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Stable, guest-free porous molecular crystals are uncommon. By contrast, 

organic crystals with guest-occupied cavities are frequently observed, but 

these cavities tend to be unstable and collapse on removal of the guests – this 

feature has been referred to as “virtual porosity”. Here, we have trapped the 

virtual porosity in an unstable, low-density organic molecular crystal by 

introducing a second molecule that matches the size and shape of the 

unstable voids. We call this strategy ‘retro-engineering’ because it parallels 

organic retrosynthetic analysis, and it allows the metastable 2-D hexagonal 

pore structure in an organic solvate to be trapped in a binary cocrystal. Unlike 

the crystal with “virtual porosity’, the cocrystal material remains single 

crystalline and porous after guest removal by heating.  

Macrocycles, molecular cages, and other organic molecules often form crystalline solvates, or 

inclusion compounds, that comprise guest-filled cavities or channels. These channels are 

reminiscent of pores, but they are typically not stable to guest removal. Barbour1 referred to 

this as “virtual porosity” because it can be created, in a virtual sense, by deleting guests in 

silico. Molecular organic crystals with conventional porosity, where the pores are stable in 

the absence of guests, are much rarer2-6. In principle, solvated crystals with virtual porosity 

provide a structural blueprint for analogous functional materials with true, conventional 

porosity. Indeed, “virtual” porosity can sometimes be preserved by the application of careful 

technique. For example, Mastalerz generated conventional mesoporosity in a large organic 

cage molecule, but only when the solvent was removed by a specific series of solvent 

exchanges7. However, while the use of techniques such as solvent exchange or supercritical 

drying8, can preserve porosity in some cases, the resulting materials may often be too fragile 

for practical applications. Here, we demonstrate that virtual porosity can be trapped in a 

stable cocrystal via a crystal retro-engineering approach. This involves identifying a second 
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molecule with the appropriate shape and dimensions required to stabilize a proportion of the 

solvent-filled “virtual pores”.  

Binary, non-covalent cocrystals have been studied extensively9. In addition to salts and 

cocrystals of simple organic molecules, a wide variety of host-guest systems are known, such 

as the macrocyclic inclusion complexes of cucurbiturils10 and neutral calixarene analogues11. 

Directionally bonded networks, often involving hydrogen bonding interactions12, are 

especially common in binary or higher-order cocrystals. Indeed, complementary hydrogen 

bond pairing has been used to predict probable cocrystals13,14, or, as described by Desiraju, to 

‘synthesise’ molecular crystals15. However, the structures of cocrystals are still difficult to 

manipulate in a programmed way. Isomorphous substitutions in molecular crystals are 

uncommon because even a small change in the structure of the molecular building blocks can 

lead to a large change in the resulting crystal packing. Hence, there are no real molecular 

analogues of isoreticular metal-organic frameworks (MOFs)16,17, where families of 

isostructural porous materials exist for a wide range of organic linkers.  

Despite these difficulties, a number of crystal engineering strategies have been developed for 

organic cocrystals. For example, Desiraju showed that a weakly bound bipyridine molecule 

could be replaced in a ternary molecular solid using five suitably-sized analogues without 

altering the crystal packing18. Likewise, Davis found that the structure of a molecular scaffold 

composed from a steroidal urea contains a 1-D channel that can be decorated with a number 

of chemical functionalities without altering the overall packing19-21. Of particular relevance 

here, McKeown stabilized an unstable solvated pthalocyanine crystal by using a ligand 

exchange approach to produce molecular cocrystals that could then be desolvated to produce 

conventional porosity22. This ‘wall tying’ report is elegant but so far unique, and it relies on 

the specific chemistry of metal pthalocyanines.  

We have produced porous molecular crystals in a modular way by cocrystallizing two23,24 or 

even three25 organic cage molecules. However, this has been limited to structurally similar 

molecules, and our 3-component cocrystals25 comprised three [4+6] imine cages, CC1, CC3 

and CC4, each with the same tetrahedral symmetry and approximate size (Figure 1). 
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Figure 1: Synthesis of ‘porous organic cage’ molecules: Reaction scheme for 

preparation of tetrahedral [4+6] cage molecules CC1, CC3 and CC4, catalysed by 

trifluoroacetic acid (TFA).  

