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Abstract: Wavelet transform has the good characteristic of time-frequency locality and 
many researches show that it can perform well for denoising in smooth and singular areas. 
But it isn’t suitable for describing the signals, which have high dimensional singularities. 
Curvelet is one of new multiscale transform theories, which possess directionality and 
anisotropy, and it breaks some inherent limitations of wavelet in representing directions of 
edges in image. So it has superiority in some image analysis, such as image denoising. This 
paper proposes a new method for denoising, which combines Curvelet transform and wavelet 
transform which is better than only using wavelet transform or Curvelet transform to deal 
with noisy image. The simulation results indicate that this method has better performance and 
can get better visual effects and higher PSNR. 
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1. Introduction 
 
Ultrasound imaging, as a tool for medical diagnosis, is widely used in clinical 
practice, and in some situation sit has become a standard procedure. Although 
diagnostic ultrasound is considered a harmless technique and permits real-time and 
noninvasive anatomical scanning, B-mode images are pervaded by the speckle 
artifact, which results from destructive interference effects between returning echoes. 
This artifact introduces fine-false structures whose apparent resolution is beyond the 
capabilities of the imaging system, reducing image contrast and masking the real 
boundaries of the tissue under investigation. Its occurrence may substantially 
compromise the diagnostic effectiveness, introducing a great level of subjectivity in 
the interpretation of the images [1- 3].  
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Speckle can be defined as a destructive interference artifact and its severity depends 
on the relative phase between two overlapping returning echoes. Like other imaging 
techniques that make use of coherent sources, such as laser or radar, images from 
ultrasound acoustical waves are prone to speckle corruption that should be removed 
without affecting the important details in the image [1, 2]. 
 
This paper is organized as follows. Section 2 gives details about Log Gabor filter in 
the Wavelet domain. Section 3 illustrates the Curvelet transform. Section 4 explains 
the proposed approach. Section 5 proposes the simulation results followed by 
conclusions and the more relevant references. 
 
2. Log Gabor Filter in the Wavelet Domain 
 
2.1 Discrete Wavelet Transform (DWT) 
 
The idea of the DWT is to represent an image as a series of approximations (low pass 
version) and details (high pass version) at different resolutions. The image is low pass 
filtered to give an approximation image and high pass filtered to give detail images, 
which represent the information lost when going from a higher resolution to a lower 
resolution. Then the wavelet representation is the set of detail coefficients at all 
resolutions and approximation coefficients at the lowest resolution. Figure (1): (a) 
shows the operation of two dimensional DWT with 3-Level decomposition and (b) 
shows the operation of a single step decomposion-reconstruction DWT [4- 7]. 
 
An input series is processed by two filters in parallel. h1(n) is called low pass filter (or 
average filter) and h2(n) is high pass filter (or difference filter). The outputs obtained 
are then down sampled by two so that now both the outputs are half of original length. 
After the first step of processing on the original series, a new series is formed with the 
output of the low pass filter forming the first half and the output of the high pass filter 
forming the second half. 
 

 

 

 

 

 

 

 

 

 
 
 

Figure (1-a): 2D-DWT with 3-Level decomposition 
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Figure (1-b): One level of wavelet decomposition and reconstruction 
 
The matrix of the DWT has four subbands (LL, LH, HL, HH), the subband LL, the 
approximate, is the low resolution part and the subbands LH, HL, HH, the details, are 
the high resolution part. In the next step, only the first half of the new series that is the 
output of the low pass filter is processed. This kind of processing and new series 
formation continues till in the last step the outputs obtained from both the filters are of 
length one. The original length of the series needs to be a power of two so that the 
process of DWT can be carried until the last step [4- 7]. The approximate image and 
the detail image can be expressed as follows: 
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(1) 
Where h1 is low pass filter and h2 is the high pass filter. 
 
A Haar wavelet is the simplest wavelet type. In discrete form, Haar wavelet is related 
to a mathematical operation called the haar transform. The Haar transform serves as a 
prototype for all other wavelet transforms. The Haar decomposition has good time 
localization. This means that the Haar coefficients are effective for locating jump 
discontinuities and also for the efficient representation of images with small support. 
The Haar wavelet is the only known wavelet that is compactly supported, orthogonal 
and symmetric. It is computed by iterating difference and averaging between odd and 
even samples of the signal. Since we are in 2D, we need to compute the average and 
difference in the horizontal and then in the vertical direction [6, 8, 9]. 
 
