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Abstract The effect of idealized wind-driven circulation
changes in the Southern Ocean on atmospheric CO2 and

the ocean carbon inventory is investigated using a suite of

coarse-resolution, global coupled ocean circulation and
biogeochemistry experiments with parameterized eddy

activity and only modest changes in surface buoyancy

forcing, each experiment integrated for 5,000 years. A
positive correlation is obtained between the meridional

overturning or residual circulation in the Southern Ocean

and atmospheric CO2: stronger or northward-shifted wes-
terly winds in the Southern Hemisphere result in increased

residual circulation, greater upwelling of carbon-rich deep

waters and oceanic outgassing, which increases atmo-
spheric pCO2 by *20 latm; weaker or southward-shifted

winds lead to the opposing result. The ocean carbon

inventory in our model varies through contrasting changes
in the saturated, disequilibrium and biogenic (soft-tissue

and carbonate) reservoirs, each varying by O(10–100) PgC,

all of which contribute to the net anomaly in atmospheric
CO2. Increased residual overturning deepens the global

pycnocline, warming the upper ocean and decreasing the

saturated carbon reservoir. Increased upwelling of carbon-
and nutrient-rich deep waters and inefficient biological

activity results in subduction of unutilized nutrients into the

ocean interior, decreasing the biogenic carbon reservoir of
intermediate and mode waters ventilating the Northern

Hemisphere, and making the disequilibrium carbon reser-

voir more positive in the mode waters due to the reduced
residence time at the surface. Wind-induced changes in the

model carbon inventory are dominated by the response of

the global pycnocline, although there is an additional
abyssal response when the peak westerly winds change

their latitude, altering their proximity to Drake Passage and

changing the depth extent of the southward return flow of
the overturning: a northward shift of the westerly winds

isolates dense isopycnals, allowing biogenic carbon to

accumulate in the deep ocean of the Southern Hemisphere,
while a southward shift shoals dense isopycnals that out-

crop in the Southern Ocean and reduces the biogenic car-

bon store in the deep ocean.
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1 Introduction

The Southern Ocean is a unique region where carbon dioxide

is both sequestered into the upper ocean and returned from
the deep ocean to the atmosphere (Fig. 1). This contrasting

pattern of air-sea exchange is partly a response to the action

of the winds, which drive surface waters northward as part of
the residual overturning circulation across the Antarctic

Circumpolar Current (ACC). These surface waters are made

more buoyant by atmospheric forcing and subducted along
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sloping isopycnals, forming Subantarctic Mode Waters

(SAMW) and Antarctic Intermediate Waters (AAIW). At the
same time, wind-induced northward transfer at the surface

leads to upwelling of deep waters on the southern flank of the

ACC (e.g. Marshall and Speer 2012). This pattern of circu-
lation is reflected in the expected distribution of natural,

preindustrial, air-sea carbon dioxide exchange, with oceanic

uptake at midlatitudes in regions of strong subduction and
oceanic release in regions of upwelling where carbon-rich

deep waters return to the surface (Gloor et al. 2003; Mikaloff
Fletcher et al. 2007). On the other hand, limited CO2 flux

observations suggest widespread uptake over the Southern

Ocean, possibly due to anthropogenic CO2 transfer
(Takahashi et al. 2002; Gloor et al. 2003).

There are different hypotheses as to how the pattern of

natural carbon uptake and outgassing to the atmosphere
varies with changes in wind forcing. The motivation for our

thought experiments are based on two lines of evidence for

the present and the past. In the present day, stronger winds
in the Southern Ocean, associated with a stronger polar

vortex, are linked to increased outgassing of carbon, due to

greater mixing and entrainment of carbon-rich waters into

the surface mixed layer on seasonal timescales (Le Quéré

et al. 2007, 2008). Stronger winds might at the same time
be associated with a longer timescale response of the

Southern Ocean residual circulation, with stronger over-

turning enhancing the subduction of carbon-rich mode
waters into the thermocline (e.g. Lenton and Matear 2007).

These changes in ocean circulation also increase the

upwelling of nutrients to the surface that fuel enhanced
biological productivity (Lovenduski and Gruber 2005)

potentially counteracting outgassing from upwelled, car-
bon-rich waters.

In the past, changes in the Southern Ocean residual

circulation have been invoked as a way of altering the
ocean carbon inventory and, thus, atmospheric CO2 (e.g.

Sigman and Boyle 2001; Keeling and Visbeck 2001). For

example, increased rates of opal accumulation during the
transition from glacial to interglacial climate, linked to

greater supply of dissolved silicate in upwelling waters,

suggest a reinvigorated Southern Ocean residual circula-
tion after sluggish residual overturning during stadial

periods (Anderson et al. 2009). Toggweiler et al. (2006)

have proposed that this more vigorous overturning could be
achieved by an increase in the strength or a southward shift

of the Southern Hemisphere westerlies from a more

northward position during glacial maxima, reducing the
storage of biogenic carbon in the deep ocean and increasing

atmospheric CO2. On the other hand, paleoclimate mod-

eling studies have failed to reconcile these wind stress
anomalies with the magnitude or sign of atmospheric CO2

changes. For example, Menviel et al. (2008) simulate

moderate changes in Southern Hemisphere wind stress
of ±20–30 % associated with ±5 ppmv changes in pCO2

due to compensation by export production instigated by the

upwelling supply of nutrients, while d’Orgeville et al.
(2010) find only minor changes in pCO2 with a latitudinal

shift of the westerlies. Tschumi et al. (2008) instead argue

that a northward shift of ACC fronts, concurrent with the
northward migration of the westerlies during glaciation,

might increase dense water outcrop area leading to greater,

not reduced, CO2 outgassing. A multi-proxy study from
Australasia suggests enhanced westerly winds at the LGM

and reduced winds at the start of the Holocene (Shulmeister

et al. 2004).
Hence, it is unclear how wind-induced changes in

overturning affect the air-sea exchange of carbon both for

the present day under a warming climate or in the past,
particularly for glacial-interglacial changes. In this study,

we conduct a suite of idealized coupled ocean circulation

and biogeochemical model experiments with perturbations
in the strength and latitude of the westerly winds over

the Southern Hemisphere and detail the response of the

residual circulation and atmospheric CO2 (Sect. 2). To
determine how variations in the partitioning of carbon
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Fig. 1 A schematic depicting the meridional circulation and the
carbon cycle in the Southern Ocean. The meridional overturning is
made up of a mid-depth influx of dense waters that upwells and are
returned via an upper or lower limb (thick grey arrows). The upper
limb is part of the residual circulation, where the eastward winds
induce a northward Ekman transport and the slumping of density
surfaces (thin grey line) lead to an opposing geostrophic eddy
transport (black dashed arrows). The nutrient ðN Þ and dissolved
inorganic carbon (DIC) have high concentrations at depth from
regeneration of biological fallout. Upwelling of carbon-rich waters
leads to an outflux of carbon to the atmosphere. Conversely, there is a
carbon uptake where mode waters are subducted along the northern
flank of the Antarctic Circumpolar Current and also probably where
dense bottom waters form at higher latitudes. Redrawn from Williams
and Follows (2011)
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between the atmosphere and ocean are controlled in these

experiments, changes in the ocean carbon inventory are
diagnosed using a carbon partitioning framework (Ito and

Follows 2005; Williams and Follows 2011), defining sat-

urated, biogenic (soft-tissue and carbonate) and disequi-
librium carbon reservoirs (Sect. 3).