As these various examples show, programmable molecular substitution in organic cocrystals 

is still highly challenging, and most examples involve relatively small structural changes in 

the constituent molecular building units, as in our ternary ‘porous organic alloys’25. 

Here, we show that porous molecular cocrystals can be formed from two cages with 

dissimilar size and symmetry: a tetrahedral [4+6] cage and a smaller trigonal [3+2] cage. The 

resulting porous cocrystal was ‘retro-engineered’ from the closely related structure of a 

metastable solvate of the [4+6] cage, which has 2-D “virtual porosity” that is not stable to 

solvent guest removal. Specifically, the [3+2] partner cage fills an unstable cavity in the 

virtually porous solvate that would otherwise collapse on removal of the solvent. 

Incorporation of the [3+2] partner cage results in a stable, permanently porous cocrystal with 

the same underlying 2-D pore structure as that of the [4+6] molecular crystal.  

 

Results 

CC3-R is a homochiral, shape-persistent porous organic cage prepared by the reaction of 

triformylbenzene with (R,R)-1,2-cyclohexanediamine (Figure 1)26. When crystallized from 

neat dichloromethane (CH2Cl2) or chloroform (CHCl3), CC3-R packs in a window-to-

window arrangement, thus generating an interconnected, diamondoid 3-D pore network 

running through the intrinsic cage voids. This polymorph, CC3α, (Figure 2i), was shown by 

crystal structure prediction (CSP) calculations23 and by DFT calculations for cage dimers24 to 

be the most stable crystal packing for CC3-R.  



 4 

While CC3α is the most stable desolvated polymorph for CC3-R, we have found recently 

that this cage can also form metastable solvates with different crystal packings, for example 

when CC3 is crystallized using diethyl ether27. Here, crystallization of CC3-R from a 

CHCl3/MeOH solution (< 50 % v/v CHCl3) affords two structurally similar solvate phases as 

a concomitant mixture. Both solvates transform to the same desolvated phase upon heating to 

300 K, and hence only one of these solvate forms is described here, phase 1 (Supplementary 

Information, section 2.0–2.4, Figure S1–11). The MeOH solvate of CC3-R, referred to as 

phase 1, was refined in the chiral monoclinic space group I2, with one complete CC3-R 

molecule and a number of partially-occupied solvent molecules in the asymmetric unit. In the 

crystal packing of CC3-R∙(MeOH)12∙(H2O)4 (phase 1), each cage molecule packs in a 

window-to-window arrangement with three neighboring cage molecules at a cage centroid 

separation distance of ~ 11.7 Å (Figure 2a). Extension of this window-window pairing 

arrangement in a 2-D fashion generates an interconnected, solvent-filled “virtual” pore 

network running through the intrinsic cage voids (Figure 2b). These 2-D honeycomb pore 

networks are approximately planar and are layered in an offset manner with interlayer voids 

between the 2-D networks (Figure 2c). The volume of the unit cell per cage molecule is 500 

Å3 larger for phase 1 compared to the thermodynamic, solvent-free polymorph, CC3α 

(Supplementary Information, section 2.5, Table S1), indicating less efficient packing of the 

cages in the presence of MeOH. Most of the additional volume is located in intralayer 

extrinsic voids between the hexagonally arranged CC3-R molecules. 
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Figure 2: A metastable solvate phase of a porous cage, phase 1, has “virtual” 2-D 

pores but this transforms over time to a denser phase, CC3, with 3-D pores:  

a, Representation of the single crystal structure for CC3-R∙(MeOH)12.5∙(H2O)3 (phase 1) 

showing window-to-window cage pairing arrangement. b, Hexagonally-arranged CC3-R 

molecules generate a 2-D honeycomb, solvent-filled “virtual pore” network (yellow), shown in 

perspective view [101], and c, [010]. d, e, Single crystal structure after heating to remove 

solvent to generate (CC3-R)2 (phase 2) showing cage window pairings from 

crystallographically independent pore networks. f, 2-D honeycomb pore network in 

perspective view [001], and g, [010]. Phase 2 is metastable and transforms easily to the 

thermodynamic, solvent-free polymorph, CC3α, with a 3-D pore network, h and i.  

