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Introduction
Cardiovascular disease (CVD) is the leading cause of global 

morbidity and mortality, causing approximately 30% of all deaths in the 
United States [1] and the UK [2]. The on and off-target cardiovascular 
system (CVS) effects of a multitude of drugs for different of conditions; 
including beta blocking agents, chronic use of non-steroidal anti- 
inflammatory drugs (NSAIDs) [3-5] and anti-cancer agents add to 
the burden [6,7]. As the treatments for acute complications of CVD 
continue to improve, the epidemiology of CVD in our aging population 
is rapidly evolving from acute conditions to chronic disease.

An in-depth understanding of both the healthy and distressed CVS 
will allow greater understanding of the processes and mechanisms that 
may go awry in CVD. Many recent studies have used transcriptome 
and RNA profiling to describe CVD processes [8-10] and search for 
biomarkers of disease [11,12]. While these studies have shown vital 
aspects of molecular changes in CVD it is essential to understand the 
impact disease has at a protein level. Studies have shown in humans that 
not only do differences exist between DNA and the final mRNA product 
[13,14], but there is also marked variation in the expected proteome 
[15]. Consequently, a thorough understanding of the cardiovascular 
proteome is crucial to elucidating disease progression, biomarkers and 
potential therapeutic targets of CVD. Complicating things further, 
numerous studies point at post-translational modifications that not 
only regulate key processes in the CVS [16-18] but are also responsible 
for CVD pathologies and progression [19]. Recent innovative 
techniques using novel proteomic technologies to enrich and separate 
sub-proteomes have advanced our knowledge of disease progression 
and enhanced our ability to identify markers of disease and targets for 
new therapeutic strategies.

Gel based proteomics

Early examination of cardiac proteins were extensively carried 
out using two- dimensional gel electrophoresis (2DE) techniques and 
although these techniques have been predominantly replaced by gel-
free methods, key studies still employ this well- established system 
[20]. In this technique, homogenized samples of cardiac tissue are 
solubilized and denatured, then separated based on isoelectric point 
and molecular mass using sodium dodecyl sulphate-polyacrylamide 

gel electrophoresis (SDS-PAGE) [21]. In this technique, which offers 
a method to reduce the complexity of the entire sample, protein bands 
or spots are excised out of the gel and further analyzed by tandem 
mass spectrometry. This approach has led to fundamental advances 
in healthy cardiac proteomics [22,23], stem cell derived cardiac 
maturation [24], in-depth organellular proteomes [25,26] as well as 
changes that occur upon disease [23,27-30] and those that are induced 
by drugs [31]. In particular this technique provides a simple method 
of detecting post-translational modifications such as acetylation, 
glycosylation, phosphorylation and deamidation, in which there has 
been a shift in molecular weight and isoelectric points of the protein 
[20]. Methods utilizing 2DE do however tend to be biased against 
proteins with hydrophobic regions such as membrane proteins and 
biased towards high abundance proteins. 2DE also has a limited 
dynamic range of 104 magnitude [32,33] compared with the very high 
dynamic range of protein abundance, estimated at 106 for cells and 
tissues [32] and 1012 for plasma [23,32,34]. In an effort to overcome 
these biases, new separation methodologies as well as advancements in 
mass spectrometry instrument technologies have reduced the need for 
separating proteins using a gel based system (Figure 1).

In-depth analysis of the cardiac sub-proteomes

In an effort to analyze the cardiac sub-proteomes and in-turn 
reduce the complexities of the samples, several subcellular fractionation 
methods exist which first fractionate the samples. These methods 
include differential centrifugation, flow cytometry, immune-based 
isolation, membrane protein enrichment strategies and/or density 
gradient isolation of organelles. These techniques have been applied 
to study the sub-proteomes of cardiac sarcomeric enriched fractions 
[35], myofilaments [36,37], mitochondria [38-41] and nuclei [41,42]. 
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One key sub-proteome however that often gets overlooked is cell-
surface proteins. These proteins are difficult to isolate and enrich due 
to their low abundance and relatively low solubility in aqueous media. 
This challenge has prompted us and others to develop and modify 
cell surface enrichment methodologies that can be coupled to mass 
spectrometry techniques to identify existing and novel proteins in this 
key cellular compartment.