Our key findings are: (1) atmospheric CO2 is strongly

correlated to the residual circulation in our coarse-resolu-
tion model experiments; (2) the pycnocline plays a key role

in CO2 uptake and outgassing; (3) the moderate net change
in atmospheric CO2 results from the interplay between

larger anomalies in the saturated, disequilibrium, soft-tis-

sue and carbonate pools between the upper ocean and the
abyss and (4) this interplay depends on the strength and

latitude of the Southern Hemisphere westerly winds.

Our thought experiments are designed to provide insight
into the ocean mechanisms affecting atmospheric CO2,

focussing on idealized wind-driven changes with only

modest accompanying buoyancy changes, rather than
attempting to recreate conditions in the past. Our experi-

ments highlight the complex interplay of carbon reservoirs

influenced by wind-induced changes in ocean circulation,
nutrient redistribution, biological activity and air-sea

exchange.

2 Southern Ocean model experiments

2.1 Model configuration

To investigate the effect of the residual circulation on the
ocean carbon inventory, a global configuration of the MIT

general circulation and biogeochemistry model is

employed (Marshall et al. 1997) with a horizontal resolu-
tion of 2.8! 9 2.8! and 15 non-uniform vertical levels. The

model is forced by a 12-month cycle of heat and freshwater

fluxes, in some cases with additional relaxation toward
climatological sea surface temperature and salinity (Jiang

et al. 1999) with timescales of 60 and 90 days, respec-

tively. Monthly winds (Fig. 2a) are from ECMWF (Tren-
berth et al. 1989). The mesoscale eddy field is

parameterized using the Gent and McWilliams (1990)

scheme with a constant isopycnal thickness diffusivity of
1 9 103 m2s-1 and interior mixing by a diapycnal diffu-

sivity of 5 9 10-5m2s-1.

The physical model is coupled to an online biogeo-
chemistry model (Dutkiewicz et al. 2005; Parekh et al.

2005) that includes the coupled cycles of dissolved inor-

ganic carbon (DIC), alkalinity (AT), organic and inorganic
phosphorus (DOP and PO4), oxygen (O2) and dissolved

iron (Parekh et al. 2005, 2006) with prescribed monthly

aeolian iron deposition (Mahowald et al. 2006). The bio-
logically-mediated transformations of the different

elements are related using the fixed stoichiometric ratios of

R[C:N:P:O] = 117:16:1:-170 (Anderson and Sarmiento
1994) with a prescribed inorganic to organic rain ratio of

7 %. Local equilibrium carbonate chemistry is solved

explicitly (Follows et al. 2006) with air-sea fluxes depen-
dent on the square of local wind speed (Wanninkhof 1992).

The atmosphere is represented as a simple well mixed

carbon reservoir (e.g. Parekh et al. 2006), allowing atmo-
spheric CO2 to be solved for according to net global air-sea

fluxes. The ocean-atmosphere carbon pool is assumed to be
conserved so that riverine sources and sediment interaction

are not included. Hence we assume a closed atmosphere-

ocean carbon system, ignoring sediment interaction and
weathering. Archer et al. (2000), Ridgwell and Zeebe

(2005) and Chikamoto et al. (2008) address the effect of

carbonate compensation processes that occur in an open
carbon system over many millennia.

Further details about model configuration and spin-up

are given by Lauderdale (2010). In addition, the surface
concentrations of DIC and AT are sensitive to a ‘‘virtual

flux’’, Cvflux, due to the use of relaxing surface boundary

conditions in which freshwater fluxes are parameterized as
a flux of salt (e.g. McKinley et al. 2004). To avoid artificial

loss or gain of DIC as the ocean loses or gains salt by

relaxation we impose global balance to the virtual flux term
by subtracting the mean salinity relaxation flux, which then

closes the freshwater budget and provides near conserva-

tion for the combined ocean-atmosphere store of carbon.

2.2 Ensemble of model experiments

An ensemble of idealized Southern Hemisphere perturba-

tion experiments (see Fig. 2b) are performed. The model is

integrated until there is no significant drift in mean tem-
perature, salinity or biogeochemical concentrations and the

air-sea flux of carbon approaches zero, usually reached

after *5,000 years with the majority of the adjustment
occurring in the first millennium. Different westerly wind

stress changes and different choices for surface buoyancy

forcing and mesoscale eddy activity are made:

1. Strength of the peak Southern Hemisphere westerly

wind stress is perturbed by ±50 % (e.g. Parekh et al.
2006; e.g. Toggweiler et al. 2006). These experiments

(red circles in Fig. 2b, filled for increased winds and

open for decreased winds) result in the largest
anomalies of Southern Ocean residual circulation of

*10 Sv and atmospheric CO2 of *15–20 latm for

single perturbations, with stronger winds increasing
the residual circulation and raising pCO2.

2. The latitude of peak westerlies is displaced ±10!,

keeping the zonally averaged wind strength the same
as the control (red triangles in Fig. 2b pointing in the

Wind-driven changes in the Southern Ocean carbon reservoirs
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cardinal direction of the shift). This magnitude of shift

was suggested by proxies that track the migration of

cool, wet conditions under the westerly storm tracks in
South America and associated abundance of indicative

flora assemblages over glacial-interglacial transitions

(Moreno et al. 1999; McCulloch et al. 2000; Toggwe-
iler et al. 2006, and references therein). These pertur-

bations result in anomalies of residual circulation of

*5 Sv and pCO2 of 7–10 latm, roughly half as large
as the wind stress magnitude changes, with northward-

shifted winds causing more vigorous Southern Ocean

residual circulation and elevated atmospheric CO2.
3. A further latitudinal shift of the westerlies is executed

where the displacement is motivated by varied results

from paleoclimate models that generally suggest more
subdued changes in Southern Ocean winds (e.g.

Menviel et al. 2008; Rojas et al. 2009; Chavaillaz

et al. 2012). Modern simulations using coupled cli-
mate models (e.g. Saenko et al. 2005; Russell et al.

2006a, b) and 25 years of observations of the Southern
Ocean winds under climatic warming (e.g. Huang

et al. 2006) support this, indicating ±3! is a more

realistic upper bound for Southern Ocean wind stress
migration. When forced by these winds (open green

triangles in Fig. 2b), our model produces anomalies

that are roughly a third of those produced by ±10!
shifts, with residual circulation changing by *4 Sv
and pCO2 changing by *4 latm. Again, northward-

shifted winds increase Southern Ocean circulation and

atmospheric CO2.
4. Composite perturbations are also performed where

both the magnitude and peak latitude is altered to

allow the extent of linear superposition of our
individual perturbations described above to be

assessed. In Fig. 2b, ?50 % strength with a ±10!
shift are filled magenta triangles; -50 % strength with
a ±10 ! shift are open cyan triangles; filled yellow

triangles plot a 50 % decrease in strength for 3!
northward-shifted winds and 50 % increase in strength
for 3! southward-shift. The latter of these perturbations

again resemble more realistic conditions (e.g. Huang

et al. 2006). Furthermore, the effect of fundamentals
such as conservation of angular momentum of the

westerlies may also be investigated by scaling wind
stress magnitude by the length of peak latitude circle.

