I nformationSciences an€Computing
Volume 2015, Article ID 1ISC490415, 21 pages
Available online at http://www.infoscicomp.com/

Research Article

Mixed Curvelet and Wavelet Transformsfor
Speckle Noise Reduction in Ultrasonic B-M ode
| mages

AA. Mabhmouda, S. El Rabaie®, T.E. Taha® O. Zahran?, F.E. Abd El-Samie® and W. Al-
Nauimy

% Department of Electronics and Electrical Commundces, Faculty of Electronic
Engineering, Menoufia University, 32952, Menoufgyht
® Department of Electrical Engineering and Electrsritthe Universitpf Liverpool, UK

Corresponding author: A.A. Mahmoud; E-mail: ameeagla@yahoo.com

Received 21 November 2014; Accepted 17 January 2015

Abstract: Wavelet transform has the good characteristic wietfrequency locality and
many researches show that it can perform well foroising in smooth and singular areas.
But it isn't suitable for describing the signalshieh have high dimensional singularities.
Curvelet is one of new multiscale transform thexyrievhich possess directionality and
anisotropy, and it breaks some inherent limitatiohsvavelet in representing directions of
edges in image. So it has superiority in some in@gdysis, such as image denoising. This
paper proposes a new method for denoising, whiatbawes Curvelet transform and wavelet
transform which is better than only using wavetansform or Curvelet transform to deal
with noisy image. The simulation results indicdtattthis method has better performance and
can get better visual effects and higher PSNR.

Keywords. Image enhancement; Ultrasonic scan; Speckle nbesegising filters.

1. Introduction

Ultrasound imaging, as a tool for medical diagnossswidely used in clinical
practice, and in some situation sit has becomeaadatd procedure. Although
diagnostic ultrasound is considered a harmlessnigeh and permits real-time and
noninvasive anatomical scanning, B-mode images penevaded by the speckle
artifact, which results from destructive interfezereffects between returning echoes.
This artifact introduces fine-false structures whapparent resolution is beyond the
capabilities of the imaging system, reducing imagetrast and masking the real
boundaries of the tissue under investigation. ltuaence may substantially
compromise the diagnostic effectiveness, intrody@ngreat level of subjectivity in
the interpretation of the images [1- 3].
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Speckle can be defined as a destructive interferantifact and its severity depends
on the relative phase between two overlapping metgrechoes. Like other imaging
techniques that make use of coherent sources, asidaser or radar, images from
ultrasound acoustical waves are prone to speckiemion that should be removed
without affecting the important details in the iredd, 2].

This paper is organized as follows. Section 2 gietsils about Log Gabor filter in
the Wavelet domain. Section 3 illustrates the Cletvieansform. Section 4 explains
the proposed approach. Section 5 proposes the aiomlresults followed by
conclusions and the more relevant references.

2. Log Gabor Filter in the Wavelet Domain

2.1 Discrete Wavelet Transform (DWT)

The idea of the DWT is to represent an image asiassof approximations (low pass
version) and details (high pass version) at difieresolutions. The image is low pass
filtered to give an approximation image and higlsgéltered to give detail images,

which represent the information lost when goingrfra higher resolution to a lower
resolution. Then the wavelet representation is 96k of detail coefficients at all

resolutions and approximation coefficients at tbedst resolution. Figure (1): (a)

shows the operation of two dimensional DWT with &+l decomposition and (b)

shows the operation of a single step decomposiconsgruction DWT [4- 7].

An input series is processed by two filters in patahl(n) is called low pass filter (or
average filter) and h2(n) is high pass filter (dfedence filter). The outputs obtained
are then down sampled by two so that now both tieuts are half of original length.
After the first step of processing on the origigaties, a new series is formed with the
output of the low pass filter forming the first hahd the output of the high pass filter
forming the second half.

l.l.j TH !
'’
g’ |me’ 1 1,2, 3 --- Decomposition
LH Levels
HL' HH'®
H ------ High Frequency
Bands
l'[L1 HH' L------ Low Frequency
Bands

Figure (1-a): 2D-DWT with 3-Level decomposition
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Figure (1-b): One level of wavelet decomposition and reconstoacti

The matrix of the DWT has four subbands (LL, LH, ,HiH), the subband LL, the
approximate, is the low resolution part and thebsmols LH, HL, HH, the details, are
the high resolution part. In the next step, onbyfiinst half of the new series that is the
output of the low pass filter is processed. Thisdkof processing and new series
formation continues till in the last step the ougpobtained from both the filters are of
length one. The original length of the series needse a power of two so that the
process of DWT can be carried until the last step/]. The approximate image and
the detail image can be expressed as follows:

Y,(n)= > X (K)hy(2n —k)

k =—o0

Y,(n)= Y X (K)h,(2n k)
(1)

Where h is low pass filter andzhis the high pass filter.