Cell surface proteomics

The cardiomyocyte plasma membrane is essential to the function 
of the heart, from the spread of an action potential to the regulation 
of inotropic and chronotropic changes of the heart. Analyzing cardiac 
membrane proteins is crucial to a better understanding of heart function 
especially when we consider that the majority of cardiac disorders 
including arrhythmias, cardiomyopathies and conduction defects can 
be attributed to altered expression, function, or subcellular localisation 
of cardiac ion channels and associated membrane proteins [43-46]. 
Thus the identification and characterization of membrane proteins is 
paramount to the understanding of cardiac dysfunction and the search 
for therapeutic targets. With this in mind, several techniques have been 
developed recently to isolate and purify plasma membrane proteins 
including: colloidal bead isolation, biotinylation and glycocapture, 
each having its own advantages and limitations which will be discussed 
in turn.

Colloidal silica bead membrane isolation: The silica bead plasma 
membrane isolation procedure uses positively charged colloidal silica 
beads to coat and bind to the anionic plasma membrane, and following 
homogenization and centrifugation, the plasma membrane is stripped 
from the rest of the cell [47] and then further purified in a discontinuous 

nycodenz gradient. Recently we refined this protocol in order to 
couple it with shot-gun proteomics [48] and used it to identify plasma 
membrane proteins in vivo [49] and in vitro [50]. Our in vitro analysis 
of the mouse and human cardiomyocytes identified a total of 3033 
mouse and 2762 cardiac proteins. This study method identified a total 
of 555 membrane associated proteins which included Tmem65, a novel 
cardiac membrane protein shown to regulate essential cardiomyocyte 
functionality [50]. This isolation procedure is however limited by 
its tendency to rupture cells, especially cells in early developmental 
stages which may have a dynamic membrane due to morphological 
immaturity and cause them to leak. This allows the beads to enter the 
cell and bind to internal organelle membranes thereby significantly 
contaminating the plasma membrane fraction [47,51].

Biotinylation: Biotinylation is used to isolate cell surface proteins 
by exploiting the strong affinity of biotin for avidin. Preparations of 
cell-impermeable, modified biotin allow it to bind to primary amines of 
exposed proteins in a cell culture system or using the in vivo application 
those accessible via the blood stream [52,53]. The proteins can then be 
isolated with avidin beads and following elution from the biotin-avidin 
complex these proteins can be identified using mass spectrometry 
[53]. We have previously utilized this technique to identify cell surface 
markers on linage specific stem cells, isolated from mouse embryos 
[54] which results in their complete separation using fluorescence 
assisted cell sorting (FACS). More recently, Strassberger et al. [55] used 
biotinylation combined with mass spectrometry to extract differentially 
expressed cell surface proteins in myeloid leukemia cell lines compared 
to normal human granulocytes. They identified a number of proteins 
found preferentially in myeloid leukemia cells and were able to target 
one of them, namely CD166/ALCAM, to kill these cells in vitro. This 
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Figure 1: Schematic of mass spectrometry workflow. Separation based on 2D gel electrophoresis and current organelle and post-translational modification 
separation have helped improve mass spectrometry analysis. Mass spectrometry imaging further is providing spatial distribution information of proteins and drugs 
with tissue sections.
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methodology is limited however in its ability to extract cell membrane 
proteins without an exposed extracellular domain thereby biasing 
against membrane proteins that are associated with the intracellular 
face of the plasma membrane and proteins fully enveloped inside the 
phospholipid bilayer.

Glycosylation: Glycosylation is the most common post-
translational modification [56] and aberrant glycosylation has been 
shown to be early indicator of cellular changes in a multitude of human 
diseases including cancer, inflammation and neurodegeneration 
[57-59]. Alterations in plasma membrane glycoproteins have also 
been reported in ischemia reperfusion injuries [60] and cardiac 
hypertrophy [61]. Most membrane-bound and secretory proteins 
synthesized by mammalian cells are glycosylated and thereby may 
provide useful diagnostic tools as proteins that are shed from the 
cell surface during disease as well as offer mechanistic insights into 
disease progression and pathology. This understanding has thereby 
stemmed a wide variety of techniques to specifically isolate cell surface 
and plasma secreted glycoproteins. These include separation based 
on hydrophilic interactions [60,62,63], exploiting the high affinity of 
glycosylated proteins and peptides for lectins and the chemical capture 
of glycoproteins using hydrazide technology. A variety of lectins are 
available that selectively bind to different oligosaccharide epitopes and 
thereby can specifically isolate for a unique sub-set of glycoproteins 
containing a specific glycan moiety [59]. Although no one lectin is 
capable of isolating a cell’s complete glycoprotein complement, studies 
are now combining multiple lectins to achieve greater coverage [59].