2.2 Log Gabor Filter 
 
Images are better coded by filters that have Gaussian transfer functions when viewed 
on the logarithmic frequency scale. Gabor functions have Gaussian transfer functions 
when viewed on the linear frequency scale. On the linear frequency scale the Log-
Gabor function has a transfer function of the form: 
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Where f0 is the filter centre frequency and σ/f0 is the ratio of the standard deviation of 
the Gaussian describing the log Gabor filter's transfer function in the frequency 
domain to the filter center frequency. 
 
There are two important characteristics to note. Firstly, log-Gabor functions, by 
definition, always have no DC component, and secondly, the transfer function of the 
log Gabor function has an extended tail at the high frequency end [10- 13]. 
 
3. Curvelet Transform 
 
The wavelet transform has been the most famous tool for image and signal analysis. 
This is because of its advantageous property that helps to localize “point singularities” 
in the signal or the image. One major disadvantage of wavelets in image processing is 
that the two-dimensional wavelet transform gives a large number of coefficients in all 
scales (across all levels) corresponding to the edges of the image. This means that 
many coefficients are required in order to exactly reconstruct the edges in an image. 
Recent approaches like Ridgelets and Curvelets exploit the fact that wavelets are good 
only for point singularities but not efficient to handle linear and curvilinear 
singularities in an image. The Curvelet transform provides sparsity and effective 
representation of edges or singularities [14, 15].  
 
The Ridgelet transform is implemented by applying a one-dimensional wavelet 
transform to the slices of the Radon transform.  The Ridgelet transform alone cannot 
yield efficient representations of images, because edges in images are typically curved 
rather than straight lines. Therefore, the approach to capture curved edges is to use 
Ridgelets in a localized manner such that a curved edge is almost a straight line at 
sufficiently fine scales. The Ridgelet transform is then extended to Curvelet transform 
which gives a more efficient representation of curved lines in an image than using 
only the Ridgelet transform. It has to be noted that both the Ridgelet and Curvelet 
transforms are based on the Radon transform [15, 16]. 
 
In Curvelet transforms, the additive wavelet transform is used to decompose the 
image into different subbands and partitioning is used to break each subband into 
tiles. Finally, the Ridgelet transform is applied to each tile. In this way, the image 
edges can be represented efficiently by the Ridgelet transform because the image 
edges will now be almost like straight lines. Thus, the Curvelet transform is an 
extension of the Ridgelet transform to detect curved edges, effectively [14- 19]. 
 
The Curvelet map the curvilinear structures effectively in an image by using the 
anisotropic scale space approach considering a curvilinear edge as piecewise linear 
segments across different scales. The mapping of the edges using Curvelets is shown 
diagrammatically in the Fig. 5.1. Curvelets apply the Ridgelet transform locally in 
order to obtain the localization information. The continuous line shown is a typical 
curved edge and the dotted straight lines are the approximate mapping of the curved 
edge. Since the Ridgelet transform is efficient for linear edges, the curved edge is 
approximated as linear segments. The blocking or the partitioning step of the Curvelet 
transform achieves this segmentation of the curved edge [15]. 
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Figure 2: The curvelet map curvilinear
sufficiently fine scales. 

dotted lines show the corresponding
 
The algorithm of the curvelet transform can be summarized in the following steps [
19]:  

1. The image is split up into three subbands
wavelet transform. 

2. Tiling is performed on the subbands 

3. The discrete Ridgelet transform is performed on each tile of the subbands 

and 2∆ . 
 
A schematic diagram of the curvelet
description of these steps is presented in the following subsections.
 

 

 
Figure 3: Schematic diagram of 

 
3.1 Sub Band Filtering
 
The purpose of this step is to decompose the image into additive components each of 
which is a subband of the image. 
components of the image into different planes without down
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curvelet map curvilinear edges in image as piecewise Ridgele
sufficiently fine scales. The continuous line shows the edge in the image and the 

dotted lines show the corresponding map as piecewise linear ridges

The algorithm of the curvelet transform can be summarized in the following steps [

The image is split up into three subbands1∆ , 2∆  and P3 using the additive 
transform.  

Tiling is performed on the subbands 1∆  and 2∆ . 

The discrete Ridgelet transform is performed on each tile of the subbands 

A schematic diagram of the curvelet transform is depicted in Figure 3
description of these steps is presented in the following subsections. 