Integrating the stronger winds (*20 %) used in the

scaled southward-shifted wind stress perturbation
(filled dark blue triangle in Fig. 2b) around a smaller

(a) (b)

Fig. 2 a Zonally-averaged zonal wind-stresses used to force altered
Southern Ocean residual circulation: the control wind profile (dashed
line with dot) and the perturbations with the magnitude of the
westerlies increased (solid line) and decreased (solid line) by 50 %
and the peak wind-stress in the Southern Ocean migrated nominally
10! north (dashed line) and south (dashed line); see also Table 1. The

location of Drake Passage (*55!–63!) is indicated by horizontal
dashed lines. b Scatter plot of Southern Ocean residual circulation
(maximum streamfunction below 500 m) against atmospheric pCO2

for the ensemble of 27 perturbation experiments described in Sect. 2.2
(R2 = 0.89). The larger black symbols indicate the locations of the
control run and the four principal experiments presented in this study
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latitude band (*4,500 km shorter than the control)

returns the same value as integrating the weaker winds

used in the scaled northward-shifted wind stress
perturbation (open dark blue triangles in Fig. 2b)

around the *3500 km longer latitude circle compared

to the control. These experiments return a wide range
of circulation and pCO2 anomalies and demonstrate

that linear combination of wind strength and peak

latitude perturbations appears to occur to a reasonable
degree. The effects of magnitude changes dominates

anomalies due to wind shifts.

5. The Gent and McWilliams (1990) isopycnal thickness
diffusion coefficient is scaled by wind stress magni-

tude (by about 50 %, Fyfe et al. 2007; Zickfeld et al.

2007) increasing parameterized mesoscale eddy activ-
ity for stronger winds and reducing parameterized

eddy activity for weaker winds (magenta circles in

Fig. 2b). In these cases, residual circulation anomalies
are largely unchanged while atmospheric CO2 anom-

alies are reduced by 5–10 latm compared to the initial

wind strength perturbations.
6. We address the sensitivity of our results to surface

buoyancy boundary conditions using different combi-

nations of fixed surface fluxes and relaxation to
climatology. The experiments above were all run with

prescribed heat and freshwater fluxes with additional

climatological relaxation to surface temperature and
salinity (‘‘climatological relaxation’’ in Fig. 2b, or type

II boundary conditions, c.f. Jiang et al. 1999). Sec-

ondly, as detailed in Sect. 2.1, salinity relaxation
introduces artificial loss or gain of DIC, the virtual

flux, as surface salinity is relaxed towards observa-

tions. By balancing salinity relaxation, the outcome is
a net freshwater-conserving buoyancy boundary con-

dition (‘‘FW conserving’’ in Fig. 2b), which is used to

integrate the initial 50 % magnitude and 10! latitude
wind perturbations (with surface temperature relaxa-

tion, larger black circles and triangles in Fig. 2b). The

results essentially lead to the same anomalies of
Southern Ocean residual circulation and atmospheric

CO2. Thirdly, we rerun the wind stress magnitude

perturbations with a flux-only boundary condition for
freshwater, prescribing an annual cycle of monthly

freshwater fluxes derived from the equilibrated control

run (‘‘mixed BC’’, maintaining temperature relaxa-
tion). With changes in Southern Hemisphere wind

strength (green circles in Fig. 2b), similar anomalies in

residual circulation and atmospheric CO2 as the
previous two schemes are achieved. Lastly, control

heat and freshwater fluxes are prescribed (‘‘full flux
BC’’, cyan circles in Fig. 2b). Again, with changes in

Southern Hemisphere wind strength, *5 Sv smaller

anomalies in residual circulation are obtained, driven

by diapycnal and eddy buoyancy fluxes in the mixed

layer, but little overall change in the anomalies for

atmospheric CO2.
Unfortunately, when integrated with the flux-only

boundary condition for salt, experiments with north-

or southward-shifted winds resulted in significant
reorganization of the North Atlantic meridional over-

turning circulation, which itself impacts atmospheric

CO2 (e.g. Chikamoto et al. 2008). These experiments
are not included in our model suite as the focus of this

study is Southern Ocean wind-driven changes in the

ocean carbon inventory. There is a wider question as to
whether the fixed salt fluxes derived from the control

steady state would be appropriate for shifted winds as

one might expect concurrent migration of regions of
freshwater loss or gain over the Southern Ocean with

migrated westerlies (e.g. Dong and Valdes 1998).

7. Finally, 50 % perturbations to the Northern Hemi-
sphere westerly winds are performed to confirm

anomalies in atmospheric CO2 and residual circulation

were not due to remotely forced changes in the carbon
cycle outside of the Southern Ocean (dark blue circles

in Fig. 2b). Only minor differences between these

experiments and the control were found, therefore the
majority of the results presented here are attributable

to altered forcing in the Southern Hemisphere.

Across the whole model suite of 27 steady-state integra-

tions, atmospheric pCO2 varies between 257 and 304 latm

(Fig. 2b; Table 1) and there is an overall positive correlation
(R2 = 0.89) with the overturning in the Southern Ocean, as

measured by the residual circulation below 500 m.

To understand this connection between Southern Ocean
residual circulation and atmospheric CO2 in our model, we

next consider the physical changes in circulation and the

ocean carbon cycle in a subset of our experiments. Our four
principal experiments have 50 % increased and decreased

wind stress magnitude and 10! north- and south-shifted

winds, standard model parameters and freshwater-con-
serving boundary conditions.

2.3 Physical response of the Southern Ocean residual
circulation and global pycnocline

Net overturning in the Southern Ocean is diagnosed by
applying residual-mean theory (e.g. Marshall et al. 1997;

Karsten and Marshall 2002; Marshall and Radko 2003),

combining the wind-induced Eulerian-mean and eddy-
driven circulations to give the residual circulation. The

residual transport streamfunction, wres, is defined by the

maximum value below 500 m depth in the Southern
Hemisphere. In our principal experiments, enhanced

Southern Ocean wind-stress increases northward transport

Wind-driven changes in the Southern Ocean carbon reservoirs
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across 50!S in the Ekman layer and strengthens the Eule-

rian-mean circulation by 50 % (wEul, Table 1), resulting in
increased isopycnal tilt (Fig. 3a). The increase in barocli-

nicity enhances parameterized mesoscale eddy activity by

*35 % (weddy, Table 1), which in turn acts to flatten iso-
pycnals and partially compensates for the increased Eule-

rian-mean flow, resulting in a smaller increase of the

residual overturning (Fig. 4a). Decreased wind-stress leads
to the opposite response, with reduced Ekman transport and

