (ϕ′ ∧ ϕ′′)⇐⇒ E(G), S |= (ϕ′ ∧ ϕ′′) (by propositional logic).

Case ϕ is Kaϕ
′. For the left-to-right case of the proposition, suppose that G,M |=

Kaϕ
′. Now,

G,M |= Kaϕ
′ ⇐⇒ G,N |= ϕ′ for every N ∈ S such that M ≈a N

(Definition 3.9)
⇐⇒ E(G), T |= ϕ′ for every N ∈ S such that M ≈a N,

where T is the domain of N
(from the inductive hypothesis)

⇐⇒ E(G), sN |= ϕ′ for every N ∈ S such that M ≈a N,
and for every sN ∈ T where T is the

domain of N
(‡‡‡)

Now, let X = {s | s ∈ N ′ ∈ S, and M ≈a N ′} and Y = {t | s ∼a t, where s ∈
M and t ∈ N ′ ∈ S}, then we see that Y ⊆ X (the reason is from the definition
of ∼a in Proposition 3.14 in which we have that whereas M ≈a N is a necessary
condition for s ∼a t, it is not a sufficient condition for s ∼a t). But from (‡‡‡) we
have that for every sN such that sN ∈ X , it is the case that E(G), sN |= ϕ′. So,
from the foregoing, it follows that for every sN such that sN ∈ Y, it is also the
case that E(G), sN |= ϕ′. That is, E(G), sN |= ϕ′ for every sM ∈ S and for every
sN ∈ J such that sM ∼a sN . And from the semantics of ‘Ka’ on epistemic models
(see Definition 2.4) we therefore obtain:

for every sM ∈ S, E(G), sM |= Kaϕ
′ ⇐⇒ E(G), S |= Kaϕ

′
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On the other hand, for the right-to-left case of the proposition, suppose that
E(G), S |= Kaϕ

′, where M = (S,∼M , V ). Now,

E(G), S |= Kaϕ
′ ⇐⇒ E(G), sM |= Kaϕ

′ for every sM ∈ S
⇐⇒ E(G), tN |= ϕ′ for every sM ∈ S, and for every

tN ∈ J such that sM ∼a tN
(Definition 2.4)

(†††)

Now consider an arbitrary N = (T,∼N , U) such that M ≈a N . For each sM ∈ S,
there is a unique sN ∈ T such that VsM = UsN (from the definition of E(G) in
Proposition 3.14; note also that from the same definition and for such sN we have
also that XsM = XsN since X = V = U), and for such sN we also have that
sM ∼a sN (the reason is that since XsM = XsN then there is some v ∈ S (namely,
sM ) and some u ∈ T (namely, sN ) such that sM ∼Ma v, sN ∼Na u and Vv = Uu;
therefore since we have thatM ≈a N , then we obtain sM ∼a sN (see the definition
of E(G) in Proposition 3.14)).

Furthermore, since the set of valuations of all the worlds in any gossip situation
is equal to the set of all valuations for the atoms in P, where P is the set of all
secrets in the scenario, and since |S| = |T | = 2|P |, then we have that for every
world t′N ∈ T , there is a unique world sM ∈ S such that Ut′N = VsM = Xt′N

= XsM

and sM ∼a t′N . And since for all tN ∈ J (for any N) such that sM ∼a tN we
have that E(G), tN |= ϕ′ (from (†††)), then we also have that for all t′N ∈ T that
E(G), t′N |= ϕ′. That is, E(G), T |= ϕ′.

Since in the foregoing we considered an arbitrary N such that M ≈a N , we then
also obtain that E(G), T |= ϕ′ for all N such that M ≈a N , where T is the
domain of N . But from the inductive hypothesis, this is equivalent to saying that
G,N |= ϕ′ for an arbitrary N such that M ≈a N , and from the semantics of ‘Ka’
on gossip models (see Definition 3.9), this is equivalent to G,M |= Kaϕ

′.

From the foregoing left-to-right and right-to-left cases, we then conclude that:
G,M |= Kaϕ

′ if and only if E(G), S |= Kaϕ
′, which then concludes the inductive

argument.

3.5 Semantics of Calls and Protocols

We now proceed to define the interpretation of calls between two agents a and b, and
the interpretation of protocols consisting of such calls. We first consider calls, and then,
protocols. We distinguish three modes of calls, ab− (public, synchronous), ab0 (private,
synchronous) and ab+ (private, asynchronous). Given such a call, the agents a and b are
the callers and all other agents are the non-callers. Note that we always assume that
any such callers a and b are two different agents.
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The ab− call models a telephone call in the ‘traditional’ network systems setting of
gossiping protocols [30]: it is common knowledge between all agents that a and b are
making a call, but the non-callers may not know the value of the secrets the callers
exchange. We could say that all agents are sitting in a circle round a table, so the
non-callers can observe the callers, but we imagine the callers to talk softly, so that the
non-callers cannot hear what the callers say. They only know that the callers exchange
all secrets they know.

The ab0 call models a telephone call between a and b where the non-callers may
not know who are making a call. But they know that a call is made. (The system is
synchronised.) For example, given four agents a, b, c, d, when a and b are making a call,
then c considers it possible that the call was between a and d, or between b and d; c only
knows that it was not involved in the call itself.

The ab+ call is like ab0 but with the additional option that the non-callers consider
it possible that no call took place at all (the skip action).

Definition 3.16 (Call in a gossip situation). Let M = (S,∼, V ) be a gossip situation
and ψ ∈ LKw. Then:

M |= [abµ]ψ iff Mab |= ψ

M |= [skip]ψ iff M |= ψ

where µ ∈ {−, 0,+} and Mab = (S,∼′, V ) such that ∼′a = ∼′b = ∼a ∩ ∼b, and for all
c 6= a, b, ∼′c = ∼c.

The action of calling has no precondition. Two agents can always make a call. Their
distributed factual knowledge thus becomes shared between the two. This is the intersec-
tion of ∼a and ∼b in the definition. The mode µ of a call is irrelevant for its interpretation
in a gossip situation. The skip action has no informative or other consequences.

Lemma 3.17. Let M = (S,∼, V ) be a gossip situation. Suppose ∼a=≡Q1 and ∼b=≡Q2

then ∼a ∩ ∼b=≡Q1∪Q2.

Proof. Suppose ∼a=≡Q1 and ∼b=≡Q2 , where a, b ∈ Ag. That is, s ≡Q1 t if and only if
Vs(A) = Vt(A) for all A ∈ Q1; and s ≡Q2 t if and only if Vs(A′) = Vt(A

′), for all A′ ∈ Q2.
Now let ∼a ∩ ∼b=≡Q, then s ≡Q t if and only if Vs(A) = Vt(A) and Vs(A′) = Vt(A

′),
for all A ∈ Q1 and for all A′ ∈ Q2. But this is equivalent to saying that Vs(C) = Vt(C),
for all C ∈ Q1 ∪ Q2. We therefore conclude that Q = Q1 ∪ Q2.

Definition 3.18 (Semantics of calls in a gossip model). Let (G,M) be given, where
G = (S,≈) and M ∈ S. We define [[skip]] = {((G,M), (G,M))} and, for the modes of
call abµ, with µ ∈ {−, 0,+}:

[[abµ]] = {((G,M), (Gcallµ,Mab))}
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where (for all modes µ) Gcallµ = (Sµ,≈µ), such that

S− = {Nab | N ∈ S}
S0 = {N cd | N ∈ S and c 6= d ∈ Ag}
S+ = S0 ∪ S

and (see Definition 3.7) for any N,N ′ ∈ Sµ: N ≈µa N ′ if and only if there is a Q ⊆ P

such that ∼Na = ≡NQ and ≡N ′Q = ∼N ′a . For the actions α ∈ {skip, call−, call0, call+}, we
then define G,M |= [α]ϕ if and only if for all ((G,M), (G′,M ′)) ∈ [[α]], (G′,M ′) |= ϕ.

Definition 3.19 (Interpreting complex programs). The interpretation of calls on pointed
gossip models (G,M) of Definition 3.18 is lifted to arbitrary programs π in a standard
way, where again we take into account that for all ϕ ∈ LKw , either ϕ or ¬ϕ is a model
validity on a gossip situation: M |= [π]ψ if and only if for all M ′ such that M [[π]]M ′,
M ′ |= ψ.

[[?ϕ]] = {((G,M)(G,M))} iff G,M |= ϕ

[[?ϕ]] = ∅ iff G,M |= ¬ϕ
[[π;π′]] = [[π]] · [[π′]]
[[π ∪ π′]] = [[π]] ∪ [[π′]]

[[π∗]] = [[π]]∗

As a result of a call ab−, for each existing gossip situation in a gossip model we get
exactly one new gossip situation, namely the one in which a and b have exchanged their
information. A call ab0 has as a result that we have to consider the execution of any call
between two agents in every gossip situation, not only the call between a and b in the
actual gossip situation M . Thus, given n agents, the number of gossip situations in the
resulting gossip model due to a call is n(n− 1) times the number of gossip situations in
the gossip model before the call, with each of the resulting gossip situations being the
result of one particular call between two agents (note that we distinguish, for example,
between the call ab0 and the call ba0). For ab+ we also need to take the gossip situation
in which nothing happened into account.

3.5.1 Logical Properties of a Call in a Gossip Model

We now present some logical properties due to a call in a gossip model.

Proposition 3.20. Let a, b, c ∈ Ag, and D ∈ P. Let:

LβKw 3 ϕ ::= β | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | Kaϕ

Lβ 3 β ::= KwaB | ¬β | (β ∧ β)

(Recall the equivalences β1 ∨ β2 ⇔ ¬(¬β1 ∧ ¬β2) and β1 → β2 ⇔ ¬(β1 ∧ ¬β2).)
Let ϕ ∈ LβKw , and let µ, µ′ ∈ {−, 0,+}. Then:

1. G |= [abµ]Kw cD ↔ [abµ
′
]Kw cD
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2. G |= [ab0]ϕ→ [ab−]ϕ

3. G |= [ab+]ϕ→ [ab−]ϕ

4. G |= [ab−]ϕ↔ [ab0]ϕ if |Ag| = 3

Proposition 3.20 does not apply to general epistemic postconditions Kcψ; we have for
instance that [ab0]Kcψ → [ab−]Kcψ is not valid on gossip models: take ψ = ¬KcKwbA.
The first item of this proposition says that the secrets one knows do not depend on the
mode of call. None of the reversed implications of 1 and 2 of Proposition 3.20 is valid
on gossip models. For example, take a scenario with four agents a, b, c, d with respective
secrets A,B,C,D. Suppose an ab− call is made at the initial gossip situation. After
such an ab− call, agent c knows that agent a knows secret B. But after an ab0 call at the
initial gossip situation, agent c considers it possible that agent a does not know secret
B since agent c considers it possible that the call may have been, for example, between
agent a and agent d. The same example also demonstrates that the reverse implication
of Proposition 3.20(2) is not valid on gossip models.

We first prove the following general result.

Theorem 3.21. Let G = (S,≈) and H = (S ′,≈′) be gossip models, such that M ∈ S ′ ⊆
S. Then

∀ϕ ∈ LβKw G,M |= ϕ⇒ H,M |= ϕ

Proof. First of all, note that ≈′a = ≈a ∩ (S ′ × S ′): Suppose M,N ∈ S ′, then, by
definition,

M ≈′a N iff ∃Q ⊆ P(∼Ma = ≡MQ and ∼Na = ≡NQ ) iff M ≈a N

We now prove the theorem with induction on ϕ ∈ LβKw , starting with formulas β ∈ Lβ .
For such formulas, we even prove the stronger

G,M |= β ⇔ H,M |= β (3.2)

First, suppose β = KwaB. Then: G,M |= KwaB iff M |= KwaB iff H,M |= KwaB

(all what is used here, is Definition 3.9). For β being a conjunction β1∧β2, or a negation
¬β1, (3.2) immediately follows from the inductive hypothesis that the theorem is proven
for β1 and β2.

Moving on to LβKw , we have dealt with β, and conjunction and disjunction are immedi-
ate. So suppose the theorem proven for ϕ1 ∈ LβKw , and consider Kaϕ1. If G,M |= Kaϕ1,
by definition, we have that for all N ∈ S for which M ≈a N , G,N |= ϕ1. Let N ′ ∈ S ′

with M ≈′a N ′. We then know from the above that M ≈a N ′, and since the inductive
hypothesis gives us H,N ′ |= ϕ1, we conclude H,M |= Kaϕ1.
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Proof of Proposition 3.20(1). Let G = (S,≈).

G |= [abµ]Kw cD ↔ [abµ
′
]Kw cD ⇐⇒ for every M ′ ∈ S :

G,M ′ |= [abµ]Kw cD ↔ [abµ
′
]Kw cD

Let M = (T,∼M , V ) be an arbitrary gossip situation in S. Then:

G,M |= [abµ]Kw cD ↔ [abµ
′
]Kw cD ⇐⇒ G,M |= [abµ]Kw cD iff G,M |= [abµ

′
]Kw cD

(from the semantics of ‘↔ ’)
⇐⇒ Gcallµ,Mab |= Kw cD iff Gcallµ′ ,Mab |= Kw cD

(from Definition 3.18)

for every (Gcallµ,Mab) and (Gcallµ′ ,Mab) such that ((G,M), (Gcallµ,Mab)) ∈ [[abµ]]

and ((G,M), (Gcallµ′ ,Mab)) ∈ [[abµ
′
]], and µ, µ′ ∈ {−, 0,+}, where, from Defini-

tion 3.18:

Gcall− = (S−,≈−) and S− = {Nab | N ∈ S};
Gcall0 = (S0,≈0) and S0 = {N cd | N ∈ S and c 6= d ∈ Ag};
Gcall+ = (S+,≈+) and S+ = {N cd | N ∈ S and c 6= d ∈ Ag} ∪ S;
and Nab = (T,∼Nab

, V ), and N cd = (T,∼Ncd
, V ).

Now, Gcallµ,Mab |= Kw cD iff ∃Q : ∼Mab

c =≡Mab

Q and D ∈ Q (see Definition 3.6). But
Mab ∈ S− ∩ S0 ∩ S+. So Gcallµ,Mab |= Kw cD iff Gcallµ

′
,Mab |= Kw cD, where µ ∈

{−, 0,+}. And we therefore conclude that:

G,M |= [abµ]Kw cD iff G,M |= [abµ
′
]Kw cD ⇐⇒ G |= [abµ]Kw cD ↔ [abµ

′
]Kw cD

where µ ∈ {−, 0,+}.

Proof of Proposition 3.20(2). Let G = (S,≈).

G |= [ab0]ϕ → [ab−]ϕ ⇐⇒ for every M ′ ∈ S : G,M ′ |= [ab0]ϕ → [ab−]ϕ

Let M = (T,∼M , V ) be an arbitrary gossip situation in S. Then:

G,M |= [ab0]ϕ→ [ab−]ϕ ⇐⇒ if G,M |= [ab0]ϕ then G,M |= [ab−]ϕ

(from the semantics of ‘→ ’)
⇐⇒ if Gcall0,Mab |= ϕ then Gcall−,Mab |= ϕ

(from Definition 3.18)

(‡)

for every (Gcall0,Mab) and (Gcall−,Mab) such that ((G,M), (Gcall0,Mab)) ∈ [[ab0]]

and ((G,M), (Gcall−,Mab)) ∈ [[ab−]], where, from Definition 3.18:

Gcall− = (S−,≈−) and S− = {Nab | N ∈ S};
Gcall0 = (S0,≈0) and S0 = {N cd | N ∈ S and c 6= d ∈ Ag};
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and Nab = (T,∼Nab
, V ), and N cd = (T,∼Ncd

, V ).

Now, notice that Mab ∈ S− ⊆ S0. Therefore, from Theorem 3.21 we see that (‡) holds.
And this leads to the conclusion that:

G |= [ab0]ϕ→ [ab−]ϕ

Proof of Proposition 3.20(3). Let G = (S,≈).

G |= [ab+]ϕ → [ab−]ϕ ⇐⇒ for every M ′ ∈ S : G,M ′ |= [ab+]ϕ → [ab−]ϕ

Let M = (T,∼M , V ) be an arbitrary gossip situation in S. Then:

G,M |= [ab+]ϕ→ [ab−]ϕ ⇐⇒ if G,M |= [ab+]ϕ then G,M |= [ab−]ϕ

(from the semantics of ‘→ ’)
⇐⇒ if Gcall+,Mab |= ϕ then Gcall−,Mab |= ϕ

(from Definition 3.18)

(‡)

for every (Gcall+,Mab) and (Gcall−,Mab) such that ((G,M), (Gcall+,Mab)) ∈ [[ab+]]

and ((G,M), (Gcall−,Mab)) ∈ [[ab−]], where, from Definition 3.18:

Gcall− = (S−,≈−) and S− = {Nab | N ∈ S};
Gcall+ = (S+,≈+) and S+ = {N cd | N ∈ S and c 6= d ∈ Ag} ∪ S;
and Nab = (T,∼Nab

, V ), and N cd = (T,∼Ncd
, V ).

Now, notice that Mab ∈ S− ⊆ S+. Therefore, from Theorem 3.21 we see that (‡) holds.
And this leads to the conclusion that:

G |= [ab+]ϕ→ [ab−]ϕ

Proof of Proposition 3.20(4). Let G = (S,≈) and let |Ag| = 3. Then:

G |= [ab−]ϕ ↔ [ab0]ϕ ⇐⇒ for every M ′ ∈ S : G,M ′ |= [ab−]ϕ ↔ [ab0]ϕ

Let M = (T,∼M , V ) be an arbitrary gossip situation in S. We show that:

G,M |= [ab−]ϕ↔ [ab0]ϕ (†)

We begin with the ‘=⇒’-direction of (†), as follows.

G,M |= [ab−]ϕ→ [ab0]ϕ ⇐⇒ if G,M |= [ab−]ϕ then G,M |= [ab0]ϕ

(from the semantics of ‘→ ’)
⇐⇒ if Gcall−,Mab |= ϕ then Gcall0,Mab |= ϕ

(from Definition 3.18)

(‡)
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for every (Gcall−,Mab) and (Gcall0,Mab) such that ((G,M), (Gcall−,Mab)) ∈ [[ab−]]

and ((G,M), (Gcall0,Mab)) ∈ [[ab0]], where, from Definition 3.18:

Gcall− = (S−,≈−) and S− = {Nab | N ∈ S};
Gcall0 = (S0,≈0) and S0 = {N cd | N ∈ S and c 6= d ∈ Ag};
and Nab = (T,∼Nab

, V ), and N cd = (T,∼Ncd
, V ).

We now proceed by induction on ϕ ∈ LβKw .

Base Cases on LβKw . Case ϕ is β ∈ Lβ.
We proceed by induction on β, as follows.

Base Case on Lβ.
We consider two base cases: β is KwaB and β is ¬KwaB.

Suppose β is KwaB. Then from (‡), this is the same as saying that if
Gcall−,Mab |= KwaB then Gcall0,Mab |= KwaB, for a, b ∈ Ag. The proof
follows from Proposition 3.20(1) which says that:

Gcallµ,Mab |= KwaB iff Gcallµ′ ,Mab |= KwaB

for a, b ∈ Ag and µ, µ′ ∈ {−, 0,+}

Therefore Gcall−,Mab |= KwaB iff Gcall0,Mab |= KwaB.

For the second base case, suppose that β is ¬KwaB. Again from Proposi-
tion 3.20(1), we see that since Gcall−,Mab |= KwaB iff Gcall0,Mab |= KwaB.
Therefore, by contraposition, Gcall−,Mab 6|= KwaB implies Gcall0,Mab 6|= KwaB,
which is equivalent to saying that:

Gcall−,Mab |= ¬KwaB implies Gcall0,Mab |= ¬KwaB

(from the semantics of the ‘¬’ operator)

Inductive Hypothesis on Lβ For every β′, β′′∈Lβ⊂L∗Kw , it is the case that:

1. if Gcall−,Mab |= β′ then Gcall0,Mab |= β′

2. if Gcall−,Mab |= ¬β′ then Gcall0,Mab |= ¬β′

3. if Gcall−,Mab |= β′′ then Gcall0,Mab |= β′′

4. if Gcall−,Mab |= ¬β′′ then Gcall0,Mab |= ¬β′′

Inductive Step on Lβ. We distinguish the following cases:

Case β is ¬β′. This case is straightforward from the inductive hypothesis.
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Case β is (β′ ∧ β′′). By the inductive hypothesis we have that:

if Gcall−,Mab |= β′ then Gcall0,Mab |= β′

and if Gcall−,Mab |= β′′ then Gcall0,Mab |= β′′

And that is equivalent to saying that:

if Gcall−,Mab |= (β′ ∧ β′′) then Gcall0,Mab |= (β′ ∧ β′′)

(by propositional logic).

Inductive Hypothesis on LβKw For every ϕ′, ϕ′′∈LβKw , it is the case that:

1. if Gcall−,Mab |= ϕ′ then Gcall0,Mab |= ϕ′

2. if Gcall−,Mab |= ϕ′′ then Gcall0,Mab |= ϕ′′

Inductive Step on LβKw . We distinguish the following cases:

Case ϕ is (ϕ′ ∨ ϕ′′). By propositional logic, the inductive hypothesis implies that the
following holds:

if Gcall−,Mab |= ϕ′ then Gcall0,Mab |= ϕ′

or if Gcall−,Mab |= ϕ′′ then Gcall0,Mab |= ϕ′′

And that is equivalent to saying that:

if Gcall−,Mab |= (ϕ′ ∨ ϕ′′) then Gcall0,Mab |= (ϕ′ ∨ ϕ′′)

(by propositional logic).

Case ϕ is (ϕ′ ∧ ϕ′′). Straightforward from the inductive hypothesis:

if Gcall−,Mab |= ϕ′ then Gcall0,Mab |= ϕ′

and if Gcall−,Mab |= ϕ′′ then Gcall0,Mab |= ϕ′′

And that is equivalent to saying that:

if Gcall−,Mab |= (ϕ′ ∧ ϕ′′) then Gcall0,Mab |= (ϕ′ ∧ ϕ′′)

(by propositional logic).

Case ϕ is Kcϕ
′. Suppose that Gcall−,Mab |= Kcϕ

′. That is, for everyM ′, Mab ≈−c M ′

implies Gcall−,M ′ |= ϕ′. We now want to show that Gcall0,Mab |= Kcϕ
′. That is,

for every M ′′, Mab ≈0
c M

′′ implies Gcall0,M ′′ |= ϕ′. Let Set1 = {M ′′ | M ′′ ∈
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S0 and Mab ≈0
c M

′′}. Let Set2 = {M ′ | M ′ ∈ S− and Mab ≈−c M ′}. We proceed
by case distinctions, as follows.

Case 1: Consider the case where agent c was not involved in the actual call ab,
and recall that |Ag| = 3. Then in both S− and S0 agent c cannot distinguish
between those gossip situations in which it was not involved in the call, namely,
Mab andM ba (in those two gossip situations, the set of secrets known by agent
c remained the same). Therefore Set1 = {Mab,M ba} = Set2.

Case 2: On the other hand, suppose agent c was involved in the actual call. With-
out loss of generality, let the actual call be ac. Then in both S− and S0 agent
c cannot distinguish between those gossip situations in which it called with
the same other agent, namely, Mac and M ca (in those two gossip situations,
the set of secrets known by agent c are the same after the call). Therefore
Set1 = {Mac,M ca} = Set2.

From Set1 = Set2 in both Case 1 and Case 2, and from the inductive hypothesis,
we see that, if for every M ′ such that Mab ≈−c M ′, Gcall−,M ′ |= ϕ′, then also for
every M ′′ such that Mab ≈0

c M
′′, Gcall0,M ′′ |= ϕ′. And this is equivalent to saying

that if Gcall−,Mab |= Kcϕ
′ then Gcall0,Mab |= Kcϕ

′, from the semantics of ‘Ka’.

This concludes the inductive argument.

Now we consider the ‘⇐=’-direction of (†), as follows.

G |= [ab0]ϕ→ [ab−]ϕ if |Ag| = 3

The proof of this case follows from Proposition 3.20(2).
We therefore conclude that it is the case that:

G |= [ab−]ϕ↔ [ab0]ϕ if |Ag| = 3

This now concludes the proof of Proposition 3.20(4).

Proposition 3.22 (below) highlights some specific properties of each of the basic call
modes.

Proposition 3.22. Let a gossip model G = (S,≈) for at least four agents a, b, c, d be
given, and let the mode µ of the call be a variable over {0,+,−}. Then:

1. G |= KcKw bD → Kc[ab
µ]KwaD for µ ∈ {0,+,−};

2. G |= [abµ]Kc¬init only for µ ∈ {0,−};

3. G |= ¬KcKwaB → [abµ]¬KcKwaB only for µ ∈ {+};

4. G |= KcKw bD → [abµ]KcKwaD only for µ ∈ {−};
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5. G |= init→ [abµ]¬Kc¬init only for µ ∈ {+}, and c /∈ {a, b}.

6. G |= init→ [abµ](Kc
∨
x 6=y KwxY ∧ ¬

∨
x 6=yKcKwxY ) only for µ ∈ {0};

where init is a designated atom denoting the initial situation.

Items 1 - 6 show that indeed, all modes of making calls are different. Loosely speaking,
the first item says that any agent (c) knows that any call between a and b brings about
that both get to know each other’s secrets. Contrast this to item 4: only for the mode
µ = −, agent c knows that the call happens and remembers its predicted effects. Item 2,
which is only true for the modes 0 and −, says that a call in the initial situation causes
some agent in the scenario to learn some new secret. Note that the fact that at least one
agent learns at least one secret given an arbitrary state is not generally true: it may be
that a call takes place between two agents who are unable to tell each other anything new.
Considering Item 3, agent c can only know that a learned a new secret as the consequence
of the call when the call is made in −-mode, or if c is involved in the call. Item 5 says
that after an ab+-call, an outsider does not know anything has happened. Finally, item 6
tells us that after an ab0-call in the initial situation, an outsider knows that somebody
learned something, but the outsider does not know who learned something. We now
present the proof of proposition 3.22.

Proof of Proposition 3.22(1). Let G = (S,≈), and let µ ∈ {0,+,−}. Then:

G |= KcKw bD → Kc[ab
µ]KwaD ⇐⇒ for every M ′ ∈ S :

G,M ′ |= KcKw bD → Kc[ab
µ]KwaD

Let M = (T,∼M , V ) be an arbitrary gossip situation in S. We show that:

G,M |= KcKw bD → Kc[ab
µ]KwaD

Now:

G,M |= KcKw bD → Kc[ab
µ]KwaD ⇐⇒

if G,M |= KcKw bD then G,M |= Kc[ab
µ]KwaD (from the semantics of ‘→ ’)

Suppose G,M |= KcKw bD holds. From the semantics of ‘Kc’ operator, this is equivalent
to saying that, for everyM ′ such thatM ≈c M ′, G,M ′ |= Kw bD. That is, for all such
M ′, ∼M ′b =≡M ′Qb

and D ∈ Qb (†)

We want to show that G,M |= Kc[ab
µ]KwaD. That is, for everyM ′ such thatM ≈c M ′,

G,M ′ |= [abµ]KwaD. This is equivalent to saying that Gcallµ,M ′ab |= KwaD for every
(Gcallµ,M ′ab) such that ((G,M ′), (Gcallµ,M ′ab)) ∈ [[abµ]], where, from Definition 3.18:
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Gcall− = (S−,≈−) and S− = {Nab | N ∈ S};
Gcall0 = (S0,≈0) and S0 = {N cd | N ∈ S and c 6= d ∈ Ag};
Gcall+ = (S+,≈+) and S+ = {N cd | N ∈ S and c 6= d ∈ Ag} ∪ S;
and Nab = (T,∼Nab

, V ), and N cd = (T,∼Ncd
, V ).

Now, for such M ′, G,M ′ |= Kw bD (from (†)). Furthermore, for all such M ′ab, M ′ab ∈
S− (since ab is the actual call), and M ′ab ∈ S0, and M ′ab ∈ S+ (see Definition 3.18).
Also, for all such M ′ab: ∼M ′aba =≡M ′abQab

=∼M ′a ∩ ∼M ′b (see Definition 3.16), and from
Lemma 3.17, D ∈ Qab since D ∈ Qb (from (†)). Therefore, from Theorem 3.8, we con-
clude that for all such M ′ab:

Gcallµ,M ′ab |= KwaD ⇐⇒ G,M ′ |= [abµ]KwaD, for every M ′ such that M ≈c M ′

⇐⇒ G,M |= Kc[ab
µ]KwaD (semantics of ‘Kc’ operator)

⇐⇒ G |= KcKw bD → Kc[ab
µ]KwaD, where µ ∈ {0,+,−}.

Proof of Proposition 3.22(2). Let G = (S,≈), and let M1 = (T,∼M1 , V ) be the initial
gossip situation.

G |= [abµ]Kc¬init , only for µ ∈ {0,−} ⇐⇒ for every M ′ ∈ S :

G,M ′ |= [abµ]Kc¬init , only for µ ∈ {0,−}

Let M = (T,∼M , V ) be an arbitrary gossip situation in S. We show that:

G,M |= [abµ]Kc¬init , only for µ ∈ {0,−}

Now, only for µ ∈ {0,−}:

G,M |= [abµ]Kc¬init ⇐⇒ Gcallµ,Mab |= Kc¬init
⇐⇒ Gcall−,Mab |= Kc¬init
and Gcall0,Mab |= Kc¬init
and Gcall+ 6|= Kc¬init

(‡)

for every (Gcall−,Mab) and (Gcall0,Mab) such that ((G,M), (Gcall−,Mab)) ∈ [[ab−]]

and ((G,M), (Gcall0,Mab)) ∈ [[ab0]], where, from Definition 3.18:

Gcall− = (S−,≈−) and S− = {Nab | N ∈ S};
Gcall0 = (S0,≈0) and S0 = {N cd | N ∈ S and c 6= d ∈ Ag};
Gcall+ = (S+,≈+) and S+ = {N cd | N ∈ S and c 6= d ∈ Ag} ∪ S;
and Nab = (T,∼Nab

, V ), and N cd = (T,∼Ncd
, V )
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Recall that the initial gossip situation M1 is such that: ∼M1
a =≡M1

Qa
, where Qa = {A}, for

all a ∈ Ag and where A is the unique secret of agent a.

From (‡), let us consider whether Gcall−,Mab |= Kc¬init holds. From the semantics of
ab− call in a gossip model (see Definition 3.18), for every Nab ∈ S−, ∼Nab

a =≡Nab

Qab
. But

∼Nab

a =∼Na ∩ ∼Nb , and from Lemma 3.17, Qab = Qa ∪ Qb. Therefore after the ab− call,
no agent considers it possible that there is a situation Nab ∈ S− and ∼Nab

a =≡Nab

Qa
, where

Qa = {A}, for all a ∈ Ag. Therefore:

Gcall−,Mab |= Kc¬init ⇐⇒ G,M |= [ab−]Kc¬init
⇐⇒ G |= [ab−]Kc¬init

From (‡), let us consider whether Gcall0,Mab |= Kc¬init holds. Similar to the foregoing
case of ab−, from the semantics of ab0 call in a gossip model (see Definition 3.18),
for every N cd ∈ S0, ∼Ncd

c =≡Ncd

Qcd
. But ∼Ncd

c =∼Nc ∩ ∼Nd , and from Lemma 3.17,
Qcd = Qc ∪ Qd. Therefore after the ab0 call, no agent considers it possible that there is
a situation N cd ∈ S0 where ∼Ncd

c =≡Ncd

Qc
and Qc = {C}, for all c ∈ Ag. Therefore:

Gcall0,Mab |= Kc¬init ⇐⇒ G,M |= [ab0]Kc¬init
⇐⇒ G |= [ab0]Kc¬init

Finally, from (‡), to see that Gcall+,Mab 6|= Kc¬init holds. From the semantics of ab+

call in a gossip model (see Definition 3.18), S+ = S0 ∪ S. So the initial gossip situation
M1 is in S+. Now, consider a gossip situation Nab ∈ S+ such that c /∈ {a, b} ⊂ Ag, we
have that M1 ≈+

c Nab (agent c was not involved in the ab call, so in the +-mode agent
c considers it possible that no call took place and as such the resulting situation could
still be M1). Therefore:

Gcall+,Mab 6|= Kc¬init ⇐⇒ G,M 6|= [ab+]Kc¬init
⇐⇒ G 6|= [ab+]Kc¬init

Proof of Proposition 3.22(3). Let G = (S,≈). We want to show that:

G |= ¬KcKwaB → [abµ]¬KcKwaB, only for µ ∈ {+} (‡)

That is,

1. G |= ¬KcKwaB → [ab+]¬KcKwaB

2. G 6|= ¬KcKwaB → [ab0]¬KcKwaB

3. G 6|= ¬KcKwaB → [ab−]¬KcKwaB
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For Item 1,

G |= ¬KcKwaB → [ab+]¬KcKwaB ⇐⇒ for every M ′ ∈ S :

G,M ′ |= ¬KcKwaB → [ab+]¬KcKwaB

Let M = (T,∼M , V ) be an arbitrary gossip situation in S. We show that:

G,M |= ¬KcKwaB → [ab+]¬KcKwaB ⇐⇒

if G,M |= ¬KcKwaB then G,M |= [ab+]¬KcKwaB

(from the semantics of ‘→ ’)

Suppose G,M |= ¬KcKwaB holds. That is, there is some M ′ ∈ S such that M ≈c
M ′, and G,M ′ |= ¬KwaB. That is, for such M ′, ∼M ′a =≡M ′Qa

and B /∈ Qa (†)

Now we want to show that: G,M |= [ab+]¬KcKwaB, that is, Gcall+,Mab |= ¬KcKwaB,
for every (Gcall+,Mab) such that ((G,M), (Gcall+,Mab)) ∈ [[ab+]] where, from Defini-
tion 3.18:

Gcall+ = (S+,≈+) and S+ = {N cd | N ∈ S and c 6= d ∈ Ag} ∪ S;
and N cd = (T,∼Ncd

, V )

Now, Gcall+,Mab |= ¬KcKwaB holds if and only if there is some N ∈ S+ such that
Mab ≈c N and Gcall+, N |= ¬KwaB. Now, to see that Gcall+,Mab |= ¬KcKwaB holds,
recall (from (†)) that M,M ′ ∈ S and M ≈c M ′. But also M,M ′ ∈ S+ (due to the
possible skip action at M and M ′, these situations are also possible situations in the
domain of Gcall+ (see Definition 3.18)). Since c /∈ {a, b}, that is, agent c was not in
the ab call at G,M , we see that Mab ≈c M ≈c M ′. That is, ∼Mc =∼M ′c =∼Mab

c (see
Definition 3.16 and Definition 3.18). But from (†), ∼M ′a =≡M ′Qa

and B /∈ Qa. So we see
thatMab ≈c M ′, that is, agent c considersM ′ possible at (Gcall+,Mab), and Gcall+,M ′ |=
¬KwaB. And so we conclude that:

Gcall+,Mab |= ¬KcKwaB ⇐⇒ G,M |= [ab+]¬KcKwaB

For Item 2. Let G = (S,≈) be such that for every N ∈ S, G,N |= KwxB holds
only for every x 6= a ∈ Ag. Note that G,N |= ¬KcKwaB holds since there is no gossip
situation in S where KwaB holds. To see that Gcall0,Mab 6|= ¬KcKwaB holds, consider
a call ab involving agent a at one such N = M in G. Let the resulting gossip model
after this call be Gcall0 = (S0,≈0). Now, this Gcall0 is such that for every N cd ∈ S0,
Gcall0, N cd |= KwxB for every x ∈ Ag. This is the case since for every such N cd, there
is some Q such that ∼Ncd

x =≡Ncd

Q and B ∈ Q, where x, c, d ∈ Ag (that is, no matter the
calling pair, the resulting situation is that in which every agent knows the secret of agent
B). But Mab ∈ S0, and since agent c does not consider it possible that there is any
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gossip situation in S0 in which agent a does not know the secret of agent b, we therefore
obtain Gcall0,Mab 6|= ¬KcKwaB ⇐⇒ G,M 6|= [ab0]¬KcKwaB. And from the foregoing
we conclude that Item 2 holds.

Finally, for Item 3. Consider any G = (S,≈) and any M ∈ S such that G,M |=
¬KcKwaB. To see that Gcall−,Mab 6|= ¬KcKwaB, consider that Gcall−,Mab 6|=¬KcKwaB

is equivalent to Gcall−,Mab|=KcKwaB. Now, from the semantics of ab− call in a gossip
model (see Definition 3.18), for every Nab ∈ S−, ∼Nab

a =≡Nab

Qab
and B ∈ Qab. This is

because B ∈ Qb and ∼N
ab

a =∼Na ∩ ∼Nb , and from Lemma 3.17, Qab = Qa ∪Qb. Therefore
agent c does not consider it possible that there is some gossip situationMab after the ab−

call such that Gcall−,Mab |= ¬KwaB. So we conclude that Gcall−,Mab 6|= ¬KcKwaB,
which concludes the proof of Item 3.

Therefore, from the proof of Item 1, 2 and 3 we conclude that (‡) holds.

Proof of Proposition 3.22(4). Let G = (S,≈), then only for µ ∈ {−}:

G |= KcKw bD → [abµ]KcKwaD ⇐⇒ G |= KcKw bD → [ab−]KcKwaD

and G 6|= KcKw bD → [ab0]KcKwaD

and G 6|= KcKw bD → [ab+]KcKwaD

(‡)

From (‡), we begin by showing that:

G |= KcKw bD → [ab−]KcKwaD

Now:

G |= KcKw bD → [ab−]KcKwaD ⇐⇒ for every M ′ ∈ S :

G,M ′ |= KcKw bD → [ab−]KcKwaD

Let M = (T,∼M , V ) be an arbitrary gossip situation in S. We show that:

G,M |= KcKw bD → [ab−]KcKwaD ⇐⇒

if G,M |= KcKw bD then G,M |= [ab−]KcKwaD (from the semantics of ‘→ ’)

SupposeG,M |= KcKw bD holds. That is, for everyM ′ ∈ S such thatM ≈c M ′, G,M ′ |=
Kw bD if and only if for all such M ′, ∼M ′b =≡M ′Qb

and D ∈ Qb (†)

Now we want to show that: G,M |= [ab−]KcKwaD. From Definition 3.18,

G,M |= [ab−]KcKwaD ⇐⇒ Gcall−,Mab |= KcKwaD

for every (Gcall−,Mab) such that ((G,M), (Gcall−,Mab)) ∈ [[ab−]] where,
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Gcall− = (S−,≈−) and S− = {Nab | N ∈ S};
and Nab = (T,∼Nab

, V )

Now, from the semantics of ab− call in a gossip model (see Definition 3.18), for every
Nab ∈ S−, ∼Nab

a =≡Nab

Qab
and (from Lemma 3.17) Qab = Qa∪Qb. But from (†), D ∈ Qb,

soD ∈ Qab. Therefore agent c does not consider it possible that there is a gossip situation
Nab ∈ S− after the ab− call at (Gcall−,Mab) such that Gcall−,Mab |= ¬KwaD. So we
conclude that:

Gcall−,Mab |= KcKwaD (††)

Now consider (‡). We provide a counter example to show that G 6|= KcKw bD →
[ab0]KcKwaD. Consider an M,M ′ ∈ S such that M ≈c M ′, G,M |= Kw bD and
G,M ′ |= ¬KwaD. We want to show that Gcall0,Mab 6|= KcKwaD. That is, there is some
N ∈ S0, Mab ≈0

c N and G,N |= ¬KwaD (see Definition 3.18 for the definition of S0).
After the ab0 call at (G,M), there are N ′, N ′′ ∈ S0 such that N ′ = Mab (that is, the gos-
sip situation due to a call ab0 at the gossip situationM) and N ′′ = M ′bd (that is, the gos-
sip situation due to a call bd0 at the gossip situation M ′). But ∼Mc =∼M ′c =∼Mab

c =∼M ′bdc

(since M ≈c M ′ and the set of secrets known by agent c is the same in Mab and M ′bd

as it is in M and M ′, see Definition 3.7 and Definition 3.16). Therefore Mab ≈0
c M

′bd.
Likewise, since a /∈ {b, d}, ∼M ′bda =≡M ′bdQ′ and D /∈ Q′. We therefore conclude that there is
some gossip situation, namely,M ′bd such that Mab ≈0

a M
′bd and Gcall0,M ′bd |= ¬KwaD.

And therefore, for such M and M ′, G,M 6|= KcKw bD → [ab0]KcKwaD, and therefore:

G 6|= KcKw bD → [ab0]KcKwaD (†††)

Finally, consider (‡) again. We provide a counter example to show that G 6|= KcKw bD →
[ab+]KcKwaD. Consider an M,M ′ ∈ S such that M ≈c M ′, G,M |= Kw bD and
G,M ′ |= ¬KwaD. We want to show that Gcall+,Mab 6|= KcKwaD. That is, there is
some N ∈ S+, Mab ≈+

c N and G,N |= ¬KwaD (see Definition 3.18 for the definition
of S+). After the ab+ call at (G,M), there are N ′, N ′′ ∈ S+ such that N ′ = Mab

(that is, the gossip situation due to a call ab+ at the gossip situation M) and N ′′ =

M ′bd (that is, the gossip situation due to a call bd+ at the gossip situation M ′). But
∼Mc =∼M ′c =∼Mab

c =∼M ′bdc (since M ≈c M ′ and the set of secrets known by agent c is
the same in Mab and M ′bd as it is in M and M ′, see Definition 3.7 and Definition
3.16). Therefore Mab ≈+

c M ′bd. Likewise, since a /∈ {b, d}, ∼M ′bda =≡M ′bdQ′ and D /∈
Q′. We therefore conclude that there is some gossip situation, namely, M ′bd such that
Mab ≈+

a M
′bd and Gcall+,M ′bd |= ¬KwaD. And therefore, for such M and M ′, G,M 6|=

KcKw bD → [ab+]KcKwaD, and therefore:

G 6|= KcKw bD → [ab+]KcKwaD (††††)
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Therefore, from (††),(†††) and (††††) we conclude that (‡) holds, and that:

G |= KcKwaD → [abµ]KcKwaD, only for µ ∈ {−}

Proof of Proposition 3.22(5). Let G = (S,≈). Let the initial gossip situation be
M1 = (T,∼M1 , V ), where M1 ∈ S, then only for µ ∈ {+}:

G |= init → [abµ]¬Kc¬init ⇐⇒ G |= init → [ab+]¬Kc¬init
and G 6|= init → [ab−]¬Kc¬init
and G 6|= init → [ab0]¬Kc¬init

(‡)

From (‡), we begin by showing that:

G |= init → [ab+]¬Kc¬init

Now:

G |= init → [ab+]¬Kc¬init ⇐⇒ G,M1 |= [ab+]¬Kc¬init
(assuming the initial gossip situation)

⇐⇒ Gcall+,Mab
1 |= ¬Kc¬init

(from Definition 3.18)

Gcall+,Mab
1 |= ¬Kc¬init if and only if there is some gossip situation M ′ such that

M ′ ≈+
c Mab

1 and M ′ = M1, for every (Gcall+,Mab
1 ) such that ((G,M1), (Gcall+,Mab

1 )) ∈
[[ab+]], where Gcall+ = (S+,≈+) and S+ = {N cd | N ∈ S and c 6= d ∈ Ag} ∪ S; and
N cd = (T,∼Ncd

, V ).

Recall that the initial gossip situation M1 is such that: ∼M1
a =≡M1

Qa
, where Qa = {A},

for all a ∈ Ag and where A is the unique secret of agent a (see Definition 3.6). From
the semantics of ab+ call in a gossip model (see Definition 3.18), S+ = S0 ∪ S. So the
initial gossip situation M1 is in S+. Now, for every Nab ∈ S+ such that c /∈ {a, b} ⊂ Ag,
we have that M1 ≈+

c Nab (since agent c knows the same secrets in both M1 and Nab,
see Definition 3.16 and Definition 3.18). Therefore after the ab+ call, agent c considers
it possible that the resulting gossip situation is the initial gossip situation. As such:

Gcall+,Mab
1 |= ¬Kc¬init ⇐⇒ G,M1 |= [ab+]¬Kc¬init

⇐⇒ G |= init → [ab+]¬Kc¬init

Consider (‡). We provide a counter example to show that G 6|= init → [ab−]¬Kc¬init .
That is, Gcall−,Mab 6|= ¬Kc¬init holds, which is equivalent to saying Gcall−,Mab |=
Kc¬init holds. From the semantics of ab− call in a gossip model (see Definition 3.18),
for every Nab ∈ S−, ∼Nab

a =≡Nab

Qab
, where ∼Nab

a =∼Na ∩ ∼Nb and (from Lemma 3.17)
Qab = Qa∪Qb. Therefore after the ab− call, no agent considers it possible that there is a



Chapter 3. Epistemic Protocols for Gossip 63

gossip situation Nab ∈ S− where ∼Nab

a =≡Nab

Qa
and Qa = {A}, for all a ∈ Ag. Therefore:

Gcall−,Mab
1 |= Kc¬init ⇐⇒ G,M1 |= [ab−]Kc¬init

⇐⇒ G 6|= init → [ab−]¬Kc¬init

Finally, consider (‡) again. We provide a counter example to show that G 6|= init →
[ab0]¬Kc¬init . That is, Gcall0,Mab

1 6|= ¬Kc¬init holds, which is equivalent to saying that
Gcall0,Mab

1 |= Kc¬init holds. Similar to the foregoing case of ab−, from the semantics of
ab0 call in a gossip model, for every N cd ∈ S0, ∼Ncd

c =≡Ncd

Qcd
, where ∼Ncd

c =∼Nc ∩ ∼Nd
and (from Lemma 3.17) Qcd = Qc ∪ Qd. Therefore after the ab0 call, no agent considers
it possible that there is a situation N cd ∈ S0 where ∼Ncd

c =≡Ncd

Qc
and Qc = {C}, for all

c ∈ Ag. Therefore:

Gcall0,Mab
1 |= Kc¬init ⇐⇒ G,M1 |= [ab0]Kc¬init

⇐⇒ G |= init → [ab0]Kc¬init

Proof of Proposition 3.22(6). Let G = (S,≈). Let the initial gossip situation be
M1 = (T,∼M1 , V ), where M1 ∈ S, then:

G |= init → [abµ](Kc
∨
x 6=y KwxY ∧ ¬

∨
x 6=yKcKwxY ), only for µ ∈ {0}

⇐⇒ G,M1 |= [abµ](Kc
∨
x 6=y KwxY ∧ ¬

∨
x 6=yKcKwxY ), only for µ ∈ {0}

(assuming the initial gossip situation)

⇐⇒ Gcallµ,Mab
1 |= (Kc

∨
x 6=y KwxY ∧ ¬

∨
x 6=yKcKwxY ), only for µ ∈ {0}

(from Definition 3.18)

⇐⇒ Gcallµ,Mab
1 |= Kc

∨
x 6=y KwxY and Gcallµ,Mab

1 |= ¬
∨
x 6=yKcKwxY, where µ ∈ {0}
(from the semantics of ‘∧’)

⇐⇒ Gcall0,Mab
1 |= Kc

∨
x 6=y KwxY and Gcall0,Mab

1 |= ¬
∨
x 6=yKcKwxY

and (Gcall−,Mab
1 6|= Kc

∨
x 6=y KwxY or Gcall−,Mab

1 6|= ¬
∨
x 6=yKcKwxY )

and (Gcall+,Mab
1 6|= Kc

∨
x 6=y KwxY or Gcall+,Mab

1 6|= ¬
∨
x 6=yKcKwxY )

(‡)

for every (Gcallµ,Mab
1 ) such that ((G,M), (Gcallµ,Mab

1 )) ∈ [[abµ]], and µ ∈ {−, 0,+},
where:

Gcall− = (S−,≈−) and S− = {Nab | N ∈ S};
Gcall0 = (S0,≈0) and S0 = {N cd | N ∈ S and c 6= d ∈ Ag};
Gcall+ = (S+,≈+) and S+ = {N cd | N ∈ S and c 6= d ∈ Ag} ∪ S;
and Nab = (T,∼Nab

, V ), and N cd = (T,∼Ncd
, V ).
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Recall that the initial gossip situation M1 is such that: ∼M1
a =≡M1

Qa
, where Qa = {A}, for

all a ∈ Ag and where A is the unique secret of agent a.

From (‡), let us consider whether it is the case that:

Gcall0,Mab
1 |= Kc

∨
x6=y

KwxY and Gcall0,Mab
1 |= ¬

∨
x 6=y

KcKwxY (‡‡)

Gcall0,Mab
1 |= Kc

∨
x 6=y KwxY if and only if for every M ′, Mab

1 ≈0
c M

′ implies there
is some Q such that Y ∈ Q, and some x 6= y ∈ Ag such that ∼M ′x =≡M ′Q . That is, for
every M ′, Mab

1 ≈0
c M

′ implies there is some Q and some x such that Q ⊃ {X} and
∼M ′x =≡M ′Q . (††)

That is, for all such M ′, there is an agent x who knows more secrets than just its own
unique secret, that is, agent x knows the unique secret of at least one other agent y.