Hydrazide technology aims to isolate a broader range of 
glycoproteins. This procedure involves oxidizing carbohydrates, to 
convert cis-diol groups into aldehydes so that they may be linked to 
hydrazide groups on solid supports, leading to their enrichment [56]. 
This technique was further refined for use in live cells by Wollscheid 
et al. [64] who showed that the gentle biocytin hydrazide labelling 
of oxidized carbohydrates is cell impermeable and can therefore be 
used to characterize changes in the cell surface glycoproteome. This 
procedure, termed cell surface capture (CSC), has recently been used 
to establish a cell surface protein atlas (CSPA) in which researchers 
have used CSC technology to isolate surface proteins from 41 human 
and 31 mouse cell types providing an invaluable cell surface resource 
[65]. A study conducted by Parker et al. [60] used multiple methods 
to enrich for glycoproteins in myocardial ischemia and reperfusion 
injury and identified extracellular and cell surface proteins involved 
in the various stages of cardiac remodeling. Their study suggested that 
cardiac remodeling following myocardial ischemia may begin much 
earlier than originally hypothesized. In a more recent study Yang et 
al. [66] identified 32 glycosite containing peptides elevated in a canine 
model of dyssynchronous heart failure of which 13 glycopeptides 
were reverted to normal levels after cardiac resynchronization 
therapy [66]. The major drawback of hydrazide based techniques is 
that efficient detection of glycosylated proteins requires the removal 
of the oligosaccharide moieties from the glycoprotein [67]. For 
N-glucosylation the β- aspartylglycosylamine linkage can be selectively 
cleaved using peptide-N-glycosidase F (PNGaseF) but until recent 
developments those moieties in which the root β-1,4- acetylglucosamine 
had been fucosylated were missed in the analysis [68]. Recent protocols 
however, have used Lens culinaris Agglutinin (LCA) to enrich for core 
fucosylated (CF) proteins, followed by Endo F3 partial deglycosylation 
and NanoLC- MS/MS. This identified CF proteins in human serum 
from healthy volunteers and patients with pancreatic cancer [69] 
and hepatocarcinoma [70]. This technique provides an essential tool 
to ensure greater coverage of the glycoproteome and indeed Parker 

et al. [60] demonstrated that a combination of techniques to enrich 
for glycoproteins offers greater depth. O-linked glycosylation further 
lacks a common moiety, leaving its cleavage more challenging and to 
date a cocktail of glycosidases have been used [68]. A lack of consensus 
currently limits their detection and thus the majority of studies have 
focused on N-linked glycoprotein analysis [59].

Phosphoproteomics

When discussing cardiac sub-proteomes it is hard to ignore the 
phosphoproteome. Reversible protein phosphorylation is not only vital 
for the normal coordinated function of the heart but is also implicated in 
disease initiation and progression. This post- translation modification is 
essential for propagating cell signaling events in response to hormones, 
second messengers and pharmacological agents.

Several methods exist to subtract phosphorylated proteins from 
the cellular milieu which include both in-gel and gel-free methods. 
Using 2D-gel electrophoresis a visual migration of the protein can 
be monitored due to additional charge of the phosphorylated group 
which can then be specifically excised from the gel, purified and then 
identified by mass spectrometry methods. A recent study using 2D-gel 
electrophoresis identified 22 proteins with significantly changed 
phosphorylation states expressed during the acute off- target cardiotoxic 
effects of the chemotherapeutic agent doxorubicin. This study 
highlighted key signaling pathways involved in energy metabolism, 
sarcomeric function/structure and chaperone activity which could lead 
to identification of the early events involved in cardiotoxicity [71].