 

 

 

 

 

Schematic diagram of the discrete curvelet transform

Filtering 

The purpose of this step is to decompose the image into additive components each of 
hich is a subband of the image. This step isolates the different frequency 

components of the image into different planes without down sampling as in the 
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edges in image as piecewise Ridgelets in 
edge in the image and the 

map as piecewise linear ridges 

The algorithm of the curvelet transform can be summarized in the following steps [14, 

and P3 using the additive 

The discrete Ridgelet transform is performed on each tile of the subbands 1∆  

transform is depicted in Figure 3. A detailed 

t transform. 

The purpose of this step is to decompose the image into additive components each of 
This step isolates the different frequency 

sampling as in the 
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traditional wavelet transform. The "`a trous"   algorithm given below is implemented 
for this purpose [14, 19]. 
 
The "`a trous" algorithm is shift invariant, symmetric, undecimated and redundant 
DWT algorithm that is widely used in image analysis. In order to understand the "`a 
trous" algorithm, it is very useful to represent the wavelet transform as a 
parallelepiped. The basis of the parallelepiped is the original image 2j; each level of 
the parallelepiped is an approximation to the original image. When climbing up 
through the resolution levels, the successive approximation images have a coarser 
resolution but the same number of pixels as the original image [15]. 
 
Given an imagep , it is possible to construct the sequence of approximations [14]: 
 

( ) ( ) ( ) ( )1 1 2 1 2 3 2 3 1, , , , n nnf p p f p p f p p f p p−= = = =…

                                                    (3) 

 
To construct this sequence, the algorithm performs successive convolutions with a 
filter associated with the scaling function. A popular choice for the corresponding 
scaling function is the triangle function which leads to a linear interpolation with a 

mask of 3x3 elements. For a 
3B - spline scaling function, the coefficients of the mask 

are [14]: 
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1 6 24 36 24 6
256
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 
 
 
 
 
 
 
                                               (4) 

 
The wavelet planes are computed as the differences between two consecutive 

approximations 1lP−  and lP  [14], i.e., 
  

                                         1l l lw P P−= − ( )1,2,.............,l n=                                 (5)     

 
Thus, the reconstruction formula is given by [14]: 
 

                                                    
1

n

rl
l

P w P
=

= +∑
                                               (6) 

 
Where Pr is the residual image that contains the low frequency information of the 
original image, and wl its respective wavelet coefficients, which contain the high 
frequency information.  
 
The next step is finding a transformation capable of representing straight edges with 
different slopes and orientations. A possible solution is the Ridgelet transform, which 
may be interpreted as the 1-D wavelet transform of the Radon transform. This is the 
basic idea behind the digital implementation of the Ridgelet transform. An 
inconvenience with the Ridgelet transform is that it is not capable of representing 
curves. To overcome this drawback, the input image is partitioned into square blocks 
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and the Ridgelet transform is applied to each block. Assuming a piecewise linear 
model for the contour, each block will contain straight edges only, that may be 
analyzed by the Ridgelet transform. 
 
3.2 Tiling 
  
Tiling is the process by which the image is divided into overlapping tiles. These tiles 
are small in dimensions to transform curved lines into small straight lines in the 

subbands 1∆  and 2∆  [14, 19]. The tiling improves the ability of the curvelet transform 
to handle curved edges.  
 
3.3 Ridgelet Transform 
 
The motivation for this transform arose from a need to find a sparse representation of 
functions which have discontinuities along lines. We choose the Ridgelet transform 
because the wavelet transform is very efficient in representing point discontinuities in 
the 1-D case, but fails with edge discontinuities in 2-D case. The Ridgelet transform is 
not better than the wavelet transform in representing edges in 2-D [14, 16, 20]. 
 
The Ridgelet transform belongs to the family of discrete transforms employing basis 
functions. To facilitate its mathematical representation, it can be viewed as a wavelet 
analysis in the Radon domain. The Radon transform itself is a tool for shape 
detection. So, the Ridgelet transform is primarily a tool for ridge detection or shape 
detection of the objects in an image [14- 16, 19, 20]. 
 
3.3.1 Continuous Ridgelet Transform 
 

The 2-D continuous Ridgelet transform in 
2R can be defined through the introduction 

of the following basis function [14, 17, 20]: 
 

                           

( )1 21/2
, ,

cos sin
a b

x x b
a

aθ
θ θ

ψ ψ−
 
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 
 
 

+ −
=

                                           (7) 

 

Where a  indexes the scale of the Ridgelets, θ  its orientation and b , its location. For 

each 0>a , eachb R∈  and each ( )0,2θ π∈
. 