Eulerian-mean overturning causing a flattening of Southern
Ocean isopycnals (Fig. 3b), reduced baroclinicity, sup-

pression of parameterized mesoscale eddy activity and a

weakening of the residual circulation (Fig. 4b). The
maximum changes in wEul and weddy act over slightly

different spatial regions, so do not directly compensate to

give the maximum change in wres in Table 1.
Northward shifted winds with peak values held at the

same magnitude as the control (Fig. 2a) lead to a stronger

residual circulation (Fig. 4c). Northward Ekman transport
is enhanced due to a reduction in Coriolis parameter at

lower latitudes and there is decreased correspondence

between Eulerian-mean and eddy circulations, as well as a
geometric increase in the longitudinal width of the ocean

towards the equator that further increases northward

Ekman transport through greater zonally-integrated stress.
The vertical extent of the Southern Ocean overturning cell

is significantly shallower due to the reduced coincidence

between the westerlies and Drake Passage (55!–63!S),
which relaxes the dynamical constraint for the wind-driven

transport to be returned below the depth of the sill in the

zonally-unbounded latitude band (e.g. Gill and Bryan
1971). Similarly, southward-shifted winds have a weaker

residual circulation (Fig. 4d) due to a larger Coriolis

parameter at high latitudes, smaller latitude circle at which
the strongest winds are located and closer correspondence

between the Eulerian-mean and eddy circulations. The

closer alignment between the winds and unblocked lati-
tudes of Drake Passage ensures the deep return flow of the

overturning circulation is maintained.
Changes in Southern Ocean residual circulation globally

modify the interior density structure of the upper ocean.

When the winds are increased or shifted north (Fig. 3a, c),
ventilation of intermediate and mode waters increases with

a deepening of low latitude isopycnals. A reduction or

southward shift of the westerlies decreases the rate of mode
and intermediate water formation causing shoaling of the

low latitude pycnocline (Fig. 3b, d). The deep density field

is also modified with dense waters more strongly upwelled
south of *40!S under increased winds and, conversely,

more weakly upwelled under decreased winds. When the

westerlies are shifted north, the shallower residual cell and
northward migration of the regions of Ekman divergence

leads to significant slumping and isolation of isopycnals

south of 40!S (Fig. 3c). A significant increase in dense
water outcropping to the south of 40!S occurs when the

westerlies are moved south due to a deep residual circu-

lation and more southern regions of Ekman divergence
(Fig. 3d).

These physical changes in density and the residual cir-

culation are associated with moderate changes in atmo-
spheric CO2 of ±20 latm (Fig. 2b) in which stronger

residual circulation is associated with higher atmospheric

CO2 (R2 = 0.89). In the next section we explore how
changes in atmospheric CO2 are achieved by considering

anomalies in the ocean carbon inventory using a carbon

partitioning framework.

3 Modeled carbon system response to Southern Ocean
circulation

3.1 Distribution of DIC in the model experiments

The distribution of DIC in the control integration (Fig. 5a,

b) broadly resembles observations with low concentrations
at the surface in the subtropical gyres and newly formed

deep waters in the North Atlantic, increasing concentra-

tions in the Southern Hemisphere and other upwelling
regions, and the highest concentrations in the oldest deep

waters of the North Pacific. Zonally-averaged anomalies of

DIC for different wind experiments (Fig. 5c–f) reveal a
complex spatial pattern of changes. Most importantly,

Table 1 Initial response of the model to altered Southern Ocean
ventilation, driven by perturbations in the magnitude (Peak sx) and
latitude of the Southern Hemisphere westerly winds in Fig. 2

Expt Control Inc Dec North-
shifted

South-
shifted

Peak sx (Nm-2) 0.21 0.31 0.11 0.21 0.21

Latitude (!) -52.0 -52.0 -52.0 -43.6 -60.5

pCO2 (l atm) 278.1 293.6 261.8 285.7 269.4

wEul (Sv) 40.9 61.0 21.0 50.6 33.1

weddy (Sv) -28.4 -38.1 -22.0 -29.0 -28.3

wres (Sv) 14.2 25.5 3.3 15.5 10.2

W (TW) 0.83 1.36 0.44 1.01 0.46

DBP (PgC y-1) 0 0.6 -0.1 -0.3 0.1

P* (%) 35.7 33.0 38.3 35.4 33.4

The surface forcing drives anomalies in atmospheric pCO2 through
changes in the wind-driven Eulerian-mean (wEul) and parameterized
eddy (weddy) circulations that partially compensate to form the
Southern Ocean residual circulation (wres, maximum value below 500
m) driven by the globally integrated work done by the winds on the
surface geostrophic circulation (W, see Lauderdale et al. 2012).
Altered circulation affects nutrient distributions, leading to small
anomalies in net biological production (DBP) and efficiency of the
soft tissue pump [P*, Ito and Follows (2005)]
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changes in the intermediate waters between 500–1500 m in

our model appear to determine the sign of the change in

atmospheric CO2, with decreased DIC concentration when
atmospheric CO2 is elevated and increased DIC when

atmospheric CO2 is reduced. Opposing sign anomalies in

DIC appear in the deep ocean.
The biological production (BP, Table 1) is not driving

the atmospheric CO2 changes, but instead is responding to
altered nutrient supply by the residual circulation resulting

in elevated production when atmospheric CO2 is high and

reduced production when atmospheric CO2 is low, con-
sistent with the compensatory mechanism of Menviel et al.

(2008).

These DIC anomalies have a similar character as
obtained in other general circulation models forced by

altered Southern Hemisphere westerly winds (Marinov

et al. 2008; Tschumi et al. 2008; d’Orgeville et al. 2010;
Kwon et al. 2011), particularly with respect to DIC

anomalies at intermediate depths. The paradigm of wind

control of the deep ocean carbon inventory has largely
been based on box model studies (e.g. Sarmiento and

Toggweiler 1984; Siegenthaler and Wenk 1984; Knox and

McElroy 1984). However, comparisons between these
simple models and more complex box model configura-

tions and prognostic ocean circulation models demon-

strates the importance of resolving the vertical structure of

the water masses (Follows et al. 2002; DeVries and

Primeau 2009).

3.2 Partitioning of the ocean carbon cycle

The processes controlling these DIC anomalies are now
diagnosed using a carbon partitioning framework (Brewer

1978; Chen and Millero 1979; Gruber et al. 1996; Ito and
Follows 2005; Williams and Follows 2011). The in situ

concentration of DIC (CDIC) is decomposed into saturated,

Csat, soft-tissue, Csoft, carbonate, Ccarb, and disequilibrium,
Cdis, components,

CDIC ¼ Csat þ Csoft þ Ccarb þ Cdis: ð1Þ

The change in saturated reservoir, Csat, is further split
depending on changes in the potential temperature, salinity

and preformed alkalinity of the ocean, DCsatðh; S,ApreÞ;
and changes in atmospheric CO2, DCsatðpCO2Þ: The latter
component provides a negative feedback on the ocean

carbon inventory (Goodwin and Lenton 2009). Csoft and

Ccarb depend on the biological production and
remineralization of sinking organic and inorganic carbon,

while the disequilibrium pool, Cdis, is diagnosed as the

residual concentration of the other components. This
disequilibrium occurs due to the timescale for CO2

exchange with the atmosphere, which is typically one

(a) (b)

(c) (d)

Fig. 3 Zonally-averaged sections of potential density, r2.5 (kg m-3)
for a increased, b decreased, c northward-shifted and d southward-
shifted westerly winds with the control density field overlaid as

dashed contours. The uneven contour scale switches from blue to red
at the density level 38.8, illustrating the changing depth of the low
latitude pycnocline
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year, being of the same order as the residence time of a

water parcel at the sea surface (Ito et al. 2004b). The

methodology for evaluating each reservoir is given in the
‘‘Appendix’’.