From the semantics of ab0 call in a gossip model (see Definition 3.18), for every N cd ∈ S0,
∼Ncd

c =≡Ncd

Qcd
, where ∼Ncd

c =∼Nc ∩ ∼Nd and (from Lemma 3.17) Qcd = Qc ∪Qd. Therefore
after the ab0 call, no agent considers it possible that there is a situation N cd ∈ S0 where
∼Ncd

c =≡Ncd

Qc
and Qc = {C}, for all c ∈ Ag. So condition (††) is satisfied since in all the

resulting gossip situations due to the ab0 call, some agent knows more secrets than its
own unique secret. And therefore:

Gcall0,Mab
1 |= Kc

∨
x 6=y

KwxY

Again, from (‡‡),

Gcall0,Mab
1 |= ¬

∨
x 6=y

KcKwxY ⇐⇒ Gcall0,Mab
1 |=

∧
x 6=y
¬KcKwxY

To determine whether Gcall0,Mab
1 |=

∧
x 6=y ¬KcKwxY holds, recall that c /∈ {a, b} ⊂ Ag

and that |Ag| > 3. Now consider all pairs of gossip situations Mab
1 ,Mde

1 ∈ S0 such that
c /∈ {a, b} ∪ {d, e} and {a, b} 6= {d, e} ⊂ Ag. Since M1 is the initial gossip situation,
it follows that if ∼M

ab
1

a =≡M
ab
1

Qab
, and ∼M

de
1

d =≡M
de
1

Qde
, then Qab 6= Qde, for all such pairs

Mab
1 ,Mde

1 of gossip situations (that is, for all such pairs of gossip situations, each caller
in Mab

1 learns a different secret from each caller in Mde
1 ). But for all such Mab

1 ,Mde
1

pairs, Mab
1 ≈0

c M
de
1 (agent c was not involved in the calls, and so agent c knows the

same secrets in both such situations, and agent c considers all such pairs of gossip situ-
ations possible). Therefore after the ab0 call in the initial gossip situation, such agent c
considers it possible that there is a gossip situation in which an agent x does not know
secret Y , x 6= y ∈ Ag, since agent c considers it possible that such agent x called with
agent y at the initial situation, but agent c also considers it possible that agent x called
with agent z 6= y at the initial situation M1. And so such agent c does not know the
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secret learnt by such agent x after a call at the initial gossip situation. We therefore con-
clude that: Gcall0,Mab

1 |=
∧
x6=y ¬KcKwxY holds. And thus (with (††)) we conclude that:

Gcall0,Mab
1 |= Kc

∨
x 6=y

KwxY and Gcall0,Mab
1 |= ¬

∨
x 6=y

KcKwxY (†††)

Next, looking at (‡), we now consider whether:

Gcall−,Mab
1 6|= Kc

∨
x6=y

KwxY or Gcall−,Mab
1 6|= ¬

∨
x 6=y

KcKwxY

To prove this, it is sufficient to show that:

Gcall−,Mab
1 6|= ¬

∨
x 6=yKcKwxY ⇐⇒ Gcall−,Mab

1 |=
∨
x 6=yKcKwxY

⇐⇒ Gcall−,Mab
1 |= KcKwxY, for some x 6= y ∈ Ag

From the semantics of ab− call in a gossip model (see Definition 3.18), for everyNab ∈ S−,
let ∼Nab

a =≡Nab

Qab
. In this case we are given that the ab− call was made in the initial

situation, so we have that N = M1, and therefore ∼M
ab
1

a =∼M1
a ∩ ∼M1

b , and (from Lemma
3.17) Qab = Qa ∪ Qb. Therefore in all the gossip situations in S−, agent a learnt the
secret of agent b. Therefore, for x = a and y = b:

Gcall−,Mab
1 |= KcKwxY ⇐⇒ Gcall−,Mab

1 |=
∨
x 6=yKcKwxY

⇐⇒ Gcall−,Mab
1 6|= Kc

∨
x 6=y KwxY

or Gcall−,Mab
1 6|= ¬

∨
x 6=yKcKwxY

(††††)

Finally, looking at (‡), we now consider whether:

Gcall+,Mab
1 6|= Kc

∨
x 6=y

KwxY or Gcall+,Mab
1 6|= ¬

∨
x 6=y

KcKwxY

To prove this, it is sufficient to show that:

Gcall+,Mab
1 6|= Kc

∨
x 6=y KwxY ⇐⇒ Gcall+,Mab

1 |= ¬Kc
∨
x6=y KwxY

From the semantics of ab+ call in a gossip model (see Definition 3.18), S+ = S0∪S. So the
initial gossip situation M1 is in S+. Now, for every Nab ∈ S+ such that c /∈ {a, b} ⊂ Ag,
we have that M1 ≈+

c Nab (from Definition 3.7 and Definition 3.18). Therefore after the
ab+ call, agent c considers it possible that the resulting situation is the initial gossip
situation M1. As such, for any given x 6= y ∈ Ag:

Gcall+,Mab
1 |= ¬Kc

∨
x 6=y KwxY ⇐⇒ Gcall+,Mab

1 6|= Kc
∨
x 6=y KwxY

⇐⇒ Gcall+,Mab
1 6|= Kc

∨
x 6=y KwxY

or Gcall+,Mab
1 6|= ¬

∨
x 6=yKcKwxY

(†††††)

In conclusion, from (†††), (††††) and (†††††), we conclude that (‡) holds.
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Not every gossip model can be the result of a sequence of calls from the initial gossip
model. For instance, it is not possible to reach a gossip situation (or a gossip model
containing such a gossip situation) in which agent a knows everybody’s secret, but all
other agents only know their own secret. Furthermore, the execution of ab− calls on
the initial gossip model preserves the property that it is common knowledge who knows
which secrets. In other words, after an ab− call, consider an agent c and a secret D. For
every other agent e, agent c knows if agent e knows whether D. This property obviously
does not hold for ab0 calls. Finally, there is no common knowledge of information growth
after ab+ calls. After an ab+ call, an agent c 6= a, b considers it possible that no call was
made at all.

A Discussion on Calls as Action Models. The different call actions can also be
considered as a special case of action models described in Section 2.2. In this special
case, the abµ construct in Definitions 3.1 and 3.2 will not be considered as a single action
point from the domain of an action model (as in Definition 2.10), but instead call abµ

will be considered as the set of all the action points in the action model. Hence there
will be no designated action point in an action model for call abµ. And thus we allow
that the call abµ can be made under any one of all the possible preconditions for such a
call.

In our gossip scenarios, when the agents a and b call each other, they exchange all the
secrets they know. So, both agents can distinguish calls wherein either of them knows a
different set of secrets. So, to determine all the possible preconditions for a call between
agent a and b, we need to list for each agent : (i) the secrets that it knows to be true,
(ii) the secrets that it knows to be false, and (iii) the secrets it does not know. Those in
(i) and (ii) are in non-overlapping subsets and (iii) can be their complement.

Given the n secrets P, agent a may currently know that the secrets in Q+
a ⊆ P are

true and those in Q−a ⊆ P are false (and suppose Q+
a ∪Q−a = Qa), and be ignorant about

the rest; whereas agent b may currently know that the secrets in Q+
b ⊆ P are true and

that those in Q−b ⊆ P are false (and we let Q+
b ∪ Q−b = Qb). We now define:

δ(Q+
a ,Q

−
a ,Q

+
b ,Q

−
b ) ::=

∧
C∈Q+

a
KaC ∧

∧
C∈Q−a

Ka¬C∧∧
C∈P\Qa IgaC∧∧
C∈Q+

b
KbC ∧

∧
C∈Q−b

Kb¬C∧∧
C∈P\Qb IgbC

where IgaC = ¬KwaC, a ∈ Ag.

This formula δ(Q+
a ,Q

−
a ,Q

+
b ,Q

−
b ) is a precondition of an action point in the domain of

any of the action models for call abµ.
For call ab−, all agents know that the call between a and b takes place. They only

do not know the value of the exchanged secrets. Thus the action model for call ab−

consists of a domain containing different actions points for all preconditions of type
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δ(Q+
a ,Q

−
a ,Q

+
b ,Q

−
b ). Agents other than a, b have the universal accessibility relation on

this action model and agents a, b have identity accessibility relation. The action model
satisfies that all actions are mutually exclusive and that the union of all preconditions is
the trivial formula. So always exactly one action fires, and the result is a refinement of
the gossip model (no states are eliminated or duplicated, it is merely the case that the
accessibility relations for the agents a and b are more refined).

Still considering call ab−, let is pause briefly to estimate the number of different such
preconditions δ. For each agent x ∈ {a, b} and for each secret Y ∈ P, we consider three
possible atomic propositions, namely: KxY , Kx¬Y , and IgxY . So for agents a and b,
there are n placeholders each, where n is the number of secrets in the scenario, and
each of those placeholders can take any of the three foregoing atomic propositions. So
estimating the number of different such formulas of type δ can be seen as estimating
the number of all possible states given by a ternary word of size 2n. Hence an upper
bound will be O(32n). Simplifications are possible, for example, we may require that
A ∈ Qa and B ∈ Qb; but this does not simplify matters greatly. This simplification
leads us to restrict two placeholders, out of the said 2n placeholders, to having only
two possible ‘values’ (that is, we can no longer have a formula of δ with IgaA and
IgbB conjuncts). So the upper bound on the number of such formulas comes down to
O(32n × 2/3 × 2/3) = O(32n−2 × 4) = O(32n−2) different such preconditions δ for the
simplified action model, and such a simplified action model would have the same update
effect on gossip models.

Finally, for call ab0, we obtain the action points in the action model in the same
way as for call ab−, but now instead of considering only all the different action points
corresponding to all the preconditions for agent a and b to make a call, we consider all
the different action points corresponding to all the preconditions for any pair of agents to
make a call. Thus, given n agents in the scenario, we obtain n(n− 1) times the number
of action points in the model of for call ab−. To obtain the action points in the action
model for call ab+, we add a ‘no call happens’ action point (with precondition true) to
the domain of the action model for call ab0.

3.6 Formalising Epistemic Gossip Protocols

From now on, we consider calls ab0 only, written simply as ab. Our definitions will
equally apply to protocols with ab− and ab+ calls, but with minor adaptations.

Our epistemic protocols should be seen on a par with knowledge programs [22] and,
more broadly with epistemic planning [10]. The idea is that every agent has its own
program where the actions chosen by the agent are conditional on what the agent knows.
In our setting, one might expect that the appropriate pre-condition to make a call is
ignorance rather than knowledge, but the reader is reminded that in epistemic logic,
the ignorance condition ¬Kaϕ is equivalent to the knowledge condition Ka¬Kaϕ. We
assume that an individual agent program of agent a specifies under which conditions a
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would like to make a phone call, and to what kind of partner. In case conditions for
different agents apply, an arbiter will chose whose request is granted.

The Fixed Schedule is not an epistemic protocol: the agents appearing in the protocol
are names and not variables, and the actions are selected independently of what an agent
knows.

So, towards epistemic gossip protocols, we assume sets of variables {x, y, z, . . . } and
{X,Y, Z, . . . } over agents and secrets. We consider a language LΠ for protocols which
is obtained from Definition 3.2 by replacing A by X, a by x and b by y. Define the free
variables FV (X) = {x}, FV (Kxϕ) = {x} ∪ FV (ϕ), and FV ([xy]ϕ) = {x, y} ∪ FV (ϕ).
Moreover, FV (¬ϕ) = FV (ϕ) and FV (ϕ1 ∧ϕ2) = FV (ϕ1)∪ FV (ϕ2). We also allow the
following constructs in the language, with the associated free variables for them:

FV (
∧
z∈Ag

ϕ) = FV (
∨
z∈Ag

ϕ) = FV (∪z∈Agϕ) = FV (ϕ) \ {z}

We say that ψ is about x and y, and write ψ(x, y) if FV (ψ) = {x, y}. As an example,
take ψ(x, y) = Kx

∨
z∈Ag(KwyZ ∧ ¬KwxZ) (x knows that y knows a secret that x does

not know).

Definition 3.23 (Epistemic gossip protocol). To define an epistemic gossip protocol Π,
we assume ψ(x, y) ∈ LKw to be a formula about x and y. We then define for every Π an
epistemic calling condition (for x to call y) cc(x, y,Π) as:

cc(x, y,Π) = Kxψ(x, y) (3.3)

An epistemic gossip protocol Π is then a program of the form:

while
∨

x,y∈Ag

cc(x, y,Π) do
⋃

x,y∈Ag

(?cc(x, y,Π) ;xy) (3.4)

In words: as long as there are two agents x and y for which the condition is true,
choose such a pair and let them make the call. Less restrictive definitions of protocols
are definitely plausible: the termination condition might be different from the epistemic
calling condition, and the epistemic calling condition might be different for different
agents, for example. Since (Kxψ1 ∨ Kxψ2) is equivalent to Kx(Kxψ1 ∨ Kxψ2), our
definition does allow for test which are based on cases.

Definition 3.24 (Execution sequence). Given the pointed gossip model (G,M1), where
M1 is the initial gossip situation. Let µ be the mode of call. Then we inductively define
an execution sequence σΠ of an epistemic gossip protocol Π as follows:

Base Case

• ab is an execution sequence of Π if and only if, where µ ∈ {−, 0,+}:

– G,M1 |= cc(a, b,Π), and,
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– there is some (Gcallµ,Mab) such that (G,M1)[[ab]](Gcallµ,Mab).

• skip is an execution sequence of Π if and only if:

– the call mode µ = +, and,

– G,M1 |= cc(x, y,Π) for some x, y ∈ Ag, and,

– (G,M1)[[skip]](G,M1).

Inductive Case

• σΠ; ab is an execution sequence of Π if and only if, where µ ∈ {−, 0,+}:

– σΠ is an execution sequence of Π, and

– Gcallµ,MσΠ |= cc(a, b,Π), for all (Gcallµ,MσΠ) such that (G,M1) [[σΠ]]

(Gcallµ,MσΠ), and,

– there is some (Gcallµ,MσΠ;ab) such that (G,M1) [[σΠ; ab]] (Gcallµ,MσΠ;ab).

• σΠ; skip is an execution sequence of Π if and only if, where µ = +:

– σΠ is an execution sequence of Π, and

– for some x, y ∈ Ag, Gcallµ,MσΠ |= cc(x, y,Π), for all (Gcallµ,MσΠ) such
that (G,M1)[[σΠ]](Gcallµ,MσΠ), and

– (G,M1)[[σΠ; skip]](Gcallµ,MσΠ).

Notice that an execution sequence§ always begins at the initial gossip situation. The
skip action is allowed only in a +-mode call, and only when there is some pair of agents
for which the epistemic calling condition of the protocol is satisfied. In other words, in
the +-mode, the skip action could be executed even though a call between two agents is
possible.

Definition 3.25 (Extension of an Epistemic Gossip Protocol). The extension Σ(Π) of
an epistemic gossip protocol Π is the set of all its execution sequences of calls.

The gossip situation sequences of an epistemic gossip protocol Π are all the sequences of
gossip situations generated by Π. If protocols have the same extension, they obviously
have the same meaning and gossip situation sequences. But protocols may have the
same gossip situation sequences and still have different extensions: obviously the two call
sequences ab; ac; ab and ab; ac; bc are different, yet they generate the same gossip situation
sequences, that is, A.B.C → AB.AB.C → ABC.AB.ABC → ABC.ABC.ABC.

We now present some examples. Since a protocol is completely determined by its
condition cc(x, y,Π), we only give those conditions for the protocols here. Obviously,
there is a connection between the logical strength of this condition for Π and the set of
its extension.

Proposition 3.26. For any protocols Π and Π′,

|=g cc(x, y,Π)→ cc(x, y,Π′) implies Σ(Π) ⊆ Σ(Π′)

§Note that we use the term execution sequence and call sequence interchangeably.
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Proof. Take any gossip model G, and consider an arbitrary situationM in such a model.
Suppose that G,M |= cc(x, y,Π)→ cc(x, y,Π′). Then it follows that if a call xy can be
made for protocol Π, then the same call can also be made for protocol Π′, in the situation
M . Since the foregoing statement is true for an arbitrary situation M in G, it follows
that any execution sequence in Σ(Π) is also in Σ(Π′). And therefore Σ(Π) ⊆ Σ(Π′).

The definition of execution sequence given in Definition 3.24 considers that the pro-
tocol in use in the scenario may not be common knowledge among all the agents, and,
different agents may use different protocols in the same scenario. As a result, Definition
3.24, for the 0-mode calls, is based on the more generic model Gcall0, rather than the
model of any specific protocol. Note that if it is not common knowledge that a given
protocol is in use by all the agents in a gossip scenario, then the calls that are not allowed
by that protocol at a given gossip situation could still be possible at that gossip situation
for various reasons, e.g., another agent considers such a call possible because it does not
know the protocol used by the calling pair, or, the call is allowed by the protocol used
by the agent who initiated the call in question.

In order to make a given protocol common knowledge to all agents, we need to
slightly adjust the semantics of calls, that is, for each protocol Π, we have to replace S0

of Definition 3.18 by:

S0
Π = {N cd | N ∈ S & G,N |= cc(c, d,Π)} (3.5)

Syntactically, to make a given protocol common knowledge to all agents, we need to
restrict the language: LK(Π) is obtained by adapting the object language LK in such a
way, that the only program π that occurs is the program of the form (3.4).

3.6.1 The Epistemic Calling Conditions of the Sample Protocols

We now define the epistemic calling condition for each of our epistemic gossip protocols,
as follows.

Protocol 1 (Learn New Secrets). We define the epistemic calling condition for Learn New
Secrets Π1 as follows:

cc(x, y,Π1) = Kx¬KwxY (3.6)

The condition for x to call y in Π1 in words is simple: x calls any agent whose secret it
yet does not know. The minimum length of a call sequence for this protocol is 2n−4 and
the maximum length is n(n− 1)/2 (see, later, Chapter 6 for proofs). For the minimum,
consider the following sequence, which is a variant of the Fixed Schedule: fix four different
agents a, b, c, d from Ag. First, a makes n− 4 calls to all Ag \ {a, b, c, d}. Then, the calls
ab; cd; ac; bd are made. Finally all agents from Ag \ {a, b, c, d} call agent b. For the
maximum, the sequence that constitutes Equation (3.7) is an example.

σ = a1a2; a1a3; . . . ; a1an; a2a3; . . . ; a2an; a3a4; . . . ; an−1an (3.7)
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Protocol 2 (Known Information Growth de Dicto). We define the epistemic calling con-
dition for Known Information Growth de Dicto Π2 as follows:

cc(x, y,Π2) = Kx(
∨
z∈Ag

KwxZ ∇ KwyZ) (3.8)

Here, ∇ denotes exclusive or. In order for x to call y, condition cc(x, y,Π2) requires that
x should know that some secret is currently known by only one of x and y: So, x will
call y if x knows this call will produce new knowledge of secrets.

Protocol 3 (Known Information Growth de Re). We define the epistemic calling condition
for Known Information Growth de Re Π3 as follows:

cc(x, y,Π3) = Kx

∨
z∈Ag

Kx(KwxZ ∇ KwyZ) (3.9)

Contrast cc(x, y,Π2) with cc(x, y,Π3): under the latter, x is allowed to call y if there
is some secret Z of which x knows that only one of x and y knows it. The condi-
tion cc(x, y,Π2) is a knowledge de Dicto requirement. The epistemic calling condition
cc(x, y,Π3) shows that our language also allows for a knowledge de Re condition.

Note that this condition is equivalent to
∨
z∈Ag Kx(KwxZ ∇ KwyZ). To appreci-

ate the difference between the two Known Information Growth protocols, suppose we
have four agents and a call sequence starting with σ = ab; bc; cd. After this sequence,
cc(a, b,Π2) holds (a knows it was not involved in the last two calls, so b must have
learned something new), but cc(a, b,Π3) does not (a does not know what b has learned).
However, after σ; bd, agent a does know that b must have learned C, and so now both
cc(a, b,Π2) and cc(a, b,Π3) are true. This also demonstrates a difference between Learn
New Secrets and the Known Information Growth protocols: whereas the Known Infor-
mation Growth protocols allow for two agents a and b to call each other more than once
in a call sequence, Learn New Secrets protocol does not.

On the one hand, the condition for Known Information Growth (unless explicitly
specified, we assume de Dicto versions of protocols) assumes a cooperative agent x: even
if it knows that only agent y will benefit from the call, agent x will make it. However,
on the other hand those conditions may look rather strong: under certain circumstances,
it may be reasonable for agent x to call agent y even if agent x is not sure this will
result in growth of information. Let us write K̂aϕ for ¬Ka¬ϕ, that is, for agent a, ϕ
is an epistemic possibility. In standard epistemic logic, KaK̂aϕ ↔ K̂aϕ (for ‘⇒’, use
veridicality; for ‘⇐’, observe that K̂xϕ implies KxK̂xϕ, by negative introspection). We
now define the two final epistemic protocols.

Protocol 4 (Possible Information Growth de Dicto). We define the epistemic calling
condition for Possible Information Growth de Dicto Π4 as follows:

cc(x, y,Π4) = KxK̂x(
∨
z∈Ag

KwxZ ∇ KwyZ) (3.10)
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Protocol 5 (Possible Information Growth de Re). We define the epistemic calling condi-
tion for Possible Information Growth de Re Π5 as follows:

cc(x, y,Π5) = Kx

∨
z∈Ag

KxK̂x(KwxZ ∇ KwyZ) (3.11)

In words, x is allowed to call y, if, according to cc(x, y,Π4), x considers it possible that
some secret becomes shared knowledge by such a call. (Π5 is the de Re variant: note
that cc(x, y,Π5) is equivalent to

∨
z∈Ag K̂x(KwxZ ∇ KwyZ)).

Proposition 3.27. Let Π0 denote the Fixed Schedule:

1. Σ(Π1) ( Σ(Π3) ( Σ(Π2) ( Σ(Π5) = Σ(Π4)

2. Σ(Π0) 6⊆ Σ(Π1) and Σ(Π0) ( Σ(Π3) and Σ(Π0) ( Σ(Π2) and Σ(Π0) ( Σ(Π4) and
Σ(Π0) ( Σ(Π5)

Proof of Proposition 3.27(1). Making use of the Proposition 3.26, we show that Propo-
sition 3.27(1) is the case by arguing for the following claims:

Claim 1: |=g cc(x, y,Π1)→ cc(x, y,Π3).
This claim says that for every gossip model G′, and for every gossip situation M ′

in the domain of G′, that: G′,M ′ |= cc(x, y,Π1) → cc(x, y,Π3). Now let G be an
arbitrary gossip model, and let M be an arbitrary gossip situation in the domain
of G. Then:

G,M |= cc(x, y,Π1)→ cc(x, y,Π3)⇐⇒

G,M |= Kx¬KwxY → Kx

∨
z∈Ag

Kx(KwxZ ∇ KwyZ), for some x, y, z ∈ Ag⇐⇒

G,M |= Kx¬KwxY → Kx

∨
z∈Ag

Kx( (KwxZ ∧ ¬KwyZ) ∨ (¬KwxZ ∧KwyZ) )⇐⇒

G,M |= Kx¬KwxY → Kx

∨
z∈Ag

Kx(KwxZ ∧ ¬KwyZ) ∨Kx(¬KwxZ ∧KwyZ)⇐⇒

G,M |= Kx¬KwxY → Kx

∨
z∈Ag

(KxKwxZ ∧Kx¬KwyZ) ∨ (Kx¬KwxZ ∧KxKwyZ).

Now suppose G,M |= Kx¬KwxY , where y ∈ Ag. But also, agent x knows that
KwyY . Therefore:

G,M |= Kx¬KwxY ∧KxKwyY ⇐⇒ G,M |= Kx(Kx¬KwxY ∧KxKwyY ).

Claim 2: 6|=g cc(x, y,Π3)→ cc(x, y,Π1).
To show that this claim is true, consider a gossip model with three agents x, y, z.
Assume a gossip situation in which agent x and agent y know each other’s secret.
Furthermore, assume that agent x knows that only one of agent x and agent y
knows the secret of agent z, where z 6= x 6= y (cc(x, y,Π3) is satisfied). Finally,
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suppose that agent x knows the secret of agent z. Now we see that although
cc(x, y,Π3) is satisfied, cc(x, y,Π1) is not satisfied since agent x already know the
secret of agent y.

Claim 3: |=g cc(x, y,Π3)→ cc(x, y,Π2).
This claim says that for every gossip model G′, and for every gossip situation M ′

in the domain of G′, that: G′,M ′ |= cc(x, y,Π3) → cc(x, y,Π2). Now let G be an
arbitrary gossip model, and let M be an arbitrary gossip situation in the domain
of G. Then:

|=g cc(x, y,Π3)→ cc(x, y,Π2)⇐⇒

G,M |= Kx

∨
z∈Ag

Kx(KwxZ ∇ KwyZ)→ Kx(
∨
z∈Ag

KwxZ ∇ KwyZ) (3.12)

Suppose:
G,M |= Kx

∨
z∈Ag

Kx(KwxZ ∇ KwyZ) (3.13)

We want to show that:

G,M |= Kx(
∨
z∈Ag

KwxZ ∇ KwyZ) (3.14)

Note that in S5, Kx(Kxα ∨ Kxβ) is equivalent to (Kxα ∨ Kxβ) (for ‘⇒’, use
veridicality, for ‘⇐’, observe that Kxα implies KxKxα which in turn implies
Kx(Kxα ∨ Kxβ)). Likewise, Kxβ implies Kx(Kxα ∨ Kxβ), from which the re-
sult follows.

Now let Ag = {a1, . . . , an}, where x = ai, y = aj and z = ak. Let αr =

(KwxAr ∇ KwyAr), where 1 ≤ r ≤ n. Therefore Claim (3.13) is equivalent to:

G,M |= Kx(Kxα1 ∨ · · · ∨Kxαn)⇐⇒ G,M |= (Kxα1 ∨ · · · ∨Kxαn) (3.15)

And from Claim (3.15), G,M |= (Kxα1 ∨ · · · ∨ Kxαn) implies G,M |= Kx(α1 ∨
· · · ∨ αn), which in turn is equivalent to Claim (3.14).

Claim 4: 6|=g cc(x, y,Π2)→ cc(x, y,Π3).
Consider a gossip model with four agents w, x, y, z. Assume that M is the actual
gossip situation, and thatM is as a result of the following: agent x calls agent w at
the initial gossip situation (so w and x now know each other’s secret), then there
are two further calls in which agent x was not involved. Certainly in M , agent x
knows that it will learn some secret by calling agent w (since w must have called
with at least one of the other agents in the two intervening calls since the last
time it called with x) (cc(x, y,Π2) is satisfied). However, agent x is uncertain as to
which particular secret it will learn by calling agent w again (since the secrets agent
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w now knows depends on the sequence of two calls that actually took place since
the first xw call, and then agent x is uncertain about what this actual sequence is)
(cc(x, y,Π3) is not satisfied).

Claim 5: |=g cc(x, y,Π2)→ cc(x, y,Π5).
This claim says that for every gossip model G′, and for every gossip situation M ′

in the domain of G′, that: G′,M ′ |= cc(x, y,Π2) → cc(x, y,Π5). Now let G be an
arbitrary gossip model, and let M be an arbitrary gossip situation in the domain
of G. Then:

|=g cc(x, y,Π2)→ cc(x, y,Π5)⇐⇒

G,M |= Kx(
∨
z∈Ag

KwxZ ∇KwyZ)→ Kx

∨
z∈Ag

KxK̂x(KwxZ ∇ KwyZ).

Suppose G,M |= Kx(
∨
z∈Ag

KwxZ ∇ KwyZ). That is,

for every M ′, M ≈x M ′ implies G,M ′ |=
∨
z∈Ag

(KwxZ ∇ KwyZ) (3.16)

We want to show that: G,M |= Kx

∨
z∈Ag

KxK̂x(KwxZ ∇ KwyZ) (3.17)

Note that in S5, Kx(Kxα ∨ Kxβ) is equivalent to (Kxα ∨ Kxβ) (for ‘⇒’, use
veridicality; for ‘⇐’, observe that Kxα implies KxKxα which in turn implies
Kx(Kxα ∨Kxβ)). Likewise, Kxβ implies Kx(Kxα ∨Kxβ), from which the result
follows.

Now let Ag = {a1, . . . , an}, where x = ai, y = aj and z = ak. Let αr =

K̂x(KwxAr ∇ KwyAr), where 1 ≤ r ≤ n. Therefore Claim (3.17) is equivalent to:

G,M |= Kx(Kxα1 ∨ · · · ∨Kxαn)⇐⇒ G,M |= (Kxα1 ∨ · · · ∨Kxαn) (3.18)

Again, to show that Claim (3.18) is true: ‘⇒’ follows from veridicality; to show that
‘⇐’ holds, consider thatKxαr impliesKxKxαr (by positive introspection), which in
turn implies Kx(Kxα1∨· · ·∨Kxαn) (by propositional logic), for all r ∈ {1, . . . , n}.

Now let α′r = (KwxAr ∇ KwyAr), where 1 ≤ r ≤ n. So from Claim (3.18),

G,M |= (Kxα1 ∨ · · · ∨Kxαn) ⇐⇒ G,M |= KxK̂xα
′
1 ∨ · · · ∨KxK̂xα

′
n)

⇐⇒ G,M |= K̂xα
′
1 ∨ · · · ∨ K̂xα

′
n

(‡)

(for ‘⇒’, use veridicality; for ‘⇐’, observe that K̂xα
′ implies KxK̂xα

′, by negative
introspection).

But from the semantics of ‘K̂x’ operator, Claim (‡) holds if and only if there is
someM ′ such thatM ≈x M ′ and G,M ′ |= α′1∨· · ·∨α′n. That is, there is someM ′
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such that M ≈x M ′ and G,M ′ |= (KwxA1 ∇ KwyA1)∨ · · · ∨ (KwxAn ∇ KwyAn).
And this is true, based on Assumption (3.16).

Claim 6: 6|=g cc(x, y,Π5)→ cc(x, y,Π2).
Consider a gossip scenario with four agents w, x, y, z. Assume that M is the actual
gossip situation, and that M is as a result of the following execution sequence:
xy;xw;wy. Now, in M , agent x considers it possible that it will learn the secret of
agent z by calling agent y since agent x considers it possible that the third call in
the sequence of calls that gave rise to M was in fact call yz, in which agent y must
have learnt the secret of agent z (since agent x was not involved in the third call,
agent x is uncertain as to which call actually occurred in the third round). Notice
from the foregoing that cc(x, y,Π5) is satisfied at M . (Note that agent x cannot
distinguish the gossip situations due to the two execution sequences xy;xw;wy and
xy;xw; yz since, from Definition 3.18, agent x knows the same set of secrets in the
resulting gossip situation due to each of the given two execution sequences). On
the other hand however, agent x does not know if it (agent x) or agent y will learn
any new secret by calling each other in M , since agent x considers it possible that
the execution sequence that gave rise to M is xy;xw;wy, in which case neither
agent x nor agent y will have any new secret to tell each other in a fourth round
call between them. Thus cc(x, y,Π2) is not satisfied in M .

Claim 7: |=g cc(x, y,Π5)↔ cc(x, y,Π4).
This claim says that for every gossip model G′, and for every gossip situation M ′

in the domain of G′, that: G′,M ′ |= cc(x, y,Π5) ↔ cc(x, y,Π4). Now let G be an
arbitrary gossip model, and let M be an arbitrary gossip situation in the domain
of G. Then:

|=g cc(x, y,Π5)↔ cc(x, y,Π4)⇐⇒

G,M |= Kx

∨
z∈Ag

KxK̂x(KwxZ ∇ KwyZ)↔ KxK̂x(
∨
z∈Ag

KwxZ ∇KwyZ)

Note that in S5, Kx(Kxα ∨ Kxβ) is equivalent to (Kxα ∨ Kxβ) (for ‘⇒’, use
veridicality, for ‘⇐’, observe that Kxα implies KxKxα which in turn implies
Kx(Kxα ∨Kxβ)). Likewise, Kxβ implies Kx(Kxα ∨Kxβ), from which the same
result follows (†).

Likewise, in S5, Kx(¬Kxα∨¬Kxβ) is equivalent to (¬Kxα∨¬Kxβ) (for ‘⇒’, use
veridicality, for ‘⇐’, observe that ¬Kxα implies Kx¬Kxα which in turn implies
Kx(¬Kxα∨¬Kxβ)). Likewise, ¬Kxβ implies Kx(¬Kxα∨¬Kxβ), from which the
same result follows (††).
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Let Ag = {a1, . . . , an}. Let x = ai, y = aj and z = ak. Let αr = (KwxAr ∇KwyAr).
Now,

G,M |= Kx
∨
z∈Ag

KxK̂x(KwxZ ∇ KwyZ)

⇐⇒ G,M |= Kx(KxK̂xα1 ∨ · · · ∨KxK̂xαn)

⇐⇒ G,M |= (KxK̂xα1 ∨ · · · ∨KxK̂xαn) (from (†))
⇐⇒ G,M |= (K̂xα1 ∨ · · · ∨ K̂xαn)

(‘⇒ ’ by veridicality, ‘⇐ ’ by negative introspection)
⇐⇒ G,M |= Kx(K̂xα1 ∨ · · · ∨ K̂xαn) (from (††))
⇐⇒ G,M |= KxK̂x(α1 ∨ · · · ∨ αn) (semantics of ‘K̂x’ operator)
⇐⇒ G,M |= KxK̂x(

∨
z∈Ag

αz)

⇐⇒ G,M |= KxK̂x(
∨
z∈Ag

KwxZ ∇KwyZ)

From Claim 1 through 7, and from Proposition 3.26, we conclude that: Σ(Π1) ( Σ(Π3) (
Σ(Π2) ( Σ(Π5) = Σ(Π4).

Proof of Proposition 3.27(2). To prove that Σ(Π0) 6⊆ Σ(Π1), we show that no execution
sequence of Π0 is an execution sequence of Π1. In Π0 some designated agent will call
some other agent more than once in an execution sequence, but in Π1 no agent can call
any other agent more than once in an execution sequence: after the first call between a
pair of agents, they learn each other’s secret and as such the epistemic calling condition
for Π1 will not be satisfied for a second call between both same agents, in the same
execution sequence.

We show that Σ(Π0) ( Σ(Π3) is the case by arguing for the following two claims.

Claim 1: Every execution sequence of Π0 is an execution sequence of Π3.
To prove this claim, let the four designated agents for Π0 be a1, a2, a3, a4, and let
us consider Π0 in three stages, as follows.

The first stage of Π0 is when one of the designated agents, say (without loss
of generality) agent a1, calls each of the other n − 4 non-designated agents. Con-
sidering what the agents know, agent a1 knows that it will learn the unique secret
of each of the non-designated agents by calling each of them in those n − 4 calls.
Therefore, the epistemic calling condition for Π3 is obviously satisfied for each of
those calls.

In the second stage, first, any two of the designated agents call each other;
secondly, the other two agents call each other; thirdly, one of the first pair of
callers in this stage calls one of the second pair of callers of the stage; fourthly,
the two agents who were not in the third call of this stage call each other. Again,
considering what the agents know in each of the calls in this second stage, notice
that each calling pair in all four calls call each other for the first time. So likewise
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they each know they will learn each other’s unique secret. And, as in the first stage,
the epistemic calling condition for Π3 is also satisfied in each call in this stage.

Finally, in the third stage, agent a1 calls each of all the n− 4 non-designated
agents once more. Again, from the point of view of what the agents know, let us
consider agent a1’s knowledge after the second stage of Π0. After the last call of the
second stage, agent a1 does not consider it possible that there is a gossip situation
in which it does not yet know all the secrets in the scenario. Also, after the last
call of the second stage, agent a1 does not consider it possible that there is a gossip
situation in which any of the non-designated agents know all the secrets. In other
words, agent a1 knows that it knows all the secrets in the scenario, and agent a1

knows that none of the non-designated agents know all the secrets in the scenario.
Furthermore, since none of the non-designated agents took part in any call of the
second stage, and since the other designated agents, apart from agent a1, made all
their calls in the second stage, it follows that none of the non-designated agents
know the unique secret of any of the designated agents apart from agent a1, in any
gossip situation in the scenario. It follows therefore that agent a1 does not consider
it possible that there is a gossip situation in which any of the non-designated agents
knows the unique secret of any of the other designated agents. In other words, for
each non-designated agent x, and for each of the other designated agents, y, agent
a1 knows that agent x does not know the secret of agent y. Since all the calls in
the third stage of Π0 involves agent a1 calling each of the non-designated agents
once, (let the non-designated agent whom agent a1 calls in any call of the third
stage be denoted by x) it follows that for each of those calls in the third stage,
agent a1 knows of a secret, namely that of another designated agent y, which agent
x will learn from the third stage call. Thus the epistemic calling condition for Π3

is satisfied for each of the calls in the third stage.

We therefore conclude from the foregoing that an execution sequence of Π0 is also
an execution sequence of Π3.

Claim 2: Not every execution sequence of Π2 is an execution sequence of Π0.
To prove this claim, we show that there exists an execution sequence of protocol Π2

that is not an execution sequence of Π0. For this, consider a gossip scenario with
four agents a1, a2, a3, a4. Now, the following execution sequence σ is an example
execution sequence of Π2: σ = a1a2; a1a3; a1a4; a2a3; a2a4; a3a4. In each call in σ
each pair of agents call each other for the first time, so the calling agent knows that
it will learn the unique secret of the agent it calls in each call. On the other hand,
it is obvious that σ is not an execution sequence of Π0: consider, for example, that
for Π0, an execution sequence cannot be longer than four calls for a gossip scenario
with exactly four agents.

Finally, the proof of the proposition that Σ(Π0) ( Σ(Π3) follows from the proposition
that Σ(Π3) ( Σ(Π2) (see Proposition 3.27(1)) and from the foregoing proposition that
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Σ(Π0) ( Σ(Π2). And likewise, the proof of the proposition that Σ(Π0) ( Σ(Π5) follows
from the proposition that Σ(Π5) = Σ(Π4) (see also Proposition 3.27(1)) and from the
foregoing proposition that Σ(Π0) ( Σ(Π4).

Proposition 3.28. Let Π =s Π′ denote that the shortest sequence in Σ(Π) has the same
length as the shortest sequence in Σ(Π′). Then:

Π0 =s Π1 =s Π2 =s Π4

Proof. To prove this claim we observe that Π1 =s Π2 =s Π4 follows from Proposi-
tion 3.27(1). Whereas Π0 =s Π4 follows from Proposition 3.27(2). Therefore we conclude
that:

Π0 =s Π1 =s Π2 =s Π4

Proposition 3.29. Let the average execution length EL(Π) be the average length of
σ ∈ Σ(Π) if this set is finite, and ∞ otherwise. Let Π <e Π′ denote that either EL(Π) <

EL(Π′) ∈ N, or EL(Π) 6=∞ = EL(Π′). Then,

Π0 <
e Π1 and Π2 <

e Π4

Proof. Recall that the length of any execution sequence of Π0 is 2n− 4, where n = |Ag|.
To prove that Π0 <

e Π1, it is sufficient to show that there is an execution sequence Π1

for n agents that is greater than 2n− 4.
So let Ag = {a1, . . . , an}. Now consider the following execution sequence:

σ = a1a2; a1a3; . . . ; a1an; a2a3; . . . ; a2an; a3a4; . . . ; an−1an

The execution sequence σ describes an instance where we select each agent in turn to
call all the other agents whom it does not yet know their unique secret. Obviously this
gives rise to an execution sequence σ of Π1. Furthermore, the length of this execution
sequence σ is n(n− 1)/2. Thus we conclude that: Π0 <

e Π1.
To show that Π2 <

e Π4, we prove that whereas all the execution sequences of Π2 are
finite, some execution sequences of Π4 are infinite.

Now, notice that Π5 (and, therefore Π4, see Proposition 3.27) may loop and therefore
termination is not guaranteed. This means that some sequences of Π5 (and Π4) are
infinite. For example, in case of a scenario with four agents, consider the following
infinite sequence σ ∈ Σ(Π5): σ = ab; cd; ab; cd; ab; . . . . After every even round (that is,
after every call cd) in σ, we have KaK̂a(KwaC ∇ KwbC), that is, agent a considers it
possible that agent b has learned secret C, while secret C is unknown to agent a, namely
if the second call were bc. Therefore, after the call sequence ab; cd, call ab can be made,
according to the protocol.

But unlike Π4, both Π2 and Π3 terminate, as is argued as follows. Consider the set
S = {(a,B) | ¬KwaB}. Initially, |S |= n(n−1). The epistemic calling condition for the
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Known Information Growth protocols implies that S 6= ∅, and, moreover, every round of
the protocol removes at least one member from S.

3.7 Conclusion

In this chapter, we proposed epistemic gossip protocols, where an agent will call another
agent based on its current knowledge. We described various such protocols, we gave
some of their logical properties, and we modelled them in dynamic epistemic logic.

We considered the case where only one pairwise call is staged in a given round of
gossiping. There are other alternatives however, namely, parallel calls in which more than
one pairwise call can be staged simultaneously. One strategy for allowing the execution
of parallel calls in an epistemic gossip protocols could be to allow each of all the agents
to try to make a call with one of the agents with whom the calling condition is satisfied
for the given protocol and for the given network topology. Another strategy for making
parallel calls could be through k-party calls, in which an agent makes a conference call
with all the agents with whom it can call in a given situation. For example, if the calling
condition is satisfied for an agent a to call agent b and agent c, then we can set up a
conference call among agents a, b and c in which all three agents exchange their secrets
among themselves.

Furthermore, in this thesis we assumed that in each pairwise call the calling pair
exchange all the secrets they know. This assumption can be relaxed so that one can also
consider one-way calls, that is, calls in which only one of the callers sends its secrets
to the other calling partner. This case is analogous to text messaging or electronic mail
between the communicating pair. And to take this line still further, one can consider
a case where one of the agents broadcasts its secrets to a group of agents rather than
to one other agent, similar to the popular manner in which information in shared in
social networks among a group of friends. Calls such as one-way and broadcast calls
can be used to describe the spread of a disease, a news item, or a commercial within a
population.

Epistemic gossip protocols that are based on parallel calls, one-way calls, broadcast
calls, or any combination of various such types of calls could also be described and
analysed.

Another interesting line of future work is to consider strategic issues. Suppose the
agents are allowed to choose from a set of protocols, or from a set of possible calls due
to a protocol, can an agent ensure, for example, that it is the first to know all secrets,
or, for that matter not the last?





Chapter 4

A Framework for Epistemic Gossip
Protocols

4.1 Introduction

In this chapter we present Epistemic Gossip Protocol (EGP), which is a tool to anal-
yse epistemic gossip protocols. Particularly we introduce Epistemic Gossip Protocol
Language (EGPL), which is a high-level programming language for epistemic gossip pro-
tocols. Then, we describe the details of an interpreter for the EGPL. The tool EGP
outputs key dynamic properties of an epistemic gossip protocol. In the next chapter we
apply this tool to the epistemic gossip protocols introduced in Chapter 3, and then, we
present empirical results.

The initial setting of the gossip scenarios we consider is as follows. There are a finite
number of agents, and each agent knows a unique piece of information called a secret.
Only pairwise communications between the agents are allowed. These communications
are known as calls, and only one call is allowed in a round. In each call, the calling pair
exchange all the secrets they know. The goal of such communications is to reach a state
where all the agents know all the secrets in the scenario.

Each epistemic gossip protocol can be considered as a rule with some epistemic con-
dition which has to be satisfied for one agent to call another agent. We call such rule a
calling condition∗. In each round, a pair of agents is chosen non-deterministically from
the set of pairs for which the calling condition is satisfied, and allowed to make a call.
This call can be made in one of several modes. For example, the calling pair can make
the call publicly such that every other agent knows who is calling who in any round.
This mode is referred to as the public synchronous mode (while there is no uncertainty
∗Note that a calling condition is not limited only to an epistemic (calling) condition (epistemic calling

condition is defined in Section 3.6), but can also include conditions about the underlying communication
graph structure. For example, a pair of agents cannot engage each other in a pairwise call if they are
not neighbours on the underlying network graph. Furthermore, the reader should assume a complete
communication graph wheresoever in this thesis we have not made explicit the structure of the underlying
communication graph. Note that our discussions so far in this thesis have assumed a complete graph
as the underlying network graph, and as such the calling condition for a protocol have so far been
tantamount to an epistemic calling condition.

81
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about who is calling whom in each round, the contents of the calls, namely the secrets,
are not observed). Another mode is that in which the calls are made in private such that,
apart from the pair involved in the call, the other agents may not be sure which pair of
agents is making the call, but all the agents are sure a call is made in each round. This
mode is referred to as the private synchronous mode. The private asynchronous mode
is like the private synchronous mode except that the agents consider it possible that no
call is made in a round even though there is some pair for which the calling condition is
satisfied.

In this chapter, we assume that the protocols are based on the private synchronous
call mode. Therefore the agents would have to reason about possible situations which are
due to all the possible calls in the previous round. For example: at the initial situation of
a gossip scenario comprising of four agents, no other situation is considered possible. But
after one round of calls, there could be up to twelve new and different possible situations
due to possible calls at the initial situation. Note that we distinguish between the call
aiaj and the call ajai, where aiaj denotes the call from agent ai to another agent, aj .
Hence after a maximal series of rounds we can think of a tree structure in which each
path is an execution sequence of calls of a given protocol. We refer to this tree as the
call tree or gossip tree of the given protocol, and the set of all the paths of this tree is
the extension of the protocol.

The gossip tree offers a platform to protocol designers for the evaluation and compari-
son of epistemic gossip protocols. In the gossip protocol literature it is typical to measure
the performance of a protocol by considering the length of its execution sequence, that
is, the number of calls in the execution sequence [30]. Correspondingly we measure the
performance of epistemic gossip protocols by considering the average length of the exe-
cution sequences in the protocol’s extension, together with the size of the extension of
the given protocol. Whereas the size of the extension gives an idea of the computational
memory required by an agent to reason about possible situations, the average execution
length gives an idea of how fast it will take for all agents to know all secrets under the
given protocol. We also make use of the following definitions.

Definition 4.1 (Initial State and Goal State). Given a set Ag = {a1, . . . , an} of agents
and a set P = {A1, . . . , An} of secrets. Let secret Ai be the unique secret of ai, and let
Si be the set of secrets known by ai where ai ∈ Ag, and where initially Si = {Ai}. Then,
a gossip situation is a n-tuple 〈S1, . . . , Sn〉, the initial state is 〈{Ai}, . . . , {An}〉, and the
goal state is 〈P, . . . , P 〉.

Definition 4.2 (Terminating and Non-terminating Execution Sequences). An execu-
tion sequence is terminating if and only if it is finite. An execution sequence is non-
terminating if and only if it is infinite.

Definition 4.3 (Terminating and Non-terminating Protocol). An epistemic gossip pro-
tocol is terminating if all its execution sequences are finite. Otherwise the protocol is
non-terminating.
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The following protocols were described in Chapter 3, reproduced informally here.

1. Learn New Secrets. An agent ai can call another agent aj if ai does not know
the secret of aj .

2. Known Information Growth de Dicto. An agent ai can call another agent aj
if ai knows that there is some secret Ak that would be learnt in the call aiaj .

3. Known Information Growth de Re. An agent ai can call another agent aj if
there is some secret Ak such that ai knows that it would be learnt in the call aiaj .

4. Possible Information Growth de Dicto. An agent ai can call another agent
aj if ai considers it possible that there is some secret Ak that would be learnt in
the call aiaj .

5. Possible Information Growth de Re. An agent ai can call another agent aj if
there is some secret Ak such that ai considers it possible that it would be learnt in
the call aiaj .

Whereas Protocols 1, 2 and 3 are terminating, Protocols 4 and 5 are non-terminating.
Take a scenario with four agents a, b, c, d and consider the following execution sequence
of Protocol 4: ab; cd; ab; cd; . . . . After the first two calls, agent a considers it possible
that agent b learnt some new secret in the second round, therefore a calls b in the third
round, which turns out to be redundant. Likewise in the fourth round agent c considers
it possible that agent d learnt some new secret in the third round, so c calls d in the
fourth round. In this way the loop ab; cd; . . . could go on infinitely. The same example
works for Protocol 5.

In a given round of gossiping, an agent may be uncertain about the actual execution
sequence that occurred. However the agent in question may consider some execution
sequences possible based on the fact that it cannot distinguish between these execution
sequences. Under Known Information Growth de Dicto and Known Information Growth
de Re, for agent ai to call agent aj at a gossip situation, it is required that at every
execution sequence that agent ai considers possible at the given gossip situation, there is
some secret that only one of agent ai and aj knows. As such, if the call aiaj is possible
at the given gossip situation, then one of agent ai and aj is sure to learn some new secret
from the other.

