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A Robust Optimization Approach for Demand Side
Scheduling Considering Uncertainty of Manually

Operated Appliances
Y. F. Du, L. Jiang, Member, IEEE, Y. Z. Li, and Q. H. Wu, Fellow, IEEE

Abstract—Manually operated appliances (MOAs) are manually
operated based on users’ real-time demands and their energy
consumption is uncertain to other schedulable appliances (SAs).
This paper represents energy consumption scheduling of home
appliances under the uncertainty of the MOAs as a robust
optimization problem, as uncertainty distribution of MOAs is
usually unknown and not easily estimated. Among all possible
energy consumption cases of the MOAs, the robust approach
takes into account the worst case to reduce electricity payment
of all home appliances, based on the real-time electricity pricing
scheme combined with inclining block rate. Intergeneration
projection evolutionary algorithm, which is a nested heuristic
algorithm with inner genetic algorithm and outer particle swarm
optimization algorithm, is adopted to solve the robust optimiza-
tion problem. Case studies are based on one day case, and
one month case with various combinations of SAs and MOAs.
Simulation results illustrate the effectiveness of the proposed
approach in reduction of electricity payment compared with
approach without considering the uncertainty of MOAs, and
approach considering MOAs with fixed pattern.

Index Terms—Energy consumption scheduling, robust opti-
mization approach, manually operated appliances, schedulable
appliances, demand response.

NOMENCLATURE

Abbreviations

MOA Manually operated appliance.
SA Schedulable appliance.
LOT Length of operation time.
OTI Operation time interval.
DR Demand response.
PSO Particle swarm optimization.
GA Genetic algorithm.
RTP Real-time pricing.
TOUP Time-of-use pricing.
CPP Critical-peak pricing.
IBR Inclining block rate.
IP-GA Intergeneration projection genetic algorithm.
IP-EA Intergeneration projection evolutionary algorithm.
EMC Energy management controller.
ESS Energy scheduling system.
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A1 Approach without considering MOAs.
A2 Approach considering the fixed pattern of MOAs.
A3 Approach considering the worst impact of MOAs.

Variables

lt Total energy consumption of home appliances
at time slot t.

prct The electricity price based on RTP-IBR
at time slot t.

et Real-time electricity price at time slot t.
c Threshold of energy consumption.
P Power vector of an appliance.
pθ Power consumption of an appliance at time slot θ.
α Earliest start time of appliance’s operation.
β Deadline of appliance’s operation.
γ Length of operation time.
ε Multiplier of electricity price when lt exceeds c.
s Scenario index.
ρs The probability of scenario s.
NS The number of scenarios.
t, θ The index of time slot.
i, j The index of SA/MOA.
m,n The number of MOAs/SAs.
b, d The index of non-interruptible/interruptible SA.
f, g The index of non-interruptible/interruptible MOA.
xt
i Energy consumption of SA i at time slot t.

ut
j Energy consumption of MOA j at time slot t.

xt
b Energy consumption of non-interruptible SA b

at time slot t.
xt
d Energy consumption of interruptible SA d

at time slot t.
ut
f Energy consumption of non-interruptible MOA f

at time slot t.
ut
g Energy consumption of interruptible MOA g

at time slot t.
tb Start time of the operation of

non-interruptible SA b.
tf Start time of the operation of

non-interruptible MOA f .
γmin
f Minimum LOT of non-interruptible MOA f .

γmax
f Maximum LOT of non-interruptible MOA f .

γmin
g Minimum LOT of interruptible MOA g.

γmax
g Maximum LOT of interruptible MOA g.

T Horizon of energy consumption scheduling.
Xb Energy consumption schedule of

non-interruptible SA b.
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Xd Energy consumption schedule of
interruptible SA d.

Uf Energy consumption case of
non-interruptible MOA f .

Ug Energy consumption case of
interruptible MOA g.

X Energy consumption schedule of SAs.
U Energy consumption case of MOAs.
Us Energy consumption case of MOAs in scenario s.
c1, c2 The acceleration constants in PSO.
r1, r2 The randomly generated numbers

in range of [0,1] in PSO.
w The inertia weight factor in PSO.
k The iteration index in PSO.
vkζ , p

k
ζ The velocity/position of the particle ζ

at the kth iteration in PSO.
pbestkζ The best position of the particle ζ

among k iterations in PSO.
gbestk The best position of the particle swarm

among k iterations in PSO.

Sets
H Set of time slots in a day.
Ω Set of energy consumption schedules of SAs.
Γ Set of energy consumption cases of MOAs.
Γs Set of energy consumption cases of MOAs

in scenario s.

I. INTRODUCTION

SMART grid tends to apply the advances from the in-
formation and communication technology, control and

optimization methodologies to improving the efficiency and
reliability of conventional power system [1]. Nowadays smart
grid is undergoing profound transformation due to the increas-
ing penetration of renewable generation, the fast development
and deployment of new equipments such as energy storage
apparatus and power electronics, and the active participation
of demand response (DR) from the user side [2]. DR changes
electricity usage of end users from their normal consumption
patterns in response to the real-time electricity price, or to
incentive payments, or when system reliability is jeopardized
[3].

Smart home technology tends to achieve energy saving and
provide users with maximal comfort and convenience, such
as, the thermal comfort brought by the network of temperature
sensors [4], the convenience coming along with the wireless
area network [5], and the comfort and convenience brought
by the human-computer interaction through the adaption of
services according to the context of the environment and the
involved users [6]. All these technologies will motivate more
users to participate in DR and thus improve the efficiency and
the reliability of power system [7] [8], reduce the overall peak
energy demand [9], and lower the risk of outages [10].

Several pricing schemes have been proposed in DR, such as
real-time pricing (RTP), time-of-use pricing (TOUP), critical-
peak pricing (CPP), and RTP combined with inclining block
rate (RTP-IBR) [11] [12]. TOUP and hourly-based pricing
tariff have been applied in practice, such as the Economy 7

tariff in UK with higher electricity price for daytime and lower
price for night time [13] and hourly based real-time electricity
price announced a day head by the Illinois Power Company
in US [14]. Compared with other pricing schemes, the RTP
carries on more real-time information of power system and
would bring more economic benefits to power system [15], but
it may aggregate energy consumption in periods with the lower
price to cause peak demand [12]. RTP-IBR can reserve the
economic benefits of the RTP, meanwhile avoid the possible
aggregation effect caused by the RTP as the electricity price
will increase to a higher value when the user’s total energy
consumption exceeds a threshold [11].