 
Thus, the Ridgelet coefficients are represented by [14, 17, 20]: 
 

                                     
1 2 1 2 1 2, ,( , , ) ( , ) ( , )f a bR a b x x f x x dx dxθθ ψ

∞ ∞

−∞ −∞
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                           (8) 

 
This transform is invertible and the reconstruction formula is given by [14, 20]:  
 

                                    

2

1 2 1 2, , 3
0 0

( , ) ( , , ) ( , )
4f a b

da df x x R a b x x db
a

π

θ
θθ ψ π

∞ ∞
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                           (9) 

 
The Radon transform for an object f is given by [14, 17, 20]:  
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Rf t f x x x x t dx dx

 
Thus, the Ridgelet transform can be represented as follows [
 

                                    
R a b Rf t a dt

 
Hence, the Ridgelet transform is the application of a 1

slices of the Radon transform where the angular variable 
varying. A schematic diagram of the Ridgelet transform is shown in Fig
make  the  Ridgelet transform  discrete  both the  Radon  transform  and  the  wavelet  
transform  have  to  be discrete [
 
 

                

 

                           Figure
 

3.3.1.1 Radon Transform
 
The Radon transform is a fundamental tool which is used in various applications such 
as radar imaging, geophysical imaging and medical imaging.
features within a 2-D image. It transforms lines through an image to points in the 
Radon domain as shown in Fig
Radon domain is transformed to a straight line in the image [

 
 

 

 

 

 

 

                

 

 

Information Sciences and Computing                                                                          

( ) ( )1 2 1 2 1 2( , ) , cos sinRf t f x x x x t dx dxθ δ θ θ
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Thus, the Ridgelet transform can be represented as follows [14, 17, 20]:
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a
θ θ ψ
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Hence, the Ridgelet transform is the application of a 1-D wavelet transform to the 

slices of the Radon transform where the angular variable θ  is constant and 
varying. A schematic diagram of the Ridgelet transform is shown in Fig
make  the  Ridgelet transform  discrete  both the  Radon  transform  and  the  wavelet  
transform  have  to  be discrete [14, 17, 19]. 

 

 

 

 

 

 

 

Figure 4: Schematic diagram of the Ridgelet transform

Radon Transform 

The Radon transform is a fundamental tool which is used in various applications such 
as radar imaging, geophysical imaging and medical imaging. It is used to detect 

D image. It transforms lines through an image to points in the 
Radon domain as shown in Figure 5. In the Radon back projection, each point in the 
Radon domain is transformed to a straight line in the image [14- 18]. 

 
                Figure 5: The Radon Transform. 
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1 2 1 2 1 2Rf t f x x x x t dx dx                   (10) 

]: 

                     (11) 

D wavelet transform to the 

is constant and t  is 
varying. A schematic diagram of the Ridgelet transform is shown in Figure 4. To  
make  the  Ridgelet transform  discrete  both the  Radon  transform  and  the  wavelet  

agram of the Ridgelet transform 

The Radon transform is a fundamental tool which is used in various applications such 
It is used to detect 

D image. It transforms lines through an image to points in the 
In the Radon back projection, each point in the 
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The Radon transform for an object f is the collection of line integrals indexed by 
( ) [ ], 0,2t Rθ π∈ ×

 (integral of the function on the straight line L passing through t 

and of directionθ ) and is expressed using Dirac mass δ  given by [14- 18]: 
 

                                      
( ) ( )1 2 1 2 1 2( , ) , cos sinRf t f x x x x t dx dxθ δ θ θ

∞ ∞

−∞ −∞
= + −∫ ∫

                        (12) 

 
3.3.2 Digital Ridgelet Transform 
 
A basic strategy for calculating the continuous Ridgelet transform is first to compute 

the Radon transform ( , )Rf tθ  and second, to apply a 1-D wavelet transform. For 
practical applications, we require discrete implementations of the Ridgelet transform 
that is a challenging problem, since the Radon transform is polar in nature, we cannot 
implement direct discretizations of continuous formulae. Digital Ridgelet has been 
proposed, based on implementation of the Radon transform [16]. 
 