The difference between the Known Information Growth and Possible Information
Growth protocols is as follows. Whereas in Known Information Growth de Re agent
ai is certain of the particular secret that will be learnt in such aiaj call, in Known
Information Growth de Dicto ai may remain uncertain about the particular secret that
will be learnt in the aiaj call. For example, consider again the gossip scenario with four
agents a, b, c, d. After the execution sequence ab; bc; cd, agent a is certain that it will
learn some new secret by calling agent b in the fourth round (since agent b must have
been involved in some call in either the second round or the third round), however, agent
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a is uncertain about the secret it will learn from agent b in the fourth round (since agent
b may have called with either agent c or agent d in the second or third round). Therefore
the epistemic calling condition for Known Information Growth de Dicto holds for agent
a to call b in the fourth round, but not for Known Information Growth de Re. But, for
the same scenario and for the same execution sequence, in the fourth round, agent a is
certain that it will learn the secret of agent c in an ac call. Thus the epistemic calling
condition for Known Information Growth de Re is satisfied. For a broader discussion of
the De Re / De Dicto distinction, see [34]. The difference between Possible Information
Growth de Dicto and Possible Information Growth de Re protocols is obvious from the
foregoing discussion.

4.2 The EGP Tool

The epistemic gossip protocol extension and gossip tree are convenient for design and
planning purposes. However they are not easy to construct manually, even for a small
number of agents. The difficulty of such a task naturally increases with the number
of agents and with the complexity of the epistemic property comprising the epistemic
calling condition for the given protocol. Therefore it is desirable to have a tool that
automates the process of gossip tree generation and the evaluation of epistemic gossip
protocols by means of their extension. We implement such a tool, namely, the EGP tool.
Given a high level description of an epistemic gossip protocol, the EGP tool outputs the
characteristics of the epistemic gossip protocol by analysing the extension of the given
protocol.

In this section we present the implementation structure of the EGP tool, describing
each of its components. The EGP tool comprises of a high-level programming language,
EGPL, an interpreter for EGPL and the EGPL Modeller. The EGPL Modeller accepts
the calling condition for one agent a to call another agent b, and checks whether this
calling condition is satisfied at a given situation (or node) in the gossip tree. If this
calling condition is satisfied at a situation, the EGPL Modeller extends the gossip tree
by creating a new situation which is as a result of a call from agent a to agent b in the
current situation. The checking of the calling condition at a situation is done by the
Model Checker whereas the Gossip Tree Generator extends the gossip tree when new
situations are created. The EGPL Modeller also carries out an analysis of a generated
gossip tree and outputs protocol characteristics and sample execution sequences. See
Figure 4.1 for the structural overview of the EGP tool.

Definition 4.4. The language Lcc is defined as

Lcc 3 ϕ ::= KwaiAj | ¬ϕ | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | (ϕ→ ϕ) | Kaiϕ

Note that Aj is a propositional atom, and the formula KwaiAj stands for ‘agent ai
knows whether secret Aj (is true)’, and Kaiϕ stands for ‘agent ai knows that ϕ (is true)’.
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Figure 4.1: Structural overview of the EGP tool.

4.2.1 Structural Overview

For the protocol designer we provide a high level language for describing epistemic gos-
sip protocols within the EGP tool. We call this language Epistemic Gossip Protocol
Language (EGPL). Given the epistemic calling condition ϕΠ(ai, aj) ∈ Lcc required for
any agent ai to call another agent aj under an epistemic gossip protocol Π, the language
EGPL is designed such that ϕΠ(ai, aj) can also be expressed in the language of EGPL
(although EGPL as a programming language is capable of expressing other properties
that are not expressible in the formal language Lcc; we refer the reader to Appendix A
for the BNF grammar, symbols and operators of the EGPL). In this thesis however, we
limit the application of the EGP tool to those protocols whose epistemic calling condition
is expressible in the language of Lcc.

Next we present a language interpreter for EGPL. Given a protocol description ex-
pressed in EGPL, the EGPL interpreter generates the gossip tree corresponding to the
described protocol, and outputs the characteristics of the protocol. The terminating
protocols are characterised in terms of (a) successfulness (b) average execution length (c)
shortest and longest execution lengths and (d) extension size. Also, samples of execution
sequences of various lengths are displayed by the tool, whereas the entire extension of
the protocol is stored in a file.

To generate the possible situations in a round, the EGPL interpreter employs an
epistemic model checker to check the calling conditions for each pair of agents at each
possible situation.

4.2.2 Epistemic Gossip Protocol Language (EGPL)

EGPL is a programming language for describing epistemic gossip protocols in terms of
the epistemic calling conditions of such protocols. An EGPL protocol description starts
with the keyword begin and finish with the keyword end. Between these two keywords
lies the core of the protocol specification which consists of the calling condition of the
protocol. The following code listing is an example protocol specification using EGPL.
The protocol described is Protocol 1.
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1 begin
2 /* epistemic calling condition */
3 let ai call aj if {
4 ai knows (init(aj) \notin secret(ai));
5 }
6 end

Listing 4.1: EGPL Description for Protocol 1

In Listing 4.1, the epistemic calling condition is given in lines 3-5. It says that agent ai
can call agent aj if ai knows that it does not know aj’s unique secret. In the EGPL
description in Listing 4.1, ai and aj are agent name variables. They are substituted by
agent names when the description is parsed.

4.2.3 The EGPL Interpreter

As shown in Figure 4.1, the framework tool accepts an EGPL protocol description,
and outputs a set of protocol characteristics and execution sequences for the described
protocol.

An EGPL description is interpreted in two stages, namely, expansion stage and model
checking stage. The expansion stage produces an instance of the epistemic calling con-
dition for every valid agent combination. A valid agent combination is obtained by
substituting a unique and real agent name for each unique agent name variable appear-
ing in the description. The output of the expansion stage is the set of all the calling
condition instances, over all the agents in the scenario. See listing 4.2 for a sample out-
put from the expansion stage for the description shown in listing 4.1. In this example
the names for the agents in the scenario are a, b, c, d.

c knows (((( init(b)\notinsecret(c)))));
c knows (((( init(a)\notinsecret(c)))));
b knows (((( init(a)\notinsecret(b)))));
d knows (((( init(a)\notinsecret(d)))));
d knows (((( init(c)\notinsecret(d)))));
d knows (((( init(b)\notinsecret(d)))));
c knows (((( init(d)\notinsecret(c)))));
b knows (((( init(d)\notinsecret(b)))));
a knows (((( init(b)\notinsecret(a)))));
a knows (((( init(c)\notinsecret(a)))));
b knows (((( init(c)\notinsecret(b)))));
a knows (((( init(d)\notinsecret(a)))));

Listing 4.2: Expansion Stage Output (Four-Agent Scenario)

The set of all the calling condition instances is fed into the model checking stage where
they are checked on all the possible situations in the round to determine which pair of
agents satisfy the epistemic calling condition at the considered situation.

The parsers are implementations of the Look-Ahead Left to Right (LALR) parsing
technique described in [19]. The technique LALR usually refers to the more specific
technique of LALR(1) parsing in which there is one token look ahead during parsing in
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order to resolve the differences between language production rules. The Left to Right,
LR(k), parsing technique was invented by Donald Knuth who also showed that any
LR(k) grammar can be transformed into an LR(1) grammar, where k is the number of
lookahead terminals of language production rules and k > 1 [38]. Lookahead terminals
allow the specification of richer languages out of a few simple rules, while providing other
useful parsing utilities. However the use of lookahead terminals incurs a large memory
overhead for the parser. Frank DeRemer introduced the LALR(1) technique as a more
memory efficient alternative to LR(1) technique. Although the LALR(1) comes with
a weaker language recognition power than the LR(1) technique, it still has sufficient
power to parse the grammar of many useful and mainstream programming languages,
for example Java. Finally, we use Constructor of Useful Parsers (CUP) parser generator
to automate the construction of the LALR parser for the EGPL programming language.
See [31] for details of CUP parser generator.

4.2.4 Gossip Tree Generator

The EGPL Modeller is the component that constructs and updates the gossip tree for the
specified protocol. It consists of two main components, namely, a gossip tree generator
and a model checker. The model we refer to is a partial gossip tree which is an abstraction
of the gossip model described in Chapter 3 (see also [3]). Given the initial or root node
of the gossip tree, the gossip tree generator constructs the successor nodes of the gossip
tree for the specified protocol. Each successor node in the gossip tree is a result of a
possible call at some parent node. Such a call is considered possible at the parent node
if the calling condition given by the specified protocol is satisfied at the parent node.
The model checker is needed to construct the gossip tree because it checks the calling
conditions on the nodes of the gossip tree to determine successor nodes. In what follows
in this section we describe the gossip tree and provide the semantics of the language of
epistemic calling conditions based on the gossip tree. Let us begin as follows by defining
some of the building blocks of the gossip tree.

Definition 4.5 (History, h). A history h, or an execution sequence, is defined inductively
as: h ::= e | h; aiaj where e is the empty sequence and ai 6= aj ∈ Ag.

Definition 4.6 (Situation Label, F ). A gossip situation is a tuple θ = 〈S1, . . . , Sn〉. We
let Θ be the set of every θ. Given a non-empty set H of histories, a situation label for H is
a function F : H → Θ that returns the gossip situation corresponding to a given history.
The function F is defined as F (e) = 〈{A1}, . . . , {An}〉 where Ai is the secret of agent ai,
and if F (h) = 〈S1, . . . , Sn〉 then F (h; aiaj) = 〈S′1, . . . , S′n〉, where S′i = Si ∪ Sj = S′j and
S′k = Sk, k /∈ {i, j}.

Definition 4.7 (Equivalence Relation, ≡). Let F (h; aiaj) = 〈S1, . . . , Sn〉, and F (h′; akal)

= 〈S′1, . . . , S′n〉. Let the call mode be 0-mode. We inductively define an equivalence
relation between histories as follows:
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Base Case: e ≡am e

Inductive Case: h; aiaj ≡am h′; akal iff: Sm = S′m, and h ≡am h′,
and [am ∈ {ai, aj} = {ak, al} or am /∈ {ai, aj} ∪ {ak, al}], for all am ∈ Ag.

The definition of equivalence relation given in Definition 4.7 is for the private syn-
chronous call mode, in which case it is common knowledge among all the agents that a
call is made in each round of gossiping if and only if there is some pair of agents for which
the calling condition of the protocol is satisfied. Moreover the other agents who were not
involved in a call may be uncertain as to which pair of agents were involved in the call.
According to the equivalence relation given in Definition 4.7, the history corresponding
to the initial situation is the empty history. After the call aiaj , both ai and aj know the
same secrets, whereas the secret known by other agents who were not in the call remains
the same as it was before the aiaj call. Two histories are equivalent for an agent am if
they are both of the same length; and, after each corresponding round for both histories,
am knows the same secrets in both histories; and, in each corresponding round for both
histories, am is either not involved in the call, or am called with the same other agent in
that round. To give an example, consider a gossip scenario with four agents: a, b, c, d.
Let σ1 = ab; dc; ac; bd and σ2 = ab; ac; ad; db, then according to Definition 4.7, σ1 ≡b σ2.
We refer the reader to Section 4.5 for a further discussion about equivalence of histories.

Definition 4.8 (Tree). A tree is a tuple T = 〈H,R〉, where H is a finite set of histories
closed under prefixes, and R is a parent relation over H such that h′Rh if there exists
ai, aj such that h = h′; aiaj . We call h′ the parent node of such h. The node e is the
root node of the tree.

Definition 4.9 (Epistemic Tree). An epistemic tree is a quadruple 〈H,R, F, {Zam}〉
where 〈H,R〉 is a tree, F is a situation label for H, and Zam : H → 2H is a function
that assigns an equivalence class to agent am ∈ Ag from the domain of histories such
that h ≡am h′ for all h′ ∈ Zam(h). Furthermore, we define a parent relation Rc over
the codomain of all Zam such that Zam(h′′)Rc Zam(h) if and only if for every node h′ ∈
Zam(h), the parent node of h′ is in Zam(h′′).

Note that where T = 〈H,R, F, {Zam}〉, then for h ∈ H we may also write h ∈ Tg.
We will sometimes refer to such equivalence class Zam(h) of the node h as the cell of h.
If Zam(h′′)Rc Zam(h), then Zam(h′′) is called the parent cell of Zam(h), and Zam(h) is
called the child cell of Zam(h′′).

Definition 4.10 (Epistemic Tree Layer). Given an epistemic tree T , let k = l(h) be the
length of h ∈ H; let l(e) = 0 and l(h; aiaj) = l(h) + 1. Then the layers λ of T is defined
as a tuple λ = 〈λ0, λ1, . . . 〉 where λk = {h | h ∈ H and l(h) = k}.

For any λk of an epistemic tree T , and for any h ∈ λk, the equivalence class of h for
all agents, the parent relations involving h, and the situation label of h are the same as in
T . Finally, we define a labelling function L over λ such that Lam(λk) =

⋃
h∈λk
{Zam(h)},

for all am ∈ Ag.
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The labelling function L defines a partition, for each agent, over the nodes in a given
layer. Hence Zai(h) returns the cell of h in the partition corresponding to agent ai in a
given epistemic tree layer.

Definition 4.11 (Interpreting Formulas of Lcc on epistemic trees). Given a layer λk of
any epistemic tree T , we inductively define the interpretation of a formula ϕ ∈ Lcc on a
node h ∈ λk as follows†:

λk, h |= KwaiAj iff Aj ∈ Si, where Si is the ith item in F (h)

λk, h |= ¬ϕ iff λk, h 6|= ϕ

λk, h |= (ϕ ∧ ψ) iff λk, h |= ϕ and λk, h |= ψ

λk, h |= (ϕ ∨ ψ) iff λk, h |= ϕ or λk, h |= ψ

λk, h |= (ϕ→ ψ) iff λk, h |= ¬ϕ or λk, h |= ψ

λk, h |= Kaiϕ iff λk, h
′ |= ϕ for every h′ ∈ Zai(h)

λk, h |= ϕ iff T , λk, h |= ϕ iff T , h |= ϕ

λk |= ϕ iff λk, h |= ϕ for all h ∈ λk
T |= ϕ iff T , h |= ϕ for all h ∈ T

Before we go on to the definition of an execution sequence of a protocol, we will first
give an ancillary definition as follows.

Definition 4.12 (Epistemic Context of an Execution Sequence). Given an epistemic
gossip protocol Π and given any history h, let the epistemic calling condition for any
agent a to call another agent b under protocol Π be ϕΠ(a, b). Then the epistemic context
C of h, written C(h), is an epistemic tree T h = 〈Hh, R, F, {Zam}〉, where R,F and Zam
are as given in Definition 4.9, and Hh is defined inductively as follows:

• If h = e then Hh = {e}

• If h = h′; aiaj then Hh = {h′′; ab | h′′ ∈ Hh′ , a, b ∈ Ag and C(h′), h′′ |= ϕΠ(a, b)}

Where C(h) is the epistemic tree T h = 〈Hh, R, F, {Zam}〉, we will sometimes also
abuse notation and write h′ ∈ C(h) for h′ ∈ Hh, and we will sometimes say that such h′

is in the epistemic context of h.

Definition 4.13 (Execution Sequence of an Epistemic Gossip Protocol). Given an epis-
temic gossip protocol Π and given any history h. Let ϕΠ(ai, aj) be the epistemic calling
condition for some agent ai to call another agent aj under protocol Π. Then h is an
execution sequence of Π if and only if one of the following conditions hold:

• h = e

• h = h′; aiaj , and h′ ∈ Hh′ , and C(h′), h′ |= ϕΠ(ai, aj)

†Note that the truth value of Aj is irrelevant here, what is important is whether the truth value is
known.
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Proposition 4.14. Given an epistemic gossip protocol Π, and a history h. Then h is
an execution sequence of Π if and only if h is in the epistemic context of h.

Proof. Let the epistemic calling condition for any agent a to call another agent b under
protocol Π be ϕΠ(ai, aj). We proceed by induction over h, and distinguish the following
cases.

Base Case
Suppose h = e, then from Definitions 4.12 and 4.13 we see that e is an execution
sequence of Π if and only if e ∈ C(e).

Inductive Case
Suppose that h = h′; aiaj , and suppose that h′ is an execution sequence of Π if and
only if h′ is in the epistemic context of h′.

For the ‘=⇒’-direction, suppose that h′; aiaj is an execution sequence of Π. Then
from Definition 4.13 it follows that C(h′), h′ |= ϕΠ(ai, aj). But given the inductive
hypothesis, this also implies that h′; aiaj ∈ Hh′;aiaj as given in Definition 4.12,
which is the same as saying that h′; aiaj is in the epistemic context of h.

For the ‘⇐=’-direction, suppose that h′; aiaj is in the epistemic context of h. Then
from Definition 4.12 this implies that h′; aiaj ∈ Hh′;aiaj and, given the induc-
tive hypothesis, this implies that C(h′), h′ |= ϕΠ(ai, aj) holds, thus satisfying the
conditions for h′; aiaj to be an execution sequence of Π, from Definition 4.13.

Proposition 4.15. Given an epistemic gossip protocol Π, and any two histories h and
ĥ. If ĥ is in the epistemic context of h, then ĥ is an execution sequence of Π.

Proof. Let the epistemic calling condition for any agent a to call another agent b under
protocol Π be ϕΠ(ai, aj). We proceed by induction over ĥ, and distinguish the following
cases.

Base Case
Suppose ĥ = e, then from Definitions 4.12 and 4.13 we see that e is an execution
sequence of Π if and only if e ∈ C(e). Therefore we conclude that if ĥ is in the
epistemic context of h, then ĥ is an execution sequence of Π.

Inductive Hypothesis
Suppose that ĥ = ĥ′; aiaj , and that h = h′; aiaj . As the inductive hypothesis,
suppose that it is the case that if ĥ′ is in the epistemic context of h′ then ĥ′ is an
execution sequence of Π. Now assume that ĥ′ is in the epistemic context of h′, so
we conclude that ĥ′ is an execution sequence of Π. Furthermore, suppose ĥ′; aiaj
is in the epistemic context of h. This implies, from Definition 4.12, that ĥ′ ∈ Hh′ ,
and that C(h′), ĥ′ |= ϕΠ(ai, aj) holds, thus satisfying the conditions for ĥ′; aiaj to
be an execution sequence of Π, from Definition 4.13. We therefore conclude that
such a history ĥ′; aiaj is an execution sequence of Π.
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A history h may not be in its own epistemic context: Proposition 4.14 tells us the
condition under which a history is in its own epistemic context, namely, if the history is
an execution sequence of the given protocol. Now suppose that we are given two histories
h and ĥ, and an epistemic gossip protocol Π; let h be an execution sequence of Π while ĥ
is not an execution sequence of Π. Then we see that although h may be in the epistemic
context of ĥ, it is not the case that ĥ is in the epistemic context of h. We see this from
the contraposition of Proposition 4.15.

Definition 4.16 (Gossip Tree, Tg). Given an epistemic gossip protocol Π, an epistemic
tree 〈H,R, F, {Zam}〉 is complete with respect to a protocol Π if H ⊆ Σ(Π), where Σ(Π)

is the extension of Π. An epistemic tree is compliant with Π if Σ(Π) ⊆ H. An epistemic
tree is a gossip tree for Π if it is compliant with Π and complete with respect to Π.

Note that if Tg is the gossip tree for a protocol Π, then such h ∈ Tg is an execution
sequence of the protocol Π.

To illustrate a gossip tree, in Figure 4.2 we show the first three layers of the gossip
tree for the Learn New Secrets protocol. In Figure 4.2 we use names a, b, c, d for the
agents in the scenario, with corresponding secrets A,B,C,D. In each layer shown we
omit reverse calls for the sake of visual clarity.

Definition 4.17 (Terminal Execution Sequence or History). Given an epistemic gossip
protocol Π, let Tg be the gossip tree for Π. Let ϕΠ(ai, aj) be the epistemic calling
condition for ai to call aj , where ai, aj ∈ Ag. Then, an execution sequence or history
h ∈ Tg is terminal if and only if for every pair ai, aj ∈ Ag, Tg, h |= ¬ϕΠ(ai, aj).

Informally, an execution sequence or history h is terminal if and only if no pair of
agents can make any further calls at h, under the given protocol.

Definition 4.18 (Successful and Unsuccessful Execution Sequence). An execution se-
quence is successful if it is finite, and the first gossip situation is the initial state, and
the last gossip situation is the goal state. An execution sequence is unsuccessful if it is
not successful.

Definition 4.19 (Successful and Unsuccessful Execution Sequence of an Epistemic Gos-
sip Protocol). Given an epistemic gossip protocol Π, let Tg be the gossip tree for Π. An
execution sequence or history h of Π is successful if and only if: h is terminal, and for
every ai ∈ Ag, Tg, h |=

∧
ak∈Ag

KwaiAk.

Informally, an execution sequence or history h of a protocol is successful if at the
gossip situation due to h, it is the case that every agent knows every secret, and no more
calls are possible after h under the given protocol. Notice that a successful execution
sequence gives rise to the goal state.

Definition 4.20 (Successful and Unsuccessful Protocol). An epistemic gossip protocol Π

is successful if and only if: all the execution sequences or histories of Π are terminating;
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and, for every terminal execution sequence h of Π, and for every ai ∈ Ag, Tg, h |=∧
ak∈Ag

KwaiAk.

Definition 4.21 (Standard Extension of an Epistemic Gossip Protocol). The standard
extension of an epistemic gossip protocol is the set of all its terminal execution sequences
of calls.

Notice that for a terminating epistemic gossip protocol Π, every execution sequence
in the extension of Π is also a prefix of some execution sequence in the standard extension
of Π, whereas the standard extension of Π is a strict subset of the extension of Π. By
this property the standard extension serves an optimisation purpose, when we use it
as a standard to compare terminating epistemic gossip protocols for efficiency, later in
Chapter 5.

Note that in defining the gossip tree for a protocol Π, we made the following implicit
assumptions:

1. the same protocol is followed by all the agents

2. the protocol is common knowledge among all the agents in the scenario

3. the agents remember the calls they were involved in within an execution sequence.

In the itemised assumptions above, Item 3 emerges from the definition of equivalence
relation given in Definition 4.7. This notion of equivalence contrasts with that given in
Definition 3.18, since in Definition 3.18 it is required only that an agent knows the same
set of secrets in a pair of gossip situations in order to consider such pair equivalent. The
difference between the two equivalence notions can be explained in terms of capabilities
of agents: in Definition 4.7 the agents are enabled to keep track of whom they called with
previously in an execution sequence, but in Definition 3.18 this capability is lacking in
the agents whereupon they only distinguish gossip situations based on local information
in the situation, namely, the set of secrets known, as against both the set of secrets
known and history of calls, as required by Definition 4.7.

Let us illustrate the difference between the two equivalence notions using an example.
In a gossip scenario with four agents a, b, c, d, consider the following two call sequences
or histories:

h1 = ab; ac; bd

h2 = ac; bc; bd

Let (G′,M ′) be the gossip situation resulting from executing h1 at the initial gossip
situation, and let (G′′,M ′′) be the gossip situation resulting from executing h2 at the
initial gossip situation. We then see that based on the equivalence notion in Definition
3.18, (G′,M ′) and (G′′,M ′′) are equivalent for agent c, since agent c knows the same set
of secrets in both situations, namely, {A, B, C}. However, based on Definition 4.7, h1

and h2 are clearly distinguishable for agent c, since, for example, agent c knows that it
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Figure 4.2: Gossip tree layers (four-agent scenario).

was involved in the first call of h2 but not in the first call of h1. Another example that
shows that agent c can distinguish between (G′,M ′) and (G′′,M ′′) based on Definition
4.7, is as follows: at (G′′,M ′′) agent c knows that both agents a and b know secret C,
but at (G′,M ′) agent c does not know whether both agents a and b know secret C as
it considers it possible (in the private synchronous call mode) that the third call of h1

may have been between agent a and agent b in which case agent b too would have learnt
secret C. But we see that without giving the agents the capability to remember calls
they have made, agent c may not know which agent knows secret C in both execution
sequences.

Although from this chapter onwards, we adopt the equivalence notion given in Defi-
nition 4.7, we would like to pause briefly here to treat a claim that if we adopt the same
equivalence notion for both the gossip model and the epistemic tree, namely, that equiv-
alence notion which is based only on what secrets the agents know as given in Definition
3.18, then the same properties are true on both the gossip model and the epistemic tree
(see Proposition 4.23). Recall that throughout this chapter we assume that the call mode
is the private synchronous mode.

Definition 4.22. Given a set Ag of n agents, let T ∗ = 〈H∗, R, F, {Z∗am}〉 be a type of
epistemic tree where:
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• H∗ is the set of all histories

• R is as in Definition 4.8

• F is as in Definition 4.6

• Z∗am : H∗ → 2H
∗ is a function that assigns an equivalence class to am ∈ Ag from

the domain of histories such that: ≡∗am is an equivalence relation, and h ≡∗am h′

if and only if Sm = S′m, where F (h) = 〈S1, . . . , Sn〉, and F (h′) = 〈S′1, . . . , S′n〉, and
h, h′ ∈ H∗.

• The interpretation of a formula ϕ ∈ Lcc on a node h ∈ T ∗ is analogous to that in
Definition 4.11, and given as follows:

T ∗, h |= KwaiAj iff Aj ∈ Si, where Si is the ith item in F (h)

T ∗, h |= ¬ϕ iff T ∗, h 6|= ϕ

T ∗, h |= (ϕ ∧ ψ) iff T ∗, h |= ϕ and T ∗, h |= ψ

T ∗, h |= (ϕ ∨ ψ) iff T ∗, h |= ϕ or T ∗, h |= ψ

T ∗, h |= (ϕ→ ψ) iff T ∗, h |= ¬ϕ or T ∗, h |= ψ

T ∗, h |= Kaiϕ iff T ∗, h′ |= ϕ for every h′ ∈ Z∗ai(h)

Proposition 4.23. Let T ∗ be as given in Definition 4.22, and let the interpretation of
a formula ϕ ∈ Lcc on a node h ∈ T ∗ be as given in Definition 4.22. Let G = (S,≈) be a
gossip model (see Definition 3.7 in Chapter 3), where M1 is the initial gossip situation,
and S = {M1}. Let (G,M1)[[h]](G′,M ′), where [[h]] is as defined in Definition 3.18 and
Definition 3.19. Then‡:

G′,M ′ |=g ϕ iff T ∗, h |= ϕ, for all h ∈ H∗ and ϕ ∈ Lcc

Proof of Proposition 4.23. Consider an arbitrary agent ai ∈ Ag and an arbitrary secret
Aj from the set P of the unique secrets of all the agents. Let h be an arbitrary element
of H∗. We proceed by induction on ϕ ∈ Lcc.

Base Case. Suppose the set of secrets known by ai ∈ Ag at (G′,M ′) is Q. Then
∼M ′ai =≡M ′Q (from Definition 3.7). But then also Si = Q, where, from Definition 4.6,
F (h) = 〈S1, . . . , Sn〉 is the gossip situation due to the execution of h at the initial
gossip situation. We consider two base cases: ϕ is KwaiAj and ϕ is ¬KwaiAj , as
follows.

Case ϕ is KwaiAj.

G′,M ′ |=g KwaiAj iff Aj ∈ Q (Definition 3.9, Theorem 3.8)

T ∗, h |= KwaiAj iff Aj ∈ Si (Given)

Since Si = Q, we conclude that: G′,M ′ |=g KwaiAj iff T ∗, h |= KwaiAj

‡Here we define the empty history e to be equivalent to the skip action at the initial gossip situation.
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Case ϕ is ¬KwaiAj.

G′,M ′ |=g ¬KwaiAj iff G′,M ′ 6|=g KwaiAj (Definition 3.9)

iff Aj 6∈ Q (Definition 3.9, Theorem 3.8)

iff Aj 6∈ Si (Si = Q)

iff T ∗, h 6|= KwaiAj (Given)

We therefore conclude that: G′,M ′ |=g ¬KwaiAj iff T ∗, h |= ¬KwaiAj

Inductive Hypothesis. For every h ∈ H∗, if (G,M1)[[h]](G′,M ′), then for every ϕ′, ϕ′′∈
Lcc, it is the case that:

1. G′,M ′ |=g ϕ
′ if and only if T ∗, h |= ϕ′

2. G′,M ′ |=g ¬ϕ′ if and only if T ∗, h |= ¬ϕ′

3. G′,M ′ |=g ϕ
′′ if and only if T ∗, h |= ϕ′′

4. G′,M ′ |=g ¬ϕ′′ if and only if T ∗, h |= ¬ϕ′′

Inductive Step on Lcc. We distinguish the following cases:

Case ϕ is ¬ϕ′. This case is straightforward from the inductive hypothesis.

Case ϕ is (ϕ′ ∧ ϕ′′). Straightforward from the inductive hypothesis:

G′,M ′ |=g ϕ′ ⇐⇒ T ∗, h |= ϕ′ and G′,M ′ |=g ϕ′′ ⇐⇒ T ∗, h |= ϕ′′

And that is equivalent to saying:

G′,M ′ |=g (ϕ′ ∧ ϕ′′)⇐⇒ T ∗, h |= (ϕ′ ∧ ϕ′′)

(semantics of ‘∧’, propositional logic).

Case ϕ is Kaiϕ
′.

G′,M ′ |=g Kaiϕ
′ ⇐⇒ for every N ′ such that M ′ ≈ai N ′, G′, N ′ |=g ϕ

′

(from Definition 3.9)
(†)

But also,

T ∗, h |= Kaiϕ
′ ⇐⇒ for every h′ such that h ≡∗ai h

′, T ∗, h′ |= ϕ′

(Given)
(††)

From the inductive hypothesis we are given that for all h ∈ H∗, if (G,M1)[[h]](G′,M ′)

then G′,M ′ |=g ϕ
′ ⇐⇒ T ∗, h |= ϕ′. Consider each of all h′ such that h′ ≡∗ai h.

We see, from the inductive hypothesis, that if (G,M1)[[h′]](G′, N ′) then G′, N ′ |=g
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ϕ′ ⇐⇒ T ∗, h′ |= ϕ′. Now, suppose (G,M1)[[h′]](G′, N ′), then we conclude that
G′, N ′ |=g ϕ

′ ⇐⇒ T ∗, h′ |= ϕ′, for every h′ such that h′ ≡∗ai h. That is:

G′, N ′ |=g ϕ
′ for every h′ such that h ≡∗ai h

′ and (G,M1)[[h′]](G′, N ′)

⇐⇒ T ∗, h′ |= ϕ′ for every h′ such that h ≡∗ai h
′ (†††)

(Note that from the definition of Z∗am that h′ ≡∗ai h because ai knows the same set
of secrets in the gossip situations due, respectively to h and h′, and this implies (see
Corollary 3.11) that (G′,M ′) ≈ai (G′, N ′), for every (G′, N ′) such that h′ ≡∗ai h
and (G,M1)[[h′]](G′, N ′).)

Therefore, from (†), (††) and (†††), we conclude that:

G′,M ′ |=g Kaiϕ
′ ⇐⇒ T ∗, h |= Kaiϕ

′

For the case where ϕ is (ϕ′∨ϕ′′), recall that (ϕ′∨ϕ′′) is equivalent to ¬(¬ϕ′∧¬ϕ′′). Like-
wise for the case where ϕ is (ϕ′ → ϕ′′), recall that (ϕ′ → ϕ′′) is equivalent to ¬(ϕ′∧¬ϕ′′).

This concludes the inductive argument.

Notice that the notion of equivalence in Proposition 4.22 is the same as that given
in Definition 3.7 and Definition 3.18. In this notion, two gossip situations are equivalent
for an agent am if and only if am knows the same set of secrets in both situations. Notice
also that because H is the set of all execution sequences, then in using T ∗ to interpret a
sequence of calls in a gossip scenario, we allow that the epistemic protocol is not common
knowledge among the agents, and that each agent can follow a different protocol. (Note
that the assumptions of the protocol not being common knowledge and each agent being
allowed to follow a different protocol are implicit assumptions behind the interpretation
of calls and complex programs given in Definition 3.19. We shed these assumptions in
the definition of gossip tree given in Definition 4.16).

Under the assumptions made in Proposition 4.23, we have shown that if (G′,M ′) is
a gossip model due to a call sequence or history h, then a property ϕ ∈ Lcc holds at
(G′,M ′) if and only if such property holds at h in the epistemic tree T ∗.

Proposition 4.24. Let Tg = 〈H,R, F, {Zam}〉 be the gossip tree for some epistemic
gossip protocol Π. Let G = (S,≈) be a gossip model (see Definition 3.7 in Chapter 3),
where M1 is the initial gossip situation, and S = {M1}. Let (G,M1)[[h]](G′,M ′), where
[[h]] is as defined in Definition 3.18 and Definition 3.19. Then§:

G′,M ′ |=g ϕ =⇒ Tg, h |= ϕ, for all h ∈ H and ϕ ∈ Lcc
§Here we define the the empty history e to be equivalent to the skip action at the initial gossip

situation.
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Proof of Proposition 4.24. Consider an arbitrary agent ai ∈ Ag and an arbitrary secret
Aj from the set P of the unique secrets of all the agents. Let h be an arbitrary element
of H. We proceed by induction on ϕ ∈ Lcc.

Base Case. Suppose the set of secrets known by ai ∈ Ag at (G′,M ′) is Q. Then
∼M ′ai =≡M ′Q (from Definition 3.7). But then also Si = Q, where, from Definition 4.6,
F (h) = 〈S1, . . . , Sn〉 is the gossip situation due to the execution of h at the initial
gossip situation. We consider two base cases: ϕ is KwaiAj and ϕ is ¬KwaiAj , as
follows.

Case ϕ is KwaiAj.

G′,M ′ |=g KwaiAj iff Aj ∈ Q (Definition 3.9, Theorem 3.8)

Tg, h |= KwaiAj iff Aj ∈ Si (Definition 4.11)

Since Si = Q, we see that:

G′,M ′ |=g KwaiAj iff Tg, h |= KwaiAj

And from propositional logic we conclude that:

G′,M ′ |=g KwaiAj implies Tg, h |= KwaiAj

Case ϕ is ¬KwaiAj.

G′,M ′ |=g ¬KwaiAj iff G′,M ′ 6|=g KwaiAj (Definition 3.9)

iff Aj 6∈ Q (Definition 3.9, Theorem 3.8)

iff Aj 6∈ Si (Si = Q)

iff Tg, h 6|= KwaiAj (Definition 4.11)

We therefore see that:

G′,M ′ |=g ¬KwaiAj iff Tg, h |= ¬KwaiAj

And from propositional logic we conclude that:

G′,M ′ |=g ¬KwaiAj implies Tg, h |= ¬KwaiAj

Inductive Hypothesis. For every h ∈ H, if (G,M1)[[h]](G′,M ′), then for every ϕ′, ϕ′′∈
Lcc, it is the case that:

1. G′,M ′ |=g ϕ
′ implies Tg, h |= ϕ′

2. G′,M ′ |=g ¬ϕ′ implies Tg, h |= ¬ϕ′

3. G′,M ′ |=g ϕ
′′ implies Tg, h |= ϕ′′

4. G′,M ′ |=g ¬ϕ′′ implies Tg, h |= ¬ϕ′′
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Inductive Step on Lcc. We distinguish the following cases:

Case ϕ is ¬ϕ′. This case is straightforward from the inductive hypothesis.

Case ϕ is (ϕ′ ∧ ϕ′′). Straightforward from the inductive hypothesis:

G′,M ′ |=g ϕ′ =⇒ Tg, h |= ϕ′ and G′,M ′ |=g ϕ′′ =⇒ Tg, h |= ϕ′′

And that is equivalent to saying:

G′,M ′ |=g (ϕ′ ∧ ϕ′′) =⇒ Tg, h |= (ϕ′ ∧ ϕ′′)

(semantics of ‘∧’, propositional logic).

Case ϕ is Kaiϕ
′.

G′,M ′ |=g Kaiϕ
′ ⇐⇒ for every N ′ such that M ′ ≈ai N ′, G′, N ′ |=g ϕ

′

(from Definition 3.9)
(†)

But also,

Tg, h |= Kaiϕ
′ ⇐⇒ for every h′ such that h ≡ai h′, Tg, h′ |= ϕ′

(from Definition 4.11 and Definition 4.7)
(††)

From the inductive hypothesis we are given that for all h ∈ H, if (G,M1)[[h]](G′,M ′)

then G′,M ′ |=g ϕ
′ =⇒ Tg, h |= ϕ′. Consider each of all h′ such that h′ ≡ai h. We

see, from the inductive hypothesis, that if (G,M1)[[h′]](G′, N ′) then G′, N ′ |=g

ϕ′ =⇒ Tg, h′ |= ϕ′. Now, suppose (G,M1)[[h′]](G′, N ′), then we conclude that
G′, N ′ |=g ϕ

′ =⇒ Tg, h′ |= ϕ′, for every h′ such that h′ ≡ai h. That is:

G′, N ′ |=g ϕ
′ for every h′ such that h ≡ai h′ and (G,M1)[[h′]](G′, N ′)

=⇒ Tg, h′ |= ϕ′ for every h′ such that h ≡ai h′ (†††)

Therefore, from (†), (††) and (†††), we conclude that:

G′,M ′ |=g Kaiϕ
′ =⇒ Tg, h |= Kaiϕ

′

For the case where ϕ is (ϕ′∨ϕ′′), recall that (ϕ′∨ϕ′′) is equivalent to ¬(¬ϕ′∧¬ϕ′′). Like-
wise for the case where ϕ is (ϕ′ → ϕ′′), recall that (ϕ′ → ϕ′′) is equivalent to ¬(ϕ′∧¬ϕ′′).

This concludes the inductive argument.

Proposition 4.24 says that if a property is true in a gossip model (G′,M ′) (under the
equivalence notion that is based only on what secrets an agent knows in a pair of gossip
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situations) then that property is also true at the end of an execution sequence h in the
gossip tree Tg for some protocol Π, where h is the same execution sequence that gave
rise to (G′,M ′) after being executed at the initial gossip situation (G,M1).

Proposition 4.25. For any epistemic gossip protocols Π and Π′, let ϕΠ(x, y) be the
epistemic calling condition for agent x to call agent y for Protocol Π and let ϕΠ′(x, y) be
the epistemic calling condition for agent x to call agent y for Protocol Π′, where x, y ∈ Ag.
Suppose T Π

g = 〈H,R, F, {Zam}〉 is the gossip tree for protocol Π, and Σ(Π) and Σ(Π′)

are, respectively, the extension of Π and Π′, then:

T Π
g |= ϕΠ(x, y)→ ϕΠ′(x, y) implies Σ(Π) ⊆ Σ(Π′)

Proof. Consider an arbitrary history h ∈ H. Suppose that T Π
g , h |= ϕΠ(x, y)→ ϕΠ′(x, y).

Then it follows that if a call xy can be made for protocol Π, then the same call can also
be made for protocol Π′, after the execution sequence given by h (that is, if h;xy ∈ Σ(Π)

then h;xy ∈ Σ(Π′)). Since the foregoing statement is true for an arbitrary history
h ∈ H, it follows that any execution sequence in Σ(Π) is also in Σ(Π′). And therefore
Σ(Π) ⊆ Σ(Π′).

Observation 4.26. Recall Proposition 3.27, as follows. Let Π0 denote the Fixed Schedule:

1. Σ(Π1) ( Σ(Π3) ( Σ(Π2) ( Σ(Π5) = Σ(Π4)

2. Σ(Π0) 6⊆ Σ(Π1) and Σ(Π0) ( Σ(Π3) and Σ(Π0) ( Σ(Π2) and Σ(Π0) ( Σ(Π4) and
Σ(Π0) ( Σ(Π5)

The proof of Proposition 3.27 (see Page 72) was done by using Proposition 3.26, and
then arguing for the following seven claims, where cc(x, y,Πi) = ϕΠi(x, y):

Claim 1: |=g cc(x, y,Π1)→ cc(x, y,Π3)

Claim 2: 6|=g cc(x, y,Π3)→ cc(x, y,Π1)

Claim 3: |=g cc(x, y,Π3)→ cc(x, y,Π2)

Claim 4: 6|=g cc(x, y,Π2)→ cc(x, y,Π3)

Claim 5: |=g cc(x, y,Π2)→ cc(x, y,Π5)

Claim 6: 6|=g cc(x, y,Π5)→ cc(x, y,Π2)

Claim 7: |=g cc(x, y,Π5)↔ cc(x, y,Π4)

Let T Π
g = 〈H,R, F, {Zam}〉 and let h be an arbitrary element of H. Observe that

Proposition 4.25 can also be used to prove Proposition 3.27 by arguing for the following
claims:

Claim 1’: T Π
g |= cc(x, y,Π1)→ cc(x, y,Π3)
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Claim 2’: T Π
g 6|= cc(x, y,Π3)→ cc(x, y,Π1)

Claim 3’: T Π
g |= cc(x, y,Π3)→ cc(x, y,Π2)

Claim 4’: T Π
g 6|= cc(x, y,Π2)→ cc(x, y,Π3)

Claim 5’: T Π
g |= cc(x, y,Π2)→ cc(x, y,Π5)

Claim 6’: T Π
g 6|= cc(x, y,Π5)→ cc(x, y,Π2)

Claim 7’: T Π
g |= cc(x, y,Π5)↔ cc(x, y,Π4)

Based on the argument for Claims 1 through 7 (see proof of Proposition 3.27 on Page
72), we obtain the argument for Claim 1’ through Claim 7’, respectively, by substituting
(T Π
g , h) for the arbitrary gossip model (G,M).

Automatic Construction of a Gossip Tree

In order to construct layer λk+1 of a gossip tree, only layer λk is required. So, given
the initial layer λ0 of the gossip tree of a specified protocol, it possible to automatically
generate the entire gossip tree, layer by layer. Algorithm 4.1 generates the gossip tree for
a given epistemic gossip protocol Π. Given a layer λk of a gossip tree, the ComputeNext-
Layer function constructs the next layer λk+1 of the gossip tree, whereas the LayerLabel
function updates the layer label Lai(λk+1) of the gossip tree layer under construction,
for all ai ∈ Ag. Beginning with an initial layer, Algorithm 4.1 builds the gossip tree up
to a desired finite layer. Given a layer of the gossip tree, the algorithm computes all the
calls that are possible at each node of the given layer, by model checking the epistemic
calling condition ϕΠ(ai, aj) = ϕaiaj for each pair of agents (ai, aj), at the node. For
each possible call at a node, the algorithm produces a successor node which is naturally
in the next layer from the layer of the given node. Algorithm 4.1 exploits the following
properties of gossip trees:

Proposition 4.27. Given any two layers λk and λk+1 of a gossip tree Tg, and given any
h′ ∈ λk and h ∈ λk+1, then h′Rh iff Zai(h

′)RcZai(h), for all ai ∈ Ag.

Proof. Let p(h) = ĥ, such that ĥRh. Choose an arbitrary agent ai ∈ Ag.

=⇒ -direction. Suppose h′Rh. Consider an arbitrary h̄ ∈ Zai(h). One of the conditions
for equivalence of h̄ and h is that p(h) ≡ai p(h̄) (from Definition 4.7). But h ∈
Zai(h) and p(h) = h′, so h′ ≡ai p(h̄). Since h̄ is an arbitrary element of Zai(h),
and from the definition of Rc in Definition 4.9, we conclude that Zai(h′)RcZai(h).

⇐= -direction. Suppose Zai(h′)RcZai(h). Choose an arbitrary h̄ ∈ Zai(h), then there
must be a h̄′ ∈ Zai(h′) such that h̄′Rh̄ (from the definition of Rc in Definition 4.9).
For every h′′ ∈ Zai(h′), Zai(h′′) = Zai(h

′). We chose h̄ arbitrarily, so now we fix a
node h ∈ Zai(h) and call its parent h′. Then Zai(h′)RcZai(h) implies h′Rh.
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Algorithm 4.1 Automatic construction of a gossip tree layer.
1: function ComputeNextLayer(λk, ϕab)
2: C ← {aiaj | ai, aj ∈ Ag, ai 6= aj}
3: if λk = ∅ then λk ← {e}, Lai

(λk)← ∅ and Lai
(λk)← Lai

(λk)∪{{e}}, ∀ai ∈ Ag end if
4: Lai

(λk+1)← ∅
5: for all h′ ∈ λk do
6: for all aiaj ∈ C do
7: if SAT(ϕaiaj

, h′) holds then
8: h← h′; ab, and F (h) is computed accordingly
9: LayerLabel(λk+1, h

′, h)
10: end if
11: end for
12: end for
13: return λk+1

14: end function

15: function LayerLabel(λk+1, h
′, h)

16: for all ai ∈ Ag :

17: if ∃C ′ = Zai
(h′′) such that h′Rh and Zai

(h′)Rc Zai
(h′′) and h ≡ai

h′′

18: C ′ ← C ′ ∪ {h}
19: else
20: Initialise an empty cell C
21: C ← C ∪ {h}
22: Lai(λk+1)← Lai(λk+1) ∪ {C}
23: end if
24: end for
25: end function

Proposition 4.28. Let h and h′ be as in Proposition 4.27. If h is assigned to any child
cell of Zai(h′), then h is not in any other child cell of Zai(h′).

Proof. Towards a contradiction, choose an arbitrary agent ai from the given set of agents.
Let C ′ and C ′′ be two distinct child cells of Zai(h′). Suppose that h is assigned to C ′

and h is also assigned to C ′′, then it follows that for all h̄ ∈ C ′ and for all ¯̄h ∈ C ′′,
h ≡ai h̄ ≡ai ¯̄h. Then from the definition of cell it follows that C ′ = C ′′ for agent ai and
therefore C ′ and C ′′ are not distinct, contrary to the assumption.

Given a parent node h′ and its successor h, the LayerLabel function assigns h to a cell
within the partition for each agent, as follows. Consider the partition for an arbitrary
agent ai ∈ Ag. Since the cell of h, for agent ai, is a child cell of Zai(h′) (Proposition
4.27), the LayerLabel function first checks whether Zai(h′) already has any child cells.
Let such a child cell be called C ′. The node h can be assigned to such C ′ if there exists
an h′′ ∈ C ′ such that h′′ ≡ai h. If h cannot be assigned to any currently existing child
cell of Zai(h′) then we create a new empty child cell C for Zai(h′) and assign h to it.
Moreover, LayerLabel function ensures that h is assigned to only one cell (Proposition
4.28).
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Furthermore, for any h ∈ λk+1, where k ≥ 0, the condition under which h is assigned
to a cell is equivalent to that given in Definition 4.7. Given λk+1, and given h′ and h

such that h′Rh, where h ∈ λk+1, the history h is assigned to some C ′ = Zai(h
′′) such

that Zai(h′)RcZai(h′′) and h≡ai h′′. Again let p(h) = ĥ, such that ĥRh. The condition
η = (h′Rh and Zai(h′)RcZai(h′′)) implies that p(h′′) ≡ai h′ = p(h), since p(h′′) ∈ Zai(h′)
by the definition of Rc. Therefore η ensures that p(h) ≡ai p(h′′), which is required by
Definition 4.7. Based on the fact that p(h) ≡ai p(h′′), the condition h ≡ai h′′ is then
checked according to Definition 4.7.

The SAT Function

Our model checking algorithm combines the bottom-up approach and the top-down
approach similar to that employed in temporal-epistemic model checking (see Algorithm
4.4). In the bottom-up approach [33], a given formula ϕ is checked in a state of the model
by iteratively obtaining all the states where the subformulas of ϕ are true, beginning with
the smallest subformula of ϕ, and increasing the size of the subformulas in a step-wise
manner in each iteration, until the set of states satisfying the largest subformula, namely
ϕ itself, is obtained. Each higher subformula of ϕ is checked on the states obtained
from the previous iteration. This approach is called the bottom-up approach because
model checking starts with the smallest subformula of ϕ. In the top-down approach, the
reverse is the case. At the given state of the model, ϕ is checked by recursively checking its
subformulas in order of decreasing size until the smallest subformula is checked [55]. Our
model checking algorithm is with respect to the language Lcc. In the general temporal
and epistemic setting, the top-down approach is more computationally expensive than
the bottom-up approach. However, in our experiments we show that by combining
the top-down and the bottom-up approach we take advantage of the peculiarities of
the equivalence classes obtained from the gossip tree to obtain a better performance
in practice, than by using the bottom-up approach (see subsection Equivalence Class
Analysis, later). We also obtain added performance by means of our representation of
the gossip tree and the layer labelling procedure, which introduces a caching technique
for faster computation of equivalence classes by reusing equivalence class information
from previous rounds.

We now describe our SAT function as used in Algorithm 4.1, but first we give some
ancillary definitions as follows:

Definition 4.29 (Model Checking). Given h ∈ λk of a gossip tree Tg, and a formula
ϕ ∈ Lcc, the model checking problem is whether ϕ is satisfied at h, i.e., whether λk, h |= ϕ.
The output is “yes” if ϕ is satisfied at the given h, and otherwise “no”. The model checking
algorithm is defined in Algorithm 4.4.

Definition 4.30 (Relevant Set). Let the language L′cc be equal to Lcc without the
fragment Kaiϕ. That is:

L′cc 3 ϕ ::= KwaiAj | ¬ϕ | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | (ϕ→ ϕ) , where ai 6= aj .
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Let ϕ′ ∈ L′cc be called epistemic propositional formula. Given a formula ϕ ∈ Lcc, and
h ∈ λk, let Relevant Set QQ with respect to ϕ and h be defined in Algorithm 4.2, with
QQ = {h}, initially.

Intuitively, the relevant set is the largest set of gossip tree nodes needed for the model
checking of ϕ at the designated node h.

Definition 4.31 (Truth Set). The Truth Set TT is defined in Algorithm 4.3, with
TT = ∅, initially.