Many optimization methods have been proposed to schedule
the energy consumption of home appliances for reducing
users’ electricity payment, such as linear programming [11],
mixed integer linear programming [16], genetic algorithm
(GA) [12], branch and bound method [17], and game the-
ory [18]. Home appliances can be classified as schedulable
appliances (SAs) and manually operated appliances (MOAs)
whose energy consumption is manually controlled by the the
real-time demands of user and cannot be scheduled ahead like
SAs. In [11], [16]–[18], fixed operation pattern is assumed for
MOAs, which sacrifices users’ comfort and convenience as the
usage of MOAs is dependent upon users’ real-time demands
and is affected by many random external factors. Moreover,
the scheduling optimal results will be degraded when there is
uncertainty of the MOAs’ energy consumption. In [12], the
MOAs have not been considered when energy consumption is
scheduled based on the RTP-IBR, which would make users
confront the risk of high electricity payment due to the excess
of the energy consumption threshold set by IBR when the
energy consumption of MOAs is accidentally involved. Based
on the best knowledge of authors, the uncertainty of energy
consumption of the MOAs has not been considered in the
energy consumption scheduling of home appliances. As MOAs
usually consume around 30% to 40% of the total energy
consumption of home appliances [11] [12] [16]–[18], it is
necessary and worth to consider the uncertainty of MOAs
so as to further improve the overall efficiency of the optimal
scheduling scheme of home appliances.

Optimization problems considering uncertain variables can
be tackled by stochastic approach, robust approach and the
hybrid robust/stochastic approach [19] [20]. Most of such
optimization problems are dealt with by stochastic approach
which usually requires a known probability distribution of the
uncertain variable. For example, [21]–[23] schedule house load
or unit commitment under uncertain renewable energy source
with a known probability distribution, and the hybrid approach
requires the probability distribution of the uncertain variable
as well [19] [20]. As an effective method for addressing
optimization problems with unknown probability distribution
of the uncertainties, robust approach has been applied in
power system recently [24]–[26]. Since users’ real-time de-
mands and behaviors are usually affected by many random
factors and external disturbances, the probability distribution
of MOAs’ energy consumption cannot be accurately estimated.
Therefore, the robust approach is adopted to solve the energy
scheduling problem with the consideration of the uncertainty
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of MOAs’ energy consumption, and the problem is formulated
with two-level framework.

Taking into account the uncertainty of MOAs’ energy
consumption, the energy scheduling of home appliances is
formulated as a robust optimization problem in this paper. The
robust optimization approach treats the energy consumption
case of MOAs as disturbance to the scheduling scheme of
SAs, and the maximal disturbance of MOAs, i.e., the MOAs’
energy consumption case with the worst impact, is the energy
consumption case of MOAs that causes maximum electricity
payment of all home appliances. The robust approach will
minimize this maximum electricity payment and the problem
of energy scheduling is formulated as a min-max, two-level
optimization problem. The proposed robust approach is com-
pared with other two approaches, one without considering the
impact of MOAs and one considering the MOAs with fixed
pattern.

This paper employs the intergeneration projection evolu-
tionary algorithm (IP-EA) to solve the proposed robust op-
timization problem [27]. The IP-EA, which is a two-level
evolutionary algorithm with inner genetic algorithm (GA) and
outer particle swarm optimization (PSO) algorithm, is effective
in solving the proposed nonlinear problem with two-level
framework [27].

The rest of the paper is organised as follows. The energy
scheduling system is introduced in Section II. Section III
presents the impact of the uncertainty of MOAs’ energy
consumption. The robust optimization approach is introduced
in Section IV and case study is conducted in Section V. Finally,
the paper is concluded in Section VI.

II. ENERGY SCHEDULING SYSTEM

The structure of the energy scheduling system is shown in
Fig. 1. Based on the electricity price and user’s demands,
the energy management controller (EMC) schedules energy
consumption of home appliances a day ahead. The system
structure is introduced at first and then the model formulation
is presented.

A. System Structure

EMC is the main part of the energy scheduling system (ESS)
and it is connected to a smart power distribution system with
digital communication capability through computer network-
ing [11]. Electricity price is transmitted to the EMC from
the smart power distribution system and users’ demands for
operations of appliances are input together by in-home display
device which is a part of the EMC. After EMC works out the
optimal scheduling scheme of home appliances, it transmits the
control signals to appliances through the home area network
and several communication protocols have been proposed [28]
[29].

Home appliances are categorized into MOAs and SAs.
MOAs are manually operated based on users’ real-time de-
mands and users must be available to operate them. SAs
are appliances whose energy consumption can be scheduled
ahead and automatically controlled by the EMC and does not
require the users’ participation during their operations, though

Power line 
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                                           SAs 
 
 
 

 
      MOAs  (TV…)  

 

User’s 
demands 

Non-interruptible 
(Electric kettle…)  

Interruptible 
(Washing machine…) 

Electricity price 

Fig. 1. Energy scheduling system

users are required to prepare for the operations and preset the
operation time intervals and operation lengths. For example,
after users put food in the oven and set the operation interval
and the operation length, EMC will start the oven at the
optimal time slot automatically, so is the case for the washing
machine. Based on this definition, oven and washing machine
are classified as SAs, and they are scheduled automatically no
matter whether users are at home or not.

SAs include interruptible and non-interruptible appliances
[11]. Interruptible appliances can suspend their operations
during the operation processes, and then restart again to
continue their operations. For example, washing machine is
interruptible as it can be paused during the process of washing.
Once non-interruptible appliances are started, they cannot be
stopped until they finish their tasks, such as the electric kettle.
The common MOAs include hair drier, lights, laptop and
TV. For SAs, clothes dryer, oven, water heater and electric
kettle are non-interruptible, washing machine and humidifier
are interruptible.