As previously mentioned, there has been a deviation from gel 
based methods and gel-free methods are predominantly used for 
phosphoprotein and peptide enrichment which include the use of 
titanium dioxide beads and immobilized metal affinity chromatography 
(IMAC) combined with mass spectrometry [72]. Titanium dioxide has a 
very high affinity for phosphopeptides and has been shown to be able to 
isolate femtomoles of phosphopeptides from complex protein mixtures 
[73,74]. Prior to the identification of proteins and signaling pathways 
involved in disease processes, it is essential to assess the healthy state. 
Lundby et al. [75] used titanium dioxide phospho- enrichment coupled 
to LC–MS/MS, to quantify the changes in the mouse cardiomyocyte 
phosphoproteome in vivo upon acute beta1-adrenergic and beta2-
adrenergic stimulation. They uncovered 670 phosphorylation sites 
regulated by beta1-adrenergic stimulation which included previously 
unknown modifications of channels and transporters affecting cardiac 
function, highlighting the utility of phosphoproteomics analysis for 
elucidating cardiac signaling networks [75,76]. Wijeratne et al. [77] 
describe a novel workflow involving reductive alkylation by acetone 
to label peptides in tandem with titanium dioxide isolation followed 
by mass spectrometry based identification to effectively quantify 
phosphorylative changes in a mouse model of ischemia-reperfusion 
injury. Using this methodology they found increased cardioprotection 
in a mouse model of ischemia- reperfusion injury was due to low 
molecular weight fibroblast growth factor-2 (LMW FGF2) mediated 
phosphorylation of key downstream signaling pathways [77].

Quantification

Although an in-depth review of protein and peptide quantification 
is outside the scope of this review they have been reviewed extensively 
elsewhere [23,78-80]. The most commonly used techniques for peptide 
quantification used in mass spectrometry can be divided into those 
that offer a relative quantification between healthy and diseased/
treated samples and those that offer absolute quantification. Label 
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free relative quantification techniques include spectral counting, peak 
intensity comparisons and more recently SWATH analysis [50,79,81-
83] whereas labelled techniques include SILAC, iTRAQ, enzymatic 18O 
labelling and in vivo 2H20 labelling [79,84-87]. Absolute techniques 
incorporate the use of internally spiked absolute quantification (AQUA) 
peptides to quantify absolute amounts using MRM, SRM, iTRAQ [88-
91]. These techniques have been extensively used in cardiovascular 
proteomics [23,78,80] and can be combined with a number of the 
sub-proteome separation techniques in which quantification of 
differentially expressed proteins are informative about mechanism of 
disease progression, pathway analysis of potential drug targets and 
biomarkers. For example, the quantitative accuracy of SWATH analysis 
has been compared to that of SRM analysis [92] and has the ability 
to reproducibly identify low abundance proteins from small numbers 
of cells (50 000 cells) and from small amounts of tissue from biopsy 
samples (0.2-0.5 mg) including cardiac tissue [92]. SWATH and SRM 
were used in combination with CSC glycoprotein enrichment methods 
to provide quantitative and qualitative expression of 78 human and 
mouse tissue cell surface proteins [65]. Lau et al. combined in vivo 2H20 
labelling of drinking water with subcellular fractionation to quantitate 
protein dynamics and turnover in healthy mice and those with cardiac 
hypertrophy. This invaluable resource of cardiac disease progression 
provides quantification of the in vivo half-lives of 3,228 proteins and 
the expression of 8,064 proteins under healthy and diseased states 
[86]. Lam et al. [93] combined differential centrifugation to isolate 
mitochondria from human and mouse hearts with TiO2 purification 
of phosphoproteins with MRM quantification to establish 176 MRM 
transitions specific to protein modifications. These transitions can now 
be used to quantify alterations in the level of phosphorylation under 
conditions of disease or pharmacological intervention.