3.3.2.1 The Recto Polar Ridgelet Transform 
 
Approximate Radon transforms for digital data can be proposed in the Fourier 
domain, this is a widely used approach. First the two-dimensional fast Fourier 
transform (2D FFT) of the given image is computed. Then, the resulting function in 
the frequency domain is to be used to evaluate the frequency values in a pseudo-polar 
style. This conversion from Cartesian to Polar grid could be obtained by interpolation. 
Applying the one dimensional inverse Fourier transform for each ray, the Radon 
projections are obtained [15- 17].  
 
For our implementation of the Cartesian-to-polar conversion, we have used a pseudo 
polar grid, in which the pseudo-radial variable has level sets which are squares rather 
than circles.  This grid has often been called the concentric squares grid in the signal 
processing literature. In the medical tomography literature, it is associated with the 
linogram, sometimes called the rectopolar grid. The geometry of the rectopolar grid is 
illustrated on Figure 6. [15-17]. 
 
Concentric circles of linearly growing radius in the polar grid are replaced by 
concentric squares of linearly growing sides. The rays are spread uniformly not in 
angle but in slope. We select 2n  radial lines in the frequency plane obtained by 

connecting the origin to the vertices( )1 2,k k
 lying on the boundary of the array

( )1 2,k k
, i.e., such that 1k or 2k { , }2 2

n n∈ −
. The polar grid is the intersection 

between the set of radial lines and that of Cartesian lines parallel to the axes. The 

cardinality of the rectopolar grid is equal to
22n  as there are2n  radial lines and n

sampled values on each of these lines. As a result, data structures associated with this 
grid will have a rectangular format [15- 17]. 
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Figure 6: Illustration of the pseudo

 
From the 2- D discrete Fourier expression, we get [
 

                                      
( 1 2F w w f j k e

                                   

We can change this expression to polar coordina
 

Then, we replace in (
2

, 0,....., 1m m m M
M
πθ = = −

 

                    
( ), ,F n m f j k e=

                                       
To obtain samples on the rectopolar grid, we should, in general, interpolate from 
nearby samples at the Cartesian grid.
 
3.3.2.2 One-Dimensional Wavelet Transform
 
To complete the Ridgelet transform, we must take a 1
radial variable in Radon space. Figure 
transform [16- 19].  
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Illustration of the pseudo-polar grid in the frequency domain for an n by n
image (n = 8) 

D discrete Fourier expression, we get [16]: 
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1 1

1 2
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= =
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We can change this expression to polar coordinates by: 1 cosw ζ θ= and 

Then, we replace in (13) by sampling 
, 0,....., 1n

n
n N

N
ζ = = −

, 0,....., 1
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ples on the rectopolar grid, we should, in general, interpolate from 

nearby samples at the Cartesian grid. 

Dimensional Wavelet Transform 

To complete the Ridgelet transform, we must take a 1-D wavelet transfo
radial variable in Radon space. Figure 7. shows the flow graph of the Ridgelet 
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polar grid in the frequency domain for an n by n 

                           (13) 

and 2 sinw ζ θ=  

, 0,....., 1n N= = −
 and 

                       (14) 

ples on the rectopolar grid, we should, in general, interpolate from 

D wavelet transform along the 
shows the flow graph of the Ridgelet 
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Figure 7: 
 
4. Curvelet Denoising Algorithm
 
We now apply a digital transforms for rem
data. The methodology is based on the work published in [
discrete curvelet transform is not norm
noisy curvelet coefficients will depend on t
 
Let Yλ be the noisy curvelet coefficients (
thresholding rule for estimating the unknown curvelet coefficients
 

ˆ ,y yλ λ=             if y kλ λ

                                                     

 

                                      
if y k

       
Where For the first scale (j=1) a scale
for the others (j > 1). 
 
5. The Proposed Approach
 
The Proposed approach depends on the combining the advantages of both the Wavelet 
and Curvelet transform. The proposed approach can be summarized in the following 
steps: 
  
1. The noisy image is split into three subbands C1, C2 and P

explained. 
2. Wavelet transform of the subband
3. Log Gabor filtering of the Wavelet subbands except the approximate.
4. Inverse Wavelet transform of the filtered subbands and the approx
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: Discrete Ridgelet Transform flow graph 

4. Curvelet Denoising Algorithm 

We now apply a digital transforms for removing speckle noise from ultrasonic image 
data. The methodology is based on the work published in [16]. Unlike FFTs or FWTs, 
discrete curvelet transform is not norm-preserving and, therefore, the variance of the 
noisy curvelet coefficients will depend on the curvelet index λ. 