A Haar wavelet is the simplest wavelet type. Ircdige form, Haar wavelet is related
to a mathematical operation called the haar tranmsfdhe Haar transform serves as a
prototype for all other wavelet transforms. The Hdacomposition has good time
localization. This means that the Haar coefficieats effective for locating jump
discontinuities and also for the efficient repréaéinon of images with small support.
The Haar wavelet is the only known wavelet thatdmpactly supported, orthogonal
and symmetric. It is computed by iterating differerand averaging between odd and
even samples of the signal. Since we are in 2Dneexl to compute the average and
difference in the horizontal and then in the vetidirection [6, 8, 9].

2.2 Log Gabor Filter

Images are better coded by filters that have Gandsansfer functions when viewed
on the logarithmic frequency scale. Gabor functibagse Gaussian transfer functions
when viewed on the linear frequency scale. On itheal frequency scale the Log-
Gabor function has a transfer function of the form:
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—log(f/fo)?
G(f) = e2log(a/fo)? (2)

Where §is the filter centre frequency awtf, is the ratio of the standard deviation of
the Gaussian describing the log Gabor filter's df@nfunction in the frequency
domain to the filter center frequency.

There are two important characteristics to notestly log-Gabor functions, by
definition, always have no DC component, and selgortide transfer function of the
log Gabor function has an extended tail at the Fighuency end [10- 13].

3. Curvedet Transform

The wavelet transform has been the most famousféooimage and signal analysis.
This is because of its advantageous property #iasho localize “point singularities”
in the signal or the image. One major disadvantdgeavelets in image processing is
that the two-dimensional wavelet transform giveéarge number of coefficients in all
scales (across all levels) corresponding to the®add the image. This means that
many coefficients are required in order to exaotigonstruct the edges in an image.
Recent approaches like Ridgelets and Curveletoxtpk fact that wavelets are good
only for point singularities but not efficient toamhdle linear and curvilinear
singularities in an image. The Curvelet transforrovpgles sparsity and effective
representation of edges or singularities [14, 15].

The Ridgelet transform is implemented by applyingorge-dimensional wavelet
transform to the slices of the Radon transform.e Ridgelet transform alone cannot
yield efficient representations of images, becadgges in images are typically curved
rather than straight lines. Therefore, the apprdacbapture curved edges is to use
Ridgelets in a localized manner such that a cueagk is almost a straight line at
sufficiently fine scales. The Ridgelet transfornthien extended to Curvelet transform
which gives a more efficient representation of ednlines in an image than using
only the Ridgelet transform. It has to be noted tath the Ridgelet and Curvelet
transforms are based on the Radon transform [15, 16

In Curvelet transforms, the additive wavelet transf is used to decompose the
image into different subbands and partitioning $&dito break each subband into
tiles. Finally, the Ridgelet transform is appliexd dach tile. In this way, the image
edges can be represented efficiently by the Ridgedmsform because the image
edges will now be almost like straight lines. Thtlsge Curvelet transform is an
extension of the Ridgelet transform to detect cdmeges, effectively [14- 19].

The Curvelet map the curvilinear structures effatyi in an image by using the

anisotropic scale space approach considering dlicear edge as piecewise linear

segments across different scales. The mappingeoédiges using Curvelets is shown
diagrammatically in the Fig. 5.1. Curvelets apptg tRidgelet transform locally in

order to obtain the localization information. Thenttnuous line shown is a typical

curved edge and the dotted straight lines are ppeoaimate mapping of the curved
edge. Since the Ridgelet transform is efficient lfoear edges, the curved edge is
approximated as linear segments. The blockingeptrtitioning step of the Curvelet
transform achieves this segmentation of the cuedspk [15].
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Figure 2: Thecurvelet map curvilineiedges in image as piecewise Ridts in
sufficiently fine scale<The continuou$ine shows thedge in the image and t
dotted lines show the corresponc map as piecewise linear ridy

The algorithm of the curvelet transform can be samired in the following step:14,

19]:

1. The image is split up into three subbeAl,Az and P3 using the additiy
wavelettransform.
Tiling is performed on the subbanAl andAZ.