The EMC only schedules energy consumption for the SAs,
not for the MOAs since the operations of MOAs are manually
controlled based on the real-time demands of users. However,
it does not mean that the MOAs can be ignored when the
energy consumption of the SAs is scheduled. The EMC
schedules energy consumption for the SAs taking into account
the uncertainty and the impact of MOAs’ energy consumption.

B. Model of User’s Demands

Firstly, the model of the electricity pricing is given. As
stated in Section I, the pricing scheme RTP-IBR keeps the
benefits of RTP and avoids the possible aggregation of energy
consumption caused by the RTP as well. We schedule the
energy consumption based on this pricing scheme. In the pric-
ing scheme RTP-IBR, users are charged at a higher electricity
price than RTP at the corresponding time when the total energy
consumption within a certain period exceeds a threshold. The
pricing scheme RTP-IBR is given as:

prct(lt) =

{
et, if 0 ≤ lt < c
ε · et, if lt ≥ c

(1)

where lt denotes the total energy consumption at time slot
t, et and prct denote RTP and the electricity price based on
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RTP-IBR at time slot t, respectively, c denotes the threshold
and ε is a coefficient greater than 1 [11] [12].

Model of user’s demands is formulated. User’s demands
include the length of operation time (LOT) and the operation
time interval (OTI) for home appliances [12]. Let γ denote
the LOT and [α, β] denote the OTI of an appliance, where α
is the earliest start time of operation and β is the deadline
that the operation must be finished. Considering the general
operation time of appliances, 1 hour is divided into 5 time
slots and the energy consumption is scheduled with 12-minute
time resolution. One day is mapped to 120 time slots and
the LOT and the OTI are represented via time slots with one
time slot representing 12 minutes. For example, when it takes
an hour for washing machine to finish the washing task and
the operation is pre-specified between 12 am and 12 pm, the
LOT of washing machine is 5 and the OTI is from 1 to 60,
i.e., γ = 5, α = 1, β = 60 for washing machine. If the
operation length of an appliance is not an integer multiple of
12 minutes and the mapped LOT is not an integer, the LOT
of the appliance is rounded up to the nearest integer [12]. It
is noted that though the energy consumption of MOAs cannot
be scheduled in advance, users’ demands for MOAs are also
modelled via the possible OTIs and the ranges of LOTs which
are pre-specified by users. For example, the watching time of
TV is pre-specified between 6 pm and 12 am and the watching
length is pre-specified between 3 hours and 4 hours while
when and how long users watch TV are still dependent upon
users’ real-time demand.

III. IMPACT OF THE UNCERTAINTY OF MOAS’ ENERGY

CONSUMPTION

Based on the pricing scheme RTP-IBR, the electricity
payment is

f(X,U) =

T∑
t=1

prct(lt(X,U)) · lt(X,U) (2)

where X denotes the energy consumption schedule of SAs, U
denotes the energy consumption case of MOAs, X and U are
matrixes in which each row stands for the energy consumption
schedule of a certain appliance, T is the scheduling horizon
that indicates the number of time slots ahead which the energy
consumption schedule is made for SAs, and T = 120 since the
energy consumption of appliances is scheduled a day ahead
with one hour divided into 5 time slots and the time slot
duration is 12 minutes, and prct is the electricity price based
on RTP-IBR at time slot t as shown in (1).

Let Ω represent all the possible energy consumption sched-
ules of SAs and Γ represent all the possible energy con-
sumption cases of MOAs. For a certain X, f(X,U) is
uncertain due to the uncertainty of U. Among all the possible
energy consumption cases for MOAs, there exists an energy
consumption case of MOAs that makes the smallest impact
to electricity payment, i.e., with this energy consumption case
of MOAs, the electricity payment is smallest. The electricity
payment with the smallest impact of MOAs is formulated as

fL(X) = min
U∈Γ

f(X,U). (3)

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 

( ) ( ) ( ) ( ) ( ) 

( ) ( ) 

( ) 

( ) ( ) 

( ) 

( ) ( ) 

( ) 

( ) ( ) 

(1) (2) 

(3) (4) 

(5) (6) 

Fig. 2. Six possible relationships between electricity payment intervals

Similarly, there exists an energy consumption case of MOAs
that makes the worst impact to electricity payment, corre-
sponding to the highest electricity payment

fR(X) = max
U∈Γ

f(X,U). (4)

Therefore, for a certain energy consumption schedule of SAs
X, the electricity payment f(X,U) ∈ [fL(X), fR(X)].

For any two different energy consumption schedules of SAs
A and B, the electricity payments are within [f L(A), fR(A)]
and [fL(B), fR(B)], respectively. Fig. 2 shows all the possi-
ble relationships between these two electricity payment inter-
vals [27]. For relationships shown in Fig. 2-(1) and Fig. 2-(6),
the performance comparison between schedules A and B is
deterministic, since the electricity payment intervals of the two
schedules are not interacted and overlapped and the electricity
payment with one energy consumption schedule is always
less than the payment with the another schedule regardless
of the uncertainty of the MOAs. However, the uncertainty of
MOAs’ energy consumption should be taken into account for
relationships shown in Fig. 2-(2) - Fig. 2-(5) when schedules
A and B are compared, since the electricity payment intervals
of two schedules are overlapped and thus the comparison
of electricity payment is uncertain due to the uncertainty of
MOAs’ energy consumption.

IV. ROBUST OPTIMIZATION APPROACH

As shown in Fig. 2, the uncertainty of MOAs’ energy
consumption has impact on the electricity payment whose
interval is between Eqn. (3) and Eqn. (4), it is necessary to take
into account the uncertainty of MOAs’ energy consumption
for energy consumption scheduling. In this section, a robust
approach is proposed to deal with the uncertainty of MOAs’
energy consumption. A complete optimization model is given
at first, then a heuristic algorithm, the intergeneration projec-
tion evolutionary algorithm (IP-EA), is adopted for solving the
robust optimization problem.

