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Abstract

Blurring of images occurs in many fields, causing significant problems inretinal
imaging. In any diabetic retinopathy screening programme, up to 10% of the images are
ungradable due to inadequate clarity or poor field definition. It is importantto obtain as
much information as possible of retinal vessels and other structures.

Deblurring is a major technique that may be developed to restore the lost true image.
We present non-blind and blind approaches to tackle this problem, including an approach
for multi-channel images. We propose a new solution algorithm for removing unknown
blur (blind case) and show results for retinal images.

1 Introduction
Image processing techniques, such as image reconstruction which includes removing im-
age noise from a given image (denoising) [12], reconstructing an image from an given
blurred image (deblurring) [6], reconstructing the missing or damaged portion of an im-
age (inpainting) [3], emphasizing the boundaries of an image by different filters or seg-
menting a image into subregions (segmentation) [5], have been widely used in many
areas. Despite significant development in photographic techniques andtechnology, blur
is still a major cause for image quality degradation in clinical settings. While newseg-
mentation models can cope with noise, they become inflective for blurred images. This is
due to many factors such as motion of the camera or more commonly in the case of retinal
images the target scene, defocusing of the lens system, imperfections inthe electronic,
photographic, transmission medium, or obstructions.

An observed blurred image can be written as a convolution of the true imagewith a
Linear Shift-Invariant (LSI) blur, known as the Point Spread Function(PSF) or spatial
invariant/variant unknown kernelK [9].

There are three main deconvolution problems: (1) blind deconvolution, which in-
cludes the cases when both kernel and image are unknown, (2) semi-blind restoration,
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in which the kernel is assumed to belong to a class of parametric functions,or (3) non-
blind deconvolution where only the image is unknown. All three types are important not
only in many scientific applications such as astronomical imaging, medical imaging, and
remote sensing, but also for consumer photography.

Deconvolution in the case of known blur, assuming the linear degradation model,
has been investigated widely in the last few decades giving rise to a variety of solutions
[2, 10, 13]. In non-blind deconvolution, the point spread function is assumed known even
though this information is not available in most of the real applications. In cases when
the blur is not known the problem becomes harder and much more challenging. Blind
deconvolution, which is our main concern below, was first introduced by[6] and a lot of
work has been carried out so far to improve the model [1, 7, 11] and an excellent tutorial
has been provided by [9].

This paper is organised as follows: in Section 2, we present the formulation for non-
blind deblurring and the splitting idea with some results. In Section 3 we show the
formulation of the blind method with results, including applications in retinal imaging.
In the Section 4, we give the conclusion.

2 Non-Blind Deblurring
The idea of minimising an energy functional of the form

min
u

{

||k ∗u− z||22+α
∫

Ω
L(u)dΩ

}

(1)

where the first term is the least squares term which aims to keep the restored image as
close to the true image as possible and the second term is a regularisation termwhich aims
to restore edges lost in the reconstruction, was proposed by [12]. A number of functions
are commonly selected forL(u), such asL(u) = u2 (Tikhonov [14]) or L(u) = |∇u|2. The
Total Variation (TV) regularisation term given byL(u) = |∇u| has been widely used due
to its effectiveness with preserving edges. Minimising equation (1) we derive the Euler
Lagrange equation

KT Ku−KT z−α∇ ·
(

∇u
|∇u|

)

= 0,

whereK is ann2×n2 dense matrix of structured blocks. To cope with∇u= 0, we modify
|∇u| by |∇u|β =

√

(∇u)2+β for β > 0. We therefore aim to solve

KT Ku−KT z−α∇ ·

(

∇u
|∇u|β

)

= 0. (2)

To solve this non-linear partial differential equation (PDE) we use iterative methods.
Time marching is effective but typically proves to be slow to obtain good results. Instead,
we use a Conjugate Gradient method aided by preconditioners which aim to increase the
stability and speed of the system, such as the Product Preconditioner [15] or the Cosine
Transform Preconditioner [4].