3.3 Carbon partitioning in the model experiments

The carbon framework is now applied to the model
experiments, presenting in situ concentrations for the

control run, anomalies for Csat, Csoft and Ccarb, and both

in situ and anomalous concentrations for Cdis.

3.4 Initial constituents from the control run

The in situ concentration for the saturated reservoir, Csat, is

responsible for a large proportion of the overall DIC con-

centration (Fig. 6a, b) and has low values in the warm
upper ocean and high values in the cold dense waters, with

distributions that are similar in both the Atlantic and In-

dopacific basins. The soft tissue reservoir, Csoft, linked to
the formation and remineralization of organic matter,

shows considerable spatial variability, again reflected in the

DIC distribution (Fig. 6c, d) due to water-mass age and the
progressive accumulation of regenerated carbon and

nutrients. Newly ventilated waters in the Southern Ocean

and North Atlantic have low values of Csoft, whereas older

water masses in the North Pacific have high values due to

accumulation of sinking organic material.

The carbonate reservoir, Ccarb, measures biogenic for-
mation and dissolution of calcium carbonate, and is rela-

tively small compared to Csat and Csoft. Although the

distributions of Csoft and Ccarb are broadly similar, hard
tissue has a greater depth for remineralization than soft

tissue (Fig. 6e, f). Elevated values of Csoft and Ccarb at the
seafloor, particularly noticeable in the Atlantic may be the

result of the absence of interactive sediments in this model;

organic particles are immediately remineralized on reach-
ing the seafloor.

Lastly, the disequilibrium component, Cdis, shows the

smallest contribution to DIC and is slightly negative
throughout most of the ocean, reflecting an undersaturation

associated with cooling and rapid subduction of water

masses in the North Atlantic and Southern Ocean (Fig. 6f,
g). Slight oversaturation instead exists in the upper parts of

the surface Southern Ocean, North Indian Ocean and the

North Pacific from upwelling of carbon-rich deep waters,
as well as warming as these upwelled waters are trans-

ported equatorward in the Ekman layer. In the mid-depths

of the North Pacific there is also a spurious positive signal
for Cdis representing an accumulated error from overesti-

mating Csoft from apparent oxygen utilization (AOU, see

the ‘‘Appendix’’). Nonetheless, the distribution and

(a) (b)

(c) (d)

Fig. 4 Zonally-averaged sections of the residual overturning circulation (wres, Sv), which includes both wind- and parameterized eddy-induced
flows for a increased, b decreased, c northward-shifted and d southward-shifted westerly winds
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concentration of carbon components in the control run are

strikingly similar to a data-based evaluation reported by
Williams and Follows (2011).

We now consider the anomalies in each of these reser-

voirs when the Southern Hemisphere winds are perturbed.
A small residual error remains when the carbon system

anomalies in Table 2 are combined, with a mean value of

only -0.5 PgC, which is one or two orders of magnitude
smaller than the other anomalies. This error is probably due

to the formulation of surface flux routines, such as using

uniform density when converting from mass to volume
units and using globally-averaged values of salinity and

carbon in calculating the virtual fluxes, as well as

remaining imbalance in the surface freshwater/salt fluxes
themselves.

3.4.1 Anomaly of the saturated DIC concentration, DCsat

The relationship between atmospheric CO2 and

DCsatðpCO2Þ; the change in globally-integrated carbon
content in the saturated reservoir with pCO2 at the

temperature, salinity and preformed alkalinity of the

control integration is nearly linear over the range of
atmospheric CO2 considered here (Fig. 7). This rela-

tionship supports the linearization necessary to separate

DCsat (see A.4), although the buffering effect becomes

noticeable at values greater than *400 latm. As the

pCO2 of the atmosphere changes, integrated DCsatðpCO2Þ
instantly adjusts with a sensitivity of 8.5 PgC latm-1

(Fig. 7), acting as a negative feedback on other ocean

carbon reservoir changes.

(a) (b)

(c) (d)

(e) (f)

Fig. 5 DIC concentration (mmol m-3) for the control run in a) the Atlantic and b the IndoPacific and Zonally-averaged DIC anomalies (mmol
m-3) for c increased, d decreased, e northward-shifted and f southward-shifted westerly winds
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Anomalies of Csat(h,S,Apre), the saturated DIC concen-

tration at the fixed atmospheric pCO2 of the control inte-

gration with perturbed potential temperature, salinity and

preformed alkalinity (Fig. 8) are dominated by changes in

global-mean potential temperature (Goodwin et al. 2011):

Csat(h,S,Apre) is generally reduced with greater residual

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 6 Zonally-averaged concentrations for the control simulation (mmol m-3) in the Atlantic (left column) and Indopacific (right column) of
the carbon components for (a, b) Csat, (c, d) Csoft, (e, f) Ccarb and (g, h) Cdis. r2.5 density contours are overlaid in each case
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circulation and warmer pycnocline, while enhanced

Csat(h,S,Apre) results from decreased residual overturning
and a cooler pycnocline (Table 2). The Csat(h,S,Apre)

anomalies in the upper ocean oppose those in the deep

ocean when the wind-stress magnitude is perturbed, but

generally reinforce each other when the latitude of maxi-
mum wind-stress changes.

Preformed alkalinity also has a modest effect on

DCsatðh; S,ApreÞ; concentration, with opposing contribu-

tions from the upper mode waters and deep ocean
(Table 2). Increased alkalinity shifts the buffered carbon

equilibrium away from dissolved CO2 and towards car-

bonate and bicarbonate ions, allowing greater oceanic
uptake of CO2 from the atmosphere and increasing the size

of the Csat reservoir (e.g. Omta et al. 2011).

In summary, increased Southern Ocean residual circu-
lation generally decreases the Csat reservoir and acts to

increase atmospheric CO2, while decreased residual cir-

culation has the opposite effect (Table 2).

3.4.2 Anomalies of the soft tissue and carbonate pools,

DCsoft and DCcarb

A more vigorous residual circulation leads to increased

upwelling of nutrient-rich waters and slightly increased
production south of 40!S. However, these upwelled nutri-

ents are unable to be fully utilized due to reduced residence

time in the surface layer and a combination of light and
iron limitation in the Southern Ocean (e.g. Dutkiewicz

et al. 2006), and so a greater proportion of upwelled

nutrients are eventually subducted into the ocean interior.
This enhanced subduction of nutrients leads to a wide-

spread decrease in carbon stored in both the Csoft and Ccarb

reservoirs (Figs. 9a, 10a; Table 2). Conversely, reduced
residual overturning under weaker westerlies reduces the

surface nutrient supply, leading to slightly decreased bio-

logical production at high latitudes. However, at the same
time, there is reduced subduction of preformed nutrients

leading to increased overall nutrient utilization and

increased carbon stored in the Csoft and Ccarb reservoirs
(Figs. 9b, 10b).