To investigate the stability of phase 1 to solvent removal, a flash-frozen single crystal was 

gradually heated from 100 K to 300 K in 10 K intervals at a ramp rate of 5 K min-1; the 

equilibration time at each temperature was 30 minutes. This careful, stepwise process 

prevents loss of singularity upon desolvation and results in a single-crystal-to-single-crystal 

transformation to an alternate monoclinic C-centred unit cell. This new phase, phase 2, was 

refined in the space group C2 with two complete CC3-R molecules in the asymmetric unit. 

No solvent molecules were assigned in the single crystal structure of phase 2, although it is 

possible that a small amount of diffuse solvent still occupies the interconnected voids 

(Supplementary Information, section 2.2). Comparing phase 1 with phase 2 reveals a 
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rearrangement in molecular packing, but no significant change to the structure of the cage 

itself or the intralayer voids between the hexagonally arranged CC3-R molecules (c.f., Figure 

2b & 2f). As for phase 1, cage window pairing in phase 2 leads to alignment with three 

neighbouring cage molecules (Figure 2d & 2e), and extending this in 2-D generates an offset 

honeycomb pore network (Figure 2f). However, unlike the “virtual pores” in phase 1, the 2-

D pore layers in phase 2 are puckered, rather than planar (c.f., Figure 2c & 2g) and the offset 

layering for the 2-D networks of CC3-R molecules in phase 2 is laterally sheared from that 

found in phase 1 (c.f., Figure 2b & 2f). For phase 2 the 2-D networks also pack ~ 0.7 Å 

closer together than for phase 1 (Supplementary Information, section 2.5, Table S1); a 

structural transformation which reduces the interlayer lattice voids. The transformation to 

phase 2 reduces the volume of the unit cell per cage molecule by 179 Å3 with respect to 

phase 1 (Supplementary Information, Table S1).  

Phase 2 persists up to 400 K (Supplementary Information, section 2.5, Table S1), although 

heating to this temperature causes a complete loss of crystal singularity after 3 hours. We also 

investigated this transformation for bulk phases, screening a number of samples with varying 

concentrations of MeOH in CHCl3, or MeOH in CH2Cl2 (Supplementary Information, section 

2.6, Table S2). Two solvated phases of CC3-R were isolated from CH2Cl2/MeOH solvent 

mixtures, which were isostructural to those isolated from CHCl3/MeOH (Supplementary 

Information, section 2.7–2.8, Figure S12–13). Analysis of powder XRD (PXRD) patterns 

recorded for these bulk samples after full evacuation of the pores revealed only one 

detectable phase: the thermodynamic polymorph, CC3α (Figure 2i; Supplementary 

Information, Section 2.9–2.11, Figure S14-21). Hence, unless very careful steps are taken 

during desolvation, thermal transformation of phase 1 to bulk CC3α occurs via metastable 

phase 2 (Figure 2b, 2f & 2i). This transformation increases the crystallographic density from 

0.836 g/cm3 in phase 2 to 0.973 g/cm3 in CC3α. Previously, Atwood reported a porous 

frustrated crystal packing of the host molecule p-tert-butylcalix[5]arene that could be trapped 

by carefully activating a toluene solvate crystal at 120 °C while activation at 160 °C resulted 

in a transformation of the host molecule to its thermodynamic, non-porous polymorph28. In 

our case, the metastable structure, phase 2, could not be isolated on bulk scale. 