A. Complete Optimization Model

Among all the possible cases of MOAs’ energy consump-
tion, the robust optimization approach takes into account
the case that causes fR(X), i.e., with the worst impact to
electricity payment of all home appliances, and the problem of
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scheduling energy consumption of SAs with the consideration
of the worst impact of MOAs is represented as

min
X∈Ω

fR(X)

fR(X) = max
U∈Γ

f(X,U)

f(X,U) =
T∑

t=1
prct(lt(X,U)) · lt(X,U)

(5)

which is equivalent to

min
X∈Ω

max
U∈Γ

f(X,U)

f(X,U) =
T∑

t=1
prct(lt(X,U)) · lt(X,U)

(6)

with the electricity price prct presented in (1). For a home
with n SAs including the interruptible and non-interruptible
SAs and m MOAs, the energy consumption schedule of SAs
is

X =

⎡
⎢⎢⎢⎣

X1

X2

...
Xn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

x1
1 x2

1 . . . xt
1 . . . xT

1

x1
2 x2

2 . . . xt
2 . . . xT

2
...

...
. . .

...
x1
n x2

n . . . xt
n . . . xT

n

⎤
⎥⎥⎥⎦ (7)

where each row of the matrix X represents the energy con-
sumption schedule of a SA within T time slots. The energy
consumption case of MOAs is

U =

⎡
⎢⎢⎢⎣

U1

U2

...
Um

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

u1
1 u2

1 . . . ut
1 . . . uT

1

u1
2 u2

2 . . . ut
2 . . . uT

2
...

...
. . .

...
u1
m u2

m . . . ut
m . . . uT

m

⎤
⎥⎥⎥⎦ (8)

where each row of the matrix U represents the energy
consumption case of a MOA. Therefore, the total energy
consumption at time slot t is

lt(X,U) =

n∑
i=1

xt
i +

m∑
j=1

ut
j , t ∈ {1, 2, · · · , T }. (9)

1) Constraints: Based on the classifications of appliances,
the constraints of the energy consumption of appliances
are presented in this section and the illustrative examples
for the constraints of appliances are shown in Fig. 3. Let
P = [p1, p2, · · · , pγ ] denote the power vector of an appliance,
which represents the appliance’s power consumption during
the whole operation process. For example, the power vector
of the clothes dryer is [1.2 1.2 1] kW, which shows that the
power consumption of the clothes dryer in the first, second
and third time slot are 1.2, 1.2 and 1 kW, respectively.

When the appliance b belongs to the non-interruptible SAs,
the energy consumption schedule Xb is

Xb =
{
xt
b| xtb+θ

b = pθ+1

5 , for all θ = 0, 1, · · · , γb − 1

tb ∈ [αb, βb − γb + 1],
xt
b = 0, t ∈ H\[tb, tb + γb − 1],

H = {1, 2, · · · , T }
}

(10)
where tb is the start time slot for the appliance’s operation and
tb ∈ [αb, βb−γb+1] since the operation should start ahead the

  Non-interruptible SA 

Interruptible SA 

Non-interruptible MOA 

  

  

Interruptible MOA 
  

Fig. 3. Illustrative examples for the constraints of appliances

deadline by at least the length of operation time, the expression
t ∈ H\[tb, tb+γb−1] indicates that t belongs to H excluding
the range [tb, tb + γb − 1], and since one hour is divided into
5 time slots with 12 minutes in each time slot, the energy
consumption in each time slot is 1/5 of the power which is the
energy consumption in an hour. (10) shows the constraints of
non-interruptible SAs: the operation is within the OTI [αb, βb],
the energy consumption is continuous and reaches LOT γ b.
When the appliance d belongs to the interruptible SAs, the
energy consumption schedule Xd is

Xd =
{
xt
d| xtθ

d = pθ

5 , for all θ = 1, · · · , γd
αd ≤ t1 < t2 < t3 < · · · < tγd

≤ βd,
xt
d = 0, t ∈ H\{t1, t2, t3, · · · , tγd

},
H = {1, 2, · · · , T }

} (11)

which shows the constraints of interruptible SAs: the oper-
ation is within the OTI [αd, βd], the energy consumption is
interruptible and reaches LOT γd. The LOT is 4 for both the
interruptible and non-interruptible SAs in Fig. 3.

MOAs are categorized into two groups: non-interruptible
and interruptible ones. The energy consumption of a non-
interruptible MOA f is

Uf =
{
ut
f | u

tf+θ
f = pθ+1

5 , for all θ = 0, 1, · · · , γf − 1

tf ∈ [αf , βf − γf + 1], γf ∈ [γmin
f , γmax

f ],

ut
f = 0, t ∈ H\[tf , tf + γf − 1],

H = {1, 2, · · · , T }
}

(12)
where tf is the start time slot for the appliance’s operation,
γmin
f and γmax

f denote the minimum and maximum LOT
of MOA f , respectively. (12) shows the constraints of non-
interruptible MOAs: the operation is within the OTI [αf , βf ],
the LOT γf is within the range [γmin

f , γmax
f ] and is flexible

based on users’ real-time demands. The energy consumption
of an interruptible MOA g is

Ug =
{
ut
g| utθ

g = pθ

5 , for all θ = 1, · · · , γg
αg ≤ t1 < t2 < t3 < · · · < tγg ≤ βg,
ut
g = 0, t ∈ H\{t1, t2, t3, · · · , tγg},

γg ∈ [γmin
g , γmax

g ], H = {1, 2, · · · , T }
}

(13)
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which shows the constraints of interruptible MOAs: the op-
eration is within the OTI [αg, βg], the energy consumption is
interruptible and reaches LOT γg . The range of LOT is [4, 5]
for the illustrative MOAs in Fig. 3. Note that the constraints
of MOAs are only to define the possible cases of MOAs’
energy consumption and energy consumption of MOAs is still
controlled by users in real time.

2) Complete Model Formulation: Finally, the objective of
the robust optimization approach with the consideration of the
constraints of appliances is represented as

min
X∈Ω

max
U∈Γ

f(X,U)

f(X,U) =
T∑

t=1

prct(lt(X,U)) · lt(X,U)

X =

⎡
⎢⎢⎢⎣

X1

X2

...
Xn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

x1
1 x2

1 . . . xt
1 . . . xT

1

x1
2 x2

2 . . . xt
2 . . . xT

2
...

...
. . .

...
x1
n x2

n . . . xt
n . . . xT

n

⎤
⎥⎥⎥⎦

U =

⎡
⎢⎢⎢⎣

U1

U2

...
Um

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

u1
1 u2

1 . . . ut
1 . . . uT

1

u1
2 u2

2 . . . ut
2 . . . uT

2
...