Ito and Follows (2005) quantified this connection by

evaluating P*, the fraction of biologically regenerated
phosphate to the total phosphate concentration:

P# ¼ Preg

PO3%
4

! " ; ð2Þ

where Preg ¼ RP:O2
AOU. If export production ceased, then

all the surface nutrients would be returned to the ocean

interior by subduction and water-mass formation, P* would
be zero and the ocean carbon inventory would be low.

However, if surface nutrients were completely depleted

then all the nutrients would be returned to the ocean inte-
rior by biological export and P* would approach unity. For

a fixed global phosphate reservoir and fixed Redfield ratios,

global mean P* is proportional to the size of the Csoft

Table 2 Changes in carbon reservoirs in response to perturbations in
Southern Ocean winds

Expt Inc Dec North-
shifted

South-
shifted

DpCO2 (l atm) 15.6 -16.3 7.7 -8.6

DCnet (PgC) -33.0 34.7 -16.1 18.4

DCsat ðpCO2Þ (PgC) 127.4 -144.2 63.8 -74.8

DCsat ðh;S,ApreÞ
(PgC)

-30.1 53.9 -35.1 128.4

DCsat ðhÞ (PgC) -38.4 58.1 -33.0 108.6

DCsat (S) (PgC) 0.0 -0.1 -0.3 0.2

DCsat ðApreÞ (PgC) 8.3 -4.2 -1.8 19.5

DCsoft (PgC) -95.5 92.2 -9.7 -80.5

DCcarb (PgC) -11.4 9.8 -0.3 -16.3

DCdis (PgC) -23.8 22.9 -34.9 61.0

DCvflux (PgC) 0.0 0.0 0.5 0.5

Residual error (PgC) -0.4 -0.1 -0.6 -0.8

DpCO2 is the atmospheric pCO2 anomaly, DCnet is the total change in
the ocean carbon inventory (negative indicates ocean outgassing)
followed by anomalies of the components of the carbon cycle (1),

including a breakdown of the constituents of DCsat: DCvflux is the net
virtual flux of CO2 (negative indicates oceanic outgassing) that
accounts for evaporation and precipitation at the sea surface. Finally,
the residual error is the sum of all the ocean components (subtracting

DCnet and DCvflux) and has a mean value of only -0.5 PgC

Fig. 7 Globally integrated anomaly (in PgC) of the Csat reservoir that
depends only on the change in atmospheric CO2 compared to the
control. The steady state inventories for the model perturbations for
decreased, south-shifted, control, north-shifted and increased wester-
lies respectively with increasing pCO2 values (crosses, left to right.
See also Table 2), together with values of DCsatðpCO2Þ calculated at
arbitrary values of pCO2 (circles)

Wind-driven changes in the Southern Ocean carbon reservoirs

123



reservoir. Efficiency of the soft-tissue production as mea-

sured by P* is 35.7 % in the control run, which decreases

to 33.0 % with stronger Southern Hemisphere winds and
increases to 38.3 % with weaker winds.

For meridional shifts in the latitude of the westerly

winds, there are carbon and nutrient changes in both the
upper ocean and abyss. In the upper ocean, a northward

shift deepens the pycnocline and reduces the concentration

of regenerated carbon and nutrients, while in the deep
ocean, isolation of abyssal isopycnals causes accumulation

of regenerated carbon and nutrients. The net effect is little

overall change in the efficiency of soft tissue cycling with
P* remaining close to the control at 34.4 %. Conversely, a

southward shift shoals the pycnocline and increases

regenerated carbon concentration (Figs. 9c, d, 10c, d),
while in the deep ocean significant shoaling and outcrop-

ping of the densest isopycnals returns regenerated carbon
and nutrients back to the surface, decreasing P* to 33.4 %.

Globally integrated DCsoft (Table 2) is generally much

larger than the cumulative carbon exchanged with the

atmosphere, while those for DCcarb is generally smaller.
The biogenic reservoir response is more complex than the

response of the saturated reservoir because of opposing

contributions linked to pycnocline changes and the outcrop

of dense isopycnals (Figs. 9, 10).

3.4.3 Changes in the disequilibrium carbon reservoir,

DCdis

The size of the disequilibrium reservoir, Cdis, reflects the

mismatch between the DIC concentration and the Csat and
Csoft reservoirs, which exists because the timescale for air-

sea equilibration of CO2 is similar to the residence time of

waters in the surface layer. In the North Atlantic deep
water formation regions, cooling of surface waters and

deep convection results in a negative Cdis signal that

spreads over much of the ocean interior (Figs. 6g, h, 11).
On the other hand, in the Southern Ocean, upwelling of

regenerated carbon and nutrients, warming of northward

flowing Antarctic surface waters and limited residence time
in the surface layer for CO2 outgassing results in a more

positive Cdis signal in intermediate and bottom waters.

When the strength of the westerly winds is increased,
the stronger residual circulation and greater northward

Ekman transport leads to increased surface warming, which

coupled with reduced residence time in the surface layer

(a) (b)

(c) (d)

Fig. 8 Zonally-averaged anomaly (mmol C m-3) of the Csat reservoir
that depends on changes in potential temperature, salinity and
preformed alkalinity at the atmospheric pCO2 of control run
ðDCsatðh;S,ApreÞÞ for a increased, b decreased, c northward-shifted

and d southward-shifted westerly winds compared to the control (see
also Table 2)
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(a) (b)

(c) (d)

Fig. 9 Zonally-averaged anomaly (mmol C m-3) of the Csoft reservoir for a increased, b decreased, c northward-shifted and d southward-shifted
westerly winds compared to the control (see also Table 2)

(a) (b)

(c) (d)

Fig. 10 Zonally-averaged anomaly (mmol C m-3) of the Ccarb reservoir for a increased, b decreased, c northward-shifted and d southward-
shifted westerly winds compared to the control (see also Table 2)
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inhibits complete outgassing of CO2 resulting in positive

upper ocean DCdis (Fig. 12a). The greater concentration of
preformed nutrients in the ocean interior (as suggested by

decreased P*) leads to a reduced concentration of regen-

erated carbon being upwelled and therefore subduction of a
more negative Cdis in bottom waters, despite reduced res-

idence time at the surface. In addition, greater upwelling of

Circumpolar Deep Water, derived from North Atlantic
Deep Waters carrying a strong negative Cdis signal, rein-

force the negative abyssal DCdis: Conversely for weaker

westerly winds, reduced residual circulation leads to
weaker warming in water masses advected northward

towards the intermediate and mode water subduction

regions, and coupled with longer surface layer residence
times, oceanic oversaturation is reduced and a more neg-

ative Cdis signature is subducted into the upper ocean.

Furthermore, increased biological efficiency (higher P*)
leads to more regenerated carbon being upwelled to the

surface waters of the Southern Ocean, which enhances the

positive Cdis signal in the bottom waters and leads to

positive DCdis: Again, this positive signal is reinforced by

reduced supply of deep waters of northern origin with a

negative Cdis signal (Figs. 11b, 12b).
With a northward shift in the westerlies, the increased

residual circulation and greater surface warming, coupled

with a northward shift of the subduction region results in an
increase in Cdis around 20!S in the upper 500 m (Figs. 11c,

12c). Reduced exposure of upwelled regenerated carbon at

the surface due to slight decline in P* and isolation of
abyssal isopycnals leads to bottom waters being formed

with a more negative Cdis signature.