3. The discrete Ridgelet transform is performed orhdde of the subbancAl

andAZ.

A schematic diagram of the curve transform is depicted in Figure. A detailed
description of these steps is presented in theviatlg subsection

=
. A Ridgelet
p Additive ' > Tiling p| Transform | o
—p Wavelet on eachtile l
Transform
A, Ridgelet
Tiling p| Tansform |\——p C,
on each tile

Figure 3: Schematic diagram the discrete curveléransforn.
3.1 Sub Band Filtering

The purpose of this step is to decompose the inrdgeadditive components each
which is a subband of the imagThis step isolates the different frequel
components of the image into different planes withdowr sampling as in th
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traditional wavelet transform. The ""a trous" @ithm given below is implemented
for this purpose [14, 19].

The "a trous" algorithm is shift invariant, symmet undecimated and redundant
DWT algorithm that is widely used in image analysisorder to understand the ""a
trous” algorithm, it is very useful to represente thvavelet transform as a
parallelepiped. The basis of the parallelepipethésoriginal image 2j; each level of
the parallelepiped is an approximation to the aagiimage. When climbing up

through the resolution levels, the successive aqmation images have a coarser
resolution but the same number of pixels as thgir@l image [15].

Given an imagé) , it is possible to construct the sequence of apprations [14]:
£1(p)=Puf o(P) =P {P)=P 5 fn (P )=Pn )

To construct this sequence, the algorithm perfosonscessive convolutions with a
filter associated with the scaling function. A p&uchoice for the corresponding
scaling function is the triangle function which disato a linear interpolation with a

mask of 3x3 elements. ForBi- spline scaling function, the coefficients of tmask
are [14]:
1 4 6 4 1
1 4 16 24 16 4
556 6 24 36 24 6
4 16 24 16 4

1 4 6 4 1
(4)

The wavelet planes are computed as the differefsdween two consecutive
approximationsF?-l and R [14], i.e.,

w, =R =R (1 =12, n) (5)

Thus, the reconstruction formula is given by [14]:

P=Yw, +P,
= ©)

WhereP; is the residual image that contains the low fregyeinformation of the
original image, andy, its respective wavelet coefficients, which cont#ne high
frequency information.

The next step is finding a transformation capalbleepresenting straight edges with
different slopes and orientations. A possible sotuts the Ridgelet transform, which
may be interpreted as the 1-D wavelet transforthefRadon transform. This is the
basic idea behind the digital implementation of tReédgelet transform. An

inconvenience with the Ridgelet transform is thaisinot capable of representing
curves. To overcome this drawback, the input imagwartitioned into square blocks
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and the Ridgelet transform is applied to each bldessuming a piecewise linear
model for the contour, each block will contain gjhd edges only, that may be
analyzed by the Ridgelet transform.

3.2 Tiling

Tiling is the process by which the image is dividiet overlapping tiles. These tiles
are small in dimensions to transform curved line® ismall straight lines in the

subbandél and A, [14, 19]. The tiling improves the ability of tharwelet transform
to handle curved edges.

3.3 Ridgelet Transform

The maotivation for this transform arose from a naeéind a sparse representation of
functions which have discontinuities along linese \6hoose the Ridgelet transform
because the wavelet transform is very efficienepresenting point discontinuities in
the 1-D case, but fails with edge discontinuitie®4D case. The Ridgelet transform is
not better than the wavelet transform in represgreédges in 2-D [14, 16, 20].