Phase 1 and phase 2 are unstable with respect to CC3α because of the additional extrinsic 

voids between the cages. The extrinsic intralayer hexagonal voids in phase 1 (Figure 3a) and 

phase 2 (Figure 3b) are capped by CC3-R molecules layered directly above and below. The 

resulting enclosed voids can be described by vertical and horizontal vectors (Supplementary 
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Information, Figure S22–23) and by their shape (Figure 3c). In principle, the 2-D virtual 

intralayer pores in phase 1 and phase 2 might be preserved by identifying an involatile 

molecule that fits precisely in these intralayer extrinsic voids (cyan spheres, Figure 3a & b), 

hence preventing structural reorganization to CC3α. That is, a stable cocrystal with 

conventional 2-D porosity might be ‘retro-engineered’ from the unstable, virtually porous 

phase 1 solvate. 

We noticed that the symmetry and dimensions of these intralayer extrinsic voids are 

reminiscent of certain trigonal [3+2] cycloimine cages (cages [3+2]#1-5, Table 1, c.f., Figure 

3c & 3d), synthesized by cycloimine condensation reactions of tris(2-aminoethyl)amine with 

different dialdehydes (Supplementary Information, section 3.0, Table S3, Figure S24–34). 

Cages [3+2]#1-4 were synthesized via a modified literature method29,30. Cage [3+2]#5 is a 

novel macrocycle, reported here for the first time.  

 

Table 1. Structures of trigonal [3+2] organic cages prepared by reaction of dialdehyde 

precursors with tris(2-aminoethyl)amine.  

 

Molecular structures from single crystal structures are given for three of the five cages 

([3+2]#1,4,5). Ellipsoids displayed at 50 % probability level, solvent is omitted. X-ray structures 

were not obtained for cages [3+2]#2,3, so molecular models were constructed and a short 

conformer search (1000 steps in a low-mode search in MacroModel with the OPLS-AA 

forcefield) was performed to find the lowest energy conformation31. Approximate cage 

dimensions calculated using distant hydrogen–hydrogen contacts plus Van der Waals radius 

shown for comparison (molecules not shown on common scale). 

 

 [3+2]#1 [3+2]#2 [3+2]#3 Reduced 
[3+2]#4 

[3+2]#5 

Chemical 
structure of 
dialdehyde 

    

   

Structure of 
trigonal [3+2] 
cage molecules 
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We screened the propensity of these [3+2] cages to cocrystallize with CC3-R, and thus to 

direct CC3-R to be isostructural with phase 1 by filling the unstable intralayer extrinsic 

voids. A cocrystallization screen was carried out where the [3+2]#1-5 cages were mixed, 

individually, with CC3-R in a 1:2 molar ratio. This ratio was chosen because we expected 

that only a single trigonal [3+2] cage could be accommodated in each intralayer extrinsic 

void, and there are half as many intralayer extrinsic voids in the crystal lattice in relation to 

the number of CC3-R molecules in phase 1 and phase 2. In each case, the two different 

cages were dissolved in CHCl3, followed by crystallization, either by slow solvent 

evaporation or by vapor diffusion of an antisolvent (MeOH). Using these conditions, only 

one of the trigonal cage molecules, [3+2]#5, led to a new phase that contained CC3-R. 

The crystallization of CC3-R and [3+2]#5 by antisolvent diffusion resulted in triangular, 

plate-like crystals (Supplementary Information, section 4.0, Figure S35), as opposed to the 

needle shaped crystal habit of phase 1 or the octahedral crystal habit known for CC3α32. 

Structural identification of this phase by single crystal XRD revealed the formation of a 

binary cocrystal of the desired composition, (CC3-R)2∙[3+2]#5, which had crystallised in the 

chiral trigonal space group R32 with the trigonal [3+2]#5 molecules positioned in the 

intralayer extrinsic voids. We are not aware of a previous example of a binary cocrystal 

comprising two structurally dissimilar organic cages23-25. The asymmetric unit comprises one 

third of a CC3-R molecule centered around a threefold rotation axis, plus one sixth of a 

[3+2]#5 cage centered around the intersection point of three twofold rotation axes and one 

threefold rotation axis. The [3+2]#5 cage is disordered over two positions, in which it is 

rotated 43° on a threefold rotation axis that runs the length of the molecule, passing through 

the tertiary amine ‘poles’. One CHCl3 molecule was found in the intrinsic CC3-R cavity 

along with, in total, two disordered MeOH solvent molecules located in an extrinsic void 

spanning between two window-to-window packed CC3-R molecules. 