With a southward shift in the westerlies, reduced
residual circulation with weaker northward warming and

increased residence time at the surface results in a less

positive Cdis signal and a negative DCdis anomaly sub-
ducted in the mode waters of the upper ocean (Figs. 11c,

12c). However, in the deep Southern Ocean a greater

concentration of Csoft is returned to the surface as a result
of outcropping of dense bottom waters, creating a more

positive Cdis signal in the surface layer, which is then

transferred back into the deep ocean in regions of bottom
water formation in the Southern Ocean, resulting in a rel-

atively large increase in DCdis in the abyss.

When these anomalies are integrated (Table 2), the deep
ocean changes dominate the net anomaly in the Cdis res-

ervoir, particularly for southward shifted winds.

3.5 Summary of the relationship between carbon

components and ocean physics

The close relationship between changes in atmospheric

CO2 and the Southern Ocean residual circulation in our

model reveals a strong control by ocean physics (Fig. 2b).

A mechanistic view of the changes in the carbon compo-
nents is obtained by applying the carbon framework to all

27 members of the model suite. Changes in residual cir-

culation explain 83 % of the variance in the total saturated
pool of DIC, including changes resulting from atmospheric

CO2 and potential temperature, salinity and alkalinity

anomalies. When considered separately, the relationship

between the residual circulation and DCsatðh; S,ApreÞ is
fairly close for all experiments, controlled by ventilated

changes in pycnocline depth. For southward-shifted winds

of 10!, there are larger reductions in atmospheric CO2 due

to DCsatðh; S,ApreÞ than would be expected from the rela-
tively modest overturning rates, suggesting that changes in

Csat due to the cooling of deep waters becomes more

important (Fig. 8d).
The negative relationship between the biogenic store of

carbon and Southern Ocean overturning is also relatively

good: strong residual circulation decreasing biological
efficiency by subduction of unutilized nutrients from the

surface and promoting CO2 outgassing, whereas weak

residual overturning increases efficiency through greater
surface nutrient usage. This negative relationship was

previously reported by Parekh et al. (2006), addressing

how the soft-tissue carbon pump affects atmospheric CO2.
There is a large contribution from the abyssal ocean

when winds are shifted to the south leading to much greater

outgassing as Csoft in bottom waters is upwelled (Fig. 9d).
Finally the disequilibrium reservoir, Cdis, is affected by

interactions with the Csat and Csoft reservoirs, particularly

related to the extent regenerated carbon is upwelled and the
residence time in the surface, allowing outgassing to occur

prior to subduction.

4 Discussion

The effect of the Southern Ocean winds on the ocean

cycling of carbon and atmospheric CO2 is investigated

using a series of idealized experiments with a global
coarse-resolution ocean circulation and biogeochemistry

model. There is a striking positive correlation between the

strength of the residual circulation and atmospheric CO2

with a sensitivity of roughly 1.5 latm Sv-1 based on our

suite of 27 model experiments. This positive correlation is

in accord with previous, although more limited, modeling
studies (e.g. Menviel et al. 2008; Tschumi et al. 2008;

Parekh et al. 2006; d’Orgeville et al. 2010).
There are two main mechanisms at work during these

wind-stress perturbation experiments: firstly, there are

changes in the Southern Ocean upwelling of deep waters
and subduction of intermediate and mode waters in the
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(a) (b)

(c) (d)

Fig. 11 Zonally-averaged Atlantic Ocean section (mmol C m-3) of the Cdis reservoir with r2.5 density contours overlaid for a increased,
b decreased, c northward-shifted and d southward-shifted westerly winds

(a) (b)

(c) (d)

Fig. 12 Zonally-averaged Atlantic Ocean anomaly (mmol C m-3) of the Cdis reservoir for a increased, b decreased, c northward-shifted and
d southward-shifted westerly winds
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upper ocean associated with the residual circulation and,

secondly, there is a reorganization in the extent of dense
bottom waters in the Southern Hemisphere (Fig. 13). The

detailed carbon response can be understood in terms of the

separate reservoirs, involving saturated, biogenic and dis-
equilibrium anomalies. All of these pools are important in

accounting for the net change in atmospheric CO2 reach-

ing ± 20 latm and they often have partly compensating
responses when integrated over the global ocean (Table 2).

An increase in the residual circulation in our model
leads to direct enhancement in upwelling and ventilation of

the upper ocean resulting in a reduction in the saturated

component, Csat, due to warmer upper waters, and the
disequilibrium component, Cdis, due to reduced residence

time of waters at the sea surface. A stronger residual cir-

culation also enhances the delivery of nutrients to the

surface layer and the export of unutilized, preformed

nutrients in intermediate and mode waters, which reduces
the Csoft and Ccarb reservoirs, reflecting decreased biolog-

ical efficiency. A similar connection between the residual

circulation and Csoft is obtained by Parekh et al. (2006).
In addition to the upper ocean changes, the position of

the peak westerly winds alters the abyssal density structure

in the modeled Southern Ocean. When the westerlies are
shifted northward, isopycnal slumping and isolation occurs,

which increases the deep ocean store of Csoft and Ccarb, and
decreases the Csat and Cdis reservoirs. On the other hand,

when the westerlies shift southward, isopycnal shoaling

and deep ocean ventilation occurs and the opposite
response occurs. This deep response is broadly similar to

the hypothesis of Toggweiler et al (2006), where a north-

ward shift in the westerlies is viewed as allowing

(a) (b)

(c) (d)

Fig. 13 A schematic depicting the main causes of atmospheric CO2

anomalies when Southern Hemisphere winds are a increased,
b decreased, c shifted north or d shifted south. The rate of the
residual circulation controls the formation and ventilation of inter-
mediate and mode waters that influence the depth of the low latitude
pycnocline, the upper ocean concentration of Csat, the biogenic pool

Cbio = Csoft ? Ccarb and the disequilibrium concentration, Cdis. On
the other hand, the vertical extent of the overturning circulation,
linked to the proximity of the westerlies and the unblocked latitudes
of Drake Passage influences the outcropping of dense isopycnals,
which primarily affects Cbio and Cdis
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regenerated DIC to accumulate in the abyssal Southern

Ocean, while a southward shift transfers regenerated DIC
into the atmosphere. However, in our suite of model

experiments, the carbon changes in the upper ocean turn

out to be more important than the opposing changes in the
abyssal ocean.

Based on our model sensitivity experiments, the Southern

Hemisphere westerly winds exert an influence on the ocean’s
pycnocline and the residual circulation, varying with the

globally integrated mechanical energy input by the work
done by the winds on the geostrophic circulation (Table 1,

Lauderdale et al. 2012). In these experiments, the changes in

ventilation of intermediate and mode waters generates per-
sistent anomalies in the ocean carbon inventory and atmo-

spheric CO2. In turn, these atmospheric CO2 changes can

only be understood by considering all the carbon compo-
nents, rather than individual components in isolation.