Algorithm 4.2 Definition of Relevant Set.
1: function TopDownSAT(ϕ,QQ)
2: begin case
3: ϕ is epistemic propositional: return QQ

4: ϕ is Kaiϕ1:
5: QQ′ ← ∅
6: for every h′ ∈ QQ
7: QQ′ ← QQ′ ∪ Zai(h

′)

8: end for
9: QQ← QQ′

10: TopDownSAT(ϕ1, QQ)
11: ϕ is ¬ϕ1:
12: QQ← TopDownSAT(ϕ1, QQ)

13: ϕ is (ϕ1 ∨ ϕ2):
14: QQ← TopDownSAT(ϕ1, QQ) ∪TopDownSAT(ϕ2, QQ)

15: ϕ is (ϕ1 ∧ ϕ2):
16: QQ← TopDownSAT(ϕ1, QQ) ∪TopDownSAT(ϕ2, QQ)

17: ϕ is (ϕ1 → ϕ2):
18: QQ← TopDownSAT((¬ϕ1 ∨ ϕ2), QQ)

19: end case
20: end function

Here, the TopDownSAT function mitigates the state-space explosion by narrowing
down the set of nodes to relevant ones. We then employ the BottomUpSAT, which is
an adaptation of the CTL labelling algorithm, on the relevant set. We show that this
two-step approach is better in practice than the bottom-up or top-down approach.

We sketch an argument to establish the correctness of the SAT function as follows.
From the semantics of Lcc it is easy to see that TopDownSAT computes the set of all
nodes needed to model-check the given formula ϕ on the designated node h. By the case
basis, if ϕ is epistemic propositional, then we need only the designated node h; if ϕ is
Kaiϕ

′ then we need the set QQ′ of nodes that agent ai cannot distinguish from each
of the nodes contained in QQ, in order to check whether Kaiϕ

′. Note that due to the
reflexivity property of the accessibility relation (a node is equivalent to itself, for all the
agents) QQ ⊆ QQ′. If ϕ is ¬Kaiϕ

′ then we need at most the same nodes as for Kaiϕ.
If ϕ is (ϕ′ ∧ ϕ′′) or (ϕ′ ∨ ϕ′′), we need the set of relevant nodes for ϕ′ union the set of
relevant nodes for ϕ′′.
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Algorithm 4.3 Definition of Truth Set.
1: function BottomUpSAT(ϕ, TT,QQ)
2: begin case
3: ϕ is epistemic propositional:
4: TT ← {h| h ∈ QQ and ϕ is true at h}
5: return TT

6: ϕ is Kai
ϕ1:

7: TT ←SATk(a, ϕ1, TT,QQ)
8: return TT

9: ϕ is ¬ϕ1:
10: TT ← QQ \BottomUpSAT(ϕ1, TT,QQ)

11: return TT

12: ϕ is (ϕ1 ∨ ϕ2):
13: TT ← BottomUpSAT(ϕ1, TT,QQ) ∪BottomUpSAT(ϕ2, TT,QQ)

14: return TT

15: ϕ is (ϕ1 ∧ ϕ2):
16: TT ← BottomUpSAT(ϕ1, TT,QQ) ∩BottomUpSAT(ϕ2, TT,QQ)

17: return TT

18: ϕ is (ϕ1 → ϕ2):
19: TT ← BottomUpSAT((¬ϕ1 ∨ ϕ2), TT,QQ)

20: return TT

21: end case
22: end function

23: function SATk(a, ϕ, TT,QQ)
24: TT ′ ← ∅
25: for every h ∈ QQ:
26: if Zai

(h) ⊆ TT , then TT ′ ← TT ′ ∪ {h}
27: end for
28: return TT ′

29: end function

To prove the correctness of the BottomUpSAT function, we note that in order to
check the formula ϕ on the given node h we do not require any node that is not in QQ,
as returned by TopDownSAT.

Time Complexity of the SAT Function

We come now to discuss the time complexity of the SAT function. But first we give some
definitions.
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Definition 4.32 (Epistemic Depth). We define the epistemic depth of a formula ϕ ∈ Lcc
as follows. Let D(ϕ) be a function that computes the epistemic depth of ϕ, then:

D(KwaiAj) = 0

D(¬ϕ) = D(ϕ)

D((ϕ1 ∧ ϕ2)) = max (D(ϕ1),D(ϕ2))

D((ϕ1 ∨ ϕ2)) = max (D(ϕ1),D(ϕ2))

D((ϕ1 → ϕ2)) = max (D(ϕ1),D(ϕ2))

D(Kaiϕ) = 1 +D(ϕ)

Definition 4.33 (Iterated-K Subformula). An iterated-K subformula is a subformula
of the language Litk such that ϕ ::= KwaiAj | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | ¬ϕ, and Litk 3 ψ ::=

Kaiϕ | ¬ψ. The length of an iterated-K subformula ψ is the epistemic depth of ψ.

Intuitively, the epistemic depth of the subformula ψ is the number of K operators
(that is, K or ¬K operator) in ψ.

Proposition 4.34. The time complexity of the SAT function shown in Algorithm 4.4 is
O((m+ |Ag|).|λk|2), where m is the epistemic depth of the given formula ϕ ∈ Lcc.

Considering TopDownSAT (shown in Algorithm 4.2), we obtain the equivalence class
of a node for an agent in constant time, and for each K operator in an iterated-K
formula, the relevant set is computed in time O(|λk|): for the “leftmost” K operator, at
the designated node h, we can obtain QQ = Zai(h) in constant time, where ai is the
agent associated with the K operator; for each subsequent K operator, left-to-right, we
compute Zai(h′) for each h′ ∈ QQ in time O(|QQ|) which is in turn at most |λk|. For
m iterated-K operators we compute QQ in O(1) + O((m − 1).|λk|) = O((m − 1).|λk|).
The time complexity of model-checking an epistemic propositional formulae is O(|λk|)
since we would have to check all the nodes in the relevant set, which are at most |λk|
nodes. For a conjunctive or disjunctive formula the worst-case complexity is that of its
most expensive term. Therefore the time complexity of a given ϕ ∈ Lcc is the complexity
of the longest iterated-K subformula, that is, the iterated-K subformula with the most
number of K operators.

Considering BottomUpSAT (shown in Algorithm 4.3), we compute the truthset TT
in time O(|λk|), and for each non-negated iterated-K operator (Kaiϕ

′) associated with
some agent ai ∈ Ag, we compute the truthset TT ′ of all nodes h in QQ whose equivalence
class is a subset of TT , in time O(|λk|) for each node h; this gives O(|λk|2) for all nodes
in QQ. For each negated iterated-K operator (¬Kaiϕ) we compute TT ′ as for the non-
negated iterated-K operator, and take the complement of the obtained TT ′. So, the
time complexity of BottomUpSAT algorithm is O(m.|λk|2). Considering the LayerLabel
algorithm, we create |λk| nodes, and update the layer label, for each of the nodes created
and for each of the agents. We process each node h′ as follows: the parent cell is
retrieved in constant time; child cells of the parent cell are also retrieved in constant
time; we compare a member from each child cell, with h′, to determine membership of
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h′. This is achieved in (|λk|). Inclusion of h′ into a cell is done in constant time. This
gives a time complexity of O(|Ag|.|λk|2) for the LayerLabel algorithm.

We will see in the next section that, given the nature of gossip models, the size of the
equivalence classes are exponentially small compared to the size of the λk, and as such,
the actual size of the relevant set is small compared to the size of λk, thus lending space
and time efficiency in practical terms.

Algorithm 4.4 The SAT function.
1: function SAT(ϕ, h)
2: QQ′ ← h
3: TT ′ ← ∅
4: QQ← TopDownSAT(ϕ,QQ′)
5: TT ← BottomUpSAT(ϕ, TT ′, QQ)
6: if h ∈ TT then return true . true is “Yes”
7: else return false . false is “No”
8: end if
9: end function

Equivalence Class Analysis

In this section we investigate the sizes of the equivalence classes for the agents at each
layer of the gossip tree model. We show that the TopDownSAT could be much less
expensive in practice, due to the relatively small sizes of equivalence classes for the
agents in each layer.

The data presented in Tables 4.1 and 4.2 is the summary of an equivalence class
analysis for one of five agents in Protocol 2 and 3 respectively, beginning from the root
layer to the terminal layer of the gossip tree. We chose only one of the agents because
we observed that the cell sizes (and their distribution) for other agents are symmetrical
variants of each other (see examples in Figures 4.3 and 4.4). From Tables 4.1 and 4.2 we
observe that the cell sizes in each layer are indeed very small compared to the layer size.
The graph in Figure 4.5 shows that the average cell size is exponentially smaller than
the layer size for both Protocol 2 and Protocol 3. The same trend is found when the
experiment is repeated for three and four agents. We did not carry out the analysis for
Protocol 1 because, strictly speaking, to check its epistemic calling condition on a given
situation we require only the information contained in that same situation, namely the
secrets known by the agents in the situation - hence there is no need to reason about
other possible worlds.

The results shown in Tables 4.1 and 4.2 also indicate that indeed the relevant set
obtained through the TopDownSAT is significantly small compared to the size of a
layer, and hence lends added performance to the SAT function in practice. To illustrate
this point consider our example protocols (protocols 1-5). The epistemic depth of the
epistemic calling condition for each of these protocols is at most one. Particularly,
consider the equivalence class analysis for Protocol 2 for a scenario with five agents
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(see Table 4.1). Consider layer 10 of the gossip tree of this protocol and assume that
the size of the equivalence class required to check the satisfiability of the epistemic
calling condition is the average cell size of that layer, that is 1920 nodes. Then instead
of checking 472, 988, 160 nodes to determine the nodes that satisfy the propositional
part of the epistemic calling condition (as required by the solely bottom-up approach),
we would rather check only 1920 nodes, yielding a 99.9996% reduction in the number
of nodes checked. Furthermore, consider an epistemic gossip protocol whose epistemic
calling condition has an epistemic depth of two. Let us reuse the figures as in the previous
example and assume that the equivalence classes are disjoint. Then the relevant set for
such epistemic calling condition comprises of 19202 = 3, 686, 400 nodes, which still yields
a 99.2206% reduction in the number of nodes checked.

Finally, as expected (see Proposition 3.27 and Observation 4.26), the layer sizes for
Protocol 2 are mostly larger than those of the corresponding layers of Protocol 3. In
Figure 4.6 we see that between layer 0 and 5, the two protocols exhibit similar layer
sizes. However layer 5 through 8 shows a linear growth in the size of layers of Protocol
2 relative to those of Protocol 3. The relative size of the layers then remained fairly
constant from layer 8 through 10 for both protocols.

La(λ1) : 2, 2, 2, 6
Lb(λ1) : 2, 6, 2, 2
Lc(λ1) : 6, 2, 2, 2
Ld(λ1) : 6, 2, 2, 2

Figure 4.3: The first layer of the gossip tree of Protocol 2 (four-agent sce-
nario).

La(λ2) : 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 12, 12, 4, 24, 4, 12, 4, 4, 4
Lb(λ2) : 12, 4, 4, 4, 24, 12, 4, 12, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
Lc(λ2) : 4, 12, 24, 4, 4, 12, 4, 4, 4, 4, 4, 4, 4, 4, 4, 12, 4, 4, 4
Ld(λ2) : 24, 12, 12, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 12, 4, 4, 4, 4

Figure 4.4: The second layer of the gossip tree of Protocol 2 (four-agent
scenario).

Table 4.1: Equivalence class summary for Protocol 2 (five-agent scenario).

k |λk | Number of Cells Min. Cell Size Max. Cell Size Average Cell Size
0 1 1 1 1 1
1 20 5 2 12 4
2 360 33 4 120 11
3 6,000 217 4 1,056 28
4 86,880 1,161 8 6,912 75
5 1,016,640 5,221 8 25,920 195
6 9,063,360 19,653 8 52,224 461
7 47,178,240 59,968 16 106,368 787
8 155,675,520 151,192 16 269,472 1,030
9 316,947,840 261,976 16 588,384 1,210

10 472,988,160 246,388 16 714,240 1,920
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Table 4.2: Equivalence class summary for Protocol 3 (five-agent scenario).

k |λk | Number of Cells Min. Cell Size Max. Cell Size Average Cell Size
0 1 1 1 1 1
1 20 5 2 12 4
2 360 33 4 120 11
3 6,000 217 4 1,056 28
4 86,880 1,161 8 6,912 75
5 993,600 5,029 8 23,232 198
6 7,764,480 17,325 8 44,448 448
7 36,969,600 48,556 16 80,256 761
8 107,021,392 108,655 16 160,512 985
9 239,439,360 190,312 16 321,024 1,258

10 325,891,200 167,644 16 617,472 1,944
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4.3 Implementation Notes

We now present some implementation specific notes. We discuss how we capture the
details of the extension of an epistemic gossip protocol, and we present an approach we
employed for parallel processing during execution of the EGP tool.

4.3.1 Protocol Extension

We adopt the standard extension as the basis for the comparison of the extension size of
terminating epistemic gossip protocols. We measure the size of the standard extension
of an epistemic gossip protocol by counting the number of leaf nodes in the gossip tree
for the protocol, since this corresponds to the number of execution sequences that start
from the initial gossip situation and reach termination. An execution sequence terminates
either because it has achieved the goal state that every agent knows every other agent’s
secret, or due to a deadlock in the resulting gossip situation due to the calling condition
not being satisfied for any pair of agents to call each other although the goal state
have not been reached. We also allow that an execution sequence can terminate due
to a stoppage by the user of the EGP tool. When an execution sequence terminates,
we record its length and note whether it is successful or not. Finally we count all the
execution sequences of each length value, and calculate the average execution length of
the protocol.

In order to capture all the execution sequences in a protocol’s extension, we need to
explicitly keep all the execution sequences in memory during protocol execution. But
this can be very demanding with respect to the computing time and memory resources
especially with increasing number of agents in the scenario. However, we do not need
to keep all the execution sequences in memory in order to: measure the size of the
protocol’s standard extension, take the count of terminal execution sequences of various
length values or calculate the average execution length of the protocol from the terminal
execution sequences. Therefore in order to allow for various needs of the user of the EGP
tool, we enable the user to run the tool in two modes, namely: (a) sparse tree mode,
and (b) full tree mode. The sparse tree mode allows the protocols to run faster and
with less memory, and gives results for the average execution length, the count of various
terminal execution sequence length values and the standard extension size of the protocol,
although the user will not obtain all the execution sequences in the protocols standard
extension using this mode. The full standard extension of the protocol is obtained by
using the full tree mode which is less memory and time efficient than the sparse tree
mode.

Let us now briefly discuss the technique we use for the sparse tree mode.
Consider a branch of a gossip tree shown in Figure 4.7(a). The node σ′ is the parent

node of σ1 and σ2. The node σ1 is due to a call ab at σ′, whereas the node σ2 is due
to a call ba at σ′. It is obvious that all the agents know the same secrets at the gossip
situation resulting from σ1 as they do for the gossip situation resulting from σ2. When
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σ′

σ1

σ2

ab

ba

(a) A Branch of a Full Tree

σ′ σab

m=2xm=x

(b) A Branch of a Sparse Tree

Figure 4.7: Jointed versus non-jointed nodes.

such pair of calls ab and ba occur at the same node of a gossip tree we call them mirrored
calls. Recall that we distinguish between the call ab and the call ba. One reason for this
distinction is that under the epistemic gossip protocols both calls are not always jointly
possible. For example, the epistemic calling condition may be satisfied for agent a to call
agent b, but the epistemic calling condition for agent b to call agent a is not satisfied.
More concretely, take the Learn New Secrets protocol where an agent a can call another
agent b if agent a does not know the unique secret of agent b. Now consider the following
execution sequence: bc; ac; . . . , after the first two calls agent a can no longer call agent b
whose unique secret it learnt from agent c, but then agent b can still call agent a because
b have not yet learnt the unique secret of agent a. That said, it is clear that the extension
of a protocol will not be fully captured if the sequence σ1 were always identified with
the sequence σ2. However, in the sparse tree mode, for the purpose of increasing time
and memory efficiency, we identify two such nodes σ1 and σ2, that is, instead of creating
two child nodes as a result of the mirrored calls at σ′, we create only one child node σ
as a result of the mirrored calls. Let us then say we have joined such σ1 and σ2 into σ,
and refer to such σ as a jointed node, and also refer to such σ1 and σ2 as the jointees of
σ. Then, we keep track of the multiplicity value of the nodes as follows. The root node
of a gossip tree has a multiplicity value of one. When a child node is produced from a
parent node, the child node’s multiplicity initially takes the value of the multiplicity of
its parent node. If a child node is a jointed node, then its multiplicity value becomes
the value of its parent’s multiplicity multiplied by two. See Figure 4.7(b) for the jointed
version of the branch shown in Figure 4.7(a). (Note that in Figure 4.7(b), m stands for
the value of the multiplicity of a node).

Therefore in the sparse tree mode, when an execution sequence terminates, we incre-
ment the size of the standard extension by the value of the multiplicity of the terminal
(or leaf) node of that execution sequence. We now prove that the sparse tree represen-
tation does not alter the satisfiability of the epistemic calling conditions when compared
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with the full tree representation. Moreover, we show that the same standard extension
size and counts of various execution sequence lengths is obtained for both the sparse tree
representation and the full tree representation.

Lemma 4.35. Let σ be a jointed node and let σ1 and σ2 be jointees of σ. Then an
epistemic calling condition ϕ is satisfied in σ1 if and only if ϕ is satisfied in σ2.

Proof. Take two arbitrary agents ai 6= aj ∈ Ag. Let the epistemic calling condition for
agent ai to call agent aj be the formula Kaiϕ. From Definition 4.11, Kaiϕ is satisfied
at a node σ′ if ϕ is satisfied at every node σ′′ ∈ Zai(σ

′). But from the definition of
equivalence relation given in Definition 4.7, σ1 ≡ai σ2. Therefore Zai(σ1) = Zai(σ2).
And therefore Kaiϕ is satisfied in σ1 if and only if Kaiϕ is satisfied in σ2.

Lemma 4.36. Let σ be a jointed node and let σ1 and σ2 be jointees of σ. Then an
epistemic calling condition ϕ is satisfied in σ1 if and only if ϕ is satisfied in σ.

Proof. The proof follows directly from Lemma 4.35: a jointed node is equal to one of its
jointees.

Proposition 4.37. The size of the standard extension obtained from the sparse tree is
equal to the size of the standard extension obtained from the full tree.

Proof. Let σ1 and σ2 be child nodes of the root node of a gossip tree Tg. Also let σ1 and
σ2 be jointees. Recall that the value of the multiplicity of the root node is one. Consider
the subtree τ1 which has σ1 as its root node, and the subtree τ2 which has σ2 as its root
node. From Lemma 4.35 and from Definition 4.7, it follows that τ1 is identical to τ2.
Therefore if we join σ1 and σ2 into a node σ, then the number of paths in the subtree τ
which has the jointed node σ as its root will be the number of paths in σ1 multiplied by
two. Thus the value of the multiplicity of σ is two. Inductively, assume that the value
of the multiplicity of an arbitrary node σ̂′ in Tg is x. Suppose σ̂ is a child node of σ̂′,
then the value of the multiplicity of σ̂ is 2x if σ̂ is jointed, otherwise the value of the
multiplicity of σ̂ is x. We therefore conclude that adding the value of the multiplicity of
all the leaf nodes in a sparse tree yields the same number of paths, and thus the same
standard extension size, as in the full tree, where such path starts from the root node
and terminates in a leaf node of Tg.

4.3.2 Encoding the Agents and the Secrets

Given a scenario with n agents, the set Ag of agents is encoded as a set of consecutive
natural numbers beginning with zero. That is, Ag = {0, 1, . . . , n− 1}. The set of secrets
known by each agent i ∈ Ag is encoded as an n-sized binary word, ωi. Starting from the
least significant bit of ωi, let the kth bit in ωi be ωi(k), then the (k+ 1)th bit of ωi is set
to 1 if and only if agent i knows the secret of agent k. Therefore, at the initial gossip
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situation where each agent knows only its unique secure, we have that:

ωi(i+ 1) = 1 for all 0 ≤ i ≤ n− 1

ωi(j + 1) = 0 for all 0 ≤ i 6= j ≤ n− 1

For example, in a scenario with four agents, we have Ag = {0, 1, 2, 3} and the set of
secrets known by the agents 0, 1, 2 and 3 at the initial gossip situation are, respectively,
encoded as 20 = 0001, 21 = 0010, 22 = 0100 and 23 = 1000.

Furthermore, whenever an agent i learns a new secret, say the secret of agent j, we
set ωi(j + 1) to 1. So for an arbitrary round r of calls, and an arbitrary pair of agents
i, j ∈ Ag, let the encoding for the secrets known by agent i and j at the end of round r
be ω′i and ω

′
j respectively. Observe that after a call between i and j at round r+ 1, then

the sets ω′′i and ω′′j of secrets known by i and j, respectively, can be (and are) encoded
as:

ω′′i = ω′′j = ω′i ⊕ ω′j

Subsequently, to check if an agent i knows the secrets of agent j, we test if ωi(j+ 1) = 1.
The number of secrets known by agent i is given by the number of bits in ωi that have
the value of 1. Finally, an agent knows all the secrets in the scenario if and only if
ωi = 2n − 1.

4.3.3 Multithreading

To implement the ComputeNextLayer procedure, we create µ threads (lightweight pro-
cesses), µ ≥ 1, and then create as many parallel tasks as the number of tree nodes h′ in
λk. A task generates all the successor nodes h at h′. We place each of the newly created
tasks in a task pool, from where the threads take tasks to execute in parallel. The list of
successor nodes is returned by each thread, and all such lists are merged to produce the
nodes in the next layer λk+1 of the gossip tree. Program execution stops after n(n−1)/2

rounds of calls. This corresponds to the maximum number of rounds needed to attain
the goal state if there is no redundant call in an execution sequence, that is, in each call
some agent learns some new secret (see Proposition 6.13 in Chapter 6).

We utilise the Java Executor service which provides life-cycle routines for dynamic
threads, and handles the background management of such threads and their associated
task pool. The Java Executor service also provides a mechanism called Future: for each
new parallel task allocated to a dynamic thread, the executor framework returns a Future
object which provides a handle to any result returned as a result of execution of the task.
We could then go through the list of all Futures when all the tasks are completed to
process their results. For optimal scheduling of the threads, careful consideration of the
available CPUs and dynamic memory is important vis-à-vis number of created threads.
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4.4 Related Work

The gossip tree and the EGP tool implement the epistemic gossip protocols described
in Chapter 3. The EGP tool can be seen as a dedicated model checker, based on the
standard procedures for CTL model checking [33]. The technique of combining the
TopDownSAT and BottomUpSAT procedures is similar to the Bounded Model Checking
technique described in [52], which mitigates the state explosion problem by narrowing
down the set of situations to the relevant set, that is, the set of those situations that are
required to check the satisfiability of a formula at a given situation. We further optimise
the computation of the relevant set by introducing a gossip tree layer labelling, which in
effect maintains a cache of the equivalence class information from previous rounds.

Other, general purpose, model checkers for epistemic scenarios include DEMO [68],
MCK [25] and MCMAS [42]. DEMO allows a user to describe the epistemic proper-
ties of a scenario using formulas of dynamic epistemic logic, and a Kripke model for
the described scenario is then generated. Epistemic actions are likewise described in
action model logic, and DEMO generates an action model for such an action, and then
generates the resulting Kripke model due to the execution of the action at an initial
scenario. DEMO then enables a user to check the epistemic properties of the resulting
model. DEMO also supports a graphical display of epistemic models and action mod-
els. Similar to the EGP tool, MCK allows for the explicit specification of the protocol
for each agent, and the automated execution of such a protocol in a multiagent setting
involving non-deterministic selection of actions. But unlike the EGP tool, MCK sup-
ports temporal (LTL and CTL) and epistemic logic specifications. Also, like MCK, the
EGP tool provides a custom modelling language, namely EGPL, which can flexibly be
adapted for describing and modelling other protocols that are similar to, or are based
on, epistemic gossip protocols. Furthermore, MCMAS, similar to MCK, supports model
checking of epistemic logic and temporal (CTL) logic specifications. But additionally,
MCMAS supports the model checking of alternating time logic specifications [2] and
deontic specifications [43].

In principle, our protocols could also be implemented with such tools as DEMO,
MCK and MCMAS. For this investigation however we focused on a dedicated tool for
epistemic gossip protocols. We leave for a future work the comparative study of the
computational performance of these tools on epistemic-gossip-based protocols.

4.5 Conclusion

In this chapter we presented an end-to-end description of the tool EGP — a software
framework for epistemic gossip protocols. We introduced EGPL — a high level lan-
guage for describing epistemic gossip protocols, and we described the design of EGPL
interpreter which translates a given protocol description into a gossip tree on which the
protocol is evaluated. In the next chapter we present experiments and results with the
EGP tool, including consideration of network topologies for agent interaction.
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Some interesting directions for future versions of the EGP tool are toward capabilities
for parallel calls among the agents in the scenario. In addition, the current version of
the EGP tool assumes that the calls are made in the private synchronous mode, that
is 0-mode calls. In a future version of the EGP tool, it is possible to incorporate the
capability of making public synchronous mode (−-mode) calls and the asynchronous
mode (+-mode) calls. And this can be realised in a modular manner. We point to a
possible direction as follows. The equivalence notion defined in Definition 4.7 is for 0-
mode calls. Similar definitions for the −-mode and +-mode calls is given below (see also
Definitions 4.5, 4.6 and 4.7).

Definition 4.38 (Equivalence Relation, ≡−). Let F (h; aiaj) and F (h′; akal) be as in
Definition 4.7. Let the call mode be −-mode. We inductively define an equivalence
relation between histories as follows: e≡−am e, and h; aiaj≡−am h

′; akal for all am ∈ Ag.

Definition 4.39 (Equivalence Relation, ≡+). Let F (h; aiaj) and F (h′; akal) be as in
Definition 4.7. Let the call mode be +-mode. We inductively define an equivalence
relation between histories as follows: e≡+

am e, and h;β≡+
am h

′;β′ iff: Sm=S′m, and h≡+
am

h′, where β, β′ ∈ {aiaj , akal, skip} and [am ∈ Set(β) = Set(β′) or am /∈ Set(β) ∪ Set(β′)],
for all am ∈ Ag, and where Set(aiaj) = {ai, aj} and Set(skip) = ∅ for all ai, aj ∈ Ag.

In the −-mode, the equivalence relation is an identity. This is obvious since in the
−-mode every agent knows whom is calling who at every round of call. As such, in the
−-mode the agents do not have any ambiguity as to which is the actual history of calls.
In the +-mode, there is the possibility of the skip action, so two equivalent histories for
an agent can have different lengths. For the gossip tree structure, the width of the tree
is one, in the −-mode. However, in the +-mode, the nodes in a given gossip tree layer
λk can be determined by referring to the gossip tree Tg given by 0-mode calls, and then
basically taking the union of the set of nodes in the layers 1 ≤ k of Tg.

Finally, consider the following two histories or execution sequences for a scenario with
five agents a, b, c, d, e:

h1 = cd; da; cd; de; eb

h2 = ca; cd; ba; de; eb

According to Definition 4.7, h1 ≡e h2, since at every same round in both h1 and h2, either
e called with the same other agent or it was not involved in the call, moreover agent e
knows the same secrets at the end of each round of call in both execution sequences.
But we can also consider that at the fifth call of h2, agent e will learn that agent b had
called previously in the execution sequence, since in that fifth round call agent e will
learn that agent b already knows secrets A,B,C, whereas at the same round in h1 agent
e will learn that agent b knows only the secret B, which then leads agent e to know that
agent b had not called previously in the execution sequence h1. Therefore, if we consider
the secrets that agent e learns from its calling partner in each call, then agent e can
distinguish between the execution sequences h1 and h2. However, to enrich the agents
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with this capability we need to redefine the equivalence relation ≡ given in Definition
4.7. We give an alternative definition as follows:

Definition 4.40 (Equivalence Relation, ≡†). Let:

F (h) = 〈S1, . . . , Sn〉
F (h′) = 〈S′1, . . . , S′n〉
F (h; aiaj) = 〈Ṡ1, . . . , Ṡn〉 and
F (h′; akal) = 〈S′′1 , . . . , S′′n〉

Let the call mode be 0-mode. We inductively define an equivalence relation between
histories as follows, for all am ∈ Ag:

Base Case:

• e ≡†am e

Inductive Case:
h; aiaj ≡†am h′; akal iff:

• Ṡm = S′′m, and h ≡
†
am h′, and

• [am ∈ {ai, aj} = {ak, al} and Sx = S′x, where x ∈ {ai, aj} \ {am}] or [am /∈
{ai, aj} ∪ {ak, al}].

That is, an agent considers two histories to be equivalent if it calls the same other
agent in each corresponding call of both histories (or, if it was not involved in both
corresponding calls), learns the same secrets from that other agent in the corresponding
calls of both histories, and knows the same secrets at the end of each corresponding call
in both histories.

However, from the foregoing example execution sequences h1 and h2, observe that the
equivalence relation given by Definition 4.40 can lead to an increased extension size of
a given protocol since agent e can now distinguish both histories by means of Definition
4.40 (see Corollary 4.43).

Lemma 4.41. Given any epistemic gossip protocol Π, let ≡ be the equivalence relation
given in Definition 4.7 and let ≡† be the equivalence relation given in Definition 4.40.
Let Tg = 〈H,R, F, {Zam}〉 and T

†
g = 〈H†, R†, F †, {Z†am}〉 be gossip trees for Π, where,

for any am ∈ Ag, we have that Zam is as given in Definition 4.9 (that is, for any σ ∈ H,
σ ≡am σ′ for all σ′ ∈ Zam(σ)), and where Z†am is such that for any σ̄ ∈ H†, σ̄ ≡†am σ′

for all σ′ ∈ Z†am(σ̄). Then, for any σ such that σ ∈ H and σ ∈ H†,

Z†am(σ) ⊆ Zam(σ)

Proof. Let σ = σ1, . . . , σn and σ′ = σ′1, . . . , σ
′
n be any two execution sequences or histo-

ries. From Definition 4.7 and Definition 4.40, observe that the set of conditions for the
equivalence of σ and σ′ for an agent, are the same for ≡ and ≡†, except that the set of
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conditions under ≡† includes a further condition that an agent must learn the same set
of secrets in each corresponding pair of calls σi in σ, and σj in σ′, for all i = j. Therefore,
beginning from the empty history e, and following the inductive definitions in Definition
4.7 and Definition 4.40, we obtain that σ ≡† σ′ implies σ ≡ σ′, for any pair of histories
σ, σ′ ∈ H†. Therefore we conclude that Z†am(σ) ⊆ Zam(σ).

Proposition 4.42. Given any epistemic gossip protocol Π, let ≡ be the equivalence
relation given in Definition 4.7 and let ≡† be the equivalence relation given in Definition
4.40. Let Tg = 〈H,R, F, {Zam}〉 and T

†
g = 〈H†, R†, F †, {Z†am}〉 be gossip trees for Π,

where, for any am ∈ Ag, we have that Zam is as given in Definition 4.9 (that is, for any
σ ∈ H, σ ≡am σ′ for all σ′ ∈ Zam(σ)), and where Z†am is such that for any σ̄ ∈ H†,
σ̄ ≡†am σ′ for all σ′ ∈ Z†am(σ̄). Then,

H ⊆ H†

From Proposition 4.42 we learn that if a history or an execution sequence σ of calls
can be made based on the equivalence notion given in Definition 4.7, then that same
execution sequence σ of calls can be made based on the equivalence notion given in
Definition 4.40. That is, any call sequence that is possible under the equivalence notion
given in Definition 4.7, is also possible under the equivalence notion given in Definition
4.40, for any epistemic gossip protocol. But on the other hand, some calls that are
possible under the equivalence notion given in Definition 4.40, are not possible under the
equivalence notion given in Definition 4.7.

Proof of Proposition 4.42. Choose an arbitrary pair of agents, ai 6= aj ∈ Ag, and let the
epistemic calling condition for agent ai to call agent aj for protocol Π be ϕΠ(ai, aj). For
any history or execution sequence σ, let l(σ) be the length of σ, where l(e) = 0 and
l(σ; aiaj) = l(σ) + 1. We proceed by means of an inductive argument, as follows.

Base Case: For the initial gossip situation, we have that e ∈ H and e ∈ H† (given in
Definition 4.7 and Definition 4.40, respectively). Therefore we obtain that e ∈ H
implies e ∈ H†. So when only the initial gossip situation is considered, we have
that H ⊆ H†.

Inductive Hypothesis: Let σ be an arbitrary execution sequence in H. Suppose that
σ′ ∈ H implies σ′ ∈ H†, for every execution sequence σ′ such that l(σ′) ≤ l(σ).
Now, based on the definition of epistemic calling condition given in Definition 3.23,
and from the semantics of ‘Kai ’ operator on a gossip tree (see Definition 4.11 and



Chapter 4. A Framework for Epistemic Gossip Protocols 117

Definition 4.16), we have that:

Tg, σ |= ϕΠ(ai, aj) ⇐⇒ Tg, σ |= Kaiψ(ai, aj) (from Definition 3.23)
⇐⇒ Tg, σ |= KaiϕΠ(ai, aj)

(positive introspection, negative introspection)
⇐⇒ Tg, σ′ |= ϕΠ(ai, aj) for all σ′ ∈ Zai(σ)

(Definition 4.11: semantics of ‘Kai ’ operator)
=⇒ T †g , σ′ |= ϕΠ(ai, aj) for all σ′ ∈ Z†ai(σ)

(from the inductive hypothesis and Lemma 4.41)
⇐⇒ T †g , σ |= ϕΠ(ai, aj)

(Definition 4.11: semantics of ‘Kai ’ operator)
(‡)

From (‡), we see that σ; aiaj ∈ H implies σ′; aiaj ∈ H†. And since we considered
an arbitrary σ ∈ H, and an arbitrary pair of agents ai 6= aj ∈ Ag, we therefore
conclude that H ⊆ H†.

Corollary 4.43. Given any epistemic gossip protocol Π, let Σ(Π) be the extension of
Π obtained by assuming the notion of equivalence of histories given in Definition 4.7,
and let Σ†(Π) be the extension of Π obtained by assuming the notion of equivalence of
histories given in Definition 4.40. Then Σ(Π) ⊆ Σ†(Π).

Proof. The corollary follows from Proposition 4.42 since H is equal to Σ(Π), and H† is
equal to Σ†(Π) (See Definition 4.16).

We refer the reader to Section 5.4 for a further comparison of Definitions 4.7 and
4.40 based on empirical data.





Chapter 5

Experiments and Results

5.1 Introduction

In the previous chapter we introduced the Epistemic Gossip Protocol tool (EGP), which
enables protocol designers to specify epistemic gossip protocols in terms of the Epistemic
Gossip Protocol Programming Language (EGPL). Given such a specification, the EGPL
interpreter generates the gossip tree corresponding to the specified protocol, and gives
key dynamic properties of the protocol.

Gossip protocols are based on communication networks which serve as the environ-
ment in which agents interact and share their secrets. In Chapter 3 we assumed that the
underlying network of agents is a complete topology network. That is, for each pair of
distinct agents there is a direct communication link between the agents of such pair. As
such, if the epistemic calling condition for the given protocol holds for a pair of agents,
then the agents of such pair can communicate with each other by means of a call and
exchange all the secrets they know.

Although we assume gossip scenarios in which the underlying network graph is
strongly connected (hence the physical possibility that every agent learns all the se-
crets through gossiping), it is also the case that many communication networks form
incomplete graphs. Therefore, in addition to studying the performance of epistemic gos-
sip protocols on complete topology networks, it is desirable to study the behaviour of
such protocols on various other network topologies. For this purpose the EGPL language
also enables the description of the underlying network graph in a gossip scenario. We
will exemplify the use of this feature by describing the various network topologies given
in Section 2.3, for use with our epistemic gossip protocols.

For this chapter, we now proceed to describe our experimental setup. We also discuss
how we interpret the empirical results we obtain by analysing epistemic gossip protocols
using the EGP tool. In subsequent sections, and for complete, line, star, binary tree
and circle topology networks, we present EGPL descriptions and empirical results for
Learn New Secrets (Protocol 1), Known Information Growth de Dicto (Protocol 2),
Known Information Growth de Re (Protocol 3), Possible Information Growth de Dicto
(Protocol 4) and Possible Information Growth de Re (Protocol 5). In the next chapter
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we will present theoretical results that describe further properties of the aforementioned
protocols on the various network topologies considered in this chapter.

5.2 Experimental Setup

The aim of our experiments is to evaluate and compare various epistemic gossip protocols
with respect to their performance on the gossip problem. We examine the performance
of five protocols based on three properties, (i) time and space efficiency, (ii) adaptability,
and (iii) scalability. These properties are the typical performance measures of multiagent
systems in the literature [48]. In the gossip protocol literature it is typical to measure the
performance of a protocol by considering the length of its execution sequence, that is, the
number of calls in the execution sequence [30]. Similarly we measure the performance of
epistemic gossip protocols in terms of execution sequence length, together with the size
of the standard extension∗ of the given protocol. Given the epistemic calling condition
of a terminating epistemic gossip protocol and the network topology of the underlying
network of agents, we define the time efficiency of an epistemic gossip protocol as: the
average length of all the execution sequences in the protocol’s standard extension as a
function of the number of agents in the scenario. Likewise, we define the space efficiency
of an epistemic gossip protocol as: the size of the standard extension of the protocol as
a function of the number of agents in the scenario. Since the agents reason about the
possible execution sequences contained in the extension of the protocol (or, alternatively,
the agents reason about the prefixes of the possible execution sequences in the standard
extension of the protocol), therefore the standard extension size gives an indication of
the computing memory required by the agents in the scenario for the given protocol.

The scalability property measures the performance of the protocol with increase in
the size of the gossip scenario, that is, by increasing the number of agents and, corre-
spondingly, secrets in the scenario. Upon increasing the number of agents in the gossip
scenario, we observe the relative change in the time and space efficiency of two given
protocols, and the protocol whose efficiency is less negatively impacted by the increase is
considered more scalable. With the adaptability property we measure the performance
of the protocol under changes or disruption in the physical arrangement of the network of
agents in the system. Specifically we study the adaptability of epistemic gossip protocols
by measuring their time and space efficiencies on various network topologies.

We also present empirical analysis of the termination and successfulness properties
of the protocols. Recall that a protocol is terminating if all its execution sequences are
finite, otherwise it is non-terminating ; and an execution sequence of a gossip protocol
is successful if and only if it is terminal, and gives rise to the goal state when executed
at the initial state, where the initial state is that in which each agent knows only its
own unique secret and the goal state is that in which each agent knows the secrets of
all the other agents (see also Definition 4.19). An epistemic gossip protocol is successful
∗See Definition 4.21 for the definition of standard extension
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if and only if all its execution sequences are terminating, and all its terminal execution
sequences give rise to a goal state (see also Definition 4.20). An execution sequence
is deadlocked if no further calls can be made in the execution sequence and the goal
state is not reached by the execution sequence. Note that given our definition of a
successful/unsuccessful execution sequence of an epistemic gossip protocol we consider
both a deadlocked sequence and an infinitely looping execution sequence to be equally
unsuccessful. This approach serves us well as a common criteria by which to compare
protocols whose extension contain (i) deadlocked sequences, or (ii) infinitely looping
sequences, or (iii) both deadlocked and infinitely looping sequences. The comparison is
then based on a percentage of successful/unsuccessful sequences, which we will see as
part of the table of values obtained from the EGP tool for the characteristics of the
various epistemic gossip protocols we analyse.

Finally, all our measurements are made from the EGP tool after executing a given
epistemic gossip protocol for rmax = n(n − 1)/2 rounds, where rmax is the maximum
number of calls needed in an execution sequence of the protocol to reach the goal state,
assuming that only a pair of agents call each other in each call, and that some secret is
learnt by at least one of the calling pair in each call (that is to say, the epistemic gossip
protocol is regular - see Definition 6.3; also see Proposition 6.13). We chose our value of
rmax for our experiments because, apart from Possible Information Growth de Re and
Possible Information Growth de Dicto protocols which are non-terminating, the rest of
our example protocols are regular protocols (see Proposition 6.9).

5.3 Protocol Descriptions and Results

In this section we present the EGPL description of our example gossip protocols on the
network topologies described in Section 2.3. Each protocol description consists of an
epistemic calling condition whose formal language is the language of Lcc defined in the
previous chapter. The epistemic calling condition is then followed by an optional network
topology description. The default network topology is the complete topology network,
which is assumed if no network topology is specified in the EGPL description. In the
subsections that follow we present the EGPL description for the complete, line, circle,
star and binary tree topology networks. We then present performance results obtained
by interpreting the EGPL description of the protocols described.

5.3.1 Protocol Descriptions on Complete Topology Network

Listings 5.1, 5.2 and 5.3 are EGPL descriptions of Protocols 1, 2 and 3, respectively.
The specification of the network topology is omitted, therefore the complete topology
network will be assumed. That is, the EGPL interpreter will assume that every pair of
agents in the scenario has a direct physical communication link between them. So any
pair of agents in the scenario will be able to communicate with each other if the epistemic



Chapter 5. Experiments and Results 122

calling condition is satisfied for the pair †. In Listing 5.1, the epistemic calling condition
for Protocol 1 is described in lines 3-5. Particularly, the calling condition expressed in
line 4 is equivalent to the epistemic calling condition for Protocol 1, which is reproduced
here as the formula ϕΠ1(ai, aj) in Equation (5.1), where ϕΠ1(ai, aj) ∈ Lcc.

ϕΠ1(ai, aj) = Kai¬KwaiAj (5.1)

1 begin
2 /* epistemic calling condition */
3 let ai call aj if {
4 ai knows (init(aj) \notin secret(ai));
5 }
6 end

Listing 5.1: EGPL Description for Protocol 1 on Complete Topology
Network

In Listing 5.2, the epistemic calling condition for Protocol 2 is described in lines 2-4.
Again, in the description, ai and aj are agent name variables. Particularly, the epistemic
calling condition expressed in line 3 is equivalent to the epistemic calling condition for
Protocol 2, which is reproduced here as the formula ϕΠ2(ai, aj) in Equation (5.2), where
ϕΠ2(ai, aj) ∈ Lcc (note that P is the set of all secrets in the scenario).

ϕΠ2(ai, aj) = Kai((
∨
Ak∈P

(KwaiAk ∧ ¬KwajAk)) ∨ (
∨
Ak∈P

(¬KwaiAk ∧KwajAk))) (5.2)

The formula ϕΠ2(ai, aj) says that ai knows that there is some secret Ak which only one
of ai and aj knows. The language EGPL allows us to express this epistemic calling
condition succinctly as shown in Listing 5.2, line 3.

1 begin
2 let ai call aj if {
3 ai knows (secret(ai) != secret(aj));
4 }
5 end

Listing 5.2: EGPL Description for Protocol 2 on Complete Topology
Network

In Listing 5.3, the epistemic calling condition for Protocol 3 is described in lines 2-7.
Particularly, the epistemic calling condition expressed in lines 3-6 is equivalent to the
formula ϕΠ3(ai, aj) as given in Equation (5.3), where ϕΠ3(ai, aj) ∈ Lcc.

ϕΠ3(ai, aj) = (
∨
Ak∈P

Kai((KwaiAk ∧ ¬KwajAk) ∨ (¬KwaiAk ∧KwajAk))) (5.3)

†In all the EGPL descriptions given in this chapter, ai, aj, ak,. . . are agent name variables. The
EGPL interpreter will substitute real and unique agent names for the name variables to obtain an actual
epistemic calling condition.
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1 begin
2 let ai call aj if {
3 disjunct ak: {ai knows (
4 (init(ak) \in (secret(ai) \cup secret(aj))) &&
5 (init(ak) \notin (secret(ai) \cap secret(aj)))
6 )};
7 }
8 end

Listing 5.3: EGPL Description for Protocol 3 on Complete Topology
Network

The formula ϕΠ3(ai, aj) says that there is some secret Ak such that ai knows that Ak is
known by only one of agent ai and aj .

Similar to Listing 5.2 and 5.3, Listings 5.4 and 5.5 describe the epistemic calling
condition of Protocol 4 and 5, respectively. The epistemic calling condition for Protocol
4 is described in lines 2-4 of Listing 5.4. Particularly, the calling condition expressed in
line 3 is equivalent to the formula ϕΠ4(ai, aj) in Equation (5.4), where ϕΠ4(ai, aj) ∈ Lcc.

ϕΠ4(ai, aj) = ¬Kai¬((
∨
Ak∈P

(KwaiAk∧¬KwajAk))∨(
∨
Ak∈P

(¬KwaiAk∧KwajAk))) (5.4)

1 begin
2 let ai call aj if {
3 ai \neg knows \neg (secret(ai) != secret(aj));
4 }
5 end

Listing 5.4: EGPL Description for Protocol 4 on Complete Topology
Network

The epistemic calling condition for Protocol 5 is described in lines 2-7 of Listing 5.5. The
epistemic calling condition is expressed in lines 3-6, and it is equivalent to the formula
ϕΠ5(ai, aj) in Equation (5.5), where ϕΠ5(ai, aj) ∈ Lcc.

ϕΠ5(ai, aj) = (
∨
Ak∈P

¬Kai¬((KwaiAk ∧ ¬KwajAk) ∨ (¬KwaiAk ∧KwajAk))) (5.5)

1 begin
2 let ai call aj if {
3 disjunct ak: {ai \neg knows \neg (
4 (init(ak) \in (secret(ai) \cup secret(aj))) &&
5 (init(ak) \notin (secret(ai) \cap secret(aj)))
6 )};
7 }
8 end

Listing 5.5: EGPL Description for Protocol 5 on Complete Topology
Network
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Table 5.1: Protocol 1 on Complete Topology Network.

Execution Sequence Length Three Agents Four Agents Five Agents
3 24
4 384
5 2,496
6 2,688 103,680
7 1,614,720
8 5,285,760
9 6,913,920
10 3,492,480

Standard Extension Size 24 5,568 17,410,560
Average Execution Sequence Length 3 5.41379 8.69365

Successful Sequences 24 5,568 17,410,560
% Successful Sequences 100.00% 100.00% 100.00%

5.3.2 Protocol Results on Complete Topology Network

In Tables 5.1-5.5 we present the protocol characteristics obtained from the EGP tool for
Protocols 1 through 5, respectively. The tables show the number of length x sequences
for 3, 4, 5 agents, where 3 ≤ x ≤ 10. We also show the standard extension size and
average execution sequence length for the protocols.

Performance Analysis. Our empirical results for scenarios with 3, 4 and 5 agents
show that Protocols 1, 2 and 3 are all successful after n(n − 1)/2 rounds. From the
numerical results for average execution sequence length and standard extension size,
respectively, we observe that Protocol 1 is more time and space efficient than Protocol
2 and Protocol 3. We also note that Protocol 3 proves significantly more space efficient
and slightly more time efficient than Protocol 2.

As shown in the proof of Proposition 3.29, Protocols 4 and 5 are non-terminating
because there is the possibility of infinitely looping execution sequences in these protocols.
But we see that for the scenario comprising of three agents, Protocol 4 and Protocol 5

terminate and are 100% successful. For the scenario comprising of four agents we have up
to 94.48% successful sequences, although the resulting standard extension size for each of
both protocols in the four-agent scenario is about five times the standard extension size
of the corresponding scenario size for Protocol 3, about four times the standard extension
size of the corresponding scenario size for Protocol 2 and about sixty-three times that of
the corresponding scenario size for Protocol 1. Note that in accordance with the theory
of Chapter 3, every successful sequence in Protocol 4 is also in Protocol 5, and vice versa
(the number of successful sequences for the three- and four-agent scenarios of Protocols
4 and 5 are the same).

To measure the scalability of the protocols on a complete topology network we con-
sider the percentage increase in the average execution sequence length of the protocols
as a result of increasing the size of the gossip scenario by one (that is, adding one more
agent to the scenario, and correspondingly, one more secret). Let the average execution
sequence length of a protocol for a scenario consisting of n agents be αn, then the per-
centage increase γ of the average execution sequence length as a result of introducing
one more agent is given by:

γn,n+1 =
αn+1 − αn

αn
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Table 5.2: Protocol 2 on Complete Topology Network.

Execution Sequence Length Three Agents Four Agents Five Agents
3 96
4 384
5 15,744
6 64,896 195,840
7 7,958,400
8 61,155,840
9 220,404,480
10 472,988,160

Standard Extension Size 96 81,024 762,702,720
Average Execution Sequence Length 3 5.79621 9.51833

Successful Sequences 96 81,024 762,702,720
% Successful Sequences 100.00% 100.00% 100.00%

Table 5.3: Protocol 3 on Complete Topology Network.

Execution Sequence Length Three Agents Four Agents Five Agents
3 96
4 384
5 13,824
6 53,952 149,760
7 5,798,400
8 37,975,680
9 172,362,240
10 325,891,200

Standard Extension Size 96 68,160 542,177,280
Average Execution Sequence Length 3 5.78592 9.50882

Successful Sequences 96 68,160 542,177,280
% Successful Sequences 100.00% 100.00% 100.00%

Table 5.4: Protocol 4 on Complete Topology Network.