The solvated single crystal, (CC3-R)2∙[3+2]#5, was heated in situ under a dry nitrogen gas 

stream (Supplementary Information, section 4, Figure S36–43). Heating to 300 K caused 

partial loss of the CHCl3 and MeOH solvent; subsequent heating to 450 K led to complete 

loss of lattice solvent without any evidence of crystal degradation or change in structure. An 

improved data set was obtained on cooling the single crystal to 100 K, and the difference map 

again indicated the absence of any electron density that could be ascribed to solvent.  
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The crystal packing of (CC3-R)2∙[3+2]#5 closely resembles that of phase 1 and phase 2 in 

terms of the orientation of the CC3-R molecules, with the addition of the smaller trigonal 

cage, [3+2]#5, in the extrinsic voids (Figure 3). Indeed, the distance between the cage 

centroids of the hexagonally arrayed CC3-R molecules is 12 Å, only slightly longer than the 

equivalent distance in phase 1 (11.7 Å) or phase 2 (range 11.3–11.8 Å). In addition, crystal 

structure comparison between phase 2 and (CC3-R)2∙[3+2]#5, reveals that these crystal 

structures are isostructural with respect to the 2-D packing of CC3-R molecules (Figure 4). 

Hence, an equivalent 2-D honeycomb pore network exists in desolvated (CC3-R)2∙[3+2]#5 

(Figure 3h & 3i). The three terminal phenyl rings of the [3+2]#5 cage impinge on the pore 

channel that runs through intrinsic CC3-R cavities (Figure 3h), therefore modifying the 

limiting diameter of these pores. The vertical dimension of the [3+2]#5 cage molecules is also 

longer than the equivalent dimension for CC3-R. As a result, the trigonal [3+2] cages 

protrude out of the 2-D pore network (Figure 3i), and these [3+2] cages act as ‘pegs’ that 

confer additional stability, preventing lateral shearing of the 2-D layers upon desolvation 

(Figure 3k). The trigonal [3+2] cage is size-excluded from the intrinsic CC3-R cavities: 

hence, [3+2]#5 is able to stabilize the extrinsic voids in phase 1 / phase 2 without also filling 

the 2-D layered pore channels. 
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Figure 3: ‘Retro-engineering’ a binary porous cocrystal: a, Cyan sphere (radius 4 Å) 

highlighting the extrinsic void in phase 1 and, b, phase 2 (Grey, C; blue, N; white, H; except 

for the cyclohexane vertices, shown in red: 2D pore network shown in yellow). c, 

Visualization of solvent-accessible surface for the extrinsic void in phase 2 (cyan spheres, a 

+ b) for a N2 probe radius (1.82 Å)33. d, Molecular surfaces for five different trigonal [3+2]#1-5 

cage molecules (see Table 1) (PyMol Molecular Graphics System); all molecules shown on 

same scale. e, f, Single crystal structure for solvent-free (CC3-R)2∙[3+2]#5. The carbon atoms 

of the [3+2]#5 cage, which stabilizes the voids in phase 2, are colored cyan. e, Structure 

shown in perspective view [001], and, f, [010]. The [3+2]#5 cage, g, intercalates into the 

crystal structure and stabilizes the 2-D hexagonal pore network, h, i. Extended crystal lattice 

showing three layers of offset 2-D pore networks. j, k; the layered 2-D pore channels are 

highlighted in orange, yellow, and green. The structures are shown in perspective view [001] 

(e,h,j) and [010] (f,i,k).   
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Figure 4: The 2-D porosity in the stable binary cocrystal is ‘retro-engineered’ from the 

unstable CC3 solvate: a, Crystal structure of CC3 phase 2 (red) and, b, (CC3-R)2∙[3+2]#5 

(blue). c, Overlay of crystal structures shows that the 2-D pore layers are isostructural in 

these two materials. [3+2]#5 component shown in cyan; unit cell axes are shown.  