Speculating about the wider implications of our model

sensitivity studies, our view of the influence of residual
circulation and upper ocean ventilation on atmospheric

CO2 is partly in accord with inferences from the past:

during glacial periods there is reduced intermediate water
production from the Southern Ocean and low concentra-

tions of atmospheric CO2 and, conversely, during inter-

glacial periods there is increased intermediate and mode
water volume and higher atmospheric CO2 (Pahnke and

Zahn 2005; Pahnke et al. 2008). However, based on

reconstructions of limited latitudinal shifts in the Southern
Hemisphere westerlies during the last glacial (e.g. Shul-

meister et al. 2004; Rojas et al. 2009; Chavaillaz et al.

2012), our model experiments with ±3! shifts in the lati-
tude of the maximum westerly wind and modest buoyancy

forcing changes are unlikely to explain large variations of

atmospheric CO2. This does not discount wind-induced
changes playing a role as part of a combination of factors

leading into or out of a glacial (e.g. Peacock et al. 2006;

Kohfeld and Ridgwell 2009). Future changes in the
strength of the Southern Ocean natural CO2 sink might

depend on the eventual position and strength of the

Southern Hemisphere westerlies, with a small increase in
sink strength with a southward shift in our experiments

masked by a potentially large decrease in sink strength

associated with increased westerly winds.
There are two important caveats though in our model

experiments. Firstly, the experiments utilize a coarse-reso-

lution model and only include parameterization of meso-
scale eddies so that our conclusions regarding the residual

circulation and the sensitivity of atmospheric pCO2 might

be affected (e.g. Hallberg and Gnanadesikan 2006; Böning
et al. 2008; Viebahn and Eden 2010; Jones et al. 2011;

Meredith et al. 2011; Shakespeare and Hogg 2012).

Secondly, the experiments only include limited changes
in the buoyancy forcing associated with the wind

perturbations and there is no climate feedback due to

changing atmospheric pCO2. Toggweiler et al. (2006)
argues that during glacial-interglacial transitions, the ven-

tilation of the abyssal ocean was achieved by the formation

and erosion of a low-salinity surface water layer around
Antarctica. Our model experiments with ‘‘mixed’’ surface

buoyancy boundary conditions only include limited salinity

changes of O(0.1g kg-1), compared with the O(1g kg-1)
changes invoked by Toggweiler et al. (2006). While our

experiments do reveal some buoyancy-driven changes in
abyssal circulation, we also find that there are compen-

sating carbon changes: carbon component anomalies of

saturation and disequilibrium associated with model cir-
culation changes are largely compensated by opposing

anomalies in the soft tissue reservoir. If climatic pertur-

bations to the Southern Hemisphere westerly winds are to
induce greater changes in atmospheric CO2, then larger

accompanying changes in surface heat and freshwater

fluxes have to be invoked than applied here.
In summary, moderate (±20 latm) changes in atmo-

spheric CO2 are positively correlated with wind-induced

changes in the Southern Ocean residual circulation in our
suite of idealized model sensitivity experiments with lim-

ited changes in buoyancy forcing and parameterized

mesoscale eddy activity. These changes in atmospheric
CO2 are dominated by the contribution of the upwelling of

carbon-rich deep waters and the ventilation of upper ocean

mode waters, rather than changes in the abyssal store of
carbon.
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Appendix: Carbon partitioning framework

The in situ concentration of dissolved inorganic carbon
(CDIC) is decomposed into four main pools (Brewer 1978;

Chen and Millero 1979; Gruber et al. 1996; Ito and Fol-

lows 2005; Williams and Follows 2011),

CDIC ¼ Csat þ Csoft þ Ccarb þ Cdis: ðA:1Þ

Csat is the saturated DIC concentration of a water-mass at

the surface in equilibrium with the overlying atmosphere,
which is a function of atmospheric carbon dioxide partial

pressure (pCO2), potential temperature (h), salinity (S) and

preformed alkalinity (Apre),

Csat ¼ f ðpCO2 h; S;ApreÞ: ðA:2Þ

A relationship for Apre is obtained by multiple linear

regression against sea surface salinity (S) and the
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conservative tracer PO (where PO = O2 - RP:O_2PO4 is

the oxygen distribution with alterations due to respiration
and remineralization of biogenic phosphate removed,

Broecker 1974),

Apre ¼ 0:11þ ð0:06$ SÞ þ ð0:10$ POÞ: ðA:3Þ

For the majority of the surface ocean, alkalinity is domi-

nated by salinity changes, however including PO is

important where high nutrient, relatively high alkalinity
deep waters are upwelled in the Southern Ocean (Gruber

et al. 1996).

Anomalies in Csat can be further separated to reveal the
change in concentration due to each contributing factor

(Goodwin and Lenton 2009),

DCsat ¼ DpCO2
oCsat

opCO2

!!!!
h;S;Apre

þDh
oCsat

oh

!!!!
pCO2;S;Apre

þ DS
oCsat

oS

!!!!
pCO2;h;Apre

þDApreoCsat

oApre

!!!!
pCO2;h;S

:

ðA:4Þ

This separation assumes a linearization of the buffering
capacity of the ocean carbonate system (for example,

see Fig. 13.3 in Williams and Follows 2011), however over

the range of anomalies generated here, (A.4) is an
acceptable simplification. We consider the effects of

altered atmospheric CO2 partial pressure ðDCsatðpCO2ÞÞ
and anomalies caused by ocean ventilation changes

ðDCsatðh; S,ApreÞÞ individually.

Biological production and remineralization of particu-
late organic carbon, Csoft,

Csoft ¼ &RC:O2
AOU; ðA:5Þ

is calculated using apparent oxygen utilization (AOU, Ito
et al. 2004a; Ito and Follows 2005),

AOU ¼ Osat
2 ðh; SÞ & O2: ðA:6Þ

Similarly, biological production and remineralization of
sinking inorganic particulate carbon, Ccarb, is quantified

through changes in regenerated alkalinity (the difference

between in situ alkalinity, AT, and Apre),

AT ¼ Apre þ Areg; ðA:7Þ

with a smaller component related to consumption and

remineralization of molecularly-charged nutrients,

Ccarb ¼ 1

2
ðAT & Apre & RN:O2

AOUÞ: ðA:8Þ

Biological processes captured by PO, Csoft and Ccarb are

related by fixed stoichiometric ratios (R[C:N:P:O]) as

prescribed in the biogeochemistry model.
Lastly, the disequilibrium reservoir, Cdis, is the DIC

concentration not accounted for by the components of (1).

Cdis mainly represents the difference between Csat and CDIC

when a water-mass was last in contact with the atmosphere.

This disequilibrium occurs due to the timescale for com-
plete CO2 exchange with the atmosphere, which is typi-

cally one year, being of the same order as the residence

time of a water parcel at the sea surface (Ito et al. 2004b).
Therefore deviations from the target Csat concentration

occur if subduction occurs before complete atmosphere-

ocean CO2 exchange. Also, changes in atmospheric CO2

affect the entire oceanic Csat reservoir by definition, driving

the in situ concentration further from equilibrium and
causing Cdis to vary inversely in order to compensate and

rebalance (1) (Goodwin and Lenton 2009), particularly in

deep waters.
As the residual, Cdis also contains minor errors associ-

ated with the component decomposition, such as the

assumption of surface saturated dissolved oxygen for AOU
(e.g. Ito et al. 2004a) and linearization of (A.4).
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