Execution Sequence Length Three Agents Four Agents Five Agents
3 96 -
4 384 -
5 31,488 -
6 297,984 -
7 -
8 -
9 -
10 -

Standard Extension Size 96 349,134 -
Average Execution Sequence Length 3 - -

Successful Sequences 96 329,856 -
% Successful Sequences 100.00% 94.48% -

Table 5.5: Protocol 5 on Complete Topology Network.

Execution Sequence Length Three Agents Four Agents Five Agents
3 96 -
4 384 -
5 31,488 -
6 297,984 -
7 -
8 -
9 -
10 -

Standard Extension Size 96 349,134 -
Average Execution Sequence Length 3 - -

Successful Sequences 96 329,856 -
% Successful Sequences 100.00% 94.48% -



Chapter 5. Experiments and Results 126

We summarise γ for Protocols 1, 2 and 3 in Table 5.6.

Table 5.6: Protocol scalability on Complete Topology Network.

Percentage Increase Protocol 1 Protocol 2 Protocol 3
γ3,4 80.4597% 93.2070% 92.8640%
γ4,5 60.5834% 64.2164% 64.3441%

Looking at Table 5.6, we observe that Protocol 1 is the most scalable of the three
protocols. However we observe that Protocol 2 shows a greater growth than Protocol 3

when increasing the size of the scenario from three to four agents, but the reverse is the
case when increasing the size of the scenario from four to five agents. So it is not yet
clear which is more scalable between Protocol 2 and 3. We will also carry out a similar
analysis for line, star and binary tree topology networks (we will skip this analysis for
the circle topology network because our empirical results show that on a circle topology
network most of the protocols are unsuccessful in scenarios with more than three agents).
Notice also that we skipped the scalability analysis for Protocols 4 and 5 because they
are both non-terminating.

Extension Analysis. Let us consider some extension analysis for a scenario that con-
sists of four agents a, b, c, d. Example execution sequences of Protocol 1 are ab; ac;de;
ad; bd; ce, ab; ac;de; ad;ce; bc and ab; ac;de; ad;ce; bd. The execution sequence ab; ac;bd;

ad;ab; bc is an execution sequence of Protocol 2 but not an execution sequence of Pro-
tocol 3. Not all execution sequences of Protocol 4 and Protocol 5 are successful. Some
examples of unsuccessful execution sequences of Protocol 5 are: ab; cd; ab; bc; ab; cd; ab,
ad; bc; ad; bc; ad; bc; ad and bd; ac; bd; ac; bd; ac; bd. Examples of successful execution se-
quences of Protocol 5 are: cd; ab; bd; ac, ab; ac; bd; cd; ab and bc;cd;bc;ab;bd;bc.

Not every execution sequence of Protocol 2 is an execution sequence of Protocol 1,
and not every execution sequence of Protocol 3 is an execution sequence of Protocol 1.
For example, the following execution sequences are execution sequences of Protocol 2
but they are not execution sequences of Protocol 1: ab; ac; ad; ac; ab, bd; ad; bd; ac; ab; cd

and cd; bd; bc; ab; ac; bd. Not every successful execution sequence of Protocol 5 is an
execution sequence of Protocol 3, for example: ac; ab; ad; ac; bc, bd; cd; ad; bd; bc and
ab; ac; bd; ad; ac; bd. Also, not every successful execution sequence of Protocol 4 is an
execution sequence of Protocol 2, examples are: ad; bd; ac; ad; bc, bc; ab; ad; cd; bc and
cd; bd; ac; cd; ac; bc. Examples of execution sequences of Protocol 2 that are not execu-
tion sequences of Protocol 3 are: ab; ac; bd; ad; ab; bc, bd;cd;bc;ab;ad;ac and cd; ad;ab; cd;

ac; bd.

Comparison with Literature. From Tables 5.1-5.5 we see immediately that the min-
imum successful execution sequence lengths agree with the theoretical result obtained for
the minimum successful execution sequence length in the non-epistemic traditional gossip
literature for the complete topology network [13, 27, 61, 63]. Furthermore, recall that for
a random protocol (that is, wherein a pairwise call is staged at random in each round),
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Figure 5.1: Comparing Protocols 1, 2 and 3 to a random protocol.

Boyd and Steele [11] showed that the average number A(n) of pairwise communicative
interactions needed for successful gossiping among n agents is:

A(n) =
3

2
n ln n+O(n(ln n)0.5) (5.6)

The graph shown in Figure 5.1 compares the average execution sequence lengths obtained
for Protocols 1−3 with those obtained from Equation 5.6 for a random protocol. Clearly
the epistemic gossip protocols (Protocols 1, 2 and 3) outperform the random protocol.

5.3.3 Protocol Descriptions on Line Topology Network

Listings 5.6 and 5.7 present EGPL descriptions of Protocols 1 and 2, respectively, on a
line topology network. In Listing 5.1, the epistemic calling condition for Protocol 1 is
described in lines 2-4, and the network topology is described in lines 5-10 for a network
of five agents a, b, c, d, e. Note that in the epistemic calling condition (lines 3-5), ai and
aj are agent name variables, in contrast to real agent names used to describe network
topology‡. As described earlier in the chapter, the agents form the nodes of the network
graph, and the neighbourhood relations shown in lines 7-10 of Listing 5.6 express graph
node neighbourhood over the agents in the network§.

1 begin
2 let ai call aj if {
3 ai knows (init(aj) \notin secret(ai));
4 }
5 topology {

‡Although we use agent name variables in the epistemic calling conditions in the EGPL descriptions,
we use real agent names in the topology description, throughout this chapter
§Note that in the EGPL description of the network topology we assume that ‘a neighbour b’ if and

only if ‘b neighbour a’, where a and b are any given nodes in the network graph
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6 a neighbour b;
7 b neighbour c;
8 c neighbour d;
9 d neighbour e;
10 }
11 end

Listing 5.6: EGPL Description for Protocol 1 on Line Topology Network
(Five Agents)

In order to impose a line topology network on other protocols, a similar description to
that shown in lines 5-10 of Listing 5.6 is inserted, for the agents in the scenario, after
the epistemic calling condition of the protocol is described. In Listing 5.7 we give a line
topology network description for a scenario with four agents, and for Protocol 2.

1 begin
2 let ai call aj if {
3 ai knows (secret(ai) != secret(aj));
4 }
5 topology {
6 a neighbour b;
7 b neighbour c;
8 c neighbour d;
9 }

10 end

Listing 5.7: EGPL Description for Protocol 2 on Line Topology Network
(Four Agents)

5.3.4 Protocol Results on Line Topology Network

Performance Analysis. The table for the performance of Protocol 3 is identical to
that for Protocol 2 (shown in Table 5.7). This indicates that these two protocols are
in fact identical on a line topology network (for a formal proof about this point, see
Corollary 6.39 in Section 6.3, later). Hence from our experiments, both Protocol 2 and
Protocol 3 have the same scaling properties on a line topology network. With respect to
adaptability property, note that, as shown in Table 5.7, Protocol 2 (and 3) exhibit 100%

success for their execution sequences for the scenarios comprising of 3, 4 and 5 agents
on a line topology network (same as on a complete topology network). (In Section
6.3 we prove that Protocol 2 and Protocol 3 are successful for all n = |Ag| on a line
topology network). Furthermore we observe that for both Protocols 2 and 3 we obtain
a better average execution sequence lengths and smaller standard extension sizes on a
line topology network than on a complete topology network. Note that although the line
topology network induces a lower average execution sequence length than the complete
topology network, for Protocol 2 and 3, there are no length four execution sequences for
the four-agent scenario, and there are no length six execution sequences for the five-agent
scenario. (In Section 6.3 we prove that for n > 3 we cannot obtain the shortest successful
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execution sequence length of 2n − 4 on the line topology network for Protocol 2 (and
similarly for Protocol 3)).

Finally, the table for the performance of Protocol 5 is identical to that for Protocol 4

(shown in Table 5.8). We observe that the line topology network setting yields a greater
percentage of successful execution sequences for these protocols, than in the complete
topology network setting.

For the scalability property of the protocols on a line topology network, we observe
that the standard extension of both Protocol 2 and Protocol 3 are identical for the
experimental cases, therefore the scalability properties of both protocols are the same on
this network topology (see the proof of Proposition 6.39 in Chapter 6, where we show that
both Protocol 2 and Protocol 3 have identical standard extension for all n > 0, where n
is the number of agents in the scenario). Note also that Protocol 1 is not successful on
this network topology for a scenario with more than two agents, so we skip the scalability
analysis for this protocol here.

Table 5.7: Protocol 2 on Line Topology Network.

Execution Sequence Length Three Agents Four Agents Five Agents
3 16
4 0
5 192
6 512 0
7 2,048
8 16,512
9 39,424
10 59,392

Standard Extension Size 16 704 117,376
Average Execution Sequence Length 3 5.72727 9.33043

Successful Sequences 16 704 117,376
% Successful Sequences 100.00% 100.00% 100.00%

Table 5.8: Protocol 4 on Line Topology Network.

Execution Sequence Length Three Agents Four Agents Five Agents
3 16
4 0
5 192
6 768 0
7 2,560
8 34,560
9 184,576
10 610,560

Standard Extension Size 16 974 860,248
Average Execution Sequence Length 3 - -

Successful Sequences 16 960 832,256
% Successful Sequences 100.00% 98.56% 96.75%

Extension Analysis. For Protocol 1, there are no successful execution sequences on
a line topology network, for a scenario with more than two agents. This is easy to
see: consider a gossip scenario with at least three agents a, b, c, . . . Assume the network
topology shown in Listing 5.6 for these agents. So now agent b is in between agent a and
agent c in the network, such that, although the epistemic calling condition of Protocol 1

will be satisfied for agent a to call agent c (or for agent c to call agent a), but since there
is no direct link between agent a and c, the only way for both agents to know each other’s
secrets is through the subsequence ab; . . . ; bc; . . . ; ba or bc; . . . ; ab; . . . ; bc (or their reverse
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call variants). But such subsequences do not comply with Protocol 1 (since no two agents
agents can call each other more than once in an execution sequence of Protocol 1). So
in Protocol 1 on a line topology network, one of agents a and c, will never know all the
secrets in the scenario. (See also Section 6.3).

For the scenario described in Listing 5.7 (Protocol 2), the shortest successful execution
sequence is of length five. An example of such a sequence is ab; cd; bc; ba; cd. An example
of a longest successful execution sequence for the same description is cd; bc; ab; cd; bc; cd.

Comparison with Literature. From Table 5.7 and Table 5.8 we see that the min-
imum successful execution sequence lengths agree with the theoretical results obtained
for the minimum successful execution sequence length in the non-epistemic traditional
gossip literature: Farley and Proskurowski [23] proved that for a line topology network,
the minimum number of pairwise communicative interactions for successful gossiping is
2n− 3.

5.3.5 Protocol Descriptions on Star Topology Network

Listing 5.8 presents EGPL description of Protocol 2 on a star topology network. The
network topology is described in lines 5-10 for a network of five agents a, b, c, d, e. In
the network topology description, agent a is at the center of the star network, and it is
the only neighbour that any other agent has. In order to write the EGPL description
that imposes the star topology network on other protocols we need to insert a network
topology description similar to that in lines 5-10, for the agents in the scenario¶, after
describing the epistemic calling condition of the protocol.

1 begin
2 let ai call aj if {
3 ai knows (secret(ai) != secret(aj));
4 }
5 topology {
6 a neighbour b;
7 a neighbour c;
8 a neighbour d;
9 a neighbour e;
10 }
11 end

Listing 5.8: EGPL Description for Protocol 2 on Star Topology Network
(Five Agents)

5.3.6 Protocol Results on Star Topology Network

Performance Analysis. Protocol 3 features lower average execution sequence lengths
and much lower standard extension sizes on a star topology network than Protocol 2,
¶A neighbour must be assigned to each agent in the scenario, where each agent is represented by a

unique node of the network graph.
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which indicates a greater adaptability of Protocol 3 over Protocol 2 with respect to a
star topology network.

Protocol 4 and 5 remain non-terminating on a star topology network. Consider the
following infinite execution sequence of Protocol 5 taken from a scenario with the network
topology description shown in Listing 5.8: ab; ac; ba; ca; ba; ca; . . . . That is, in the second
round, agent c learns the secret of agent a and agent b from agent a. Then, in the fourth
round, agent c again considers it possible that it will learn the secret of agent d from
agent a (since agent a may have called with agent d in the third round), so agent c calls
agent a in what proves to be a redundant fourth round call. In the fifth round, agent b
reasons as agent c did in the fourth round, and likewise makes a redundant call to agent
a in the fifth round. And so does agent c again in the sixth round, and the loop goes on
infinitely in this sequence. Note that the given execution sequence is also an example of
an infinite execution sequence for Protocol 4 (for example, if agent c considers it possible
that it will learn the secret of agent d from a call with agent a, then it also considers it
possible that it will learn some secret from the same call with agent a).

Looking at Table 5.11, Protocol 3 outperforms Protocol 2 in terms of scalability. And
overall, for both protocols we see the scalability property gets better with increasing
scenario size. (Note that Protocol 1 is not successful on a star topology network: the
reason is analogous to that given in the preceding section, under the Extension Analysis
for line topology network). Also refer to Appendix B for the empirical results for the
scenario with six agents on a star topology network.

Table 5.9: Protocol 2 on Star Topology Network.

Execution Sequence Length Three Agents Four Agents Five Agents
3 16
4 0
5 288
6 768 0
7 12,288
8 61,440
9 196,608
10 294,912

Standard Extension Size 16 1,056 565,248
Average Execution Sequence Length 3 5.72727 9.36957

Successful Sequences 16 1,056 565,248
% Successful Sequences 100.00% 100.00% 100.00%

Table 5.10: Protocol 3 on Star Topology Network.

Execution Sequence Length Three Agents Four Agents Five Agents
3 16
4 0
5 288
6 384 0
7 6,144
8 29,184
9 58,368
10 36,864

Standard Extension Size 16 672 130,560
Average Execution Sequence Length 3 5.57143 8.96471

Successful Sequences 16 672 130,560
% Successful Sequences 100.00% 100.00% 100.00%

For the scalability property of the protocols on a star topology network, we summarise
γ for Protocol 2 and Protocol 3 in Table 5.11.
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Table 5.11: Protocol scalability on Star Topology Network.

Percentage Increase Protocol 2 Protocol 3
γ3,4 90.9090% 85.7143%
γ4,5 63.5957% 60.9050%
γ5,6 50.0584% 47.6852%

Extension Analysis. Similar to the line topology network for Protocol 1, there are
no successful execution sequences on a star topology network for a scenario with more
than two agents. And as on a line topology network this is easy to see: consider a gossip
scenario with at least three agents a, b, c, . . . Assume the network topology shown in
Listing 5.8 for these agents. So now agent a is in between agent b and agent c in the
network, such that, although the epistemic calling condition of Protocol 1 will be satisfied
for agent b to call agent c (or for agent c to call agent b), but since there is no direct
link between agent b and c, the only way for both agents to know each other’s secrets
is through the subsequence ab; . . . ; ac; . . . ; ba or ac; . . . ; ab; . . . ; ca (or their reverse call
variants). But such subsequences do not comply with Protocol 1 (since no two agents
agents can call each other more than once in an execution sequence of Protocol 1). So
in Protocol 1 on a line topology network, one of agents b and c will never know all the
secrets in the scenario. (See also Section 6.4).

For our experiments on the star topology network, both Protocols 4 and 5 feature
the same number of successful execution sequences for n = 3, 4, 5.

Table 5.12: Protocol 4 on Star Topology Network.

Execution Sequence Length Three Agents Four Agents Five Agents
3 16
4 0
5 384
6 768 0
7 18,432
8 110,592
9 405,504
10 1,142,784

Standard Extension Size 16 1,188 1,718,388
Average Execution Sequence Length 3 - -

Successful Sequences 16 1,152 1,677,312
% Successful Sequences 100.00% 96.97% 97.61%

Table 5.13: Protocol 5 on Star Topology Network.

Execution Sequence Length Three Agents Four Agents Five Agents
3 16
4 0
5 384
6 768 0
7 18,432
8 110,592
9 405,504
10 1,142,784

Standard Extension Size 16 1,188 1,718,388
Average Execution Sequence Length 3 - -

Successful Sequences 16 1,152 1,677,312
% Successful Sequences 100.00% 96.97% 97.61%

On a star topology network, we compare some sample execution sequences. An
example of a successful execution sequence in the standard extension of Protocol 2 but
which is not in the standard extension of Protocol 3 is ab; ac; ba; ad; ab; ac; ae; ab; ac; ad.
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The reason is that after the first two calls in the given sequence, in the third round, agent
b knows that agent a must have made a call with some other agent and learnt some new
secret (since agent a is the only neighbour that each agent has, agent a is involved in
every call in this scenario). So although agent b knows that it would learn some new
secret by calling agent a in the third round (de dicto), it does not know which new secret
it would learn by calling a in the third round (de re). The following is an example of
an infinite execution sequence in the extension of Protocol 5: ab; ac; ab; ca; ba; ca; ba; . . . .
Such sequence shows how an agent at the centre of the star network (in this case agent
a) can get into a loop of redundant calls with specific agents (in this case agent b and
c) because they always would consider it possible that they will learn some new secret
from agent a, whereas agent a keeps alternating between calling both of these agents.

Comparison with Literature. For Protocols 2-5, we do not obtain the shortest
successful execution sequence length of 2n − 4 for n = 4, 5. That is, for n = 4,
there is no successful execution sequence of length 4; and for n = 5 there is no suc-
cessful execution sequence of length 6. For the protocol in Listing 5.8 (that is, Pro-
tocol 2, for five agents, on a star topology network), the shortest successful execu-
tion sequence is of length seven (see Table 5.9). An example of such a sequence is
ac; ab; ad; ae; ad; ab; ac. An example of a longest successful execution sequence for the
same description is ab; ad; ab; ae; ad; ab; ac; ad; ae; ab. See also Table 5.10 for minimum
successful execution sequence lengths for Protocol 3. These results for minimum suc-
cessful execution sequence lengths all agree with the theoretical results obtained for the
minimum successful execution sequence lengths in the non-epistemic traditional gossip
literature: Harary and Schwenk [28] showed that if the underlying communication graph
is a tree topology network then minimum length of a successful execution sequence is
given by 2n−3, for n ≥ 2; Bumby [13] and Kleitman [36] confirmed this result by proving
a stronger proposition - they showed that for any connected but incomplete (undirected)
communication graph without a four-cycle, this minimum is 2n− 3.

5.3.7 Protocol Descriptions on Binary Tree Topology Network

Listings 5.9 presents EGPL description of Protocol 2 on a binary tree topology network.
The network topology is described in lines 5-10 for a network of five agents a, b, c, d, e. As
before, in the epistemic calling condition (lines 2-4), ai and aj are agent name variables,
in contrast to real agent names used to describe network topology. In the topology
description, agent a is at the root of the binary tree network, and it is the parent node of
b and c. Likewise c is the parent node of c and e, while b has no child nodes. In order to
write the EGPL description that imposes the binary tree topology on other protocols we
would insert a network topology description similar to that in lines 5-10, after describing
the epistemic calling condition of the protocol, where the network topology description
is for the agents in the scenario.

1 begin
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2 let ai call aj if {
3 ai knows (secret(ai) != secret(aj));
4 }
5 topology {
6 a neighbour b;
7 a neighbour c;
8 b neighbour d;
9 b neighbour e;
10 }
11 end

Listing 5.9: EGPL Description for Protocol 2 on Binary Tree Topology
Network (Five Agents)

5.3.8 Protocol Results on Binary Tree Topology Network

Performance Analysis. On a binary tree topology network, there are no successful
execution sequences of Protocol 1 for a scenario with more than two agents. For the
scenario with four agents on the binary tree topology network, Protocol 2 and Protocol 3

have the same standard extension sizes and average execution sequence lengths. Notice
that the average execution sequence length of Protocol 2 for the scenario with four agents
is the same for both the star topology network and the binary tree topology network (see
Table 5.9 and Table 5.14).

Table 5.14: Protocol 2 on Binary Tree Topology Network.

Execution Sequence Length Three Agents Four Agents Five Agents
3 16
4 0
5 192
6 512 0
7 4,992
8 30,080
9 75,904
10 100,864

Standard Extension Size 16 704 211,840
Average Execution Sequence Length 3 5.72727 9.28701

Successful Sequences 16 704 211,840
% Successful Sequences 100.00% 100.00% 100.00%

From Table 5.14 and Table 5.15 we see that for a scenario with five agents, Protocol
3 exhibits a lower average execution sequence length than Protocol 2 on a binary tree
topology network. From our experiments, Protocol 2 features lower average execution
sequence lengths and lower standard extension sizes on the binary tree topology network
than it does on the star topology network. On the contrary, Protocol 3 features lower
average execution sequence lengths on the star topology network than it does on the bi-
nary tree topology network. For a scenario with five agents, Protocol 3 features a larger
standard extension size on the star topology network than it does on the binary tree
topology network, but the reverse is the case for a scenario with four agents. Therefore
from our experiments, Protocol 2 is more adaptable on the binary tree topology net-
work than on the star topology network with respect to both time efficiency and space
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efficiency, and Protocol 3 is more adaptable on the star topology network than on the
binary tree topology network with respect to time efficiency.

Table 5.15: Protocol 3 on Binary Tree Topology Network.

Execution Sequence Length Three Agents Four Agents Five Agents
3 16
4 0
5 192
6 512 0
7 4,992
8 20,480
9 51,456
10 48,896

Standard Extension Size 16 704 125,824
Average Execution Sequence Length 3 5.72727 9.14649

Successful Sequences 16 704 125,824
% Successful Sequences 100.00% 100.00% 100.00%

For the scalability property of the protocols on a binary tree topology network, we
summarise γ for Protocol 2 and Protocol 3 in Table 5.16.

Table 5.16: Protocol scalability on Binary Tree Topology Network.

Percentage Increase Protocol 2 Protocol 3
γ3,4 90.9090% 90.9090%
γ4,5 62.1542% 59.7007%
γ5,6 48.8971% 50.4550%

Looking at Table 5.16, Protocol 3 outperforms Protocol 2 in terms of scalability. And
overall, for both protocols we see the scalability property gets better with increasing sce-
nario size. (Again, note that Protocol 1 is not successful on a star topology network). So,
similar to the scalability results on complete, line and star topology networks, Protocol 3

proves to be more scalable on a binary tree topology network than Protocol 2. Also refer
to Appendix B for the empirical results for the scenario with six agents on the binary
tree topology network.

Table 5.17: Protocol 4 on Binary Tree Topology Network.

Execution Sequence Length Three Agents Four Agents Five Agents
3 16
4 0
5 192
6 768 0
7 7,424
8 67,072
9 278,016
10 807,424

Standard Extension Size 16 974 1,194,434
Average Execution Sequence Length 3 - -

Successful Sequences 16 960 1,159,936
% Successful Sequences 100.00% 98.56% 97.11%

Protocol 4 and 5 remain non-terminating on a binary tree topology network, with
both protocols featuring the same number of successful and unsuccessful execution se-
quences, as well as the same standard extension size. An example of a non-terminating
sequence in Protocol 4 on the binary tree topology network shown in Listing 5.9 is
bd; be; bd; eb; db; eb; db; . . . , with the subsequence eb; db repeating infinitely.
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Extension Analysis. As on the star topology network, we do not obtain the short-
est successful execution sequence length for n = 4, 5, for Protocols 2-5 on the bi-
nary tree topology network. The shortest successful execution sequence for a scenario
with four agents is of length five (rather than 2n − 4 = 4), and the shortest suc-
cessful execution sequence for a five-agent scenario is of length seven. An example
of a shortest successful execution sequence for the description given in Listing 5.9 is
ac; ab; bd; be; ab; ac; bd. An example of a longest successful execution sequence (length of
n(n− 2)/2) is: ab;db;ca;ba;bd;ac;be;ab;db;ca. For the description given in Listing 5.9 the
following execution sequence is in Protocol 2 but not in Protocol 3: be; ca; db; eb; ab; ac; bd; be.
After the second and third rounds, in third round, agent e knows that given the network
topology, agent b must have made a call (either with agent d or with agent a) in the
second round or in the third round - if agent b did not call with agent a in the second
round it was because agent b was calling agent d, or because agent a was calling with
agent c in the second round in which case agent b will call agent a or agent d in the
third round. Moreover in the fourth round agent e does not know a particular secret
that it would learn by calling agent b. Finally, the average execution sequence length
of Protocol 2 is better on the binary tree topology network than on the star topology
network.

Comparison with Literature. Similar to how the results for the star topology net-
work, results shown in Tables 5.14 and 5.15 for minimum successful execution sequence
lengths also agree with the theoretical results obtained for the minimum successful exe-
cution sequence lengths in the non-epistemic traditional gossip literature.

5.3.9 Protocol Descriptions on Circle Topology Network

Listings 5.10 presents EGPL description of Protocols 2 on a circle topology network.
The network topology is described in lines 5-10 for a network of five agents a, b, c, d, e
and the epistemic calling condition is given in lines 2-4, where ai and aj are agent name
variables, in contrast to real agent names used to describe the network topology. In
the network topology description, all the agents each have exactly two neighbours, and
any two agents have exactly one neighbour in common. In order to write the EGPL
description that imposes the circle topology network on other protocols we would insert
a network topology description similar to that in lines 5-10, after describing the epistemic
calling condition of the protocol, where the network topology description is for the agents
in the scenario.

1 begin
2 let ai call aj if {
3 ai knows (secret(ai) != secret(aj));
4 }
5 topology {
6 a neighbour b;
7 b neighbour c;
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8 c neighbour d;
9 d neighbour e;
10 e neighbour a;
11 }
12 end

Listing 5.10: EGPL Description for Protocol 2 on Circle Topology
Network (Five Agents)

5.3.10 Protocol Results on Circle Topology Network

We present the results of our experiments with epistemic gossip protocols in circle topol-
ogy networks.

Extension Analysis. Protocol 1 is successful only for n = 3. For n = 4, Protocol 1 is
no longer successful. It then has 128 successful and 16 unsuccessful execution sequences.
For n ≥ 4, Protocol 1 is not successful on the circle topology network (we prove this claim
later in Chapter 6, see Proposition 6.55). Between Protocols 2 and 3, we observe that
Protocol 3 offers the least standard extension size on a circle topology network, although
for Protocol 2 we obtain 1, 115, 200 successful execution sequences out of a standard
extension size of 1, 115, 240, for the scenario with five agents, whereas Protocol 3 for
the five agent scenario yields 827, 840 successful sequences out of a standard extension
consisting of 827, 940 execution sequences.

Table 5.18: Protocol 1 on Circle Topology Network.

Execution Sequence Length Three Agents Four Agents
3 24
4 128
5 0
6 0

Standard Extension Size 24 144
Average Execution Sequence Length 3 -

Successful Sequences 24 128
% Successful Sequences 100.00% 88.89%

Table 5.19: Protocol 2 on Circle Topology Network.

Execution Sequence Length Three Agents Four Agents Five Agents
3 96
4 128
5 1,920
6 5,248 0
7 53,440
8 248,320
9 432,480
10 380,960

Standard Extension Size 96 7,296 1,115,240
Average Execution Sequence Length 3 5.70175 -

Successful Sequences 96 7,296 1,115,200
% Successful Sequences 100.00% 100.00% 99.9964%

Both Protocol 4 and 5 offer similar properties on a circle topology network - Table 5.21
for Protocol 4 is identical to that for Protocol 5. Protocol 2 (whose standard extension
is greater than that of Protocol 3) has about 68 times larger standard extension than
Protocols 4 and 5.
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Table 5.20: Protocol 3 on Circle Topology Network.

Execution Sequence Length Three Agents Four Agents Five Agents
3 96
4 128
5 1,920
6 5,248 0
7 39,360
8 188,960
9 319,040
10 280,480

Standard Extension Size 96 7,296 827,940
Average Execution Sequence Length 3 5.70175 -

Successful Sequences 96 7,296 827,840
% Successful Sequences 100.00% 100.00% 99.99%

Table 5.21: Protocol 4 on Circle Topology Network.

Execution Sequence Length Three Agents Four Agents Five Agents
3 96
4 128
5 2,816
6 13,312 0
7 133,120
8 1,824,000
9 12,474,880
10 61,048,320

Standard Extension Size 96 16,524 76,100,860
Average Execution Sequence Length 3 - -

Successful Sequences 96 16,256 75,480,320
% Successful Sequences 100.00% 98.38% 99.18%

For the network topology described in Listing 5.10 we provide the following exam-
ple sequences. An example of a successful execution sequence in the standard extension of
Protocol 2 but which is not in the standard extension of Protocol 3 is ab; ed; dc; ea; ed; cb; ab

(in the last round agent a knows that it would learn some secret in the call with agent b,
but it is unsure which secret it would learn from agent b). An example of a successful ex-
ecution sequence in the standard extension of Protocol 3 but which is not in the standard
extension of Protocol 2 is ab; ae; ab; cd; de; bc; ea. An example of an unsuccessful execu-
tion sequence in the standard extension of Protocol 2 is ab; ae; bc; ed; cd; ea; bc; ab. An
example of an unsuccessful execution sequence in the standard extension of Protocol 3

is ab; ae; ab; bc; ba; cd; de. An example of a successful execution sequence in the standard
extension of Protocol 5 is ab; cd; ae; bc; ab; bc; de. An example of an unsuccessful execu-
tion sequence in the standard extension of Protocol 5 is ab; ae; ab; ae; ab; ae; ab; ae; . . .
We refer the reader also to Section 6.5 where we provide a detailed demonstration of an
unsuccessful execution sequence for Protocol 2 and Protocol 3.

5.4 A Discussion About Equivalence Notions

In order to generate the extension of an epistemic gossip protocol, the EGP tool interprets
the epistemic calling condition of a given protocol on the nodes of an epistemic tree,
beginning from the node representing the initial gossip situation (see Section 4.2.4). The
equivalence notion that we have adopted in this thesis for the interpretation of epistemic
formulas on an epistemic tree is given in Definition 4.7. Informally, that equivalence
notion says that an agent considers two execution sequences to be equivalent if it calls
the same other agent in each corresponding call of both execution sequences (or, if it was
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not involved in both corresponding calls), and if it knows the same secrets at the end of
each corresponding call in both sequences.

However, in Section 4.5 (Chapter 4), we defined an alternative equivalence notion
that could be used in the interpretation of epistemic formulas on an epistemic tree (see
Definition 4.40). In the alternative equivalence notion, an agent considers two execution
sequences to be equivalent if it calls the same other agent in each corresponding call of
both execution sequences (or, if it was not involved in both corresponding calls), learns
the same secrets from that other agent in the corresponding calls of both sequences, and
knows the same secrets at the end of each corresponding call in both execution sequences.

Obviously, the equivalence notion used by the EGP tool can alter the extension of
an epistemic gossip protocol. Let the equivalence notion given in Definition 4.7 be called
Equivalence Notion 1, and let the equivalence notion given in Definition 4.40 be called
Equivalence Notion 2 or Alternative Equivalence Notion. Before we close this chapter, we
want to justify our choice of Equivalence Notion 1 as the running notion of equivalence in
this thesis. We do this by briefly discussing some preliminary empirical results obtained
by using Equivalence Notion 2, and comparing them with some of the results obtained
by using Equivalence Notion 1 in the EGP tool (note that all the results that we have
discussed so far are based on Equivalence Notion 1).

Tables 5.22 and 5.23 show the results obtained by using Equivalence Notion 2, for
Known Information Growth de Dicto (Protocol 2) and Known Information Growth de
Re (Protocol 3), respectively. We now compare results in Table 5.22 to the results in
Table 5.2 due to Equivalence Notion 1. We also compare results in Table 5.23 to the
results in Table 5.3 due to Equivalence Notion 1.

Table 5.22: Protocol 2 on Complete Topology Network.

Execution Sequence Length Three Agents Four Agents Five Agents
3 96
4 384
5 16,896
6 83,712 195,840
7 8,664,960
8 87,943,680
9 375,682,560
10 927,025,920

Standard Extension Size 96 100,992 1,399,512,960
Average Execution Sequence Length 3 5.8251 9.58675

Successful Sequences 96 100,992 1,399,512,960
% Successful Sequences 100.00% 100.00% 100.00%

Table 5.23: Protocol 3 on Complete Topology Network.

Execution Sequence Length Three Agents Four Agents Five Agents
3 96
4 384
5 15,744
6 80,256 149,760
7 6,871,680
8 62,991,360
9 331,944,960
10 769,326,720

Standard Extension Size 96 96,384 1,171,284,480
Average Execution Sequence Length 3 5.82869 9.59093

Successful Sequences 96 96,384 1,171,284,480
% Successful Sequences 100.00% 100.00% 100.00%
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For both equivalence notions, the results remain the same for a scenario with three
agents. For a scenario with four agents and five agents, the sizes of the standard extension
of Known Information Growth de Dicto grew, respectively, by 24.6% and 83.5% when
we switched from Equivalence Notion 1 to Equivalence Notion 2. This indicates an
exponential growth in standard extension size for switching from Equivalence Notion
1 to Equivalence Notion 2 for Known Information Growth de Dicto, on the complete
topology network.

For Known Information Growth de Re, we witness the same exponential growth in
switching from Equivalence Notion 1 to Equivalence Notion 2. We obtain a 41.4% in-
crease in the standard extension size for four agents, and a 116% increase in the standard
extension size for five agents, due to the switch from Equivalence Notion 1 to Equivalence
Notion 2.

Regarding average execution sequence lengths, observe that in the switch from Equiv-
alence Notion 1 to Equivalence Notion 2, the increase in the standard extension sizes are
mainly due to an increase in the number of longer execution sequences. So, naturally
we also obtain an increase in the average execution sequence lengths by switching from
Equivalence Notion 1 to Equivalence Notion 2.

More empirical results from Equivalence Notion 2 can be found in Appendix C of the
thesis. Note that we have not included results for Learn New Secrets (Protocol 1), since
they are the same for both equivalence notions (the reason being that the epistemic
calling condition for Learn New Secrets can be checked by looking at only the set of
secrets known (or not known) by an agent in the current gossip situation, as such, the
variation between Equivalence Notion 1 and Equivalence Notion 2 does not affect the
calls that are possible at each node of the gossip tree, and consequently does not affect
the extension of the Learn New Secrets protocol).

We have also not included results for Possible Information Growth de Dicto (Proto-
col 4) and Possible Information Growth de Re (Protocol 5) for Equivalence Notion 2,
since they remain non-terminating irrespective of whether the equivalence notion used is
Equivalence Notion 1 or Equivalence Notion 2. An example which shows that Possible In-
formation Growth de Dicto and Possible Information Growth de Re are non-terminating,
is as follows. Consider a scenario with four agents a, b, c, d. For the first call, let agent a
call agent b; for the second call let agent c call agent d; then for the third call, let agent
agent a call agent b again since agent a considers it possible that it will learn agent c’s
secret from agent b (agent a considers it possible that the second call of the execution
sequence was in fact between agent b and agent c), but now we see that both agent a
and agent b learn no new secret by calling each other again; for the fourth call, let agent
c call agent d again, since agent c considers it possible that it will learn agent b’s secret
from agent d (agent c considers it possible that the third call was in fact between agent
b and agent d), but again we see that both agents learn no new secret from the call; for
the fifth and sixth call, agent a and agent c respectively reason as they did for the third
and fourth calls; and this goes on indefinitely for subsequent calls.
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Notice from the tables shown in Appendix C (and Appendix B) that on a line topology
network, both equivalence notions yield the same standard extension sizes and average
execution sequence lengths for Known Information Growth de Dicto. The same is true
also for Known Information Growth de Re. For a circle topology network, whereas there
is a general increase in the standard extension sizes when we switch from Equivalence
Notion 1 to Equivalence Notion 2, both protocols remain unsuccessful for more than four
agents, under both Equivalence Notion 1 and Equivalence Notion 2. On the star and
binary tree topology networks, Known Information Growth de Dicto maintain the same
standard extension sizes and average execution sequence lengths across both equivalence
notions. The same is also true for Known Information Growth de Re on the star and
binary tree topology networks.

5.5 Conclusion

In this chapter we analysed epistemic gossip protocols using the EGP tool. We pre-
sented empirical results obtained for Learn New Secrets (Protocol 1), Known Information
Growth de Dicto (Protocol 2), Known Information Growth de Re (Protocol 3), Possible
Information Growth de Dicto (Protocol 4) and Possible Information Growth de Re (Pro-
tocol 5). The performance of the gossip protocols were studied on the complete, line,
star, binary tree and circle topology networks. We compared the performance of these
protocols in terms of their time and space efficiency (given by the average execution
sequence length and standard extension size of these protocols). We also compared the
protocols with respect to their scalability and adaptability properties.

Our experiments show that the complete topology network is the setting where the
most of our protocols are successful. Both Known Information Growth de Dicto and
Known Information Growth de Re are seen to be successful on all the investigated network
topologies except the circle topology network where they are successful only for the
empirical cases of n = 3 and n = 4 agents. On the other hand, both Possible Information
Growth de Dicto and Possible Information Growth de Re are successful only for the
empirical case of n = 3 agents, but on all the investigated network topologies. Also,
Learn New Secrets is successful only on the complete topology network, out of all the
investigated network topologies.

The line topology network gives rise to the minimum standard extension size for all
the investigated protocols. The reduction in standard extension size on a line topology
network is most pronounced when compared to the standard extension size of the same
protocol on a complete topology network, since, from our experiments, the complete
topology network gives rise to the greatest standard extension sizes out of all the inves-
tigated network topologies. For example, for Known Information Growth de Dicto, the
standard extension size reduced by a factor of 6498 for a scenario with five agents, when
the setting was moved from a complete topology network to a line topology network. For
the Known Information Growth protocols, the binary tree topology network gives rise
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to the next higher standard extension size after the line topology network; the standard
extension size obtained on the binary tree topology network is then followed by that ob-
tained on the star topology network, which is in turn followed by the standard extension
size obtained on the circle topology network, in order of increasing standard extension
sizes, for the investigated cases of number of agents n.

In terms of average execution sequence length, Learn New Secrets gives rise to the
least average execution sequence length out of all the investigated protocols, although it
is successful only on a complete topology network. Although the circle topology network
gives rise to the least average execution sequence length for the Known Information
Growth protocols, both Known Information Growth de Dicto and Known Information
Growth de Re are successful only for the empirical cases of 3 ≤ n ≤ 4 agents on a circle
topology network (both Known Information Growth de Dicto and Known Information
Growth de Re have the same average execution sequence length for 3 ≤ n ≤ 4 agents on
a circle topology network).

For the network topologies on which Known Information Growth de Dicto and Known
Information Growth de Re are successful, namely, the complete, star and binary tree
topology networks, we observe that when we run Known Information Growth de Re on
a star topology network, we obtain the lowest average execution sequence lengths, out
of both Known Information Growth protocols. On the other hand we observe that when
we run Known Information Growth de Dicto on a complete topology network, we obtain
the highest average execution sequence length out of all the investigated protocols and
network topologies. Our empirical results also indicate that on a line topology network,
the standard extension of Known Information Growth de Dicto is equivalent to that of
Known Information Growth de Re (we treat this formally in Section 6.3; see Corollary
6.39).

Of all the investigated protocols, Known Information Growth de Dicto and Known
Information Growth de Re are successful across the most number of network topologies.
They are successful on the complete, line, star, and binary tree topology networks, for the
empirical cases of 3 ≤ n ≤ 6 agents (for the complete topology network, the empirical
cases are for 3 ≤ n ≤ 5 agents). The Known Information Growth protocols are also
successful on the circle topology network but for the empirical cases of 3 ≤ n ≤ 4

agents. No other investigated protocol exhibits such adaptation across various network
topologies.

Regarding a future research work relating to this chapter, an interesting investigation
would be to use the EGP tool to try to discover other network topologies that significantly
improve the performance of our epistemic gossip protocols or other epistemic gossip
protocols. Other network topologies that could be studied are various kinds of grid
networks, and directed network graphs.



Chapter 6

Epistemic Gossip Protocols and
Network Topologies

6.1 Introduction

In gossip scenarios, as typical in the study of multiagent systems [70], we assume that
the agents are connected via a communication network. In chapter three we described a
number of epistemic gossip protocols with the implicit assumption that the underlying
network of agents is a complete network graph. In Chapter 5 we called such a network
a complete topology network.

However, complete topology networks are often expensive to build and maintain.
Moreover, many kinds of existing networks are not complete, and need not be complete.
In this chapter we loosen the constraint of executing the epistemic gossip protocols on
only complete topology networks. We explore the properties of our gossip protocols on
some other connected, though incomplete, network topologies. Specifically we consider
complete topology network (Section 6.2), tree topology networks (Sections 6.3 and 6.4)
and circle topology network (Section 6.5). For each of the network topologies, we present
proofs for some of the properties of Learn New Secrets, Known Information Growth de
Dicto, Known Information Growth de Re, Possible Information Growth de Dicto and
Possible Information Growth de Re.

Ancillary Assumptions and Definitions

In Chapter 3, for an epistemic gossip protocol Π, an agent ai calls another agent aj only
if the epistemic calling condition for call aiaj given by Π holds in the gossip situation.
That is, there was an implicit assumption that there is a direct communication link
(or graph edge) between any pair of agents ai and aj in the underlying communication
graph. In this chapter however, we consider various network topologies of the underlying
communication graph. Therefore, the condition for any pair of agents to call each other is
then as follows: an agent ai calls another agent aj only if the epistemic calling condition
for call aiaj given by Π holds in the gossip situation and agent ai and aj are neighbours in
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the underlying network graph. We assume that all the network graphs are bidirectional.
And we assume that the network topology is common knowledge among all the agents
in the gossip scenario. We also assume that the protocol for each agent is common
knowledge among all the agents in the gossip scenario. Similar to Chapters 4 and 5, we
assume throughout this chapter that the mode of call is the private synchronous mode
(that is, the 0-mode). We also make use of the following definitions.

Definition 6.1 (Redundant Call). A call aiaj is redundant if neither ai nor aj will learn
any new secret from the aiaj call.

Definition 6.2 (Regular Execution Sequence). A regular execution sequence of calls is
that in which there are no redundant calls.

Definition 6.3 (Regular Protocol). An epistemic gossip protocol is regular if the epis-
temic calling condition of the protocol is such that no pair of agents make a redundant
call in any execution sequence of the protocol.

Definition 6.4 (Calling Condition). Given a network of agents in a gossip scenario, and
given an epistemic gossip protocol Π, then at any gossip situation or any history, the
calling condition for an agent ai to call another agent aj is two-fold, as follows:

1. The epistemic calling condition for agent ai to call agent aj under protocol Π must
be satisfied (see Definition 3.23), and

2. Agent ai and agent aj must be neighbours on the network graph.

We will also make use of the definition of successful execution sequence, successful
protocol, terminating execution sequence and terminating protocol, and other definitions
as given in Chapter 4, except where we explicitly mention otherwise. For instance, to
account for the underlying network topology, we modify the definition of an execution
sequence (or history) of an epistemic gossip protocol and that of a terminal execution
sequence, as follows.

Definition 6.5 (Execution Sequence of an Epistemic Gossip Protocol). Given an epis-
temic gossip protocol Π and given any history h. Let ϕΠ(ai, aj) be the epistemic calling
condition for some agent ai to call another agent aj under protocol Π. Then h is an
execution sequence of Π if and only if one of the following conditions hold:

• h = e

• h = h′; aiaj , and h′ ∈ Hh′ , and C(h′), h′ |= ϕΠ(ai, aj) and [ai and aj are neighbours
on the network graph], where the epistemic context C(h′) of h′, and Hh′ are as
defined in Definition 4.12.

Note that by Definition 6.5, the extension of an epistemic gossip protocol is deter-
mined also by the given network topology. As a result, following Definition 4.16 for a
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gossip tree, the set of histories for the gossip tree of an epistemic gossip protocol is de-
termined also by the given network topology. So we can say that by following Definition
6.5, a gossip tree respects the given network topology of the network of agents. In this
chapter, whenever we refer to a gossip tree we mean that which respects the underlying
network topology.

Definition 6.6 (Terminal Execution Sequence). Given an epistemic gossip protocol Π,
let Tg be the gossip tree for Π. Let ϕΠ(ai, aj) be the epistemic calling condition for ai
to call aj , where ai, aj ∈ Ag. Then, an execution sequence σ ∈ Tg is terminal if and only
if for every pair ai, aj ∈ Ag, it is the case that: either Tg, σ |= ¬ϕΠ(ai, aj), or ai and aj
are not neighbours on the network graph.

Definition 6.7 (Fresh Call and Fresh Caller). Given any call sequence σ, and any call
aiaj in σ, then aiaj contains a fresh caller if such aiaj call is the first call that either ai
or aj is involved in, in the execution sequence σ. A call is a fresh call if it contains at
least one fresh caller.

6.1.1 Properties of Regular Protocols

We now consider some properties of regular protocols and regular execution sequences.
The following observation is convenient.

Observation 6.8. Let the epistemic calling condition for agent ai to call aj , for Learn
New Secrets, Known Information Growth de Dicto and Known Information Growth de
Re be ϕΠ1(ai, aj), ϕΠ2(ai, aj) and ϕΠ3(ai, aj), respectively. Recall those conditions are
as follows:

ϕΠ1(ai, aj) = Kai¬KwaiAj (6.1)

ϕΠ2(ai, aj) = Kai

∨
ak∈Ag

(KwaiAk ∇ KwajAk) (6.2)

ϕΠ3(ai, aj) = Kai

∨
ak∈Ag

Kai(KwaiAk ∇ KwajAk) (6.3)

Given any gossip tree Tg, from Observation 4.26 we see that:

Tg |= ϕΠ1(ai, aj) → ϕΠ3(ai, aj) and Tg |= ϕΠ3(ai, aj) → ϕΠ2(ai, aj) (6.4)

Let us define the condition ϕ(ai, aj) as:

ϕ(ai, aj) =
∨

ak∈Ag

(KwaiAk ∇ KwajAk) (6.5)
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Note that for each of the conditions ϕΠ1(ai, aj), ϕΠ2(ai, aj) and ϕΠ3(ai, aj), we have
that:

Tg |= ϕΠ1(ai, aj)→ ϕ(ai, aj) and Tg |= ϕΠ2(ai, aj)→ ϕ(ai, aj)

and Tg |= ϕΠ3(ai, aj)→ ϕ(ai, aj) (by veridicality) (6.6)

In other words: if the calling condition for agent ai to call aj is satisfied for any of the
three protocols, then there is some secret Ak that is known by only one of those two
agents. Furthermore,

Tg |= ¬KwaiAj → ϕΠ1(ai, aj) (by negative Introspection) (6.7)

Hence, from (6.4):

Tg |= ¬KwaiAj → ϕΠ2(ai, aj) and Tg |= ¬KwaiAj → ϕΠ3(ai, aj)

(by propositional logic) (6.8)

And, from (6.8) and (6.6):

Tg |= ¬KwaiAj → ϕ(ai, aj) (by propositional logic) (6.9)

Proposition 6.9. Given any network of agents, Known Information Growth de Re,
Known Information Growth de Dicto and Learn New Secrets are regular protocols.

Proof. Consider any network of agents, and take any execution sequence σ of any of the
three protocols. Let the gossip tree for the protocol be Tg, and let σ = . . . ; aiaj ; . . . ,
where aiaj is an arbitrary call in σ. Let σ′ be the longest history of calls preceding the
aiaj call in σ. Then the calling condition for agent ai to call aj in the aiaj call must
have been true at σ′. From Definition 6.4, it follows that ai and aj are neighbours on the
network graph, and the epistemic calling condition for agent ai to call agent aj holds at
(Tg, σ′). Hence from Observation 6.8 (expression (6.6)) it also follows that there is some
secret Ak known by exactly one of agents ai and aj at (Tg, σ′), such that the other agent
learnt this secret Ak in the aiaj call, and hence this call is not redundant. Since the call
aiaj is chosen arbitrarily from σ, and since σ is an arbitrary execution sequence of any
of the three given protocols, then none of the execution sequences of the three protocols
contain redundant calls, and therefore these three protocols are regular.

Lemma 6.10. Given an epistemic gossip scenario consisting of n agents, and given any
network topology, then in any successful execution sequence, there are at most n−1 fresh
calls.

Proof. Consider any network of agents, and consider any successful execution sequence
σ. Suppose, towards a contradiction, that there are more than n − 1 fresh calls in σ,
say, without loss of generality, that there are n fresh calls in σ. Since each of the fresh
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calls must contain at least one fresh caller, and the first call in σ must contain exactly
two fresh callers (since it is the first time that pair of agents make any call), it follows
that there must be at least n + 1 agents in the scenario, which then contradicts our
assumption that there are n agents in the scenario.

Finally to show that n− 1 fresh calls are possible in σ, consider a case, given below,
where a designated agent a1 calls each of all the other agents in turn at the beginning
of σ:

σ = a1a2; . . . ; a1an; . . .

It is clear in the given example σ, that the first n− 1 calls are the fresh calls.