The Ridgelet transform belongs to the family ofcdiéte transforms employing basis
functions. To facilitate its mathematical represéion, it can be viewed as a wavelet
analysis in the Radon domain. The Radon transfdselfiis a tool for shape
detection. So, the Ridgelet transform is primaailyool for ridge detection or shape
detection of the objects in an image [14- 16, 19, 2

3.3.1 Continuous Ridgelet Transform

The 2-D continuous Ridgelet transform i can be defined through the introduction
of the following basis function [14, 17, 20]:

v :a_ml/j{(xlcosm;z sirﬁ—b)} @)

Where@ indexes the scale of the Ridgele@slts orientation and, its location. For

each2>0 eacPUR and eacth(o’ 277)

Thus, the Ridgelet coefficients are representelbyl17, 20]:

R (@b,0)= T T‘//a,b,e(xlvxz)f (x X p)ix gx (8)

—00 —00

This transform is invertible and the reconstructiomula is given by [14, 20]:

N

T

Fxuxz)= .[ T TRf (a,b,H)g[/a’bﬂ(Xl,Xz)%db% ()
0-®0

4

The Radon transform for an objdcts given by [14, 17, 20]:
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RE (01)= | [ 1 (xyxo)0(x,co8+x , simo—t)a g , (10)

—00 —00

Thus, the Ridgelet transform can be representéallas/s [14, 17, 2Q:

a

R (@b.8)= T Rf (01 )a-ﬂ%//((t _b)]dt
o (11)

Hence, the Ridgelet transform is the applicatiorad-D wavelet transform to tr

slices of the Radon transform where the angula'rabme is constant ani! is
varying. A schematic diagram of the Ridgelet transf is shown in Fiure 4. To
make the Ridgelet transform discrete both Rexlon transform and the wave
transform have to be discrel4, 17, 19].

IMAGE RADON .
TRANSFORM

WTID
@

RIDGELET
TRANSFORM

frequency

Figure 4. Schematic digram of the Ridgelet transfo
3.3.1.1 Radon Transform

The Radon transform is a fundamental tool whichsisd in various applications su
as radar imaging, geophysical imaging and medicelging It is used to dete«
features within a D image. It transforms lines through an image tn{soin the
Radon domain as shown in ure 5.In the Radon back projection, each point in
Radon domain is transformed to a straight lingn@itnage 14- 18].

® R(@,v)

v

- 4

K2

Image Domain Radon Domain

Figure5: The Radon Transform.
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The Radon transform for an objelcts the collection of line integrals indexed by
(6,t)0[0,27]xR . . o .
(integral of the function on the straight line BAgsing through t

and of directio’) and is expressed using Dirac m&sgiven by [14- 18]:

Rf (Ot)= T Tf (%1% ,)0(x,cOB+x , sirg -t )dx gix , (12)

—00 —00

3.3.2 Digital Ridgelet Transform

A basic strategy for calculating the continuousdeiét transform is first to compute

the Radon transfornllqf @.1) and second, to apply a 1-D wavelet transform. For
practical applications, we require discrete implatagons of the Ridgelet transform
that is a challenging problem, since the Radorstoam is polar in nature, we cannot
implement direct discretizations of continuous fatae. Digital Ridgelet has been
proposed, based on implementation of the Radosftan [16].

3.3.2.1 The Recto Polar Ridgelet Transform

Approximate Radon transforms for digital data cam froposed in the Fourier

domain, this is a widely used approach. First tiwe-dimensional fast Fourier

transform (2D FFT) of the given image is compuf€den, the resulting function in

the frequency domain is to be used to evaluatéréagiency values in a pseudo-polar
style. This conversion from Cartesian to Polar godld be obtained by interpolation.
Applying the one dimensional inverse Fourier transf for each ray, the Radon
projections are obtained [15- 17].

For our implementation of the Cartesian-to-polamvarsion, we have used a pseudo
polar grid, in which the pseudo-radial variable lesl sets which are squares rather
than circles. This grid has often been calledatecentric squares grid in the signal
processing literature. In the medical tomographsrditure, it is associated with the

linogram, sometimes called the rectopolar grid. §eemetry of the rectopolar grid is

illustrated on Figure 6. [15-17].

Concentric circles of linearly growing radius inettpolar grid are replaced by
concentric squares of linearly growing sides. Tagsrare spread uniformly not in

angle but in slope. We seledb radial lines in the frequency plane obtained by

connecting the origin to the vertic(aksl'kZ) lying on the boundary of the array

o{-n/.n

(kl’kZ), i.e., such thatklork2 { /2 /é . The polar grid is the intersection
between the set of radial lines and that of Catedines parallel to the axes. The
cardinality of the rectopolar grid is equalzlm2 as there arén radial lines and
sampled values on each of these lines. As a refatH, structures associated with this
grid will have a rectangular format [15- 17].
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Figure6: lllustration of the pseuc-polar grid in the frequency domain for an n |
image (n = 8)