2.1 Splitting Deblurring and Denoising
We modify the functional by replacing the restored image variable in the least squares
term with a new variable, distinct from that used in the regularisation term, and add a
further term to minimise the difference between them. Our modified functional is given
by

f (u,v) =
1
2
||k ∗ v− z||22+α

∫

Ω
|∇u|dΩ+

γ
2
||u− v||22. (3)
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Minimisation of equation (3) with respect tou andv yields the Euler Lagrange equations

KT Kv−KT z− γ(u− v) = 0 (4)

γ(u− v)−α∇ ·

(

∇u
|∇ũ|β

)

= 0 (5)

which we solve forv andu respectively [8]. We may use fixed point and the 2-dimensional
fast Fourier transform (fft) to solve equation (4) for v. In order to solve equation (5) for
u we use Time Marching or Conjugate Gradient. We make an initial estimateu of the
true imageutrue, which we typically take to be the received imagez and repeatedly solve
equations (4) and (5) for u andv respectively untilu andv are sufficiently close. Our
algorithm is given as

Algorithm 1 Non-blind Deblurring
1: procedure NONBLIND SPLITTING(z,k,α,γ , tol)
2: u← z
3: repeat
4: Solve(KT K + γI)v = KT z+ γu for v

5: Solveγ(u− v)−α∇ ·
(

∇u
|∇ũ|β

)

= 0 for u

6: until ||u− v||22≤ tol
7: end procedure

2.2 Experimental Results

We present experimental results of this method in the non-blind case usingthe satellite
and retinal image examples corrupted by motion and Gaussian blur in figures1—3.

Figure 1: Retina image with motion blur. The PSNR increases from 22.847 in the received
image to 27.145 in the restored image. The CPU time to obtain the restored image is 1.48.

Figure 2: Retina image with strong Gaussian blur. The PSNR increases from 17.862 in the
received image to 27.003 in the restored image. The CPU time to obtain the restored image
is 1.63.
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Figure 3: Satellite image with motion blur. The PSNR increases from 142.688 in the received
image to 147.510 in the restored image.

3 Blind Deblurring

A model for Blind Deblurring, given by minimising the functional

f (u,k) =
1
2
||k ∗u− z||22+α1

∫

Ω
|∇u|dΩ+α2

∫

Ω
|∇k|dΩ. (6)

with respect tou andk and solving via an alternate minimisation scheme was proposed
by [6]. The model was shown to give excellent results for model problems,but not
for testing general images where convergence is an issue. We modify this functional,
splitting the restored image and kernel terms as follows:

f (u,v,k,h)=
1
2
||h∗v−z||22+α1

∫

Ω1

|∇u|dΩ1+α2

∫

Ω2

|∇k|dΩ2+
γ1

2
||u−v||22+

γ2

2
||k−h||22.

Minimising with respect tou, v, k and h respectively, we obtain the following Euler
Lagrange equations

γ1(v(x,y)−u(x,y))+h(−x,−y)∗ (h(x,y)∗ v(x,y)− z(x,y)) = 0 (7)

γ1(u(x,y)− v(x,y))−α1∇ ·

(

∇u(x,y)
|∇u(x,y)|β

)

= 0 (8)

γ2(h(x,y)− k(x,y))+ v(−x,−y)∗ (v(x,y)∗h(x,y)− z(x,y)) = 0 (9)

γ2(k(x,y)−h(x,y))−α2∇ ·

(

∇k(x,y)
|∇k(x,y)|β

)

= 0 (10)

An overall algorithm is given in Algorithm2.

3.1 Experimental Results

We present experimental results of the blind restoration using this model of the satellite
and retina images corrupted by motion blur in figures (4) and (5).

4 Conclusions

A new splitting method algorithm is proposed for blind deconvolution restoration. Test
results in retinal images are encouraging and show that it is potentially useful in medical
imaging.
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Algorithm 2 Blind Deblurring
function BLIND SPLITTING(z,kinitial,α1,α2,γ1,γ2, tol,maxit)

u← z
k← kinitial

for i← 1 to maxit do
repeat

Solveu(−x,−y)uk−u(−x,−y)z+ γ(k−h) = 0 for k

Solveγ(h− k)−α∇ ·
(

∇h
|∇h̃|

)

= 0 for h

until ||h− k||22≤ tol
Impose: h(x,y)← 0 if h(x,y)< 0
Impose: h(x,y)← (h(x,y)+h(−x,−y))/2∀x,y ∈Ω
Impose: h← h/

∫

Ω h(x,y)dxdy
repeat

Solvek(−x,−y)kv− k(−x,−y)z+ γ(v−u) = 0 for v

Solveγ(u− v)−α∇ ·
(

∇u
|∇ũ|

)

= 0 for u

until ||u− v||22≤ tol
Impose: u(x,y)← 0 if u(x,y)< 0

end for
end function
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image, bottom left is the initial estimate of the kernel and bottom right is the restored kernel.
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