Lemma 6.11. For a gossip scenario, given any regular and successful execution sequence
σ, and any agent ai ∈ Ag, then exactly n− 1 calls are required in σ to spread the secret
of agent ai to all the other agents.

Proof. Prior to the first call that ai makes in σ, there are n− 1 agents that do not know
the secret of agent ai. Any call in σ in which the secret of ai is learnt for the first time
must be between an agent who knows the secret of ai and another agent who does not
know the secret of agent ai. Thus for the n − 1 agents who did not initially know the
secret of ai, we need n− 1 calls to inform them all of the secret of ai.

Proposition 6.12. In a gossip scenario of n agents, the maximum length of any regular
and successful execution sequence is n(n− 1)/2.

Proof. Let f : N → N be a function that returns the maximum length of any regular
and successful execution sequence of calls given the number n of agents in the gossip
scenario. Then:

f(1) = 0; (no calls are made)

f(2) = 1; (only one call is made)

For n = 3, any two agents have to call each other in the first call; in the second call, for
some agent to learn some new secret, one of the agents who called in the first call has to
call with the other agent who did not take part in the first call; in the third call, for some
agent to learn some new secret, one of the callers in the second call have to call with the
agent who was not in the second call. After this third call, all three agents know all the
secrets in the scenario, and so no further calls are required. So exactly three calls are
made in any regular and successful execution sequence. Therefore for n = 3:

f(3) = 3;

Now suppose that f(n− 1) is the maximum length of a regular and successful execution
sequence in a gossip scenario with n − 1 agents, and there is an execution sequence σ
consisting of f(n − 1) calls after which all the n − 1 agents know each other’s secrets.
Suppose that we introduce a new agent an into such a scenario after executing σ, then
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by Lemma 6.11, exactly n− 1 additional calls are required to spread the secret of an to
all the other agents in the scenario, given that some agent must learn some new secret
in each call. Note that the first call that follows σ must be a call involving an, otherwise
the call will be redundant. Note also that in that first call after σ, agent an learns the
secret of every other agent. Furthermore, from Lemma 6.11, for each of the initial n− 1

agents, n− 1 calls are required for all the other agents to know their secret. But after σ,
those initial n−1 agents know all of each other’s secrets, so again, from Lemma 6.11, for
each agent a′ in the initial n− 1 agents, σ must contain exactly n− 2 calls in which an
agent learnt the secret of a′ for the first time. So, at the first call following σ in which an
learnt the secret of all the initial n− 1 agents, we obtain the total of n− 1 calls required
by Lemma 6.11 for the secret of each of the initial n− 1 agents to be learnt by the other
agents in the scenario. From the foregoing we see therefore that f(n) is given by the
recursion:

f(n) = f(n− 1) + (n− 1) (6.10)

To solve Equation 6.10 we proceed as follows.

f(n) = f(n− 1) + (n− 1)

= f(n− 2) + (n− 2) + (n− 1)
...

...
= f(n− k) + (n− k) + (n− (k − 1)) + (n− (k − 2)) + · · ·+ (n− 1)
...

...
= f(n− (n− 1)) + (n− (n− 1)) + (n− (n− 2)) + · · ·+ (n− 1)

= f(1) + 1 + 2 + · · ·+ (n− 1)

= f(1) +
n−1∑
i=1

i

= 0 + n(n−1)
2

= n(n−1)
2

Proposition 6.13. The maximum length of any execution sequence of a regular and
successful epistemic gossip protocol is n(n− 1)/2.

Proof. From Definitions 4.19, 4.20 and 6.3, any execution sequence of a regular and
successful epistemic gossip protocol is also regular and successful. Therefore the proof of
the proposition follows from Proposition 6.12.

Let us now continue with properties and proofs regarding the complete topology
network, and then go on to those for the line, tree and circle topology networks, in turn.

6.2 Complete Topology Network

In this section, we consider a gossip scenario in which the network of agents is a complete
topology network of n agents. Let the arrangement of the agents be as shown in Figure
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6.1, where ak and aj are any nodes such that 1 < j < k < n. We present and prove
some of the properties of Learn New Secrets, Known Information Growth de Dicto,
Known Information Growth de Re, Possible Information Growth de Dicto, and Possible
Information Growth de Re, on the complete topology network.

a1

ajak

an

Figure 6.1: Complete Topology Network.

Proposition 6.14. Learn New Secrets, Known Information Growth de Dicto and Known
Information Growth de Re are terminating on a complete topology network.

Proof. Take any of the three given protocols, and call it Π. Let the gossip tree for Π be Tg.
Take any execution sequence σ of Π. Suppose, towards contradiction, that σ is infinite.
Let σ′ be any prefix of σ. Now consider the set S = {(ai, Ak) | ai, ak ∈ Ag and Tg, σ′ |=
¬KwaiAk}. Clearly, for σ′ = e (that is, the empty history) |S| = n(n − 1), where
n = |Ag|. Also,

Tg, σ′ |= ϕΠ(ai, aj) implies S 6= ∅ (6.11)

where ϕΠ(ai, aj) is the epistemic calling condition for ai to call aj for protocol Π, and
ai, aj ∈ Ag (see Observation 6.8 (expression (6.6))).

As follows from Proposition 6.9, every call in an execution sequence of Π removes at
least one member from S. So there must be a finite number of calls after which S = ∅.
And by contraposition on (6.11) we see that at such a finite number of calls, there is a
prefix σ′ of σ such that Tg, σ′ 6|= ϕΠ(ai, aj), and so no more calls are possible at such
σ′. But this contradicts the assumption that the execution sequence σ (of which σ′ is a
prefix) is infinite. Therefore we conclude that σ must be finite.

Proposition 6.15. Learn New Secrets, Known Information Growth de Dicto and Known
Information Growth de Re are successful in a gossip scenario in which the network of
agents is a complete topology network.

Proof. We already know from Proposition 6.14 that all three given protocols are termi-
nating. So suppose one of them is not successful, that is, it allows for a call sequence
σ = σ1; . . . ;σk such that at σk no calling condition is true, while at the same time not all
agents know all secrets, that is, for some agents ai and aj , we have Tg, σk |= ¬KwaiAj ,
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where Tg is the gossip tree of the supposed unsuccessful protocol. But it follows from
(6.7) and (6.8) under Observation 6.8 that the calling conditions for ai to call aj are true
at σk, for each of the protocols, which gives a contradiction. Hence, all call sequences
for each of the three protocols are successful, that is, the protocols are successful.

Proposition 6.16. Possible Information Growth de Re is non-terminating in a gossip
scenario in which the network of agents is a complete topology network and the size n of
set of agents is greater than three.

Proof. Let the set of agents be Ag = {a1, a2, . . . , an}. Consider the following execution
sequence σ:

σ = a1a2; a3a4; a1a2; a3a4; a1a2; . . .

The execution sequence σ is in the extension of Possible Information Growth protocol
for any complete topology network of agents where |Ag| > 3. To demonstrate this, let
us consider the calls in σ. In the first call, agent a1 knows (and therefore considers it
possible) that it would learn secret A2 in the first call. And likewise, in the second call,
agent a3 knows that it will learn secret A4 in the second call with agent a4. In the third
call, agent a1 considers it possible that agent a2 learnt some secret in the second call
(in a call with agent a3, for instance), and so agent a1 calls agent a2 in the third call,
which proves redundant. Likewise in the fourth call, agent a3 considers it possible that
agent a4 learnt some secret in the third call (in a call with agent a2, for instance) and
therefore agent a3 calls agent a4 in the fourth call which also proves redundant. Once
again agent a1 considers it possible that agent a2 learnt some new secret in the preceding
call, and thus for the execution sequence σ, the loop . . . ; a1a2; a3a4; a1a2; a3a4; . . . goes
on infinitely.

Proposition 6.17. Possible Information Growth de Dicto is non-terminating in a gossip
scenario in which the network of agents is a complete topology network and the size n of
the set of agents is greater than three.

Proof. The proposition follows from the proof of Proposition 6.16, and from the proof of
Proposition 3.27 (and Observation 4.26) which shows that the extension of is equal to
the extension of Possible Information Growth de Dicto.

6.2.1 Synthesising a Maximum Length Successful Execution Sequence
on a Complete Topology Network

In this subsection we present an example of a procedure for synthesising a maximum
length successful execution sequence of some regular protocol. We show that the syn-
thesised execution sequence is of length n(n− 1)/2, where n is the number of agents in
the gossip scenario. We also show that the synthesised execution sequence is successful
and that it is an execution sequence of Known Information Growth de Re and Known
Information Growth de Dicto.
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Procedure 6.1 Longest sequence procedure for a complete topology network.
1: Given a complete topology network, as shown in Figure 6.1.
2: Let the agents be at the initial state; let n = |Ag|.
3: for i = 2 to n
4: Let a1 call ai
5: for j = i− 1 to 2

6: Let a1 call aj
7: end for
8: end for

Now, consider Procedure 6.1. It generates a single execution sequence σ. Every call
in σ is initiated by the agent a1. For n = 4, the generated execution sequence is

σ = a1a2; a1a3; a1a2; a1a4; a1a3; a1a2

For n > 1 agents, how long is the execution sequence σ generated by Procedure 6.1? We
answer as follows.

Proposition 6.18. The length of the execution sequence, σ, generated by Procedure 6.1
is given by n(n− 1)/2, where n is the number of agents in the gossip scenario.

Proof. Consider the loop which begins at Line 3. This loop iterates for n − 1 times, so
Line 4 generates a total of n− 1 calls. For the kth iteration of the outer loop, the inner
loop executes for k−1 times, where 1 ≤ k ≤ n−1. So the total number of calls generated
by Line 6 is given by the summation:

0 + 1 + · · ·+ n− 2 =
n−2∑
m=0

m =
(n− 1)(n− 2)

2

Therefore the total number of calls generated by Procedure 6.1, and hence the length of
σ, is given by:

(n− 1) +
(n− 1)(n− 2)

2
=
n(n− 1)

2

Lemma 6.19. The number of fresh calls generated by Procedure 6.1 is exactly n− 1.

Proof. From the ‘for’ loop at Line 3 of Procedure 6.1, consider any 2 < i ≤ n. Notice
that prior to the a1ai call generated at Line 4, there were a1ak calls for all 2 ≤ k < i,
generated at previous iterations of this ‘for’ loop. But the calls generated at Line 6 are
calls a1aj , for all 2 ≤ j < i. So we see that all the calls generated at Line 6 must
have been generated previously in an earlier iteration of the ‘for’ loop at Line 3, and
so these calls are not fresh calls. But this implies that all the fresh calls are generated
at Line 3, since calls generated at that point always precede those generated at Line 6.
Furthermore, since a1 always initiates the call to ai at Line 3, and the value of i increases
by one for each iteration of the loop, we see that agent ai is indeed a fresh caller in each
of the calls generated in that line. And since there are exactly n− 1 such values of i at
Line 3, we conclude that there are exactly n− 1 fresh calls in Procedure 6.1.
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Proposition 6.20. For a gossip scenario with n agents, the call sequence generated by
Procedure 6.1 is an execution sequence of Known Information Growth de Re.

Proof. Recall that the calling condition for Known Information Growth de Re states that
for any agent ai to call another agent aj , there must be a secret Ak such that ai knows
that one of ai and aj will learn Ak from the aiaj call; moreover, agent ai and aj must
be neighbours on the network graph.

Consider all the calls generated at Line 4 of Procedure 6.1. From Lemma 6.19 we
see that all such calls are fresh calls, and that agent ai is a fresh caller in such calls. So
agent a1 does not know the secret of such ai, and knows that it will learn the secret of
agent ai in each of those a1ai calls at Line 4. Thus the epistemic calling condition for
Known Information Growth de Re is satisfied for all calls generated at Line 4.

At Line 6, consider any i such that 2 ≤ i ≤ n. After generating the call a1ai at Line
4, we see that all the calls generated at Line 6 are calls from a1 to aj where 1 < j < i.
Observe that all values of j considered at Line 6 are such that a1 had called aj previously
in the execution sequence. But a1 is involved in all the calls so far, and since ai was
a fresh caller in the a1ai call generated at Line 4, agent a1 knows that all the previous
agents it has called so far, namely, aj , (1 < j < i), have not learnt the secret of agent ai.
And so for the a1aj calls generated at Line 6, agent a1 knows that aj will learn the secret
of agent ai in such a call. Thus the epistemic calling condition for Known Information
Growth de Re is again satisfied for all the calls generated at Line 6.

Proposition 6.21. The call sequence generated by Procedure 6.1 is successful.

Proof. In Procedure 6.1 we are given that the calls begin at the initial state. To show
that the generated execution sequence is successful we have to show that it is finite, and
that it ends in a goal state.

Consider the ‘for’ loop at Lines 5-7 of Procedure 6.1. For any 2 ≤ i ≤ n, let the set
Ag′ be defined as Ag′ = {aj | i− 1 ≥ j ≥ 2}. So we see that Line 6 generates a sequence
of calls in which agent a1 calls each of the agents in Ag′, for a given i. Therefore after
that ‘for’ loop, each of the agents in Ag′ learns all the secrets that agent a1 knows after
the call generated at Line 4 for the given i. Moreover the calls generated at Line 4 ensure
that agent a1 calls each of all the agents from ai = a2 to an, in order of increasing value
of i. This implies that at i = n− 1, agent a1 must have learnt the secrets of the agents
a2 to an−1, due to the calls generated at Line 4. So for i = n, the a1an call generated
at Line 4 ensures that both a1 and an know all the secrets in the scenario. Finally, the
Loop at Lines 5-7 ensures that for i = n, all agents in Ag′, namely a2 to an−1 learn all
the secrets in the scenario, thus we obtain a goal state.

To see that the generated execution sequence is finite, consider that the outer loop
(i.e. the ‘for’ loop beginning at Line 3) iterates for n− 1 times, and for the kth iteration
of the outer loop, the inner loop (i.e. the ‘for’ loop beginning at Line 5 ) iterates for
k−1 times. Since the value of n is assumed to be finite for the gossip scenario, it is clear
that Procedure 6.1 terminates, and so the generated execution sequence is finite.
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Lemma 6.22. In every call generated at Line 6 of Procedure 6.1 the total number of
secrets learnt by the calling pair is exactly one.

Proof. Consider line 4 of Procedure 6.1. For any given 2 ≤ i ≤ n, let the set Ag′ be
defined as Ag′ = {aj | 1 ≤ j < i}. We first show that before every execution of Line 4,
for any 2 ≤ i ≤ n, every agent in Ag′ knows only the secret of every agent in Ag′; in
the following we prove this property and by it show that in every call generated at Line
6 the total number of secrets learnt by the calling pair is exactly one. We proceed by
induction over i, as follows.

Base Case
Initially, at i = 2, Ag′ = {a1}, so indeed before the call generated at Line 4, every
agent in Ag′ knows only the secret of every agent in Ag′.

Inductive Hypothesis
As the inductive hypothesis, for any 3 ≤ k ≤ n, suppose that for i = k− 1 we have
that every agent in Ag′ knows only the secret of every agent in Ag′, before the call
generated at Line 4, at the loop iteration corresponding to the value of i.

Inductive Step
Now let i = k. At Line 4, the call a1ak is generated. From the proof of Lemma
6.19 we know that this call is a fresh call, and that ak is a fresh caller in the call.
Based on the inductive hypothesis, we see that after this a1ak call, agent a1 knows
one more secret, namely, that of agent ak, than the other agents in Ag′. Since the
‘for’ loop at Lines 5-7 ensures that a sequence of calls is generated where a1 calls
each of all the other agents in Ag′, we have that in each of those calls the only
secret that is learnt is that of ak. Thus we see that over all values of k, we have
that all the calls generated at Line 6 preserve the property that the total number
of secrets learnt by the calling pair is exactly one.

Proposition 6.23. Let Π be a regular gossip protocol, and let Π be successful. Then,
on a complete topology network, no execution sequence of Π is longer than the execution
sequence generated by Procedure 6.1.

Proof. Let the call sequence generated by Procedure 6.1 be σ. By Lemma 6.10 we know
that σ should have at most n − 1 fresh calls, since σ is successful (from Proposition
6.21). But we see from Lemma 6.19 that σ has exactly n− 1 fresh calls, and that Line 4
generates only fresh calls and all the fresh calls. Furthermore, the other line in Procedure
6.1 where calls are generated is at Line 6, and from Lemma 6.22 we know that in each
of those calls the total number of secrets learnt in the call is exactly one. Clearly, it is
not possible to obtain another execution sequence of any regular and successful protocol
that is longer than σ, unless such an execution sequence contains some call in which the
total number of secrets learnt is zero, which then contradicts the assumption that the
protocol is regular.
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Corollary 6.24. Given a complete topology network of agents, the maximum length of an
execution sequence in the extension of a regular and successful epistemic gossip protocol
is n(n− 1)/2.

Proof. The proof follows from the proof of Proposition 6.23 in which we show that the
length of the execution sequence generated by Procedure 6.1 is the maximum for any
execution sequence of a regular and successful gossip protocol on a complete topology
network.

Corollary 6.25. Given a complete topology network of agents, the maximum length of
an execution sequence of Known Information Growth de Re and Known Information
Growth de Dicto is n(n− 1)/2.

Proof. From Corollary 6.24 we see that the length of the execution sequence generated
by Procedure 6.1 is the maximum for any regular and successful gossip protocol in the
complete topology network. In particular, the length of the execution sequence gen-
erated by Procedure 6.1 is the maximum for Known Information Growth de Re (from
Proposition 6.20). Finally, the length of the execution sequence generated by Procedure
6.1 is the maximum for Known Information Growth de Dicto (from Proposition 3.27 and
Observation 4.26: every execution sequence of Known Information Growth de Re is an
execution sequence of Known Information Growth de Dicto).

Note that the results in Proposition 6.23, Corollary 6.24 and Corollary 6.25 all agree
with the more general results in Proposition 6.12 and Proposition 6.13.

6.2.2 Synthesising Minimum Length Successful Execution Sequences
on a Complete Topology Network

We now consider the minimum length of a successful execution sequence of Learn New Se-
crets, Known Information Growth de Dicto, Known Information Growth de Re, Possible
Information Growth de Dicto and Possible Information Growth de Re. We then describe
a procedure for synthesising some minimum length successful execution sequences for
the foregoing protocols on a complete topology network.

Proposition 6.26. Given a complete topology network of agents in a gossip scenario,
the minimum length of a successful execution sequence is 2n− 4 for Known Information
Growth de Dicto (Protocol 2), Known Information Growth de Re (Protocol 3), Possi-
ble Information Growth de Dicto (Protocol 4) and Possible Information Growth de Re
(Protocol 5), where n = |Ag|.

Proof. In Section 1.1, we showed that the Fixed Schedule yields execution sequences of
length 2n − 4. In (the proof of) Proposition 3.27 (and Observation 4.26) we showed
that the extension of the Fixed Schedule is a subset of the extension of Protocol 3. We
know that less than 2n − 4 calls are insufficient to distribute all secrets as shown, for



Chapter 6. Epistemic Gossip Protocols and Network Topologies 155

example, in [63]. Therefore the length of the shortest successful execution sequence in
the extension of Protocol 3 is 2n− 4.

Moreover, from Proposition 3.27 (and Observation 4.26), we also know that: the
extension of Protocol 3 is a subset of the extension of Protocol 2, and the extension of
Protocol 2 is a subset of the extension of Protocol 5, which is equal to the extension of
Protocol 4. Therefore we conclude that the length of the shortest successful execution
sequence of Protocol 2, 5 and 4 is also 2n− 4.

Now we come to the synthesis of minimum length execution sequences.

Procedure 5.1. Consider a set Ag = {a1, . . . , an} of agents on a complete topology network
such that |Ag| > 4. Designate four of the agents, say a1, a2, a3, a4. Further designate one
of the four designated agents, say a4. Now consider a 4-cycle ω on the network graph
that connects all four designated agents, and consider a path π on the network graph
that begins on any of the non-designated nodes, and passes through each of the other
non-designated nodes exactly once, and then terminates on the node a4. See Figure 6.2
for a sample illustration of ω and π in complete topology network consisting of n agents.

a3

a1

a2

a4

a5

ak

an

π

ω

Figure 6.2: Highlighting some edges of a complete topology network.

This procedure then executes the following three steps in the order Step 1, Step 2
and Step 3:

Step 1 Let the non-designated agents make calls as follows:

anan−1; . . . ; akak−1; . . . ; a5a4, where n > k > 5

Step 2 Let the designated agents call each other according to the Four-Agent Protocol
as follows: any two agents make the first call; the second call is then between
the remaining two agents; the third call is then between an agent who made
the first call and an agent who made the second call; and the fourth call is
between the two who were not chosen in the third call.

Step 3 Let each of the non-designated agents make one call with any one of the
designated agents apart from agent a4.
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Observation 6.27. Notice that after Step 1, agent a4 knows the secret of all the non-
designated agents (beginning with agent an, each agent ak calls agent ak−1, up to the
call a5a4, at which agent a4 learns the secrets of all the non-designated agents). Next,
Step 2 is such that all the four designated agents know all the secrets of each other after
the step. So, since agent a4 knows the secret of all the non-designated agents at the
end of Step 1, and the calling agents exchange all the secrets they know in each call, it
follows that at the end of the Step 2 all the designated agents (a, b, c, d) know all the
secrets of all agents in the scenario. Finally in Step 3, each of the n− 4 non-designated
agents calls any one of the designated agents apart from agent a4. So clearly, after the
calls in Step 3, all the agents know all the secrets in the scenario. And so we see that
the execution sequences of Procedure 5.1 are successful.

Notice also that Step 1 of Procedure 5.1 requires n− 4 calls (there are n− 3 agents
involved in this step, these agents are on the path π, and each edge of the path π is used
only once, where a use of an edge denotes a call between adjoining nodes). Obviously
Step 2 requires four calls. Step 3 requires n − 4 calls, one for each of the n − 4 non-
designated agents. So, summing up, the three steps together yield execution sequences
of length 2n− 4, which corresponds to the shortest successful execution sequence length
to solve the gossip problem, as proved by, for example, [63].

Proposition 6.28. Given a complete topology network of agents in a gossip scenario,
all the execution sequences of Procedure 5.1 are successful execution sequences of Learn
New Secrets, Known Information Growth de Re, Known Information Growth de Dicto,
Possible Information Growth de Re and Possible Information Growth de Dicto.

Proof. Observe that in each call of each step of Procedure 5.1, the agent who initiates
the call does not know the secret of the other caller prior to the call. This implies
that for every execution sequence σ of Procedure 5.1, the epistemic calling condition for
Learn New Secrets is satisfied for each call of σ. Therefore such execution sequence σ
is an execution sequence of Learn New Secrets (see Definition 4.13). Furthermore, from
Observation 6.27, we see that all such σ are successful.

Moreover, from Proposition 3.27 (and Observation 4.26), we know that: the exten-
sion of Learn New Secrets is a subset of the extension of Known Information Growth de
Re, whose extension is in turn a subset of the extension of Known Information Growth
de Dicto, whose extension is in turn a subset of the extension of Possible Information
Growth de Re, whose extension is equal to the extension of Possible Information Growth
de Dicto. Therefore we conclude that every execution sequence σ of Procedure 5.1, is also
a successful execution sequence of Known Information Growth de Dicto, Known Infor-
mation Growth de Re, Possible Information Growth de Dicto and Possible Information
Growth de Re.

Proposition 6.29. Given a complete topology network of agents in a gossip scenario,
the minimum length of a successful execution sequence of Learn New Secrets is 2n− 4.
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Proof. Consider an example execution sequence of Procedure 5.1, as follows:

σ = anan−1; . . . ; akak−1; . . . ; a5a4; a4a3; a2a1; a4a2; a3a1; ana3; . . . ; aka3; . . . ; a5a3

where n > k > 5.

From Proposition 6.28 we know that σ is a successful execution sequence of Learn
New Secrets. Also, the length of σ is given by 2n− 4 (see Observation 6.27). Since it is
not possible to obtain a successful execution sequence that is less than 2n− 4 in length
(see [63]), we conclude that the length of the shortest successful execution sequence of
Learn New Secrets is 2n− 4.

From Proposition 6.29, and from the last lines of the proof of Proposition 6.28 we
can also conclude that on a complete topology network, the shortest successful execution
sequence length is given by 2n− 4 for Known Information Growth de Re, Known Infor-
mation Growth de Dicto, Possible Information Growth de Re and Possible Information
Growth de Dicto, since we see that an execution sequence of Learn New Secrets is also
an execution sequence of the foregoing protocols.

Our results from Propositions 6.26 and 6.29 show that our epistemic gossip protocols
yield the same minimum successful execution sequence length given by non-epistemic
procedures on the complete topology network, as proved in [13, 27, 61, 63].

6.3 Line Topology Network

In this section we consider gossip scenarios in which the network of agents is a line
topology network of n agents. Without loss of generality, assume that the nodes of
each network are arranged as shown in Figure 6.3. We begin with the description of a
notation that makes it easier for us to talk about some properties of gossip protocols on
a line topology network, and then present and prove some epistemic properties of gossip
scenarios on a line topology network. We then present and prove some of the properties
of Learn New Secrets, Known Information Growth de Dicto, Known Information Growth
de Re, Possible Information Growth de Dicto, and Possible Information Growth de Re,
on a line topology network.

a2 ak+1 an−1 anaka1

Figure 6.3: Line Topology Network.

Definition 6.30 (Orientation). Given a set of agents Ag = {a1, . . . , an}, and a corre-
sponding set of secrets S = {A1, . . . , An}, let each agent ai ∈ Ag correspond to a node
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of a line topology network, as shown in Figure 6.3. Then,

⇒
ai = {aj | i ≤ j ≤ n}
⇒m
ai = {aj | i ≤ j ≤ i+m}, where n ≥ i+m
⇐
ai = {aj | i ≥ j ≥ 1}
⇐m
ai = {aj | i ≥ j ≥ i−m}, where 1 ≤ i−m

We refer to ⇐ai and
⇒
ai as the left and the right orientation, respectively, of agent ai on a

line network. Furthermore, let for any Bg ⊆ Ag, and any call sequence σ:

S(Bg, σ) = {Aj | ∃ai ∈ Bg and KwaiAj at σ}

That is, S(Bg, σ) denotes all secrets that are known at σ by any of the agents in Bg.

Definition 6.31 (Intermediary and Terminus). An intermediary is an agent ai such that
1 < i < n. An agent ak is a terminus if it is not an intermediary.

Notice that on a line topology network with |Ag| > 2, each call must involve at least
one intermediary agent, since otherwise no two termini can call each other.

6.3.1 Epistemic Properties of Gossip Scenarios on Line Topology Net-
work

a1 a2 a3 a4

Figure 6.4: An example of a line topology network.

Now, consider the line topology network shown in Figure 6.4, and assume n = 4

agents a1, a2, a3 and a4. We see that agent a4, for example, cannot learn the secret of
agent a2 unless through agent a3. In other words, agent a3 must learn the secret of agent
a2 before agent a4 does, and likewise a2 must learn secret of agent a4 before agent a1

learns it, etc. So we see that the line network imposes a specific set of constraints on
how the secrets flow in the network over an execution sequence of calls. Furthermore,
since we assume that the network topology is commonly known by the agents, it follows
that agent a3, for example, knows whether agent a2 knows the secret of agent a4, since
agent a3 knows that there is no other way agent a2 can learn the secret of agent a4 before
(or apart from) agent a3. Theorem 6.32 formally describes some basic properties and
constraints of a gossip scenario set on a line topology network.

Theorem 6.32. Let agents a1, . . . , an be connected on a line topology network. Let Tg
be any gossip tree, where σ ∈ Tg is an arbitrary execution sequence.
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Let i ≤ j ≤ k. Then we have the following properties:

Tg, σ |= KwaiAk →
∧

j≤r≤k
KwajAr (6.12)

Tg, σ |= KwaiAk ↔
∧

i≤r≤k
KwaiAr (6.13)

Let aj ∈
⇒1
ai , then Tg, σ |= KwaiAk ↔ KajKwaiAk (6.14)

Let aj ∈
⇒1
ai , then Tg, σ |= ¬KwaiAk ↔ Kaj¬KwaiAk (6.15)

The properties (6.12) through (6.15) have also variants (6.12’), (6.13’), (6.14’) and
(6.15’), as follows, where i ≤ j ≤ k:

Tg, σ |= KwakAi →
∧

i≤r≤j
KwajAr (6.12’)

Tg, σ |= KwakAi →
∧

i≤r≤k
KwakAr (6.13’)

Let aj ∈
⇐1
ak . Then Tg, σ |= KwakAi ↔ KajKwakAi (6.14’)

Let aj ∈
⇐1
ak . Then Tg, σ |= ¬KwakAi ↔ Kaj¬KwakAi (6.15’)

Note that all eight properties (6.12) through (6.15) and (6.12’) through (6.15’) are
common knowledge among all the agents in Ag: notice that each of the properties is for
an arbitrary σ ∈ Tg, which means that each of the properties holds at every possible
execution sequence in Tg.

Property (6.12) captures the observation that if ai learns the secret Ak, then this
secret must have travelled through ak−1, ak−2, . . . , aj , . . . all up to ai. That is, given
that σ = σ1, . . . , σz, then ak−1 must learn secret Ak through a call σp with ak, and agent
ak−2 must learn secret Ak through a call σq with ak−1, (where q > p), . . . , agent aj
must learn secret Ak through a call σr with aj+1 (where r > q), . . . , and agent ai must
learn secret Ak through a call σs with ai+1 (where s > r). Furthermore, in each call
the calling pair exchange all the secrets they know, thus beginning with ak−1, each node
am through which Ak travels, learns the unique secret of each of the nodes am′ where
m < m′ ≤ k. Note that this property also holds in the extreme cases: where i = j (in
which case Property (6.12) becomes identical to Property (6.13)) and where j = k (the
consequent of Property (6.12) is true).

Property (6.14) depicts aj ’s knowledge of ai’s knowledge, regarding some secret in
the right orientation of agent aj , where ai is at most one ‘hop’ to the left of aj . Finally,
Property (6.15) presents a variation of Property (6.14) where agent aj knows of the
ignorance of agent ai, regarding some secret in the right orientation of agent aj .

Before we prove Theorem 6.32, let us first establish a few lemmas, as follows.
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Lemma 6.33. Given a gossip scenario on a line topology network, let Tg = 〈H,R,
F,{Zaj}〉 be any gossip tree, then there exists functions ml and mr such that, for each
call sequence σ = σ1;σ2; . . . , in H, and for each index p ≥ 0 of call in σ, and for each
agent am, we have∗:

1. ml(σ, p,m) ≤ m ≤ mr(σ, p,m);

In words: aml(σ,p,m) denotes the ‘left-most’ agent who knows am’s secret, and
amr(σ,p,m) denotes the ‘right-most’ agent who knows am’s secret.

2. for any agent aj and secret Am we have

Tg, σ |= KwajAm iff j ∈ [ml(σ, p,m),mr(σ, p,m)] (6.16)

3. after call σp, we have that

(a) if ml(σ, p,m) = x > 1, then Tg, σ |= KwaxAm ∧Kax¬Kwax−1Am

(b) if mr(σ, p,m) = y < n, then Tg, σ |= KwayAm ∧Kay¬Kway+1Am

4. after call σp, we have that

(a) if ml(σ, p,m) = x ≥ 1, then Tg, σ |= Kwax+1Am → KaxKwax+1Am

(b) if mr(σ, p,m) = y ≤ n, then Tg, σ |= Kway−1Am → KayKway−1Am

Proof.

• We prove Item 1 and Item 2 as follows:

Base Case At the initial situation,ml(σ, 0,m) = mr(σ, 0,m) = m (the only agent
who knows Am is am). Clearly, Items 1 and 2 of Lemma 6.33 hold at the initial
situation.

Inductive Hypothesis
Now for the inductive hypothesis, suppose ml(σ, p−1,m) and mr(σ, p−1,m)

are given, for fixed p− 1 > 0 and for all m, and Items 1 and 2 hold after the
call σp−1.

Inductive Step
For the inductive step, now consider call σp in σ = σ1; . . . ;σi; . . . ;σp; . . . ,
without loss of generality we can assume that it is of the form akak+1 for
some k < n. We adapt the two functions as follows:

ml(σ, p,m)

{
k if ml(σ, p− 1,m) = k + 1

ml(σ, p− 1,m) else

and

mr(σ, p,m)

{
k + 1 if ml(σ, p− 1,m) = k

mr(σ, p− 1,m) else

∗For a call σi in σ, the index of the call σi is i.
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In words, after the call akak+1, the left-most agent knowing Am becomes
ak if it was ak+1 before the call and stays unchanged otherwise, and the
right-most agent knowing Am becomes ak+1 if it was ak before the call, and
stays unchanged otherwise. Clearly, this update of the function maintains the
properties given in Items 1 and 2 of Lemma 6.33, for σp.

• We prove Item 3 as follows:

Base Case
For Item 3, at the initial situation, suppose ml(σ, 0,m) = x > 1 and mr(σ, p,
m) = y < n, then also we have that ml(σ, 0,m) = mr(σ, 0,m) = m also holds
initially, and therefore the consequent of the property in Item 3(a) becomes
Tg, σ |= KwamAm ∧Kam¬Kwam−1Am, and the consequent for Item 3(b) be-
comes Tg, σ |= KwamAm ∧ Kam¬Kwam+1Am. Clearly Tg, σ |= KwamAm at
the initial situation. Also, Tg, σ |= Kam¬Kwam−1Am (for Item 3(a)) and
Tg, σ |= Kam¬Kwam+1Am (for Item 3(b)) at the initial situation, since agent
am, having not made any call yet, knows that none of its right hand and left
hand neighbours knows the secret Am.

Inductive Hypothesis
Now for the inductive hypothesis, suppose ml(σ, p−1,m) and mr(σ, p−1,m)

are given, for fixed p − 1 > 0 and for all m, and Item 3 holds after the call
σp−1.

Inductive Step
For the inductive step, now consider call σp in σ = σ1; . . . ;σi; . . . ;σp; . . . ,
without loss of generality we can assume that it is of the form akak+1 for
some k < n. We adapt the two functions as follows:

ml(σ, p,m)

{
k if ml(σ, p− 1,m) = k + 1

ml(σ, p− 1,m) else

and

mr(σ, p,m)

{
k + 1 if ml(σ, p− 1,m) = k

mr(σ, p− 1,m) else

In words, after the call akak+1, the left-most agent knowing Am becomes ak
if it was ak+1 before the call and stays unchanged otherwise, and the right-
most agent knowing Am becomes ak+1 if it was ak before the call, and stays
unchanged otherwise.

This update of the function maintains the properties given in Item 3(a) and
Item 3(b) of Lemma 6.33, for σp. The argument for Item 3(a) is as follows.
Suppose ml(σ, p,m) = x > 1. Then since ax is the left-most agent who
knows the secret Am, it must be the case that the agent ax−1 does not know
secret Am. Suppose, towards contradiction, that at the call σp it is the case
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that ¬Kax¬Kwax−1Am holds. That is, (see Definition 4.11), there is some
execution sequence σ′ such that σ ≡ax σ′, where σ′ = σ′1; . . . ;σ′i; . . . ;σ

′
p; . . .

such that i ≤ p, and σ′i = axax−1 (or σ′i = ax−1ax), and it is the case that after
the call σ′i, Kwax−1Am holds. Now since σ′ ∈ Zax(σ) (see Definition 4.9),
then it follows from the Definitions 4.7 and 4.9, that for all σ′′ ∈ Zax(σ) it
must be the case that σ′′i is a call between agent ax and agent ax−1, and after
such call at σ′′i , agent ax−1 knows the secret Am. But from the semantics
of Kax operator given in Definition 4.11 this is equivalent to saying that
KaxKwax−1Am holds at σp, which, by veridicality, implies that Kwax−1Am

holds at σp, and which then contradicts our earlier assumption that ax is the
leftmost agent who knows secret Am. Therefore we conclude that at σp, it is
the case that Kax¬Kwax−1Am holds.

The argument for Item 3(b) is analogous to the foregoing argument for Item
3(a).

• We prove Item 4 as follows:

Base Case
Finally, for Item 4 at the initial situation, suppose ml(σ, 0,m) = x ≥ 1 and
mr(σ, p,m) = y ≤ n, then also we have that ml(σ, 0,m) = mr(σ, 0,m) = m

holds initially since the antecedents, namely, Tg, σ |= Kwam+1Am and Tg, σ |=
Kwam−1Am are false at the initial situation.

Inductive Hypothesis
Now for the inductive hypothesis, suppose ml(σ, p−1,m) and mr(σ, p−1,m)

are given, for fixed p − 1 > 0 and for all m, and Item 4 holds after the call
σp−1.

Inductive Step
For the inductive step, now consider call σp in σ = σ1; . . . ;σi; . . . ;σp; . . . ,
without loss of generality we can assume that it is of the form akak+1 for
some k < n. We adapt the two functions as follows:

ml(σ, p,m)

{
k if ml(σ, p− 1,m) = k + 1

ml(σ, p− 1,m) else

and

mr(σ, p,m)

{
k + 1 if ml(σ, p− 1,m) = k

mr(σ, p− 1,m) else

In words, after the call akak+1, the left-most agent knowing Am becomes ak
if it was ak+1 before the call and stays unchanged otherwise, and the right-
most agent knowing Am becomes ak+1 if it was ak before the call, and stays
unchanged otherwise.

This update of the function maintains the properties given in Item 4(a) and
Item 4(b) of Lemma 6.33, for σp. The argument for Item 4(a) is as follows.
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Suppose ml(σ, p,m) = x ≥ 1. Suppose also that Tg, σ |= Kwax+1Am also
holds. Then σ is of the form σ = σ1; . . . ;σi; . . . ;σp; . . . , where i ≤ p, and
σi = axax+1 (or σi = ax+1ax), and, either ax learnt secret Am from ax+1 or (in
the case where x = m) ax+1 learnt Am from ax, at the call σi (note that here,
given the constraints of the line topology network, it is not possible to have
an execution sequence in which, where x 6= m, we have that ax learnt secret
Am from any other agent other than ax+1). And from Definitions 4.7 and 4.9,
we see that for all σ′ ∈ Zax(σ), it is the case that σ′ = σ′1; . . . ;σ′i; . . . ;σ

′
p; . . . ,

and σ′i ≡ax σi, that is the same agents, namely, ax and ax+1, called each
other at the ith call in both σ and σ′, and, the set of secrets known by ax

and ax+1 at σi are the same, and are equal to the set of secrets known by
ax and ax+1 at σ′i. Therefore, for all σ′ ∈ Zax(σ), it is the case that both ax
and ax+1 know secret Am at σ′i. But from the semantics of ‘Kax ’ operator
given in Definition 4.11 this means that KaxKwax+1Am holds at σ. That is,
Tg, σ |= KaxKwax+1Am And given our foregoing assumptions we conclude
that Tg, σ |= Kwax+1Am → KaxKwax+1Am.

The argument for Item 4(b) is analogous to the foregoing argument for Item
4(a).

Lemma 6.34. Given a gossip scenario on a line topology network, let i ≤ j ≤ k on the
line topology network. Let Tg be any gossip tree, and let σ = σ1;σ2; . . . be an execution
sequence in Tg. Let the functions ml and mr be as described in Lemma 6.33. Then:

Tg, σ |=
∧

ml(σ,p,k)≤x≤k
Kwaml(σ,p,k)

Ax (6.17)

and
Tg, σ |=

∧
mr(σ,p,i)≥x≥i

Kwamr(σ,p,i)Ax (6.18)

In words, Property (6.17) states that at σ it is the case that the left-most agent who
knows secret Ak at call index p, also knows all the unique secrets of all the agents on
its right orientation (including its own secret), right up to the unique secret of agent ak.
Similarly, Property (6.18) states that at σ it is the case that the right-most agent who
knows secret Ai at call index p, also knows all the unique secrets of all the agents on its
left orientation (including its own secret), right up to the unique secret of agent ai.

Proof. Consider the Property (6.17) under Lemma 6.34. We proceed by induction over
the index p of call in σ.

Base Case
At the initial situation, ml(σ, 0, k) = mr(σ, 0, k) = k, so Property (6.17) is obvi-
ously true.
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Inductive Hypothesis
Now, as the inductive hypothesis, supposeml(σ, p−1, k) is given, for fixed p−1 > 0

and for all k, and Property (6.17) holds after the call σp−1 of σ. That is,

Tg, σ |=
∧

ml(σ,p−1,k)≤x≤k
Kwaml(σ,p−1,k)

Ax (6.19)

Inductive Step
For the inductive step, consider call σp, and without loss of generality, assume that
it is of the form ajaj+1 for some j < k. We adapt the function ml as follows:

ml(σ, p, k)

{
j if ml(σ, p− 1,m) = j + 1

ml(σ, p− 1, k) else

That is, after the call ajaj+1, the left-most agent knowing Ak becomes aj if it was
aj+1 before the call, and stays unchanged otherwise. But during such ajaj+1 call
at σp, we have that both agents exchange all the secrets they currently know.
That is, (see Definition 6.30), S({aj}, σ′p) = S({aj+1}, σ′p) = S({aj}, σ′p−1) ∪
S({aj+1}, σ′p−1), where σ′p = σ1; . . . ;σp is the prefix of length p of σ, compris-
ing of the first p calls in σ. Therefore it must be the case that after the ajaj+1

call at σp, agent aj knows all the secrets that aj+1 knew at σp−1, which from the
inductive hypothesis comprises the unique secret of agents between aj+1 and ak

inclusive. So we conclude that after the call σp, Property (6.17) is maintained.

The argument for the property in (6.18) is analogous to that given in the foregoing for
Property (6.17).

Proof of Theorem 6.32

We now present proofs for the properties given in Theorem 6.32.

Proof of Property (6.12). Let σ = σ1; . . . ;σp, and let ml and mr be as described in
Lemma 6.33. Suppose Tg, σ |= KwaiAk holds. Then from (6.16) we see that ai ∈
[ml(σ, p, k),mr(σ, p, k)]. Since i ≤ j ≤ k, and from the proof of Lemma 6.33, we see that
there is some index 0 ≤ s ≤ p, such that ml(σ, s, k) = j. So then from Lemma 6.34 we
conclude that:

Tg, σ |=
∧

ml(σ,s,k)≤r≤k
KwajAr

That is,
Tg, σ |=

∧
j≤r≤k

KwajAr

Proof of Property (6.13). Let σ = σ1; . . . ;σp, and let ml and mr be as described in
Lemma 6.33.
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‘=⇒’-direction This direction is the special case of Property (6.12) where i = j.

‘⇐=’-direction Suppose Tg, σ |=
∧

i≤r≤k
KwaiAr holds. Then, trivially from proposi-

tional logic, we have that Tg, σ |= KwaiAk holds.

Proof of Property (6.14). Given that aj ∈
⇒1
ai and given that i ≤ j ≤ k, we distinguish

the following cases.

Case i = j = k. Here we have to prove that:

Tg, σ |= KwaiAi ↔ KaiKwaiAi

‘=⇒’-direction Suppose Tg, σ |= KwaiAi holds. From Definition 4.7, if agent ai
considers σ and σ′ to be equivalent, then agent ai also knows the same secrets
at both σ and σ′; so if agent ai knows secret Ai at σ, then it also knows
secret Ai at σ′. Therefore from Definitions 4.7 and 4.9, we see that for every
σ′ ∈ Zai(σ) we have that Tg, σ′ |= KwaiAi. And from the semantics of ‘Kai ’
operator, we have that Tg, σ |= KaiKwaiAi.

‘⇐=’-direction Suppose Tg, σ |= KaiKwaiAi holds. That is, for every σ′ ∈
Zai(σ), we have that Tg, σ′ |= KwaiAi. But σ ∈ Zai(σ), therefore we conclude
that Tg, σ |= KwaiAi.

Case i < j = k. We have to prove that:

Tg, σ |= KwaiAj ↔ KajKwaiAj

‘=⇒’-direction Suppose Tg, σ |= KwaiAj holds. Then σ must be of the form
σ = σ1; . . . ;σm; . . . , such that at σm, agent ai and agent aj called each other
for the first time and exchanged all the secrets they knew at the call, including
their own unique secrets (given the constraints of the line topology network,
agent ai cannot learn secret Aj , other than through a call with agent aj ,
and this fact is known by all the agents since the topology of the network
is commonly known). Furthermore, from Definitions 4.7 and 4.9, for every
σ′ ∈ Zaj (σ), we have that σ′ = σ′1; . . . ;σ′m; . . . and σm ≡aj σ′m, and since
agent ai knows Aj at σm, then from Definition 4.7 we see that agent ai also
knows secret Aj at σ′m, for every σ′ ∈ Zaj (σ). And from the semantics of
‘Kaj ’ operator (see Definition 4.11), we conclude that Tg, σ |= KajKwaiAj .

‘⇐=’-direction Suppose Tg, σ |= KajKwaiAj holds. From the semantics of
‘Kaj ’ operator (see Definition 4.11), this means that for every σ′ ∈ Zaj (σ),
we have that Tg, σ′ |= KwaiAj . But σ ∈ Zaj (σ), therefore we conclude that
Tg, σ |= KwaiAj .
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Case i = j < k. We have to prove that:

Tg, σ |= KwaiAk ↔ KaiKwaiAk

‘=⇒’-direction Suppose Tg, σ |= KwaiAk holds. From Definition 4.7, if agent ai
considers any executions sequences σ and σ′ to be equivalent, then agent ai
also knows the same secrets at both σ and σ′; so if agent ai knows secret Ak
at σ, then it also knows secret Ak at σ′. Therefore from Definitions 4.7 and
4.9, we see that for every σ′ ∈ Zai(σ) we have that Tg, σ′ |= KwaiAk. And
from the semantics of ‘Kai ’ operator (see Definition 4.11), we conclude that
Tg, σ |= KaiKwaiAk.

‘⇐=’-direction Suppose Tg, σ |= KaiKwaiAk holds. From the semantics of
‘Kai ’ operator (see Definition 4.11), this means that for every σ′ ∈ Zai(σ),
we have that Tg, σ′ |= KwaiAk. But σ ∈ Zai(σ), therefore we conclude that
Tg, σ |= KwaiAk.

Case i < j < k. We have to prove that:

Tg, σ |= KwaiAk ↔ KajKwaiAk

‘=⇒’-direction Suppose Tg, σ |= KwaiAk holds. Then σ must be of the form
σ = σ1; . . . ;σm; . . . , such that at σm, agent ai and agent aj called each other
for the first time and exchanged all the secrets they knew at the call (given
the constraints of the line topology network, agent ai cannot learn secret
Ak, other than through some call with agent aj , and this fact is known by
all the agents since the topology of the network is commonly known). Fur-
thermore, from Definitions 4.7 and 4.9, for every σ′ ∈ Zaj (σ), we have that
σ′ = σ′1; . . . ;σ′m; . . . and σm ≡aj σ′m, and since agent ai knows Aj at σm, then
from Definition 4.7 we see that agent ai also knows secret Aj at σ′m, for every
σ′ ∈ Zaj (σ). And from the semantics of ‘Kaj ’ operator (see Definition 4.11),
we conclude that Tg, σ |= KajKwaiAk.

‘⇐=’-direction Suppose Tg, σ |= KajKwaiAk holds. From the semantics of
‘Kaj ’ operator (see Definition 4.11), this means that for every σ′ ∈ Zaj (σ),
we have that Tg, σ′ |= KwaiAk. But σ ∈ Zaj (σ), therefore we conclude that
Tg, σ |= KwaiAk.

Proof of Property (6.15). Given that aj ∈
⇒1
ai and given that i ≤ j ≤ k, we distinguish

the following cases.

Case i = j = k. Here we have to prove that:

Tg, σ |= ¬KwaiAi ↔ Kai¬KwaiAi
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‘=⇒’-direction Suppose Tg, σ |= ¬KwaiAi holds. From Definition 4.7, if agent
ai considers σ and σ′ to be equivalent, then agent ai also knows the same
secrets at both σ and σ′; so if agent ai does not know secret Ai at σ, then it
also does not know secret Ai at σ′. Therefore from Definitions 4.7 and 4.9,
we see that for every σ′ ∈ Zai(σ) we have that Tg, σ′ |= ¬KwaiAi. And from
the semantics of ‘Kai ’ operator, we have that Tg, σ |= Kai¬KwaiAi.

‘⇐=’-direction Suppose Tg, σ |= Kai¬KwaiAi holds. That is, for every σ′ ∈
Zai(σ), we have that Tg, σ′ |= ¬KwaiAi. But σ ∈ Zai(σ), therefore we con-
clude that Tg, σ |= ¬KwaiAi.

Case i < j = k. We have to prove that:

Tg, σ |= ¬KwaiAj ↔ Kaj¬KwaiAj

‘=⇒’-direction Suppose Tg, σ |= ¬KwaiAj holds. Then σ must be of the form
σ = σ1; . . . ;σm; . . . , such that there is no such call σm, 1 ≤ i, in which agent
ai and agent aj called each other to exchange each other’s secrets (given the
constraints of the line topology network, agent ai cannot learn secret Aj , other
than through a call with agent aj , and this fact is known by all the agents since
the topology of the network is commonly known). Furthermore, from Defi-
nitions 4.7 and 4.9, for every σ′ ∈ Zaj (σ), we have that σ′ = σ′1; . . . ;σ′m; . . .

such that there is no such call σ′m, 1 ≤ i, in which agent ai and agent aj
called each other to exchange each other’s secrets. That is, from Definition
4.7, for any execution sequence σ′ that is equivalent to σ, for agent aj , there
cannot be a call σ′m between agent ai and aj . In other words, agent aj does
not consider it possible that agent ai knows secret Aj . Therefore, at every
σ′ ∈ Zaj (σ), agent ai remains ignorant of secret Aj . So from the semantics of
‘Kaj ’ operator (see Definition 4.11), we conclude that Tg, σ |= Kaj¬KwaiAj .