From the 2D discrete Fourier expression, we ¢16]:

-1n-1

n-1 s +i
Fwaw,)=> 3f (j k) bearive (13)
I=1k=1
We can change this expression to polar cootes by:W1 ={ cosd andV2~ ¢sing
L =—,n=0,...N-1
Then, we replace in 13) by sampling ‘¢ N and
8, :f/l—ﬂm m=0,.M -1
n-1n-1 —i Nk co2/M 4 gjppZM
F(n’m): f(j,k)ﬁ N[ M M
j=1k =1 (14)

To obtain sarmples on the rectopolar grid, we should, in gendrdakrpolate fron
nearby samples at the Cartesian 1

3.3.2.2 One-Dimensional Wavelet Transform
To complete the Ridgelet transform, we must tak-D wavelet transfrm along the

radial variable in Radon space. FigL7. shows the flow graph of the Ridge
transform [16- 19].
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Figure 7: Discrete Ridgelet Transform flow graph

4. Curvelet Denoising Algorithm

We now apply a digital transforms for roving speckle noise from ultrasonic ime
data. The methodology is based on the work puldigm¢16]. Unlike FFTs or FWTs
discrete curvelet transform is not nc-preserving and, therefore, the variance of
noisy curvelet coefficients will depend che curvelet index.

Let Y2 be the noisy curvelet coefficientY = FX). We use the following ha-
thresholding rule for estimating the unknown cuetelbefficient

yi=Yya, if lyilozkad
y =0,
if |yilo<kdn (15)

Where For the first scale (j=1) a sc-dependent alue k = 4 was chosen; while k =
for the others (j > 1).

5. The Proposed Approach

The Proposed approach depends on the combiniregtfetages of both the Wave
and Curvelet transform. The proposed approach easutmarized in the followir
steps:

1. The noisy image is split into three subbands C1,a6@ f; using DCT, as
explained.

2. Wavelet transform of the subbse Ps.

3. Log Gabor filtering of the Wavelet subbands exdbptapproximat:

4, Inverse Wavelet transform of the filtered subbaawid the apprcimate.
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5. Hard thresholding of the subbands C1 and C2 andr¢evDiscrete Curvelet
Transform (IDCT).

6. Simulation Results

Computer simulations were carried out using MATLA®007b). The quality of the
reconstructed image is specified in terms of:

The Peak Signal-to-Noise Ratio (PSNR) [21]:

Max%
MSE

PSNR = 10 logy,
(16)

Where MSE, the Mean Square Error between the estimfithe image and the
original image, andax? is the maximum possible pixel value in the image.

The Coefficient of Correlation (CoC):

COC — Zm Zn[(x(m'n)_f)(y(m,n)_y)] (17)
J (S En ) —)2) (S Sn(y(mm)—3)2)

Herex (m, n) is the pixel intensity or the gray scale valueagtoint(m, n) in the
undeformed imagey (m, n) is the gray scale value at a pofnt, n) in the deformed
image.x and y are mean values of the intensity matricesdy, respectively.

Simulation results are conducted on six examplestaisonic B-mode images (Liver,
Kidney, Fetus, Thyroid, Breast and Gall) [22].

The Proposed approach for ultrasonic image derwisimpplied to the six examples
(Liver, Kidney, Fetus, Thyroid, Breast and Gall)aiges. Results are compared to the
DCT algorithm results.

The first example (Liver image) is shown in Fig-aB8 the 0.1 speckle noisy image is
shown in Fig. (8-b), the DCT output image is shawrfig. (8-c) and the proposed
approach output image is shown in Fig. (8-d).

The second example (Kidney image), shown in Figa)(9he 0.1 speckle noisy image
is shown in Fig. (9-b), the DCT output image iswhan Fig. (9-c) and the proposed
approach output image is shown in Fig. (9-d).

The same for the third example (Fetus image), showkig. (10-a), the 0.1 speckle
noisy image is shown in Fig. (10-b), the DCT outpuage is shown in Fig. (10-c)
and the proposed approach output image is showigir(10-d).

The fourth example (Thyroid image), shown in Figl), the 0.1 speckle noisy
image is shown in Fig. (11-b), the DCT output im&gyshown in Fig. (11-c) and the
proposed approach output image is shown in Figd{11
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The fifth example (Breast image), shown in Fig.-&)2the 0.1 speckle noisy image is
shown in Fig. (12-b), the DCT output image is shawiig. (12-c) and the proposed
approach output image is shown in Fig. (12-d).