...
. . .

...
u1
m u2

m . . . ut
m . . . uT

m

⎤
⎥⎥⎥⎦

lt(X,U) =
n∑

i=1

xt
i +

m∑
j=1

ut
j, t ∈ {1, 2, · · · , T }

prct(lt(X,U)) =

{
et, if 0 ≤ lt(X,U) < c
ε · et, if lt(X,U) ≥ c

Ω =

{
X|X =

⎡
⎢⎢⎢⎣

X1

X2

...
Xn

⎤
⎥⎥⎥⎦ ,

Xi subject to (10)
if i is a non-interruptible SA
Xi subject to (11)
if i is an interruptible SA
i = {1, 2, · · · , n}

}

Γ =

{
U|U =

⎡
⎢⎢⎢⎣

U1

U2

...
Um

⎤
⎥⎥⎥⎦ ,

Uj subject to (12)
if j is a non-interruptible MOA
Uj subject to (13)
if j is an interruptible MOA
j = {1, 2, · · · ,m}

}

(14)

The min-max problem represented in (14) is a two-level,
robust optimization problem. Each X corresponds to a U that
causes the highest electricity payment and the value of X (the
variable of the outer level optimization) has direct impact on
the value of U (the variable of the inner level optimization).
All the variables are discrete since the energy consumption
of appliances is determined by the on/off states of appliances.
When the appliance is operated (on state), the value of variable
is the energy consumption of the appliance; and when the
appliance is not operated (off state), the value of variable is
zero.

B. Solution Algorithm

Since the model for the optimization problem of energy
consumption scheduling is the same as the optimization model
in [27], the optimal solution to energy consumption scheduling
can be obtained through IP-GA as well. In this paper, we
adopt the intergeneration projection evolutionary algorithm
(IP-EA) to solve the robust optimization problem of energy
consumption scheduling. IP-GA is a nested heuristic algorithm
with inner GA and outer GA while IP-EA is a nested heuristic
algorithm with inner GA and outer PSO algorithm. It is noted
that IP-GA and IP-EA are essentially the same in finding the
optimal solution except that the IP-EA is more computation-
ally efficient, since the computational effort required by PSO
is less than that of the GA to obtain same quality of the final
solution [30].

GA mimics the process of natural selection. After evalu-
ating the fitness of each individual in generation, selecting
individuals with high fitness, crossover and mutation, the
new generation with better fitness is obtained, and the above
process cycles until the individual with the satisfactory fitness
is found [12]. PSO algorithm is based on the behavior of
particles of a swarm. Particles in a swarm approach to the
optimum by tracking the best location of individual particle
(pbest) and the best location of particle swarm (gbest), which
is formulated as

vk+1
ζ = wvkζ + c1r1(pbest

k
ζ − pkζ ) + c2r2(gbest

k − pkζ )

pk+1
ζ = pkζ + vk+1

ζ
(15)

where vζ and pζ are the velocity and the position of the particle
ζ, respectively, k is the iteration index, w is the inertia weight
factor, c1 and c2 are the acceleration constants, and r1 and r2
are randomly generated numbers in range of [0, 1] [31].

The flowchart of IP-EA for solving the problem of energy
consumption scheduling is shown in Fig. 4. The outer PSO
algorithm is for searching the optimal schedule of SAs’ energy
consumption and the inner GA is for searching the energy
consumption case of MOAs with the worst impact to electricity
payment. More specifically, for a trial schedule of SAs’ energy
consumption, the worst case of MOAs’ energy consumption is
obtained through GA. Then we can get the electricity payment
with the trial schedule of SAs’ energy consumption and the
worst case of MOAs’ energy consumption, and this electricity
payment is used for tracking the optimal energy consumption
schedule among the swarm of energy consumption schedules
of SAs. The optimal schedule of SAs’ energy consumption is
obtained after the convergency of the electricity payment with
the worst impact of MOAs.

Remarks Since values of outer-level variables affect the
values of inner-level variables, this kind of problem with two-
level framework is equivalent to a problem with product term
[24]–[26], which makes the problem in general NP-hard to
solve [25], and it cannot be solved by linear programming.
The outer approximation (OA) algorithm is adopted in [24]-
[26] to solve the similar max-min problems after the inner
minimization problem has been converted to an equivalent dual
maximization problem via the duality theory. However, this
method cannot be applied in the proposed problem as all the
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Fig. 4. Flowchart of intergeneration projection evolutionary algorithm

variables are discrete and the equivalent dualization requires
the continuousness of variables [32]. Future studies will be
focused on converting the proposed problem to an equivalent
continuous one. Evolutionary algorithm is effective in solving
nonlinear problems and problems with discrete variables [33]–
[38], and the IP-EA with two-level structure is effective in
solving the proposed two-level problem with discrete variables
[27]. It is noted that with the two-level structure of the
algorithm, the IP-EA solves the proposed problem directly
without the conversion of the original problem. Though the IP-
EA cannot guarantee the global optimality, the effectiveness
of the usage of the IP-EA for solving the problem has been
verified via case studies.

V. CASE STUDY

In this section, simulation studies are carried out to verify
the effectiveness of the proposed approach. Eight typical SAs
and six typical MOAs are considered and the parameters of
SAs and MOAs are given in Table I and Table II based
on their operation characteristics. The first six SAs are non-
interruptible and the last two SAs are interruptible, and the first
three MOAs are interruptible and the last three MOAs are non-
interruptible. For appliances whose powers are not represented
as vectors in Table I and Table II, their powers are constant
during the operation processes. The RTP data in August 2012
is adopted from the Ameren Illinois Power Company [14],
which is the electricity price used for energy scheduling.
Taking into account the uncertainty and the prediction error
of the RTP, the electricity price varying between 90% and
110% of the RTP data is used for back test of the energy
scheduling [11]. We assume that the coefficient ε = 1.4423
and the energy consumption threshold c = 0.45 kWh [11]
[12]. Note that the threshold is for the energy consumption
within 12 minutes. Two cases, one day operation of all SAs