‘⇐=’-direction Suppose Tg, σ |= Kaj¬KwaiAj holds. From the semantics of
‘Kaj ’ operator (see Definition 4.11), this means that for every σ′ ∈ Zaj (σ),
we have that Tg, σ′ |= ¬KwaiAj . But σ ∈ Zaj (σ), therefore we conclude that
Tg, σ |= ¬KwaiAj .

Case i = j < k. We have to prove that:

Tg, σ |= ¬KwaiAk ↔ Kai¬KwaiAk

‘=⇒’-direction Suppose Tg, σ |= ¬KwaiAk holds. From Definition 4.7, if agent
ai considers any execution sequences σ and σ′ to be equivalent, then agent
ai also knows the same secrets at both σ and σ′; so if agent ai does not
know secret Ak at σ, then it also does not know secret Ak at σ′. Therefore
from Definitions 4.7 and 4.9, we see that for every σ′ ∈ Zai(σ) we have that
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Tg, σ′ |= ¬KwaiAk. And from the semantics of ‘Kai ’ operator (see Definition
4.11), we conclude that Tg, σ |= Kai¬KwaiAk.

‘⇐=’-direction Suppose Tg, σ |= Kai¬KwaiAk holds. From the semantics of
‘Kai ’ operator (see Definition 4.11), this means that for every σ′ ∈ Zai(σ),
we have that Tg, σ′ |= ¬KwaiAk. But σ ∈ Zai(σ), therefore we conclude that
Tg, σ |= ¬KwaiAk.

Case i < j < k. We have to prove that:

Tg, σ |= ¬KwaiAk ↔ Kaj¬KwaiAk

‘=⇒’-direction Suppose Tg, σ |= ¬KwaiAk holds. Then σ must be of the form
σ = σ1; . . . ;σm; . . . , such that there is no such call σm, 1 ≤ i, in which
agent ai and agent aj called each other and at which agent ai learnt secret
Ak (given the constraints of the line topology network, agent ai cannot learn
secret Ak, other than through some call with agent aj , and this fact is known
by all the agents since the topology of the network is commonly known).
Furthermore, from Definitions 4.7 and 4.9, for every σ′ ∈ Zaj (σ), we have
that σ′ = σ′1; . . . ;σ′m; . . . such that there is no such call σ′m, 1 ≤ i, in which
agent ai and agent aj called each other and at which agent ai learnt secret Ak.
That is, from Definition 4.7, for any execution sequence σ′ that is equivalent
to σ, for agent aj , there cannot be a call σ′m between agent ai and aj at
which agent ai knows secret Ak. In other words, agent aj does not consider it
possible that agent ai knows secret Ak. Therefore, at every σ′ ∈ Zaj (σ), agent
ai remains ignorant of secret Ak. So from the semantics of ‘Kaj ’ operator (see
Definition 4.11), we conclude that Tg, σ |= Kaj¬KwaiAk.

‘⇐=’-direction Suppose Tg, σ |= Kaj¬KwaiAk holds. From the semantics of
‘Kaj ’ operator (see Definition 4.11), this means that for every σ′ ∈ Zaj (σ),
we have that Tg, σ′ |= ¬KwaiAk. But σ ∈ Zaj (σ), therefore we conclude that
Tg, σ |= ¬KwaiAk.

The proofs for Properties (6.12’) - (6.15’) of Theorem 6.32 are, respectively, analogous
to the proofs for Properties (6.12) - (6.15).

Corollary 6.35. Given a set of n agents Ag = {a1, . . . , an} on a line topology network,
let P = {A1, . . . , An} be the set containing the respective secret of each of the agents. Let
KwaiP denote

∧
1≤j≤nKwaiAj. Let a1 and an be the two termini of the line topology

network, and let Tg be any gossip tree, and σ be any execution sequence in Tg. Then the
following property is true in the scenario: Tg, σ |= Kwa1P ∧KwanP→

∧
1<i<nKwaiP.

Proof. Suppose Tg, σ |= Kwa1P and Tg, σ |= KwanP. Let ai be an arbitrary agent such
that 1 < i < n. Now, from propositional logic, we have that Tg, σ |= Kwa1P→ Kwa1An.
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So from Property (6.12) (Theorem 6.32) we conclude that:

Tg, σ |=
∧

i≤k≤n
KaiAk (6.20)

Likewise, from propositional logic, we have that Tg, σ |= KwanP → KwanA1. So from
Property (6.12’) (Theorem 6.32) we conclude that:

Tg, σ |=
∧

1≤k≤i
KaiAk (6.21)

Therefore given that Tg, σ |= Kwa1P and Tg, σ |= KwanP, we conclude, from Properties
(6.20) and (6.21) (and from i being arbitrary) that:

Tg, σ |=
∧

1<i<n

KwaiP

6.3.2 Properties of Epistemic Gossip Protocols on a Line Topology
Network

We now establish here results about the behaviour of our epistemic gossip protocols on
a line topology network.

Proposition 6.36. Learn New Secrets is not successful for a gossip scenario where the
network of agents is a line topology network and the size n of the set of agents is greater
than two.

Proof. From the line topology network of agents shown in Figure 6.3, consider the fol-
lowing execution sequence σ, which is in the extension of Learn New Secrets protocol for
any line topology network of agents where the size of the set of agents is greater than
two:

σ = a1a2; a2a3; . . . ; ak−1ak; . . . ; an−1an (for all 3 < k < n)

We see that in each call aiaj in σ, agent ai calls agent aj ∈
⇒1
ai . The justification for

these calls under Learn New Secrets comes from Property (6.15) of Theorem 6.32. Now,
after the last call of σ, agent an−1 and agent an know all the secrets in the scenario, but
this is not the case for the other agents. Moreover, under Learn New Secrets, no agent
can make any more calls after the last call an−1an, since each agent has now learnt the
secret of all its neighbours.

Proposition 6.37. Let agents a1, . . . , an be connected on a line topology network. Then
Known Information Growth de Re is successful on the line topology network.

Proof. Let Tg be the gossip tree for Known Information Growth de Re. Now take an
arbitrary execution sequence σ in Tg. Recall that the epistemic calling condition for
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agent ai to call agent aj at σ is:

Tg, σ |= Kai

∨
ak∈Ag

Kai(KwaiAk ∇ KwajAk) (6.22)

First of all, note that during every call, some agent will learn some secret (see Proposition
6.9), so σ is terminating. From Definition 4.20, we proceed by contraposition, that is, we
will show that if there is some agent ai and some secret Am such that Tg, σ |= ¬KwaiAm,
then the execution sequence σ is not terminal.

Let σ = σ1; . . . ;σp, and take an agent ai who does not know a certain secret Am
after some call σp. Without loss of generality, let us assume i < m on the line topology
network. Note that i < ml(σ, p,m) ≤ m, since ai does not know Am and i < m.
We know from Property (6.15) that Tg, σ |= Kaml(σ,p,m)

¬Kwaml(σ,p,m)−1
Am. Since it also

holds that Tg, σ |= Kwaml(σ,p,m)
Am, the epistemic calling condition for aml(σ,p,m) to call

aml(σ,p,m)−1 is true. Moreover aml(σ,p,m) and aml(σ,p,m)−1 are neighbours on the network
graph. We therefore conclude that σ is not terminal.

Proposition 6.38. On a line topology network, and for any gossip tree Tg=〈H, R, F,
{Zam∈Ag}〉, and for any execution sequence σ in Tg, the calling conditions for Known
Information Growth de Re and for Known Information Growth de Dicto are equivalent.

Proof. Recall that given any epistemic gossip protocol Π, the calling condition for any
agent ai to call another agent aj is that:

• Both agent ai and agent aj are neighbours on the network graph, and

• The epistemic calling condition given by Π for agent ai to call agent aj must hold
at the considered situation.

But irrespective of the protocol, agent ai and agent aj must be neighbours on the
network graph for there to be any possibility of a call between both agents. So let us
assume that agent ai and agent aj are any two agents that are neighbours on a line
topology network. Furthermore, assume without loss of generality that the network is
as shown in Figure 6.3, and that j = i+ 1.

Now, recall that the epistemic calling condition for Known Information Growth de
Dicto at σ is:

Tg, σ |= Kai

∨
ak∈Ag

(KwaiAk∇KwajAk) (6.23)

So the claim we now want to prove is:

Tg, σ |= Kai

∨
ak∈Ag

Kai(KwaiAk ∇ KwajAk)↔ Kai(
∨

ak∈Ag

KwaiAk ∇ KwajAk) (6.24)

‘=⇒’ -direction. Suppose:

Tg, σ |= Kai

∨
ak∈Ag

Kai(KwaiAk ∇ KwajAk) (6.25)
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First of all, recall Proposition 4.24 and note that in S5, Kai(Kaiα ∨ Kaiβ) is
equivalent to (Kaiα ∨Kaiβ) (for ‘⇒’, use veridicality, for ‘⇐’, observe that Kaiα

implies KaiKaiα which in turn implies Kai(Kaiα∨Kaiβ)). Likewise, Kaiβ implies
Kai(Kaiα ∨Kaiβ), from which the result follows (†).

Now let Ag = {a1, . . . , an}. Let αr = (KwaiAr ∇ KwajAr). Therefore we have:

Tg, σ |= Kai

∨
ak∈Ag

Kai(KwaiAk ∇ KwajAk)

⇐⇒ Tg, σ |= Kai(Kaiα1 ∨ · · · ∨Kaiαn)

⇐⇒ Tg, σ |= (Kaiα1 ∨ · · · ∨Kaiαn) (by (†))
=⇒ Tg, σ |= Kaiαj for some 1 ≤ j ≤ n
=⇒ Tg, σ′ |= αj for every σ′ ∈ Zai(σ) (from Definition 4.11)
=⇒ Tg, σ′ |= (α1 ∨ · · · ∨ αj ∨ · · · ∨ αn) for every σ′ ∈ Zai(σ)

(by propositional logic)
=⇒ Tg, σ |= Kai(α1 ∨ · · · ∨ αn) (from Definition 4.11)
=⇒ Tg, σ |= Kai(

∨
ak∈Ag

KwaiAk ∇ KwajAk)

‘⇐=’ -direction. Recall that we have a line topology network. Suppose that agent ai
and agent aj are neighbours, say agent aj is at the immediate right of agent ai (the
other case is similar)†. Suppose Tg, σ |= Kai

∨
ak∈Ag(KwaiAk ∇ KwajAk). This

means that:

Tg, σ |= Kai( (KwaiA1 ∧ ¬KwajA1) ∨ (¬KwaiA1 ∧KwajA1) ∨
(KwaiA2 ∧ ¬KwajA2) ∨ (¬KwaiA2 ∧KwajA2) ∨

. . . ∨ . . . ∨
(KwaiAi ∧ ¬KwaiAi) ∨ (¬KwaiAi ∧KwajAi) ∨
(KwaiAj ∧ ¬KwajAj) ∨ (¬KwaiAj ∧KwajAj) ∨

. . . ∨ . . . ∨
(KwaiAn ∧ ¬KwajAn) ∨ (¬KwaiAn ∧KwajAn) ∨

)

(6.26)

†Note that since we have a line topology network, if ai and aj are not neighbours then the calling
condition for ai to call aj (or vice versa) fails immediately for any protocol.
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Because of (6.12’), and since agent ai knows that KwaiAi, this gives:

Tg, σ |= Kai( (KwaiA1 ∧ ¬KwajA1) ∨ ⊥ ∨
(KwaiA2 ∧ ¬KwajA2) ∨ ⊥ ∨

. . . ∨ . . . ∨
(KwaiAi ∧ ¬KwajAi) ∨ ⊥ ∨
(KwaiAj ∧ ¬KwajAj) ∨ (¬KwaiAj ∧KwajAj) ∨

. . . ∨ . . . ∨
(KwaiAn ∧ ¬KwajAn) ∨ (¬KwaiAn ∧KwajAn) ∨

)

(6.27)

Moreover, since ai knows that KwajAj , and because of (6.12), we obtain:

Tg, σ |= Kai( (KwaiA1 ∧ ¬KwajA1) ∨ ⊥ ∨
(KwaiA2 ∧ ¬KwajA2) ∨ ⊥ ∨

. . . ∨ . . . ∨
(KwaiAi ∧ ¬KwajAi) ∨ ⊥ ∨

⊥ ∨ (¬KwaiAj ∧KwajAj) ∨
. . . ∨ . . . ∨
⊥ ∨ (¬KwaiAn ∧KwajAn) ∨

)

(6.28)

Writing αm forKwaiAm∧¬KwajAm and βp for ¬KwaiAp∧KwajAp, we can simplify
(6.28) to:

Tg, σ |= Kai(
∨

1≤m≤i
αm ∨

∨
j≤p≤n

βp) (6.29)

For every αm, we have that Tg, σ |= αm → Kai

∨
ak∈Ag(KwaiAk∇KwajAk), and

also Tg, σ |= αm ↔ Kaiαm (‘⇒’ follows from (6.14’) and (6.15’); ‘⇐’ follows from
veridicality). This implies that if one of the αm formulas holds, we are done.
Moreover, if none of the αm formulas is true, agent ai knows this, and hence we
obtain that Tg, σ |= Kai

∨
j≤p≤n βp. Let q be the highest index for which Tg, σ |=

KwaiAq holds. Then we have that (6.29) is equivalent to Tg, σ |= Kai(
∨
q<p≤n βp).

Since on a line it holds that Tg, σ |= Kai(KwajAx → KwajAx−1) if i < j < x

(from (6.13), which is common knowledge among all the agents, since, according
to Theorem 6.32, (6.13) holds at all possible execution sequences in Tg); we then
obtain that Tg, σ |= Kaiβq+1 holds, that is, Tg, σ |= Kai(¬KwaiAq+1 ∧KwajAq+1).

This concludes the proof.

Corollary 6.39. For a gossip scenario on a line topology network, the extension of
Known Information Growth de Re is equal to the extension of Known Information Growth
de Dicto.

Proof. The proof follows directly from Proposition 6.38.
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Corollary 6.40. Known Information Growth de Dicto is successful in a gossip scenario
in which the network of agents is a line topology network.

Proof. From Proposition 6.38, the epistemic calling condition of Known Information
Growth de Re is equivalent to the epistemic calling condition of Known Information
Growth de Dicto, on a line topology network. Therefore every execution sequence of
Known Information Growth de Re is also an execution sequence of Known Information
Growth de Dicto. Therefore, from Proposition 6.37, since Known Information Growth
de Re is successful on a line topology network, we conclude that Known Information
Growth de Dicto is also successful on a line topology network.

Proposition 6.41. Given a gossip scenario with n agents on a line topology network,
the minimum length of a successful execution sequence of Known Information Growth de
Dicto and Known Information Growth de Re is 2n− 3.

Proof. We begin by constructing an execution sequence, and then we show that the
constructed execution sequence is an execution sequence of Known Information Growth
de Re and Known Information Growth de Dicto. Finally we show, from Literature,
that the constructed execution sequence is of the shortest successful execution sequence
length.

Let the network of agents be as shown in Figure 6.3. Consider the following execution
sequence σ given as follows.

σ = σ1;σ2

where
σ1 = a1a2; . . . ; akak+1; . . . ; an−1an (for all 2 ≤ k < n− 1)

σ2 = an−1an−2; . . . ; akak−1; . . . ; a2a1 (for all n− 2 ≥ k > 2)

After each call ai−1ai in σ1, agent ai learns the secret of agent ai−1, so KaiAi−1 holds at
the end of such ai−1ai call in σ1, although agent ai+1 does not yet know secret Ai−1 at
this point. So we know from Property (6.15’) that Kai¬Kwai+1Ai−1 holds at the end of
the ai−1ai call in σ1, and so the calling condition for agent ai to call agent ai+1 is true
for Known Information Growth de Re, at the end of the ai−1ai call in σ1.

Similarly, after each ak+1ak call in σ2, agent ak learns the secret of agent ak+1, so
KakAk+1 holds at the end of such ak+1ak call in σ2, although agent ak−1 does not yet
know secret Ak+1 at that point. So we know from Property (6.15) thatKak¬Kwak−1

Ak+1

holds at the end of the ak+1ak call in σ2, and so the calling condition for agent ak to call
agent ak−1 is true for Known Information Growth de Re, at the end of the ak+1ak call
in σ2.

From the foregoing we see that σ is an execution sequence of Known Information
Growth de Re. Observe also that the length of σ1 is n − 1, and the length of σ2 is
n− 2. So the total length of σ is 2n− 3. Observe also that the execution sequence σ is
successful.

Now, Farley and Proskurowski [23] proved that on a line topology network no success-
ful execution sequence is less than 2n−3. Therefore, from the foregoing, we conclude that
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the minimum length of a successful execution sequence of Known Information Growth
de Re on a line topology network is 2n− 3.

Furthermore, from Corollary 6.39, we conclude also that the minimum length of a
successful execution sequence of Known Information Growth de Dicto on a line topology
network is 2n− 3.

Proposition 6.42. Possible Information Growth de Re is non-terminating in a gossip
scenario where the network of agents is a line topology network and the size n of the set
of agents is greater than three.

Proof. From the line topology network of agents shown in Figure 6.3, consider the fol-
lowing execution sequence σ, which is in the extension of Possible Information Growth
protocol for any line topology network of agents where the size of the set of agents is
greater than three:

σ = a1a2; a3a4; a1a2; a4a3; a1a2; a4a3; . . .

The first two calls of σ are justified by Property (6.15) of Theorem 6.32: in the first call in
σ agent a1 knows, and therefore considers it possible (from the possible world semantics
of knowledge) that it will learn the secret of agent a2 in the first call; and similarly, in
the second call, agent a3 knows that it will learn the secret of agent a4 in the second call
with agent a4. In the third call, agent a1 considers it possible that agent a2 learnt some
secret in the second call (in a possible a2a3 call which is justified by Property (6.15) of
Theorem 6.32) and so agent a1 calls agent a2 in the third call, which proves redundant.
Likewise in the fourth call, agent a4 considers it possible that agent a3 learnt some secret
in the third call (in a possible call with agent a2) and therefore agent a4 calls agent a3 in
the fourth call, which also proves redundant. Once again agent a1 considers it possible
that agent a2 learnt some new secret in the preceding call, and thus for the execution
sequence σ, the loop a1a2; a4a3 goes on infinitely.

Proposition 6.43. Possible Information Growth de Dicto is non-terminating in a gossip
scenario where the network of agents is a line topology network and the size n of the set
of agents is greater than three.

Proof. The proof follows from the proof of Proposition 6.42, and from the proof of
Proposition 3.27 (and Observation 4.26) which shows that the extension of Protocol
4 is equal to the extension of Protocol 5.

6.4 Tree Topology Network

Let us now consider a tree topology network of agents in a gossip scenario, and study
the properties of Learn New Secrets, Known Information Growth de Dicto, Known Infor-
mation Growth de Re, Possible Information Growth de Dicto and Possible Information
Growth de Re. See Figures 6.5 and 6.6 for examples of a tree topology network.
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a1

a3 a2

ak

a2k+1 a2k

Figure 6.5: Binary Tree Topology Network.

Proposition 6.44. Known Information Growth de Dicto and Known Information Growth
de Re are successful in a gossip scenario in which the network of agents is a tree topology
network.

Proof. We begin by proving the proposition for Known Information Growth de Re. Let
Tg be the gossip tree for Known Information Growth de Re on a tree topology network.
Now take an arbitrary execution sequence σ in Tg. Recall that the epistemic calling
condition for agent ai to call agent aj at σ is:

Tg, σ |= Kai

∨
ak∈Ag

Kai(KwaiAk ∇ KwajAk)

Take an arbitrary execution sequence σ of any of the two protocols given. First of all,
note that during every call, some agent will learn some secret, (see Proposition 6.9), so
σ is terminating. From Definition 4.20, we proceed by contraposition, that is, we will
show that if there is some agent ai and some secret Am such that Tg, σ |= ¬KwaiAm,
then the execution sequence σ is not terminal.

Let σ = σ1; . . . ;σp, and take an agent ai who does not know a certain secret Am
after some call σp. Now, consider the path from agent ai to agent am on the tree. This
path is a line topology network, and agent ai and agent am are the termini of such line
network. Without loss of generality, let us assume i < m on the line topology network.
Note that i < ml(σ, p,m) ≤ m, since ai does not know Am and i < m. We know
from Property (6.15) that Tg, σ |= Kaml(σ,p,m)

¬Kwaml(σ,p,m)−1
Am. Since it also holds that

Tg, σ |= Kwaml(σ,p,m)
Am, the calling condition for aml(σ,p,m) to call aml(σ,p,m)−1 is true.

Moreover aml(σ,p,m) and aml(σ,p,m)−1 are neighbours on the network graph. We therefore
conclude that σ is not terminal. So we also conclude that Known Information Growth
de Re is successful on a tree topology network.
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And based on the foregoing argument, and on Proposition 6.38, we conclude also
that Known Information Growth de Dicto is successful on a tree topology network.

a1

a2

ak

an−1

an

Figure 6.6: Star Topology Network.

Corollary 6.45. Known Information Growth de Re and Known Information Growth de
Dicto are successful in a gossip scenario in which the network of agents is either a binary
tree topology network or a star topology network.

Proof. This follows from the proof of Proposition 6.44, since both the binary tree topology
network and the star topology network are instances of a tree topology network.

Both Known Information Growth de Dicto and Known Information Growth de Re
are successful on an arbitrary connected network in which there are no cycles. This
fact follows from Proposition 6.44, since such an arbitrary connected network is a tree
topology network.

Proposition 6.46. Learn New Secrets protocol is not successful for a gossip scenario
where the network of agents is not a complete topology network and the size n of the set
of agents is greater than two.

Proof. Consider the following protocol.

For every ai ∈ Ag, let ai call all its neighbours whom it does not yet know
their secret.

Every sequence of the given protocol is an execution sequence of Learn New Secrets pro-
tocol, because, for each call, the protocol directly requires the epistemic calling condition
of Learn New Secrets. But since the network is not complete topology network, there
is some pair of nodes ai, aj on the network graph such that there is no edge between
ai and aj . Now consider an execution sequence σ of the given protocol that begins by
selecting such agent ai to call all its neighbours in turn, and then the execution sequence
σ continues by selecting each of the other agents in turn to call their own neighbours of
whom they do not yet know their secrets. The execution sequence σ is terminal since
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after all its calls, no further calls can be made by any agent as they have learnt the secret
of all their neighbours. However then, σ is unsuccessful since ai will never learn all the
secrets in the scenario, and this is because after the initial calls from agent ai to all its
neighbours, none of ai’s neighbours can repeat a call to ai after they have learnt the
secrets of their other neighbours, since they already know the secret of ai. Since such a
sequence is a terminal execution sequence of Learn New Secrets for the given network,
we conclude that Learn New Secrets is unsuccessful in such a network.

Corollary 6.47. Learn New Secrets protocol is not successful for a gossip scenario where
the network of agents is a tree topology network and the size n of the set of agents is
greater than two.

Proof. The proof follows immediately from Proposition 6.46.

Proposition 6.48. Possible Information Growth de Re is not successful in a gossip
scenario where the network of agents is a tree topology network and the size n of the set
of agents is greater than three.

Proof. Consider any agents a1 and am such that the path P starting from a1 and ending
in am is the longest path on the tree. The path P is a line topology network. Let µ = |P |
denote the number of agents along P . Consider the following cases:

Case 1 : Let µ > 3. Then, from Proposition 6.42, it follows that the agents on such a
path are not guaranteed to know all the secrets of the agents along that path.

Case 2 : Let µ = 3. Then, there is some agent ak on P , and some other agent al such
that al is a child node of ak in the tree, and al is not on P . Let the path P = 〈a1, a2, a3〉,
and let al be a child node of a2 (else µ > 3, which is not the case we consider). Therefore
we consider the following execution sequence σ, which is in the extension of Possible
Information Growth protocol for any such tree topology network of agents:

σ = a1a2; a3a2; a1a2; a3a2; a1a2; a3a2; . . .

The first two calls of σ are justified respectively by Properties (6.15’) and (6.15) of
Theorem 6.32: in the first call in σ agent a1 knows, and therefore considers it possible
(from the possible world semantics of knowledge) that it will learn secret A2 in the first
call; and similarly, in the second call, agent a3 knows that it will learn secret A2 in a call
with agent a2. In the third call, agent a1 considers it possible that agent a2 learnt some
secret in the second call (in a possible call with agent a3), and so agent a1 calls agent
a2 in the third call. Likewise in the fourth call, agent a3 considers it possible that a2

learnt some secret in the third call (in a possible call with agent al) and therefore a3 calls
agent a2 in the fourth call which now proves redundant. Once again agent a1 considers
it possible that agent a2 learnt some new secret in the preceding call (again, in a possible
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call with agent al), so agent a1 calls a2 again, which also proves redundant. Thus for the
execution sequence σ, the loop a1a2; a3a2; a1a2; a3a2; . . . goes on infinitely.

Proposition 6.49. Possible Information Growth de Dicto is non-terminating in a gossip
scenario where the network of agents is a tree topology network and the size n of the set
of agents is greater than three.

Proof. The proof follows from the proof of Proposition 6.48, and from the proof of
Proposition 3.27 (and Observation 4.26) which shows that the extension of Protocol
4 is equal to the extension of Protocol 5.

6.4.1 Synthesising a Maximum Length Successful Execution Sequence
on a Tree Topology Network

Given a tree topology network, let us consider the length of the longest successful exe-
cution sequence of calls under our epistemic gossip protocols.

a01

ak1ak(v−1)akv

ah1ahw

k

h
v nodes

Figure 6.7: Tree topology network setting for Procedure 6.3.

Let the nodes on a tree topology network be as shown in Figure 6.7. Note the
following about the arrangement of nodes in Figure 6.7.

• We group the nodes in layers as follows: the nodes at a distance y from the root
node belong to layer y.
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• Nodes in the same layer are labelled, right-to-left beginning from one, in a unit
stepwise increasing index which represents the horizontal position of the nodes
within the layer. For any node aij in the tree of Figure 6.7, i is the distance of the
node from the root node and j is the horizontal position of the node within layer i.
For example, the root node is labelled a01, and suppose there are v nodes in layer
k, then the rightmost node is labelled ak1 and the leftmost node is labelled akv.

• Finally, note that h is the height of the tree topology network, that is the maximum
distance of any node from the root of the tree.

Procedure 6.2 Bubble and Breadth-First procedure.
1: function Bubble(ayx)
2: if ayx 6= a01, then
3: Let ayx call its parent node ayx.parent
4: Bubble(ayx.parent)
5: end if
6: return
7: end function

8: function BFP(ayx, ast)
9: Bubble(ayx);
10: Let g be the greatest node index that is less than yx.
11: for aij = a01 to ag and aij 6= ayx

12: Except for the reverse of any call made during Bubble(ayx), let aij call all
13: its child nodes in order of increasing node index.
14: end for
15: Let ayx call all its child nodes whose index is lower than that of ast, in order of
16: increasing node index.
17: end function

Procedure 6.3 Longest sequence procedure for a tree topology network.
1: Given a tree topology network labelled as shown in Figure 6.7.
2: Let the agents be at the initial state.
3: for i = 0 to h− 1

4: Let the number of nodes in layer i be w
5: for akl = ai1 to aiw
6: for each child node ach of akl, in order of increasing node index
7: Let akl call ach
8: BFP(akl, ach)
9: end for
10: end for
11: end for

Description of Procedure 6.3

Procedure 6.3 describes an execution sequence of calls among agents on a tree topology
network as shown in Figure 6.7. Execution begins with the root node calling its child
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nodes in turn, in order of increasing node index. Each subsequent node gets to call its
child nodes too. After each call aklach with a child node, agent akl begins a subsequence
of calls which transmits the secrets learnt from ach through a relay of parent nodes, up
to the root node. This upward relay of the secret of ach to the root node by akl, is
described in the Bubble function (see Procedure 6.2). When the root node learns the
secret of ach, this secret is then distributed to all other nodes whose index is less than
that of akl, through the BFP function.

Given a scenario with three agents as shown in Figure 6.8, Procedure 6.3 gives rise
to the following execution sequence:

σ3 = a01a11; a01a12; a01a11

In σ3, the first call a01a11 is directly from Procedure 6.3. The first layer is layer 0, and
the rightmost (and only) agent in that layer is a01, so we begin by letting a01 call its
rightmost child node a11, as described in Lines 5-7 of Procedure 6.3. After this the BFP
function is called with a01 as the first parameter, and a11 as the second parameter. Now
the first line under BFP is a call to Bubble on a01, which immediately terminates without
any calls since a01 is the root node. The ‘for’ loop in function BFP is also not executed
since at aij = a01 we also have that aij = ayx (since ayx = a01). The other values for
aij are not possible at this point: there is no such node whose index is less than a01.
So we have that the ‘for’ loop in Lines 11-14 is skipped, and execution resumes at Line
15 of function BFP. But since there is no child node of a01 whose index is lower than
that of a11, this line is also skipped, and we then return to the ‘for’ loop in Line 6 of
Procedure 6.3. At this point, the next child node of a01 is a12, and as a result of Line 7
we have the second call of σ3. Then BFP is again called at Line 8, with a01 as the first
parameter, and a12 as the second parameter. Again, the call to function Bubble (at Line
9 of function BFP) terminates immediately since it starts already at the root node, a01.
For the same reason as in the foregoing case, the ‘for’ loop in function BFP is also not
executed. So execution resumes at Line 15 of function BFP. At this point a01 makes a
call to a11 and the function exits (there are no other child nodes whose index is lower
than that of a11). We now return to Line 5 of Procedure 6.3. There are no more nodes
in layer i = 0, so we return to the ‘for’ loop in Line 3, where we find that i = h− 1 = 0

since h = 1. So the loop terminates and the execution of Procedure 6.3 stops.

a01

a12 a11

Figure 6.8: Three agents in a tree topology network.
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a01

a12 a11

a21

Figure 6.9: Four agents in a tree topology network.

a01

a12 a11

a22 a21

Figure 6.10: Five agents in a tree topology network.

For a scenario with four agents as shown in Figure 6.9, Procedure 6.3 gives rise to
the following execution sequence:

σ4 = σ3; a11a21; a11a01; a01a12

Notice that the first three calls of the four-agent scenario is the same as those of the
three-agent scenario. In this case however, the height h of the tree is 2, so execution of
Procedure 6.3 continues where σ3 stopped, that is, the loop at Line 3 is continued with
i = 1. So at Line 7, a11 calls its rightmost child node a21, yielding the fourth call of
σ4. Then follows a call to BFP at Line 8, with a11 as the first parameter and a21 as the
second parameter. The first line (Line 9) of function BFP is a call to function Bubble
with a11 as the parameter. At function Bubble, the fifth call a11a01 takes place, and the
Bubble function exits (a01 is the parent of a11, and at the same time the root node). We
return to Line 11 of function BFP. At the ‘for’ loop at Line 11 we have the following: the
call a01a11 is omitted since its reverse (a11a01) was executed in the Bubble function that
just exited; but the call a01a12 is executed (its reverse was not executed in the Bubble
function) - this gives the sixth call of σ4; according to the ‘for’ loop condition at Line 11,
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the node with the greatest index that is less than that of a11 is a01, and since we have
treated the cases for all the child nodes of a01, the loop stops, and we arrive at Line 15
of function BFP. At this point, we also have that no child node of a11 has an index that
is lower than that of a21, so no call is executed at this point, and the function exits. We
return to the Procedure 6.3 at the ‘for’ loop at Line 5, but since there are no more nodes
on layer i = 1, this loop exits; the loop on Line 3 also exits since i is now equal to h− 1.
And here Procedure 6.3 finishes, finally yielding the calls of σ4.

Finally, for a scenario with five agents as shown in Figure 6.10, Procedure 6.3 gives
rise to the following execution sequence:

σ5 = σ4; a11a22; a11a01; a01a12; a11a21

The description of how Procedure 6.3 yields σ5 is similar to previous examples.

The length of the execution sequence generated by Procedure 6.3

Given a scenario with n agents, how many calls has the resulting execution sequence
from Procedure 6.3?

Let us for now ignore the call to function BFP on Line 8 of Procedure 6.3, then we
see that beginning from layer 0, until layer h − 1, each node calls each of all its child
nodes exactly once. This yields a total of (n − 1), corresponding to using each of the
edges of the tree exactly once.

Now consider the call to function BFP with akl as the first parameter and ach as the
second parameter, where akl is the node that just called one of its child nodes ach in Line
7 of Procedure 6.3. Function BFP begins with a call to function Bubble, with node akl
as parameter, and function Bubble yields a number of calls corresponding to the distance
of akl from the root node, and this distance is given by the value of k. Furthermore, in
Lines 11-16, we see that beginning from the root node, until node akl, each node calls
all its child nodes, except for (a) calls that are the reverse call of one of the calls made
during function Bubble, and (b) node akl which calls only the child nodes whose index is
less than that of node ach. So considering the edges that were used during the function
Bubble, we see that function BFP uses, exactly once, all the edges between all the nodes
whose index are less than that of ach. So now, suppose the nodes of the tree are assigned
serial natural numbers in order of increasing node index, beginning from number one (for
example, the root node will be assigned the number 1, and the leftmost node at layer h
will assigned the number n). So with this new numbering, let the number assigned to ach
be m, then we see that function BFP(akl, ach) uses, exactly once, all the edges between
node number 1 and node number m − 1, and this gives a total use of m − 2 edges (or
calls) for each call of function BFP, where m is the serial natural node number of node
ach.

But the serial number of ach increases by 1 each time function BFP is called, from the
order imposed by the ‘for’ loops in Procedure 6.3. Moreover, from the forgoing analysis,
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the first call to function BFP usesm−2 = 2−2 = 0 edges (or calls) (since node a11 would
be assigned the natural number 2, and the first call to function BFP occurs right after
a01 calls a11). Therefore, for each serial number m ranging as follows: 2 ≤ m ≤ n, we
have that function BFP uses m− 2 edges (or calls). So the summation of these number
of calls over the range of values of m is:

n∑
m=2

(m− 2) =
(n− 1)(n− 2)

2

Now recall that, without the call to function BFP on Line 8 of Procedure 6.3, we obtain
a total of n− 1 calls. Therefore the total number of calls in the call sequence generated
by Procedure 6.3 is given by:

(n− 1)(n− 2)

2
+ (n− 1) =

n(n− 1)

2

Continuing with our study of Procedure 6.3, consider the following claim.

Proposition 6.50. For a gossip scenario with n agents, the call sequence generated by
Procedure 6.3 is an execution sequence of Known Information Growth de Re.

Proof. Recall that the calling condition for Known Information Growth de Re states that
for any agent ai to call another agent aj , there must be a secret Ak such that ai knows
that one of ai and aj will learn Ak from the aiaj call; moreover, agent ai and aj must be
neighbours on the network graph. Now let us consider whether this is the case for each
of the calls in the call sequence generated by Procedure 6.3. We proceed by examining
Procedure 6.3 as follows.

1. Let us for now ignore the call to function BFP on Line 8 of Procedure 6.3, then we
see that beginning from layer 0, until layer h−1, each node calls each of all its child
nodes exactly once. In each of those calls, the node calling its child node knows
that it will learn the secret of its child node in that call, since it is the first time
they call each other. Hence the calling condition for Known Information Growth
de Re is satisfied for each of those calls.

2. Now consider the call to function BFP with akl as the first parameter and ach as the
second parameter, where akl is the node that just called one of its child nodes ach in
Line 7 of Procedure 6.3. Obviously akl learnt the secret of ach in that call preceding
the execution of function BFP. Now, function BFP begins with a call to function
Bubble, with node akl as parameter. Suppose the parent node of akl is akl.parent,
then the path beginning from node ach and terminating on node akl.parent is a line
topology network comprising of the three agents ach, akl and akl.parent. Then from
Property 6.15’ (or Property 6.15, as the case may be) we see that akl knows that
akl.parent does not know the secret of ach, and therefore akl.parent will learn this
secret in the aklakl.parent call. We can iterate the same argument for all the calls
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that are generated by function Bubble, since in each call an agent calls its parent
node after learning the secret of ach from one of its child nodes, until the root
node learns this secret too. Hence we see that the calling condition for Known
Information Growth de Re is satisfied for each of the calls in function Bubble.

3. Now, after the execution of the Bubble function, let us consider what happens in
Lines 11-16 of function BFP. We see that beginning from the root node, until node
akl, each node calls all its child nodes, except for (a) calls that are the reverse call
of one of the calls made during function Bubble, and (b) node akl which calls only
the child nodes whose index is less than that of ach. We see that, beginning from
the root node, every such call between a parent node ai and its child node aj , the
secret of ach is learnt by aj . Now consider the node ach and such node aj , these
two nodes form the terminals of a line topology network. Hence prior to the aiaj
call, by Property 6.15’ (or Property 6.15 as the case may be), ai knows that aj will
learn the secret of ach in the call.

From 1 - 3 we see that the calling condition for Known Information Growth de Re is
satisfied for each of the calls in the call sequence generated by Procedure 6.3, and hence
the generated call sequence is an execution sequence of Known Information Growth de
Re.

Proposition 6.51. The execution sequence generated by Procedure 6.3 is successful.

Proof. Consider Line 7 of Procedure 6.3. For any node akl, and for any child node ach
of akl, let the set of agents Ag′ be defined as: Ag′ = {aij | ij < ch}. (Observe that Ag′

is the set of nodes that are considered during function BFP). We first show that just
before executing Line 7 of Procedure 6.3 (just after Line 6), every ai ∈ Ag′ knows only
the secret of every agent in Ag′, and we will conclude by using this property to show
that the generated execution sequence is successful. We proceed by induction over the
index kl of nodes.

Base Case
Initially, for akl = a01, and for the child node a11 of a01, Ag′ = {a01}, i.e. the
set Ag′ comprises only the root node, so indeed every agent in Ag′ knows only the
secret of every agent in Ag′, namely, the secret of a01.

Inductive Hypothesis
As the inductive hypothesis, suppose that for all akl such that kl ≤ (h−1)t (where
t is the number of nodes in layer h − 1), and for all child nodes axy of akl where
xy < hw, it is the case that every ai ∈ Ag′ knows only the secret of every agent
in Ag′, just before executing Line 7 of Procedure 6.3. (Notice from Figure 6.7 that
ahw is the node with the highest node index of the tree topology network i.e. the
leftmost leaf node of the tree; so the inductive hypothesis considers all parent nodes
in the tree, and considers all child nodes of all parent nodes, except the very last
child node in order of increasing node index, namely ahw).
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Inductive Step
Now consider the set Ag′ for the node a(h−1)t and the child node ahw, where ahw
is the child node of a(h−1)t (again, ahw is the node with the highest node index of
the tree topology network). Notice also that a(h−1)t ∈ Ag′, and from the inductive
hypothesis above, the only secret that is not known by any agent in Ag′ is the
secret of ahw, since ahw is currently the only node that is not in Ag′. Now, Line
7 involves agent a(h−1)t calling agent ahw /∈ Ag′. Notice that this call a(h−1)tahw

is the last call in the execution sequence generated by Procedure 6.3. Since ahw is
a fresh caller in such a(h−1)tahw call, then a(h−1)t learns only the secret of ahw in
that call. After that call, a(h−1)t knows one more secret, namely, that of ahw, than
any other agents in Ag′. Also, agent ahw learns the secret of every agent in Ag′

from that call. Hence after the a(h−1)tahw call, both agents know all the secrets in
the scenario. Now observe that in the execution of function BFP on Line 8, every
call generated by BFP is between an agent who knows ach and an agent who does
not know ach. Furthermore, in BFP, every agent in Ag′ takes part in at least one
call. Therefore after BFP, every agent in Ag′ knows the secret of ach. Hence when
function BFP exits, it is clear then that every agent in Ag′ knows all the secrets.
And thus, every agent has now learnt all the secrets in the scenario. Finally, the
generated execution sequence terminates, since at this point the conditions for the
‘for’ loops can no longer be satisfied, since the last node index on the tree has been
considered and the height of the tree exhausted.

Proposition 6.52. Let Π be a regular gossip protocol, and let Π be successful. Then
no execution sequence of Π is longer than the execution sequence generated by Procedure
6.3.

Proof. Let the execution sequence generated by Procedure 6.3 be σ∗. Consider Procedure
6.3. Let us for now ignore the call to function BFP on Line 8, and let us refer now to what
remains of this procedures as the downward movement. Now notice that the downward
movement yields only fresh calls. Beginning from layer 0, until layer h − 1, each node
calls each of all its child nodes exactly once, and in each such call, the child node is a
fresh caller. Again, the total number of the resulting calls is n − 1, corresponding to a
use of each of the n− 1 edges of the tree topology network.

Now all other calls that we have not considered so far are generated from function
BFP. We now show that in each of the calls generated by function BFP, the total number
of secrets learnt by the calling pair is one.

• Consider Line 7 of Procedure 6.3. For any node akl, and for any child node ach of
akl, let the set of agents Ag′ be defined as: Ag′ = {aij | ij < ch}. (Observe that Ag′

is the set of nodes that are considered during function BFP). We first show that
just before executing Line 7 of Procedure 6.3 (just after Line 6), every ai ∈ Ag′

knows the same set of secrets. We proceed by induction over the index kl of nodes.
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Base Case
Initially, for akl = a01, and for the child node a11 of a01, Ag′ = {a01}, i.e. the
set Ag′ comprises only the root node, so indeed every agent in Ag′ knows the
same set of secrets, namely the secret of a01.

Inductive Hypothesis
Suppose that for all akl such that kl < st, and for all child nodes of akl, it
is the case that every ai ∈ Ag′ knows the same set of secrets, just before
executing Line 7 of Procedure 6.3.

Inductive Step
Now consider the set Ag′ for the node ast and a child node ach of ast. (Notice
that ast ∈ Ag′). Now, Line 7 involves agent ast ∈ Ag′ calling agent ach /∈ Ag′.
Since ach is a fresh caller in such astach call, then ast learns only the secret
of ach in that call. After that call, ast knows one more secret, namely, that
of ach, than any other agents in Ag′. Now observe that in the execution of
function BFP on Line 8, every call generated by BFP is between an agent
who knows the secret of ach and an agent who does not know the secret
of ach. Furthermore, in BFP, every agent in Ag′ takes part in at least one
call. Therefore after BFP, every agent in Ag′ knows the secret of ach. When
function BFP exits, and the ‘for’ loop at Line 6 begins again, it is clear then
that the property that every agent in Ag′ knows the same set of secrets is
maintained.

• Now, since just before Line 7 the secrets known by all the agents in Ag′ are the
same, and after the call in Line 7 the agent akl knows one more secret (namely,
the secret of ach) than other agents in Ag′, and every call in BFP is between an
agent who knows the secret of ach and an agent who does not know the secret of
ach. Then in every call in BFP, the total number of secrets learnt by the calling
pair is exactly one, namely, the secret of ach. Since in BFP, the total number of
calls is (n − 1)(n − 2)/2 calls, then there are (n − 1)(n − 2)/2 calls in which the
total number of secrets learnt is exactly one.

Now recall that the downward movement comprises only of fresh calls, and there are
n − 1 such calls. In each of those calls, the total number of secrets learnt per call is
at least two. Recall also that in every successful execution sequence there are at most
n−1 fresh calls (from Lemma 6.10). Furthermore, for a regular protocol, such successful
execution sequence must have the property that in each call at least one secret is learnt
by some agent in the call. But from Proposition 6.50 we know that σ∗ is an execution
sequence of Known Information Growth de Re, and, from Proposition 6.9, we know that
Known Information Growth de Re is regular. Also, σ∗ is successful (from Proposition
6.51), therefore it must have at most n− 1 fresh calls. Now, from the foregoing analysis
we see that the execution sequence generated by Procedure 6.3 has exactly n − 1 fresh
calls, and it has (n − 2)(n − 1)/2 calls in which the total number of secrets learnt is
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exactly one. Hence we see that no other execution sequence of a regular and successful
protocol can be made longer than σ∗, unless such an execution sequence contained some
call in which the total number of secrets learnt is zero, which will then contradict the
assumption that the protocol is regular.

Corollary 6.53. Given a tree topology network of agents, then the maximum length of an
execution sequence in the extension of a regular and successful epistemic gossip protocol
is n(n− 1)/2.

Proof. The proof follows from the proof of Proposition 6.52 in which we show that the
length of the execution sequence generated by Procedure 6.3 is the maximum for any
regular and successful gossip protocol on a tree topology network.

Corollary 6.54. Given a tree topology network of agents, then the maximum length
of an execution sequence of Known Information Growth de Re and Known Information
Growth de Dicto is n(n− 1)/2.

Proof. From Corollary 6.53 we see that the length of the execution sequence generated
by Procedure 6.3 is the maximum for any regular and successful gossip protocol on the
tree topology network. In particular, the length of the execution sequence generated by
Procedure 6.3 is the maximum for Known Information Growth de Re (from Proposition
6.50). Finally, the length of the execution sequence generated by Procedure 6.3 is the
maximum for Known Information Growth de Dicto (from Proposition 3.27 and Observa-
tion 4.26: every execution sequence of Known Information Growth de Re is an execution
sequence of Known Information Growth de Dicto).

6.4.2 Synthesising Minimum Length Successful Execution Sequences
on a Tree Topology Network

We now consider the shortest successful execution sequence length for Known Information
Growth de Dicto and Known Information Growth de Re, on a tree topology network. In
their paper [28], Harary and Schwenk gave a procedure for obtaining a shortest successful
execution sequence on an arbitrary connected (but incomplete) network graph and they
proved that such an execution sequence is of length 2n − 3. The procedure is based on
a spanning tree of an arbitrary connected network graph, and proceeds in two stages,
namely, an upward movement and a downward movement.

Upward Movement The upward movement is as follows. Let each of all the leaf
nodes call its parent node in turn. Now remove all the current leaf nodes and their
adjoining edges so that their parent nodes become the new leaf nodes of the tree. Repeat
the process of each of the current leaf nodes calling its parent and the removal of the
current leaf nodes, until only the root node is remaining.
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Downward Movement Now we do the downward movement as follows. Replace‡

all the child nodes of the root node and their adjoining edges. Except for the last node
that called the root node in the upward movement, let the root node call all its child
nodes in turn. The child nodes are at a distance δ = 1 from the root node. So likewise,
iteratively replace the child nodes (and their adjoining edges) which were at a distance
δ = 2, 3, . . . h in the original tree, where h is the height of the tree. In each iteration let
each of all the nodes at a distance δ − 1 call its child nodes.

Note that only a pair of nodes can call at a time. Let each call between two nodes be
considered as a use of the edge between two such nodes. In the upward movement, each
edge of the tree is used only once, and this gives a total of n− 1 calls. In the downward
movement, the total number of uses of the edges is n−2 since the last call in the upward
movement is not repeated in the downward movement. So now we have a total of 2n− 3

calls. Suppose any edge (or call) were to be omitted from the upward movement. Let
the edge in question be between some node η1 at a distance δ and another node η2 at
a distance δ + 1 from the root node. Then all the nodes at a distance δ′ ≤ δ will never
learn the secrets known by the node η2. The situation is analogous for the downward
movement if such an edge were omitted from it. Since all the 2n−3 uses of the edges (or
calls) are necessary, the conclusion is that we cannot have a shorter execution sequence
than 2n− 3 on such a network graph.

We show that the procedure described above as an upward and downward movement,
yields an execution sequence of Known Information Growth de Re (and therefore also
an execution sequence of Known Information Growth de Dicto – see Proposition 3.27
and Observation 4.26) on a tree topology network. Recall that we make the assumption
that both the protocol and the network topology are common knowledge among all the
agents in the scenario, so each agent knows whom can call who as far as the network
links are concerned. In each call aiaj from node ai to node aj in the upward movement,
node ai knows that node aj will learn the secret of node ai in the aiaj call. Hence the
calling condition for Known Information Growth de Re is satisfied for each call in the
upward movement. In the downward movement where each node calls its child nodes, in
each aiaj call, node ai knows that node aj will learn secret Ak, where Ak is the secret
that ai learnt in the call immediately preceding the aiaj call (node ai knows this since it
knows that its child nodes can only learn secret Ak through a call with it). Hence, once
more the calling condition for Known Information Growth de Re is satisfied for each call
in the downward movement. As a result, we conclude that on a tree network graph,
the shortest successful execution sequence for Known Information Growth de Dicto and
Known Information Growth de Re protocol is of length 2n− 3.
‡We use the word “replace” here with the understanding that the downward movement on the tree is

executed after the upward movement on the same tree.
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Altering the Tree Topology Network for a Lower Minimum Length of Suc-
cessful Execution Sequences

From the preceding subsection, a follow-up discussion is about whether there is a way
to alter the tree topology network so as to reduce the length of the shortest success-
ful execution sequence of the Known Information Growth protocols from 2n − 3 to the
shortest length obtainable in a complete topology network, namely, 2n− 4. The answer
to this question is yes. Given a connected topology network of n agents with only one
cycle, which is a 4-cycle, the shortest successful execution sequence of Known Informa-
tion Growth de Dicto and Known Information Growth de Re is of length 2n − 4. To
demonstrate this claim consider Figure 6.11 which depicts a connected topology network
with one cycle, which is a 4-cycle (the network is in fact a tree topology network with one
tree node replaced by a 4-cycle). We consider the network as having two parts, namely,
a tree part τ and a 4-cycle part ω, as shown in Figure 6.11.

a1

a3 a2

ak

a4

τ

ω

Figure 6.11: A connected topology network with one 4-Cycle.