The last example (Gall image), shown in Fig. (13ta¢ 0.1 speckle noisy image is
shown in Fig. (13-b), the DCT output image is shawiig. (13-c) and the proposed
approach output image is shown in Fig. (13-d).

Tables from (1) to (6) illustrate the output PSN&ues for the proposed approach
and the DCT for the six examples, respectivelyhy@.01, 0.05, 0.1 and 0.2) speckle
variances.

Tables from (7) to (12) illustrate the output Co&lues for the proposed approach and
the DCT for the six examples, respectively, with0§Q 0.05, 0.1 and 0.2) speckle
variances.

Table (13) illustrates the output CPU time (sechstterations for the proposed
approach and the DCT for the six examples.

g

(a) Original Liver (b)0.1s ckIe (c) DCT denoised (d) The Proposed
image noisy image output image approach output
image

Figure 8: Proposed approach and DCT output images for ther llimage

(a) Original (b) 0.1 speckle  (c) DCT denoise (d) The proposed
Kidney image noisy image output image approach output
image

Figure 9: Proposed approach and DCT output images for theé€idnage
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(a) Original Fetus (b) 0.1 speckle  (c) DCT denoised (d) The proposed
image noisy image output image approach output
image

Figure 10: Proposed approach and DCT output for the Fetusemag

(a) Original Thyroid (b) 0.1 speckle noisy  (c) DCT denoised (d) The proposed
image image output image approach output image

Figure 11: Proposed approach and DCT output for the Thyromigen

(a) Original Breast  (b) 0.1 speckle noisy (c) DCT denoised (d) The proposed
image. image. output image. approach output image.

Figure 12: Proposed approach and DCT output for the Breaasgjém
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(a) Original Gall (b) 0.1 speckle noisy  (c) DCT denoised (d) The proposed
image. image. output image. approach output image.

Figure 13: Proposed approach and DCT output for the Gall image

Table 1. PSNR output values for the proposed approach ant d@Doising
algorithm for the first example at speckle variant€0.01: 0.2)

Thefirst example (Liver image)

Noise variance
0.01 0.05 0.1 0.2
PSNR noisy 3151 25.97 23.92 22.04
PSNR pct 33.64 30.44 29.09 27.51
PSNR proposed 33.74 30.50 28.89 27.96

Table2: PSNR output values for the proposed approach ant doising
algorithm for the second example at speckle vagari¢0.01: 0.2)

The second example (Kidney image)

Noise variance

0.01 0.05 0.1 0.2
PSNR noisy 23.03 20.52 18.42 16.60
PSNR per 28.68 25.90 24.98 23.98

PSNR proposed 28.71 25.97 24.96 24.01




Information Sciences and Computing

Table 3: PSNR output values for the proposed approach ant doising

algorithm for the third example at speckle variaot€.01: 0.2)

Thethird example (Fetusimage)

Noise variance

0.01 0.05 0.1 0.2
PSNR noisy 29.54 23.98 21.94 20.16
PSNR per 34.62 30.70 28.87 27.06
PSNR proposed 34.60 30.32 29.20 27.59

16

Table4: PSNR output values for the proposed approach &ifl d&noising
algorithm for the fourth example at speckle varent(0.01: 0.2)

Thefourth example (Thyroid image)

Noise variance

0.01 0.05 0.1 0.2
PSNR noisy 29.19 24.14 21.73 20.09
PSNR per 33.85 29.52 27.73 27.06
PSNR proposed 33.50 29.84 27.88 27.29

Table5: PSNR output values for the proposed approach ant d@Doising

algorithm for the fifth example at speckle variant€0.01: 0.2)

Thefifth example (Breast image)

Noise variance

0.01 0.05 0.1 0.2
PSNR noisy 30.28 24.99 22.38 20.83
PSNR per 32.20 29.26 27.29 25.80
PSNR propo&d 32.44 28.42 27.08 25.60
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Table 6: PSNR output values for the proposed approach an d@doising
algorithm for the sixth example at speckle variaotc.01: 0.2)

The sixth example (Gall image)