TABLE I
PARAMETERS OF SAS

SA OTI LOT Power (kW)
Electric kettle [12] 1-25 1 1.5

Clothes dryer [12] [39] 61-90 3 [1.2 1.2 1]
Oven [40] [41] 71-85 3 [2.1 1.9 1.9]

Water heater [12] [42] 86-105 3 [1.7 1.7 1.4]
Electric radiator [12] [43] 96-110 5 [2.2 1.8 1.8 1.8 1.8]

Dishwasher [12] 101-120 2 0.6
Washing machine [12] 1-60 5 0.38

Humidifier [12] 1-30 8 0.05

TABLE II
PARAMETERS OF MOAS

MOA OTI LOT Power (kW)
Electric iron [40] [41] 61-70 3 [1.7 1.5 1.5]
Vacuum cleaner [12] 71-80 3 1.5

Hair drier [12] 101-110 1 1
Lights [12] 81-120 30-35 0.2
Laptop [40] 86-115 15-20 0.1

TV [12] 91-120 15-20 0.1

and MOAs on August 3rd 2012, and one month operation of
different combinations of home appliances in August 2012,
are presented. All simulations are implemented in MATLAB
on Intel Core-i3 3.3-GHz personal computer with 8 GB RAM.

A. Performance of the IP-EA

For the inner GA, the population size of each generation is
200, the probability of crossover is 0.8 and the max generation
number is 100 [12] [44]. For the outer PSO, the number of
particles is 20, the inertial weight factor w decreases linearly
from 0.9 to 0.4 with the increase of the iteration index, both the
acceleration constants c1 and c2 are 2, and the max iteration
number is 300 [45] [46]. The computational time of the IP-
EA is 113 minutes within the scheduling horizon of a day.
Fig. 5-(a) shows the evolution process of GA for searching
the worst case of MOAs’ energy consumption for a trial
schedule of SAs’ energy consumption. Fig. 5-(b) presents the
convergency performance of the electricity payment with the
worst impact of MOAs in the evolution process of PSO for
searching the optimal energy consumption schedule of SAs,
and the electricity payment with the worst impact of MOAs
decreases by 8.54% from 57.17 cents to 52.29 cents.

Remarks The objective of the proposed approach is to
improve an installed ESS via upgrading scheduling algorithm
only, and thus no extra hardware cost is needed. Though
the computational time of the optimization in the simulation
test on a current PC is around 2 hours, it is within the
scheduling horizon of a day and the proposed approach only
runs optimization once per day. Thus the implementation of the
proposed optimization in house level does not require a very
powerful processor for the EMC. With the further development
of computer technology and reduction of hardware cost, the
implementation cost of the ESS will be further reduced.

B. One Day Case

To verify the advantage of the proposed approach, the
energy consumption schedule of one day period August 3rd
2012 obtained by the proposed approach is compared with
other two approaches without considering the uncertainty of
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Fig. 5. (a) Evolution process of GA for searching the worst case of MOAs’
energy consumption (b) Evolution process of PSO for searching the optimal
energy consumption schedule of SAs

MOAs’ energy consumption, including the approach without
considering MOAs which minimizes the electricity payment
of SAs and the approach considering the fixed pattern of
MOAs which minimizes the electricity payment of all home
appliances with an assumed energy consumption of MOAs.
For convenience, the approach without considering MOAs,
the approach considering the fixed pattern of MOAs and the
proposed approach considering the worst impact of MOAs are
referred to as A1, A2 and A3, respectively. Both A1 and A2
are implemented through the IP-EA. In the case study, the
energy consumption periods of MOAs are assumed as shown
in Table III within the OTIs and ranges of LOTs of MOAs in
Table II for A2. It is noted that the fixed energy consumption
of MOAs is assumed for A2 in the decision making process of
SAs’ energy consumption, the energy consumption of MOAs
is still controlled by users in real time and can be consumed at
anytime in OTIs with any possible LOTs. The following three
aspects are compared.

1) Energy Consumption Schedule: Fig. 6 and Fig. 7 show
the comparison of energy consumption schedule of SAs be-
tween A1 and A3, and A1 and A2, respectively. The gray
area in Fig. 6 is the possible energy consumption period of
the electric iron and the vacuum cleaner and Fig. 7 is the

TABLE III
ASSUMED ENERGY CONSUMPTION PERIODS OF MOAS

MOA Energy consumption period
Electric iron 61-63

Vacuum cleaner 73-75
Hair drier 110

Lights 85-117
Laptop 101-115

TV 94-113

TABLE IV
COMPARISON OF THE WORST ELECTRICITY PAYMENT

Approach Worst electricity payment (cents)
Without considering MOAs 65.02

Considering the fixed pattern of MOAs 61.83
Considering the worst impact of MOAs 57.89

assumed energy consumption of the electric iron and the
vacuum cleaner. We can see from Fig. 6 and Fig. 7 that,
compared with A1, some SAs are shifted from low electricity
price periods to periods with a little higher electricity price
to avoid the risk of much higher electricity price charged in
low price periods, which is caused by the excess of threshold
set by IBR when operations of MOAs happen to be in these
low price periods. More specifically, the energy consumption
of the cloth dryer and the oven is shifted from 61-63, 72-74
time slots to 88-90, 83-85 time slots, respectively, to avoid
all the possible consumption periods of the electric iron and
the vacuum cleaner for A3. By comparison, only the energy
consumption of the oven is shifted and the energy consumption
of the cloth dryer still remains in low price period for A2. That
is to say, A3 will consider all the possible cases of energy
consumption of MOAs and A2 will only consider a certain
pattern of MOAs’ energy consumotion.

With the energy consumption schedules of SAs and the
electricity price shown in Fig. 6 and Fig. 7, the electricity
payments of A1, A2 and A3 are 24.48 cents, 25.07 cents
and 25.13 cents, respectively, when all the MOAs are not
used, and the worst electricity payments are 59.06 cents, 56.21
cents and 52.29 cents, respectively, when all the MOAs are
used with the consideration of the worst impact of MOAs’
energy consumption. Though compared with A1 and A2, the
electricity payment of A3 increases by 2.66% and 0.24%,
respectively, when all MOAs are not used, it is noted that the
worst electricity payment of A3 drops by 11.46% and 6.97%
when all the MOAs are used. The little sacrifice of SAs will
help greatly to reduce the risk of much higher payment caused
by the uncertainty of MOAs’ energy consumption.