 

One limitation of using a CHCl3/MeOH antisolvent mixture for the preparation of this 

cocrystal is the simultaneous formation of phase 1 in which the smaller trigonal [3+2] cage is 

not included. To address this, a number of alternative cage concentrations and relative 

stoichiometries were investigated, as was the use of alternative antisolvents (Supplementary 

Information, Table S4). After some optimization, we found that dissolving the two cages in 

CH2Cl2 (instead of CHCl3) and then adding a five-fold volumetric excess of Et2O led to phase 

pure crystals of the binary (CC3-R)2∙[3+2]#5 cocrystal after slow evaporation of two thirds of 

the solvent volume (Supplementary Information, section 5.0). These crystals were activated 

by heating at 573 K under dynamic vacuum for 16 hours, after which time the crystals were 

still single, enabling accurate structure solution of a crystal mounted in an environmental gas 

cell kept under dynamic vacuum (Supplementary Information, Section 5.1, Figure S45). 

PXRD data, recorded on the same batch of bulk material demonstrated that there is only one 

crystalline phase present after activation, (CC3-R)2∙[3+2]#5 (Supplementary Information, 

section 5.2, see Figure S46 for Le Bail fit). The long-term thermal stability of (CC3-

R)2∙[3+2]#5 at 573 K is very different from isostructural phase 1, which quickly transforms to 

CC3α, via phase 2, with only modest heating. This validates the ‘retro-engineering’ strategy 

of filling an unstable solvent void with a second, non-volatile cage molecule. 

Mapping of the solvent-accessible surface in (CC3-R)2∙[3+2]#5 reveals that the intrinsic cage 

voids are formally disconnected to a probe radius of 1.20 Å due to the insertion of the 

pendant aromatic rings of [3+2]#5 into the pore channels. However, as a result of cooperative 

diffusion, as observed for formally non-porous calixarenes34 the cage voids are accessible to 
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small guests. For example, crystals of (CC3-R)2∙[3+2]#5 were found to adsorb CO2 

(1.7 mmol/g) with good ideal selectivity over N2 at 273 K (Supplementary Information, 

section 6, Figure S48-52). We and others have reported CO2/N2 or CO2/CH4 selectivity for 

porous organic cages35-39. For (CC3-R)2∙[3+2]#5 at 1 bar pressure and at 293 K, the ideal 

CO2/N2 selectivity, S, is 10. This is lower than the quoted ideal selectivities reported by 

Zhang et al35-36,  but our material has a significantly higher absolute CO2 uptake (1.0 mmol g-1 

for (CC3-R)2∙[3+2]#5 versus 0.1–0.25 mmol g-1 at 1 bar and 293 K for the Zhang material), 

although our material has a lower absolute CO2 uptake than that reported by Mastalerz et al 

(3.3 mmol g-1 at 298 K; CO2/N2 selectivities not reported).37.  

Discussion 

We have successfully introduced functional, gas-selective porosity into a binary cocrystal that 

was retro-engineered from an unstable solvate that has only “virtual porosity”. The cocrystal 

is exceptionally stable, remaining single crystalline up to 573 K. The approach relies on the 

close shape match between [3+2]#5 cage and the unstable voids in phase 1, though 

preliminary experiments suggest a degree of structural tolerance here: for example, the 

slightly bulkier tolyl analogue of [3+2]#5 appears to act in much the same way.  