Noise variance
0.01 0.05 0.1 0.2
PSNR Noisy 30.40 24.65 22.54 20.72
PSNR pct 33.27 29.50 27.97 25.88
PSNR pr oposed 33.39 29.10 27.60 25.91

Table7: CoC output values for the proposed approach antd @hoising
algorithm for the first example at speckle variant€€0.01: 0.2)

Thefirst example (Liver image)

Noise variance
0.01 0.05 0.1 0.2
CoC noisy 0.9817 0.9172 0.8523 0.7550
CoC pcr 0.9894 0.9731 0.9599 0.9396
CoC proposed 0.9897 0.9735 0.9603 0.9402

Table8: CoC output values for the proposed approach and @hoising
algorithm for the second example at speckle vagari¢0.01: 0.2)

The second example (Kidney image)

Noise variance

0.01 0.05 0.1 0.2
CoC noisy 0.9792 0.9076 0.8393 0.7303
CoC pct 0.9891 0.9728 0.9597 0.9390

CoC proposed 0.9896 0.9730 0.9604 0.9399
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Table 9: CoC output values for the proposed approach antl @&noising algorithm

for the third example at speckle variance of (0@2)

Thethird example (Fetusimage)

Noise variance
0.01 0.05 0.1 0.2
CoC noisy 0.9813 0.9154 0.8496 0.7565
CoC pct 0.9941 0.9801 0.9649 0.9384
CoC proposed 0.9939 0.9798 0.9654 0.9409

Table 10: CoC output values for the proposed approach ant @&noising

algorithm for the fourth example at speckle vareant(0.01: 0.2)

Thefourth example (Thyroid image)

Noise variance
0.01 0.05 0.1 0.2
CoC noisy 0.9655 0.8591 0.7609 0.6366
CoC pcr 0.9869 0.9671 0.9515 0.9284
CoC proposed 0.9870 0.9668 0.9503 0.9286

Table 11: CoC output values for the proposed approach and @&noising

algorithm for the fifth example at speckle variaot€0.01: 0.2)

Thefifth example (Breast image)

Noise variance
0.01 0.05 01 0.2
CoC noisy 0.9835 0.9243 0.8645 0.7738
CoC pcr 0.9894 0.9691 0.9488 0.9113
CoC proposed 0.9893 0.9691 0.9461 0.9140
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Table 12: CoC output values for the proposed approach ant @&noising
algorithm for the sixth example at speckle variaotc€.01: 0.2)

The sixth example (Gall image)

Noise variance
0.01 0.05 0.1 0.2
CoC noisy 0.9849 0.9297 0.8755 0.7875
CoC pct 0.9926 0.9749 0.9568 0.9379
CoC proposed 0.9924 0.9743 0.9539 0.9389

Table 13: CPU time output values for the proposed approadZCT denoising
algorithm for the six examples

The six examples

Liver Kidney Fetus Thyroid Breast Gall

159.77 168.92 150.44 150.11 161.85 150.61
CPU pcr

169.25 174.47 167.06 168.58 165.22 170.07
CPU proposed

As can be seen in the proposed approach outpuesnageckle is greatly reduced as
compared to the original images. Also, preservattbrmost the structure of the
original ultrasonic image is apparent. The propaggaroach significantly reduces the
speckle noise while preserving the resolution ahe structure of the original
ultrasonic images. The wavelet transform handlesosimand singular areas very well
but it has some problem with edges. On the othadhhard thresholding in the
curvelet domain handles edges very well but hasesprablem when dealing with
smooth and singular areas.

By combining the wavelet transform and the curvélabsform, as is done in this
chapter, by letting wavelet transform handles hoenegus areas while curvelet
transform handles areas with edges we get optinmesualts. The proposed approach
gives good, clean and high contrast images, whichlsl improve medical diagnosis.

7. Conclusion
This paper presents an approach depends on thargogthe advantages of both the

Wavelet and Curvelet transform. Wavelet transfoaem perform well for denoising in
smooth and singular areas but it has not optioasé bvhen dealing with singular line
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and surface. Curvelet transform breaks some inhdmnitations of Wavelet in
representing directions of edges in image. So # kaperiority in some image
analysis, such as image denoising so it is betteombines Curvelet transform and
wavelet transform which is better than only usingvelet transform or Curvelet
transform to deal with noisy image. Output imaged BSNR values indicate superior
performance over only Wavelet or Curvelet.
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