2) Electricity Payment with the Worst Impact of MOAs and
RTP: Based on the energy consumption schedules of SAs
obtained from A1, A2 and A3, the worst impact of uncertainty
on RTP, i.e., 110% of the RTP used for energy scheduling,
and the worst impact of MOAs’ energy consumption are
considered. As shown in Table IV, the electricity payment
obtained by A3 is 57.89 cents, reduced 10.97% from A1
(65.02 cents) and 6.37% from A2 (61.83 cents). Note that
MOAs are included to calculate the total electricity payment,
together with SAs, even when the MOAs’ impact is not
considered in the decision making process of SAs’ energy
consumption schedule.
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Fig. 6. Energy consumption comparison between the approach considering the worst impact of MOAs and the approach without considering MOAs

0 20 40 60 80 100 120
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Time slot

En
er

gy
 co

ns
um

pt
ion

 o
f S

As
 (k

W
h)

 

 

0 20 40 60 80 100 120
0

1

2

3

4

5

6

7

8

9

10

11

El
ec

tri
cit

y p
ric

e 
(c

en
ts/

kW
h)

Energy consumption scheduling without considering MOAs
Energy consumption scheduling considering the fixed impact of MOAs
Electricity price

Fig. 7. Energy consumption comparison between the approach considering the fixed pattern of MOAs and the approach without considering MOAs

3) Electricity Payment with Random Impact of MOAs and
RTP: The effectiveness of A3 is tested under 1000 random
cases where the MOAs’ energy consumption is evenly dis-
tributed among all the possible cases, and ±10% random
noises are added into the RTP. Fig. 8 shows the comparison
of electricity payment under random MOAs and uncertain
RTP among the case without energy consumption scheduling
of SAs (which the energy consumption of SAs is randomly
distributed), and scheduling obtained by A1, A2 and A3
(as shown in Fig. 6 and Fig. 7), respectively. The average
electricity payments of 1000 random cases are 48.42 cents
(A3), 50.46 cents (A1), 49.76 cents (A2), and 58.12 cents
for the situation without energy consumption scheduling,
respectively. Through A3, the average electricity payment
decreases by 16.69%, 4.04% and 2.69% compared with the
situation without energy consumption scheduling, A1 and A2,
respectively. The comparison of average electricity payment
under random cases is tested through the hypothesis testing.
The hypothesis that the average electricity payment of A3
is smaller than that of other situations is accepted with the
probability of 99.95%. The procedure of the hypothesis testing
is presented in Appendix [47] [48].

C. Impact of Electricity Price on MOAs’ OTIs

Taking into account the possible impact of electricity price
on users’ preference, the OTIs of some MOAs would be
more likely to be set in periods with low electricity price. To
research on the impact of MOAs’ OTIs being set in low price
periods, the OTIs of electric iron, vacuum cleaner and hair
drier are reset as follows, [61− 65], [71− 75], [106− 110], in
periods with lower electricity price within the previous OTIs in
Table II, and the OTIs of lights, laptop and TV remain the same
since users’ preference for the operations of these appliances
seems not to be affected by the electricity price. With the new
MOAs’ OTIs, the electricity payment with random impact of
MOAs and RTP is compared between A1 and A3. Under 1000
random cases of MOAs’ energy consumption and RTP, the
average electricity payment is 48.12 cents for A3 and it is
52.99 cents for A1. Through the proposed A3, the average
electricity payment decreases by 9.19% compared with A1.
The hypothesis that the average electricity payment of A3 is
smaller than that of A1 is accepted with the probability of
99.95% [47] [48]. The procedure of the hypothesis testing is
presented in Appendix.

Table V shows the comparison of electricity payment with
random impact of MOAs and RTP between A3 and A1.
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Fig. 8. Comparison of electricity payment between (a) no scheduling and
scheduling without considering MOAs (b) no scheduling and scheduling
considering the fixed pattern of MOAs (c) no scheduling and scheduling
considering the worst impact of MOAs

TABLE V
COMPARISON BETWEEN THE PROPOSED APPROACH AND THE APPROACH

WITHOUT CONSIDERING MOAS

Electricity payment (cents) Without price impact With price impact
Approach without
considering MOAs 50.46 52.99

Approach considering
worst impact of MOAs 48.42 48.12

Percentage -4.04% -9.19%

Without the consideration of the impact of electricity price
on MOAs’ OTIs, the electricity payment decreases by 4.04%
comparing A3 with A1, and it is 9.19% when the price impact
on MOAs’ OTIs is considered, i.e., users will benefit more
from the proposed A3 compared with A1 when the possible
impact of electricity price on MOAs’ OTIs is taken into
account. Since users will be more likely to operate MOAs
in periods with low electricity price when the price impact on
MOAs’ OTIs is considered, and the energy consumption of
SAs is scheduled in low price periods as well for A1, the risk
of exceeding the threshold of energy consumption set by IBR
increases for A1, and the proposed A3 helps reduce the risk
effectively.

D. One Month Case with Different Combinations of Home
Appliances

To further verify the effectiveness of the proposed A3, it
is tested in one month period, August 2012, with different
combinations of home appliances. Choosing 7−8 SAs in Table
I and 5−6 MOAs in Table II, the electricity payment with the
worst impact of MOAs and RTP, and the payment with random
impact of MOAs and RTP are compared between A3 and A1,
A3 and A2, respectively. As shown in Fig. 9, the average
value of worst electricity payments in 31 days obtained by
A3 is 34.04 cents, reduced 4.27% from A1 (35.56 cents) and
3.76% from A2 (35.37 cents). Fig. 10 shows the comparison
of electricity payment with random impact of MOAs and RTP.
The average values of payments with random impact of MOAs
and RTP in 31 days are 29.42 cents (A3), 29.93 cents (A1)
and 29.87 cents (A2), respectively. Through A3, the electricity
payment with random impact of MOAs and RTP deceases by
1.70% and 1.51% compared with A1 and A2, respectively.