In principle, this retro-engineering strategy might be applied to other unstable solvates, 

providing that an involatile molecule, or crystal coformer, can be identified with the correct 

size and shape to stabilize the solvent-filled voids (c.f., Figure 3c & 3d, right). This strategy 

might also allow other solid-state properties to be retro-engineered, transforming the 

properties of the resulting material, just as structural mimicry has been used previously for 

photoreactive materials40. Unlike McKeown’s “wall tying” strategy22, our retro-engineering 

approach does not rely on specific metal-ligand chemistry: in principle, therefore, this method 

might be applicable to almost any molecular crystal where an unstable solvent void can be 

back-filled by an appropriate involatile molecule, or ‘coformer’. 

To generalize the approach, however, will require a more directed strategy for identifying 

appropriate crystal coformers. In this first example, the structural ‘retro-engineering’ is 

heuristic, and is based on somewhat qualitative comparisons of the size and geometry of the 

extrinsic voids with known trigonal [3+2] cages (Figure 3d). In the future, this heuristic 

approach might be translated into a more quantitative, computational strategy. For example, 

in the discovery of new drug molecules, protein docking simulations can be used to screen 

the affinity of a potential target compound for a particular binding site41. Likewise, new 



 13 

zeolite templates have been discovered by computationally ‘growing’ hypothetical template 

molecules inside the desired zeolite cavity, and then ranking their stabilizing influence42,43. 

Equivalent strategies might be devised for predicting molecules, or coformers, that confer 

stability on unstable, low-density organic solvates, such as phase 1, which are commonly 

observed for cages, macrocycles, and other molecules. This could be done, for example, by 

docking candidate coformers obtained from crystallographic database searches with specific 

virtual pores in a solvate, thus providing a more general crystal retro-engineering 

methodology. This could be useful for finding new porous solids, and also for creating other 

solid-state functions in molecular crystals. For example, crystal retro-engineering might be 

used to ‘trap out’ a specific molecular packing observed in an unstable solvate phase that is 

thought to be useful in organic electronics. While our example here is based on two organic 

molecules, there is no reason that the method cannot also be translated to organometallic 

molecules. Crystal retro-engineering might therefore form a useful supramolecular adjunct to 

synthetic approaches that seek to engineer functionality into molecular crystals via covalent 

modifications of the constituent molecules. 

More ambitiously, crystal structure prediction (CSP) methods23,44 always reveal a large 

number of hypothetical crystal packings that are unstable with respect to the global minimum 

structure, and these are often also lower in density. As CSP methods advance in scope, 

complexity, and speed, it might become possible to select such ‘virtual phases’ on the basis 

of a particular pore topology, or other property of interest (e.g., intermolecular distance, 

symmetry, polarization, etc.). Crystal retro-engineering could then be used to realise these 

hypothetical phases in the laboratory via computational selection of an appropriate coformer. 

Methods 

Materials. 1,3,5-Triformylbenzene was purchased from Manchester Organics, UK. All other 

chemicals were purchased from Sigma-Aldrich and used as received, unless otherwise stated.  

CC3-R was prepared according to methods described previously26. [3+2]#1-4 were synthesized 

via modified methods described previously29,30.  

X-ray crystallography. Single crystal XRD data were measured on a Rigaku MicroMax-007 

HF rotating anode diffractometer (Mo-Kα radiation, λ = 0.71073 Å, Kappa 4-circle 

goniometer, Rigaku Saturn724+ detector). Or for (CC3-R)2∙[3+2]#5, when collected under 

dynamic vacuum recorded in an environmental gas cell at beamline I19, Diamond Light 

Source, Didcot, UK using silicon double crystal monochromated radiation (λ = 0.6889 Å)45. 
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Empirical absorption corrections using equivalent reflections were performed with the 

program SADABS46. Structures were solved with SHELXD47, or by direct methods using 

SHELXS47, and reined by full-matrix least squares on F2 by SHELXL47. For (CC3-

R)2∙[3+2]#5 high-resolution PXRD data was collected on a sample loaded in a glass capillary 

kept under dynamic vacuum using the Mythen-II position sensitive detector (PSD) at 

beamline I11, Diamond Light Source, Didcot in transmission geometry (λ = 0.82699 Å)48,49. 