be the noisy curvelet coefficients (Y = FX). We use the following hard
thresholding rule for estimating the unknown curvelet coefficients 

ˆ/if y kλ λσ σ≥         

                                      0ˆ ,y λ =  

ˆ/if y kλ λσ σ<                                                               

Where For the first scale (j=1) a scale-dependent value k = 4 was chosen; while k = 3 

5. The Proposed Approach 

The Proposed approach depends on the combining the advantages of both the Wavelet 
and Curvelet transform. The proposed approach can be summarized in the following 

The noisy image is split into three subbands C1, C2 and P3 

Wavelet transform of the subband P3. 
Log Gabor filtering of the Wavelet subbands except the approximate.
Inverse Wavelet transform of the filtered subbands and the approx
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oving speckle noise from ultrasonic image 
]. Unlike FFTs or FWTs, 

preserving and, therefore, the variance of the 

). We use the following hard-

                                    (15)  

alue k = 4 was chosen; while k = 3 

The Proposed approach depends on the combining the advantages of both the Wavelet 
and Curvelet transform. The proposed approach can be summarized in the following 

 using DCT, as 

Log Gabor filtering of the Wavelet subbands except the approximate. 
Inverse Wavelet transform of the filtered subbands and the approximate. 
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5. Hard thresholding of the subbands C1 and C2 and Inverse Discrete Curvelet 
Transform (IDCT). 

 
6. Simulation Results 
 
Computer simulations were carried out using MATLAB (R2007b). The quality of the 
reconstructed image is specified in terms of: 
 
The Peak Signal-to-Noise Ratio (PSNR) [21]: 
 

                                     ���� =  �� ����� �����
���                                                     

(16) 
 

Where MSE, the Mean Square Error between the estimate of the image and the 
original image, and  !"#� is the maximum possible pixel value in the image. 
 
The Coefficient of Correlation (CoC): 
 

                        $�$ = ∑ ∑ &���',)�*�+��,�',)�*,+�-)'
./∑ ∑ ���',)�*�+��)' 0/∑ ∑ �,�',)�*,+��)' 0

                                 (17) 

 
Here x (m, n) is the pixel intensity or the gray scale value at a point (m, n) in the 
undeformed image. y (m, n) is the gray scale value at a point (m, n) in the deformed 
image. �+ and  ,+ are mean values of the intensity matrices x and y, respectively. 
 
Simulation results are conducted on six examples of ultrasonic B-mode images (Liver, 
Kidney, Fetus, Thyroid, Breast and Gall) [22]. 
 
The Proposed approach for ultrasonic image denoising is applied to the six examples 
(Liver, Kidney, Fetus, Thyroid, Breast and Gall) images. Results are compared to the 
DCT algorithm results.  
 
The first example (Liver image) is shown in Fig. (8-a), the 0.1 speckle noisy image is 
shown in Fig. (8-b), the DCT output image is shown in Fig. (8-c) and the proposed 
approach output image is shown in Fig. (8-d).  
 
The second example (Kidney image), shown in Fig. (9-a), the 0.1 speckle noisy image 
is shown in Fig. (9-b), the DCT output image is shown in Fig. (9-c) and the proposed 
approach output image is shown in Fig. (9-d).  
 
The same for the third example (Fetus image), shown in Fig. (10-a), the 0.1 speckle 
noisy image is shown in Fig. (10-b), the DCT output image is shown in Fig. (10-c) 
and the proposed approach output image is shown in Fig. (10-d).  
 
The fourth example (Thyroid image), shown in Fig. (11-a), the 0.1 speckle noisy 
image is shown in Fig. (11-b), the DCT output image is shown in Fig. (11-c) and the 
proposed approach output image is shown in Fig. (11-d).  
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The fifth example (Breast image), shown in Fig. (12-a), the 0.1 speckle noisy image is 
shown in Fig. (12-b), the DCT output image is shown in Fig. (12-c) and the proposed 
approach output image is shown in Fig. (12-d).  
 
The last example (Gall image), shown in Fig. (13-a), the 0.1 speckle noisy image is 
shown in Fig. (13-b), the DCT output image is shown in Fig. (13-c) and the proposed 
approach output image is shown in Fig. (13-d).  
 
Tables from (1) to (6) illustrate the output PSNR values for the proposed approach 
and the DCT for the six examples, respectively, with (0.01, 0.05, 0.1 and 0.2) speckle 
variances.  
 