E. Case of MOAs’ Usage Probability

The proposed approach assumes that all MOAs will be
used during the planning. Under this assumption, to avoid
violating the IBR threshold and accommodate all MOAs,
energy consumption of some SAs may be shifted to periods
with a little higher electricity price, which may cause the
increase of electricity payment if some MOAs are not actually
used. Taking into account the usage probability of MOAs, a
new approach of energy scheduling is formulated as

min
X∈Ω

NS∑
s=1

ρs · max
Us∈Γs

f(X,Us) (16)

where s is the index of scenario and each scenario represents
one combination of MOAs. Considering each MOA may be
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Fig. 9. Comparison of electricity payment with the worst impact of MOAs and
RTP between (a) the proposed approach and the approach without considering
MOAs (b) the proposed approach and the approach considering the fixed
pattern of MOAs

used or not, the total number of scenarios NS is 2m for total m
MOAs. ρs is the probability of scenario s and

∑NS
s=1 ρs = 1,

Us is the energy consumption case of MOAs in scenario s
and Γs is the set of energy consumption cases of MOAs in
scenario s. It is noted that it is the uncertainty of MOAs’
energy consumption, i.e., when users start MOAs and how
long users operate them, that is difficult to estimate rather than
the probability distribution of MOAs’ usage. In this section,
the probability of MOAs’ usage is taken into account, which
is different from the probability distribution of uncertainty of
MOAs’ energy consumption. With the consideration of MOAs’
usage probability, the energy consumption of SAs is now not
scheduled considering all MOAs are used.

To test this new approach, the electric iron and the vacuum
cleaner are assumed to be used with probability of 0.5 and
other MOAs in Table II are assumed to be certainly used.
By using the IP-EA, the energy consumption schedule of SAs
on August 3rd 2012 is obtained and presented in Table VI.
The electricity payment with the worst impact of MOAs and
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Fig. 10. Comparison of electricity payment with random impact of MOAs and
RTP between (a) the proposed approach and the approach without considering
MOAs (b) the proposed approach and the approach considering the fixed
pattern of MOAs

RTP, and the payment with random impact of MOAs and
RTP are compared among the new approach, A1, A2 and A3,
respectively. The worst electricity payments are 65.02, 61.83
and 57.89 cents for A1, A2 and A3, respectively, and remain
the same as in Table IV, and it is 65.02 cents for the new
approach. Electricity payments with random impact of MOAs
and RTP are 42.08 cents (new approach), 42.50 cents (A1),
42.79 cents (A2) and 41.65 cents (A3), respectively. Note
that the probability of MOAs’ usage is now considered in the
random cases of MOAs’ energy consumption. Both the new
approach and A3 have outperformed A1 and A2, and A3 still
performs better at the electricity payment under random cases
that some MOAs may not be used. It can be predicted that
A3’s performance may be degraded if the usage probability is
reduced from 0.5, or the unused MOAs capacity increases.

VI. CONCLUSION

This paper has proposed a robust optimization approach for
energy scheduling of home appliances, taking into account
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TABLE VI
ENERGY CONSUMPTION SCHEDULE OF SAS

SA Energy consumption period
Electric kettle 12
Clothes dryer 88-90

Oven 81-83
Water heater 96-98

Electric radiator 106-110
Dishwasher 118-119

Washing machine 17,21,22,24,32
Humidifier 1,13,15,17,21,26,27,28

the worst impact of the uncertainty of MOAs’ energy con-
sumption. The uncertainty of MOAs’ energy consumption has
been considered in the robust optimization approach with the
consideration of the constraints of appliances, based on the
electricity pricing scheme of RTP-IBR. The robust optimiza-
tion approach has been implemented through the intergenera-
tion projection evolutionary algorithm. The effectiveness of the
proposed approach has been verified by case studies based on
one day and one month periods. Compared with the scheduling
approach without considering MOAs’ uncertainty, and the
scheduling approach considering MOAs’ uncertainty with a
fixed pattern, the proposed approach can effectively avoid
the risk of high electricity payment caused by the MOAs’
uncertainty and reduce the electricity payment with the worst
impact of MOAs’ energy consumption. The effectiveness of
the proposed approach has also been verified under random
cases of MOAs’ energy consumption, in which the electricity
payment of home appliances has also been reduced. Future
research will focus on employing a global solver for the
robust optimization problem and considering renewable energy
generation, electric vehicle and distributed energy storage
device.

APPENDIX
Process of Hypothesis Testing

Step 1. Hypothesis is defined: μ∗ ≤ μr, where μ∗ is
the true value of the average electricity payment of the *
approach and μr is the true value of the average electricity
payment of the robust approach A3.
Step 2. Calculate t value:

t =
x̄∗ − x̄r√
s2∗
n∗ +

s2r
nr

where

x̄∗ =

n∗∑
i=1

x∗i

n∗
, x̄r =

nr∑
i=1

xri

nr

s2∗ =

n∗∑
i=1

(x∗i − x̄∗)
2

n∗ − 1

s2r =

nr∑
i=1

(xri − x̄r)
2

nr − 1

and x∗i and xri are the electricity payment of the * approach
and the robust approach under ith random case of MOAs’

energy consumption, respectively, and n∗ and nr are the num-
ber of random experiments (random cases of MOAs’ energy
consumption) of the * approach and the robust approach,
respectively.
Step 3. Based on the desired chance of error α = 0.0005 and
the degree of freedom

ν =
(
s2∗
n∗ +

s2r
nr
)2

s4∗
n2∗(n∗−1) +

s4r
n2

r (nr−1)

,

find the corresponding tcritical, which can be obtained from the
t-distribution table (Table 6.1 in [48]).
Step 4. Compare t and tcritical, if t > tcritical, the hypothesis is
rejected.

In Section V.B, t = 109.78, 24.21 and 16.88 for the
comparisons between A3 and the situation without energy
consumption scheduling, A3 and A1, A3 and A2, respectively.
In Section V.C, t = 62.91 for the comparison between A1
and A3. tcritical = 3.291 for all the above comparisons and
since t > tcritical, all the hypothesises that the true values
of the average electricity payments of other approaches are
less or equal than the payment of the proposed A3 are
rejected, i.e., the hypothesises that the true value of the average
electricity payment of A3 is smaller than the payments of other
approaches are accepted with the probability of 99.95% based
on the desired chance of error α = 0.0005.
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