The θ circle was rocked through ±15° to improve powder averaging. Analysis of this powder 

diffraction pattern was carried out using TOPAS-Academic software50. Supplementary single 

crystal XRD data, including structure factors, is available free of charge from the Cambridge 

Crystallographic Data Centre (CCDC) via www.ccdc.cam.ac.uk/data_request/cif. CC3-

R∙(MeOH)11∙(H2O)4 (phase 1) CCDC # 979940. Formula C83H137N12O15; M = 1543.05 g∙mol-

1; monoclinic space group I2, colourless crystal; a = 21.6440(9) Å, b = 19.7822(8) Å, c = 

23.270(2) Å; β = 105.704(1)°; V = 9591.3(8) Å3; Z = 4; ρ = 1.069 g∙cm-3; μ = 0.074 mm-3; F 

(000) = 3356; crystal size = 0.42 x 0.42 x 0.39 mm3; T = 100(2) K; 80290 reflections 

measured (1.14 < < 23.27°), 13676 unique (Rint = 0.0721), 12573 (I > 2(I)); R1 = 0.1152 

for observed; wR2 = 0.3387 for all reflections; max/min residual electron density = 0.849 and 

-0.652 e∙Å-3; data/restraints/parameters = 13676/12/923; GOF = 1.600. (CC3-R)2 (phase 2) 

CCDC # 979941. Formula C72H84N12; M = 1117.51 g∙mol-1; monoclinic space group C2, 

colourless crystal; a = 33.883(8) Å; b = 20.467(5) Å, c = 25.712(6) Å; β = 95.249(8)°; V = 

17756(8) Å3; Z = 8; ρ = 0.836 g∙cm-3; μ = 0.050 mm-3; F (000) = 4800; crystal size = 0.42 × 

0.42 × 0.39 mm3; T = 300(2) K; 49205 reflections measured (1.16 < < 19.59°), 15202 

unique (Rint = 0.0659), 11751 (I > 2(I)); R1 = 0.0907 for observed; wR2 = 0.2673 for all 

reflections; max/min residual electron density = 0.749 and -0.462 e∙Å-3; 

data/restraints/parameters = 15202/0/1513; GOF = 1.075. (CC3-

R)2∙[3+2]#5∙(CHCl3)2∙(MeOH)8 CCDC # 979937. Formula C226H268N35Cl6O8; M = 3815.45 

g∙mol-1; trigonal space group R32, colourless crystal; a = 20.540(1) Å; c = 44.747(3) Å; V = 

16349(2) Å3; Z = 3; ρ = 1.163 g∙cm-3; μ = 0.143 mm-3; F (000) = 6105; crystal size = 0.24 × 

0.22 × 0.10 mm3; T = 100(2) K; 93085 reflections measured (1.98 < < 26.37°), 7399 

unique (Rint = 0.0572), 6528 (I > 2(I)); R1 = 0.0662 for observed; wR2 = 0.2001 for all 

reflections; max/min residual electron density = 0.456 and -0.550 e∙Å-3; 

data/restraints/parameters = 7399/2/541; GOF = 1.062. (CC3-R)2∙[3+2]#5 recorded under 

dynamic vacuum CCDC # 979936. Formula C216H237N35; M = 3323.41 g∙mol-1; trigonal 

space group R32, colourless crystal; a = 20.607(1) Å; c = 44.949(3) Å; V = 16530(2) Å3; Z = 
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3; ρ = 1.002 g∙cm-3; μ = 0.057 mm-3; F (000) = 5334; crystal size = 0.21 x 0.21 x 0.18 mm3; T 

= 293(2) K; 47559 reflections measured (1.41 < < 25.50°), 5334 unique (Rint = 0.1180), 

5185 (I > 2(I)); R1 = 0.0583 for observed; wR2 = 0.1801 for all reflections; max/min residual 

electron density = 0.219 and -0.221 e∙Å-3; data/restraints/parameters = 7538/0/463; GOF = 

1.036.   
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