Tables from (7) to (12) illustrate the output CoC values for the proposed approach and 
the DCT for the six examples, respectively, with (0.01, 0.05, 0.1 and 0.2) speckle 
variances.  
 
Table (13) illustrates the output CPU time (sec) considerations for the proposed 
approach and the DCT for the six examples.  

 
 

  
  

(a) Original Liver 
image  

(b) 0.1 speckle 
noisy image 

(c) DCT denoised 
output image 

(d) The Proposed 
approach output 

image 
 

Figure 8: Proposed approach and DCT output images for the Liver image 
 
 

    
(a) Original 

Kidney image  
(b) 0.1 speckle 
noisy image 

(c) DCT denoised 
output image 

(d) The proposed 
approach output 

image 
 

Figure 9: Proposed approach and DCT output images for the Kidney image 
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(a) Original Fetus 

image  
(b) 0.1 speckle 
noisy image 

(c) DCT denoised 
output image 

(d) The proposed 
approach output 

image 
 

Figure 10: Proposed approach and DCT output for the Fetus image 
 
 

    

(a) Original Thyroid 
image 

(b) 0.1 speckle noisy 
image 

(c) DCT denoised 
output image 

(d) The proposed 
approach output image 

 
Figure 11: Proposed approach and DCT output for the Thyroid image 

 
 

    

(a) Original Breast 
image. 

(b) 0.1 speckle noisy 
image. 

(c) DCT denoised 
output image. 

(d) The proposed 
approach output image. 

 
Figure 12: Proposed approach and DCT output for the Breast image 
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(a) Original Gall 
image. 

(b) 0.1 speckle noisy 
image. 

(c) DCT denoised 
output image. 

(d) The proposed 
approach output image. 

 
Figure 13: Proposed approach and DCT output for the Gall image 

 
 

Table 1: PSNR output values for the proposed approach and DCT denoising 
algorithm for the first example at speckle variance of (0.01: 0.2) 

 
The first example (Liver image) 

Noise variance 
 

0.2 0.1 0.05 0.01 

22.04 23.92 25.97 31.51 PSNR Noisy 

27.51 29.09 30.44 33.64 PSNR DCT 

27.96 28.89 30.50 33.74 PSNR proposed 

 
 

Table 2: PSNR output values for the proposed approach and DCT denoising 
algorithm for the second example at speckle variance of (0.01: 0.2) 

 
The second example (Kidney image) 

Noise variance 
 

0.2 0.1 0.05 0.01 

16.60 18.42 20.52 23.03 PSNR Noisy 

23.98 24.98 25.90 28.68 PSNR DCT  

24.01 24.96 25.97 28.71 PSNR proposed  
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Table 3: PSNR output values for the proposed approach and DCT denoising 
algorithm for the third example at speckle variance of (0.01: 0.2) 

 
The third example (Fetus image) 

Noise variance 
 

0.2 0.1 0.05 0.01 

20.16 21.94 23.98 29.54 PSNR Noisy 

27.06 28.87 30.70 34.62 PSNR DCT 

27.59 29.20 30.32 34.60 PSNR proposed 

 
 

Table 4: PSNR output values for the proposed approach and DCT denoising 
algorithm for the fourth example at speckle variance of (0.01: 0.2) 

 
The fourth example (Thyroid image) 

Noise variance 
 

0.2 0.1 0.05 0.01 

20.09 21.73 24.14 29.19 PSNR Noisy 

27.06 27.73 29.52 33.85 PSNR DCT  

27.29 27.88 29.84 33.50 PSNR proposed  

 
 

Table 5: PSNR output values for the proposed approach and DCT denoising 
algorithm for the fifth example at speckle variance of (0.01: 0.2) 

 
The fifth example (Breast image) 

Noise variance 
 

0.2 0.1 0.05 0.01 

20.83 22.38 24.99 30.28 PSNR Noisy 

25.80 27.29 29.26 32.20 PSNR DCT  

25.60 27.08 28.42 32.44 PSNR proposed  
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Table 6: PSNR output values for the proposed approach and DCT denoising 
algorithm for the sixth example at speckle variance of (0.01: 0.2) 

The sixth example (Gall image) 

Noise variance 
 

0.2 0.1 0.05 0.01 

20.72 22.54 24.65 30.40 PSNR Noisy 

25.88 27.97 29.50 33.27 PSNR DCT  

25.91 27.60 29.10 33.39 PSNR proposed  

 
 