New mass spectrometry technologies

The advancement of mass spectrometry instrumentation and 
computational technologies has vastly improved the coverage and 
depth of the proteome. A comparison of generations of the Q Exactive 
instrument for example, showed that the latest iteration of the Q 
Exactive HF has the capability to detect > 4000 proteins in a 1 hour 
gradient from 1µg of Hela cells prior to any fractionation [94]. These 
powerful methods offer great versatility and depth when dealing with 
precious samples, in particular healthy human tissues which can not 
only be rare and difficult to obtain but also only available in small 
quantities retrieved from patient biopsies. These restrictions therefore 
limit the amount of sample manipulation and fractionation prior to 
analysis. Indeed, we have used these powerful methods to identify 
2754 human atrial protein groups and 2825 human ventricular protein 
groups from which we were then able to identify and classify chamber 
unique proteins without prior fractionation [95]. If however the initial 
sample quantity does lend itself to prior fractionation, the possibilities 
are extensive as demonstrated by TiO2 enrichment of phosphoproteins 
which when analyzed gave 7600 unique phosphopeptides in a 1 hour 
gradient of elution [94].

Mass spectrometry imaging: One limitation of sub-fractionation 
is the loss of spatial distribution of proteins and drugs. Emerging 
technologies of mass spectrometry imaging (MSI) are now providing 
a powerful tool that allows the analysis, detection and mapping of 
the biodistribution of proteins and drugs within histological sections 
[96]. MSI can detect endogenous and exogenous analytes including 
low molecular weight drugs, lipids and proteins directly from tissue 
samples [96] (Figure 1). This technique has traditionally been linked 
to MALDI ionization and accomplished by using tissue sections 

mounted onto a conductive slide in water or gelatin to which one of 
several MALDI matrices are sprayed depending on the type of analyte 
to be measured [96]. The matrix then co- crystalizes with the cell 
components and then the region of interest is subjected to MALDI 
ionization for detection by mass spectrometry [96,97]. More recently 
MSI has evolved to use desorption electrospray ionization (DESI) [98], 
which overcomes complications of matrix-analyte co-crystallisation 
issues [99]. The technical aspects of MSI and sample preparation are 
beyond the scope of this review but have previously been discussed 
in depth [96-99]. Using these techniques Martin-Loenzo et al. [100] 
pinpointed specific lipids and proteins to atherosclerotic aortic mouse 
cardiac sections. They showed that thymosin beta 4 is differentially 
overexpressed in the intima layer of atherosclerotic tissue compared to 
media layers providing new avenues of research in the area [100]. This 
technique further holds a lot of promise in drug distribution analysis.

Histological sections of models of drug dosed tissue allow the 
detection of drug and metabolite distribution. MSI has recently been 
used to monitor and quantify the release of celecoxib from packaging 
nanoparticles delivered to the healthy and ischemic myocardium of 
in vivo models. This study identified the angiogenic potential of this 
drug when delivered locally to a specific region, pointing to a potential 
new approach for treating ischemia [101]. Drug-induced cardiotoxicity 
remains the major contributor to drug attrition and withdrawal from 
patient distribution and a major complication for off- target toxicities 
of a multitude of drugs [6]. Whole body MSI offers the promise to 
determine localization of both parent and metabolite distribution 
within every organ or cell type of the body early in drug development 
stages, potentially aiding drug testing and reducing adverse off-target 
reactions [96,102,103]. One major drawback of MSI is the inability 
to directly identify proteins and the potential need to coordinate 
experiments with tandem mass spectrometry methods to carry out 
sequence identification [104,105]. However, with the continuing 
development of technologies, databases are now being established by 
the MSI community that allows the identification of molecules directly 
from the mass spectrometric measurement [106]. The identification 
of proteins [107,108] and glycoproteins [109,110] as well as lipids and 
cell metabolites [106] from MSI experiments of healthy versus diseased 
or pharmacologically treated tissue will undoubtedly reveal deeper 
insights into disease mechanisms and pathways at a tissue level.

Conclusions
This review highlights current technologies that have been 

developed and modified to further cardiovascular knowledge through 
proteomics. Taken together, these studies highlight a systems biology 
approach allowing the identification and quantification of potential 
targets, biomarkers, and mechanisms of disease progression including 
identification of post-translational modifications as well as methods 
to gain insights on the biodistribution of parent drugs and active 
metabolites. Applying the correct innovative techniques for a given 
system under healthy, diseased and drug-dosed conditions will allow 
us to gain further understanding into mechanisms that cause disease 
and drug-induced cardiotoxicity. These insights will in-turn help us to 
gain a deeper comprehension into cardiac disease and to reduce the 
number of drugs that can cause adverse cardiac reactions before they 
enter patient circulation.
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