Now, let the upward movement be as described in the preceding section, but now
applied to the tree τ in Figure 6.11. We modify the downward movement given in
the preceding section to get a new downward movement, as follows (notice that in the
modified downward movement, we now allow the root node of the tree τ to call the last
node that called it in the upward movement):

Modified Downward Movement Consider the tree τ in Figure 6.11. Replace§ all
the child nodes of the root node and their adjoining edges. Let the root node call all
§We use the word “replace” here with the understanding that the modified downward movement on

the tree is executed after the upward movement on the same tree.
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its child nodes in turn. The child nodes are at a distance δ = 1 from the root node. So
likewise, iteratively replace the child nodes (and their adjoining edges) which were at a
distance δ = 2, 3, . . . h in the original tree, where h is the height of the tree. In each
iteration let each of all the nodes at a distance δ − 1 call its child nodes.

Now let the following procedure be carried out, Step 1 through Step 3.

Procedure 5.2.

Step 1 Execute the upward movement as described in the preceding subsection,
on the tree τ .

Step 2 Let the agents on the 4-cycle ω call each other according to the Four-Agent
Protocol as follows: any two agents make the first call; the second call is then
between the remaining two agents; the third call is then between an agent
who made the first call and an agent who made the second call; and the
fourth call is between the two who were not chosen in the third call.

Step 3 Execute the modified downward movement.

Now let the number of nodes on the tree τ be m (note that the root of the tree τ is the
node a4, as shown in Figure 6.11; note too that node a4 is also part of the 4-cycle ω).
Now the total number of nodes on the network is given by n = m+ 3.

Observe that the modified downward movement has one more call than the downward
movement. Following the analysis in the preceding subsection, the total number of calls
due to the upward movement and the modified downward movement is then given by
2(m− 1). The Four-Agent Protocol clearly gives four calls. Therefore the total number
of calls due to the foregoing procedure is 2m− 2 + 4 = 2(n− 3) + 2 = 2n− 4.

Finally, the analysis which demonstrates that Procedure 5.2 yields execution se-
quences of Known Information Growth de Dicto and Known Information Growth de
Re, is the same as the analysis given in the preceding section for a similar purpose, but
with one exception. The only difference is that here we additionally justify the extra call
in the modified downward movement, namely, the call from the root node of τ , namely
a4, to the agent who called it last in the upward movement. Let the agent who called a4

last in the upward movement be ai. The call a4ai is allowed in the modified downward
movement by Known Information Growth de Re (and consequently by Known Informa-
tion Growth de Dicto – see Proposition 3.27 and Observation 4.26). The reason is that
after the last call of the Four-Agent Protocol (Step 2 of Procedure 5.2), agent a4 knows
that ai does not yet know the secret of any of the agents in the 4-cycle ω. In particular,
agent a4 knows that in the call a4ai in the modified downward movement, agent ai will
learn the secret of agent a2, thus the calling condition for the a4ai call is satisfied for
Known Information Growth de Re (and also for Known Information Growth de Dicto).
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6.5 Circle Topology Network

In this section we consider a gossip scenario in which the network of agents is a circle
topology network of n agents, and consider the properties of Learn New Secrets, Known
Information Growth de Dicto, Known Information Growth de Re, Possible Information
Growth de Dicto and Possible Information Growth de Re.

Let the arrangement of the agents be as shown in Figure 6.12:

a1

a2

ak

an−1

an

ak+1

Figure 6.12: Circle Topology Network.

Proposition 6.55. Learn New Secrets protocol is not successful for a gossip scenario
where the network of agents is a circle topology network and the size n of the set of agents
is greater than three.

Proof. Recall that the calling condition for agent ai to call agent aj under Learn New
Secrets protocol is: that agent ai does not know the unique secret of agent aj , and, agent
ai and aj must be neighbours on the network graph.

From the circle topology network of agents shown in Figure 6.12, consider the fol-
lowing execution sequence σ. Observe that σ is an execution sequence of Learn New
Secrets on the circle topology network in Figure 6.12, and therefore σ is in the extension
of Learn New Secrets for that circle topology network of agents, where the size of the set
of agents is greater than three:

σ = a1a2; a2a3; . . . ; ak−1ak; . . . ; an−1an (for all 3 < k < n)

Now, after the last call of σ, agent an−1 and agent an know all the secrets in the scenario,
but this is not the case for the other agents. Moreover, no other agents can make any
more calls since each agent has learnt the secret of all its neighbours.

We now consider the Known Information Growth de Dicto and Known Information
Growth de Re protocols. In order to show that both Known Information Growth de Re
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and Known Information Growth de Dicto protocols can deadlock on a circle topology
network, we work through an example of a deadlocked execution sequence of both proto-
cols in a gossip scenario comprising of five agents (a1, a2, a3, a4, a5) connected in a circle
topology network (see Figure 6.12). Furthermore, for a more intuitive exposition, we
choose to adopt the equivalence notion given in Definition 4.40 for this example. Recall
that for the equivalence notion given in Definition 4.40 an agent considers what secrets
it learnt from each call, in a pair of histories, in order to determine whether such pair of
histories are equivalent. Now, consider the following execution sequence σ:

σ = a1a2; a1a5; a2a3; a5a4; a3a4; a5a1; a2a3; a1a2

We show that σ is deadlocked under Known Information Growth de Dicto on the circle
topology network, as follows. At σ the only agent who does not yet know all the secrets
in the scenario is agent a5. Therefore under Known Information Growth de Dicto (and
Known Information Growth de Re), the only calls that can be considered at σ on the
circle topology network are calls between agent a5 and any one of its neighbours. Hence
we consider the following calls at σ: a5a1, a1a5, a5a4 and a4a5.

To show that the call a5a1 is not possible at σ, consider the execution sequence σ1

as follows:
σ1 = a1a2; a1a5; a1a2; a5a4; a2a3; a5a1; a3a4; a2a3

For agent a5, the execution sequence σ is equivalent to σ1 under the definition of equiv-
alent histories given in Definition 4.40 (the reader can verify this following the definition
of equivalent histories given in Definition 4.40). At σ1, both agent a5 and agent a1 know
the same set of secrets. Therefore at σ, agent a5 considers it possible that there is no
secret that will be learnt in an a5a1 call.

To show that the call a1a5 is not possible at σ, consider the execution sequence σ2

as follows:
σ2 = a1a2; a1a5; a2a3; a5a4; a3a4; a5a1; a4a5; a1a2

For agent a1, the execution sequence σ is equivalent to σ2 under the definition of equiv-
alent histories given in Definition 4.40. At σ2, both agent a1 and agent a5 know all the
secrets in the scenario. Therefore at σ, agent a1 considers it possible that there is no
secret that will be learnt in an a1a5 call.

To show that the call a5a4 is not possible at σ, consider the execution sequence σ3

as follows:
σ3 = a1a2; a1a5; a1a2; a5a4; a2a3; a5a1; a1a2; a2a3

For agent a5, the execution sequence σ is equivalent to σ3 under the definition of equiva-
lent histories given in Definition 4.40. At σ3, both agent a5 and agent a4 know the same
set of secrets. Therefore at σ, agent a5 considers it possible that there is no secret that
will be learnt in an a5a4 call.
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To show that the call a4a5 is not possible at σ, consider the execution sequence σ4

as follows:
σ4 = a1a2; a1a5; a2a3; a5a4; a3a4; a2a1; a1a5; a1a2

For agent a4, the execution sequence σ is equivalent to σ4 under the definition of equiv-
alent histories given in Definition 4.40. At σ4, both agent a4 and agent a5 know all the
secrets in the scenario. Therefore at σ, agent a4 considers it possible that there is no
secret that will be learnt in an a4a5 call.

Since none of the calls a1a5, a5a1, a4a5 or a5a4 is possible at σ, the execution sequence
σ is deadlocked under Known Information Growth de Dicto. It is also the case that the
execution sequence σ is deadlocked under Known Information Growth de Re. To see this,
recall that at σ, the only agent who does not yet know all the secrets is agent a5. Since
at σ agent a5 knows all the secrets except only that of agent a3, it follows that if an agent
knows that some secret will be learnt in the next call after σ, then that agent knows that
it is agent a5 who will learn the secret of agent a3 in that next call (here, epistemic calling
condition for Known Information Growth de Dicto implies that for Known Information
Growth de Re). On the other hand, if an agent knows that the secret of agent a3 will be
learnt in the next call after σ, then that agent knows that it is agent a5 who will learn
some secret (namely, that of agent a3) in that call (here, the epistemic calling condition
for Known Information Growth de Re implies that for Known Information Growth de
Dicto). Therefore, the epistemic calling condition for Known Information Growth de
Dicto is equivalent to that for Known Information Growth de Re for the next call after
σ. Hence if σ is deadlocked under Known Information Growth de Dicto, then it is also
deadlocked under Known Information Growth de Re. And if σ is deadlocked under
Known Information Growth de Re, then it is also deadlocked under Known Information
Growth de Dicto.

Now, let us demonstrate that the execution sequence σ is actually an execution
sequence of Known Information Growth de Dicto. To show that σ is an execution
sequence of Known Information Growth de Dicto it is enough to show that σ is an
execution sequence of Known Information Growth de Re (from Proposition 3.27, an
execution sequence of Known Information Growth de Re is also an execution sequence
of Known Information Growth de Dicto).

To see that σ is an execution sequence of Known Information Growth de Re, consider
the following. In each of the first five calls in σ, the agent who initiates the call knows
that it will learn the secret of the callee agent, since in each call the agent who initiates
the call did not know the secret of the callee agent prior to the call (for example, for the
first call of σ, agent a1 knew that it will learn the secret of agent a2; for the second call
agent a1 knew that it will learn the secret of agent a5; etc.). So for the first five calls in
σ it is clear that the agent who initiates the call knows of a secret that will be learnt in
the call by either of the agents in the call.

For the sixth call in σ, consider that in the fourth call in σ agent a5 learnt the secret
of agent a4, but agent a5 also learnt that that call was the first call to be made by agent
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a4 in the execution sequence (this is due to the set of secrets which agent a5 learnt from
that a5a4 call), so agent a5 knows that after that fourth call, without a call between
a5 and a1, a minimum of three more calls is required for agent a1 to learn the secret
of agent a4 (due to further calls . . . a4a3; a3a2; a2a1; . . . ), so for the sixth call agent a5

knows that agent a1 does not yet know the secret of agent a4, since a5 knows the fifth
call was not between a5 and a1. And since agent a5 knows the secret of agent a4, the
calling condition for Known Information Growth de Re is satisfied for an a5a1 call in the
sixth call in σ.

For the seventh call a2a3 in σ, consider that agent a2 called agent a3 in the third call
and learnt that that was the first call agent a3 has made. Also, agent a2 was in the first
call in σ and therefore knows that the first call was with a1. Therefore after the third
call in σ, agent a2 knows that the second call in σ must have been either between agent
a4 and agent a5, or between agent a1 and agent a5, given the arrangement of agents on
the circle topology network (see Figure 6.12).

Given that agent a2 was not involved in the fourth, fifth and sixth calls in σ (and
therefore none of those calls was between a1 and a2 or between a2 and a3):

(i) Suppose the second call in σ was between a4 and a5, then the fourth call is either a
call between a1 and a5, or a call between a3 and a4. If the fourth call was between
a1 and a5, then the fifth call will either be between a4 and a5, or between a3 and
a4. If the fifth call was between a4 and a5, and if prior to the fifth call a3 and a4

have not called each other, then the sixth call cannot be again between a1 and a5

since none of them will learn any new secret from such call, so in this case the sixth
call must be between a3 and a4. Therefore, if the second call in σ was between a4

and a5, then a3 and a4 must have called each other in at least a call between the
fourth and sixth call inclusive, in σ.

(ii) Suppose the second call was between a1 and a5, then the fourth call is either
between a4 and a5 or between a3 and a4. If the fourth call was between a4 and a5,
then the fifth call is either between a1 and a5, or between a3 and a4. If the fifth
call was between a1 and a5, and prior to the fifth call a3 and a4 have not called
each other, then the sixth call cannot be between a4 and a5 again since then both
agents will have no new secret to learn from each other, so in this case the sixth
call must be between a3 and a4. Therefore, if the second call in σ was between a1

and a5, then a3 and a4 must have called each other in at least a call between the
fourth and sixth call inclusive, in σ.

Given that both the protocol and the topology of the underlying network are common
knowledge among all the agents, and from the foregoing (i) and (ii) cases, it follows that
in all execution sequences that are equivalent to σ for agent a2, it is the case that a3 and
a4 called each other at least once between the fourth call and the sixth call inclusive.
Therefore in the seventh call in σ, agent a2 calls a3 knowing that it will learn the secret
of agent a4 from agent a3 in that call.
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For the eighth call a1a2 in σ, to see that a1 knows that it will learn the secret of a3

from a2, consider the following. In the second call of σ, agent a1 called agent a5 and
learnt that that was the first call a5 made in the execution sequence. In that second
call, a5 learnt the secret of agent a1, and the secret of agent a2. In the sixth call in σ,
agent a5 and agent a1 called each other for the second time in the execution sequence,
and there a1 learnt that a5 had learnt only the secret of agent a4 since their first (a1a5)
call with each other, that is, in the second call in σ. So at the sixth call in σ, agent a1

knows that agent a5 must have made a call with only agent a4 between calls three and
five inclusive, in σ. Furthermore, after the sixth call in σ, agent a1 knows that the two
other calls (that is, the calls apart from that between a4 and a5) from calls three to five
did not involve both itself (a1) and a5, and so one of those two other calls (from calls
three to five) must have been between a2 and a3. Therefore, at the eighth call in σ, agent
a1 knows that agent a2 knows the secret of agent a3, hence agent a1 knows that it will
learn the secret of agent a3 in the eighth call a1a2.

We have now shown that σ is an execution sequence of Known Information Growth
de Re, and therefore also an execution sequence of Known Information Growth de Dicto.
Similar reasoning for σ can be used to show that σ1, σ2, σ3 and σ4 are execution sequences
of Known Information Growth de Re, and therefore also execution sequences of Known
Information Growth de Dicto.

Proposition 6.56. Possible Information Growth de Re is non-terminating in a gossip
scenario where the network of agents is a circle topology network and the size n of the
set of agents is greater than three.

Proof. Recall that the calling condition for Possible Information Growth de Re states
that for any agent ai to call another agent aj , there must be a secret Ak such that ai
considers it possible that one of ai and aj will learn Ak from the aiaj call; moreover,
agent ai and aj must be neighbours on the network graph.

From the circle topology network of agents shown in Figure 6.12, consider the follow-
ing execution sequence σ for a gossip scenario where n > 3.

σ = a1a2; a3a4; a1a2; a4a3; a1a2; a4a3 . . .

We begin by demonstrating that σ is an execution sequence of Possible Information
Growth de Re, and therefore it is in the extension of the protocol. And then we show
that σ is non-terminating.

In the first call in σ, agent a1 knows (and therefore considers it possible) that it
would learn the secret of agent a2 in the first call. And likewise, in the second call,
agent a3 knows that it will learn the secret of agent a4 in the second call with agent
a4. In the third call, agent a1 considers it possible that agent a2 learnt some secret in
the second call (in a possible call with agent a3), and so agent a1 calls agent a2 in the
third call, which proves redundant. Likewise in the fourth call, agent a4 considers it
possible that agent a3 learnt some secret in the third call (in a possible call with agent
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a2) and therefore agent a4 calls agent a3 in the fourth call which also proves redundant.
Once again agent a1 considers it possible that agent a2 learnt some new secret in the
preceding (fourth) call, and thus for the execution sequence σ, the loop a1a2; a4a3; . . .

goes on infinitely.

Proposition 6.57. Possible Information Growth de Dicto is non-terminating in a gossip
scenario in which the network of agents is a circle topology network and the size n of the
set of agents is greater than three.

Proof. The proof follows from the proof of Proposition 6.56, and from the proof of
Proposition 3.27 (and Observation 4.26) which shows that the extension of Possible
Information Growth de Re is equal to the extension of Possible Information Growth de
Dicto.

Proposition 6.58. Possible Information Growth de Dicto and Possible Information
Growth de Re are not successful in a gossip scenario in which the network of agents is a
circle topology network and the size n of the set of agent is greater than three.

Proof. The proof follows from the proof of Proposition 6.56 and 6.57, and from the
definition of a successful protocol as given in Definition 4.20.

Some follow-up problems to the foregoing are: (a) What is the minimum number of
edges that can be added to a circle topology network with more than four agents such
that Known Information Growth de Re is successful on the resulting network? (b) What
is the minimum number of edges that can be added to a circle topology network with
more than four agents such that Known Information Growth de Dicto is successful on
the resulting network?

Conjectures Finally, before we close this chapter, we present the following two con-
jectures about epistemic gossip protocols.

Conjecture 6.59. The reverse of a successful execution sequence of an epistemic gossip
protocol is also a successful execution sequence.

Conjecture 6.60. The reverse of a successful execution sequence of the Learn New Secrets
protocol is also a successful execution sequence of the Learn New Secrets protocol.

6.6 Conclusion

In this chapter we studied some theoretical properties of our epistemic gossip protocols on
various network topologies. We studied the complete, circle and tree topology networks
(including a special treatment of the line topology network), and we presented proofs
of properties of Learn New Secrets, Known Information Growth de Dicto, Known Infor-
mation Growth de Re, Possible Information Growth de Dicto and Possible Information
Growth de Re for these various network topologies.
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Our results show that for n agents, Known Information Growth de Re and Known
Information Growth de Dicto are successful on a complete topology network, and on any
tree topology network. On the other hand, Learn New Secrets is only successful on a
complete topology network, for n agents, whereas Possible Information Growth de Dicto
and Possible Information Growth de Re are shown to be unsuccessful for complete and
tree topology networks with more than three agents.

We showed that the maximum length of an execution sequence of a regular and
successful gossip protocol is n(n − 1)/2. In particular, this result applies to Learn New
Secrets, Known Information Growth de Re and Known Information Growth de Dicto,
since these protocols are regular. On the other hand, we showed also that the length
of the shortest successful execution sequence of Known Information Growth de Re and
Known Information Growth de Dicto is 2n− 4, if the underlying network is a complete
topology network. But, for the tree topology network we showed that the length of
the shortest successful execution sequence of Known Information Growth de Dicto and
Known Information Growth de Re is 2n − 3. We further showed that for a connected
topology network with only one cycle, and where the cycle is a 4-cycle, the length of
the shortest successful execution sequence of Known Information Growth de Re and
Known Information Growth de Dicto is 2n − 4. The foregoing results for the lengths
of shortest successful execution sequences are the same as the results in the traditional
gossip literature [30] for non-epistemic settings of the gossip problem.

Other possible directions for future work from this chapter are as follows: the study
of other network topologies such as grid networks; synthesis of epistemic gossip protocols
that yield only the shortest length execution sequences for a given network topology;
synthesis of epistemic gossip protocols that yield only the longest length execution se-
quences for a given network topology; questions regarding the minimum number of edges
to add to a circle topology network so as to ensure that the Known Information Growth
protocols, for example, are successful on the resulting network; and questions regarding
epistemic gossip protocols that are successful on a circle topology network.





Chapter 7

Conclusion

In this thesis we developed a framework based on dynamic epistemic logic to study
distributed epistemic gossip protocols∗. We described such protocols and studied them
from both a theoretical and empirical point of view. We now give a more detailed
summary of the contributions of this thesis, and provide pointers for future research.

7.1 Summary of Contributions

We recall the research questions posed in Chapter 1, as follows.

Research Question 1: Is it possible to describe epistemic gossip protocols for the
successful spreading of information in a network of autonomous agents?

Research Question 2: Is it possible to create, and use, some formalism based on
dynamic epistemic logic to specify, model, analyse and verify epistemic gossip protocols?

Research Question 3: Is it possible to create a software framework to automate the
empirical analysis of epistemic gossip protocols, given a specification of such a protocol?

Research Question 4: How does various network connectivity constraints affect the
properties of epistemic gossip protocols?

Research Question 1 was answered in Chapters 3, 5 and 6. In Chapter 3, we described
a number of epistemic gossip protocols. In Chapter 5 we studied the properties of these
protocols from an empirical point of view, and in Chapter 6 we studied the properties of
these protocols from an analytical point of view. Research Question 2 was answered in
Chapters 3, 4 and 6. In Chapter 3, we presented a formalism which is based on dynamic
epistemic logic, for reasoning about epistemic properties of agents in a gossip scenario.
We extended our formalism in Chapter 4, a difference being that we then interpret
∗Throughout this thesis, we use the terms ‘distributed epistemic gossip protocol’ and ‘epistemic gossip

protocol’ interchangeably, since we always assume that each agent executes its own protocol.
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epistemic formulas on a more abstract structure than that presented in Chapter 3. In
both Chapter 3 and Chapter 6, we used our formalism to study the logical properties
of epistemic gossip protocols. Research Question 3 was answered in Chapters 3, 4 and
5. In Chapter 4, we built upon the work in Chapter 3 by implementing a software
framework to automate the empirical analysis of epistemic gossip protocols. In Chapter
5, we presented and discussed the empirical results obtained from the use of our software
tool in the analysis of our epistemic gossip protocols. Finally, Research Question 4 was
answered in Chapters 5 and 6 where we carried out empirical and analytical studies,
respectively, to determine how various epistemic gossip protocols perform on various
network topologies. We now give a summary of the main contributions of this thesis,
according to the various chapters.

In Chapter 3, we described a theoretical framework for epistemic gossip protocols. We
defined some epistemic gossip protocols, namely the Learn New Secret protocol wherein
an agent calls another agent if it does not know the secret of that other agent; Known
Information Growth de Dicto wherein an agent calls another agent if it knows that one
of them will learn some secret in the call; Known Information Growth de Re wherein an
agent calls another agent if it knows of a secret that will be learnt by either of them from
the call; Possible Information Growth de Dicto wherein an agent calls another agent if
it considers it possible that one of them will learn some secret in the call; and Possible
Information Growth de Re wherein an agent calls another agent if there is a secret that
it considers it possible that either of them will learn from the call. Next, we defined
a formal logical language and semantics for describing and reasoning about epistemic
gossip protocols. Our language and semantics are based on dynamic epistemic logic, and
propositional dynamic logic. The semantics of our formal language is based on a Gossip
Model, which we proved to be equivalent to a Kripke model, and in particular a special
kind of an S5 model. Finally, we formalised our protocol descriptions and proved some
of the logical properties of our protocols.

In Chapter 4, we described an implementation of the theoretical framework described
in Chapter 3. The implemented tool EGP automates the analysis of epistemic gossip
protocols. First, we introduced a high level programming language EGPL for describing
epistemic gossip protocols. Then, we described an interpreter for this language, together
with the model generator and model checker that form part of the tool. The EGP tool
generates the gossip tree for a given protocol, from which we can deduce important dy-
namic properties such as successfulness, termination, average execution length, standard
extension, and standard extension size of the given protocol. In order to enhance the
performance of the model checker, we combined the standard top-down and bottom-up
procedures for epistemic model checking, and introduced a caching mechanism in the
layers of the gossip tree for the equivalence classes of the nodes. We showed that while
the time complexity of our model checking algorithm remained quadratic in the size of
the model (which is the same as that of the bottom-up approach employed in the CTL
labelling algorithm), we achieved a better performance in practice with respect to the
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epistemic gossip scenarios because of a high reduction in the number of nodes considered
during model checking (for example, in one of our epistemic gossip protocols, there was
an estimated 99.9996% reduction in the number of nodes considered at a layer of the
gossip tree during the checking of the propositional part of the epistemic calling condition
for the protocol; see subsection Equivalence Class Analysis, starting on page 106).

In Chapter 5, we applied the EGP tool to the epistemic gossip protocols described
in Chapter 3. We analysed the performance of our epistemic gossip protocols in terms
of their time and space efficiency (given respectively by the average execution length
and standard extension size of these protocols). We also compared the protocols with
respect to their scalability and adaptability properties. While the scalability property
measures the performance of the protocols with increase in the size of the scenario, the
adaptability property measures the performance of the protocols with change in the
underlying network topology. We studied the performance of our protocols on various
network topologies including the complete, line, binary tree, star and circle topology net-
works, and compared the performance of our epistemic gossip protocols with theoretical
results from the traditional literature on the gossip problem. Our experiments show that
the Learn New Secrets protocol has the best performance among our epistemic gossip
protocols, in a complete topology network. For the tree topology networks (that is, the
line, binary tree and star topology networks) and complete topology networks, Known
Information Growth de Re shows a better performance than Known Information Growth
de Dicto. This also shows that Known Information Growth de Re has a greater adapt-
ability than the other protocols studied. For the scalability property, our experiments
show that Learn New Secrets protocol is more scalable than the other studied protocols
on a complete topology network. From our experimental results it is still unclear which
of Known information Growth de Dicto and Known Information Growth de Re shows
more scalability on the complete topology and binary tree topology networks. However,
from the experiments we show that on the star topology network, Known Information
Growth de Re is more scalable than Known Information Growth de Dicto.

In Chapter 6, we studied the theoretical properties of Learn New Secrets, Known
Information Growth de Dicto, Known Information Growth de Re, Possible Information
Growth de Dicto and Possible Information Growth de Re protocols. We considered the
properties of these protocols on various network topologies. We proved that both Known
Information Growth de Dicto and Known Information Growth de Re are successful on
any tree topology network, and in particular they are successful in the line, binary tree
and star topology networks. We showed that although Learn New Secrets protocol is
successful in a complete topology network, it is not successful in a tree topology network
for scenarios with more than two agents, and it is not successful in circle topology network
for scenarios with more than three agents. We also showed that the Possible Information
Growth protocols are not successful in a circle topology network for a scenario with more
than three agents. We proved that the shortest execution length for Learn New Secrets,
Known Information Growth de Re and Known Information Growth de Dicto is 2n − 3
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in a tree topology network. We also proved that the length of the longest execution
sequence of an epistemic gossip protocol is n(n− 1)/2 if the protocol is regular, that is,
if at least one of the calling pair of agents learns some new secret in any call allowed by
the protocol.

7.2 Future Prospects

We would like to give four directions for further research, some of which have been
discussed in the relevant chapters.

Asynchronous mode calls

The current implementation of the EGP tool assumes gossip scenarios in which it is
common knowledge among all the agents that a call is made in each round of gossiping,
inasmuch as the epistemic calling condition is satisfied for some pair of agents to call
each other. However, in some settings it may be desirable to allow an agent to choose
not to make a given call in a round even though the calling condition is satisfied for the
call. This amounts to a skip action by the agent, allowed in asynchronous mode calls
as described in Chapter 3, and which is synonymous with the behaviour of agents who
may not communicate at a set time agreed by the group, but instead choose to act at
another, perhaps individually more convenient time.

In any round of gossiping and in any situation in that round, if an agent is not
involved in the call that took place at the situation, it will consider it possible that no
call took place at all since there is the possibility that all the agents may choose to skip
all their calls. As such, if an agent has not made any call yet, it may consider it possible
that no call at all has been made. In fact, such an agent will never be sure how many
calls have taken place. Furthermore, some of the agents that have made calls so far may
not be sure of the number of calls that have actually taken place in the scenario. Take
a simple case of a scenario with five agents a, b, c, d, e and with the Learn New Secrets
protocol. Consider the following execution sequence in the scenario: ab; bc; ad; ..... After
the third round of the given execution sequence, none of the agents know exactly how
many calls have been made so far — agent a and agent b know that at least two calls have
been made, but both are unsure about a third call having been made in the execution
sequence since agent a considers it possible that the bc call was not made, and agent b
considers it possible that the ad call was not made. However, it is possible that agent d
knows that at least two calls have been made so far, from the information gathered from
the secrets that agent a knew at the ad call. Moreover, agent e believes that the number
of calls so far made could be zero. In addition to the possible uncertainty about the
number of calls that have taken place so far in an execution sequence, we also see that
an arbitrary use of the skip action by the agents could give rise to many more possible
situations from the point of view of the agents, in any given round.
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With a protocol like Learn New Secrets where an agent can decide which agent
to call based only on the secrets it currently knows, it may seem at first sight that
the asynchronous mode calls will still allow the protocol to be successful since then an
agent can still call other neighbouring agents no matter how uncertain it is about which
situation is the actual situation. Furthermore, in any call that actually takes place, the
calling agents could refine their belief about the possible situations because the calling
pair may gain some information from each other which enables them to eliminate some
absurd situations. This then may lead us to envisage that perhaps over a finite number of
rounds the Known Information Growth protocols may too become successful. However,
there is still the possibility that an agent persistently opts for the skip action, and so
there will always be some execution sequence that goes on infinitely within the protocol’s
extension, and all the agents will then never learn all the secrets in the scenario for that
execution sequence, thus yielding an unsuccessful epistemic gossip protocol.

It may therefore be desirable to describe epistemic gossip protocols that are successful
with asynchronous mode calls.

Another interesting line of future work is to consider strategic issues. Suppose that
the agents are allowed to choose from a set of protocols, or from a set of possible calls
due to a protocol, can an agent ensure, for example, that it is the first to know all secrets,
or, for that matter not the last?

Shortest and Longest Execution Length Protocols

In Chapter 6, we proved that for a regular gossip protocol the maximum length of an
execution sequence is n(n− 1)/2. What if one is interested in having a regular epistemic
gossip protocol that gives rise to only execution sequences of maximum length? What if
the epistemic gossip protocol is not required to be regular, are there successful epistemic
gossip protocols that guarantee only maximum length execution sequences? An epistemic
gossip protocol that produces only maximum length execution sequences is desirable
when gossiping itself is the goal, that is, the longer it takes the better. (There are strands
of sociology claiming the benefits of gossiping [24], in which context long sequences may
be preferred). On the other hand, a related question to the foregoing is whether there
are epistemic gossip protocols that guarantee the shortest length successful execution
sequences for gossip protocols.

Protocols with Parallel Calls and Broadcast Calls

In this thesis, we considered the case where only one pairwise call is staged in a given
round of gossiping. There are other alternatives however, namely, parallel calls in which
more than one pairwise call can be staged simultaneously. One strategy for allowing the
execution of parallel calls in an epistemic gossip protocols could be to allow each of all
the agents to try to make a call with one of the agents with whom the calling condition is
satisfied for the given protocol and for the given network topology. Another strategy for
making parallel calls could be through k-party calls, in which an agent makes a conference
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call with all the agents with whom it can call in a given situation. For example, if the
calling condition is satisfied for an agent a to call agent b and agent c, then we can set
up a conference call among agents a, b and c in which all three agents exchange their
secrets among themselves.

Furthermore, in this thesis we assumed that in each pairwise call the calling pair
exchange all the secrets they know. This assumption can be relaxed so that one can also
consider one-way calls, that is, calls in which only one of the callers sends its secrets
to the other calling partner. This case is analogous to text messaging or electronic mail
between the communicating pair. And to take this line still further, one can consider
a case where one of the agents broadcasts its secrets to a group of agents rather than
to one other agent, similar to the popular manner in which information in shared in
social networks among a group of friends. Calls such as one-way and broadcast calls
can be used to describe the spread of a disease, a news item, or a commercial within a
population.

Epistemic gossip protocols that are based on parallel calls, one-way calls, broadcast
calls, or any combination of various such types of calls could also be described and
analysed.

Network Topologies

In Chapter 6, we showed that on some network topologies, the Learn New Secrets pro-
tocol, the Known Information Growth protocols and the Possible Information Growth
protocols are not successful for all values of n, where n is the number of agents in a
gossip scenario. Particularly, recall that none of these protocols is successful on a circle
topology network for all values of n. An interesting research question is then: what is
the minimum number of edges that can be added to an incomplete topology network
such that a given protocol becomes successful for any given number of agents? The grid
network is yet another interesting network topology whose theory is yet to be explored
within the framework of epistemic gossip protocols, although experimental investigation
of such and other networks topologies has now been enabled by the EGP tool.
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BNF Grammar of EGPL

1 specification ::= BEGIN protocol_spec END;
2
3 protocol_spec ::= call_condition | call_condition topology_def |
4 call_condition topology_def equivalence_notion |
5 call_condition equivalence_notion;
6
7 call_condition ::= LET AGENT_IDENTIFIER CALL AGENT_IDENTIFIER
8 IF LBRACE condition_expr SEMI RBRACE;
9
10 condition_expr ::= DISJUNCT agent_identifier_list COLON
11 LBRACE condition_expr_exp RBRACE |
12 CONJUNCT agent_identifier_list COLON
13 LBRACE condition_expr_exp RBRACE |
14 AGENT_IDENTIFIER KNOWS condition_expr |
15 condition_expr OR condition_expr |
16 condition_expr AND condition_expr |
17 condition_expr IMPLIES condition_expr |
18 NOT condition_expr | set_boolean_expr |
19 LPAREN condition_expr RPAREN;
20
21 agent_identifier_list ::= agent_identifier_list
22 COMMA AGENT_IDENTIFIER | AGENT_IDENTIFIER;
23
24 condition_expr_exp ::= AGENT_IDENTIFIER KNOWS condition_expr_exp |
25 NOT condition_expr_exp | set_boolean_expr |
26 LPAREN condition_expr_exp RPAREN;
27
28 set_boolean_expr ::= set_boolean_expr AND set_boolean_expr |
29 set_boolean_expr OR set_boolean_expr |
30 set_boolean_expr IMPLIES set_boolean_expr |
31 singleton SETELEMENT set_expr |
32 singleton NOTSETELEMENT set_expr |
33 set_expr SUBSET set_expr |
34 set_expr PROPERSUBSET set_expr |
35 set_expr DOUBLEEQUAL set_expr |
36 set_expr NOTEQUAL set_expr |
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37 int_expr GREATERTHAN int_expr |
38 int_expr GREATERTHANEQUAL int_expr |
39 int_expr LESSTHAN int_expr |
40 int_expr LESSTHANEQUAL int_expr |
41 int_expr DOUBLEEQUAL int_expr |
42 int_expr NOTEQUAL int_expr |
43 TRUE | FALSE |
44 LPAREN set_boolean_expr RPAREN;
45
46 set_expr ::= set_expr MINUS set_expr | set_expr INTERSECTION set_expr

|
47 set_expr UNION set_expr | set_expr COMPLEMENT set_expr |
48 set_proper | singleton | empty_set | LPAREN set_expr

RPAREN;
49
50 set_proper ::= SECRET LPAREN AGENT_IDENTIFIER RPAREN |
51 FIN LPAREN AGENT_IDENTIFIER RPAREN |
52 LPAREN set_proper RPAREN;
53
54 singleton ::= INIT LPAREN AGENT_IDENTIFIER RPAREN |
55 LPAREN singleton RPAREN;
56
57 empty_set ::= EMPTYSET | LPAREN empty_set RPAREN;
58
59 int_expr ::= int_expr MINUS int_expr | int_expr PLUS int_expr |
60 int_expr MULTIPLY int_expr | int_expr MODULUS int_expr |
61 set_magnitude | INTEGER | LPAREN int_expr RPAREN;
62
63 set_magnitude ::= PIPE set_expr PIPE | LPAREN set_magnitude RPAREN;
64
65 topology_def ::= TOPOLOGY LBRACE neighbourhood_list RBRACE;
66
67 neighbourhood_list ::= neighbourhood_state |
68 neighbourhood_state neighbourhood_list;
69
70 neighbourhood_state ::= AGENT_IDENTIFIER NEIGHBOUR AGENT_IDENTIFIER

SEMI;
71
72 equivalence_notion ::= EQUIV_NOTION ASSIGNMENT INTEGER SEMI;
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Table A.1: EGPL BNF terminal symbols and string equivalents.

Symbol String Equivalent
AGENT_IDENTIFIER [A-Za-z][A-Za-z0-9]*

AND “&&”
ASSIGNMENT “=”

BEGIN “begin”
CALL “call”

COLON “:”
COMMA “,”

COMPLEMENT “\complement”
CONJUNCT “conjunct”
DISJUNCT “disjunct”

DOUBLEEQUAL “==”
EMPTYSET “empty”

END “end”
EQUIV_NOTION “equivalence_notion”

FIN “fin”
GREATERTHAN “>”

GREATERTHANEQUAL “>=”
IF “if”

IMPLIES “−>”
INIT “init”

INTEGER [1-9][0-9]* | [0-9]
INTERSECTION “\cap”

KNOWS “knows”
LBRACE “{”

LESSTHAN “<”
LESSTHANEQUAL “<=”

LET “let”
LPAREN “(”
MINUS “-”

MODULUS “%”
MULTIPLY “*”

NEIGHBOUR “neighbour”
NOT “\neg”

NOTEQUAL “!=”
NOTSETELEMENT “\notin”

OR “||”
PIPE “|”
PLUS “+”

PROPERSUBSET “\subset”
RBRACE “}”
RPAREN “)”
SECRET “secret”

SEMI “;”
SETELEMENT “\in”

SUBSET “\subseteq”
TOPOLOGY “topology”

UNION “\cup”

Table A.2: EGPL set operators.

Operator Meaning Formal Symbol Returns
\in set membership ∈ True/False

\notin set non-membership /∈ True/False
\cup set union ∪ Set
\cap set intersection ∩ Set
− set difference \ Set

\complement set complement Set
empty empty set ∅ Set
fin universal set U Set

\subseteq secret(a) is subset of secret(b) if
agent a knows at most the same
secrets as agent b

⊆ True/False

\subset secret(a) is proper subset of se-
cret(b) if agent b knows every se-
cret agent a currently knows, but
agent a does not know every se-
cret that agent b currently knows

⊂ True/False

|Y| set magnitude of a set Y is the
number of secrets contained in
the set Y

|Y| Natural number
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Table A.3: EGPL set comparison operators.

Operator Meaning Returns
> secret(a) is greater than secret(b) if agent a knows more secrets

than b knows
True/False

< secret(a) is less than secret(b) if agent a knows less secrets than
b knows

True/False

>= secret(a) is greater than or equal to secret(b) if agent a knows
more or same number of secrets than b knows

True/False

<= secret(a) is less than or equal to secret(b) if agent a currently
knows less or same number of secrets than b knows

True/False

== secret(a) is equal to secret(b) if agent a knows same secrets than
b knows

True/False

! = secret(a) is notequal to secret(b) if agent a does not know the
same secrets as agent b

True/False

Table A.4: EGPL arithmetic and boolean operators.

Operator Function Returns
&& Conjunction True/False
|| Disjunction True/False
\neg Negation True/False
− > Implication True/False
− Subtraction Natural Number
+ Addition Natural Number
∗ Multiplication Natural Number
% Modulus Natural Number
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More Empirical Results
(Using Equivalence Notion 1: Definition 4.7)

Table B.1: Protocol 2 on Line Topology Network.

Execution Sequence Length Three Agents Four Agents Five Agents Six Agents
3 16
4 0
5 192
6 512 0
7 2,048
8 16,512 0
9 39,424 10,240
10 59,392 188,160
11 1,383,168
12 4,768,000
13 14,789,376
14 23,527,040
15 31,064,576

Standard Extension Size 16 704 117,376 75,730,560
Average Execution Length 3 5.72727 9.33043 14.02358

Successful Sequences 16 704 117,376 75,730,560
% Successful Sequences 100.00% 100.00% 100.00% 100%

Table B.2: Protocol 3 on Line Topology Network.

Execution Sequence Length Three Agents Four Agents Five Agents Six Agents
3 16
4 0
5 192
6 512 0
7 2,048
8 16,512 0
9 39,424 10,240
10 59,392 188,160
11 1,383,168
12 4,768,000
13 14,789,376
14 23,527,040
15 31,064,576

Standard Extension Size 16 704 117,376 75,730,560
Average Execution Length 3 5.72727 9.33043 14.02358

Successful Sequences 16 704 117,376 75,730,560
% Successful Sequences 100.00% 100.00% 100.00% 100.00%
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Table B.3: Protocol 2 on Star Topology Network.

Execution Sequence Length Three Agents Four Agents Five Agents Six Agents
3 16
4 0
5 288
6 768 0
7 12,288
8 61,440 0
9 196,608 798,720
10 294,912 8,355,840
11 43,253,760
12 161,955,840
13 471,859,200
14 1,014,497,280
15 1,132,462,080

Standard Extension Size 16 1056 565,248 2,833,182,720
Average Execution Length 3 5.72727 9.36957 14.05983

Successful Sequences 16 1,056 565,248 2,833,182,720
% Successful Sequences 100.00% 100.00% 100.00% 100.00%

Table B.4: Protocol 3 on Star Topology Network.

Execution Sequence Length Three Agents Four Agents Five Agents Six Agents
3 16
4 0
5 288
6 384 0
7 6,144
8 29,184 0
9 58,368 138,240
10 36,864 1,497,600
11 7,971,840
12 24,299,520
13 42,823,680
14 42,762,240
15 17,694,720

Standard Extension Size 16 672 130,560 137,187,840
Average Execution Length 3 5.57143 8.96471 13.23955

Successful Sequences 16 672 130,560 137,187,840
% Successful Sequences 100.00% 100.00% 100.00% 100.00%

Table B.5: Protocol 2 on Binary Tree Topology Network.

Execution Sequence Length Three Agents Four Agents Five Agents Six Agents
3 16
4 0
5 192
6 512 0
7 4,992
8 30,080 0
9 75,904 55,552
10 100,864 637,952
11 3,944,064
12 11,803,776
13 27,829,248
14 41,918,592
15 43,758,976

Standard Extension Size 16 704 211,840 129,948,160
Average Execution Length 3 5.72727 9.28701 13.82809

Successful Sequences 16 704 211,840 129,948,160
% Successful Sequences 100.00% 100.00% 100.00% 100.00%



Appendix B. More Empirical Results (Equivalence Notion 1: Definition 4.7) 211

Table B.6: Protocol 3 on Binary Tree Topology Network.

Execution Sequence Length Three Agents Four Agents Five Agents Six Agents
3 16
4 0
5 192
6 512 0
7 4,992
8 20,480 0
9 51,456 48,000
10 48,896 559,104
11 3,130,432
12 9,206,272
13 20,747,520
14 29,820,928
15 28,959,616

Standard Extension Size 16 704 125,824 92,471,872
Average Execution Length 3 5.72727 9.14649 13.76135

Successful Sequences 16 704 125,824 92,471,872
% Successful Sequences 100.00% 100.00% 100.00% 100.00%

Table B.7: Protocol 2 on Circle Topology Network.

Execution Sequence Length Three Agents Four Agents Five Agents Six Agents
3 96
4 128
5 1,920
6 5,248 0
7 53,440
8 248,320 0
9 432,480 494,592
10 380,960 10,203,648
11 47,009,664
12 94,863,360
13 127,751,040
14 119,482,752
15 85,650,816

Standard Extension Size 96 7,296 1,115,240 485,570,316
Average Execution Length 3 5.70175 - -

Successful Sequences 96 7,296 1,115,200 485,455,872
% Successful Sequences 100.00% 100.00% 99.9964% 99.98%

Table B.8: Protocol 3 on CircleTopology Network.

Execution Sequence Length Three Agents Four Agents Five Agents Six Agents
3 96
4 128
5 1,920
6 5,248 0
7 39,360
8 188,960 0
9 319,040 99,840
10 280,480 2,665,728
11 12,872,832
12 26,996,736
13 34,933,248
14 32,731,392
15 23,745,408

Standard Extension Size 96 7,296 827,940 134,115,468
Average Execution Length 3 5.70175 - -

Successful Sequences 96 7,296 827,840 134,045,184
% Successful Sequences 100.00% 100.00% 99.99% 99.95%
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More Empirical Results
(Using Equivalence Notion 2: Definition 4.40)

Table C.1: Protocol 2 on Line Topology Network.

Execution Sequence Length Three Agents Four Agents Five Agents Six Agents
3 16
4 0
5 192
6 512 0
7 2,048
8 16,512 0
9 39,424 10,240
10 59,392 188,160
11 1,383,168
12 4,768,000
13 14,789,376
14 23,527,040
15 31,064,576

Standard Extension Size 16 704 117,376 75,730,560
Average Execution Length 3 5.72727 9.33043 14.02358

Successful Sequences 16 704 117,376 75,730,560
% Successful Sequences 100.00% 100.00% 100.00% 100%

Table C.2: Protocol 3 on Line Topology Network.

Execution Sequence Length Three Agents Four Agents Five Agents Six Agents
3 16
4 0
5 192
6 512 0
7 2,048
8 16,512 0
9 39,424 10,240
10 59,392 188,160
11 1,383,168
12 4,768,000
13 14,789,376
14 23,527,040
15 31,064,576

Standard Extension Size 16 704 117,376 75,730,560
Average Execution Length 3 5.72727 9.33043 14.02358

Successful Sequences 16 704 117,376 75,730,560
% Successful Sequences 100.00% 100.00% 100.00% 100.00%

213



Appendix C. More Empirical Results (Equivalence Notion 2: Definition 4.40) 214

Table C.3: Protocol 2 on Star Topology Network.

Execution Sequence Length Three Agents Four Agents Five Agents Six Agents
3 16
4 0
5 288
6 768 0
7 12,288
8 61,440 0
9 196,608 798,720
10 294,912 8,355,840
11 43,253,760
12 161,955,840
13 471,859,200
14 1,014,497,280
15 1,132,462,080

Standard Extension Size 16 1,056 565,248 2,833,182,720
Average Execution Length 3 5.72727 9.36957 14.05983

Successful Sequences 16 1,056 565,248 2,833,182,720
% Successful Sequences 100.00% 100.00% 100.00% 100.00%

Table C.4: Protocol 3 on Star Topology Network.

Execution Sequence Length Three Agents Four Agents Five Agents Six Agents
3 16
4 0
5 288
6 384 0
7 6,144
8 29,184 0
9 58,368 138,240
10 36,864 1,497,600
11 7,971,840
12 24,299,520
13 42,823,680
14 42,762,240
15 17,694,720

Standard Extension Size 16 672 130,560 137,187,840
Average Execution Length 3 5.57143 8.96471 13.23955

Successful Sequences 16 672 130,560 137,187,840
% Successful Sequences 100.00% 100.00% 100.00% 100.00%

Table C.5: Protocol 2 on Binary Tree Topology Network.

Execution Sequence Length Three Agents Four Agents Five Agents Six Agents
3 16
4 0
5 192
6 512 0
7 4,992
8 30,080 0
9 75,904 55,552
10 100,864 637,952
11 3,944,064
12 11,803,776
13 27,829,248
14 41,918,592
15 43,758,976

Standard Extension Size 16 704 211,840 129,948,160
Average Execution Length 3 5.72727 9.28701 13.82809

Successful Sequences 16 704 211,840 129,948,160
% Successful Sequences 100.00% 100.00% 100.00% 100.00%
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Table C.6: Protocol 3 on Binary Tree Topology Network.

Execution Sequence Length Three Agents Four Agents Five Agents Six Agents
3 16
4 0
5 192
6 512 0
7 4,992
8 20,480 0
9 51,456 48,000
10 48,896 559,104
11 3,130,432
12 9,206,272
13 20,747,520
14 29,820,928
15 28,959,616

Standard Extension Size 16 704 125,824 92,471,872
Average Execution Length 3 5.72727 9.14649 13.76135

Successful Sequences 16 704 125,824 92,471,872
% Successful Sequences 100.00% 100.00% 100.00% 100.00%

Table C.7: Protocol 2 on Circle Topology Network.

Execution Sequence Length Three Agents Four Agents Five Agents Six Agents
3 96
4 128
5 2,048
6 5,504 0
7 55,680
8 274,560 0
9 514,080 524,544
10 464,320 10,930,944
11 51,730,560
12 108,080,640
13 158,355,840
14 156,101,376
15 95,937,408

Standard Extension Size 96 7,680 1,308,680 581,771,892
Average Execution Length 3 5.70000 - -

Successful Sequences 96 7,680 1,308,640 581,661,312
% Successful Sequences 100.00% 100.00% 99.9969% 99.98%

Table C.8: Protocol 3 on CircleTopology Network.

Execution Sequence Length Three Agents Four Agents Five Agents Six Agents
3 96
4 128
5 2,048
6 5,504 0
7 41,280
8 209,760 0
9 385,280 116,736
10 365,920 2,987,520
11 14,377,728
12 30,780,288
13 41,245,440
14 39,020,160
15 25,069,440

Standard Extension Size 96 7,680 1,002,290 153,665,580
Average Execution Length 3 5.70000 - -

Successful Sequences 96 7,680 1,002,240 153,597,312
% Successful Sequences 100.00% 100.00% 99.9950% 99.9556%
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