Table 7: CoC output values for the proposed approach and DCT denoising 
algorithm for the first example at speckle variance of (0.01: 0.2) 

 
The first example (Liver image) 

Noise variance 
 

0.2 0.1 0.05 0.01 

0.7550 0.8523 0.9172 0.9817 CoC Noisy 

0.9396 0.9599 0.9731 0.9894 CoC  DCT 

0.9402 0.9603 0.9735 0.9897 CoC  proposed 

 
 

Table 8: CoC output values for the proposed approach and DCT denoising 
algorithm for the second example at speckle variance of (0.01: 0.2) 

 
The second example (Kidney image) 

Noise variance 
 

0.2 0.1 0.05 0.01 

0.7303 0.8393 0.9076 0.9792 CoC Noisy 

0.9390 0.9597 0.9728 0.9891 CoC DCT 

0.9399 0.9604 0.9730 0.9896 CoC  proposed 
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Table 9: CoC output values for the proposed approach and DCT denoising algorithm 
for the third example at speckle variance of (0.01: 0.2) 

 
The third example (Fetus image) 

Noise variance 
 

0.2 0.1 0.05 0.01 

0.7565 0.8496 0.9154 0.9813 CoC Noisy 

0.9384 0.9649 0.9801 0.9941 CoC DCT 

0.9409 0.9654 0.9798 0.9939 CoC  proposed 

 
 

Table 10: CoC output values for the proposed approach and DCT denoising 
algorithm for the fourth example at speckle variance of (0.01: 0.2) 

 
The fourth example (Thyroid image) 

Noise variance 
 

0.2 0.1 0.05 0.01 

0.6366 0.7609 0.8591 0.9655 CoC Noisy 

0.9284 0.9515 0.9671 0.9869 CoC DCT 

0.9286 0.9503 0.9668 0.9870 CoC  proposed 

 
Table 11: CoC output values for the proposed approach and DCT denoising 

algorithm for the fifth example at speckle variance of (0.01: 0.2) 
 

The fifth example (Breast image) 

Noise variance 
 

0.2 0.1 0.05 0.01 

0.7738 0.8645 0.9243 0.9835 CoC Noisy 

0.9113 0.9488 0.9691 0.9894 CoC DCT 

0.9140 0.9461 0.9691 0.9893 CoC  proposed 
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Table 12: CoC output values for the proposed approach and DCT denoising 
algorithm for the sixth example at speckle variance of (0.01: 0.2) 

 
The sixth example (Gall image) 

Noise variance 
 

0.2 0.1 0.05 0.01 

0.7875 0.8755 0.9297 0.9849 CoC Noisy 

0.9379 0.9568 0.9749 0.9926 CoC DCT 

0.9389 0.9539 0.9743 0.9924 CoC  proposed 

 
 
Table 13: CPU time output values for the proposed approach and DCT denoising 

algorithm for the six examples 
 

The six examples 

 Liver Kidney Fetus Thyroid Breast Gall 

CPU DCT 159.77 168.92 150.44 150.11 161.85 150.61 

CPU proposed 169.25 174.47 167.06 168.58 165.22 170.07 

 
 
As can be seen in the proposed approach output images, speckle is greatly reduced as 
compared to the original images. Also, preservation of most the structure of the 
original ultrasonic image is apparent. The proposed approach significantly reduces the 
speckle noise while preserving the resolution and the structure of the original 
ultrasonic images. The wavelet transform handles smooth and singular areas very well 
but it has some problem with edges. On the other hand, hard thresholding in the 
curvelet domain handles edges very well but has some problem when dealing with 
smooth and singular areas. 
  
By combining the wavelet transform and the curvelet transform, as is done in this 
chapter, by letting wavelet transform handles homogeneous areas while curvelet 
transform handles areas with edges we get optimized results. The proposed approach 
gives good, clean and high contrast images, which should improve medical diagnosis. 
 
7. Conclusion 
 
This paper presents an approach depends on the combining the advantages of both the 
Wavelet and Curvelet transform. Wavelet transform can perform well for denoising in 
smooth and singular areas but it has not optional base when dealing with singular line 
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and surface. Curvelet transform breaks some inherent limitations of Wavelet in 
representing directions of edges in image. So it has superiority in some image 
analysis, such as image denoising so it is better to combines Curvelet transform and 
wavelet transform which is better than only using wavelet transform or Curvelet 
transform to deal with noisy image. Output images and PSNR values indicate superior 
performance over only Wavelet or Curvelet. 
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